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10 

 INTRODUCTION 

 

Tsunamis are natural phenomena that occur more rarely than many others. Moreover, 

they can be generated by different sources. Then, it is a challenging task to assess their 

frequency, characteristics, and consequences in coastal zones.  

Tsunami hazard studies have been performed in various areas with different spatial scales: 

local, regional and global. Both deterministic and probabilistic approaches have been used for 

tsunami hazard estimation. The deterministic approach focuses on the maximum credible or 

worst-case scenarios to calculate associated tsunami impact in a target area (Tinti and 

Armigliato 2003; Tinti et al. 2005; Løvholt et al. 2006; Okal and Synolakis, 2008; Lorito et al, 

2008; Harbitz et al. 2012; Omira et al. 2013). Although deterministic analysis requires less 

computational efforts, there is not any unique way to determine the worst-case scenarios, 

introducing a further contribution to the uncertainty, complementing the simplifications 

caused by first-order effect on the modelled tsunami wave heights (Geist and Bilek 2001; Gica 

et al. 2007; Davies et al. 2015; Mueller et al. 2015; Li et al. 2016; Butler et al. 2017; Mori et al. 

2017). 

To deal with these problems, probabilistic tsunami hazard analysis (PTHA) has become a 

widely used procedure for hazard estimation. The steps of the PTHA can be defined in three 

stages: (1) definition of potential tsunami sources and associated mechanism along with their 

rate of occurrence, (2) numerical modelling of the generation and propagation of tsunami 

waves and (3) tsunami hazard estimation including the epistemic and aleatoric uncertainties 

(Geist and Parsons, 2006; Geist and Lynett, 2014; Grezio et al., 2017, Basili et al. 2021). This 
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approach provides as output the probability of exceedance of a threshold for a given tsunami 

metric, such as the maximum runup or the maximum wave height, in a specific location within 

a given time (for example hundreds to thousands of years). The outputs of PTHA can be 

combined with the estimation of the local vulnerability and exposure for the estimation of the 

tsunami risk (Gonzalez et al., 2009; Geist and Lynett, 2014; Wood et al., 2015; Grezio et al., 

2017). The outputs of PTHA are then used as input for loss models that estimate damage to 

the built environment, the economic impact, and the fatalities; these models help to set 

priorities on risk mitigation strategies (Chock, 2015; Løvholt et al., 2015, Suppasri et al., 2016; 

Thio et al., 2017; Wei et al., 2017; Yeh, 2010). PTHA results can be also naturally combined 

with similar results for other phenomena in multi-hazard assessments.  

PTHA requires a large number of high-resolution numerical simulations to be able to 

explore the natural variability of the sources (González et al., 2009; Geist and Lynett, 2014). 

Since there are not sufficient catalogues of historical tsunamis due to their infrequent nature, 

the procedure relies on massive numerical simulations of tsunami generation and 

propagation, producing as many as possible, from thousands to millions of synthetic scenarios, 

usually considering non-linear models in the shallow water approximation (Geist and Lynett, 

2014; Behrens and Dias, 2015; Grezio et al., 2017; Behrens et al., 2021). Therefore, PTHA is a 

challenging procedure in terms of both modelling and computational points of view.  Lorito et 

al. (2015) developed a method to identify a subset of sources able to preserve the accuracy of 

results for Seismic PTHA (SPTHA) significantly reducing the computational cost of the 

assessment. Moreover, Selva et al. (2016) suggest an operation for the joint and unbiased 

quantification of epistemic and aleatory uncertainty of earthquake source in SPTHA, including 

the filtering procedure of Lorito et al. (2015). Volpe et al. (2019) combine these two 
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procedures and develop a computationally efficient approach to achieve robust assessment 

of site-specific SPTHA. Modifying the approach proposed by Lorito et al. (2015) to enhance its 

computational efficiency and improve the accuracy, they applied a separate treatment for 

remote and local sources, selecting near-field scenarios on the basis of the similarity of the 

coseismic tsunami initial conditions. It is possible to perform simulations rapidly (faster than 

real time) with the implementation of tsunami numerical codes using Graphical Processing 

Units (GPUs). HPC accelerates the tsunami forecasting in real-time (Løvholt et al. 2019) and 

supports the performance of high resolution local PTHA studies. Gibbons et al. (2021) is a 

pioneering study which applies a site-specific PTHA workflow using Tsunami-HySEA model 

(Macías et al., 2016) which can run in multi-GPU architectures. This kind of flexibility and 

scalability would help to bridge gaps between long-term tsunami hazard analysis and early 

warning since it allows to make tsunami hazard analysis at a local scale with high resolution 

inundation calculations. 

The probabilistic approach can also be an effective method for tsunami forecasting. Arrival 

time of tsunami waves to the coast can vary from minutes to days and it has a crucial 

importance to forecast tsunamis and make a warning in a very short time after a potentially 

tsunamigenic earthquake. Since we need time after the earthquake occurrence to define a 

reasonably well constrained tsunami initial condition, it is crucial to explore methods that deal 

with a correct representation of the uncertainty due to many different possible source 

mechanisms, especially for local tsunamis. The recent study of Selva et al. (2021) mainly aims 

to propagate this uncertainty from the source to the alert level using probabilistic methods. 

Current practices use a deterministic approach, such as Decision Matrices, Envelopes or Best 

Matching scenarios, for tsunami forecasts and some specific strategies are accepted to replace 
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uncertainty assessment. Probabilistic Tsunami Forecasting (PTF), on the other hand, can 

generate probability distributions of a selected tsunami intensity measure at all forecast 

points. An ensemble of tsunami scenarios from a set of sources weighted by the probability 

of being consistent with available real-time observations (seismic, geodetic, tsunami) and pre-

computed local long-term tsunami hazard information are used for uncertainty quantification. 

Since PTF can be updated continuously with new and more accurate information, it is in 

principle possible to reduce the uncertainty in real-time. 

For both long-term hazard assessment and tsunami forecasting in real time, tsunami 

source modeling is a first-order uncertainty driver (Geist and Parsons, 2006; Tselentis et al., 

2006; Løvholt et al., 2012c; Mueller et al., 2014; Fukutani et al., 2014; Davies et al., 2015). For 

example, the heterogeneous slip distribution plays an important part in assessing the impact 

of local tsunamis (Geist & Dmowska, 1999). Mueller et al. (2015) have demonstrated that 

uniform slip models underestimate the inundation extent and heterogenous slip models 

increased the inundation extent by the equivalent of 0.3–0.4 Mw units with respect to uniform 

slip models. It is also observed that the location of the maximum slip affects the distribution 

of the maximum tsunami heights on the coast, even though the moment magnitude and the 

rupture area are the same (Geist, 2002; McCloskey et al., 2008; Goda et al., 2014).  Li et al. 

(2016) also indicated that heterogeneous models generate 20-60% larger wave amplitudes 

than the uniform slip models for a 500-year return period on the South China Sea region, also 

at a certain distance from the source.  

Several studies deal with incorporating shallow slip amplification with tsunami hazard 

analysis, and the effect of depth dependence of slip on tsunami waves. Murphy et al. (2016) 

introduced a concept to generate depth-dependent slip distributions with dynamic 
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simulations and indicated these slip distributions enhance tsunami hazard. Shallow slip 

amplification can merge to updip rupture facilitated by along-depth bi-material effects (Rubin 

and Ampuero, 2007; Ma and Beroza, 2008; Scala et al., 2017) and free-surface reflected waves 

within the accretionary wedge (Nielsen, 1998; Lotto et al., 2017a; van Zelst et al., 2019) using 

dynamic rupture earthquake models. Such physics-based models can be directly linked to 

tsunami models and they complement PTHA by improving the complexity of tsunami source.  

In the context of PTHA, Scala et al. (2020) proposes an approach to generate k-2 stochastic 

slip distributions, considering shallow slip amplification, which is imposed depending on the 

variation of the rigidity and coupling with depth. The study showed that the sensitivity of mean 

hazard curves is different for the depth-dependent and depth-independent slip distributions 

at the same point of interest. A depth-dependent probability of occurrence is also defined for 

each single event slip distribution to make scenarios compatible with the expected long-term 

uniform cumulative slip distribution. This probability of occurrence is forced to increase with 

increasing average rigidity of the rupture area. This change has been done to balance the 

shallow slip amplification for higher magnitude events which rupture everywhere over the 

subduction interface. Therefore, the probability of occurrence of relatively small events is 

decreased in the shallow part of the fault interface while deeper ones are more likely to occur. 

The comparison of depth-dependent SPTHA approach with depth-independent model 

showed that the depth dependent model shows lower probability for smaller hazard 

intensities and larger probability for higher intensities. 

Overall, different approaches have been proposed to generate heterogeneous slip 

distributions for tsunami hazard assessment purposes (LeVeque et al., 2016; Murphy et al., 

2016; Sepulveda et al., 2017; Davies 2019; Scala et al. 2020).  The inter-comparison of these 
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models and the calibration of their parameterization against real observations is a challenging 

task. 

Davies et al. (2015) tested the performance among eight k-2 type models by comparison 

with 66 finite-fault inversions. The subsequent study of Davies (2019) was probably the first 

one of his kind; it tested different source modeling strategies against tsunami observations 

from multiple events. Stochastic scenarios are generated assuming with earthquake location 

and magnitude similar to the observation. For each event, the agreement between the 

observed tsunami data and scenario is measured using a weighted least-squares goodness-of-

fit statistic. Further assessment of model biases is done using the good fitting scenarios. It has 

been observed that variable area-uniform-slip models scenarios generally have higher slip 

than the expected according to scaling relation, which demonstrate bias in that model. It 

showed that models with fixed area-uniform slip have a poor agreement with the tsunami 

observations while tsunamis generated by heterogenous slip and variable area-uniform-slip 

models fit better to observed tsunamis for both constant and depth-varying rigidity cases. 

Davies & Griffin (2020) further analyzed the sensitivity of far-field PTHA to slip modelling 

including constant and depth-varying rigidity models combined with three slip models, which 

are fixed area-uniform slip, variable area-uniform slip and heterogenous slip models. Slip 

model biases are examined by comparing earthquake-tsunami scenarios with DART-buoy 

tsunami observations. Uncertainties in seismic coupling, maximum-magnitudes and 

Gutenberg-Richter b-values are accounted using Bayesian techniques to model scenario 

occurrence rates. They showed that the tsunami hazard is weakly sensitive to the choice of 

rigidity model. However, tsunami hazard is significantly affected by the choice of the slip 

model. They showed that fixed area-uniform slip model produces lower slip than the other 
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models and this approach should not be used, even in the far-field. However, heterogeneous-

slip and variable area-uniform-slip models produce similar tsunami hazard in the far-field and 

they argue that both models can usefully represent earthquake-generated tsunamis for PTHA. 

It nevertheless remains difficult to test the PTHA results as a whole, because one should 

in principle wait a non-realistically long time for different tsunamis to occur at a given location. 

This study is then on the same lines of the ones just mentioned, in particular Davies et al. 

(2019), as it deals with testing one fundamental PTHA component which is the earthquake 

modelling one. This thesis mainly aims to test synthetic tsunamis produced with different slip 

generation techniques, against tsunami observations from open ocean DART buoys and 

models are also tested against each other to understand how different slip and rigidity 

treatments affect the random simulated tsunamis. Here, we compare synthetic tsunamis 

produced by recent stochastic slip generation techniques (Scala et al., 2020) against tsunami 

observations at open ocean DART buoys, for 15 earthquakes and ensuing tsunamis analyzed 

also by Davies (2019). We also expand the Scala et al. (2020) model, which considered only 

sources of circular shape, by introducing sources of rectangular shape. In addition to 

stochastic slip models, kinematic slip models from teleseismic inversions of Ye et al. (2016) for 

10 of the same 15 earthquakes are also considered as tsunami sources. Tsunami simulations 

are performed for 79.620 scenarios in total, using the Tsunami-HySEA code (Macías et al., 

2016). The simulated results are validated and compared to the DART observations in the 

same framework proposed by Davies (2019). This also allows to compare the performance of 

all these models with respect to observations with the source models tested by Davies (2019). 

This thesis is organized as follows. In the first chapter, Shallow Water Equations are 

derived from Navier-Stokes equations. After that, tsunami sources and their characteristics 
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are briefly presented. Then, tsunami propagation is defined using the derived shallow water 

equations. Subsequently, tsunami shoaling and inundation are defined and finally commonly 

used tsunami models and numerical methods for tsunami propagation are explained. In the 

second chapter, first of all earthquake occurrence is explained defining the fault types and 

earthquake occurrence mechanism. After that, the characteristics of subduction zones are 

defined. Then, earthquake source is described using the point source approximation. Later on, 

some scaling relations among the size of an earthquake, rupture dimensions, average slip and 

the stress drop are explained. Then, the stochastic source modelling is defined based on the 

fractal composite model. In the last section, sea floor deformation from simplified rectangular 

and complex fault planed earthquake sources are defined. In the third chapter, first of all, the 

ingredients of the study and the data is explained. Then, the methodology of generation of 

synthetic earthquake scenarios and extraction of finite-fault models are defined. Later on, the 

details of the tsunami modelling and simulations setup are described. Then, details of the 

methods to test tsunami waveforms is explained and the comparison of each slip generation 

methods with observations and against each other is done. At the end of Chapter 3, the 

comparison results are summarized and concluded. In Chapter 4, some of the articles in which 

I was involved during my doctoral education are presented. 

In this work, my contribution starts from the generation of stochastic slip models for each 

scenario event using the ANTI-FASc tool; here I have also contributed to its development and 

testing. After that, I have converted the finite-fault inversion results of Ye et al. (2016) to be used 

as inputs for the tsunami numerical model. The catalog provides slip maps of each event on a 

regular grid with cells along strike, dip and depth and hypocenter of each event. Using the latitude 

and longitude information of hypocenter and the distance between the central points of the cells, 

geographical coordinates have been calculated for each grid center. Using any earthquake 
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scenario, either from the ensemble of stochastic models or kinematic models of the Ye et al. (2016) 

teleseismic inversion catalog, I have prepared inputs for tsunami numerical modelling. Before 

lunching massive number of simulations, I have calibrated and validated the tsunami model 

(Tsunami-HySEA). Afterwards, I have tested tsunami modelling results against observations. To 

do that, I have extracted de-tided tsunami observations from DART records and tsunami time 

series of each model scenario from tsunami simulation results. Subsequently, observed and 

modelled time series have been cut within the time limits of the high-frequency part of the de-

tided DART signal. I have developed an algorithm and benchmarked it using the data considered 

by Davies (2019) to test tsunami modelling results with respect to observations. I have tested and 

compared the modelling results with the observations in the same framework as proposed by 

Davies (2019). Besides that, I have also tested stochastic models against other models to 

understand how slip and rigidity affect the random simulated tsunamis and thus which factors 

are important to reflect the natural variability of real tsunamis in the context of tsunami 

hazard assessment. 

I also would like to state that this thesis has benefitted from the contribution and support 

of many researchers. Initially, stochastic slip models are generated with the support of Dr. 

Antonio Scala using the ANTI-FACSc tool. I have used the slab geometries which are discretized 

by triangular meshes by Dr. Fabrizio Romano from Slab 2.0 model (Hayes et al., 2018) or from 

the modelling proposed by Geoscience Australia. All the tsunami simulations have been run 

in Marconi100 by Dr. Manuela Volpe and Dr. Carlos Sánchez Linares under the Project TSU-

CAST (TSUnami-ForeCASTing) using Tsunami-HySEA numerical model (Macías et al., 2016). 
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CHAPTER 1- TSUNAMIS AND TSUNAMI MODELLING 

 

Although tsunamis are rare events, they may have severe consequences, and because of 

their rarity there is a lack of availability of tsunami data from historical events. Therefore, it is 

crucial to understand their physical mechanisms, and to perform numerical simulations to 

support coastal planning and risk assessment. 

 

1.1. Physics of tsunamis 

 

Shallow water equations (SWE) can accurately describe the offshore tsunami propagation. 

SWE are a set of partial differential equations that describe a thin layer of fluid in hydrostatic 

balance with constant density. The layer of fluid is bounded by the bottom topography from 

below and the free surface from above. Navier-Stokes equations describe the conservation of 

mass and linear momentum under specific conditions (Vreugdenhil, 1994). SWE are derived 

from the general equations of hydrodynamics, the Navier-Stokes equations, by assuming that 

the wavelength of the tsunami is much longer than the sea depth (long wave approximation). 

Therefore, the vertical motion of fluid can be considered negligible compared with the 

horizontal motion. The SWE are suitable for offshore tsunamis, particularly for those 

generated by earthquakes, since under a relatively broad range of conditions, the earthquake 

rupture size is much bigger than the sea depth (Synolakis & Bernard, 2006; Behrens & Dias, 

2015; Marras & Mandli, 2020).  
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1.1.1 Derivation of Navier-Stokes Equations 

1.1.1.1. Conservation of mass (continuity equation) 

 

The conservation of mass requires that the rate of change of total mass in a control volume 

V is equal to the net mass flux across the boundary of V. This is given by 

 𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉 = −∫ (𝜌𝝊)

 

𝜕𝑉

∙ 𝒏𝑑𝐴
 

𝑉

 (Eq.1.1.1) 

 

where  is the density of the fluid (kg/m3), 𝝊 is the velocity of the fluid (m/s) and n is the 

outward unit normal vector on V. To obtain the differential form of the Eq. 1.1.1, we need to 

apply Gauss Theorem 

 𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉 = −∫∇ ∙ (𝜌𝝊)

 

𝑉

 𝑑𝑉
 

𝑉

 (Eq.1.1.2) 

 

If 𝜌 is assumed smooth, applying the Leibniz integral rule to the Eq. 1.1.2 we obtain 

∫ [
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝝊)]  𝑑𝑉 = 0

 

𝑉

 

Since the control volume V is arbitrary 

 𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝝊) = 0  (Eq.1.1.3) 

 

Eq. 1.1.3 is the differential form of the mass conservation, or continuity equation. If there 

is not any significant change in the absolute pressure or temperature, it can be assumed that 

the flow is incompressible, the density is constant and Eq. 1.1.3 becomes 
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 ∇ ∙ 𝝊 = 0  (Eq.1.1.4) 
 

1.1.1.2. Conservation of Linear Momentum 

 

Newton’s second law of motion, law of conservation of (linear, as opposed to angular) 

momentum, states that the time rate of change of total momentum in the control volume V 

is equal to the summation of all external forces acting on that volume V: 

 𝑑

𝑑𝑡
∫ 𝜌𝝊 𝑑𝑉 =  −∫ (𝜌𝝊)𝝊 ∙ 𝒏 𝑑𝐴 + ∫𝜌𝒃 𝑑𝑉

 

𝑉

+∫ 𝜺𝒏 𝑑𝐴
 

𝜕𝑉

 

𝜕𝑉

 

𝑉

 

 

(Eq.1.1.5) 

 

where the first term on the right-hand side of the equation is the net momentum flux across 

the boundary of V, the second term describes the body force density per unit mass b (N/kg) 

acting on the volume V of the fluid, the last term describes the external contact forces acting 

on 𝜕𝑉 where 𝜺 is the viscous stress tensor (N/m2) (Panton, 2005; Oden, 2006). If we apply 

Gauss’s Theorem to Eq. 1.1.5, we obtain 

 𝑑

𝑑𝑡
∫ 𝜌𝝊 𝑑𝑉 + ∫ ∇ ∙ (𝜌𝝊𝝊) 𝑑𝑉 − ∫𝜌𝒃 𝑑𝑉

 

𝑉

−∫∇ ∙ 𝜺 𝑑𝑉 = 0
 

𝑉

 

𝑉

 

𝑉

 (Eq.1.1.6) 

 

If 𝜌𝝊 is assumed smooth, Leibniz integral rule can be applied to Eq. 1.1.6 

∫ [
𝜕

𝜕𝑡
(𝜌𝝊) + ∇ ∙ (𝜌𝝊𝝊) − 𝜌𝒃 − ∇ ∙ 𝜺]  𝑑𝑉 = 0

 

𝑉

 

Since the control volume V is arbitrary  



 

 

22 

 𝜕

𝜕𝑡
(𝜌𝝊) + ∇ ∙ (𝜌𝝊𝝊) = 𝜌𝒃 + ∇ ∙ 𝜺 (Eq.1.1.7) 

 

If we neglect other body forces such as Coriolis force or centrifugal force due to the 

rotation of the Earth 

𝜌𝒃 =  𝜌𝒈 

where g is the gravitational acceleration (m/sn2). Since the ocean water is a Newtonian fluid, 

which means the viscosity of the fluid is independent of the flow speed or shear rates, the 

stress tensor can be given as 

𝜺 = −p𝐈 + 𝝉    

where p is the pressure, 𝜺 is the total stress and 𝝉 is the viscous stress or deviatoric stress. The 

material derivative can be given using the chain rule, and indicating the components of the 

velocity in the x, y, z directions respectively as u, v, w by 

𝐷𝝊

𝐷𝑡
=
𝜕𝝊

𝜕𝑡

𝑑𝑡

𝑑𝑡
+
𝜕𝝊

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝝊

𝜕𝑦

𝑑𝑦

𝑑𝑡
+
𝜕𝝊

𝜕𝑧

𝑑𝑦

𝑑𝑡
=
𝜕𝝊

𝜕𝑡
+
𝜕𝝊

𝜕𝑥
𝑢 +

𝜕𝝊

𝜕𝑦
𝑣 +

𝜕𝝊

𝜕𝑧
𝑤
𝜕𝝊

𝜕𝑡
 

𝐷𝝊

𝐷𝑡
=
𝜕𝝊

𝜕𝑡
+ 𝝊 ∙ ∇𝝊 

If we add body force and stress parameters and include the material derivative to the Eq. 

1.1.7, the equation becomes 

 
𝜌
𝐷𝝊

𝐷𝑡
=  −∇p + 𝜌𝑔 + ∇ ∙ 𝝉 (Eq.1.1.8) 
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Eq. 1.1.4 and Eq. 1.1.8 are called Navies Stokes Equations that can written out for an 

incompressible and isotropic Newtonian fluid (Dawson and Mirabito, 2008)  

 𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 

 
 

𝜌 (
𝜕(𝑢)

𝜕𝑡
+
𝜕(𝑢2)

𝜕𝑥
+
𝜕(𝑢𝑣)

𝜕𝑦
+
𝜕(𝑢𝑤)

𝜕𝑧
) = −𝛻𝑝 + 𝜌𝑔 +

𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑧
𝜕𝑧

 

 (Eq.1.1.9) 

𝜌 (
𝜕(𝑣)

𝜕𝑡
+
𝜕(𝑢𝑣)

𝜕𝑥
+
𝜕(𝑢𝑣2)

𝜕𝑦
+
𝜕(𝑣𝑤)

𝜕𝑧
) = −𝛻𝑝 + 𝜌𝑔 +

𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑦𝑧

𝜕𝑧
 

𝜌 (
𝜕(𝑤)

𝜕𝑡
+
𝜕(𝑢𝑤)

𝜕𝑥
+
𝜕(𝑣𝑤)

𝜕𝑦
+
𝜕(𝑣𝑤2)

𝜕𝑧
) = −𝛻𝑝 + 𝜌𝑔 +

𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
+
𝜕𝜏𝑧𝑧
𝜕𝑧

  

 

1.1.2 Shallow Water Equations 

 

Shallow water equations can be described as a layer of fluid that is bounded by the bottom 

topography from below and free surface from above (Figure 1.2.1), in a simplified way. This 

definition let us to focus only the sea surface anomaly and depth-averaged horizontal 

velocities, since the change of vertical momentum and the vertical velocity component w is 

neglectable.  
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Figure 1.1.1: Sketch of the quantities that describe the free-surface evolution with time. 𝜼(𝒙, 𝒚, 𝒕) is 

the vertical displacement, z is the sea-bottom topography, 𝒉𝟎 is the undisturbed water depth and h is 

the total depth (Modified from Segur and Yamamato 2009). 

Using this configuration, we may write the following boundary conditions 

Free surface conditions on 𝑧 = 𝜂(𝑥, 𝑦, 𝑡) = 𝑧0(𝑥, 𝑦) + ℎ(𝑥, 𝑦, 𝑡); 

1) Pressure is zero (𝑝 = 0) 

2) No relative normal flow (
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
+ 𝑣

𝜕𝜂

𝜕𝑦
− 𝑤 = 0) 

3)Surface shear stress is; 𝜏𝑠𝑥 = −𝜏𝑥𝑥
𝜕𝜂

𝜕𝑥
−𝜏𝑥𝑦

𝜕𝜂

𝜕𝑦
+𝜏𝑥𝑧 

Bottom Boundary conditions on 𝑧 = 𝑧0(𝑥, 𝑦); 

1)No normal flow (𝑤 = 𝑢
𝜕𝑧0

𝜕𝑥
+ 𝑣

𝜕𝑧0

𝜕𝑦
+ 𝑤) 

2)Bottom shear stress is; −𝜏𝑏𝑥 = 𝜏𝑥𝑥
𝜕𝑧0

𝜕𝑥
+𝜏𝑥𝑦

𝜕𝑧0

𝜕𝑦
−𝜏𝑥𝑧 
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The first step of the derivation of the SWEs is the integration of continuity equation (Eq. 

1.1.4) from z = 𝑧0 to z = 𝜂 (Figure 1.1.1), since the general characteristics of shallow flow is 

that the wavelength is much greater than the water depth and we can average continuity 

equation over depth as follows 

∫ (∇ ∙ 𝝊) 𝑑𝑧 = 0
𝜂

𝑧0

 

∫ (
𝜕𝜐

𝜕𝑥
+
𝜕𝜐

𝜕𝑦
+
𝜕𝜐

𝜕𝑧
)  𝑑𝑧 = 0

𝜂

𝑧0

 

∫ (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
)

𝜂

𝑧0

 𝑑𝑧 + 𝑤|

 
 
𝜂
− 𝑤|

  
 
𝑧0
= 0 

𝜕

𝜕𝑥
∫ 𝑢 𝑑𝑧 +
𝜂

𝑧0

 
𝜕

𝜕𝑦
∫ 𝑣 𝑑𝑧
𝜂

𝑧0

− (𝑢|

 
 
𝜂

𝜕𝜂

𝜕𝑥
+ 𝑢|

  
 
𝑧0

𝜕𝑧0
𝜕𝑥
) − (𝑣|

 
 
𝜂

𝜕𝜂

𝜕𝑦
+ 𝑣|

  
 
𝑧0

𝜕𝑧0
𝜕𝑦
) + 𝑤|

 
 
𝜂
− 𝑤|

  
 
𝑧0
= 0 

Depth-averaged velocities can be defined as 

𝑢̅ =
1

ℎ
∫ 𝑢 𝑑𝑧 ,
𝜂

𝑧0

𝑣̅ =
1

ℎ
∫ 𝑣 𝑑𝑧     
𝜂

𝑧0

 

After the application of boundary conditions, we can obtain the depth-averaged continuity 

equation  

𝜕ℎ

𝜕𝑡
+
𝜕

𝜕𝑥
(ℎ𝑢̅) +

𝜕

𝜕𝑦
(ℎ𝑣̅) = 0 

For the next step, we can assume that the wave length is much greater than the depth of 

fluid, which is called a long-wave approximation. Through this approximation, all of the terms 
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except the pressure derivative and the gravity term are neglected in the vertical component 

of the momentum equation (Eq. 1.1.9) and it collapses to simple hydrostatic pressure, 

𝜕p

𝜕𝑧
= 𝜌𝑔 

If we integrate this equation we obtain hydrostatic pressure distribution (assuming density 

does not change with depth) 

p = 𝑔∫ 𝜌𝑑𝑧
𝜂

𝑧0

= 𝜌𝑔(𝜂 − 𝑧) 

For the next step, we need to integrate the x and y momentum equations (Eq. 1.1.9) over 

depth. We start with the left-hand side of the x-momentum equation  

∫ [
𝜕𝑢

𝜕𝑡
+
𝜕𝑢2

𝜕𝑥
+
𝜕𝑢𝑣

𝜕𝑦
+
𝜕𝑢

𝜕𝑧
𝑤]  𝑑𝑧

𝜂

𝑧0

 

 

=
𝜕

𝜕𝑡
∫ 𝑢 𝑑𝑧 +

𝜕

𝜕𝑥
∫ 𝑢2 𝑑𝑧 +

𝜕

𝜕𝑦
∫ 𝑢𝑣 𝑑𝑧 − 𝑢|

  
 
𝜂

𝜕𝜂

𝜕𝑡
− 𝑢2|

  
 
𝜂

𝜕𝜂

𝜕𝑥

𝜂

𝑧0

− (𝑢𝑣)|

  
 
𝜂

𝜕𝜂

𝜕𝑦

𝜂

𝑧0

𝜂

𝑧0

+ (𝑢𝑤)|

  
 
𝜂

− 𝑢|

  
 
𝑧0

𝜕𝑧0
𝜕𝑡

+ 𝑢2|

  
 
𝑧0

𝜕𝑧0
𝜕𝑥

+ (𝑢𝑣)|

 
 
𝑧0

𝜕𝜂

𝜕𝑦
− (𝑢𝑤)|

 
 
𝑧0

 

This equation can be rearranged to be able to define the boundary conditions  

∫ [
𝜕𝑢

𝜕𝑡
+
𝜕𝑢2

𝜕𝑥
+
𝜕𝑢𝑣

𝜕𝑦
+
𝜕𝑢

𝜕𝑧
𝑤]  𝑑𝑧

𝜂

𝑧0

 

 

=
𝜕

𝜕𝑡
∫ 𝑢 𝑑𝑧 +

𝜕

𝜕𝑥
∫ 𝑢2 𝑑𝑧 +

𝜕

𝜕𝑦
∫ 𝑢𝑣 𝑑𝑧 −
𝜂

𝑧0

 𝑢|

  
 
𝜂
(
𝜕ℎ

𝜕𝑡
+ 𝑢|

  
 
𝜂

𝜕𝜂

𝜕𝑥
+ 𝑣|

  
 
𝜂

𝜕𝜂

𝜕𝑦
 − 𝑤|

  
 
𝜂
)

 

𝜂

𝑧0

𝜂

𝑧0

 

   +𝑢|

  
 
𝑧0
(
𝜕𝑧0
𝜕𝑡

+ 𝑢|

  
 
𝑧0

𝜕𝑧0
𝜕𝑥

+ 𝑣|

  
 
𝑧0

𝜕𝑧0
𝜕𝑦

 − 𝑤|

  
 
𝑧0
) 
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If we apply the boundary conditions and depth averaged velocity eq. last 2 terms can be 

eliminated 

∫ [
𝜕𝑢

𝜕𝑡
+
𝜕𝑢2

𝜕𝑥
+
𝜕𝑢𝑣

𝜕𝑦
+
𝜕𝑢

𝜕𝑧
𝑤]  𝑑𝑧

𝜂

𝑧0

 

=
𝜕

𝜕𝑡
∫ 𝑢 𝑑𝑧 +

𝜕

𝜕𝑥
∫ 𝑢2 𝑑𝑧
𝜂

𝑧0

+
𝜕

𝜕𝑦
∫ 𝑢𝑣 𝑑𝑧
𝜂

𝑧0

𝜂

𝑧0

 

 

=
𝜕(ℎ𝑢̅)

𝜕𝑡

𝜕

𝜕𝑥
∫ 𝑢2 𝑑𝑧
𝜂

𝑧0

+
𝜕

𝜕𝑦
∫ 𝑢𝑣 𝑑𝑧
𝜂

𝑧0

 

The integration of the pressure term on the right-hand side of the Eq. 1.1.9 

−∫
1

𝜌

𝜂

𝑧0

𝜕p

𝜕𝑥
 𝑑𝑧 =  −

1

𝜌
∫

𝜕

𝜕𝑥
(𝑃𝑎 − p𝑔𝑧 + p𝑔𝜂) 𝑑𝑧

𝜂

𝑧0

 

= −
1

𝜌
∫ 𝜌

𝜕

𝜕𝑥
𝑔𝜂 𝑑𝑧 = −𝑔

𝜕

𝜕𝑥
𝜂

𝜂

𝑧0

∫ 𝑑𝑧
𝜂

𝑧0

= −𝑔ℎ
𝜕𝜂

𝜕𝑥
 

The integration of the stress term on the right-hand side of the Eq. 1.1.9 one by one 

∫
𝜕𝜏𝑥𝑥
𝜕𝑥

𝜂

𝑧0

𝑑𝑧 =
𝜕

𝜕𝑥
∫ 𝜏𝑥𝑥 𝑑𝑧 − 𝜏𝑥𝑥|

 
 
𝜂

𝜕𝜂

𝜕𝑥
+

𝜂

𝑧0

𝜏𝑥𝑥|

 
 
𝑧0

𝜕𝑧0
𝜕𝑥

 

=
𝜕(𝜏𝑥̅𝑥ℎ)

𝜕𝑥
− 𝜏𝑥𝑥|

 
 
𝜂

𝜕𝜂

𝜕𝑥
+ 𝜏𝑥𝑥|

 
 
𝑧0

𝜕𝑧0
𝜕𝑥

 

∫
𝜕𝜏𝑥𝑦

𝜕𝑦

𝜂

𝑧0

𝑑𝑧 =
𝜕

𝜕𝑦
∫ 𝜏𝑥𝑦 𝑑𝑧 − 𝜏𝑥𝑦|

 
 
𝜂

𝜕𝜂

𝜕𝑦
+

𝜂

𝑧0

𝜏𝑥𝑦|

 
 
𝑧0

𝜕𝑧0
𝜕𝑦

 

=
𝜕(𝜏𝑥̅𝑦ℎ)

𝜕𝑦
− 𝜏𝑥𝑦|

 
 
𝜂

𝜕𝜂

𝜕𝑥
+ 𝜏𝑥𝑦|

 
 
𝑧0

𝜕𝑧0
𝜕𝑦
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∫
𝜕𝜏𝑥𝑧
𝜕𝑧

𝜂

𝑧0

𝑑𝑧 = 𝜏𝑥𝑧|

 
 
𝜂
− 𝜏𝑥𝑧|

 
 
𝑧0

 

If we apply the bottom and surface shear stress conditions and combine all terms we 

obtain the preliminary depth-integrated momentum equation in direction of the x-axis, which 

can be done in the same way for the y and z-axis  

 𝜕(ℎ𝑢̅)

𝜕𝑡
+
𝜕

𝜕𝑥
∫ 𝑢2 𝑑𝑧 + 
𝜂

𝑧0

𝜕

𝜕𝑦
∫ 𝑢𝑣 𝑑𝑧 =  −𝑔ℎ

𝜕𝜂

𝜕𝑥

𝜂

𝑧0

+
1

𝜌

𝜕(𝜏̅𝑥𝑥ℎ)

𝜕𝑥

+
1

𝜌

𝜕(𝜏̅𝑥𝑦ℎ)

𝜕𝑦
+
𝜏𝑠𝑥
𝜌
−
𝜏𝑏𝑥
𝜌

 

(Eq.1.1.10) 

 

In the next step, the vertical field of momentum is divided into a depth-integrated mean 

value and a fluctuation part. For the velocity component in direction of the x-axis this division 

is given by, 

 
𝑢(𝑧) = 𝑢̅ − 𝑢̃  with ∫ 𝑢̃

𝜂

𝑧0

 𝑑𝑧 = 0  (Eq.1.1.11) 

 

where 𝑢̅ is the mean velocity over the vertical axis and 𝑢̃ is the fluctuation part. The following 

rule of integration also holds 

 
∫ (𝑢̅ + 𝑢̃
𝜂

𝑧0

) (𝑢̅ + 𝑢̃) 𝑑𝑧 = ∫ 𝑢̅2𝑑𝑧 + ∫ 𝑢̃𝑢̃ 𝑑𝑧
𝜂

𝑧0

𝜂

𝑧0

 (Eq.1.1.12) 

 

Substituting Eq. 1.1.11 and 1.1.12 into Eq. 1.1.10 yields the following depth-averaged 

momentum equation in the direction of the x-axis 
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𝜕(ℎ𝑢̅)

𝜕𝑡
+
𝜕(ℎ𝑢̅2)

𝜕𝑥
+
𝜕(ℎ𝑢̅𝑣̅)

𝜕𝑦
+ 

𝜕

𝜕𝑥
∫ 𝑢̃𝑢̃ 𝑑𝑧 +

𝜕

𝜕𝑦
∫ 𝑢̃𝑣̃ 𝑑𝑧
𝜂

−ℎ

𝜂

𝑧0

 
(Eq.1.1.13) 

  = −𝑔ℎ
𝜕𝜂

𝜕𝑥
+ 

1

𝜌

𝜕(𝜏̅𝑥𝑥ℎ)

𝜕𝑥
+

1

𝜌

𝜕(𝜏̅𝑥𝑦ℎ)

𝜕𝑦
+
(𝜏𝑠𝑥−𝜏𝑏𝑥)

𝜌
 

 

As one of the last steps, we can isolate the depth-integrated continuity equation from the 

left-hand side of the Eq. 1.1.13 using partial differentiation,  

𝜕(ℎ𝑢̅)

𝜕𝑡
+
𝜕(ℎ𝑢̅2)

𝜕𝑥
+
𝜕(ℎ𝑢̅𝑣̅)

𝜕𝑦
 

 

= ℎ
𝜕𝑢̅

𝜕𝑡
+ ℎ𝑢̅

𝜕𝑢̅

𝜕𝑥
+ ℎ𝑣̅

𝜕𝑢̅

𝜕𝑦
+ 𝑢̅ (

𝜕ℎ

𝜕𝑡
+
𝜕(ℎ𝑢̅)

𝜕𝑥
+
𝜕(ℎ𝑣̅)

𝜕𝑦
) 

 

= ℎ (
𝜕𝑢̅

𝜕𝑡
+ 𝑢̅

𝜕𝑢̅

𝜕𝑥
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦
) 

 

 

If we arrange the Eq. 1.1.13, the general form of the depth-averaged momentum equation 

can be given as 

𝜕𝑢̅

𝜕𝑡
+ 𝑢̅

𝜕𝑢̅

𝜕𝑥
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦
 

= −𝑔
𝜕𝜂

𝜕𝑥
+ 
1

ℎ
[
𝜕

𝜕𝑥
ℎ (
𝜏𝑥𝑥
𝜌
− 𝑢̃𝑢̃̅̅̅̅ )] +

1

ℎ
[
𝜕

𝜕𝑦
ℎ (
𝜏𝑥𝑦

𝜌
− 𝑢̃𝑣̃̅̅̅̅ )] +

1

ℎ
[
𝜕

𝜕𝑥
ℎ (
𝜏𝑠𝑥
𝜌
−
𝜏𝑏𝑥
𝜌
)] 

In tensor form 

𝜕𝑢̅𝑖
𝜕𝑡

+ 𝑢̅𝑗
𝜕𝑢̅𝑖
𝜕𝑥𝑗

= −𝑔
𝜕𝜂

𝜕𝑥𝑖
+ 
1

ℎ
[
𝜕

𝜕𝑥𝑗
ℎ (
𝜏𝑖𝑗

𝜌
− 𝑢̃𝑖𝑢̃𝑗̅̅ ̅̅ ̅)]

1

ℎ

𝜏𝑠𝑥,𝑖
𝜌
−
𝜏𝑏𝑥,𝑖
𝜌

 

If we simplify and summarize the part with stress and fluctuation part of the velocity 
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𝜏𝑖𝑗 − 𝜌 𝑢̃𝑖𝑢̃𝑗̅̅ ̅̅ ̅ = 𝜏𝑖𝑗,𝑔 = 𝜏𝑖𝑗 

We can obtain simplified shallow water equations as follows 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
 = −𝑔

𝜕𝜂

𝜕𝑥
+ 

1

ℎ𝜌

𝜕

𝜕𝑥
ℎ𝜏𝑥𝑥 +

1

ℎ𝜌

𝜕

𝜕𝑦
ℎ𝜏𝑥𝑦 −

1

ℎ

𝜏𝑠𝑥
𝜌
+
1

ℎ

𝜏𝑏𝑥
𝜌

 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
 = −𝑔

𝜕𝜂

𝜕𝑦
+ 

1

ℎ𝜌

𝜕

𝜕𝑥
ℎ𝜏𝑥𝑦 +

1

ℎ𝜌

𝜕

𝜕𝑦
ℎ𝜏𝑦𝑦 −

1

ℎ

𝜏𝑠𝑦

𝜌
+
1

ℎ

𝜏𝑏𝑦

𝜌
 

𝜕ℎ

𝜕𝑡
+
𝜕

𝜕𝑥
(ℎ𝑢̅) +

𝜕

𝜕𝑦
(ℎ𝑣̅) = 0 



 

 

31 

1.2. Sources of tsunamis 

 

Around 80% of all tsunamis worldwide occurred after an earthquake. Nonetheless, there 

exist some other sources, which are landslides, volcanic activity, atmospheric disturbances, 

and meteorite impacts. 

Plate motions produce regional stress accumulation that may cause compression, 

extension or lateral offset in parts of the lithosphere and consequently earthquakes will 

feature reverse (thrust), normal, and strike-slip focal mechanisms, respectively.  

When there is an earthquake offshore or near the coast, it may cause a sudden seafloor 

deformation that induces the displacement of the entire water column above it. Tsunamis are 

mainly due to the vertical displacement of the sea bottom. However, the horizontal co-seismic 

deformation of the seafloor characterized by significant slopes can also contribute to give rise 

to a tsunami (Tanioka & Satake, 1996; Song et al.,2017). Earthquakes with larger magnitude 

generally cause larger co-seismic deformation and that generates larger tsunamis. Earthquake 

rupture is a dynamic process and the rupture nucleates at the hypocenter and moves across 

the rupture interface. The rupture speed and the amount of slip vary during the rupture 

evolution. Temporal evolution of the seafloor deformation can be another factor that controls 

the efficiency of tsunami generation by large earthquakes (Le Gal et al., 2017). Tsunami 

earthquakes, for example, generate tsunamis with higher amplitude than would be typically 

expected from their seismic moment magnitude (Polet an Kanamori, 2016). These events are 

characterized by having a slow rupture process and this can influence tsunami generation. 

Nonetheless, their slowness can be related to the location of these events in the shallow part 

of the subduction zone. Tsunami earthquakes in that zone may generate greater slip due to 
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the existence of low-rigidity and/or low-friction sediments which can contribute to cause 

unexpectedly high slip hence tsunami wave amplitudes.  

Dynamic modeling of earthquake rupture in 3D can provide mechanically feasible tsunami 

source description on complex faults (Galvez et al., 2014; Murphy et al., 2016; Uphoff et al., 

2017; Murphy et al., 2018; Ma and Nie, 2019; Saito et al., 2019; Ulrich et al., 2020) and such 

simulations can be used together with modern tsunami numerical methods and high-

performance computing (HPC) to explain dynamics and severity of earthquake behavior (Wirp 

et al., 2021).  

Hovewer, in many situations it is an acceptable approximation to neglect the complexity 

of the seismic rupture and sea floor deformation process, and to describe seafloor 

deformation by analytical solutions (Okada, 1985). as uniform rectangular dislocations within 

a homogeneous elastic half space. Due to the relative slowness of the tsunami propagation 

with respect to the evolution of the rupture process, the displacement of the seafloor is 

assumed instantaneous, and the deformation is transferred exactly into a sea level vertical 

perturbation (Grezio et al, 2017). 

Direct transfer of the sea bottom deformations to the water surface cause unrealistically 

short waves on tsunami spectrum. These short waves may cause artificial resonances in bays 

and finally inaccurate estimation of runup heights or instability in numerical calculations 

(Nosov and Kolesov, 2011). The initial water surface elevation can be obtained by applying a 

low-pass filter (Kajiura, 1963), especially in the cases where the oceanic depth is comparable 

to the horizontal extension of the source (Nosov and Kolesov, 2011). 
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The characteristics of landslide tsunamis, on the other hand, greatly depend on their sizes 

and origins. Landslides with immense volumes, which could be several thousand cubic 

kilometers, may trigger severe tsunamis with localized impact (Masson et al., 2006). The 

occurrence of these giant submarine landslides is likely controlled by geology and their return 

periods are very low (Solheim et al., 2005). Nevertheless, the return period of these events 

can be shorter in the areas where large-scale debris flows surround active volcanoes or for 

submarine landslides initiated by sediment supply in river deltas. The submarine landslides 

are mainly controlled by the initial landslide acceleration, speed, volume and shape (Løvholt 

et al., 2015). The temporal evolution of the landslides plays an important role on the 

magnitude of the tsunamis (Hammack, 1973; Løvholt et al., 2015; Watts, 2000). If tsunami 

generation time is short, that makes rapidly accelerating landslides more tsunamigenic due to 

the limitation of damaging interference of wave crests and troughs produced by the frontal 

and rear parts of the slide, respectively. However, if tsunami generation, retrogression, and 

acceleration time is slower, landslides generate weak tsunamis even with giant volumes. 

Froude number, which is the ratio between the speed of landslide and the linear hydrostatic 

wave celerity, is a critical factor to define the tsunamigenic potential of the landslide. 

Landslides in the shallower waters have higher Froude numbers since the speed of wave 

increases with water depth and that makes these landslides more effective tsunami 

generators (Harbitz et al., 2014). Subaerial landslides produce tsunamis with a different 

generation mechanism (Figure 1.2.1 (b2)) than submerged landslides since subaerial 

landslides commonly reach to the water body at high speed. The initial height of the subaerial 

landslides tsunamis mainly depends on the Froude number together with the frontal area of 

the landslide volume (Fritz et al., 2004; Mohammed & Fritz, 2012).  
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Volcanic eruptions are another source of the tsunamis. Underwater explosions, lava and 

lahars entering the water, pyroclastic flows, slope failures, volcanic earthquakes, caldera 

subsidence are included in the specific source mechanisms of volcanic tsunamis (Begét, 2000; 

Day, 2015; Latter, 1981; Kienle et al., 1987; Paris, 2015). Although the variety of source 

mechanisms cause different types of waves, they are commonly defined as short period waves 

with greater dispersion and restricted far-field effect with respect to the seismically generated 

tsunamis (Choi et al., 2003; Le M.haut. & Wang, 1996; Nomanbhoy & Satake, 1995; Maeno & 

Imamura, 2011; Ulvrova, Paris, et al., 2016; Watts & Waythomas, 2003; Yokoyama, 1987).  

Meteotsunamis or meteorological tsunamis are related to remarkably strong and sudden 

atmospheric pressure fluctuations. Atmospheric pressure variation may cause small 

oscillations on the sea level. The resonance between the atmospheric forcing and the ocean, 

effects these small oscillations and causes significant long ocean waves, closely associated 

with the behavior of tsunamis, with periods varying between 2 minutes to 2 hours 

(Pattiaratchi & Wijeratne, 2015). The atmospheric disturbances keep giving energy into the 

sea during the resonance process and ocean waves become destructive when they arrive to 

the coastal zones as a result of the combination of other amplification mechanisms such as 

local resonance and shoaling effects.  

The fall of meteorites or asteroids in the earth's oceans may, very rarely, generate large 

waves. These tsunamis may proceed similarly to subaerial landslide tsunamis during 

generation and initial propagation. However, they remain strongly nonlinear over hundreds 

or thousands of kilometers away from the source (Wünnemann & Weiss, 2015). 
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Figure 1.2.1: Sources of tsunami waves (a)earthquake sources, (b1) submarine and (b2) and subaerial 

mass failures, (c) volcanic causes (c1) underwater explosion, (c2) blast exciting free waves in the 

atmosphere which transfer energy to water, (c3) pyroclastic flows, and (c4) rapid ground 

deformations or caldera collapses, (d) Proudman resonance occurring after atmospheric disturbances, 

(e) oceanic impacts of asteroids and comets. (Taken from Grezio et al., 2017) 
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1. 3. Tsunami propagation 

 

The propagation of the tsunami waves in the open ocean can be described by the shallow 

water equations (Section 1.2). We consider a vertical displacement of the sea surface 

𝜂(𝑥, 𝑦, 𝑡) (Figure 1.1.1) that propagates along the x-axis as a monochromatic plane wave with 

the angular frequency ω and the wavenumber k which can be given as 

 𝜂(𝑥, 𝑦, 𝑡) = 𝜂0𝑒
𝑖(𝑘𝑥−𝜔𝑡) 

(Eq.1.3.1) 

The velocity potential, ∇𝜙(𝒙, 𝑡) = 𝝊(𝒙, 𝑡), can also be represented with 𝑒𝑖(𝑘𝑥−𝜔𝑡) as 

 𝜙(𝒙, 𝑡) = 𝑓(𝑧)𝑒𝑖(𝑘𝑥−𝜔𝑡) (Eq.1.3.2) 

The Laplace equation of velocity potential can be given by using continuity equation (Eq. 

1.1.4) as 

∆𝜙(𝒙, 𝑡) = 0 

Using the Eq. 1.3.2 into the Laplace equation of velocity potential gives an ordinary 

differential equation with respect to z as 

𝑑2𝑓(𝑧)

𝑑𝑧2
= 𝑘2𝑓(𝑧) 

The general solution to this equation can be given by 

𝑓(𝑧) = 𝐴𝑐𝑜𝑠ℎ(𝑘𝑧) + 𝐵𝑠𝑖𝑛ℎ(𝑘𝑧) 

where A and B are the coefficients that should be determined so to satisfy the boundary 

conditions (as defined in section 1.1.2). The velocity potential is then represented as 
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 𝜙(𝒙, 𝑡) = [𝐴𝑐𝑜𝑠ℎ(𝑘𝑧) + 𝐵𝑠𝑖𝑛ℎ(𝑘𝑧)]𝑒𝑖(𝑘𝑥−𝜔𝑡)  (Eq.1.3.3) 
   

The boundary condition with respect to the velocity potential can be written as (Saito, 

2019) 

 𝜕𝜙(𝒙, 𝑡)

𝜕𝑡
|

 
 

𝑧 = 0
+ 𝑔𝜂(𝑥, 𝑦, 𝑡) = 0  (Eq.1.3.4) 

This is a dynamic boundary condition since it defines the relation between the force and 

sea-surface motion where sea-surface is assumed to be continuous. At the surface 𝑧 =

𝜂(𝑥, 𝑦, 𝑡) we can write (Saito, 2019) 

𝜐𝑧 =
𝜕𝜂(𝑥, 𝑦, 𝑡) 

𝜕𝑡
+ 𝜐𝑥

𝜕𝜂(𝑥, 𝑦, 𝑡) 

𝜕𝑥
+ 𝜐𝑦

𝜕𝜂(𝑥, 𝑦, 𝑡) 

𝜕𝑦
 

This relation is given by using the velocity potential as 

 𝜕𝜂(𝑥, 𝑦, 𝑡)

𝜕𝑡
 |

 
 

𝑧 = 0
=
𝜕𝜙(𝒙, 𝑡)

𝜕𝑧
 |

 
 

𝑧 = 0
 (Eq.1.3.5) 

 

This is cited as a kinematic boundary condition. Using Eq.1.3.4 and Eq.1.3.5, the 

boundary condition with respect to the velocity potential at z=0 can be written as 

 𝜕2𝜙(𝒙, 𝑡)

𝜕𝑡2
|

 
 

𝑧 = 0
+ 𝑔

𝜕𝜙(𝒙, 𝑡)

𝜕𝑧
 |

 
 

𝑧 = 0
= 0 (Eq.1.3.6) 

The sea bottom is accepted as a rigid boundary condition where vertical flow is not 

allowed, only horizontal flow exists at the boundary. Then, the boundary condition at the sea 

bottom (z=z0) is given by 

 𝜕𝜙(𝒙, 𝑡)

𝜕𝑧
 |

 
 

𝑧 = 𝑧0
= 0  (Eq.1.3.7) 
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Using the boundary condition (Eq.1.3.7) such that the vertical velocity is zero at the sea 

bottom Eq. 1.3.3 can be written as 

 𝜕𝜙(𝒙, 𝑡)

𝜕𝑧
 |

 
 
𝑧0
= [𝐴𝑐𝑜𝑠ℎ(𝑘𝑧) + 𝐵𝑠𝑖𝑛ℎ(𝑘𝑧)] |

 
 
𝑧0
𝑒𝑖(𝑘𝑥−𝜔𝑡)

= [−𝐴𝑘𝑠𝑖𝑛ℎ(𝑘𝑧𝑜) + 𝐵𝑘𝑐𝑜𝑠ℎ(𝑘𝑧0)] 𝑒
𝑖(𝑘𝑥−𝜔𝑡) = 0  

(Eq.1.3.8) 

Since this always needs to be satisfied for each x and t 

𝐵 =
𝑠𝑖𝑛ℎ(𝑘𝑧𝑜)

𝑐𝑜𝑠ℎ(𝑘𝑧𝑜)
𝐴 

The velocity potential given at Eq. 1.3.3 is then written as 

𝜙(𝒙, 𝑡) = 𝐴 [𝑐𝑜𝑠ℎ(𝑘𝑧) +
𝑠𝑖𝑛ℎ(𝑘𝑧𝑜)

𝑐𝑜𝑠ℎ(𝑘𝑧𝑜)
𝑠𝑖𝑛ℎ(𝑘𝑧)] 𝑒𝑖(𝑘𝑥−𝜔𝑡) 

By substituting this into the sea surface boundary condition (Eq. 1.3.6), we obtain 

−𝜔2𝐴 [𝑐𝑜𝑠ℎ(𝑘𝑧) +
𝑠𝑖𝑛ℎ(𝑘𝑧𝑜)

𝑐𝑜𝑠ℎ(𝑘𝑧𝑜)
𝑠𝑖𝑛ℎ(𝑘𝑧)] |

 
 

𝑧 = 0
 𝑒𝑖(𝑘𝑥−𝜔𝑡)

+ 𝑔𝐴 [𝑘𝑠𝑖𝑛ℎ(𝑘𝑧) + 𝑘
𝑠𝑖𝑛ℎ(𝑘𝑧𝑜)

𝑐𝑜𝑠ℎ(𝑘𝑧𝑜)
𝑐𝑜𝑠ℎ(𝑘𝑧)] |

 
 

𝑧 = 0
 𝑒𝑖(𝑘𝑥−𝜔𝑡) = 0 

That gives 

 
[−𝜔2 + 𝑔𝑘

𝑠𝑖𝑛ℎ(𝑘𝑧𝑜)

𝑐𝑜𝑠ℎ(𝑘𝑧𝑜)
] 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) = 0  (Eq.1.3.9) 

We can obtain the relation between the angular frequency 𝜔 and wave number k, which 

is the dispersion relation, satisfying Eq. 1.3.9 as 

 𝜔 = √𝑔𝑘𝑡𝑎𝑛ℎ(𝑘ℎ) (Eq.1.3.10) 

Furthermore, sea surface height 𝜂(𝑥, 𝑦, 𝑡), can be obtained by using dynamic boundary 

condition (Eq. 1.3.4) at sea surface as 
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𝜂(𝑥, 𝑦, 𝑡) = −
1

𝑔

𝜕𝜙(𝒙, 𝑡)

𝜕𝑧
 |

 
 

𝑧 = 0

=
𝑖𝜔𝐴

𝑔
[𝑐𝑜𝑠ℎ(𝑘𝑧) +

𝑠𝑖𝑛ℎ(𝑘𝑧𝑜)

𝑐𝑜𝑠ℎ(𝑘𝑧𝑜)
𝑠𝑖𝑛ℎ(𝑘𝑧)] |

 
 

𝑧 = 0
 𝑒𝑖(𝑘𝑥−𝜔𝑡)

=
𝑖𝜔𝐴

𝑔
𝑒𝑖(𝑘𝑥−𝜔𝑡)  

(Eq.1.3.11) 

Coefficient A can be obtained by the comparing Eq 1.3.1 and 1.3.11, we can finally obtain 

the velocity field as 

𝜙(𝒙, 𝑡) =
𝑔𝜂0
𝑖𝜔

[𝑐𝑜𝑠ℎ(𝑘𝑧) +
𝑠𝑖𝑛ℎ(𝑘𝑧𝑜)

𝑐𝑜𝑠ℎ(𝑘𝑧𝑜)
𝑠𝑖𝑛ℎ(𝑘𝑧)] 𝑒𝑖(𝑘𝑥−𝜔𝑡)

=
𝑔𝜂0
𝑖𝜔

cosh [𝑘(𝑧 + 𝑧0)]

cosh (𝑘𝑧0)
𝑒𝑖(𝑘𝑥−𝜔𝑡) 

The change of velocity and pressure from the hydrostatic pressure are given by using the 

velocity potential as (Saito, 2019) 

𝝊(𝒙, 𝑡) = ∇𝜙(𝒙, 𝑡) 

𝑝(𝒙, 𝑡) = −𝜌
𝜕𝜙(𝒙, 𝑡)

𝜕𝑡
 

When the sea surface propagates along the x-axis as represented in Eq.1.3.1, 𝜐𝑥(𝒙, 𝑡) is 

given by the gradient of the velocity potential 

𝜐𝑥(𝒙, 𝑡) =
𝜕𝜙(𝒙, 𝑡)

𝜕𝑥
=
𝑔𝜂0𝑘

𝑤

cosh [𝑘(𝑧 + 𝑧0)]

cosh (𝑘𝑧0)
𝑒𝑖(𝑘𝑥−𝜔𝑡) = 𝜔𝜂0

𝑔𝑘

𝜔2
cosh [𝑘(𝑧 + 𝑧0)]

cosh (𝑘𝑧0)
𝑒𝑖(𝑘𝑥−𝜔𝑡) 

Using the Eq.1.3.10 

𝜐𝑥(𝒙, 𝑡) = 𝜔𝜂0
cosh[𝑘(𝑧 + 𝑧0)]

sinh(𝑘𝑧0)
𝑒𝑖(𝑘𝑥−𝜔𝑡)  (Eq.1.3.12) 

Similarly, we can obtain 𝜐𝑦(𝒙, 𝑡) and 𝜐𝑧(𝒙, 𝑡) as 
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𝜐𝑦(𝒙, 𝑡) = 0  (Eq.1.3.13) 

𝜐𝑧(𝒙, 𝑡) = −𝑖𝜔𝜂0
sinh[𝑘(𝑧 + 𝑧0)]

sinh(𝑘𝑧0)
𝑒𝑖(𝑘𝑥−𝜔𝑡)  

(Eq.1.3.14) 

We can obtain the displacement, by integrating velocity with respect to time, as 

𝑢𝑥(𝒙, 𝑡) = 𝑖𝜂0
cosh[𝑘(𝑧 + 𝑧0)]

sinh(𝑘𝑧0)
𝑒𝑖(𝑘𝑥−𝜔𝑡)  

(Eq.1.3.15) 

𝑢𝑦(𝒙, 𝑡) = 0 
 

𝑢𝑧(𝒙, 𝑡) = 𝜂0
sinh[𝑘(𝑧 + 𝑧0)]

sinh(𝑘𝑧0)
𝑒𝑖(𝑘𝑥−𝜔𝑡)  

(Eq.1.3.16) 

Eq. 1.3.15 and 1.3.16 indicate that the wave propagates in the positive x direction 

according to 𝑒𝑖(𝑘𝑥−𝜔𝑡) . The phase velocity is given by  

𝑐 =
𝜔

𝑘
 

Using the Eq. 1.3.10, the phase velocity c is calculated as  

𝑐 =
𝜔

𝑘
= √𝑔ℎ√

tanh(𝑘ℎ)

𝑘ℎ
 

(Eq.1.3.17) 

𝑐 = {
√
𝑔

𝑘 

√𝑔ℎ

  
𝑘ℎ ≫ 1

 
𝑘ℎ ≪ 1

  =   

{
 
 

 
 
√
𝑔

2
 

√𝑔ℎ

  
𝜆 ≪ ℎ
 

𝜆 ≫ ℎ
 

where  

tanh(𝑘ℎ) = {
1
 
𝑘ℎ
  
𝑘ℎ ≫ 1

 
𝑘ℎ ≪ 1

 

Eq. 1.3.17 shows that the phase velocity of tsunami wave depends on the wavelength . 

If the tsunami wavelength is much larger than the sea depth, the phase velocity is an 

approximation given by 𝑐 = √𝑔ℎ. However, if the tsunami wavelength is much shorter than 
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the sea depth the velocity is given by 𝑐 = √𝑔/2  and it only depends on tsunami 

wavelength, independent of the sea depth h0. 

There are various kinds of tsunami equations depending on the different approximations 

(Madsen and Sørensen 1992; Imamura 1996), more approximations make equations simpler 

and decrease the computational cost of the simulations. One of the most general 

approximation for tsunami propagation is using 2-D depth-averaged equations, which are 

derived from 3-D equations of motion. In general, different types of 2-D tsunami equations 

are used based on the purpose and situation. A classification of tsunami equations can be 

done as shown in Table 3.1 according to the tsunami wave height, tsunami wave length and 

sea depth. 

 

Table 3.1: A classification of non-linear/linear long-wave and non-linear/linear dispersive tsunami 

equations (Taken from Saito, 2019) 

Let us consider the tsunami height first. When the tsunami height is much smaller than 

the sea depth in open ocean, the propagation can be simulated using linear long wave and 
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linear dispersive equations. Non-linear effects become important, when the tsunami height is 

not much smaller than the sea depth as tsunami approaches the coast. The simulation of this 

non-linear phenomena, the nonlinear long-wave and nonlinear dispersive equations are used.  

The velocity of tsunami propagation generally depends on the wavelength as shown in Eq. 

1.3.17. Therefore, simulation of frequency-dependent tsunami propagation should be done 

by non-linear/linear dispersive tsunami equations. However, if the wavelength is much 

greater than the sea depth, the propagation velocity does not change with the frequency and 

nonlinear/linear long-wave equations can be used. 

In this study, synthetic tsunami time series are computed at the location of several open 

ocean pressure sensors using different sources around the Pacific. Since the tsunami waves 

move along the deep sea, the propagation is a linear problem and it might be simulated as 

linear non-dispersive wave using SWE. However, it should be noted that Tsunami-HySEA 

model, which solves non-linear SWE, is used in this study for the wave propagation. 
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1.4. Tsunami shoaling and inundation 

 

Tsunami shoaling and inundation are the last phases of the tsunami progress, when the 

wave approaches, reaches, and floods the coast. A deep knowledge of tsunami inundation is 

crucial to predict the impact of possible future events on coastal zones. 

In the previous section, it has been shown that tsunami propagation speed changes with 

sea depth. Besides the velocity, tsunami height also depends on the sea depth. The tsunami 

height becomes greater as the tsunami approaches the coast since the propagation transitions 

from deep sea to shallow waters. The tsunami height on the shore can be two times bigger 

than its offshore height (Saito, 2019).  

The tsunami height η and the velocity c can be addressed relying on the tsunami energy 

flux conservation. The tsunami energy flux at the deep sea where tsunami wavelength is much 

larger than the sea depth can be represented as follows 

𝐽 = 𝜌𝑔|𝜂|2𝑐 = 𝜌𝑔|𝜂|2√𝑔ℎ 

The energy flux density J could be considered constant, independent from the location 

and the sea depth, if it is assumed that there are no reflected tsunami waves during the 

propagation. This can be given as 

 

|𝜂(𝑥1)|
2√𝑔ℎ(𝑥1) = |𝜂(𝑥2)|

2√𝑔ℎ(𝑥2) 

|𝜂(𝑥2)| = |
ℎ(𝑥1)

ℎ(𝑥2)
|
1
4  |𝜂(𝑥1)|   (Eq.1.4.1) 
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where η(x) is tsunami height and h(x) is the ocean depth at the location x. When the point x2 

is placed near the shore and the sea depth at this point (h(x2)) is shallower than the point x1 

(h(x1)), the tsunami height at point x2 (η(x2)) should be larger than the tsunami height at the 

offshore point x1 (η(x1)). This relation is known as Green’s law. The basis of the derivation of 

this law is the assumption of an idealistic model where there is not reflected tsunami waves. 

However, this is not the real situation in nature (Hayashi 2010). Therefore, this equation (Eq. 

1.4.1) only allows to make a good estimation about the mechanism of tsunami amplification, 

but is not always quantitatively correct. 

 

 

Figure 1.4.1: Tsunami amplification near coast. (Taken from Saito, 2019) 

As described above, the tsunami wave amplitude increases as it approaches the coast due 

to the conservation of the wave energy. When the sea depth is decreased, the velocity of wave 

propagation decreases and that causes the compression of wave packet in space and the 

amplification of the wave amplitude.  

The inundation is the result of the penetration of tsunami waves inland. The maximum 

vertical height on the land above the sea level that tsunami waves reach is named as run-up 
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(Figure 1.4.2). The run-up height can reach to 30-40 meters (Mori et al., 2011) for earthquake 

generated tsunamis and hundreds of meters, for other tsunami sources, as observed at 1958 

Lituya Bay, Alaska event (Fritz et al., 2001) where the maximum runup is recorded as 524 m. 

The transformation of tsunami waves in near shore regions highly depends on the 

characteristics of the beach profile and the wave itself. For instance, if the beach profile is 

steep and the tsunami wave height is small, then the runup process can be similar to a wave 

hitting a vertical wall and the runup height will be almost twice the offshore tsunami height. 

If the beach profile is not steep but the slope is mild and the tsunami wave is large, the process 

of the shallow water becomes highly nonlinear (Lynett, 2011). Shoaling and refraction due to 

the large-scale coastal features, such as small islands, large shoals, canyons, and shelves also 

play an important role in tsunami inundation (Briggs et al., 1994; Yeh et al., 1994; González et 

al., 1995; Liu et al., 1995; Carrier, 1996;). 

The propagation of tsunami on land is also affected by the ground roughness and obstacles 

(Lynett, 2007; Synolakis, 1987; Tadepalli and Synolakis, 1994; Tomita, 2007). The ground 

roughness is controlled by the composition of the ground and cause damping of the bottom 

friction. The interaction of tsunami with obstacles, such as buildings, may also lead to a highly 

variable local flow pattern (Cross, 1967; Tomita, 2007). The velocity of strong flows can reach 

tens of meters per second and these flows are able to break up structures, trees etc. and 

displace them. Besides the power of the flow, the secondary effect of the inundation can be 

considered as the debris flow.    
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Figure 1.4.2: The terms used for the quantitative measures of tsunami intensity (Taken from Kalligeris 

et al., 2021) 
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1.5. Common tsunami models and approaches  

 

Reproducing the behavior of tsunami waves has been attempted with different models 

using a number of approaches and assumptions. Tsunami numerical modelling requires to 

define physics of tsunami wave propagation and inundation with mathematical equations; 

then relevant numerical methods must be employed to solve these equations.  

Navier-Stokes equations, for incompressible fluids, are the most complete definition of a 

tsunami as a free surface flow. These equations are able to capture the interaction of the flow 

with the coastal characteristics and estimate the hydrodynamic forces responsible for the 

damages during the inundation and run-up (Behrens and Dias, 2015; Lynett et al., 2017; Larsen 

and Fuhrman, 2019). 

However, simpler equations have been successfully adopted for modelling tsunami 

propagation and inundation (Synolakis, 2006; Behrens and Dias, 2015). Linear and non-linear 

shallow water theory is one of the most common used approach for tsunami propagation and 

inundation modelling (Behrens and Dias, 2015). However, long wave assumption becomes 

questionable when the frequency dispersion, the velocity changes with the wavelength, 

affects the wave propagation. Boussinesq equations can be used when wavelengths decrease 

to roughly a few water depths. These equations can be obtained averaging over the water 

column and keeping only first-order effects of nonlinearity and frequency dispersion (Lynett, 

2011; Behrens and Dias, 2015; Marras and Mandli, 2020). 
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1.5.1. Numerical Methods to solve equations 

 

There are several methods to solve modelling equations mentioned above. Although, 

finite differences (FD) method is the most commonly used numerical method (Titov and 

Gonzalez, 1997; Imamura et al., 2006), other numerical methods, such as Galerkin-type finite 

element, finite volume, smoothed particle etc., have been implemented in tsunami 

simulations to solve hyperbolic or weakly parabolic equation (Behrens and Dias, 2015). 

The discretization schemes of Galerkin-type methods replace the continuous function 

space by a discrete approximation to that space usually represented as a piecewise 

polynomial. This finite element method can be represented as continuous Galerkin (CG) and 

discontinuous Galerkin (DG) methods. DG methods are capable of simulating the inundation 

process and they are well scalable on parallel computing environments (Vater and Behrens, 

2014). 

Finite-volume (FV) is another method to solve hydrodynamic equations. FV methods are 

closely related to finite difference methods they can be interpreted as a finite difference 

approximation to the differential equation. However, FV methods are derived using the 

integral form of the conservation law with a finite partitioning set of volumes to discretize the 

equations (LeVeque, 2002; Behrens and Dias, 2015).  

Each method has its advantages and disadvantages. The FD method, for instance, is least 

costly but it has insufficient geometrical flexibility to handle complex coastal areas with 

respect to the Galerkin and FV methods. Both FV and FD allow a more general approach to 

non-equispaced meshes, FV can deal with curvature more naturally in two and three 
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dimensions due to the integral nature of the equations. DG and FV methods are also optimal 

for the grid refinement (Behrens, 2006; Berger et al., 2011; Bonev et al., 2018). 

As a result, all the numerical methods of solution and the mathematical models depend 

on the different cases and assumptions. It is significant to decide which metric lead to the 

decisions to choose one model over another and what can we sacrifice. Table 1.5.1.1 shows 

some most common tsunami simulators with the considered equations and numerical 

methods.  

Model 
Space 

Dimension 
Equations 

Spatial 
Discretization 

GeoCLAW 
(Berger et al. 2011) 

1D/2D/2D(multi-layer) SW FV 

NUMA2D 
(Marras et al., 2015; Marras 

et al., 2018) 

1D/2D SW SE/DG 

MOST 
(Titov and González, 1997) 

1D/2D SW FD 

Cliffs 

(Titov and González, 1997; 
Tolkova, 2014) 

1D/2D SW FD 

Tsunami-HySEA 
(Macías et al., 2017; Macías 

et al., 2020a, 2020b) 
1D/2D SW/B FV 

Multilayer-HySEA 
(Macías et al., 2020c, 

2020d) 
1D/2D(multi-layer) SW/B FV 

TUNAMI 
(Imamura, 1989; Imamura 

et al., 2006) 

1D/2D SW FD 

NAMI-DANCE 
(Yalciner et al., 2006) 

1D/2D SW FD 

COMCOT 
(Wang, 2009) 

1D/2D SW FD 

Table 1.5.1 1: Some most common tsunami models. Acronyms used in this table: SW Shallow Water, 

B Boussinesq, FV Finite-volume, SE spectral element, FD finite-difference (Modified from Marras and 

Mandli, 2020). 
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CHAPTER 2- EARTHQUAKE SOURCE MODELLING FOR TSUNAMI 

 

A great number of destructive tsunamis (~80%), have been triggered by an earthquake. 

The sudden seafloor deformation, due to an earthquake rupturing beneath the sea, generates 

a motion of the water column above the earthquake source and produces tsunami waves 

(Grezio et al., 2017). Earthquake triggered tsunamis pose a risk to human lives (Løvholt et al., 

2012), cause economic losses (Løvholt et al., 2015) and damages to coastal structures and 

critical infrastructures (Argyroudis et al., 2020) or even may generate secondary cascading 

events such as Fukushima nuclear accident (Synolakis & Kânoğlu, 2015). The Probabilistic 

Tsunami Hazard Assessment is highly sensitive to fault geometry and earthquake mechanism. 

Various studies proved that tsunami wave height and inundation height directly depend on 

the spatial variation of slip (Geist and Parsons, 2006; Tselentis et al., 2006; Løvholt et al., 

2012c; Mueller et al., 2014; Fukutani et al., 2014; Davies et al., 2015) not only in the near field 

region (Geist 2002; Okal & Synolakis 2008; Lauterjung et al. 2010; McCloskey et al. 2007) but 

also in the far-field domain (Gica et al. 2007; González et al. 2009; Li et al. 2016; Butler et al. 

2017). Therefore, it is crucial to understand the processes that yield earthquake occurrence 

and source mechanism, how the final slip distributes on the fault plane and how the seafloor 

deformation is connected to the earthquake source to use as an initial condition for tsunami 

analysis.  
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2.1. Earthquake occurrence   

 

Tectonic earthquakes occur on pre-existing faults or plate interfaces with a rapid slippage. 

The characteristics of the tectonic earthquakes are different from the non-tectonic ones which 

may have volcanic origin or can be induced by water recharge processes in dams. Earthquake 

ruptures result from yielding the static friction level on faults, which are nearly planar 

interfaces within the Earth crust. Those interfaces have broken in the past and hosted 

dislocation, and therefore they are relatively weak to accumulate elastic energy in 

deformation with time. 

Geometrically, the orientation of the fault plane is provided by its azimuth direction and 

the dip angle. The azimuth or the strike of the fault (ϕ) is the angle, measured clockwise, 

between the fault trace on the surface and the north, and it ranges from 0 to 360. The dip 

angle (δ) is formed by the fault plane and the horizontal plane and ranges from 0 to 90. 

There is a third angle that completes the description of the fault rupture mechanism, the rake 

(λ) angle, which individuates the direction of the motion on the fault, it is defined as the angle 

between the strike direction and the direction of slip and it ranges from -180 to 180.  

Faults can be classified according to the characteristic of their motion (Figure 2.1.1). Pure 

strike-slip faults, for which δ = 90 and λ = 0, generate a horizontal motion parallel to the 

strike and are nearly vertical interfaces. These faults can be distinguished in right-lateral and 

left-lateral faults, based on the direction of movement of one side of the fault as seen from 

the other side. Dip-slip faults have the cross-section of the fault motion in a vertical plane. 

Dip-slip vertical faults have δ = 90 and λ = 90 while dip-slip faults on an inclined plane have 

0< δ < 90 and λ = 90. Dip-slip faults are also divided into normal and reverse faults. Normal 
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faults are produced when the block above the fault (hanging-wall) moves downward with 

respect to the block below (foot-wall). Reverse faults are generated when the motion of the 

block above is upward with respect to the block below. Reverse faults are also called thrust 

faults when the dip angle is small. Normal faults have a negative rake angle and reverse faults 

have a positive rake angle.  

 

Figure 2.1.1: (left) Geometry of a shear fault. The fault orientation is given either by the angles ϕ 

(azimuth or strike) and δ (dip) or by the unit vectors n (normal to the fault plane) and l (in the slip 

direction).  λ is rake or slip angle, Δu is the amount of fault slip and the fault surface is Σ. (right) Types 

of faults. (Taken from Udías et al., 2014) 

Earthquake generation process can be simply illustrated by the mechanism of stick-slip 

motion (Brace and Byerlee, 1966). The model contains a single block of mass that is at rest, in 

contact with a fixed block through a frictional surface and this mass is connected to a spring 

that is loaded at a constant velocity. The tectonic process of the accumulation of the elastic 

deformation on the fault is represented by the initial process of the stick-slip model where the 

end of the spring is stretched but the block is still at rest. The loading velocity V that generates 

the stretching at the end of the spring represents the relative velocity of tectonic loading, 
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which is driven by the motion of the lithospheric plates. If the strain in a zone exceeds a 

specific threshold (σ>σs), an earthquake occurs (Figure 2.1.2). Correspondingly, in the model 

the block starts to suddenly move when the force exerted by the spring exceeds the static 

friction between the block and the surface. During the motion of the block, the friction 

dissipates energy as heat, while elastic energy can generate seismic waves radiated away from 

the source. The motion of the fault stops eventually when the friction increases over the 

dynamic value (σf > σk). The difference in stress between the shear stress just before and after 

the slip is called the static stress drop (Δσs =σs-σf). The drop of the stress during the motion, 

on the other hand, represents the dynamic stress drop (Δσd =σs-σk). After the motion of the 

block has stopped, the spring starts to be stretched again due to the constant loading velocity 

V. This represents the beginning of another loading phase, which is referred to as the 

earthquake cycle.  

 

Figure 2.1.2: The stress acting on a block subject to friction as a function of time, before (t < t0), 

during (t0 < t < tf) and after (t > tf) sliding: Δσd, dynamic stress drop; Δσs, static stress drop. (Taken 

from Udías et al., 2014) 
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2.2. Subduction zones 

 

Subduction zones are convergent plate boundaries where one plate subdues below 

another one and sinks into the mantle due to the density difference between these two plates. 

These zones are the most seismically active regions on the globe and about 90% of historical 

events, including the largest ones with magnitude M>9, occurred along these regions (Hayes 

et al., 2018). Most of these events were followed by devastating tsunamis with, in some cases, 

unexpected wave height distributions. A great number of destructive tsunamis have been 

triggered after an earthquake, within or nearby the subduction zone, in the past.  

Observation of events in the megathrust environment reveals that rupture characteristics 

of these events, such as slip and energy radiation distribution, indicate a depth-dependent 

frictional property of the slab interface. The shallow part of the subduction zone, in the upper 

15 km of the seismogenic zone, is considered as frictionally stable and shows periodically 

unusual seismic energy release features (Lay and Bilek 2007; Yao et al., 2013). This portion of 

the slab interface is the source region for the tsunami earthquakes and events in this zone 

tend to have considerably longer source durations than the deeper ones, with the same 

seismic moment, and appear depleted in short-period energy (Kanamori and Kikuchi 1993; 

Bilek and Lay 2002; Bilek et al. 2004; Lay and Bilek 2007; Lay et al., 2012; Yao et al., 2013). The 

slab interface at the depth range 15-35 km is unstable and it is the place where megathrust 

earthquakes are nucleated with large slip. Moreover, intermediate short-period seismic 

energy radiation is observed from events occurred in that zone (Bilek and Lay 2002; Lay et al., 

2012; Yao et al., 2013). The deeper part of the subduction, between the depths 35-45 km, is 
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seismically unstable and dominant in high-frequency radiation (Wang and Mori, 2011; Lay et 

al., 2012; Yao et al., 2013).  

The common idea, before the 2011 Tohoku Earthquake, was that the shallow part of the 

subduction, the accretionary sediment wedge, could not produce large co-seismic slip 

(Hyndman et al. 1997; Moore and Saffer 2001). The 2011 Tohoku-Oki earthquake and related 

tsunami are one of the most studied events in different disciplines (Lay, 2018). It has been 

observed that this event generated a large amount of slip near the trench. The first finite-fault 

slip model has been addressed by Hayes (2011), using body and surface wave inversion, with 

about 34 m peak slip toward the trench. Saito et al. (2011), used the tsunami records as a first 

attempt at ocean bottom pressure and GPS wave gauge for the inversion and estimated 30 m 

of slip at 20 km depth and 20 m of slip near to trench. On the other hand, joint inversion results 

of Lee et al. (2011) proposed that the maximum slip is larger than 50 m; also, the slip has 

started slowly near the hypocenter and then has grown towards the shallow part of the 

interface. Most of the following studies (Suzuki et al., 2011; H Yue & Lay, 2011; Yokota et al. 

2011; Romano et al., 2012; Satake et al., 2013; Han Yue & Lay, 2013; Romano et al., 2014) 

have featured large slip values in the shallow part of the subduction zone. 

The 2004 Sumatra-Andaman is also one of the most destructive and deadly events in the 

last century. The maximum runup has been measured as about 50m in Banda Aceh by tsunami 

survey team (Wijayaratna et al., 2005). Lorito et al. (2010) revealed that the source of the 

event has a complex geometry and the rupture was slower in the shallow part of the 

subduction zone than in the deeper part since joint inversion results show that the source 

rigidity is smaller than the value suggested by the PREM model and increases with depth.  
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The cause of such devastating events can be associated with slip amplification in the 

shallow part of the fault, eventually due to the existence of a sediment layer below the 

subducting plate, and a slower rupture process. For events sharing the same magnitude, the 

tsunami can be enhanced by slip amplification in the shallow part of the fault, by the existence 

of a soft wedge, by the low rigidity and stress drop changes with depth (Bilek and Lay 1999; 

Geist and Bilek 2001). On the other hand, earthquake rupture may propagate from deeper 

part of the subduction up to the trench, causing a strong tsunami due to the frictional 

environment, yielding conditional stability of the shallow portion of the subduction interface 

(Scholz, 1998; Hu and Wang, 2008; Murphy et al., 2018).
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2.3. Earthquake source 

 

Tectonic earthquakes occur as a result of the relative sliding of two sides of the fault. 

During the faulting process, there is a complex energy balance between the dissipation 

occurring along the fault and in the surrounding volume and the radiated field. This radiated 

field is represented by seismic waves and includes the information about the source process. 

The recordings of seismic waves at or nearby the Earth's surface is used by the seismologists 

to infer the characteristics of the rupture referring to its space-time evolution. 

Determination of the mechanism of an earthquake can be simplified by ignoring the finite 

size of the source and point source approximation can be used. This approximation is valid if 

the distance between the source and the observation point (d) is much larger when compared 

with the source dimensions (L is the length of the fault and W is the width of it) and if the 

wavelengths of the observed signal (λ) are larger than the source dimension (L ≪λ≪d). 

 

Figure 2.3.1: A seismic fault is here represented as a surface inside a volume V along which slip 

occurs. The two lips of the fault are divided to interpret the displacement discontinuity across such a 

surface (Taken from Festa and Zollo,2012).  
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Let us consider a volume V internal to the Earth that is bounded by the S=∂V. Inside this 

volume V the linear elastodynamics holds except for the fault surface Σ where slip occurs. 

Homogeneous boundary conditions are assumed on S which are, for instance, representative 

of the traction-free Earth surface. The two sides of the fault that move away from each other, 

are indicated as Σ1 and Σ2. The normal n is defined on the fault as the normal to Σ1 entering Σ2 

(Figure 2.3.1). It can be assumed that the small-strain approximation holds and we refer all 

quantities on the fault to a reference configuration determined at time zero, since the amount 

of slip is small (centimeters to meters) with respect to the size of the process zone (tens to 

few hundreds of meters). The displacement and its time derivative across the surface Σ are 

discontinuous due to the slippage. The slip function is defined as the difference of the 

Lagrangian displacement u across the two sides of the fault surface 𝛿𝐮=𝐮1−𝐮2. The traction, 

on the other hand, must be continuous across Σ for spontaneous rupture. Using Betti’s 

theorem, the displacement seismogram observed at a location x inside the Earth or at its surface 

can be computed as the convolution of the slip function with the elastic response of the medium: 

 
𝑢𝑚(𝒙, 𝑡) = ∫ 𝑑𝜏

+∞

−∞

 ∫𝛿𝑢𝑖(𝝃, 𝑡)
 

Σ

 𝑐𝑖𝑗𝑘𝑙 𝑛𝑗
𝜕𝐺𝑚𝑘
𝜕𝜉𝑙

(𝒙, 𝑡 − 𝜏, 𝝃)𝑑𝝃 

 

(Eq.2.3.2) 

 

where cijkl is elastic coefficient tensor and it is symmetric with respect to the exchange of all 

the indices. Although it has 21 independent components for a general elastic solid, it reduces 

to 2 independent coefficients, which are Lamé constants λ and μ, for an isotropic medium, 

𝑐𝑖𝑗𝑘𝑙 =  𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) . G in the formula is the Green’s function tensor that 

represents the impulse response of the medium. 𝐺𝑖𝑗(𝑥, 𝑡, 𝜉) defines the i-th component of the 

displacement recorded at the position x and at time t, generated by a unidirectional impulse force 

acting in the j-th direction at 𝝃 at time zero. Using the reciprocity feature of the Green’s function, 
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the positions of the source and receiver can be exchanged yielding 𝐺𝑚𝑘(𝑥, 𝑡 − 𝜏, 𝜉) =

𝐺𝑘𝑚(𝜉, 𝑡 − 𝜏, 𝑥). The quantity 

𝑐𝑖𝑗𝑘𝑙
𝜕𝐺𝑘𝑚
𝜕𝜉𝑙

(𝝃, 𝑡 − 𝜏, 𝒙)𝑛𝑗 = 𝑇𝑖𝑚
𝐺 (𝝃, 𝑡 − 𝜏, 𝒙) 

is the stress on the fault plane generated by an impulse force at x, contracted by the normal, 

leading to the Green’s traction 𝑇𝑚
𝐺 on the fault plane generated by an impulse force at x directed 

along the m-th direction. Eq. 2.3.1, the representation theorem, can be simplified as  

 
𝑢𝑚(𝒙, 𝑡) = ∫𝛿𝑢𝑖(𝝃, 𝑡)

 

Σ

∗ 𝑇𝑖𝑚
𝐺 (𝝃, 𝑡 − 𝜏, 𝒙)𝑑𝝃 (Eq.2.3.2) 

 

where the time integral is replaced by the convolution operator (*) to suppress the time 

dependence. We assumed that the rupture may only occur in plane mode (slip parallel to the 

rupture direction) or anti-plane mode (on-fault slip orthogonal to the rupture direction), for a 

dominant shear faulting mechanism, which represents the seismic rupture. Therefore, the 

component of the slip normal to the fault is always zero, reducing to six the number of non-zero 

components of the traction needed for the computation of the displacement. 

Eq. 2.3.2 can be changed to represent an extended seismic source as a superposition of 

double-couple point sources, as it is common in seismology. To do that, it should be noted that 

only the components of c with i≠j contribute to the Green’s tractions since the slip vector lies on 

the fault plane and the normal is orthogonal to it. Therefore, the observed displacement is 

independent of λ for an isotropic medium, leading to 

𝑢𝑚(𝒙, 𝑡) = ∫ 𝑑𝜏
+∞

−∞

∫𝛿𝑢𝑖(𝝃, 𝜏)
 

Σ

𝜇 (
𝜕𝐺𝑚𝑖
𝜕𝜉𝑗

(𝝃, 𝑡 − 𝜏, 𝒙) +
𝜕𝐺𝑚𝑗

𝜕𝜉𝑖
(𝝃, 𝑡 − 𝜏, 𝒙))𝑛𝑗𝑑𝝃 (Eq.2.3.3) 
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Figure 2.3. 2: The double couple forces (Taken from Festa and Zollo,2012).  

Using the finite difference approximation, contribution in the Green’s function can be 

written as 

 𝜕𝐺𝑚𝑖
𝜕𝜉𝑗

 𝑛𝑗 =
𝜕𝐺𝑚𝑖
𝜕𝜉𝑛

≈
𝐺𝑚𝑖
2 − 𝐺𝑚𝑖

1

∆𝜉𝑛
  (Eq.2.3.4) 

 

Superscripts indices represent the quantities computed on the two sides of the fault, while 

∆𝜉𝑛  is the distance along the normal direction. Eq. 2.3.4 represents the superposition of the 

displacement due to a couple source (couple of opposite forces acting on the two sides of the 

fault), in the direction of the slip (red couple in Figure 2.3.2). As ∆𝜉𝑛 → 0, the distance between 

the forces composing the couple approaches zero, with in-plane forces and arm along the normal 

direction. That moment may tend to rotate the fault locally. However, it is balanced with the 

second force couple acting on a plane perpendicular to the fault. The second term in the Green’s 

function derivatives indicates that this force couple is formed by two forces directed along the 

fault normal with the arm along the slip direction (green couple in Figure 2.3.2). The 

representation theorem (Eq. 2.3.3) can be simplified by indicating with Dmi the m-th component 

of the displacement generated by such a double couple 

𝑢𝑚(𝒙, 𝑡) = 𝜇∫𝛿𝑢𝑖(𝝃)
 

Σ

∗ 𝐷𝑚𝑖(𝝃, 𝒙) 𝑑𝝃 
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Here, Green’s function term is replaced by the displacement generated by a double couple 

force, whose orientation is defined by the slip and the fault normal vectors. 

Eq. 2.3.3 can be also written as 

 
𝑢𝑚(𝒙, 𝑡) = ∫ 𝑑𝜏

+∞

−∞

∫ 𝜇(𝛿𝑢𝑖𝑛𝑗 + 𝛿𝑢𝑗𝑛𝑖)
𝐺𝑚𝑖
𝜕𝜉𝑗

 𝑑𝝃
 

Σ

 (Eq.2.3.5) 

 

The quantity 𝑚𝑖𝑗 = 𝜇(𝛿𝑢𝑖𝑛𝑗 + 𝛿𝑢𝑗𝑛𝑖)  is the moment density tensor, which is symmetric by 

definition, and it has the dimension of a moment per area unit. Green’s function derivatives can 

be assumed constant in Eq. 2.3.5 for observer distance and wavelength of the signal much larger 

than the dimension of the fault. If we bring constant Green’s function terms out of the integral in 

Eq. 2.3.5 

∫𝑚𝑖𝑗

 

Σ

𝑑𝝃 = 𝑀𝑜 = 𝜇𝐴∆𝑢̅ 

gives the moment tensor, which is a significant overall measure of the earthquake size, where μ 

is the shear modulus of the embedding medium, ∆𝑢̅ is the average displacement on the fault 

surface and A is the area of the fault.
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2.4. Scaling laws for source geometry 

 

Earthquakes occur in a wide variety of sizes, from very small ones to very large ones 

that produce many hundreds of kilometers of rupture. In section 2.1 the mechanism of the 

earthquake is explained in detail. We can sum up this mechanism when shear stress exceeds 

the static friction an earthquake occurs and two sides of the locked fault displace. After the 

earthquake friction forces lock the fault again. This simple model of the source can be used to 

explain essential concepts such as stress drop, fault slip, seismic moment and magnitude. The 

location in space and time and the orientation of the fault do not depend on the earthquake 

size. However, some scaling relations can be established among the size of an earthquake, 

rupture dimensions, average slip and the stress drop. Aki (1967) argued that some of the 

source parameters are dependent and can be expressed in terms of other parameters.  

The size of an earthquake caused by a shear fracture can be measured by its seismic 

moment M0 (Eq. 2.3.6). In the simplified earthquake occurrence model, the relative slip Δu of 

the two sides of the fault is generated when the acting shear stress, at a given moment, 

overcomes the friction and stress drop Δσ is defined by the difference of the shear stresses 

before (σ0) and after (σf) the occurrence of an earthquake (Figure 2.4.1). 
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Figure 2.4. 1: Schematic representation of acting stresses, (a) before and (b) after an occurrence on a 

shear normal fault with slip Δu and stress drop Δσ (Taken from the Udías et al., 2014). 

The relation between the average stress drop and the average displacement can be 

written as 

∆𝜎̅ = 𝐶𝜇
∆𝑢̅

𝐿′
 

where C is a non-dimensional factor that depends on the shape of the fracture and it is 
7𝜋

16
 for 

circular fault and L’ is the length of the fault, this latter being equal to the radius a in the case 

of a circular rupture. The average stress drop can be written as 

∆𝜎̅ =
7𝜋

16

∆𝑢̅

𝑎
 

The seismic moment in terms of stress drop and fault area (A=πa2) is given by 

𝑀0 =
16∆𝜎̅

7𝜋
3
2⁄
𝐴
3
2⁄  

If we take logarithms we get 



 

 

64 

𝑀𝑤 = (
log𝑀0

1.5
) − 10.73 

where M0 is seismic moment and given in Nm. The moment magnitude Mw is widely used 

since it does not saturate at large values. 

Figure 2.4.2 shows the relation between fault area and seismic moment M0 with some 

constant stress drop lines for inter-plate and intra-plate earthquakes. The figure shows that 

most of the events have stress drops between 10 and 100bars although one order of 

magnitude variation is observed.   

 

Figure 2.4. 2: Relation between A (fault area) and Mo (seismic moment). The straight lines give the 

relations for circular cracks with constant Δσ (stress drop) (Taken from Lay and Wallace, 1995 which 

is modified from Kanamori and Anderson, 1975) 

Scaling relations are predominantly used to assume the possible dimensions of an 

earthquake fault for a given magnitude, estimated from instrumental recordings. Wells and 

Coppersmith relation (Wells and Coppersmith, 1994) is one of the most commonly used 
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relations which considers source parameters of 244 crustal earthquakes to develop empirical 

relationships among other source parameters. 

The first scaling laws derived specifically for subduction-zone earthquakes have been 

proposed by Strasser et al. (2010). They have presented empirical relations between the 

rupture area (A), rupture length and width (L, W) and moment magnitude (Mw) of earthquakes 

that occur in subduction zones (Table 2.4.1). Their database, mainly based on SRCMOD 

database (Mai 2004; 2007)., includes 160 events, 95 interface and 20 intra-slab events, within 

the magnitude range Mw 5.9-9.4. Their study shows that there is an important difference in 

scaling with respect to the relations for crustal events, especially relating to rupture width and 

therefore rupture area and aspect ratio. 

Equation a Standard error (a) b Standard error (b) 

log(L)=a+b*Mw -2.477 0.222 0.585 0.029 

log(W)=a+b*Mw -0.882 0.226 0.351 0.029 

log(A)=a+b*Mw -3.476 0.397 0.952 0.051 

Table2.4.1: Equations of Strasser et al. (2010) scaling relations with coefficients and their 

standard error.  

Murotani et al. (2013) also derived empirical relations of seismic moment (M0), rupture 

area (A), average slip (D) and asperity size (Sa) for subduction-zone earthquakes. In their 

database, the source parameters of seven M~9 earthquakes from the inversion results of the 

tsunami waveforms and geodetic data are used. The rupture area is defined for these seven 

events combined with 25 other events with Mw 6.7 – 8.4 to conduct regression analysis. They 

argued that these scaling relations are applicable to M~9 megathrust earthquakes. The 

equations of these relations are given by 

𝐴 = 1.34 ∗ 10−10 ∗ 𝑀0
2/3
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𝐷 = 1.66 ∗ 10−7 ∗ 𝑀0
1/3

 

𝑆𝑎 = 2.81 ∗ 10−11 ∗ 𝑀0
2/3
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2.5. Stochastic source modelling 

 

For the simulation of earthquake scenarios, we assume a variability of the slip on the fault 

plane, as expected for large earthquake ruptures. For the aim we consider composite source 

models, that assume that an earthquake consists of many subevents, each subevent being 

defined by different source parameters such as size, stress drop, seismic moment and source-

time function. In the literature, various composite source models have been proposed to 

consider the heterogeneities of the seismic rupture such as the fractal composite model (e.g. 

Andrews 1981; Boatwright 1982, 1988; Frankel 1991; Zeng et al. 1994), the specific barrier 

model (Papageorgiou & Aki 1983), and the empirical Green’s functions (EGF) model (e.g. 

Hartzell 1978; Irikura & Kamae 1994; Frankel 1995). These models mainly differ from each 

other in terms of the hypothesis mode on the subevent size distribution. It can be assumed 

equal size distribution (e.g. Hartzell 1978; Papageorgiou & Aki 1983; Frankel 1995; Beresnev 

& Atkinson 1997) or a heterogeneous size distribution (e.g. Frankel 1991; Zeng et al. 1994). 

The overlapping or non-overlapping features of the subevents can be another reason for 

model differences. 

Frankel (1991) suggests a general composite source model in which the size of the 

subevents is defined by a fractal distribution. This study also indicates that resulting high-

frequency falloff of the displacement spectrum follows the spectral decay in ω-2 (Aki, 1967); 

in this case a constant stress drop is assumed and fractal dimension of the slip function of 2. 

However, this model is not able to predict the low frequency content, since the seismic 

moment related to the slip distribution is lower than the one of the target events. 
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Zeng et al. (1994), adjusted the composite model by Frankel (1991) by assuming that the 

total seismic moment of subevents must be equal to the seismic moment of the target event. 

Their composite model proposes that the stress drop is independent of the source size, the 

subevents are randomly distributed in a uniform manner on the fault plane, and allowed to 

be overlapped. This model differs from Frankel (1991) since the overlapped distribution of 

subevents implies that the total area of the subevents is larger than the surface of the target. 

Point source approximation is used for each subevent and each of them radiates with a 

Brune’s (1970) source–time function when the rupture front reaches the center. Directivity at 

the subevent scale is ignored by Zeng et al. (1994) composite source model.  

2.5.1. Generating a fractal distribution of earthquake sizes 

Considering the composite fractal source model suggested by Frankel (1991), which 

assumes that the distribution of subevents follows a fractal distribution of subevent sizes and 

these sizes are self-similar, the number of circular subevents with radius R is given by 

 𝑑𝑁

𝑑 𝑙𝑛(𝑅)
= 𝑝𝑅−𝐷 (Eq.2.5.1) 

 

where N is the number of subevents, p is a constant of proportionality and D is the fractal 

dimension. The concept is to generate a set of subevents following a fractal distribution of 

sizes, using the Zeng et al. (1994)’s method, satisfying Eq 2.5.1 between the smallest (Rmin) 

and the largest radius (Rmax). The distribution of subevents can be evaluated, constraining the 

total moment of the subevents to be equal to the seismic moment of the target event. The 

stress drop of each subevent should be assumed constant. The p value can be predicted 

analytically by accepting that subevents have a continuous distribution of sizes. 
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To model an earthquake on the fault, we should provide a discretization, characterized 

by a grid size Δx; this size is related to minimum modelled wavelength (according to the 

Nyquist theorem). Also, the smallest circular source should cover at least the size imposed by 

the grid mesh to be able to correctly model synthetic seismograms, imposing a minimum 

event magnitude that can be modelled with this discretization. These parameters allow 

defining p value by setting the fractal dimension to 2 (D=2). For instance, the fractal 

distribution of sizes can be generated for a magnitude Mw 6.0 event assuming Rmin= Δx/2, 

where Δx is the grid size of the fault plane, Rmin=0.35W, where W is the width of the fault 

plane. In this case, the number of subevents is calculated about N=25000. Figure 2.5.1 shows 

the spatial distribution of subevents on the fault plane for Mw 6.0 event with the cumulative 

number of subevents against the radius of each one of them. 

 

Figure 2.5. 1: Example of a set of subevents generated for a magnitude Mw 6.0 earthquake with a 

fractal distribution of sizes using D= 2(a) Spatial distribution of the 10 percent of subevents and (b) 

cumulated number of subevents as a function of their radius R (Taken from Ruiz et al., 2011). 

The distribution fractal of sizes can be more complicated for complex non-planar faults. 

Herrero and Murphy (2018) propose a multi-lateration method to compute the distance 
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across complex non-planar surfaces, as the curvature of the surface is linked to the distance, 

based on a corollary of the Huygens’ geodetic principle. 

2.5.2. Spatial spectral property for a composite slip 

The composite slip can be generated by a fractal distribution of sizes. To generate the 

final slip distribution on the fault plane, each subevent is defined as a circular crack (Anderson, 

1997), with a slip function defined by (Eshelby, 1957) 

∆𝑢(𝑟) = {

24

7𝜋

∆𝜎𝑑
𝜇
√𝑅2 − 𝑟2

 
0

  
𝑟 < 𝑅
 

𝑟 > 0
 

where μ is rigidity, R is radius of the crack, r the radial distance from a point on the fault to its 

center, ∆𝜎𝑑 is the stress drop of the subevent.  

The slip spectrum for a single crack is analyzed in the spatial wavenumber domain to 

characterize the final composite slip spectrum. The location of a single crack is randomly 

distributed reflecting the subevent distribution. Therefore, the square of the final slip 

spectrum amplitude can be written as 

|∆𝑢̃2(𝒌)| = ∫|∆𝑢̃2(𝒌, 𝑅)| 𝑑𝑁 

where ∆𝑢̃2(𝑘, 𝑅) is the 2-D Fourier transform of the slip for a single crack. Simplified version 

of this expression can be given by 

 |∆𝑢̃(𝒌)| ∝ 𝑘−3+
𝐷
2  (Eq.2.5.2) 
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where k is the wavenumber. Andrews (1980) argues that k-2 decay at high wavenumber must 

be taken to generate a far-field displacement radiation following -2 spectrum. Eq. 2.2 also 

confirms that the fractal dimension must be D = 2 to generate a final slip spectrum that decays 

as k-2. 

 

Figure 2.5. 2: Example of a slip distribution for a Mw 6.0 earthquake generated with a fractal 

approach satisfying a k-2 asymptotic behavior at high wavenumbers. (a) Spatial and (b) spectral 

representations. Dashed line is a reference curve which is proportional to 1 / [1 + (k/kc)2], where kc = 

2π/W, is the corner wavenumber, and W is the fault width (Taken from Ruiz et al., 2011).
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2.6. Seafloor deformation from earthquake sources 

 

The ground motion dynamics produced by an earthquake has complex characteristics. 

However, static deformation can make use of elastic dislocation theory to calculate the 

displacements, strains and stresses related to faulting from an earthquake rupture (e.g., 

Burgmann et al., 2002; McGuire & Segall, 2003; Savage & Burford, 1973). As a first 

approximation, fault surface can be parametrized as a collection of rectangular or point 

sources since there is a lack of analytical solutions for the deformation on a continuous fault 

(Okada, 1985, 1992). However, this parametrization cannot be adapted for complex fault 

surfaces, such as those at subduction zones, since it causes some geometrical gaps. Thus, 

complex fault surface geometry can be obtained using triangular meshes (Plesch et al., 2003).  

Let us first focus on the rectangular parametrization. We adopt Okada model (Okada, 

1985) to describe seafloor deformation. The model presents analytical expressions for the 

surface displacement, strain and tilt as a result of inclined shear and tensile faults in an 

isotropic half-space for both point and finite rectangular sources. Figure 2.6.1 shows the fault 

parameters considered in the Okada model. 
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Figure 2.6. 1: Geometry of the source model (length L, width W, Burger’s vector D, dip angle δ, rake 

angle, angle between Burger’s vector D and the fault plane) (Taken from Levin & Nosov, 2009). 

The Burger’s vector D= (U1,U2,U3) represents the movement of the hanging-wall with 

respect to the foot-wall. U1,U2 and U3 correspond to strike-slip, dip-slip and tensile 

components of arbitrary dislocations with the tensile component is normal to the fault plane. 

Elementary dislocations are linked to the burger vector as U1=|D|cosγ cosθ, U2=|D|cosγ sinθ, 

U3=|D|sinγ. The deformation field can be derived by taking x-ξ', y-η'cosδ and d-η'sinδ in place 

of x, y, and d, where ξ= x-ξ' and η= (y cosδ+d sinδ)-η' for a finite rectangular fault. 

Displacements for strike-slip dislocation is given by 

𝑢𝑥 =
−𝑈1
2𝜋

 [
𝜉𝑞

𝑅(𝑅 + 𝜂)
+ 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜉𝜂

𝑞𝑅
) + 𝐼1 𝑠𝑖𝑛𝛿] ‖ 

𝑢𝑦 =
−𝑈1
2𝜋

 [
𝑦̃𝑞

𝑅(𝑅 + 𝜂)
+
𝑞 𝑐𝑜𝑠𝛿

𝑅 + 𝜂
+ 𝐼2 𝑠𝑖𝑛𝛿] ‖ 

𝑢𝑧 =
−𝑈1
2𝜋

 [
𝑑̃𝑞

𝑅(𝑅 + 𝜂)
+
𝑞 𝑠𝑖𝑛𝛿

𝑅 + 𝜂
+ 𝐼4 𝑠𝑖𝑛𝛿] ‖ 

For dip-slip dislocation 
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𝑢𝑥 =
−𝑈2
2𝜋

 [ 
𝑞

𝑅
− 𝐼3 𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿] ‖ 

𝑢𝑦 =
−𝑈2
2𝜋

 [
𝑦̃𝑞

𝑅(𝑅 + 𝜉)
+ 𝑐𝑜𝑠𝛿 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜉𝜂

𝑞𝑅
) − 𝐼1 𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿] ‖ 

𝑢𝑧 =
−𝑈2
2𝜋

 [
𝑑̃𝑞

𝑅(𝑅 + 𝜉)
+ 𝑠𝑖𝑛𝛿 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜉𝜂

𝑞𝑅
) − 𝐼5 𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿] ‖ 

For tensile dislocation 

𝑢𝑥 =
𝑈3
2𝜋
 [

𝑞2

𝑅(𝑅 + 𝜂)
− 𝐼3 sin

2 𝛿] ‖ 

𝑢𝑦 =
𝑈3
2𝜋
 [

−𝑑̃𝑞

𝑅(𝑅 + 𝜉)
− 𝑠𝑖𝑛𝛿 {

𝜉𝑞

𝑅(𝑅 + 𝜂)
− 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜉𝜂

𝑞𝑅
)}  − 𝐼1 sin

2 𝛿] ‖ 

𝑢𝑧 =
𝑈3
2𝜋
 [

𝑦̃𝑞

𝑅(𝑅 + 𝜉)
+ 𝑐𝑜𝑠𝛿 {

𝜉𝑞

𝑅(𝑅 + 𝜂)
− 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜉𝜂

𝑞𝑅
)}  − 𝐼5 sin

2 𝛿] ‖ 

where  

𝐼1 =
𝜇

𝜆 + 𝜇
(

𝜉

(𝑅 + 𝑑̃)𝑐𝑜𝑠𝛿
) − 𝐼5 𝑡𝑎𝑛𝛿 

𝐼2 =
𝜇

𝜆 + 𝜇
ln (𝑅 + 𝜂) − 𝐼3 

𝐼3 =
𝜇

𝜆 + 𝜇
(

𝑦̃

(𝑅 + 𝑑̃)𝑐𝑜𝑠𝛿
− ln (𝑅 + 𝜂)) + 𝐼4 𝑡𝑎𝑛𝛿 

𝐼4 =
𝜇

𝜆 + 𝜇

1

𝑐𝑜𝑠𝛿
[𝑙𝑛(𝑅 + 𝑑̃) − 𝑠𝑖𝑛𝛿 ln (𝑅 + 𝜂)] 

𝐼5 =
𝜇

𝜆 + 𝜇

2

𝑐𝑜𝑠𝛿
arctan (

𝜂(𝑋 − 𝑞𝑐𝑜𝑠𝛿) + 𝑋(𝑅 + 𝑋)𝑠𝑖𝑛𝛿

𝜉(𝑅 + 𝑋)𝑐𝑜𝑠𝛿
) 
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If the dip angle (δ) is 90, cosδ=0 

𝐼1 =
𝜇

2(𝜆 + 𝜇)

𝜉𝑞

(𝑅 + 𝑑̃)
2 

𝐼3 =
𝜇

2(𝜆 + 𝜇)
(

𝜂

(𝑅 + 𝑑̃)
+

𝑦̃𝑞

(𝑅 + 𝑑̃)
2 − ln (𝑅 + 𝜂)) 

𝐼4 =
𝜇

𝜆 + 𝜇

𝑞

𝑅 + 𝑑̃
 

𝐼5 =
𝜇

𝜆 + 𝜇

𝜉𝑠𝑖𝑛𝛿

𝑅 + 𝑑̃
 

where  and  are Lame constants and 

𝑝 = 𝑦 𝑐𝑜𝑠𝛿 + 𝑑 𝑠𝑖𝑛𝛿 

𝑞 = 𝑦 𝑠𝑖𝑛𝛿 − 𝑑 𝑐𝑜𝑠𝛿 

𝑦̃ =  𝜂𝑐𝑜𝑠𝛿 + 𝑞 𝑠𝑖𝑛𝛿 

𝑑̃ =  𝜂𝑠𝑖𝑛𝛿 − 𝑞 𝑐𝑜𝑠𝛿 

𝑅2 = 𝜉2 + 𝜂2 + 𝑞2 

𝑋2 = 𝜉2 + 𝑞2 

In a more complex geometry, let us consider the fault surface as tessellated by a triangular 

mesh. Meade (2007) proposes an analytical algorithm for the calculation of the displacement, 

strain and stress associated with slip on a triangular dislocation element (TDE) in a 

homogeneous elastic half space. To compute the total deformation related with slip on a 

single TDE, the line integrals around the element edges (legs) should be calculated. Therefore, 
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total displacement can be given by the summation of displacements from each of three legs 

(Figure 2.6.2). 

 

 

Figure 2.6. 2:Triangular dislocation element and triangle leg geometry. Arrows indicate sense of 

orientation of the slip components (Taken from Meade, 2017).  

 

Each of the three legs can be produced by the superposition of two angular dislocations 

between each set of triangle vertices (Figure 2.6.3). The displacement from each leg (uk) can 

be calculated by taking the superposition of deformation fields from two angular dislocations 

(uk= uk
1+ uk

2) 

𝒖 =∑∑𝒖𝑘𝑗
1 − 𝒖𝑘𝑗

2

3

𝑘=1

𝑁

𝑗=1

 

where k is the index over the three legs of each triangle, j is the index for each TDE and N is 

the number of TDEs (Comninou, 1973; Jeyakumaran et al., 1992). To compute the deformation 

associated with slip in an arbitrary direction on a TDE, the TDE Burgers vector should be 

converted to strike-slip, dip-slip and tensile-slip components on each angular dislocation. The 
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solution is constructed by associating the geometry of the TDE to that of each angular 

dislocation using orthogonal unit vectors to define their respective orientations. Moreover, 

the slip vectors from the TDE are projected onto each angular dislocation patch. 

 

Figure 2.6. 3:Construction of a single dislocation leg by means of summation of two angular 

dislocations. Inclination of each angular dislocation is given by a common inclination 𝜷̂ while vertices 

are buried to depths 𝒂̂𝟏 and  𝒂̂𝟐 respectively. Common, dipping segment of each angular dislocation 

cancels after summation (Taken from Meade, 2017).  

Total slip is related with the given strike-slip, dip-slip and tensile-slip components (s) on a 

triangular fault patch (vs) which is given by, 

𝒗𝑠 = (

𝑣𝑠
𝑥

𝑣𝑠
𝑦

𝑣𝑠
𝑧

) = (

𝑛𝑡
𝑥 𝑛𝑠

𝑥 𝑛𝑑
𝑥

𝑛𝑡
𝑦

𝑛𝑠
𝑦

𝑛𝑑
𝑦

𝑛𝑡
𝑧 𝑛𝑠

𝑧 𝑛𝑑
𝑧

)(

𝑠𝑡
𝑠𝑠
𝑠𝑑
) 

where nt is the unit vector normal to the face of the triangle, 𝒏𝑡 =
𝐩1 x 𝐩2

||𝐩1 x 𝐩2||
 , while one parallel 

to the strike of the patch, 𝒏𝑠 = (−𝑠𝑖𝑛𝛾, 𝑐𝑜𝑠𝛾, 0)  where 𝛾 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑛𝑡
𝑦

𝑛𝑡
𝑥)  and a third 

direction vector can be defined parallel to the TDE dip as 𝒏𝑑 = 𝒏𝑡 x 𝒏𝑠. 

Projection of slip vectors into the strike-slip, dip-slip and tensile-slip components should 

be done for each of the three different dislocation legs. The strike-slip and tensile-slip 
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components are parallel and they are perpendicular to the strike of the dislocation leg, 𝒏̂𝑠 =

(cos(𝛼) , sin(𝛼) , 0), 𝒏̂𝑡 = (−sin(𝛼) , cos(𝛼) , 0) and dip-slip unit vector is orthogonal to the 

plane defined by 𝒏̂𝑠 and 𝒏̂𝑡 (𝒏̂𝑑 = 𝒏̂𝑡 x 𝒏̂𝑠). Since 𝒏̂𝑠 and 𝒏̂𝑡 are always consist in 𝑥̂-𝑦̂ plane, 

𝒏̂𝑑 = 𝒏𝑧 = (0,0,1). The slip vector into the corresponding strike-slip, dip-slip, and tensile-slip 

components can be given by,   

𝒔̂ = (

𝒔̂𝑡
𝒔̂𝑠
𝒔̂𝑑

) = (

𝑛̂𝑡
𝑥 𝑛̂𝑠

𝑥 𝑛̂𝑑
𝑥

𝑛̂𝑡
𝑦

𝑛̂𝑠
𝑦

𝑛̂𝑑
𝑦

𝑛̂𝑡
𝑧 𝑛̂𝑠

𝑧 𝑛̂𝑑
𝑧

)(

𝑣𝑠
𝑥

𝑣𝑠
𝑦

𝑣𝑠
𝑧

) 

where subscripts t, s, d represents tensile-slip, strike-slip and dip-slip components, 

respectively.  

The time-scale of an earthquake rupture is generally much shorter than the tsunami wave 

propagation due to the small compressibility of water and horizontal extent of the earthquake 

rupture is generally greater than water depth, the seafloor movement can be assumed as an 

impulsive motion. Instantaneous vertical deformation of seafloor disturbs the hydrostatic 

equilibrium in the entire water column above and generates tsunami waves. 
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CHAPTER 3 – TESTING SLIP MODELS FOR TSUNAMI GENERATION 

 

The uncertainty quantification of PTHA generally contains empirical analysis and 

subjective judgement together (Grezio et al., 2017). Moreover, testing PTHA results can be 

very challenging. Gutenberg-Richter relation, for instance, can be used to characterize the 

recurrence of intermediate earthquakes from historical catalogs. However, recurrence time 

of large earthquakes requires a concept of judgment using the current understanding of 

earthquake processes, since the recurrence time of those events is very long with respect to 

historical records. On the other hand, it is feasible to test separately PTHA components, such 

as slip distribution variability.  

Using homogenous slip distributions as an earthquake source for tsunami generation in 

tsunami hazard analysis is a widespread approach, despite the co-seismic slip distribution 

complexity has an important impact on hazard results. Additionally, numerous methods have 

been proposed to generate synthetic heterogenous slip distributions for tsunami hazard 

calculations (Davies et al., 2015; LeVeque et al., 2016; Murphy et al., 2016; Sepulveda et al., 

2017; Davies 2019; Scala et al., 2020). Slip distributions informed by kinematic models from 

inversion of real events are also employed (Goda et al., 2014).  

The main goal of this chapter is to test synthetic tsunamis produced by different slip 

generation techniques against tsunami observations from open ocean bottom pressure 

sensors and also testing these different methods one against the other. For this purpose, the 

approach proposed in Scala et al. (2020) have been used for the generation of depth-

independent and depth-dependent stochastic slip models. Furthermore, kinematic slip 
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models obtained with teleseismic inversions from the earthquake catalog of Ye et al. (2016), 

have been also used as initial conditions for tsunami numerical models. Tsunami simulations 

have been performed for each scenario from a single kinematic rupture model and modelling 

results have been tested and compared within the framework of Davies (2019). 

The following figure (Figure 3.1) shows the steps of the procedure with the brief 

explanation of each one of them. Details of each step are explained in the following sections 

of the chapter.  

  

Figure 3. 1: The work flow of the study.
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3.1. Ingredients of the study and data 

 

The study of Scala et al. (2020), proposes an approach to generate k-2 stochastic slip 

distributions in the context of PTHA, using both depth-independent (uniform rigidity) and 

depth-dependent (rigidity and coupling change with depth) models. Scala et al. (2020) showed 

that mean hazard curves are different for depth-dependent and depth-independent slip 

distributions at the same point of interest. Stochastic slip models are generated for three 

subduction zones in the Mediterranean Sea by adopting a realistic 3D geometry, to model 

earthquakes with magnitude between Mw 6.0 and 9.0. In the depth-dependent models, 

shallow slip amplification results as an effect of the variation of the rigidity and coupling with 

depth. In this case, it is necessary to impose lower probability for smaller hazard intensities 

and larger probability for higher intensities, since the probability of occurrence of relatively 

smaller events is decreased in the shallow part of a subduction zone, while they are more 

likely to occur at depth. This is required to make, in the long-term, over multiple events, the 

cumulative slip uniform over the subduction plate. In this study, in addition to the 

performance of models generated using Scala et al. (2020) approach, the validity of diverse 

physical assumptions, such as different rupture geometries and scaling laws, has been also 

tested confronting tsunami synthetics and observations.  

I have also analyzed the synthetics generated using the Ye (Ye et al., 2016) catalog of 

kinematic slip models. This catalog contains 114 interplate megathrust earthquakes (with Mw 

≥ 7.0) occurred between 1990 and 2015 on the circum-Pacific subduction zones with source 

depth less than 60 km. The source characteristics of these events were determined using 

global broadband body wave observations (for frequencies below 1 Hz). The 26 December 
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2004 Mw 9.2 Sumatra earthquake is not included in the catalog due to the extremely long 

source duration.  

In the study of Davies (2019), different slip models are tested by comparing tsunami 

modelling results with the deep ocean tsunami observations of 18 events (2006–2016) in the 

Global Centroid Moment Tensor (GCMT) catalogue (Ekström et al. 2012) with magnitude Mw 

>7.7 and hypocentral depths ≤ 71 km. 2006/07/17 Mw 7.7 Java earthquake and the 

2016/11/13 Mw 7.9 Kaikoura earthquake are not included in the test since a tsunami record 

is not identified for those events. Davies (2019) made use of three scenario generation 

techniques, heterogeneous slip (HS), variable area- uniform slip (VAUS) and fixed area- 

uniform slip (FAUS), which are considered to generate stochastic scenarios using both depth-

dependent and depth-independent rigidity models. Stochastic scenarios are constructed 

assuming an earthquake location and magnitude similar to that of the actual event, while 

subduction interface geometry is considered known. This study also proposes some statistics 

to make comparisons, identifying and partially correcting biases of these scenarios, and 

providing better justification for their use in applications. According to Davies (2019), 

observed events should behave like a randomly selected tsunami scenario for an ideal model. 

To test that, it is proposed to compare the modelled tsunami sizes with the observations. For 

each event, the fraction of scenarios according to the difference between the maximum and 

minimum water level is less than the observed value, is calculated at each DART location. For 

an ideal model, this fraction should be like an independent random sample from a uniform 

distribution, which is tested also statistically using null-hypothesis significance tests. The 

fraction distribution can also show if there is any inter-event dependency which is an indicator 

of model bias. The scenario goodness-of-fit is another statistic that analyze the agreement of 
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model scenario time series with the observed time series at each DART location for each 

event. It is assumed that best fitting scenarios also should behave like a randomly selected 

scenario if the model is ideal. Model bias can be checked comparing the earthquake properties 

(maximum slip and rupture area) of best fitting scenarios against the random scenarios and 

these comparisons can also be generalized to make bias adjustment of each model.  

In this study, we have compared synthetic tsunamis produced by kinematic slip models 

generated by the Scala et al. (2020) stochastic slip technique, against tsunami observations at 

open ocean buoys, for 15 earthquakes as listed in Table 3.1. Given the magnitude and location 

of the real earthquakes, we consider ensembles of consistent slipping areas and slip 

distributions, accounting for both a constant and a depth-dependent rigidity profile. Kinematic 

slip models on planar faults obtained with teleseismic inversion for 10 of 15 events are also 

present in the earthquake catalog of Ye et al. (2016) and tsunami generated by these models 

have been also compared with observations. 

We have first extracted tsunami records of these 15 events from deep ocean tsunameter 

(DART buoy) measurements (Figure 3.1.1). DART (Deep-ocean Assessment and Reporting of 

Tsunami) buoys have been developed for early detection, measurement, and real-time 

reporting of tsunamis in the open ocean by Project DART® at NOAA's Pacific Marine 

Environmental Laboratory (PMEL). A DART system contains a seafloor bottom pressure 

recording (BPR) system, that is able to measure pressure with a resolution of approximately 

1mm of sea water and a moored surface buoy for real-time data transmission 

(https://nctr.pmel.noaa.gov/Dart/dart_pb1.html). The data from the BPR is transmitted by an 

acoustic modem to the moored surface buoy which then sends the tsunami information to a 

ground station via satellite telecommunication (Figure 3.1.2). The BPR uses a pressure 

https://nctr.pmel.noaa.gov/Dart/dart_pb1.html
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transducer which uses a very thin quartz crystal beam, electrically induced to oscillate at its 

lowest resonant mode. The vertical movement of the seafloor, due to the earthquake, 

compresses the water column above, causing a decrease in pressure as the seafloor falls, or 

an increase in pressure as the seafloor rises (Meinig et al., 2005). When a tsunami wave passes 

above the instrument, quartz crystals stretch and the vibration frequency increases with the 

increased pressure. Frequency changes on quartz crystals can be measured precisely and 

converted to corresponding tsunami wave height changes using a constant conversion of 1 psi 

(pounds per square inch) = 670 mm of water height. BPR uses the temperature data to 

compensate for the thermal effects on the pressure-sensing element (Eblea and González, 

1991; Meinig et al., 2005). The system is triggered to ‘Event mode’ when a detection threshold 

is exceeded and the sampling rate of the data set to 15-sec, while the sampling rate is fixed to 

15-min when the system is in standard mode. The sampling rate of the data in event mode 

gradually increases from 15-sec to 1-min values (González et al., 1998).  

 



 

 

85 

 

Figure 3.1.1: The location of 15 events used in this study and DART buoys 

 

Figure 3.1.2: DART II system (from https://www.weather.gov/jetstream/dart_max) 
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Tsunami records have been detrended, removing the tide from the original signal using 

the LOWESS procedure, which is a local operation based on a weighted regression, defined 

over a subset of neighboring data points in a given window (Barbosa et al., 2004; Romano et 

al. 2015; Davies & Griffin 2018).  

Moment magnitude of each event has been calculated by Davies (2019) from the GCMT 

catalogue seismic moment, using the seismic moment-magnitude relation proposed by Hanks 

& Kanamori (1979). Since all the events are thrust events, rake angle is fixed to 90° degrees 

for each model. The adopted relation is the following  

 
𝑀𝑤 =

2

3
 ∗ (𝑙𝑜𝑔 (𝑀0) − 9.05)   (Eq.3.1.1) 
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Event Name ID Date Number of DARTs Mw Longitude Latitude Depth (km) 

Pangai, Tonga KT1 2006/05/03 15:26:40.3 1 8.0 −174.12 −20.19 55.0 

Kuril Islands KJ1 2006/11/15 11:14:17.8 12 8.3 153.29 46.57 38.9 

Solomon Islands So1 2007/04/01 20:39:56.4 2 8.1 157.04 -8.46 10.0 

Peru SA1 2007/08/15 23:40:57.9 3 8 -76.60 -13.39 39.0 

Tocopilla, Chile SA2 2007/11/14 15:40:50.5 2 7.8 -69.89 -22.25 40.0 

New Zealand Pu1 2009/07/15 09:22:29.0 2 7.8 166.56 -45.76 12.0 

Matavai, Samoa KT2 2009/09/29 17:48:11.0 5 8.1 −172.10 −15.49 18.0 

Vanuatu NH1 2009/10/07 22:18:51.2 1 7.8 166.38 -12.52 35.0 

Maule, Chile SA3 2010/02/27 06:34:15.6 16 8.8 -72.71 -35.85 44.8 

Tohoku KJ2 2011/03/11 05:46:23.0 28 9.1 142.37 38.32 24.4 

Solomon Islands NH2 2013/02/06 01:12:25.8 5 7.9 165.11 -10.80 24.0 

Iquique, Chile SA4 2014/04/01 23:46:47.3 7 8.2 -70.77 -19.61 25.0 

Illapel, Chile SA5 2015/09/16 22:54:32.9 18 8.3 −71.67 −31.57 22.4 

Ecuador SA6 2016/04/16 23:58:36.9 2 7.8 −79.93 0.35 21.0 

Solomon Islands So2 2016/12/08 17:38:46.3 3 7.8 161.32 -10.68 40.0 

Table 3.1.1:  List of events modelled in this study. The Latitude, Longitude and depth columns belong to the hypocenter of the event. The ‘Number of DARTs’ 

column gives the number of DART buoys at which a tsunami signal was obtained. 
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3.2. Generation of synthetic slipping areas and earthquake scenarios 

 

The approach proposed in Scala et al. (2020), adopting a similar strategy as in Davies 

(2019), is used for generating several sets of scenarios for the 15 events selected. For each of 

the source’s models in these 15 sets, a tsunami numerical simulation is performed. The 

modelling results are tested and compared to the observations at the DARTs following the 

methodology proposed by Davies (2019). 

Stochastic slip models are generated using the tool ANTI-FASc 

(https://github.com/antonioscalaunina/ANTI-FASc). This tool accounts for complex 

geometries in the description of the subduction zone. Here, pre-modelled subduction slab 

triangular elements in Pacific have been included (Figure A1 and A2 in the appendix). The 

triangular mesh for each slab is obtained from the Slab 2.0 model which describes 3D 

geometries of all seismically active subduction zones worldwide (Hayes et al., 2018) or from 

the modelling proposed by the Geoscience Australia 

(https://github.com/GeoscienceAustralia/ptha) which uses either Slab 1.0 or Slab 2.0 models 

(Hayes et al. 2012, 2018) to define fault plane geometries. The Slab 2.0 model uses a variety 

of data, such as local and regional seismicity catalogs, seismic tomography models etc., to 

define the slab geometry. The Slab 2.0 model gives contour lines of the depth along the slab, 

that can be parameterized depending on the purpose. Tonini et al. (2020) present one case in 

which, when simplifying the earthquake source geometry in a subduction zone, considering 

planar instead than 3D faults, we get significant differences in tsunami waveforms that may 

affect the tsunami impact. Therefore, as in Davies (2019), we have avoided the simplification 

of the source geometry and used a triangular mesh to be able to represent the curvature of 

https://github.com/GeoscienceAustralia/ptha
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the slab geometry properly. We selected the size of the mesh assuming that each side of the 

triangular element is approximately 12 km (those of Davies are approximately 50 km x 50 km 

squares). We tested this mesh discretization and verified that it is able to model k-2 stochastic 

slip distributions efficiently for events of magnitude between Mw 7.0 and 10.0 (Zhang et al. 

1994; Ruiz et al., 2011) having a minimum wavelength to be modelled of tens of kilometers. 

In the definition of the scenario, we have considered the active barycenters, which are the 

centroids of each scenario event. They are selected among the centers of the pre-defined 

subduction elements assuming similar earthquake location and magnitude (Davies, 2019) for 

each of the 15 selected events. Specifically, for a single event we have assumed that its   

magnitude can range in an interval of ±0.15 units, around the effective event magnitude. 

Possible earthquake locations, on the other hand, are defined as those positions having a 

distance smaller than one rupture length from the real hypocenter to be able to consider all 

possible rupture areas and shapes that contain the hypocenter of the related event. It is 

assumed that the number of scenarios is decreased with increasing magnitude, as different 

from Davies (2019). 

ANTI-FASc uses a pre-defined general magnitude discretization (Table 3.2.1). Scenario 

magnitudes are selected from the discretization, according to the limits imposed for each 

event. For instance, if the event has the magnitude Mw 8.0, the scenario magnitudes are 7.928 

and 8.0933 since these are the values from the discretization within the magnitude interval of 

±0.15 units (7.85, 8.15). 

Here we consider two different earthquake scaling relations (Strasser et al., 2010; 

Murotani et al., 2013) to define rupture areas and consequently average slip for each event 

scenario. Both studies derive these scaling relations for subduction events. Moreover, Strasser 
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et al. (2010) divide these events into two groups as interface and intraslab events. Through 

these selected scaling laws, the rupture area A and the rupture length L for each magnitude 

are computed (Table 3.2.1). The width of the rupture area is also computed as the ratio 

between the area and the length. However, there is not any direct relation represented by 

Murotani et al. (2013) between magnitude and rupture length. Therefore, we assumed that 

amplification due to the ratio between the area calculated by Murotani et al. (2013) and the 

one by Strasser et al. (2010) is separated between the rupture length and the width  

𝐴𝑀𝑅𝑇 = 𝐿𝑀𝑅𝑇 ∗ 𝑊𝑀𝑅𝑇 

𝐴𝑀𝑅𝑇 = (𝐿𝑆𝑇𝑅 ∗ √
𝐴𝑀𝑅𝑇
𝐴𝑆𝑇𝑅

) ∗ (𝑊𝑆𝑇𝑅 ∗ √
𝐴𝑀𝑅𝑇
𝐴𝑆𝑇𝑅

) 

𝐿𝑀𝑅𝑇 = 𝐿𝑆𝑇𝑅 ∗ √
𝐴𝑀𝑅𝑇
𝐴𝑆𝑇𝑅

 

where A, L and W are respectively the rupture area, length and width for Murotani et al. (2013) 

with ‘MRT’ subscript and for Strasser et al. (2010) with ‘STR’ subscript. Using this principle, 

𝐿𝑀𝑅𝑇 is calculated.
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Mw 

Rupture Length 
(Murotani et al., 

2013) 
(km)   

Rupture Length 
(Strasser et al., 

2010)  
(km)   

Rupture Area 
(Murotani et al., 

2013) 
(km2) 

Rupture Area 
(Strasser et al., 

2010) 
(km2) 

7.5435  89.5                  86.3 5460.9 5074.7 

7.7453 118.8 113.2 8691.0 7898.1 

7.9280 153.5 144.8 13236.4 11788.4 

8.0933 193. 180.9 19367.4 16936.4 

8.2429 238.7 221.3 27332.0 23509.3 

8.3782 288.5 265.6 37322.5 31626.1 

8.5007 342.6 313.2 49484.7 41368.1 

8.6115 400.2 363.7 63866.2 52740.9 

8.7118 460.6 416.3 80458.4 65710.3 

8.8025 523.1 470.4 99145.1 80164.1 

8.8846 586.9 525.4 119776.4 95970.8 

8.9588 651.3 580.6 142092.6 112921.7 

9.0260 715.7 635.6 165871.4 130843.4 

9.0869 779.4 689.9 190821.6 149515.8 

9.1419 841.9 743.0 216599.4 168684.5 

9.1917 902.8 794.5 242912.9 188138.9 

9.2367 961.7 844.3 269467.2 207668.8 

9.2775 1018.3 891.9 295988.0 227081.9 
Table 3.2.1: Magnitude discretization of events and rupture dimensions calculated using Murotani et 

al. (2013) and Strasser et al. (2010) scaling relations.  

After the calculation of rupture dimensions, the active barycenters are selected (Figure 

3.2.1a). This selection has been done for the whole slab for each considered subduction zone, 

among the pre-defined barycenter of each mesh cell, through a two-step procedure: 

1. The barycenters having a distance from the slab boundary smaller than half the 

width are eliminated to avoid selection of barycenters very close to the slab boundary, which 

can be critical, especially for the parts of the slab where the width is very small. Also, the 

rupture area corresponding to these points can exceed the slab boundary.  

  2. Among the remaining barycenters, a further selection is applied making the average 

inter-distance among the active barycenters larger than 10% of the rupture length to avoid 
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generating too numerous similar scenarios. This is important particularly for the events with 

large magnitude since they can generate large rupture areas.  

Four different rupture areas are defined for each selected active barycenter to account for 

the epistemic uncertainty on the geometrical properties. We used two different scaling 

relations, as mentioned in the previous part of the section, and two different rupture shapes. 

We selected a circular rupture and a rectangular one with an aspect ratio controlled by the 

ratio between length and width as prescribed by the scaling relations. Each ruptured surface 

is built starting from an active barycenter, which is selected through the procedure previously 

explained; a circular rupture surface is generated by iteratively adding more and more 

neighbor mesh cells up to the expected width, without considering the aspect ratio. For a 

rectangular rupture surface, on the other hand, as soon as the shallowest or/and the deepest 

points of the temporary area exceed the expected width, the rupture area starts to grow along 

the length to keep the aspect ratio. 
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Figure 3.2.1: (a) Selected active barycenters (green dots) and hypocenter of the real event (red star), 

(b) Circular shaped (c) Rectangular shaped rupture areas for one of the selected active barycenters, 

black lines indicate the location of the trench. 

For the generation of slip models, we used two different rigidity models, namely depth-

independent and depth-dependent ones, as proposed by Scala et al. (2020). In the depth-

independent model, rigidity is homogenous and it is fixed to 30 GPa while in the depth-

dependent model rigidity changes with depth and coupling to result into shallow slip 

amplification. In the depth-dependent model, we used a rigidity profile which is the average 

between the PREM model and the end-member case of Bilek and Lay (1999) (Figure 3.2.2a). 

Aseismic slip contribution on the subduction faults should also be considered to evaluate the 

long-term slip accumulation. The balance between the seismic and aseismic slip can be 
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defined as a function of the seismic coupling factor. The total long-term slip released at the 

position x can be given by: 

𝐷𝑇 = 𝛿𝑇(𝑥) + 𝑑𝑇(𝑥) = 𝑘(𝑥) ∙ 𝐷𝑇 + [1 − 𝑘(𝑥)] ∙ 𝐷𝑇  

where DT is the total long-term slip, δT (x) is the seismic and dT(x) the aseismic contributions 

to the slip at location x, and 𝑘(𝑥) is the coupling factor and it is given by  𝑘(𝑥) = 𝐾̃ ∙ 𝐾(𝑥). 

Here 𝐾̃ is the absolute coupling value of the specific subduction zone and 𝐾(𝑥) is the relative 

coupling variation at x (Figure 3.2.2b). 

 

Figure 3.2.2: (a) Rigidity profiles as a function of depth. (b) Relative coupling as a function of depth 

(from Scala et al., 2020). 

Slip distributions are generated for each pre-defined slipping surface assuming that sub-

asperities are randomly distributed over the identified rupture area by following the power 

law distribution of sizes (Zheng et al. 1994; Ruiz et al. 2011). Using this self-similar model and 

different rigidity models, ten different slip models are generated for each rupture surface. The 

spatial variability of slip in the ensemble is described by a slip probability density function. The 

method proposed by Murphy et al. (2016) is used to modify stochastic models, integrating a 

probability distribution that is derived from dynamic features of the rupture. Moreover, we 

followed the strategy presented by Herrero and Murphy (2018) to generate self-similar slip 
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distributions calculating accurately the distance between two points of the complex non-

planar fault surface. 

For each rupture area, 10 stochastic slip distributions are generated using depth-

dependent and depth-independent rigidity models. Figure 3.2.3 indicates the amplification 

and the movement of the slip towards the surface from depth-independent model to depth-

dependent model. Table 3.2.2 shows the total number of scenarios for each event and model 

classes. The number of scenarios is the same in the model classes specified according to the 

shape of rupture area and rigidity model. However, it is different for the scaling laws. The 

number of scenarios is higher for Strasser model. Since the rupture length is smaller for this 

scaling relation, during the elimination of active barycenters according to rupture length (Step 

2 explained above) fewer active barycenters are eliminated and therefore the number of 

scenarios is higher than the Murotani model. 

 

 

Figure 3.2.3: Examples for slip distributions with (a) constant rigidity model and (b) rigidity changes 

with depth and coupling
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EVENT 
NAME 

NUMBER OF SCENARIOS PER MODEL 
TOTAL NUMBER 
OF SCENARIOS 

PER EVENT (with 
both 

homogeneous 
and variable 

rigidity) 

CIRCULAR RECTANGULAR 

MUROTANI STRASSER MUROTANI STRASSER 

Pangai, 
Tonga 

295 315 295 315 2440 

Kuril Islands 680 695 680 695 5500 

Solomon 
Islands 

345 355 345 355 2800 

Peru 1295 1300 1295 1300 10380 

Tocopilla, 
Chile 

1055 1065 1055 1065 8480 

New 
Zealand 

320 370 320 370 2760 

Matavai, 
Samoa 

245 280 245 280 2100 

Sola, 
Vanuatu 

555 580 555 580 4540 

Maule, Chile 710 790 710 790 6000 

Tohoku 565 815 565 815 5520 

Solomon 
Islands 

135 160 135 160 1180 

Iquique, 
Chile 

895 905 895 905 7200 

Illapel, Chile 705 810 705 810 6060 

Ecuador 1185 1240 1185 1240 9700 

Solomon 
Islands 

610 630 610 630 4960 

Table 3.2.2: List of events and number of scenarios for each event.  
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3.3. Teleseismic Finite-fault models 

 

The finite-fault inversion results of Ye et al. (2016) have been also used as further initial 

conditions for tsunami simulations since 10 out of 15 events, considered here, are also present 

in this earthquake catalog. The Ye catalog contains kinematic slip models for 114 interplate 

megathrust earthquakes with Mw ≥ 7.0, occurred between 1990 and 2015 on the circum-

Pacific subduction zones. This catalog provides slip maps of each event on a regular grid with 

cells along strike and dip (Figure 3.3.1(a)). Depth information is also provided for the center 

of each cell. However, the latitude and longitude information for cells are unknown, the only 

assigned location information is the hypocenter of the event. Since geographical coordinates 

of each cell center are required parameters for tsunami modelling code, using the latitude and 

longitude information of hypocenter and the distance between the central points of the cells, 

geographical coordinates have been calculated for each center following these steps: 

1-The distance along dip and strike are calculated by projecting the fault plane onto the 

Earth surface with the dip angle and the fault plane is then rotated according to the strike 

angle. 

2-The distance between two points is converted from kilometers to degrees and 

geographical coordinates are assigned to each cell point (Figure 3.3.1(b)). During this 

calculation, the elliptical shape of the Earth is also considered since the distance between two 

points along a meridian, changes from equator to the poles. 
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 Figure 3.3.1: An example of conversion of a gridded slip model from Ye et al. (2016) (a) to 

geographical coordinates (b).
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3.4. Tsunami Numerical Modelling 

 

In this study, Tsunami-HySEA software is used to perform tsunami numerical simulations 

for each earthquake scenario, either generated from the stochastic slip tool ANTI-FASc or 

belonging to the Ye teleseismic inversion catalog. These models are then used to evaluate the 

seafloor deformation and to provide the initial conditions for the tsunami. Tsunami time series 

of each scenario are recorded at synthetic gauge points where the corresponding event is 

recorded by a DART buoy. Then, these time records are analyzed to understand to what extent 

synthetic tsunami waveforms are consistent with available observations. 

Tsunami-HySEA is a specific version of HySEA (Hyperbolic Systems and Efficient 

Algorithms) software that is based on a single-layer, two-layer or multi-layer shallow water 

system, for tsunami modelling. It is developed by the EDANYA Group (https://edanya.uma.es) 

from the Universidad de Málaga (UMA) for tsunami simulations. The model is able to simulate 

the generation, the propagation and the coastal inundation of an earthquake generated 

tsunami in the same code, for both single and nested domains. Tsunami-HySEA can compute 

the initial condition using a simple Okada (Okada, 1985) model for a seismic source or Meade 

(2007) for more complex sea floor deformations. The code is also capable to model time-

dependent, multi-segment rupture geometries by defining a series of fault parameters, such 

as strike, dip and rake angles, coordinates of the center of the fault, fault dimensions and 

depth. The code also allows to apply filters to the sea surface response of the seafloor 

deformation (Kajiura, 1963). 

The code allows to perform simulations faster than real time on GPU and multi-GPU 

architectures (de la Asunción et al., 2011, 2013; Castro et al., 2011). This is a crucial factor in 
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terms of rapid post-disaster management and for application of tsunami early warning 

systems. Besides benchmarking tests mentioned previously, a specific HySEA code is 

developed for Tsunami Early Warning Systems (TEWS). This version of the Tsunami-HySEA is 

currently used as the main tsunami numerical code at the INGV (Istituto Nazionale di Geofisica 

e Vulcanologia) after passing a detailed one-year validation process to test robustness, 

computational speed-up, and suitable numerical results. The JRC (Joint Research Centre of the 

European Commission) also adopted this code in their Tsunami Alert System as one of its 

numerical codes. The Spanish National TEWS is currently using the test mode of the code in 

its system.  

Tsunami-HySEA solves non-linear, one-layer shallow water equations in both spherical and 

Cartesian coordinates using the finite volume method. The model equations can be given in 

Cartesian coordinates 

𝜕ℎ

𝜕𝑡
+
𝜕(ℎ𝑢)

𝜕𝑥
+
𝜕(ℎ𝑣)

𝜕𝑦
= 0 

𝜕(ℎ𝑢)

𝜕𝑡
+
𝜕

𝜕𝑥
(ℎ𝑢2 +

1

2
𝑔ℎ2) +

𝜕(ℎ𝑢𝑣)

𝜕𝑦
= 𝑔ℎ

𝜕𝐻

𝜕𝑥
+ 𝑆𝑥 

𝜕(ℎ𝑣)

𝜕𝑡
+
𝜕

𝜕𝑦
(ℎ𝑣2 +

1

2
𝑔ℎ2) +

𝜕(ℎ𝑢𝑣)

𝜕𝑥
= 𝑔ℎ

𝜕𝐻

𝜕𝑦
+ 𝑆𝑦 

 

where h(x,t) is the thickness of water level at point x and time t, u(x,t) and v(x,t) are the depth-

averaged velocities along x and y directions, respectively, and H(x) is the depth of the sea 

bottom at point x measured from a fixed level of reference. The terms Sx and Sy parametrize 

the friction effects and two different laws, the Manning law and a quadratic law are 
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considered. The SWE derived in Chapter 1 (Eq. 1.1.14) are the same equations without the 

consideration of these two laws. The Manning law is given by 

𝑆𝑥 = −𝑔ℎ𝑀𝑛
2𝑢𝑥  

‖𝑢‖

ℎ4/3 
 

𝑆𝑦 = −𝑔ℎ𝑀𝑛
2𝑢𝑦  

‖𝑢‖

ℎ4/3 
 

where Mn is the Manning coefficient (Mn>0). A quadratic law is given by: 

𝑆𝑥 = −𝑐𝑓𝑢𝑥‖𝑢‖ 

𝑆𝑦 = −𝑐𝑓𝑢𝑦‖𝑢‖ 

where cf is the friction coefficient and cf >0. 

Due to the large number of scenario simulations (Table 3.4.1), high computational 

resources are required to perform tsunami modelling for each scenario. In this study, we used 

one fraction of the resources of the Project TSU-CAST (TSUnami-ForeCASTing), within PRACE 

Project Access Call 20 (https://prace-ri.eu/hpcaccess/project-access/project-access-awarded-

projects/projects-awarded-under-praceproject-access-call-20/), which provided in total with 

30 000 000 core hours on the MARCONI100 supercomputer hosted at CINECA, Italy. 

MARCONI100 has 4 Nvidia V100 GPUs per node. Individual scenario runs use a single GPU for 

each scenario, grouped in ensembles of up to 1024 scenarios on MARCONI100. However, 

before lunching massive number of scenarios, Tsunami-HySEA model is calibrated and 

validated according to preliminary simulations that are performed in the framework of ChEESE 

Deliverable D4.8 using some selected scenarios from Ye catalog. 
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Since computational resources are limited, one of the main difficulties is to reach enough 

accuracy while still modelling a sufficient number of scenarios within a reasonable time. 

Therefore, a proper setup should be set to balance accuracy and time (core hours that are 

necessary to conduct the entire numerical experiment). For this purpose, a convergence test 

is performed to investigate if relatively coarser data can converge to the finer reference 

resolution, that can be implemented as a bathymetry-topography data for the tsunami 

modelling. During this test, we have analyzed the accuracy of simulations using bathymetry-

topography data with 2 arc-minute and 1 arc-minute resolutions, with respect to the (assumed 

as a) reference 30 arc-second resolution. 2 arc-minute and 1 arc-minute data are down-

sampled from 30 arc-sec bathymetry model SRTM30+ (Becker et al., 2009). Table 3.4.1 shows 

the size of each bathymetry data in terms of number of column and rows and approximate 

run time. 

Resolution Number of Columns Number of Rows Run Time (min) 

30 arc-sec 14400 7800 108 

1 arc-min 7200 3900 14.7 

2 arc-min 3600 1950 2.25 
Table 3.4.1: The number of cells and approximate run time for the different resolutions. 

In the test, two different earthquakes, the Maule-Chile (2010), Mw 8.8 event (the rupture 

length is about 460 km and width is about 174.6 km), and the Tocopilla, Chile (2007), Mw 7.8 

event (the rupture length is about 118.8 km and width is about 73.15 km) are considered as a 

reference to build tsunami sources, to explore the effect of different wavelengths on the 

convergence. We have used two random synthetic stochastic slip distributions of the same 

magnitude and at about the same location of the real events, along with realistic scaling 

relations. The limits of the computational domain are set to (-45 20)  in latitude and (80, 

300) in longitude and several synthetic gauge points are located in the study domain to 
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record tsunami wave heights at these points for two sources mentioned above (Figure 3.4.1). 

The propagation time is set to 40 hours on 1 arc-min bathymetric grid for the Pacific Ocean. 

During the simulations, tsunami wave height is saved each 30 seconds.  

 

 

Figure 3.4. 1: Study domain for the test, the location of synthetic gauge points (yellow and red 

triangles) and the epicenters of source events (red stars). 

Figure 3.4.2 represents the maximum tsunami wave amplitude of the tsunamis generated 

by the two sources. It is clear that the maximum wave amplitude is quite high for the event 

with the bigger magnitude, and that waves show a directivity towards the north-west 

direction with a higher amplitude. 
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Figure 3.4.2: Distribution of Max. Tsunami Wave Height (m) generated by synthetic earthquakes at 

the same location and with similar magnitude to the Tocopilla, Chile 2007 event (a) and Maule, Chile 

2010 event (b). 

Figure 3.4.3 and Figure 3.4.4 (high resolution versions are in the appendix) show tsunami 

time series at synthetic stations D-72, D-59, D-39, D-26, D-12 and D-7, which are located at 

increasing distances from the source (red triangles in Figure 3.4.1), calculated using different 

data resolutions, for Tocopilla, 2007 and Maule, 2010 events. We see that the wave 

amplitudes change with the event and the distance from the source. It can be also observed 

that the initial part of the waveform has almost the same amplitude but the amplitude and 

shape change with time, which is more evident on the closest gauge point (D-72), for both 

events. The fluctuation of the time series is also similar for the 30 arc-sec and 1 arc-min (red 

and green lines) model while it can be quite different for the 2 arc-min (blue line). 
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Figure 3.4.3: Tsunami time-series at different synthetic gauge points for the Tocopilla, Chile 2007 

event. 

 

Figure 3.4.4: Tsunami time-series at different synthetic gauge points for Maule, Chile, 2010 event. 

The modelling results are analyzed in terms of absolute maxima of tsunami wave height 

with both scatter plots and histograms by comparing one resolution to another. All modelling 
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results show that a sufficient convergence is achieved for 1 arc-min data when 30 arc-sec is 

considered as a reference.  Figure 3.4.5 and Figure 3.4.6 show the distribution of the absolute 

maxima at each buoy for two resolutions and residuals of the absolute maximum differences, 

respectively, for both sources. For both events, the distributions are better aligned along the 

1:1 straight line in the first quadrant for the distribution of 1 arc-min with respect to the 30 

arc-sec, and the residuals are smaller than the other case. The mean difference of absolute 

maximum, between the 2 arc-min and 30 arc-sec, is 0.04% and the difference of the absolute 

maximum between 1 arc-min and 30 arc-sec is 0.03% for Tocopilla, Chile (2007) Mw 7.8 event. 

These differences are 0.6% and 0.3% for Maule, Chile (2010) Mw 8.8 event.   

 

Figure 3.4.5: Distribution of absolute maximum one resolution to another and residuals of the 

absolute maximum differences for the Tocopilla, Chile 2007 event. 
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Figure 3.4. 6: Distribution of absolute maximum one resolution to another and residuals of the 

absolute maximum differences for the Maule, Chile 2010 event. 

The histograms (Figure 3.4.7 and Figure 3.4.8) also support the result of scatter plots, 

showing that the mean of the ratio of maxima is closer to 1 for the ratio between the 1 arc-

min and 30 arc-sec. The 43% of the data is enclosed inside the (0.975-1.025) interval for the 

ratio of absolute maximum 2 arc-min over the 30 arc-sec for the Tocopilla, Chile 2007 event, 

and this percentile increases to the 64% for the ratio of absolute maximum 1 arc-min over the 

30 arc-sec. The difference of these percentiles is more relevant for the Maule, Chile 2010 

event. While the 20.5% of the data is enclosed inside the same interval for the ratio of absolute 

maximum 2 arc-min over the 30 arc-sec and 61% for the ratio of absolute maximum 1 arc-min 

over the 30 arc-sec. 
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Figure 3.4. 7: Histograms of the ratio of absolute maximum one resolution to another for the 

Tocopilla, Chile 2007 event. 

 

Figure 3.4. 8: Histograms of the ratio of absolute maximum one resolution to another for the Maule, 

Chile 2010 event 

The result of the convergence test showed that 1 arc-min bathymetry-topography data 

are able to model tsunami with sufficient accuracy (generally less than 10%) and this choice 

will help to decrease run time for simulations.  
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3.5. Synthetic Waveforms 

 

In the previous section, details of the tsunami numerical modelling have been presented. 

Here, we will discuss the general features of the synthetic waveforms using the Tohoku event 

as an example.  

The limits of the study domain are set to (-60,60) in latitude and (80,300) in longitude 

(Figure 3.5.1). The propagation time is set to 40 hours for each simulation; however, time 

series have been cut within the limits of the high-frequency part of the de-tided DART signal. 

Figure 3.5.2 and 3.5.3 (high resolution versions are in the appendix) show the synthetic 

waveforms of a random scenario for the four model types and tsunami observations of 2011 

Tohoku event at each DART buoy location. At some DART locations, there is a delay of the 

synthetic time series possibly due to unmodeled processes which includes the finite rupture 

duration, wave dispersion, elastic loading, and seawater compressibility (Baba et al. 2017). For 

some models, waveforms have a quite different behavior as compared to the observation. For 

instance, the Strasser model waveforms at DART-21414 and 21419 have a different shape, 

with two peaks, and smaller amplitude compared to observation. However, it should be 

considered that these synthetic waveforms are representing one model among the hundreds 

of scenarios in the ensemble. The maximum wave amplitude of the observations varies from 

about 2.0 m (DART-21418) to 0.04 m (DART-55023) moving away from the source. 
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Figure 3.5. 1: The location of 2011 Tohoku event and DART buoys where ensuing tsunamis are recorded.  
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Figure 3.5. 2: Synthetic tsunami waveforms of a random scenario from 2011 Tohoku event for different model types. 
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Figure 3.5. 3: Synthetic tsunami waveforms of a random scenario from 2011 Tohoku event for different model types.
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3.6 Comparison of models in the ensemble with real waveforms 

 

In the study of Davies (2019), different slip models are tested by comparing tsunami 

modelling results with tsunami observations. This study also proposes some statistics to make 

comparisons, to identify and partially correct biases of these scenarios, and provide better 

justification for their use in applications. One of these statistics is the scenario goodness-of-fit 

(Ge
s ). Here, we will discuss the goodness-of-fit of our ensemble, for depth-independent 

scenarios, in comparison with both kinematic slip models from Ye et al. (2016) catalog and 

Davies (2019) models. 

For each scenario, a scenario goodness-of-fit statistic is defined to summarize agreement 

with DART buoy observations from event. This statistics can be defined with the following 

function 

 

𝐺𝑒,𝑑
𝑠 = 1 − 2 ∗ (

(∑ 𝑤𝑖
2 ∗ 𝑜𝑏𝑠(𝑡𝑖) ∗𝑖 𝑠𝑦𝑛(𝑡𝑖 + 𝛿𝑡𝑖))

∑ (𝑤𝑖 ∗ 𝑜𝑏𝑠(𝑡𝑖))
2

𝑖 + ∑ (𝑤𝑖 ∗ 𝑠𝑦𝑛(𝑡𝑖 + 𝛿𝑡𝑖))
2

𝑖
) (Eq.3.6.1) 

 

where obs(ti) and syn(ti) define the time-series of observations and synthetics, respectively. ti 

is the time limited by the high-frequency part of the DART signal. δt is a small-time delay which 

may observed between the synthetic and observed record due to the delayed rupture process. 

The allowed time delay starts from 10 s and its end can vary as depending on the arrival time 

of the initial tsunami wave. When 1/50 of tsunami arrival time to the DART is smaller than 2 

min, the maximum allowed delay is 2 min. If this value is higher than 15 min, the maximum 

delay is set to 15 min. If 1/50 of the arrival time of the tsunami to the DART is between 2 min 
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and 15 min, the maximum allowed delay is 1/50 of the arrival time (Watada et al. 2014). 𝑤𝑖 is 

the weight which enables to focus on large amplitude wavelets. It is equal to the absolute 

value of obs(ti). However, when obs(ti) is smaller than the one-third of the maximum value of 

the obs(ti), the weight is equal to one-third of the maximum value of the obs(ti). Both observed 

and modeled time series are interpolated to evaluate obs(ti) and syn(ti) at any time ti. 𝐺𝑒,𝑑
𝑠  

ranges between 0 and 2 with lower values indicating a better fit. 

Since most events are recorded at multiple DART buoys, each scenario has its own 

goodness-of-fit (𝐺𝑒,𝑑
𝑠 ) and some of these scenarios have a better agreement at some DART 

locations with the observations than the others. Therefore, scenario goodness-of-fit statistic 

𝐺𝑒
𝑠 is defined to set up the overall fit of each scenario 

 𝐺𝑒
𝑠 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐺𝑒,𝑑

𝑠 )   (Eq.3.6.2) 

 

Before starting to analyze the scenario goodness-of-fit statistics, the algorithm is built and 

benchmarked using the data considered by Davies (2019). At the first stage, a test is 

performed to see if the algorithm correctly calculates the goodness-of-fit with consideration 

of the time delay of the synthetic time series. 

For the test, the following equation is used, since the aim is to test the correctness of the 

algorithm with time delay only, weights of scenarios are not included in the function at this 

stage 

 
𝐺𝑒,𝑑
𝑠 = 1 − 2 ∗ (

(∑ 𝑜𝑏𝑠(𝑡𝑖) ∗𝑖 𝑠𝑦𝑛(𝑡𝑖 + 𝛿𝑖))

∑ 𝑜𝑏𝑠(𝑡𝑖)2𝑖 + ∑ 𝑠𝑦𝑛(𝑡𝑖 + 𝛿𝑖)2𝑖
) (Eq.3.6.3) 
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The idea is to test the calculation considering one single synthetic tsunami time series and 

using its 10 min delayed version as the observed time series. The time offset (δi) is considered 

for each minute from 2 to 15 min.  Since the goodness-of-fit changes from 0 to 2 and smaller 

values mean a better fit, we expect to see smaller goodness-of-fit values while approaching 

the 10 min delay and it should be 0 at 10 min delay where the synthetic and observed times 

series are the same. Then, the goodness-of-fit should increase again when the time delay 

moves toward 15 min. 

The right panel of Figure 3.6.1 shows the distribution of goodness-of-fit for each time 

delay. It is observed that the goodness-of-fit improves going from time delays 2 min to 10 min 

and it is zero at 10 min. Also, the goodness-of-fit starts to increase after 10 min delay, as 

expected. 

 

Figure 3.6.1: Time series of synthetic data for each time delay (left-side). Distribution of goodness-of-

fit for each step of time delay (right-side). 

As a further test for the algorithm, scenario weights are considered for the calculation of 

goodness-of-fit (Eq.3.6.1). The weight allows focusing on large amplitude waveforms and it is 
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equal to 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑜𝑏𝑠/3)), if  𝑎𝑏𝑠(𝑜𝑏𝑠(𝑡𝑖)) < 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑜𝑏𝑠/3)), otherwise it is equal to 

𝑎𝑏𝑠(𝑜𝑏𝑠(𝑡𝑖)).  

The goodness-of-fit value is calculated for each scenario at each DART buoy using Eq.3.6.1 

for Mw 8.8 Maule event to show the improvement of the fit including the weight in the 

calculation. The next figure (Figure 3.6.2) shows the distribution of the best goodness-of-fit at 

each DART buoy with and without consideration of the weights in the equation. It is observed 

that the goodness-of-fit improves when the weights of the scenarios are included in the 

equation.  

 

Figure 3.6.2: Time series of synthetic data for each time delay (left-side). Distribution of goodness-of-

fit for each step of time delay (right-side). 

After validating the computation of the goodness-of-fit procedure with these tests, 

applied it to compute the “best scenario goodness-of-fit” using the scenario time series of 

Davies (2019).  

During the calculation of best scenario goodness-of-fit statistics, some scenarios have 

been eliminated according to their peak slip value. If the maximum slip of the scenario exceeds 
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7.5 times the mean slip of the event according to the magnitude and a median scaling-relation 

area, this scenario should be eliminated (Goda et al. 2014). 

During this stage, expected average slip is calculated using following formulas for depth-

independent scenarios, 

𝑀𝑜 = 10
(1.5∗𝑀𝑤)+9.05 

𝑆̂ =
𝑀𝑜

𝜇 ∗ 𝐴𝑠
 

where 𝜇 is rigidity (we used  𝜇 =30 GPa, 𝑆̂ is the average slip and 𝐴𝑠 is the area as obtained 

from the scaling relations as a function of the magnitude). 

For scenarios where rigidity varies with depth, average slip is calculated by considering 

cells with non-zero slip value using following formulas, 

𝑀𝑜 =∑𝜇𝑖(𝑆 > 0) ∗ 𝑆𝑖(𝑆 > 0) ∗ 𝐴𝑖(𝑆 > 0)

𝑁𝑐

𝑖=1

 

𝜇̂ =
∑ 𝜇𝑖(𝑆 > 0) ∗ 𝐴𝑖(𝑆 > 0)
𝑁𝑐
𝑖=1

∑ 𝐴𝑖(𝑆 > 0)
𝑁𝑐
𝑖=1

 

𝑆̂ =
𝑀𝑜

𝜇̂ ∗ 𝐴𝑠
 

where 𝑁𝑐 is the number of ruptured cells (where slip is non-zero), 𝜇𝑖 is the rigidity, 𝑆𝑖 is the 

slip, 𝐴𝑖  is the area on the i-th cell and 𝜇̂ is the mean rigidity. After the calculation of expected 

average slip for each scenario, this value is compared with the peak slip value and ruled out if 

the maximum slip is at least 7.5 times higher than the average slip. 
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3.6.1. Comparison with kinematic slip models 

 

Figure 3.6.1.1 shows the best scenario goodness-of-fit values for our model ensembles 

and kinematic slip models. From now on, we will simplify the names of the models and we 

indicate the kinds of models as RECT-Murotani, RECT-Strasser, CIRL-Murotani and CIRL-

Strasser, according to the rupture shape and scaling laws we have used to generate them: 

RECT stands for rectangular and CIRL for Circular. Panel (a) in the Figure 3.6.1.1 shows that 

scenarios following the Strasser scaling law tend to have a better fit, while Murotani models 

show best-fitting more rarely. It can be seen that events in South America show relatively 

better agreement than the others, possibly due to the larger accuracy in the description of the 

slab geometry, which is extracted from teleseismic tomography (Scire et al., 2017; Hayes et 

al., 2018). The events with largest goodness-of-fit values, such as 2009 Samoa (KT2) and the 

2006 Kuril (KJ1) events, show relatively short-period tsunami waveforms, which make these 

events more difficult to model (Kowalik et al. 2008; Zhou et al. 2012; Hossen et al. 2018). 

Panel (b) in Figure 3.6.1.1 shows the scenario goodness-of-fit values of events from Ye et 

al. (2016) catalog. Since there is only one scenario for each event, best scenario defines the 

scenario with best time delay. Best-fitting value varies between 0.90-1.05 for kinematic 

models. When we compare our model results with kinematic models, it can be argued that 

our modelling results show much better agreement with observations than the kinematic 

models, even if they are random sources which weren’t specifically calibrated using tsunami 

observations. The main reason of these differences could be associated with the simplified 

Earth models, band-limited signals, kinematic constraints imposed on the rupture process, 

and limitations of the observation geometry, in the teleseismic inversion method (Lay, 2018). 



 

 

119 

Since tsunami waves and tsunami hazard are highly sensitive to the uncertainty of the slip and 

fault geometry (Goda et al., 2014), simplified source models may cause under-estimation of 

the possible tsunami affects (Tonini, et al., 2020).   

 

Figure 3.6.1. 1: Best scenario goodness-of-fit statistics for each event scenario (a) generated in this 

study (b) extracted from Ye et al. (2016) kinematic model catalog.  
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3.6.2. Comparison with Davies (2019) models 

 

The second comparison of the ensemble is done with Davies (2019) models. Although, 

model scenarios are generated with magnitude and location similar to the real events in the 

same way as in Davies (2019), there are several different assumptions to generate 

heterogeneous slip models in this study. First of all, the size of the source mesh in this study 

is almost one-fourth finer than the one used in the Davies (2019). Besides that, we have made 

diverse physical assumptions on the fault rupture, considering circular ruptures and including 

Murotani et al. (2013) scaling law. Moreover, we have used a different magnitude 

discretization and depth-dependent scenarios are generated considering also the coupling.  

The results from these two approaches are compared in terms of ratio of the summation 

of the best scenario goodness-of-fit. For each kind of model, we have calculated the 

summation of best scenario goodness-of-fit values (Eq. 3.6.2.1) to eliminate event 

dependency, and then we have calculated the ratio of those summations (Eq. 3.6.2.2). If the 

ratio is smaller than 1, this means the best fitting of our model is better than the Davies (2019) 

model. 

 
𝑆 =∑min(𝑆𝐺𝑂𝐹)𝑖 

𝑛

𝑖=1

 

 

(Eq.3.6.2.1) 

 
𝑅 =

𝑆𝐵
𝑆𝐷
  

(Eq.3.6.2.2) 

where n is total number of events, SGOF defines the scenario goodness-of-fit, SB and SD are 

the summations of best scenario goodness-of-fits for our model ensemble and Davies (2019), 

respectively.  
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Figure 3.6.2.1 shows the ratio of best SGOF of each model from our ensemble with the HS, 

FAUS and VAUS models from Davies (2019). According to these results, it can be argued that 

all of the models from ensemble have better agreement than the FAUS model of the Davies 

(2019). Considering best-fit models, Strasser models from the ensemble can be individuated 

as the model that always have better fit than the all Davies (2019) models. However, the 

performance of Murotani models is close to one and not distant from the ones of the Strasser 

model, in terms of best-fitting.  

Since the number of models considered in the Davies (2019) ensemble (232.000) is much 

larger than the models in this study (79.620), which may cause low accuracy of models 

regarding to observed event, we can conclude that, looking to the representation of the 

observation, in the sense of the best-fitting, we almost get the same results as obtained by 

Davies (2019), irrespective of the specific models, with a larger preference for the Strasser et 

al. (2010) scaling laws.  
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Figure 3.6.2. 1: Summation of best SGOF for our model ensemble (a) and Davies (2019) (b), the ratio 

of best SGOF for each model of our ensemble with FAUS (c), HS (d) and VAUS (e) model of Davies 

(2019).



 

 

123 

3.7 Coverage Statistics (𝑭𝒆,𝒅
𝒎 ) 

 

While the comparison between our ensemble and Davies’s one show similar best-fitting 

with real observations, despite the smaller number of models in our case, we are now 

checking the quality of the whole ensemble as representative of the 15 events selected for 

modelling. For this comparison, we selected as a parameter the coverage statistics. This 

statistics defines how big the observed tsunami at a DART is compared to synthetic scenarios. 

Each scenario is compared with the de-tided stage-range of observed tsunami time series 

during the associated event, where the tsunami stage-range is the difference between the 

maximum and minimum water-level of the time series. 𝐹𝑒,𝑑
𝑚  is the fraction of scenarios, which 

has a stage-range value smaller than the observed stage range at a specific DART point. Values 

near 1 indicate that the observation is relatively large and that all the scenarios underestimate 

the observation at that buoy, values near zero indicate that the observation is relatively small 

and that all the scenarios overestimate the observation. Finally, values close to 0.5 indicate 

that the observation is mid-sized with respect to the scenarios. 
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Figure 3.7.1: Distribution of 𝑭𝒆,𝒅
𝒎  with respect to the tsunami arrival time to DART, each color and 

shape represent different events. 

Figure 3.7.1 shows the distribution of the 𝐹𝑒,𝑑
𝑚  putting together all classes. It can be seen 

that, 𝐹𝑒,𝑑
𝑚  is uniformly distributed with 0.49 mean value. Coverage statistics should be 

distributed uniformly if there is not any intra-event dependency. In other words, for the same 

event 𝐹𝑒,𝑑
𝑚  might preference towards higher or smaller values due to the spatial relationships 

among the DART buoy locations and depending on the earthquake depth, magnitude, slip 

distribution and etc., some earthquakes can generate more efficient tsunamis which can be 

recorded at several DART locations. If the 𝐹𝑒,𝑑
𝑚  distribution shows high values, that means the 

model is biased and there is an under-estimation of the variability of observed tsunami size. 

Conversely, if the distribution shows a preference for too few 𝐹𝑒,𝑑
𝑚 , the model overestimates 

the variability of observed tsunami size. 

To account for intra-event dependency, the 𝐹𝑒,𝑑
𝑚  is collapsed to a single median coverage 

statistics parameter, 𝐹𝑒
𝑚, which is given by 
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 𝐹𝑒
𝑚 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐹𝑒,𝑑

𝑚 )  (Eq.3.7.1) 

 

The sampling distribution of 𝐹𝑒
𝑚 should be uniformly distributed and symmetric around 

0.5 for an ideal model. However, although 𝐹𝑒
𝑚 is uniform, there will be a dependency on the 

number of DART buoys and their relative intra-event stage-range. We can estimate a parent 

distribution directly from the scenarios, by defining the statistics 𝐹𝑠
𝑚. This is calculated again 

using the Eq. 3.7.1, but real observations are replaced one by one by the single scenario. In 

other words, each scenario is considered as an observation at each DART location; then, we 

compute the fraction of each scenario which have stage-range less than the selected scenario 

(𝐹𝑠,𝑑
𝑚 ). Finally, the median (𝐹𝑠

𝑚) of these fractions is calculated.   

In conclusion, we compute the distribution of 𝑅𝑒
𝑚 , calculated by considering the fraction 

of scenarios with 𝐹𝑠
𝑚 < 𝐹𝑒

𝑚. Since 𝐹𝑠
𝑚 is calculated among the scenarios, it does not have any 

DART dependency, consequently 𝑅𝑒
𝑚  will be DART independent. The 𝑅𝑒

𝑚 should be uniformly 

distributed under the null hypothesis that m is an ideal model and we may test this hypothesis 

using the Anderson–Darling test (Marsaglia & Marsaglia 2004). This test should verify that the 

p value of the distribution is lower than the selected threshold, which is generally taken as 

0.05. In addition to Anderson–Darling test, the standard deviation of the 15 𝑅𝑒
𝑚 values, one 

for each event, can be compared with the expected standard deviation of a uniform 

distribution with 15 samples of size. The 95 percent interval of the expected standard 

deviation from a sample of size 15 is calculated as 0.21-0.35, using the standard deviations of 

the 10 million random datasets. 

Figure 3.7.2 shows the distribution of  𝑅𝑒
𝑚 values. The Anderson-Darling test show that the 

p value of the distribution of  𝑅𝑒
𝑚 is 0.51, and the standard deviation is 0.28, which is within 
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the 95 percent of random uniform samples. The uniformity of 𝐹𝑒,𝑑
𝑚  distribution and the tests 

on 𝑅𝑒
𝑚 indicate that the model ensemble is unbiased. 

 

Figure 3.7.2: Distribution of 𝑹𝒆
𝒎values. 

Let us look now to the fraction distribution of each class separately. Figure 3.7.3 shows the 

distribution of 𝐹𝑒,𝑑
𝑚  for each model class, RECT-Murotani, CIRL-Murotani, RECT-Strasser and 

CIRL-Strasser. We can see that there are biases in singles classes: Murotani models 

underestimate the variability of observed tsunami size with higher values, Strasser models 

show preference to lower values. These models generate larger tsunamis and overestimate 

the variability of observed tsunami size. The Anderson-Darling test also confirms such biases 

with very small p values, indicating that the null-hypothesis of uniform 𝐹𝑒,𝑑
𝑚  is rejected. These 

values come from events having 𝐹𝑒
𝑚 zero or one (usually with small number of DART buoys).  
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Figure 3.7.3: Distribution of 𝑭𝒆,𝒅
𝒎  with respect to the tsunami arrival time to DART for each model 

class, each color and shape represent different event. 

Another indicator of unbiased modes is the uniform distribution of the median coverage 

statistics with respect to magnitude.  Figure 3.7.4 shows this distribution for each of 4 models 

and for each event. Although there is not direct relation between the median-coverage 

statistics and magnitude, Strasser models overestimate the observation as observed in the 

previous figure (Figure 3.7.3), with several values below 0.5. However, median-coverage-

statistic of Murotani models are almost uniformly distributed. The number of events that have 

median-coverage-statistics above 0.5 is 7 for CIRL-Murotani model and 8 for the RECT-

Murotani models for overall 15 events.  



 

 

128 

 

Figure 3.7.4: Distribution of 𝑭𝒆
𝒎 with respect to the magnitude. Each color represents different model. 
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3.8 Characteristics of the ensemble models  

 

Comparison of the statistical properties of random model scenarios with good fitting 

scenarios can be used to better understand the dynamics of the model bias (Davies, 2019). If 

the model is biased but still be able to generate some scenarios which agree with observations 

reasonably, the earthquake properties of good fitting scenarios should behave different than 

the properties of random scenarios over the 15 test events. 

Figure 3.8.1. shows the distribution of maximum slip and rupture area with respect to 

magnitude. Good fitting scenarios are defined as the best 3 scenarios that have minimum 

scenario goodness-of-fit value and these scenarios are plotted with red dots. Overall the 4 

models, good fitting scenarios are generally distributed within the 80 percent confidence 

boundaries. There is not any tendency of good fitting scenarios toward the lower or upper 

limits but they show similar variability as random scenarios. Therefore, we can say that 

although our single models are biased, they generate reasonable maximum slip and rupture 

area.  
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Figure 3.8.1: Mw versus Maximum slip and rupture area for each model. Best 3 scenarios are showed 

with red dots.  

The model biases can be adjusted by assigning non-uniform weights to scenarios (Davies, 

2019). These scenario weights can be calculated using quantile matching techniques which 

includes quantile matching of the percentiles of maximum-slip for the good fitting scenario 

scenarios with a uniform distribution. Figure 3.8.2 shows Quantile-Quantile plots (QQ-plots) 

for each model to compare percentiles of maximum slip for the three best fitting scenarios, 

which are calculated event by event, with uniformly distributed percentiles of random events. 

If the model is unbiased, the best fitting scenario percentiles should be uniformly distributed, 

maximum slip of best fitting scenario should not have any tendency toward to lower or higher 

values. Therefore, the data and fitted line should be around the 1:1 line.  

Let us consider RECT-Murotani model as an example of non-uniform weighting of 

scenarios. QQ-plot indicates that, 60% of the ‘best scenario’ have maximum slip below the 

50% percentile, while the rest of the data is distributed around the 1:1 line. Therefore, bias 
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adjustment should be done putting 60% of the weight on scenarios with maximum slip below 

the 50th percentiles for this model. 

 

Figure 3.8.2: QQ-plots for the average percentile of maximum slip for the best three scenarios against 

the uniformly distributed percentiles of each of the 15 events. 
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3.9 Variable mu models 

 

Models scenarios are generated for both depth-independent and depth-dependent 

rigidity profiles since observation of events in megathrust environment reveals that some 

rupture characteristics of these events, such as slip and frequency radiation, are related to the 

depth-dependent frictional properties of the slab interface (Wang and Mori, 2011; Bilek and 

Lay 2002; Lay et al., 2012; Yao et al., 2013). The tendency of shallow subduction events to 

have longer duration can be explained with the variation of rigidity or stress drop with depth 

(Bilek and Lay 1999; Geist and Bilek 2001). Details of the generation of depth-dependent 

models with rigidity profiles are already explained in the previous sections. Here, we would 

like to show the results of these models in terms of the same statistical parameters, described 

in the analysis of the depth-independent case.  

Figure 3.9.1 shows the best SGOF values for each event depth-dependent scenario model. 

The results of best SGOF are similar to the ones obtained with the depth-independent rigidity 

assumption except for few cases, such as NH1 and Pu1 events, where the fit is poorer.  
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Figure 3.9.1: Best scenario goodness-of-fit statistics for each event depth- dependent scenario model. 

The comparison of each model with the depth-varying-rigidity models of Davies (2019) 

indicates that all of the models from ensemble have better agreement than the FAUS model 

of Davies (2019), as observed in depth-independent models (Figure 3.9.2). However, the 

performance of Strasser models is poorer as compared to the HS models, while they still have 

better agreement than the VAUS model. Ratio with HS model shows that, there is not any 

model from our ensemble that is able to improve the fit with respect to the HS model. 

However, values close to one, for the smaller number of events, show that we almost catch 

the same best fitting as in the ensemble of Davies (2019).   
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Figure 3.9.2: Summation of best SGOF for our model ensemble (a) and Davies (2019) (b), the ratio of 

best SGOF for each model of our ensemble with FAUS (c), HS (d) and VAUS (e) model of Davies (2019). 

Figure 3.9.3 shows the distribution of 𝐹𝑒,𝑑
𝑚  for each class. Strasser models show again a 

larger number of values below 0.5, indicating an overestimation of the variability of observed 

tsunami size also for depth-dependent case. In this case, also Murotani models overestimate 

the observations while the situation was the opposite for the depth-independent scenarios. 

The Anderson-Darling test features very small p values indicating that the null-hypothesis of 

uniform 𝐹𝑒,𝑑
𝑚  is rejected also for these scenarios.  
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Figure 3.9.3: Distribution of 𝑭𝒆,𝒅
𝒎  with respect to the tsunami arrival time to DART for each depth-

dependent model class, each color and shape represent different event. 

The distribution of median coverage statistics with respect to magnitude (Figure 3.9.4) 

indicates that all the models show a preference for lower median coverage statistics. All model 

scenarios are biased towards generating larger tsunamis. 
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Figure 3.9.4: Distribution of 𝑭𝒆
𝒎 with respect to the magnitude. Each color represents different model.  

Figure 3.9.5. shows the change of maximum slip and rupture area as a function of 

magnitude. Overall the 4 models, good fitting scenarios show higher maximum slip values 

while they still remain in the 80 confidence boundaries. These higher values on maximum slip 

is expectable since maximum slip of scenarios is increased in these models. This preference 

can be clearly observed especially for Murotani models. Figure 3.9.6 also shows that, best 

scenario is distributed around the 1:1: line for those models. As described in previous parts, 

QQ-plots (Figure 3.9.6) can be used to weight scenarios for the bias adjustment of the model. 
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Figure 3.9.5: Mw versus Maximum slip and rupture area for each depth-dependent model. Best 3 

scenarios are showed with red dots.  

 

Figure 3.9.6: QQ-plots for the average percentile of maximum slip for the best three scenarios against 

the uniformly distributed percentiles of each of the 15 events. 
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3.10. Conclusions 

 

There have been plenty of tsunami scenario generation techniques proposed and used for 

hazard analysis in the literature. However, it is not certain to what extent tsunami waveforms 

generated by these models are consistent with available tsunami observations, to be used as 

a forecasting tool in a variety of hazard studies. Also, it is not possible to test PTHA results 

directly, therefore it is crucial to test stochastic models directly with the observations. 

In this study, we have compared different slip generation techniques with observations 

from open ocean bottom pressure sensors. A set of stochastic scenarios is generated using 

the approach proposed by Scala et al. (2020) for both constant and variable rigidity for 15 

events occurred in the Pacific region. We have used similar earthquake location and 

magnitude following the scheme suggested by Davies (2019). We made different physical 

assumptions on the fault rupture, defining circular and rectangular shaped ruptures and using 

two different scaling relations, Strasser et al. (2010) and Murotani et al. (2013), for the 

calculation of the rupture area. Besides the stochastic slip models, we also considered 

kinematic source models of Ye et al. (2016) in our comparisons. Tsunami numerical modelling 

has been performed for each scenario, using Tsunami-HySEA package, and tsunamis 

generated by these slip models are tested and compared with the same approach and 

statistical parameters as in Davies (2019). 

Scenario goodness-of-fit statistics reveals that each of the eight ensembles, considering 

depth-dependent and depth-independent classes, shows comparably good fit to the observed 

data, while few events poorly modelled, probably due to their short-period tsunami 
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waveforms. On the other hand, the performance of the kinematic source models from 

inversion is quite poor in terms of good fitting.  

The model ensemble is compared with each of the classes explored by Davies (2019) in 

terms of ratio of the best SGOF summations. It has been observed that scenarios generated 

by all depth-independent models show better fit than the FAUS model of Davies (2019). 

Depth-independent Strasser models are generating better fit than all the 3 models of Davies 

(2019). However, depth-dependent Strasser models are not able to generate scenarios with 

better fit as compared to the HS model of Davies (2019). Murotani models, on the other hand, 

only improve the FAUS model, for both depth-independent and depth-dependent cases. 

Besides those improvements, differences are within 10% in the best fitting as compared to 

the best models of Davies (2019), despite the much smaller number of scenarios represented 

in the ensemble.   

Using the coverage statistics, we have tested biases of each model from ensemble. For an 

unbiased model, the distribution of coverage statistics should be uniform. The uniformity of 

the distribution is tested analyzing the fraction distribution of scenarios with Anderson-Darling 

null-hypothesis significance test. In addition to this test, the standard deviation of the 

distribution is also compared with the standard deviation expected from a sample of 15 events 

from a uniform distribution. The distribution of coverage statistics for whole ensemble shows 

that the distribution is uniform and Anderson-Darling test supports that with a high p value. 

The standard deviation of the fraction distribution is also generated between the 95 per cent 

of values that is derived by simulating 10 million random datasets.  

Distribution of coverage statistics for each model class, on the other hand, shows some 

biases for both depth-dependent and depth-independent models. Strasser models show a 
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preference to lower values indicating an overestimation of the variability of observed tsunami 

size, by generating more frequently larger tsunamis. Murotani models have the opposite 

tendency, at least for depth-independent rigidity profile. In the case of depth-dependent 

rigidity, also these latter models overestimate the observations. The Anderson-Darling test of 

coverage statistics distributions showed very small p values for each model class which 

implying that the null-hypothesis of uniform 𝐹𝑒,𝑑
𝑚  is rejected. 

Comparison of the statistical properties of random model scenarios with good fitting 

scenarios can be used to better understand the dynamics of the model bias (Davies, 2019). 

Along the four models of depth-dependent case, there is not any tendency for the maximum 

slip and the rupture area of best fitting scenarios toward the lower or upper limits, but they 

show similar variability as random scenarios. Therefore, we can say that although our models 

are biased, they feature reasonable kinematic properties in slip and size. However, good fitting 

scenarios show higher maximum slip values for models from the depth-independent case. 

These higher values on maximum slip is expectable since shallow slip amplification is 

enhanced in depth-independent model scenarios. 

The model biases can be adjusted by assigning non-uniform weights to scenarios (Davies, 

2019). This weight can be calculated using quantile matching techniques which include 

matching of the percentiles of maximum-slip for the good fitting scenarios with a uniform 

distribution. 
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CHAPTER 4 – RESEARCH ACTIVITIES 

 

PTHA has become a widely used procedure for estimating tsunami hazard from 

earthquakes; nevertheless, uncertainties arising from source representation and 

hydrodynamic modelling are still large and require further research. Moreover, procedures 

for their estimation are far from being established by the community. In the previous chapter, 

we have focused on the use of ensemble models to catch the variability of earthquake sources. 

In the work of Bayraktar and Ozer Sozdinler (2020), presented in this chapter, we have 

simplified the source description to a homogeneous slip map on a specific fixed-size fault, 

while we have exploited the non-linearity in the inundation computation for time-dependent 

PTHA at Tuzla, Istanbul, in Marmara Sea. In this study, we tried to investigate the probability 

of having tsunami inundation following a seismic event occurring on the Prince Island Fault 

(PIF). The study considered a characteristic earthquake that ruptures the entire fault all at 

once. Tsunami modelling is done considering a homogeneous slip distribution. Using the 

Monte Carlo simulation technique, a synthetic earthquake catalogue, which includes 

earthquakes having moment magnitudes between Mw 6.5 and 7.1, is generated. Based on 

this catalogue, probabilities of occurrence and associated tsunami wave heights are calculated 

for each event at the Tuzla coast. Tsunami numerical modelling is performed for each event 

from the synthetic catalog using the NAMI-DANCE code which can solve both linear and 

nonlinear shallow water equations. The code can model tsunami generation, propagation and 

inundation in one code and it calculates the initial water surface elevation using Okada (1985) 

equations. Since NAMI DANCE can perform nested grid analyses, four nested domains are 

generated having the coarsest grid size as 81m and the finest grid size as 3m. Results are 
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represented as distribution of probability of occurrence corresponding to tsunami 

hydrodynamic parameters, probabilistic inundation maps and the probability map of 

exceedance of threshold wave heights at synthetic gauge points.  

The recent study of Selva et al. (2021), included later in this chapter, uses the probabilistic 

approach for tsunami forecasting at the short time scale of an early warning. The information 

related with the seismic source of an earthquake is limited and uncertain just after the 

tsunami generation. Therefore, the study mainly aims to project this uncertainty from the 

source to the alert level using probabilistic methods. The uncertainty quantification is treated 

using an ensemble of tsunami scenarios from a set of sources weighted by the probability of 

being consistent with available real-time observations (seismic, geodetic, tsunami) and pre-

computed local long-term tsunami hazard information. The long-term hazard contains two 

seismicity types which are predominant seismicity (PS) and background seismicity (BS). For 

the BS, each tsunami source is considered as planar fault with uniform slip and the fault size 

is defined using empirical relations. For the PS, only the source model of subduction 

earthquakes is included in the ensemble. Since the hazard estimations are sensitive to the slip 

distribution variability, as it has been discussed also in the previous chapters, for the scenario 

ensemble of BS, stochastic slip distributions of these events are generated using the approach 

proposed by Scala et al. (2020), considering earthquake magnitude and hypocenter estimation 

from real-time observations and adopting a realistic 3D subduction geometry.  

We have been discussing about the source uncertainties of the earthquake generated 

tsunamis by now. In addition to uncertainties of other tsunami sources, there is lack of 

information theoretical foundation, or commonly accepted methods in the many steps of the 

assessment. AGITHAR (Accelerating Global science In Tsunami HAzard and Risk analysis) is a 
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network which aims to improve, standardize and document methods to analyze tsunami 

hazard and risk. Within the scope of producing a report on research gaps in probabilistic 

hazard and risk analysis methods and current state-of-the-art, a workshop of a scientific 

network is held. Behrens et al. (2021) represents the results of this collective work and details 

recent gaps and open research questions related to PTHA and PTRA. Variety, complexity, and 

dynamics of fault mechanics and empirical scaling relations are one of the identified gaps in 

earthquake generated tsunamis on Behrens et al. (2021). In this study, we also tried to cover 

those gaps using complex fault geometries, depth-varying rigidity models, different scaling 

relations and rupture shapes.  
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Abstract. In this study, time-dependent probabilistic tsunami
hazard analysis (PTHA) is performed for Tuzla, Istanbul, in
the Sea of Marmara, Turkey, using various earthquake sce-
narios of Prince Island Fault (PIF) within the next 50 and
100 years. The Monte Carlo (MC) simulation technique is
used to generate a synthetic earthquake catalogue, which
includes earthquakes having moment magnitudes between
Mw6.5 and 7.1. This interval defines the minimum and max-
imum magnitudes for the fault in the case of an entire fault
rupture, which depends on the characteristic fault model.
Based on this catalogue, probability of occurrence and as-
sociated tsunami wave heights are calculated for each event.
The study associates the probabilistic approach with tsunami
numerical modeling. The tsunami numerical code NAMI
DANCE was used for tsunami simulations. According to the
results of the analysis, distribution of probability of occur-
rence corresponding to tsunami hydrodynamic parameters is
represented. Maximum positive and negative wave ampli-
tudes show that tsunami wave heights up to 1 m have 65 %
probability of exceedance for the next 50 years and this value
increases by 85 % in the Tuzla region for the next 100 years.
Inundation depth also exceeds 1 m in the region with proba-
bilities of occurrence of 60 % and 80 % for the next 50 and
100 years, respectively. Moreover, probabilistic inundation
maps are generated to investigate inundated zones and the
amount of water penetrated inland. Probability of exceedance
of 0.3 m wave height ranges between 10 % and 75 % accord-
ing to these probabilistic inundation maps, and the maximum
inundation distance calculated in the entire earthquake cata-
logue is 60 m in this test site. Furthermore, synthetic gauge

points are selected along the western coast of Istanbul by in-
cluding Tuzla coasts. Tuzla is one of the areas that shows
high probability exceedance of 0.3 m wave height, which is
around 90 %, for the next 50 years while this probability
reaches up to more than 95 % for the next 100 years.

1 Introduction

The Marmara region, especially highly populated cities along
the coasts of the Marmara Sea, is the heart of the Turkish
economy in terms of having a great number of industrial
facilities with the largest capacity and potential, refineries,
ports and harbors. The Marmara Sea and surrounding area
is one of the most seismically active areas in Turkey. Main
active faults of the region pass through the Marmara Sea.
Thus, coastal cities in the Marmara region, especially Istan-
bul, which has significant importance in terms of the econ-
omy and historical and sociocultural heritage with a popu-
lation of more than 15 million, are under the threat of high
damage due to possible big earthquakes and also triggered
tsunamis. Recent studies and evaluation of earthquake recur-
rence periods revealed that there is a high possibility of hav-
ing an earthquake with a magnitude larger thanMw7.0 in the
Prince Island Fault (PIF). According to Ambraseys (2002),
the last earthquake on this fault system occurred in 1766
and since that time this fault has been accumulating a huge
amount of energy. According to Parsons (2004), the proba-
bility of occurrence of a M > 7 earthquake beneath the Mar-
mara Sea was estimated to be 35 %–70 % in the following
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1742 H. B. Bayraktar and C. Ozer Sozdinler: Probabilistic tsunami hazard analysis for Tuzla test site

30 years. The region has distinctive characteristics in terms
of its complex tectonic structure and the high possibility
of an earthquake occurrence with a magnitude larger than
7.0 offshore of Istanbul. Therefore, there has been a wide
range of studies in the Marmara Sea region regarding the
fault mechanisms, seismic activities, earthquakes, and trig-
gered tsunamis (Armijo et al., 2002, 2005; Okay et al., 1999;
Le Pichon et al., 2001; Yaltırak, 2002; McNeill et al., 2004;
Aksu et al., 2000; Imren et al., 2001; Pondard et al., 2007;
Yalçıner et al., 1999, 2000, 2002; Aytore et al., 2016; Hébert
et al., 2005; Altınok et al., 2003, 2011; Guler et al., 2015;
Cankaya et al., 2016; Tufekci et al., 2018; Latcharote et al.,
2016).

The North Anatolian Fault Zone (NAFZ) controls a great
part of the seismic activity in the Marmara Sea region. The
fault zone sets apart Anatolia (Asian part of Turkey) and
Eurasia due to the northward migration of the Arabian Plate
in the east and southward rollback of the Hellenic subduction
zone in the west as seen in Fig. 1 (Armijo et al., 1999; Flerit
et al., 2004; Le Pichon et al., 2015).

The Marmara Sea region is a transition zone between the
strike-slip regime of the NAFZ and the extension regime of
the Aegean Sea area (top left of Fig 1). The northern branch
of the NAFZ forms a major transtensional NW–SE right bend
under the Sea of Marmara at the Çınarcık trough (Murru et
al., 2016). The fault trace is attached to the complex Central
Marmara and Tekirdağ pull-apart basins, before joining the
NE–SW-striking Ganos fault on land by following the north-
ern margin of the Marmara Sea. Finally, the fault exits into
the Aegean Sea by way of Saros Gulf (Wong et al., 1995;
Armijo et al., 1999, 2002; Okay et al., 1999; Le Pichon et al.,
2001; Yaltırak, 2002; McNeill et al., 2004). The fault trace
beneath the Marmara Sea is not directly observable. There-
fore, making a segmentation model for the offshore parts of
the NAFZ is quite challenging, which causes the fault dimen-
sions, such as its length and width, to include a sum of error
margin (Aksu et al., 2000; Imren et al., 2001; Le Pichon et
al., 2001; Armijo et al., 2002, 2005; Pondard et al., 2007).

The current right-lateral slip rate along the NAFZ is about
25 mm yr−1 (Meade et al., 2002; Reilinger et al., 2006).
On the western side, the motion between the Anatolian and
Eurasian plates is accommodated across the Marmara region
by ∼ 19 mm yr−1 of right-lateral slip and 8 mm yr−1 of ex-
tension (Flerit et al., 2003, 2004). Slip rates of the main
Marmara fault range between 17 and 28 mm yr−1 (Le Pi-
chon et al., 2003; Reilinger et al., 2006). On the other hand,
Hergert and Heidbach (2010) suggest that the right-lateral
slip rate on the main Marmara fault is between 12.8 and
17.8 mm yr−1 due to slip partitioning and internal defor-
mation. The right-lateral slip rate for the PIF and Çınarcık
basin is 15± 2 mm yr−1 and in addition to this the fault has
6± 2 mm yr−1 of extension (Ergintav et al., 2014).

The main characteristic of the NAFZ is that the earth-
quakes systematically propagate westward, and historical
records show that the northern strand of the NAFZ generates

earthquakes with the recurrence interval of about 250 years
beneath the Marmara Sea; the last event occurred in 1766
(Ambraseys, 2002; Bohnhoff et al., 2013). This event caused
the rupture of the 58 km long northern part of the NAFZ
from İzmit to Tekirdağ (Ambraseys and Finkel, 1995; Am-
braseys and Jackson, 2000). However, the earthquake that
happened on 2 September 1754 can be considered the last
characteristic event for the PIF segment, and it caused the
rupture of a 36 km long fault segment (Ambraseys and Jack-
son, 2000). The NAFZ has experienced two M > 7 earth-
quakes: in August 1912 in Ganos and August 1999 at İzmit.
After the 1999 İzmit event, seismic energy along the 150 km
long northern part of the NAFZ has been accumulating con-
tinuously since the 22 May 1766 earthquake. This fault zone
extends right to the south of Istanbul beneath the Marmara
Sea, and this situation increases the rupture possibility of the
PIF and the risk for Istanbul (Stein et al., 1997; Barka, 1999;
Bohnhoff et al., 2013). Ergintav et al. (2014) also indicated
that the PIF segment accumulates stress 15± 2 mm yr−1,
and the 3.7 m slip deficit has been accumulating since the
1766 events. This makes the PIF most likely to generate the
next M > 7 earthquake along the Sea of Marmara segment
of the NAF.

Besides these seismic activities in the region, studies of
the historical tsunami records show that 35 tsunami events
happened between 330 BCE and 1999 BCE in the Mar-
mara Sea region, and the majority of them are earthquake-
related tsunami events (Altinok et al., 2011; Yalçıner et al.,
2002). The 1509 earthquake, with an estimated magnitude
around 7.5 (Ambraseys, 2002), is one of the examples for
these events. This earthquake triggered a tsunami and the
tsunami waves inundated the Istanbul coast, reaching the city
walls and killing around 4000–5000 people in the city (Am-
braseys and Finkel, 1995). The 1894 earthquake is also one
of the important events that happened in the Marmara Sea.
The earthquake triggered a tsunami and the sea inundated
200 m of coast in Istanbul (Altinok et al., 2011). The most
recent event happened after the 17 August 1999 İzmit earth-
quake, and after the earthquake E–W-trending tectonic de-
formation along the basin and submarine failures generated
a tsunami. The International Tsunami Survey Team (Yalciner
et al., 1999, 2000) investigated the region and they observed
2.66 m run-up along the coast from Tütünçiftlik to Hereke
and 2.9 m run-up at Değirmendere (Yalçıner et al., 2002).

Several tsunami hazard estimation studies (Ozer Sozdinler
et al., 2020; Hancilar, 2012; Aytore et al., 2016; Hébert et al.,
2005) were also conducted in the region. These tsunami anal-
yses were mostly performed in a deterministic manner using
various earthquake scenarios depending on the combinations
of different fault parameters without considering probabil-
ity of occurrences. The 40 km long fault in the eastern basin
of the Marmara Sea, with a significant normal component,
may generate tsunami waves which can reach maximum 2 m
heights along the Istanbul coast with considerable local inun-
dation (Hébert et al., 2005). The rupture of the Yalova Fault,
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Figure 1. Seismicity map of the Marmara region and general tectonic map of Turkey at the top left. In the seismicity map, the size of the
circles changes with magnitude of the earthquakes, and the color of the circles defines the depth change of the earthquakes. Red lines show
the known active faults (modified from Emre et al., 2013) in the region, and the white square is the area with the PIF. In the general tectonic
map of Turkey, red arrows show the direction of the plate motion, black lines show the active faults in the region (modified from Emre et
al., 2013), and the red rectangle shows the Marmara region (created using The Generic Mapping Tools, version 5.4.1). The duration of the
catalog, used for the seismicity map, is 05 April 1905–31 December 2018 (KOERI, 2001).

PIF, or Central Marmara Fault can also cause serious dam-
age along the coast of Istanbul. Tsunami wave heights can
reach 4.8 m and can penetrate 340 m inwards from the coast
in Haydarpaşa Port (Aytore et al., 2016).

A few probabilistic seismic and tsunami hazard analyses
(Murru et al., 2016; Erdik et al., 2004; Hancilar, 2012) were
also performed in this region. Seismic hazard maps were pre-
pared in the Marmara Sea region by describing fault seg-
ments and peak ground accelerations with the periods cor-
responding to 10 % and 2 % probabilities of exceedance in
50 years (Erdik et al., 2004). In addition, tsunami inunda-
tion maps are prepared based on probabilistic and determinis-
tic analyses by depending on these segmentations (Hancilar,
2012). Time-dependent and time-independent earthquake
ruptures are also estimated in the Marmara Sea region for
the next 30 years (Murru et al., 2016). These previous stud-
ies have been conducted for entire Marmara Sea region and
therefore they give general and rough information about
probability of occurrence in the region without focusing on
any specific region in high resolution. However, probabilis-
tic tsunami hazard assessment is important to calculate the
tsunami exposure and risk on human populations and infras-
tructures, since probability calculations consider all possible
earthquakes in a fault even if they occur with very low prob-
ability (Løvholt et al., 2012, 2015; Grezio et al., 2017). The

results of probabilistic studies should be considered when
decision makers design coastal zones and structures, espe-
cially critical ones. Different from previous probabilistic ap-
proaches in the Marmara Sea, the probability of earthquake
occurrences in one fault segment, PIF, are taken into ac-
count for the preparation of high-resolution tsunami inunda-
tion maps and distribution of hydrodynamic parameters due
to the probability of occurrence of associated earthquakes on
the PIF determined by Monte Carlo (MC) simulations.

This probabilistic tsunami hazard analysis (PTHA) study
depends on the fully characteristic fault model, and the main
purpose is to perform PTHA for selected test sites. The Tu-
zla test site is one of the coastal districts of Istanbul and lo-
cated on the southernmost part of the city (Fig. 2). The re-
gion includes several residential areas, but the most critical
point about the region is that Tuzla has the biggest shipyard
area not only in the Marmara Sea but also in Turkey (Fig. 3).
In this study we mainly focused on this region because it is
about 20 km away from the PIF and therefore has a high risk
of both earthquake and tsunami damage.

2 Probabilistic analysis

Probabilistic tsunami hazard analysis (PTHA), as it is re-
cently becoming a widely used procedure for coastal zones,
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Figure 2. The Marmara Sea region, Tuzla test site, and the location of the PIF segment which is used in the analysis like a straight line
(created using ArcMap version 10.5).

is performed for the Tuzla region, Istanbul. This method
has been applied for various tsunami sources, such as
earthquakes, landslides, volcanic activities, etc., on vari-
ous scales, local, regional, and global (Grezio et al., 2017).
For earthquake-generated tsunamis, the method is generally
adapted from seismic hazard assessment methods (González
et al., 2009). Such kinds of studies consider the events that
are generated by coseismic seafloor displacement, using seis-
mic probabilistic hazard analysis (SPTHA), but numerous
tsunami simulations are required to consider all expected
combinations of seismic sources. This problem can be solved
by applying a simplified event tree approach and a two-
stage filtering procedure to reduce the number of required
source scenarios without decreasing the quality and accu-
racy of inundation maps (Lorito et al., 2015). The earth-
quake source itself is very uncertain and the investigation
of this uncertainty can be carried out by building an event
tree instead of using a logic tree and hazard integrals (Selva
et al., 2016). The logic tree approach can be applied to the
generation of tsunami hazard curves to decrease the uncer-
tainties by including branches, which are the combination
of tsunami sources, magnitude distribution of characteris-
tic tsunamigenic earthquakes, their recurrence interval, and
the tsunami height estimation procedure based on a numer-
ical simulation (Annaka et al., 2007). For regional studies,
hazard curves can be generated by empirical analysis using
available tsunami run-up data. However, if such data are not
available, MC simulations, a computationally based method
widely used in probabilistic seismic hazard analysis (PSHA),
can be considered as a primary method to generate tsunami
hazard curves (Geist and Parsons, 2006; Horspool et al.,
2014). Submarine landslides, on the other hand, are the major
tsunami source for passive margins, which are the transition
zone between the oceanic and continental lithosphere that is
not an active plate boundary, and they have been included in

PTHA methodologies (Geist and Lynett, 2014). Probabilistic
studies are also applied to develop multi-hazard loss estima-
tion methodology for coastal regions that are exposed to cas-
cading shaking-tsunami hazards due to offshore mega-thrust
subduction earthquakes (Goda and De Risi, 2018).

In this study, a characteristic earthquake model is used to
estimate the earthquake recurrence on the PIF. Paleoseismo-
logic studies (Ryall et al., 1966; Allen, 1968; Schwartz and
Coppersmith, 1984) suggest that an individual fault tends
to generate characteristic earthquakes having a very narrow
range of magnitudes. These individual faults have a different
frequency distribution than the log linear Gutenberg–Richter
frequency–magnitude relationship (Aki, 1984; Schwartz and
Coppersmith, 1984; Youngs and Coppersmith, 1985). Ac-
cording to Aki (1984), a characteristic earthquake is gener-
ated as a result of constancy of barriers to rupture through
repeated seismic cycles.

PIF is fully characteristic and a characteristic earthquake
will rupture an entire fault as a whole and release all the
energy. Therefore, while performing MC simulations, the
area of the fault and fault parameters (strike, dip, and rake
angles) are used as constants referring to the outcomes
of EU Seventh Framework Programme project MARSITE
(Ozer Sozdinler et al., 2020). One of the work packages
of this project aimed to define the geometry of the possi-
ble tsunamigenic faults in the Marmara Sea and 30 differ-
ent earthquake scenarios with the different rupture combina-
tions of 32 possible fault segments. Based on these 30 dif-
ferent earthquake scenarios, tsunami numerical modeling is
performed. The definition of fault segments depends on ex-
tensive review of the literature (Alpar and Yaltırak, 2002; Al-
tınok and Alpar, 2006; Armijo et al., 2005; Ergintav et al.,
2014; Gasperini et al., 2011; Hébert et al., 2005; Hergert et
al., 2011; Hergert and Heidbach, 2010; Imren et al., 2001;
Kaneko, 2009; Le Pichon et al., 2001, 2003, 2014; Oglesby
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Figure 3. Some important locations at the Tuzla domain. (a) Northern part of the Tuzla domain. (b) Southern part of the Tuzla domain.
(c) Tuzla shipyard (created using ArcMap version 10.5).
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Table 1. The area and the focal mechanism of the PIF zone. These
are the constant parameters during the MC simulation application.

Fault Fault Strike Dip Rake
length width
(km) (km)

33.5 14 119 80 210

and Mai, 2012; Şengör et al., 2014; Tinti et al., 2006; Utkucu
et al., 2009). As a result of this review, each fault segment is
defined as a rectangular area with hypothetical uniform slip.
According to the results of the project, the fault parameters
of the PIF are given in Table 1. The 3-D fault configuration
given by Armijo et al. (2002), which explains fault segmen-
tation in the region depending on morphology, geology, and
long-term displacement fields, also fits with the PIF parame-
ters that are used in the project. These parameters are used as
constants in this study while assessing probability of occur-
rence of each earthquake to allow full fault rupture at differ-
ent depths with different magnitudes.

The MC simulation technique is generally applied to gen-
erate an earthquake catalogue of a given length of time. In
this technique, a list of earthquakes can be generated us-
ing the frequency–magnitude relationship for each seismic
source (Zolfaghari, 2015). Seismic zonation should be per-
formed by considering regions that have relatively homoge-
neous earthquake activity and faulting regimes (Sørensen et
al., 2012). In this study, the fault segment model proposed in
Ozer Sozdinler et al. (2020) is used and PIF is the only seg-
ment that is a seismic source. After that, tsunami numerical
modeling is performed for each event of this synthetic cata-
logue, and tsunami hydrodynamic parameters, mainly maxi-
mum wave heights, inundation depth, current velocities, and
tsunami inundation zones, are estimated. Tsunami risk as-
sessment will serve the needs of societies best when regional
studies are associated with the local ones (Sørensen et al.,
2012).

The MC simulation technique allows the generation of
a list of earthquakes based on a frequency–magnitude rela-
tionship. This technique depends on a uniformly distributed
source model and it provides an equal likelihood to each
earthquake source. As a result, the synthetic earthquake cat-
alogue will have uniformly randomly distributed earthquake
sources (Zolfaghari, 2015).

Using MC simulation, a synthetic earthquake catalogue
is generated by selecting earthquake magnitude and depth
as uniformly distributed random numbers in a given inter-
val and using area and directivity of the fault as a constant
variable (Table 1). We performed MC simulations 100 times
for 100 different earthquake scenarios. The number of earth-
quakes in the catalog is selected as a reasonable number
that represents the number of iterations randomly performed
in MC simulations for having a synthetic earthquake sce-

nario. As mentioned earlier, NAFZ generates an earthquake
with the recurrence interval of about 250 years beneath the
Marmara Sea. Therefore, selecting 100 earthquake scenar-
ios would cover a time period of 100× 250 yr= 25 000 yr,
which is considered as an adequate catalog duration in this
study. However, because of having time-dependent proba-
bilistic analyses, this catalog duration is not used for PTHA
in this study.

Earthquake magnitude is one of the parameters randomly
selected by the MC technique. Based on a characteristic
earthquake model, individual faults tend to rupture the entire
fault when a large earthquake occurs. This model assumes
that a characteristic earthquake releases all of the seismic en-
ergy during the fault rupture, and the magnitude of the earth-
quake depends on the dimension of the fault (Abrahamson
and Bommer, 2005).

As mentioned previously, only the PIF is considered an
earthquake source approximately 34 km in length and 14 km
in width (Ozer Sozdinler et al., 2020; Karabulut et al., 2002).
This fault zone is assumed to have the potential to gener-
ate a characteristic earthquake and rupture the entire fault.
According to the Wells and Coppersmith (1994) scaling rela-
tion between fault area and magnitude (Eq. 1), this fault can
generate a characteristic earthquake with magnitude varying
between Mw6.5 and 7.1.

Mw = a+ b · log(L ·W) (1)

In this equation, a and b are coefficients, which are 4.33
and 0.9, respectively, L is fault length, and W is the fault
width.

Displacement on the fault surface calculations is carried
out for each randomly selected magnitude using the formu-
lation of Aki (1966),

D =
M0

µA
=

10(Mw+6.07)·1.5

µA
, (2)

whereD is displacement on the fault surface,Mw is moment
magnitude, µ is the shear modulus (µ= 30 GPa), and A is
the fault area.

Seismogenic thickness and the location of the earthquake
is another important parameter required for earthquake and
tsunami source. At first, the PIF zone is accepted as fully
characteristic and an earthquake should rupture the entire
fault area. Therefore, it is assumed that if the rupture starts
at the center of the fault and continues in both directions, the
fault will rupture entirely. For this reason, the locations of the
earthquakes are accepted as the midpoint of the PIF zone for
each earthquake scenario (Ozer Sozdinler et al., 2020).

For the seismogenic thickness, the seismic activity of the
northern segment of NAFZ starts at the depth of 5 km (Karab-
ulut et al., 2003). The bottom of the seismogenic thickness
can be determined based on the aftershock activity of the
17 August 1999 İzmit earthquake. The earthquakes on the
northern scarp of the Çınarcık basin are observed between
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the depths of 5 and 14 km. The mechanism of events be-
tween the depth of 5 and 10 km shows the behavior of nor-
mal faulting. On the other hand, the strike-slip mechanism
dominates the depths below 10 to 14 km. As a result, seismic
activity can be observed between the depths of 5 and 14 km,
and fault plane solutions show normal and strike-slip mech-
anisms in this area (Karabulut et al., 2002). Therefore, the
depth of events varies between 5 and 14 km in MC simula-
tions.

In time-independent earthquake occurrence models, prob-
ability of an event occurrence follows a Poisson distribution
in a given period of time. Therefore, the result of this model
does not vary in time. However, probability of an earthquake
occurrence is based on the time that has passed since the
occurrence of the last event and it follows a Brownian pas-
sage time (BPT), lognormal, or other probability distribution
(Matthews et al., 2002; Ellsworth et al., 1999; Davis et al.,
1989; Rikitake, 1974). In this model, in addition to the re-
currence time of earthquakes, variability of the frequency
of events and the elapsed time from the last characteristic
event are the additional required information and the longer
elapsed time causes an increase in probability of an event oc-
currence (Cramer et al., 2000; Petersen et al., 2007).

Calculation of probability in multi-segment ruptures and
more complicated models includes the Gutenberg–Richter
magnitude–frequency relationship (Gutenberg and Richter,
1944). The application of time-dependent models is based on
a characteristic earthquake model, which assumes all large
events occurring along a particular fault segment would have
similar magnitudes, rupture area, and average displacements
(Schwartz and Coppersmith, 1984). Therefore, this model is
suitable for calculating the probability of occurrence of an
earthquake on a single fault.

It should be noted that, in this study, PIF is considered to
be the only source for the earthquake and tsunami. A time-
dependent probabilistic model is followed for the probabil-
ity calculations because this probabilistic model allows us to
consider only one fault instead of using multi-segment rup-
ture scenarios through a characteristic earthquake model.

In the time-dependent approach, the BPT probability
model is used to obtain the recurrence time probability of the
earthquake in the fault segment. This model does not show a
significant difference with the lognormal distribution except
for consideration of very long elapsed times from the last
characteristic event (Petersen et al., 2007). A characteristic
event occurs when the load-state process reaches the fail-
ure threshold; an earthquake releases all energy loaded on
the fault and then starts the new failure cycle. The time in-
terval between consecutive earthquakes shows a Brownian
passage time distribution and that can be useful to forecast
long-term seismic events by generating a time-dependent
model (Matthews et al., 2002). The Working Group on Cal-
ifornia Earthquake Probabilities (1999) and the Earthquake
Research Committee (2001) have already implemented this
time-dependent approach in the San Francisco Bay area and

Japan, respectively, for the prediction of long-term events
(Petersen et al., 2007). This model depends on the time pe-
riod passed since the last characteristic event and recurrence
time of the earthquake. The probability density function for
the BPT model (Matthews et al., 2002) is given by

f (t,Tr,∝)=

(
Tr

2πα2t3

)1/2

exp

(
(t − Tr)

1/2

2Trα2t

)
, (3)

where t is the elapsed time from the last characteristic event
and α is the aperiodicity (also known as the coefficient of
variation). Aperiodicity defines the regularity of the expected
characteristic earthquakes on the fault and varies between 0.3
and 0.7. This parameter, which is known as the parameter
defining how much an expected characteristic earthquake oc-
curs regularly or irregularly on any fault segment (Murru et
al., 2016), was taken as 0.5 in this study (Parsons, 2004). The
mean recurrence interval of earthquakes (Tr) can be defined
as the ratio between the mean moment of repeating earth-
quakes (seismic moment) and the long-term moment accu-
mulation rate on the fault (moment rate) (Ren and Zhang,
2013). Seismic moment can be obtained using the formula-
tion of Kanamori (2004), and the moment rate of the fault is
calculated from fault area and long-term slip rate of the fault
(WGCEP, 2003).

Tr =
M0

Ṁ0
=

10(Mw+6.07)·1.5

µVA
(4)

In this equation, Mw is moment magnitude, µ is the shear
modulus, V is long-term slip rate in millimeters per year, and
A is the fault area. The moment magnitude value in Eq. (4)
was selected randomly using MC simulations. Thus, seismic
moment (M0) and the mean recurrence time (Tr) were cal-
culated for each earthquake scenario. Long-term slip rate is
also selected as 17 mm yr−1 for this equation (Ergintav et al.,
2014).

Probability of the earthquake occurrence on the fault is
calculated based on the probability density function ap-
proach. The probability of occurrence of an event in the next
1T years, given that it has not occurred in the last t years, is
given by (Erdik et al., 2004)

P(t,1T )=

t+1T∫
t

f (t)dt

t+∞∫
t

f (t)dt
. (5)

In this case, probability of a characteristic earthquake was
calculated using 1T as 50 and 100 years.
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Figure 4. Nested domains for tsunami numerical modeling. Red rectangles show the limits of these domains. Grid size of these domains
have a certain 1 : 3 ratio between each other (created using ArcMap version 10.5).

3 Tsunami numerical modeling

Tsunami simulations are performed for each earthquake in
the synthetic catalogue using the tsunami numerical model
NAMI DANCE (NAMI DANCE, 2011). The code is the
user-friendly version of TUNAMI-N2 (Imamura et al., 2001)
developed in C++ language, which computes all fundamen-
tal parameters of tsunami motion in shallow water and in
the inundation zone. It uses an explicit numerical solution
of shallow water wave equations with the finite-difference
technique and allows for better understanding of the effect
of the tsunami waves (Shuto et al., 1990; Imamura, 1989).
NAMI DANCE can solve both linear and nonlinear shal-
low water (NSW) equations with a selected coordinate sys-
tem (Cartesian or spherical) and calculates the tsunami mo-
tion. Linear shallow water (LSW) equations are preferable in
deep water because of reasonable computer time and mem-
ory, and they calculate the results at an acceptable error limit
(Insel, 2009). NAMI DANCE is validated and verified us-
ing NOAA standards and criteria for tsunami currents and
inundation (Synolakis et al., 2007, 2008). The numerical so-
lutions of NAMI DANCE are also tested, validated and ver-
ified against analytical solutions, laboratory measurements,
and field observations (NTHMP, 2015; Lynett et al., 2017;
Velioglu, 2009).

NAMI DANCE calculates tsunami generation using
Okada (1985) equations. In this study, water surface distri-
bution of tsunami source (initial wave amplitude) is calcu-
lated with this method for 100 earthquakes of the synthetic
earthquake catalogue prepared by MC simulations. As an ex-

ample, Fig. 5 shows the initial water surface calculated due
to one of 100 tsunami sources generated by MC simulations
(Fig. 5).

Before starting tsunami simulations, the necessary inputs
should be prepared precisely in order to obtain reliable re-
sults. Bathymetry–topography data are one of the most im-
portant inputs in NAMI DANCE that significantly effects the
reliability of results, especially in the shallow water zone
due to the nature of the NSW equations. NAMI DANCE
can perform nested analyses under the condition that the
grid sizes of the study domains have a certain 1 : 3 ratio be-
tween each other. Therefore, we generated four nested do-
mains having the coarsest grid size as 81 m and the finest
grid size as 3 m with a 1 : 3 ratio in the GIS environment.
Bathymetric data for the biggest domain are the combination
of the 30 arcsec resolution General Bathymetric Chart of the
Oceans (GEBCO) and data produced by navigational charts
in shallow zones. Topographic data, on the other hand, are at
a high resolution, which is obtained from the Department of
Housing and Urban Development of Istanbul Metropolitan
Municipality digital elevation model (DEM) and vector data
with resolution of 5 and 1 m, respectively. The bathymetry–
topography data in the smaller domains are the downscaled
version of the 81 m grid bathymetry–topography data; how-
ever high-resolution digitized coastline and sea and land
structures are also included in the data to generate the small-
est grid domain of 3 m (Fig. 4).

The synthetic gauge point file is another required input
of NAMI DANCE. In addition to the calculation of prin-
cipal tsunami hydrodynamic parameters, the program can
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Figure 5. Initial water surface distribution of one of the 100 tsunami sources. The red frame indicates the boundary of the largest nested
domain with an 81 m grid size (plotted using ArcMap version 10.5).

also calculate the change of water level, current velocity, and
flow depth over time in every gauge point. Therefore, various
gauge points are selected along the coast of nested domains,
nearshore and offshore and close to some critical structures
on land.

During the inundation of tsunami waves, current velocity
is an important tsunami parameter in land and sea, especially
in ports and bays. Strong current velocities may cause sea
vessels to be dragged offshore by undertow or to ground
inland. This parameter as well as tsunami wave amplitude,
inundation depth, and Froude number can be calculated by
NAMI DANCE. However, in this study, the results are repre-
sented based on only the probability of exceedance of thresh-
old values for water surface elevation and inundation depth.

4 Results and discussion

In this study, tsunami hydrodynamic parameters are calcu-
lated in both the coarsest domain (whole Marmara Sea) and
finest domain (Tuzla region). The main parameters focused
in this study are the tsunami wave heights and inundation
depths, and the results are shown in terms of probability of
exceedance of threshold wave height and inundation depth
values within the next 50 and 100 years. The situation for
the next 500 years is not considered because the return pe-
riod of the fault rupture is about 250 years, which means
this fault generates at least one earthquake within the next
500 years. In other words, probability of exceedance for the
next 500 years will be about 99 %.

We present the results of the PTHA for the Tuzla test site
in terms of three different visualization categories for the
next 50 and 100 years. First, distribution of probability of
occurrence of the tsunami hydrodynamic parameters, which
are minimum and maximum water surface elevation and in-
undation depth, is shown. Second, tsunami inundation maps
that show the probability of exceedance of 0.3 m inundation
depth for different time periods are generated for the Tuzla
region in order to observe flooded areas and their probabil-
ities clearly. Finally, the probability map of exceedance of
0.3 m wave heights at synthetic gauge points is represented
as a bar chart.

4.1 Probability of exceedance for the entire synthetic
earthquake catalogue

The graphics are generated to demonstrate the probabilities
of occurrences corresponding to the minimum and maxi-
mum water surface elevations and inundation depth calcu-
lated from tsunami sources of each earthquake in the syn-
thetic earthquake catalogue.

It should be noted that in the case of having same magni-
tude of earthquakes in two different earthquake scenarios of
the catalogue, the probability of occurrences of these scenar-
ios would be the same. However, since they would have dif-
ferent focal depths, the tsunami initial wave height calculated
by Okada (1985) will be different, which results in the cal-
culation of different hydrodynamic parameters. As a result,
the graphs show different maximum water surface elevations
having the same probability of occurrences.
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Figure 6.

In Fig. 6, graphics of probabilities of occurrences accord-
ing to maximum and minimum water surface elevation (max-
imum water withdraw) and inundation depth for the next
50 years are represented. According to these graphs, tsunami
wave heights up to 1 m and withdrawal of the waves around
1 m have approximately 65 %± 15 % probability of occur-
rence. The Tuzla region includes various shipyards, ports,
and other important facilities. Therefore, the probability of
the withdrawal of the water is as important as maximum
water surface elevation. The 1 m height of wave withdrawal
may cause the ships to be stranded at the ports and results
in extreme financial losses as observed in the 20 July 2017
Bodrum–Kos earthquake and tsunami (Yalçıner et al., 2017).

The probability of having 1 m inundation depth, on the other
hand, can be predicted as about 60 %± 10 %. The residual of
probability with respect to the fitted curve for each data point
is demonstrated right after the percentage of probability with
the ± sign.

The situation for the next 100 years (Fig. 7) obviously
shows that probability of occurrences would increase with
time. The probability of exceedance of 1 m water surface el-
evation and 1 m wave withdrawal reaches up to 85 %± 10 %.
Probability of exceedance of inundation depth also changes
significantly. The probability of exceedance of 1 m inunda-
tion depth is found to be around 80 %± 10 %.
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Figure 6. Probabilities of exceedance corresponding to maximum water surface elevation, minimum water surface elevation, and inundation
depth for the next 50 years. Black dots represent the probability of exceedance of the tsunami hydrodynamic parameter for each event in
the catalog. The blue line is the best fit curve to the data and the dashed blue line is the 95 % confidence boundary of the fitted curve. The
residual of the fit is represented for each probability curve.

Considering the results of the whole simulation, the worst-
case earthquake scenario generated tsunami waves with max-
imum water surface elevation equal to 1.8 m, minimum water
surface elevation (maximum withdraw) equal to−2.1 m, and
inundation depth equal to 1.6 m. The probability of occur-
rence of this event is 35 % for the next 50 years and 60 % for
the next 100 years.

4.2 Probabilistic tsunami inundation maps for the
Tuzla test site

Inundation maps of the Tuzla domain are also prepared for
the next 50 and 100 years in the GIS environment. Even if
inundation depth is on the order of a few centimeters, it can
lead to people being dragged by undertow in coastal regions
due to the high current velocities of the waves (Jonkman and
Penning-Rowsell, 2008). Therefore, these inundation maps
have a great significance for understanding the flooded ar-
eas in the study domain and the amount of water penetrated
inland.

Generation of inundation maps is based on the probability
of exceedance of 0.3 m inundation depth. There are several
studies in the literature proving both experimentally and nu-
merically that tsunami waves with an order of 0.3 m height
have the potential to crush a human body (Jonkman and
Penning-Rowsell, 2008; Takagi et al., 2016). For this rea-
son, only the earthquake scenarios that generated inundation
depths larger than or equal to the 0.3 m threshold value are
considered.

Inundation depth files, which are one of the outputs of the
NAMI DANCE, are used for the calculation.

The inundation depth values at each grid node are replaced
with the probability of occurrence of the respective earth-
quake scenario. We repeated this procedure for all earthquake
scenarios, which has inundation depths larger than or equal
to the 0.3 m threshold.

The mean (average) probability of occurrence is calculated
at each grid node. Thus, the spatial distribution of probability
of exceedance of 0.3 m inundation depth in the inundation
zone is obtained for a specific time interval (Fig. 8).

Figure 8 shows the inundation maps of Tuzla shipyard
for the next 50 and 100 years. Most of the area in the Tu-
zla shipyard region has a probability of exceedance between
10 % and 20 % for the next 50 and 100 years. However, some
places in the northern and southern parts of the area and in-
side the bay show larger than 75 % probability of inundation
within the next 100 years. Maximum inundation distance is
observed at around 60 m at the test site.

In Fig. 9, probabilistic inundation maps of one of the most
important facilities in the study region are represented for the
next 50 and 100 years. The area has high potential to be ex-
posed to tsunami waves with a probability larger than 50 %
for the next 50 years. In 100 years, this probability increases
and varies between 75 % and 90 %. No significant inundation
zone is observed along the coast of the seawall and the penin-
sula. This may be due to the high ground elevation of these
zones. Tsunami waves are inundated up to 45 m inside the
small bay. This inundation distance could cause severe dam-
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Figure 7.

age to the shipyard and other constructions if corresponding
current velocities are also significant.

In the next figure (Fig. 10), the southern part of the Tuzla
shipyard is seen according to probabilities of inundation for
the next 50 and 100 years. Very limited area in the coastal
zone is inundated with the probability between 30 % and
50 % within the next 50 years. The probability decreases up
to 10 % at some inner locations from the coastline. For 100-
year recurrence time, the situation is almost the same. Only
minor parts of the region in the south approach the 75 %–
90 % probability of exceedance of 0.3 m inundation depth
threshold. The maximum inundation distance is calculated at
about 60 m. The inundated region does not include any im-

portant facility or structure, and the effect of the tsunami will
be minimal. The inundation distance decreases to 10 m in the
other parts of the region.

The region indicated in Fig. 11 is located inside the bay
and includes a large part of the shipyard area. This area in-
cludes lots of large and small piers and ship construction fa-
cilities. The situation is more or less the same as the previous
region (Fig. 9). The probability of having larger than 0.3 m
inundation depth changes between 30 % and 50 % within the
next 50 years, while only a few places show 75 %–90 % prob-
ability for the next 100 years along the coast. Moreover, the
maximum inundation distance is calculated as 25 m for this
zone. Even if the probability of inundation is low, these zones
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Figure 7. Probabilities of exceedance corresponding to maximum water surface elevation, minimum water surface elevation, and inundation
depth for the next 100 years. Black dots represent the probability of exceedance of the tsunami hydrodynamic parameter for each event in
the catalog. The blue line is the best fit curve to the data and the dashed blue line is the 95 % confidence boundary of the fitted curve. The
residual of the fit is represented for each probability curve.

should be taken into consideration before constructing a new
structure.

4.3 Synthetic gauges

Finally, the probability of exceedance of 0.3 m wave heights
at synthetic gauge points is presented by bar charts to con-
sider the nearshore effect of tsunami waves along the western
coast of Istanbul. Because of the closeness to the fault zone,
the southeast coasts of the city are under threat of significant
tsunami damage. Similar to the method applied during the
preparation of probabilistic inundation maps, the earthquake
scenarios with wave heights at synthetic gauge points larger
than or equal to 0.3 m are selected and replaced with the
probability of each scenario according to wave heights, and
after that the average probabilities at each synthetic gauge
point are obtained accordingly.

Figure 12 demonstrates the probability of exceedance of
0.3 m wave height at synthetic gauge points, which are about
350 m apart from each other, along the western coast of Is-
tanbul within the next 50 and 100 years. The probability in-
creases while color scale changes from green to purple. Ac-
cording to this figure, minimum probability of exceedance
is shown as 75 % at some points. Except for a few of the
228 synthetic gauge points, all points have larger than 90 %
probability of exceedance of 0.3 m wave height within the
next 50 years.

This condition is very serious since there are so many res-
idential areas and important spots such as ports and recre-
ational facilities in this region. The minimum probability of

occurrence, which can generate tsunami waves with at least
0.3 m wave heights, reaches up to 90 % for the next 100-
year time period. However, 95 % probability of exceedance
of 0.3 m wave height dominates the region for this timescale.

4.4 Uncertainties

PTHA studies include some uncertainties because of the rare
occurrence of the large events. Quantification of these uncer-
tainties generally includes the mixture of empirical analyses
and subjective judgment.

Uncertainties of PTHA can be divided into two: as aleatory
and epistemic variability. Aleatoric uncertainty is the natu-
ral randomness of the physical process. Including more data
in the analyses does not contribute to the reduction of the
aleatoric uncertainty. However, knowledge about the model-
ing process may decrease this unpredictability. The occur-
rence time of the earthquake is one of the most fundamental
aleatory variables in PTHA. This parameter is generally as-
sumed to be a time-independent variable. However, in this
study we used a time-dependent probability model, which
reduces the uncertainty on this parameter. The mechanism
of the source is considered to be another aleatory variable
for PTHA studies. The majority of earthquakes around the
world occur at well-defined plate boundaries. However, some
unidentified low-activity intraplate faults exist, which were
recently included in PTHA studies (Selva et al., 2016). More-
over, the fault volume, which is used in scaling relations
to calculate the source magnitude, is another aleatory term.
Although homogenous slip distribution is a common imple-
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Figure 8. Probabilistic tsunami inundation maps for the Tuzla study domain representing the probability of exceedance of 0.3 m inundation
depth within the next 50 and 100 years. Change of colors from green to red represents the increasing probability of exceedance (created using
ArcMap version 10.5).
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Figure 9. Probabilistic tsunami inundation maps of the northern part of the Tuzla study domain representing the probability of exceedance of
0.3 m inundation depth for the next 50 and 100 years. Change of colors from green to red represents the increasing probability of exceedance
(created using ArcMap version 10.5).
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Figure 10. Probabilistic tsunami inundation maps for the southern part of the Tuzla study domain representing the probability of exceedance
of 0.3 m inundation depth for the next 50 and 100 years. Change of colors from green to red represents the increasing probability of ex-
ceedance (created using ArcMap version 10.5).
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Figure 11. Probabilistic tsunami inundation maps of the shipyard area in the Tuzla study domain representing the probability of exceedance of
0.3 m inundation depth for the next 50 and 100 years. Change of colors from green to red represents the increasing probability of exceedance
(created using ArcMap version 10.5).
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Figure 12. Probability of exceedance of the 0.3 m tsunami wave height within the next 50 and 100 years at synthetic gauge points. The
yellow rectangles show the Tuzla study domain; change of colors from purple to green on the bars represents the decreasing probability of
exceedance (created using ArcMap version 10.5).
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mentation in PTHA, slip distribution of large events does not
show homogenous behavior. Therefore, definition of asper-
ities on the fault is another aleatoric variable which should
be considered. Tsunami numerical modeling, itself, is also
another aleatoric variable since they do not show correlation
with real observations, which are more variable than earth-
quake scenarios incorporated in PTHA (Grezio et al., 2017).
The aleatory variable affects the results because it is incorpo-
rated directly into the hazard calculations (Abrahamson and
Bommer, 2005).

Epistemic uncertainty, on the other hand, consists of the
lack of knowledge of the physical process and data. Segmen-
tation of the fault system is one of the epistemic variables
since it is not certain where the rupture will be generated
and which segments will be triggered. In addition, there are
many different scaling relations, which cause another epis-
temic uncertainty, between the fault area and magnitude. It
is also important for tsunami generation whether the fault
rupture reaches the surface or not. Thus, updip and downdip
limits of the fault rupture can be considered another epis-
temic variable (Grezio et al., 2017). Accurate probability dis-
tributions of input cannot be known. For example, one can-
not assume that probability of occurrence of an event follows
Poisson distribution. However, return periods of events do
not simply fit this distribution (Gonzalez et al., 2013). Unlike
aleatoric uncertainty, epistemic uncertainty can be decreased
when more information is available (Godinho, 2007). Differ-
ent techniques, such as logic tree, the Bayesian method, etc.,
have been developed to reduce these uncertainties.

In this study, a probabilistic model is established based on
the characteristic fault model of PIF, which is a segment of
NAF, one of the best studied fault zones in the world. It is
also assumed that the entire fault area is ruptured, reaching
the surface and generating a homogenous slip for each event.
The maximum magnitude range of the fault is calculated with
the Wells and Coppersmith (1994) scaling relation. All these
assumptions naturally include uncertainties which are natu-
rally reflected in this PTHA study. In addition, MC simula-
tion itself also includes uncertainty as being performed 100
times to create synthetic earthquake scenarios. The effect of
uncertainty in the aperiodicity parameter also exists and can
be reduced by including different parameters for MC simula-
tion. Therefore, the tsunami hydrodynamic parameters asso-
ciated with the probability of occurrence of the correspond-
ing scenario preserve the same uncertainty.

5 Conclusion

In this study, time-dependent PTHA is performed in the Tu-
zla region of Istanbul for the purpose of understanding the
probability of having tsunami inundation after the PIF rup-
ture. The study combines tsunami numerical modeling with
a probabilistic approach, which is modified by probabilistic
seismic hazard analysis. Probability calculations have been

done based on the time-dependent BPT model, which de-
pends on the time period passed since the last characteris-
tic event and the recurrence time of the earthquake. After
that, the synthetic earthquake catalogue is generated using
the MC simulation technique, and tsunami numerical mod-
eling was performed depending on this earthquake catalogue
using NAMI DANCE code in a GPU environment.

Results of this PTHA study were presented in three dif-
ferent ways for the next 50 and 100 years. The first one was
the graphs showing the change of probability with the max-
imum and minimum water surface elevation and inundation
depth for different time intervals. Secondly, the probabilis-
tic tsunami inundation maps are generated for the Tuzla re-
gion. Finally, the probability maps of exceedance of 0.3 m
wave heights at synthetic gauge points are represented with
bar charts.

The main results of this study can be summarized as fol-
lows.

– According to the distribution of probability with respect
to tsunami hydrodynamic parameters, the probability of
exceedance of 1 m maximum positive and negative wa-
ter surface elevation is 65 % within the next 50 years.
The probability for 1 m inundation depth is 60 %.

– Considering probabilities for the next 100 years, 85 %
probability of exceedance of 1 m was calculated. For
1 m inundation depth, probability of exceedance of
about 80 % is obtained.

– As a result of the whole simulation, 1.8,−2.1, and 1.6 m
were calculated for maximum and minimum water sur-
face elevation and inundation depth, with the probabil-
ity of 35 % for the next 50 years and 60 % for the next
100 years.

– Inundation maps indicate that inundation of tsunami
waves that are equal to or larger than 0.3 m have prob-
ability mostly higher than 10 % and 20 % for the next
50 years and 100 years, respectively. The probability of
occurrence of 0.3 m inundation depth was calculated as
a maximum of 75 % for the next 100 years. Maximum
inundation distance is calculated as 60 m and observed
in the southern part of the finest 3 m grid-sized study
area.

– Probabilistic results for the exceedance of 0.3 m wave
height at synthetic gauge points demonstrate that only a
few of them have a probability between 75 % and 85 %;
however several points have more than 90 % probabil-
ity for the next 50 years. Probability of exceedance in-
creases by more than 95 % for the next 100 years.

The tsunami impact of the PIF rupture along the Tuzla coast
is very important as proposed by the results of this study.
However, as further steps of this study, PTHA can be done
for the other critical test sites along the Marmara Sea that
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are close to the PIF segment. In addition, it is also advanta-
geous to consider the other fault segments, with their various
rupture combinations and complex rupture probabilities in
Marmara Sea, as further studies. Previously in the framework
of the MARSITE project, tsunami arrival times and max-
imum wave amplitudes were calculated along the coast of
the Marmara Sea using different earthquake scenarios, and
a tsunami scenario database was obtained with a determin-
istic approach (Ozer Sozdinler et al., 2020). Results of this
study show that arrival time of tsunami waves is very short
in Marmara Sea for most of the scenarios, which compli-
cates the tsunami early warning operations and evacuation
actions. However, due to the short arrival times of the first
tsunami waves along the Marmara coast, the tsunami inun-
dation scenario databases would be of great importance in
such conditions. It would be the best option for the decision
makers and civil protection authorities to also have the inun-
dation maps prepared with a probabilistic approach in order
to realize the possibility of exceedance of selected threshold
inundation depth for certain critical coastal locations.

This study shows a methodology for PTHA with a time-
dependent probabilistic model using only one fault (PIF) as
the earthquake and tsunami source. Furthermore, this study
can be developed including some faults connected to the
PIF in both time-dependent and time-independent proba-
bility calculations, and BPT probability can be combined
with static Coulomb stress changes on the faults. The BPT
model can also be improved by including different aperi-
odicity parameters. The probability of occurrence of earth-
quakes is the main focus of this study to perform tsunami
hazard analyses. However, submarine landslides are other
critically important sources for tsunami generation in the
Marmara Sea. Probabilities of sliding areas and the slid-
ing volumes can be considered in the analyses. Subma-
rine landslide-generated tsunamis can be coupled with the
earthquake-triggered tsunamis in order to obtain integrated
PTHA in the Marmara Sea.

Data availability. Data of scenarios used in tsunami nu-
merical modeling, inputs for probabilistic tsunami inunda-
tion map for 50 and 100 years, and ∗.kml files for prob-
ability of exceedance in bar charts can be accessed at
https://doi.org/10.6084/m9.figshare.12033789 (last access:
27 March 2020) (Bayraktar, 2020). Further information can be
made available upon request to the corresponding author.
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Probabilistic tsunami forecasting for early warning
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C. Sánchez-Linares6, H. B. Bayraktar 2,3, R. Basili 2, F. E. Maesano 2, M. M. Tiberti 2, F. Mele2,

A. Piatanesi2 & A. Amato2

Tsunami warning centres face the challenging task of rapidly forecasting tsunami threat

immediately after an earthquake, when there is high uncertainty due to data deficiency. Here

we introduce Probabilistic Tsunami Forecasting (PTF) for tsunami early warning. PTF expli-

citly treats data- and forecast-uncertainties, enabling alert level definitions according to any

predefined level of conservatism, which is connected to the average balance of missed-vs-

false-alarms. Impact forecasts and resulting recommendations become progressively less

uncertain as new data become available. Here we report an implementation for near-source

early warning and test it systematically by hindcasting the great 2010 M8.8 Maule (Chile)

and the well-studied 2003 M6.8 Zemmouri-Boumerdes (Algeria) tsunamis, as well as all the

Mediterranean earthquakes that triggered alert messages at the Italian Tsunami Warning

Centre since its inception in 2015, demonstrating forecasting accuracy over a wide range of

magnitudes and earthquake types.
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Tsunamis may strike a coastal population close to the
earthquake location within minutes after its origin time.
Tsunami Early Warning Systems (TEWS) must forecast

the tsunami threat rapidly following any potentially tsunamigenic
earthquake. Tsunami impact prediction immediately after the
event is subject to large uncertainty stemming mainly from the
unknown details of the earthquake source, which implies large
variability in the estimated tsunami inundation1. The uncertainty
is amplified by the necessity to act rapidly to maximize the eva-
cuation lead time. Given the available information, a vast number
of different forecast outcomes are possible. The forecasts should
assign a probability to each of these outcomes (like in, for
example, weather forecasting2,3). Present-day tsunami forecasts
are non-probabilistic, producing single-outcome forecasts. The
uncertainty is often accommodated only implicitly through
conservative choices (e.g. safety factors) to minimize missed
alarms, at the cost of increasing the rate of false alarms4. Sup-
plementary Table 1 summarizes all the symbols and acronyms
used.
For sufficiently distant earthquakes, tsunami forecasts can be

constrained with moment tensors5, yet these forecasts are still
characterized by significant uncertainty. Deep-sea sensors, where
available, can further help constraining the tsunami through
inversion and data assimilation techniques4,6–10. However,
locally, the tsunami may inundate after minutes11 and initial
tsunami forecast must be performed solely from basic earthquake
parameters. Innovative rapid source estimation techniques are
steadily progressing12–19, and next-generation sensors and
methods could bring dramatic improvements to reduce
uncertainties7,20–23. Yet, some uncertainty sources are
intrinsic24,25, and the earthquake and tsunami characteristics may
be surprising and remain elusive even years after the event26–28.
Therefore, uncertainty quantification and reduction efforts must
be synergistically undertaken.
The need to deal with uncertainty in early warnings has been

long recognized29,30 and recently emphasized also for TEWS31,32.
Following the 2004 Indian Ocean tsunami, the cost of “insist(ing)
on certainty” was highlighted33. Despite subsequent attempts to
define methods to quantify tsunami forecast uncertainty34–38,
operational tsunami forecasting in TEWSs is still non-
probabilistic (http://www.ioc-tsunami.org/). Specifically, Tsu-
nami Service Providers (TSPs) worldwide adopt Decision
Matrices (DMs, look-up tables linking earthquake parameters
with alert levels) or Envelopes (ENVs, selecting a local maximum
over a selection of scenarios), or consider one or a few Best-
Matching Scenarios (BMSs, scenarios matching the seismic and/
or tsunami data available at the time of the estimation) to define
initial alert levels16,32,39–45. Specific strategies (e.g. maximum
credible magnitude, safety factors, etc.), usually rooted in the
analysis of past events, are sometimes adopted to implicitly
replace uncertainty quantification16,32, but TSPs do not yet apply
any formal probabilistic method. For example, a proxy of existing
uncertainty is sometimes derived from the statistics of the sce-
narios selected with ENV methods [e.g. 44) or of the along-coast
variability of the forecast [e.g. 45). However, in this way, the
tsunami forecast cannot be tested quantitatively against obser-
vations and consequently the procedure cannot be calibrated46,47.
In addition, the commonly adopted safety measures generally
tend to overestimate the forecasts, although underestimations
may still occur43.

The use of a single estimation of the tsunami intensity to define
alert levels, typical of non-probabilistic forecasts, also mixes to
some extent scientific tsunami forecasts with political decision
making. For example, a safety factor introduces a positive bias in
the forecast to reduce the missed alarms rate: this is not done to
improve the accuracy of the forecast, but to reduce potential

societal consequences, which is a typical decision-making task.
The decision-making process requires competences beyond the
field of tsunami science. It is therefore considered fundamental to
have effective and transparent uncertainty communication from
scientists to decision makers48–51 to make the process more
traceable and to optimize the risk-reduction management33,51–56.
For fast evolving phenomena like tsunamis, this can be realized
adopting pre-defined rules, to be used automatically during an
emergency.
An effective and transparent communication of uncertainty

may be realized through Probabilistic Tsunami Forecasting
(PTF). The PTF workflow should allow for a full propagation of
uncertainty, from the earthquake hypocentre and magnitude
estimation to alert-level definition, accounting for all the available
information at the time of the estimate. This also clarifies the
separation between scientific components (uncertain tsunami
forecast through hazard curves) and political duties (alert-level
definition for risk mitigation), following the hazard-risk separa-
tion principle57,58. This strategy is similar to the one used for
seismic risk reduction: scientists determine the probability of
different shaking intensities in the target area in a given time
window (e.g. 50 years), and decision makers define seismic
building codes selecting a design exceedance probability59.
Similarly, the rule of conversion from PTF to alert levels can be
defined by the authorities-in-charge by selecting a target prob-
ability value (e.g. one particular percentile), corresponding to a
pre-defined level of conservatism for risk-reduction actions. This
separation, enabled by the uncertainty quantification, is becoming
a standard also for long-term coastal planning against
tsunamis60–63 and tsunami building code definition64.

In this work, PTF is introduced and applied to a wide range of
past events to discuss the feasibility of its real-time application
and to test it against observations. To illustrate its potentiality for
tsunami warning, we define alert levels from PTF based on dif-
ferent probability thresholds corresponding to different levels of
conservatism, and we compare the results with the alert levels that
would have been obtained applying a range of current-practice
non-probabilistic methods. We demonstrate that PTF is statisti-
cally accurate in its forecasts for a wide range of events, from
relatively small crustal events to large magnitude subduction zone
earthquakes. We show that PTF can be timely produced also for
near-field tsunami warning and that, adopting real-time conver-
sion rules established in advance, probabilistic forecasts
accounting for real-time uncertainty can be transparently trans-
formed into alert levels, allowing to implement any desired level
of conservatism based on all the available information at the time
of the estimation.

Results
The PTF workflow. The procedure introduced here, coined
Probabilistic Tsunami Forecasting (PTF), explicitly quantifies the
uncertainty in real-time forecasts and enables uncertainty-
informed alert-level definition in operational tsunami early
warning (Fig. 1). PTF can provide the probability distribution of a
Tsunami Intensity Measure (TIM, e.g. maximum run-up or near-
coast wave amplitude) at multiple forecast points almost imme-
diately, as soon as an earthquake location and magnitude esti-
mates are available, typically few minutes after origin time
(Fig. 1a). The method rigorously embeds uncertainty in tsunami
forecast at the time of the estimate by quantifying the probability
distribution for one (or more) TIM at each forecast point
(Fig. 1c). The quantification is managed through an ensemble of
tsunami scenarios defined by a set of sources weighted by the
probability of being consistent with available real-time observa-
tions (Fig. 1a; e.g. seismic, geodetic, tsunami), as well as with local
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earthquake and tsunami hazard information (Fig. 1b; e.g., pre-
computed tsunami scenarios, long-term frequencies) derived
from hazard and/or other long-term forecast models. PTF can be
refined continuously with updated information (i.e., seismic
moment tensor, tsunami data, Fig. 1a) to reduce the uncertainty
in the forecasts (Fig. 1c). The evolving probability distributions
can be used to define at any time, according to pre-defined rules,
alert levels for specific points/areas (Fig. 1d), which in turn cor-
respond to actions for risk reduction (for example, evacuation).
We implement PTF for near-field tsunami warning, that is, for

sites proximal to the earthquake epicentre. This is a challenging
task for TEWS16. To define the needs for near-field tsunami
warning, we take as reference tsunami warning in the
Mediterranean Sea. Here, seismically induced tsunamis always
originate relatively close to some coastline, and tsunami
inundation often occurs minutes after the earthquake. To
maximize lead times, TSPs in the NEAMTWS (North-eastern
Atlantic, the Mediterranean and connected seas Tsunami
Warning System) currently adopt Decision Matrices (DMs, e.g.,
http://www.ioc-tsunami.org/), with a target delivery time of
10–15 min after earthquake occurrence (Fig. 1a). With this tight
temporal constraint, while the seismic hypocentre and magnitude
probabilities can be computed from real-time earthquake data to
input PTF, faulting geometry and mechanism probabilities are
not yet available. However, this missing information can be
derived from long-term seismo-tectonic constraints. Considering
that hypocentre and magnitude solutions are typically available in
3–8 min42, the target delivery time of alert-levels can be matched
by PTF with computational times on the order of a few minutes
(e.g. <2 min, Fig. 1a).
For the Mediterranean Sea, long-term source information is

derived from the regional hazard database NEAMTHM1865–67,
which assumed that earthquakes may occur in principle every-
where in the Earth’s crust. Thus, NEAMTHM18 provides a
database of sources covering the entire Mediterranean Sea with
any potential mechanism. For any given target event, an ensemble

of sources and corresponding probability consistent with both
real-time and past observations (as expressed by NEAMTHM18
focal mechanism probability66,68) can be defined starting from
real-time information. Using the NEAMTHM18 pre-computed
database of tsunami simulations, the sources in the ensemble are
propagated to the forecast points (Supplementary Fig. 1) through
numerical tsunami simulations. The hazard is quantified
combining source probabilities and tsunami propagation, includ-
ing an additional basic treatment of tsunami modelling
uncertainty accounting for approximations in source, propaga-
tion, and inundation39. Maximum wave amplitude extrapolated
at 1 m depth (hereinafter near-coast wave amplitude) is selected
as the TIM. The PTF computational time correlates with the
ensemble size, which can be controlled by adopting cut-offs on
source probabilities. Testing four different cut-offs, we found that
a cut-off of 2 standard deviations offered a good compromise
between stability of the results and computational time
(<2 minutes, see Supplementary Table 4), matching the target
response time for the warning (Fig. 1a). So, while computation
times can be lowered further by code optimization, PTF can be
applied in its present configuration to any possible source in the
Mediterranean Sea, satisfying response-time demands for its
operational use for NEAMTWS.
This PTF implementation can be extended to any other source

area by (i) defining a database of potential sources covering the
selected target area adopting the same strategy used in
NEAMTHM18 for the Mediterranean, and (ii) using a workflow
for high-performance computing69 to produce all the simulations
required in the ensemble of sources. The details of the PTF
implementation can be found in Methods.

PTF for the 2003 Mw 6.8 Zemmouri-Boumerdes earthquake.
To illustrate the PTF workflow, we first consider the 2003 Mw 6.8
Zemmouri-Boumerdes earthquake (Fig. 2) that occurred on the
Tell-Atlas fold-and-thrust belt (likely on a south-dipping fault),
triggering a tsunami causing damage at several harbours in the

Fig. 1 PTF concept. a Timeline for tsunami warning: real-time information from an earthquake that just occurred and from the ongoing tsunami gradually
integrates b local long-term hazard information, c progressively increasing the precision of the probabilistic forecasts (hazard curves) produced by the
Probabilistic Tsunami Forecasting (PTF). d At any time, PTF can be transformed into alert levels (here represented as traffic lights) useful for decision
making. In the current study, implementation refers to the time t1, when only earthquake magnitude and hypocentre estimates are available from real-time
observations.
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western Mediterranean9,70–72. PTF is implemented in hindcasting
mode, retrospectively simulating a real-time application. Real-
time data (hypocentre and magnitude; Supplementary Table 2)
are reconstructed using standard CAT-INGV operating
procedures42 on archived data (details in Supplementary Note 1).
The resulting discrete joint distributions (Fig. 2a) for hypocentre,
faulting geometry and mechanism are consistent with the most
recent moment tensor estimations (Supplementary Table 3,

refs. 5,19,73–75). Marginal distributions for strike, dip, and rake
angles emphasize the expected geometry and mechanism for an
event at that location, based on the local seismotectonics derived
from the long-term hazard model66–68. The fault plane ambiguity
is correctly resolved with the south-dipping reverse fault more
probable than the conjugate plane.
For this event, the ensemble of sources is composed of

approximately 15,000 scenarios (Supplementary Table 4). The

Fig. 2 PTF workflow: example for the 2003 Zemmouri-Boumerdes tsunami. a PTF source model: marginal distributions for earthquake magnitude and
depth (left), location (centre), and fault parameters (right) for the ensemble describing source variability. Several revised moment tensor solutions are
plotted as vertical lines for comparison. Distributions are consistent with seismic observations. For example, the ~30° southern-dipping realistic fault plane
is strongly emphasized in the PTF source ensemble. b PTF results: tsunami intensity measure distribution (hazard curve) at four selected coastal locations
in the western Mediterranean compared with observations (dashed vertical lines), and hazard maps involving all forecast points derived from different
PTF’s statistics (mean, 5–95th percentiles), showing uncertainty and spatial pattern of the tsunami forecast. c NEAMTWS Alert levels assigned from
observations40, decision matrix (DM), best-matching-scenario (BMS), envelope (ENV), and PTF mean, and 85, 95, and 99th percentiles; dashed lines
indicate local and regional areas, as defined in the DM (Supplementary Table 8). NEAMTWS considers three alert levels (Information, Advisory, and
Watch), each corresponding to off-coast tsunami wave amplitudes intervals: alert levels are assigned comparing tsunami near-coast wave amplitude with
alert-level intervals.
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results are visualized through probability density functions for the
selected TIM at each forecast point (Fig. 2b). TIMs and relative
uncertainties are visualized through conditional hazard maps,
whereby the mean or percentiles of the probability distributions
are mapped. Despite combining a large number of scenarios, the
forecast impact pattern is largely controlled by the dominant
source orientation and by the tsunami propagation and generally
agrees with observations. The specific observations can be
compared with PTF distributions summarizing the expectations
at each specific point. For the four locations reported Fig. 2b, all
observations fall inside the PTF distributions. The tsunami
observed in the Balearic Islands was relatively larger than
expected and thus is in the right tail of the PTF distribution.
Alert levels are then assigned directly from PTF distributions

(Fig. 2c). Different methods can be defined based on PTF
statistics and/or on evaluating the probability of pre-defined TIM
intervals (see Supplementary Note 2). In the NEAMTWS, three
alert levels (Information, Advisory, and Watch) are defined
corresponding to near-coast tsunami wave amplitudes that are
negligible (we here assume <10 cm), 10–50 cm, >50 cm respec-
tively (or twice these values for maximum run-up). Alert levels
for each location are here assigned by comparing a TIM derived
from the PTF with the relevant amplitude intervals. Different
statistics of the PTF (e.g. the mean or a given percentile) can be
used to extract this value, leading to alternative definitions of alert
levels. Overall, we adopt the simplest method for illustrative
purposes: mapping PTF statistics into alert levels’ reference
intensity intervals, which is equivalent to the definition of
probability thresholds for long-term hazard (see Supplementary
Note 2)60–64.
To discuss PTF alert-level assignments, we take as reference

three methods representative of standard non-probabilistic
operational procedures to define alert levels. As reference for
conservative methods, we consider (i) the Decision Matrix (DM)
adopted by the Italian tsunami warning centre CAT-INGV
(representative for the NEAMTWS operational procedures, see
Supplementary Note 3), and (ii) an envelope (ENV) method
resembling the one described in Catalan et al.44, in which the
maximum tsunami wave amplitude is selected at each coastal site
from a set of scenarios compatible with the ongoing event. We
consider all scenarios within half fault length (derived from76,77)
from the epicentre and with magnitude best approximating the
available magnitude incremented by 0.5. As reference for single
simulation methods (current practice in many TSPs
worldwide32,39–41), we consider a single Best-Matching Scenario
(BMS) selected as the most likely source in the PTF ensemble,
whose simulation results are used to define alert levels.
For 2003 Zemmouri-Boumerdes, DM and ENV-based alert

levels tend to be more conservative than those based on the PTF
mean or on the BMS (Fig. 2c). DMs associate alert levels with
forecast points depending on earthquake location and magnitude
through a discontinuous, decreasing function of the distance from
the epicentre (see Supplementary Note 3). Thus, DMs do not
consider that both source orientation and bathymetry control the
tsunami propagation pattern and features, which is evident also
for this event70,71. ENV, BMS, and PTF-based alert levels on the
other hand embed the tsunami propagation footprint through
numerical simulations. BMS results are comparable to PTF
central values (e.g. the mean, Fig. 2c), ENV results to the high
percentiles of the PTF. All non-probabilistic methods produce
specific alert-levels, while PTF allows specification of a desired
level of caution through choosing higher or lower percentiles,
corresponding to TIMs with a high or low probability of
exceedance. Consequently, the overall spatial extent of and the
number of high alert levels (i.e. advisory/watch) is controlled by
the selected percentile (the higher the percentile, the larger the

affected area), with high percentiles including less likely larger
TIMs from the tail of PTF distributions. Figure 2c shows that
several observations correlate better with conservative simulation-
based methods like ENV and high-percentile PTF alert levels (e.g.
95th percentile): the reason is that this event challenged
numerical modellers due to basin and harbour-related amplifica-
tions that occurred for instance in the Balearic Islands harbours71.
Either higher resolution tsunami modelling is introduced, or only
a conservative definition of alert levels can then include these
values.
To examine more closely the reliability of PTF TIM forecasts,

we compare PTF distributions directly with all the available
observations (Fig. 3). Direct observations for this tsunami include
data from several coastal sea-level stations (hereinafter, tide-gauge
data) in the western Mediterranean70–72. The time-series are,
however, few and coarsely sampled40–42. To enrich the
comparison, we also consider other indirect observations and
hind-casted models. Several moment tensors and finite-fault
model estimates are available in the literature (Supplementary
Table 3). A spatially homogeneous tsunami dataset for the test
can be obtained simulating the tsunami from such available
finite-fault models78–84, retrieved by separate or joint seismic and
geodetic data inversion (details in Supplementary Note 4). These
data collectively sample our best assessment of the epistemic
uncertainty of the source process almost two decades after the
earthquake. The numerical simulations map this source uncer-
tainty onto a synthetic tsunami dataset.
The maximum near-coast wave amplitude simulated from

finite-faults models (red lines) generally falls within PTF’s inner
confidence intervals (defined through the 5–95th percentile
interval), and the means (red and black solid lines) are highly
clustered (we note that PTF distributions are not necessarily
Gaussians and percentiles are here used to define confidence
intervals). This agreement indicates that, while our PTF
implementation simplifies the source representation (since
NEAMTHM18 scenarios use uniform slip for crustal faults), the
source variability in the PTF ensemble and the log-normal
distribution we use to quantify the uncertainty embed the
tsunami source uncertainty, as quantified by the range of available
finite-fault models46,78–84.

Conversely, observations at the tide-gauges are more scattered
(yellow squares in Fig. 3). Several observations from Eastern
Spain, the Balearic Islands, and western Italy fall into the tails of
the PTF distributions. The misfits of some local maxima of the
observations are present for both the PTF’s central values and
numerical simulations from best-fit source models. These misfits
are probably due to the above-mentioned basin and harbour-
related amplifications that likely occurred in several areas71, and
that cannot be reproduced without high-resolution tsunami
numerical modelling. As they fall inside the upper tail of the PTF
distributions, only the alert level corresponding to conservative
choices (high percentiles of the PTF) include such maxima,
resulting in a better correlation with the observations noted above
(Fig. 2c). This demonstrates that even the relatively simple
uncertainty model implemented to manage uncertainty in
tsunami generation and propagation (see “Quantification of
PTF’s propagation factor” in Methods) can deal to some extent
with these hard-to-predict amplifications, leading to forecasts that
can encompass observations within uncertainty bounds. In the
future, forecast precision may be improved through more
advanced techniques to better quantify local amplifications and
related uncertainty63,85–91. Notably, also other potential sources
of local deviations exist, for example, the contribution of
seismically induced landslides. While significant efforts in these
directions are ongoing, research is still required to fully
implement such methods in near-field real-time forecasts92,93.
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PTF for the 2010 Maule Mw 8.8 earthquake. To illustrate PTF
behaviour for larger magnitudes, we implement the PTF also to
the NEAMWave17 ICG/NEAMTWS exercise scenario, a syn-
thetic Mw 8.5 earthquake on the Hellenic Arc in southwestern
Greece (see Supplementary Note 6), and to the 2010 Maule, Chile,
Mw 8.8 earthquake94 (Fig. 4). The latter required the extension of
PTF implementation to cover the Chilean subduction zone (see
Methods)95. For such large magnitudes, the source model
includes in the ensemble only subduction earthquakes (Supple-
mentary Table 4) with heterogeneous slip distributions also fea-
turing shallow slip amplification65–67,95,96, mimicking to some
extent tsunami earthquakes (events generating a tsunami larger
than expected from seismic magnitude96,97).

The 2010 Maule event provides the opportunity to compare
PTF results with a larger and higher-quality dataset of tsunami
observations, including coastal and deep-sea tsunami sensors
(DART and tide-gauges) and run-up data98,99 (Fig. 4). To
compare with tsunami amplitude at the coast, run-up data are
halved (100 and reference therein). The results for this event show
that PTF inner confidence intervals (15–85th percentiles)
encompass all the observations, including run-ups (Fig. 4e,f),
despite their possibly relatively large measurement errors. This
result is coherent with the results of Catalan et al.44, who show
that the scenario envelope includes observations. The prediction
at tide-gauges (Fig. 4c,d) shows a slight tendency towards
overestimation, which remains within the uncertainty bounds.
For the much smaller Mw 6.8 Zemmouri-Boumerdes event in the
Mediterranean, we observed an opposite tendency towards
underestimation. A possible reason is that, for smaller earth-
quakes on steeper faults like this, local resonances and
amplification play a more important relative role due poorly
modelled smaller tsunami wavelengths; for the Mw 8.8 Maule
event, shelf and basin resonances occur also at longer periods101,
but they are well-captured on a 30 arc-sec grid (see Methods).

Moreover, the scenarios in the PTF ensemble of large magnitudes
(Mw > 8.166) are modelled on the 3D subduction geometry and
with randomly sampled slip distributions (see Methods; the
smaller crustal scenarios discussed above are instead modelled
with simplified planar-fault uniform-slip sources). Consequently,
the tsunami modelling uncertainty (accounting for tsunami
generation, propagation, and inundation simplifications102,103)
might be slightly overestimated in this case, as source
representation is more advanced for such magnitudes, then
compensating some underestimation due to local tsunami effects.
This possible slight overestimation is also present when focussing
on DART, even if may be less pronounced due to the larger
source-target distance (Fig. 4a,b). Notably, a systematic extension
to more case studies with extended high-quality observations may
allow, in the future, a finer tuning of the adopted uncertainty
modelling in each of the PTF factors, for example, using the large
set of tsunami observations that is available in the Pacific
Ocean46,47.

Testing PTF. To quantitatively test PTF performance for
operational use in TEWS, we should define an unbiased set of
events for which a tsunami warning issuance is required,
regardless of whether a detectable tsunami was actually generated
or not (the Gutenberg-Richter distribution of earthquake mag-
nitudes implies that most of tsunami warnings will be issued close
to this condition). To this end, we built a testing dataset (Fig. 5a)
composed of all Mediterranean earthquakes that triggered alert
messages from the CAT-INGV TSP, without any filter or selec-
tion. This includes all the twelve seismic events with initial
magnitude estimate Mw ≥ 6.0 that occurred since CAT-INGV
became operational in 2015. We added the 2003 Zemmouri-
Boumerdes event, to enrich the set of events in the western
Mediterranean, reaching a total of thirteen events (Fig. 5a).

Fig. 3 PTF for the 2003 Zemmouri-Boumerdes tsunami. a selection of forecast points for specific comparison and b–d graphical comparison between
tsunami observations (yellow squares) and maximum wave amplitudes evaluated from numerical models (red lines: mean and 15–85 percentiles with solid
and dashed lines, respectively), and PTF statistics (black lines: mean and percentiles with solid and dashed lines, respectively) at all forecast points in b
northwest Africa, c southwest Europe, and d the main islands.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25815-w

6 NATURE COMMUNICATIONS |         (2021) 12:5677 | https://doi.org/10.1038/s41467-021-25815-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Observations for the tests include rapid and revised moment
tensor estimates, and tsunami observations from the available
tide-gauges and from run-up surveys, when available (more
details in Supplementary Note 6).
PTF accuracy is evaluated through formal hypothesis testing to

assess the consistency between forecasts and available data and, if
need be, to reject the PTF uncertainty model (see Methods). Both
intermediate (source mechanism) and final (tsunami intensity)
forecasts are tested. Results indicate that overall focal mechanism
forecasts are accurate, such that the PTF source model is never
rejected (results in Supplementary Table 7). Tsunami data and
forecasts are compared simultaneously at all forecast points with
observations, and spatial correlations are accounted for (see
Methods). Although tsunami observations in many cases are
limited, and sometimes with a poor signal-to-noise ratio due to the
small event sizes, statistical tests confirm PTF accuracy also
regarding tsunami forecasts, both for the events generating an
observable tsunami (e.g. the October 30, 2020 Mw 7.0 Samos-Izmir
event, Fig. 5b; results for all the six events of this type in
Supplementary Fig. 4) and the ones for which a tsunami has not
been observed (e.g. the 2017 Mw 6.5 Lesbos event, Fig. 5c; the
results for all the seven events of this type in Supplementary Fig. 5).
The tsunami generated by the Mw 7.0 Samos-Izmir earthquake
(maximum run-up ~3.8m104), as well as by the May 2, 2020 Mw
6.7 Ierapetra event, offered us a unique opportunity to perform a
blind test for PTF, since the complete evaluation system was in
place before the events occurred. The same test can be applied to
the 2010 Maule tsunami, using both deep-sea and coastal
observations as well as near-field and far-field observations; the
results confirm the overall accuracy of PTF also for large
magnitude event (Supplementary Fig. 4). On the other hand, for

all the events that did not generate any measurable tsunami, PTF
consistently forecasts an essentially negligible tsunami (<0.10m) at
all the observation points (Supplementary Fig. 5). While specific
events may tend toward over/underestimation, altogether they pass
the statistical test (accuracy level of 0.05). More details in testing
results are discussed in Supplementary Note 7.

PTF and alert levels. Using the same testing dataset, we finally
compare the PTF alert levels with those produced by the reference
non-probabilistic methods (DM and BMS, Fig. 6). The comparison
with data (Fig. 6a) is limited to the forecast points where obser-
vations are available. Comparisons are grouped in three categories
as: correct-assignment (assigned= observed); false-alarm
(assigned > observed); and missed-alarm (assigned < observed).
The three non-probabilistic methods give significantly different

results (Fig. 6a and Supplementary Table 9). DM and ENV
produces relatively few missed alarms (about 3%) but generates
many false alarms (about 55%). This high percentage is in line
with other conservative methods worldwide4. Conversely, BMS
optimizes the correct assignments (about 86%), minimizing false
alarms but increasing the missed alarms (11%). This reflects the
fact that DM and ENV are worst case oriented to reduce missed
alarms. On the contrary, the aim of BMS is to stay as close as
possible to the actual event.
The alert levels computed from PTF shows a large variability,

which depends on the selected percentile. High percentiles of PTF
compare with conservative non-probabilistic methods (DM and
ENV). The highest PTF percentiles (e.g. the 99th) are even more
conservative than DM and ENV, further reducing missed alarms
at the cost of further increasing false alarms. Decreasing the PTF

Fig. 4 PTF for the 2010 M8.8 Maule tsunami. a Epicentre and location of deep-sea (DART) observations (yellow triangles) and b corresponding
comparison between deep-sea observations and PTF forecasts (black lines and grey areas). c Epicentre (star), average of the slip distributions used in the
ensemble, and location of coastal observations (tide-gauges and run-up as blue triangles and green circles, respectively; run-up is halved to compare with
wave amplitude, see Supplementary Note 6). d Graphical comparison between coastal observations and PTF forecasts (black lines and grey areas). e, f
Same as b, c zoomed over the area with run-up measures.
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percentile, the number of correct assignments progressively
increases: most false alarms are suppressed, while missed alarms
increase. The increase of correct assignments (green bars in
Fig. 6a) and the decrease of false alarms (orange bars) are due to a
reduction of the overall number of alerted (advisory or watch)
forecast points (Fig. 6b), observed at all forecast points
independently from the position and number of observations.
PTF median and mean match with a best-match method like
BMS. The BMS and the PTF median produces a similar
percentage of correct alarms (85% vs 86%), while the PTF mean
produce a slightly larger percentage of correct alarms, fewer

missed alarms, but more false alarms and alerted forecast points
(Fig. 6a, b).
Overall, PTF percentiles encompass and go beyond the range

of behaviours and associated level of conservatism of DM, ENV,
and BMS. The percentage of missed alarms can be strongly
reduced with conservative choices (PTF high percentiles), that is
from 14% to <1% passing from the median to the 99th percentile,
at the cost of an increase in the percentage of false alarms, from
<1 to 53%. Intermediate-high PTF percentiles (80th or 85th) are
somehow between such extrema, progressively modulating the
rates of missed/correct/false alarms.

Fig. 5 Testing PTF. a Testing dataset and monitoring area of CAT-INGV; additional details are reported in Supplementary Table 2. b Example of test for
events with observed tsunami: the case of 2020 Mw 7.0 Samos-Izmir earthquake. PTF misfit distribution ([PTF-Observations]) is evaluated as the
difference between near-coast wave amplitudes sampled from the PTF source ensemble and observations and staked for all observation points (see
Methods). Gray bars report the misfit distribution, along with its 15, 50, and 85 percentiles (dashed lines). The model is rejected if the testing value (null
misfit, purple line) falls in the rejection area (light red area); otherwise, the test is passed. c Example of test for events without observed tsunami: the case
of 2017 Mw 6.5 Lesbos earthquake. The PTF distribution ([PTF]), obtained sampling from the PTF source ensemble, is expected to encompass small values.
The model is rejected if the testing value (the 95th percentile of [PTF], purple line) falls in the rejection area (light red area: near-coast wave
amplitude < 0.1 m); otherwise, the test is passed. To keep spatial correlations, in both [PTF-Observations] and [PTF] the uncertainty in propagation is
averaged (see Methods). All the other case studies are reported in Supplementary Figs. 4 and 5.
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Hence, PTF allows better interpretation of the role of
conservatism in present-day non-probabilistic methods, for an
explicit and systematic selection of the desired level of
conservatism.
Finally, we note that PTF helps overcoming the potential

instabilities of DMs with events close to the defined magnitude
thresholds. This instability can be well illustrated through the
recent 2020 Samos-Izmir event. In the first minutes after
the event, real-time magnitude estimations oscillated just around
the DM threshold of Mw= 7 (with uncertainty bounds ~6.8–7.2,
see Supplementary Table 2). As a consequence, small oscillations
in the central magnitude could determine a significant change in
the alert levels; for example, using the reference DM of CAT-
INGV, all regional forecast points (<400 km) would pass from
advisory to watch, and regional forecast points (>400 km) from
information to advisory (see Supplementary Fig. 6), with a
number of alerted forecast points passing from 297 (29 watch) to
1107 (297 watch). On the contrary, PTF solutions are not based
on any threshold and they account for estimation uncertainty,
then they are stable with respect to such oscillations.

Discussion
We present an approach dealing with uncertainty in real-time
tsunami forecasting and linking alert-level definition for tsunami
early warning to such uncertainty, coined Probabilistic Tsunami
Forecasting (PTF). Current practices do not quantify uncertainty
in tsunami forecasting and define alert levels deterministically. To
reduce missed alarms, they typically adopt safety factors that
increase the number of false alarms. PTF addresses this issue
through explicit uncertainty quantification, linking alert levels to
the desired level of conservatism.
This approach has been implemented for near-field tsunami

warning and tested against all available data in the Mediterra-
nean, including two blind tests (the recent 2020 Mw 6.7 Ierapetra
and Mw 7.0 Samos-Izmir earthquakes), as well as for the 2010
Mw 8.8 Maule earthquake and tsunami, one of the largest events
ever recorded. The results show that PTF is statistically accurate
in its forecasts, ranging from relatively small crustal earthquakes
to large magnitude subduction zone events.
We have shown that uncertainty forecasts can be quantitatively

and transparently transformed into alert levels, using real-time

Fig. 6 Alert levels from PTF and non-probabilistic methods. We compare the assigned and observed alert levels based on DM, ENV, BMS, and PTF
statistics for the 13 events in the testing dataset considered in this paper (Fig. 5a). a Average percentage of correct- (green), false- (yellow) and missed
alarms (red) at forecast points with observations. b Average total number of forecast points with advisory and watch levels at all forecast points. Note that
CAT-INGV DM is less conservative than the original NEAMTWS DM. The different PTF statistics allow covering the full range of conservative choices,
encompassing the range defined by existing non-probabilistic methods. The selection of a specific PTF percentile can be explicitly linked to a pre-defined
level of conservatism, quantifying the expected rate of false/missed alarms.
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conversion rules established in advance. Current practice bases
this transformation on some generic rules defined in agreement
with authorities, fusing the scientific and political aspects of
defining alert levels16,32,39–45. As quantitative information about
how certain is a forecast is not available, is not based on the
effective real-time uncertainty on observations, and is not com-
municated, it is not possible to be sure regarding the degree of
conservatism that is being applied. The formal quantification of
uncertainty of PTF allows instead accounting for real-time
uncertainty, covering explicitly the full range of possible choi-
ces, from conservative methods minimizing missed alarms to
best-guess methods maximizing correct alarms. In this way, the
desired average performance can be explicitly selected, allowing
optimizing choices for each risk-reduction action. Choosing such
rules requires competences outside tsunami science, as they
depend on decision-makers needs, on acceptable risks, tolerated
false/missed alarms rates, and other contextual factors. In any
case, not only missed alarms but also false alarms may generate
significant economical and societal consequences4,105. Consider-
ing that both missed and false alarms are due to uncertainty in
the forecast, and both exist in current-practice methods, a
transparent management of uncertainty is preferable48–51, for
example quantifying the potential socio-economical con-
sequences of alternative choices, as evaluated from the expected
long-run rate (over multiple events) of false/missed
alarms33,51–56,106–111. Real-time uncertainty forecasts could also
be exploited in the future by decision makers to define new
strategies for risk management. Indeed, a range of different risk-
mitigation actions (also beyond evacuation, such as the activation
of mitigation procedures in industrial plants or automatic stops in
lifelines) can lead to different choices for different targets and/or
different actions with different tolerances to missed and false
alarms52–54. This possibility is prevented in present-day common
practice, but is made possible by an explicit quantification of
uncertainty in real-time. This approach to tsunami warning
would also complement the ongoing efforts towards uncertainty
reduction through enhanced real-time tsunami monitoring cap-
ability (GNSS, DART, SMART cables6,21) and increase of real-
time computational capability23. These elements have been
already emphasized by the United Nation Decade of Ocean Sci-
ence for Sustainable Development (2021–2030, https://
www.oceandecade.org/).

More extensive testing against tsunami data worldwide will
allow a thorough calibration of the uncertainty quantification
framework, eventually introducing strategies to reduce uncer-
tainty without losing accuracy. Here, by implementing a PTF
applicable worldwide, we have set the scene for both hindcasting
and blind tests of PTF performance against events of any mag-
nitude, similarly to other testing experiments (http://
cseptesting.org/). Further exploiting high-performance comput-
ing infrastructures, we can extend quantitative testing of tsunami
forecasts and their underlying science worldwide to a larger set of
tsunami events46. Moreover, several important specific issues are
still only partially dealt with, like, for example, tsunami
earthquakes97 or more complex coastal dynamics. Testing and
calibration must include these specific aspects to make PTF
operational and fully suitable for science-informed decision
making.

Methods
Probabilistic Tsunami Forecasting (PTF) evaluation. The uncertainty existing at
the time t>tE on the potential tsunami generated by the event E occurring at the
time tE is summarized through a probability distribution conditional upon E. The
corresponding survivor function hEðx; p; tÞ ¼ PðX>xj E; p; tÞ describes a hazard
curve for a given Tsunami Intensity Measure (TIM) x in the target forecast point p,
corresponding to the probability density function dhEðx; p; tÞ. The function
hEðx; p; tÞ can be estimated from the uncertain knowledge about E at time t based

on an ensemble of tsunami simulations corresponding to tsunami sources com-
patible with the information about E available at the time t. The available infor-
mation is constituted by the estimates of the source parameter values (e.g.
earthquake location and magnitude) as derived from available seismic, geodetic
and/or tsunami records (Fig. 1); different techniques may be applied to obtain this
information, ranging from source inversion to data assimilation. The quantity and
the quality of the information available may increase through time, eventually
reducing uncertainty. Applying the total probability theorem, hEðx; p; tÞ reads:

hEðx; p; tÞ ¼ PðX > xjE; p; tÞ ¼
Z

S
PðX > xjs; pÞgðsjE; tÞds

� ∑iPðX > xjsi; pÞPðsi j E; tÞ
ð1Þ

where PðX > xjs; pÞ (propagation factor) is the probability that the earthquake
scenario s produces a tsunami exceeding the TIM value x at the location p; gðsj E; tÞ
(source factor) is the probability that each scenario s can be considered as a good
approximation of E based on the uncertainty on the source parameters at the time
t; the set S includes all the possible scenarios s in the area.

In the right-hand side of Eq. 1, we approximate the infinite set S with a discrete
set fsig, defining a finite ensemble of source scenarios resembling E. This
discretization is possible if the databank fsig is built to represent all the possible
earthquakes in the area, reasonably covering all the natural variability. The
probabilities Pðsi j E; tÞ can be interpreted as weighting factors for each source
within the ensemble. To speed up the evaluation of hEðx; p; tÞ, the databank fsig and
corresponding propagation factors fPðX > xjsi; pÞg can be prepared in advance. As
time passes, fsig and fPðX > xjsi; pÞg can be refined accounting for the incoming
information about the source and about the tsunami, eventually including data
assimilation7–10. In addition, fsig can be enhanced with new and possibly more
accurate scenarios better resembling the observations (Fig. 1a). The forecast
(Fig. 1c) and the alert level (Fig. 1d) can be updated accordingly.

The best candidate databank fsig is the source model of a time-independent
long-term PTHA (Probabilistic Tsunami Hazard Analysis102) for three main
reasons. First, PTHA source models, by construction, should guarantee or
approximate well enough the source completeness. Second, one of the ingredients
of the PTHA is the databank of fPðX > xjsi; pÞg used for tsunami propagation.
Third, PTHA provides long-term source frequency and conditional probability for
all scenarios, which makes it a suitable backup for not yet available real-time
information. It may then provide all the elements depicted in Fig. 1b.

Given that fPðX > xjsi; pÞg may be pre-calculated and used as a look-up table in
real-time, the computational time is dominated by the quantification of Pðsi j E; tÞ,
the retrieval of fPðX > xjsi; pÞg from the databank and the aggregation procedure.
Being the quantification of Pðsi j E; tÞ and the aggregation computationally
inexpensive, the main time-consuming step is the retrieval of the scenarios from
the databank, which is a problem quite common in informatics that can be further
optimized by code engineering with respect to present implementation. Time can
be saved by reducing the number of scenarios (the ensemble size), for example, by
discarding scenarios with negligible Pðsi j E; tÞ through pre-defined cut-offs, whose
practical implementation is discussed in the following section. Probabilities must
be re-normalized accordingly to avoid biases. The larger the reduction, the larger
the loss of accuracy in the tails of dhEðx; p; tÞ. We stress that by coupling
appropriate cut-off and specific code engineering, computational time can be
probably reduced to a few seconds.

The presented formulation is in principle valid also for non-seismic tsunami
sources. However, source parameters are more difficult to obtain in real-time for
non-seismic sources and source variability is less constrained. For the same reason,
also the creation of scenario databases is more challenging. As a result, present-day
PTHA studies are primarily focused on earthquakes92,102. Since TEWSs are
nowadays mostly devoted to seismic sources only, as a starting point we will also
focus our attention to seismic sources.

Quantification of PTF’s source factor. The source factor of Eq. 1 deals with the
real-time uncertainty on the source of the event E, quantifying the proximity
between the scenarios fsig and E, based on information available at time t > tE. In
principle, PðsijE; tÞ can be estimated using any type of real-time observations,
including seismic and geodetic data, as well as tsunami records.

To deal with local tsunamis, delivery time for alert levels should be shorter than,
say, 10 min (Fig. 1). For t � tE < 10', no direct measurements of the sea level
anomaly associated with the ongoing tsunami are typically available, thus PðsijE; tÞ
should be estimated based on source parameters. Each scenario si can be
parameterized as σ i ¼ σ iðMk; cl ; omÞ, whereMk is the magnitude, cl the geometrical
centre of fault, and om a vector with all of the other rupture parameters (e.g. strike,
dip, rake, slip, other kinematic rupture parameters). Consequently, PðsijE; tÞ can be
factorized as a chain of conditional probabilities:

PðsiðMk; cl ; omÞjE; tÞ ¼ Pðomjcl ; Mk;E; tÞPðcljMk; E; tÞPðMkjE; tÞ ð2Þ
where PðMkjE; tÞ is the probability of the magnitude bin corresponding to Mk ,
PðcljMk; E; tÞ is the probability of the 3D volume bin (lon, lat, z) corresponding to
cl and depending on Mk , and Pðomjcl ;Mk;E; tÞ describes the dependence of all the
other unknown earthquake parameters on position and magnitude.

For t � tE < 100 , not even a complete seismic source characterization is usually
available. Real-time information typically includes only hypocentre and magnitude
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estimation, while robust estimates of the other parameters om are available only at
later times, such as a moment tensor solution. Nevertheless, given an earthquake of
a given magnitude at a given location, the possible values of all other seismic
parameters om are not all equally probable. They depend on the local long-term
seismo-tectonic behaviour, and their likelihood can be retrieved from long-term
PTHA, conditional to the magnitude and hypocentre real-time estimates.
Therefore, PðsiðMk; cl ; omÞjE; tÞ turns out to be a mixture of real-time (RT) and
long-term (LT) estimations:

PðsiðMk; cl ; omÞjE; t � t0 < 100Þ ¼ Pðomjcl ;MkÞLTPðcljMk; E; tÞRTPðMkjE; tÞRT
ð3Þ

where:

● the magnitude probability PðMkjE; tÞRT corresponding to the early
automatic estimation uncertainty. We assume a normal distribution and
integrate it over the magnitude bins corresponding to Mk . The normal
distribution is set with the method of moments by setting the mean to the
best-guess estimation and the standard deviations as the semi difference
between 84 and 16th percentiles, as estimated from the adopted magnitude
inversion method (see Supplementary Note 1 and Supplementary Table 2).

● the probability that cl is the centre of the causative fault can be evaluated as
follows. The position of the nucleation ζ can be seen as the (vector) sum of
the spatial position of the centre of the fault cl and the relative position of
the nucleation within the fault, χ, that is ζ ¼ cl þ χ, and thus cl ¼ ζ � χ.
Consequently, PðcljMk; E; tÞRT can be computed as the convolution
between one distribution representing the uncertain position of ζ (from
real-time information) and another distribution representing the uncer-
tainty on the position of ζ within the fault. The latter depends on Mk : the
larger the magnitude, the higher the probability that a relatively distant cl
can be associated with ζ . We assume a 3D normal distribution for both the
uncertainty on ζ and cl � ζ . The former originates from the hypocentre
estimation (see Supplementary Note 1 and Supplementary Table 2), while
the latter is set centred in 0 with a covariance matrix with diagonal
σ2xx ¼ σ2yy ¼ ðL=2Þ2, σ2zz ¼ ðW=2Þ2

2 (for an average dip of 45 degrees), and
σxy ¼ σxz ¼ σyz ¼ 0. In other words, this distribution, which describes the
uncertainty in the position of nucleation within the fault, is obtained by
multiplying three independent Gaussians with a horizontal standard
deviation equal to L/2, and a vertical standard deviation
ðW=2Þ sinðπ=4Þ ¼ W=ð2 ffiffiffi

2
p Þ. The fault dimensions W and L are evaluated

using empirical scaling relations76,77 for crustal and subduction interface
earthquakes, respectively. Note that Murotani et al.77 is selected to be more
conservative since it provides larger expected areas than other empirical
scaling laws available for subduction earthquakes. The convolution of these
distributions (again a 3D normal distribution) is integrated over 3D
volume bins corresponding to cl .

● the probability Pðomjcl;MkÞLT of the other earthquake parameters omis
taken from long-term hazard estimations. Most earthquake parameters
(e.g. faulting type or rupture details) mainly depend on the tectonic regime
around the fault location (as evaluated from seismic catalogues) and on the
characteristics of the source zone. For example, cl may lie on a subduction
interface, which has a dominantly reverse slip mechanism, whose exact
direction may, in turn, depend on the specific location over the slab
interface; or cl may instead lie on the neighbouring outer-rise, with a higher
probability for a normal mechanism. Other parameters (e.g. slip
distribution) may depend on both position and magnitude. If this
information is not available from previous long-term studies (at the
global, regional or local scale), maximum ignorance can be modelled using
uniform distributions until real-time information (e.g. focal mechanism
and/or moment tensor estimations) become available.

To reduce the computational effort and save time, we implemented cut-off
thresholds in the real-time estimations of Eq. 2, that is, the real-time quantification
of the uncertainty in magnitude and hypocentral location. Scenarios with marginal
probabilities smaller than the cut-off are neglected. For simplicity, the threshold in
the hypocentral location has been implemented in 2D that is marginalizing in depth.
We implemented thresholds corresponding to 1.5, 2, 2.5, and 3 standard deviations
(Supplementary Table 4). On average, passing from 2 to 3 standard deviations
increases the number of scenarios by one order of magnitude (from 103–104 to
104–105), significantly expanding the computational cost. Percentiles 5th-95th of the
PTF remain stable for standard deviations ≥ 2, and computational times are within
2’ (the longest being � 100”), which can be considered an acceptable upper-limit for
a non-engineered real-time serial application. Hence, the two standard deviations
cut-off is taken as a reference for all examples and tests discussed.

In our prototype implementation for the Mediterranean Sea, the real-time
earthquake parameter estimations are computed by the Early-Est software (see
Supplementary Note 1). The long-term information is instead based on the
NEAMTHM18 tsunami hazard model (http://www.tsumaps-neam.eu/65–67).
NEAMTHM18 includes millions of scenarios completely covering the
Mediterranean sea, considering two seismicity types for dealing selectively with
epistemic uncertainty: predominant seismicity (PS), constrained to happen inside
geometrically well-constrained subduction interfaces, and background seismicity

(BS), diffused everywhere within the crust. PS includes the Calabrian, Hellenic, and
Cyprus Arcs, while BS covers all the Mediterranean with a regular grid, including
the relatively less-constrained seismicity potentially occurring on unmapped
offshore faults and the surroundings of subduction zones (e.g. in the outer-rise).

Outside the Mediterranean, the discretization strategy defined by
NEAMTHM18 is still used, but PS sources are the subduction zones defined in
SLAB2 model112 and BS sources are modelled over a regular grid with size
~0.2 × 0.2 degree corrected to define approximately equal size cells113. Real-time
earthquake parameter estimates are taken from the literature (for the Maule case
study114) and the forecast of focal mechanisms for crustal faults from113.

Seismic fault parameters are considered less uncertain for PS than for BS. In the
BS branch, all fault parameters are set as free parameters, except for few physical
constraints: an upper bound is set for magnitude (Mk ≲ 8:1), and depth is limited
by the crustal thickness. Faults are planar with uniform slip and fault size
determined from empirical scaling relations76. For the PS branch instead, only
magnitude, position on the slab, and slip distribution are parametrized, as the
geometry is specified by the 3D subduction interface, and the rake is forced to
comply with the dominant one on the subduction segment. For Mk ≳ 8:0,
heterogeneous slip is imparted using stochastic models suitable for 3D faults96. The
magnitude is extended up to the magnitude the interfaces may host. Several
alternative strategies are considered to model epistemic uncertainty associated with
subduction earthquakes, such as different seismogenic depth ranges, scaling
relations, rigidity properties, and stochastic shallow slip amplification66,96.

The separation between PS and BS is implemented by splitting Pðsi j E; tÞ of
Eqs. 1 and 3 in two terms, that is:

PðsijE; tÞ ¼ PðsijE; t; PSÞPðPSjζ;MkÞ þ PðsijE; t;BSÞð1� PðPSjζ ;MkÞÞ ð4Þ

where PðPSj ζ ;MkÞ is the probability that the nucleation started at the point ζ on
one of the three subduction interfaces considered in the Mediterranean Sea (the
Calabrian, Hellenic and Cyprian Arcs). This is computed from the uncertainty on ζ
from the real-time estimation, considering a seismogenic volume corresponding to
each interface with a buffer of 10 km. For Mk > 8:1, earthquakes are assumed to
belong to PS, so PðPSjζ ;MkÞ ¼ 166. PðsijE; t; PSÞ and Pðsij E; t;BSÞ are both
evaluated as in Eq. 2, using the same magnitude distribution. Both the long-term
factors (focal mechanism for BS, slip distributions for PS) are taken from
NEAMTHM18 (mean of the epistemic uncertainty) for the Mediterranean case
studies and, when alternative scenarios were present in NEAMTHM18, they were
all included in the databank fsig, weighted by their epistemic credibility. For the
Chilean subduction zone, slip distributions were produced, following the same
strategy adopted in the NEAMTHM1895,96.

Quantification of PTF’s propagation factor. For each source si , the propagation
factor in Eq. 1 is based on the results of one numerical tsunami simulation, often
obtained as a linear combination of synthetic tsunamis produced by elementary sources.

The NEAMTHM18 propagation database66,67 is based on dislocations in a
homogeneous elastic medium. Seafloor deformations were processed with a low-pass
wavenumber filter (modelled as 1/cosh(kH) following Kajiura approach115, where k
is the wavenumber and H is the average sea depth nearby the fault) to obtain the
tsunami initial condition, reconstructed as a combination of Gaussian-shaped
elementary sea-level elevations. Tsunami simulations are saved at the 50m isobaths
and, in this regime, nonlinear effects are negligible116. Gaussian sources were
modelled with the benchmarked GPU-based nonlinear shallow water Tsunami-
HySEA code (https://edanya.uma.es/hysea)117, with eight hours of propagation on a
regular grid including the whole Mediterranean Sea, using the 30 arc-sec bathymetric
model SRTM30+ (http://topex.ucsd.edu/WWW_html/srtm30_plus.html). The
results are obtained at the 50 meters isobath almost evenly spaced at ~20 km from
each other along the coasts of the Mediterranean Sea (Supplementary Fig. 1 and
Supplementary Dataset 1). The time step is computed using the usual CFL stability
condition, that for a 2D, 2-step numerical scheme writes as Δt= 1/4 × CFL ×min
(Δx/λmax, Δy/λmax), where λmax is the maximum eigenvalue of the matrix associated
with the hyperbolic system to be approximated118. The CFL number retained is 0.95
(must be ≤1), and the resulting time steps depend on the scenario simulated (mesh
size and maximum propagation depth).

The NEAMTHM18 propagation database does not cover scenarios outside the
NEAM region. For the scenarios within the Chilean subduction zone, we exploit
modern high-performance computing infrastructures69, performing all the
individual simulations required to complete the source ensemble. For the Maule
case study, the simulation environment has been set as the fault is modelled with a
mesh of triangular elements preserving the variable strike and dip of the Nazca
subduction zone as in the SLAB2 model. The numerical simulations have been
performed using Tsunami-HySEA code with a bathymetric grid for the Pacific
Ocean with a spatial resolution of 30 arc-sec95.

Wave amplitudes in front of the coast are estimated from the offshore
simulation results with the basic version of Green’s law119: x1m ¼ x50m

ffiffiffiffiffi
504

p
. Unlike

in NEAMTHM18, the uncertainty related to tsunami generation, propagation, and
inundation simplifications102,103 is here modelled as a log-normal distribution,
with median equal to the modelled tsunami near-coast wave amplitude, plus an
unknown bias and a standard deviation that may be estimated by comparing
modelled tsunamis against observations102,103. This uncertainty includes
unmodeled source variability (realistic earthquakes are usually more variable than
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the scenarios in fsig), local topo-bathymetric features, as well as to the variability of
the tsunami along the coastline among different forecast points92,102. For
simplicity, we neglect the bias, and set

PðX > xjsi; pÞ ¼ 1� Φð½ logðxÞ � logðξðsi; pÞÞ�=1Þ ð5Þ
where ΦðxÞ is a standard cumulative normal distribution, and ξðsi; pÞ is the value of
the selected TIM (here, near-coast wave amplitude) evaluated at the forecast point
p due to the scenario σ i . Bearing in mind the variability set by other authors85,96,
the variance is here set to 1.

Testing source geometry and focal mechanisms forecasts. To test the
Zemmouri-Boumerdes forecast, we considered a total of 12 solutions as reported in
Supplementary Table 3, five of them based on seismic moment tensor inversion,
and the other seven obtained from geodetic finite-fault inversions (see Supple-
mentary Note 4). The null hypothesis H0 is that the estimations can be considered
a sample of our forecast model. To test H0, we randomly sampled groups of 12
focal mechanisms from the distribution Pðomjcl ;Mk; E; tÞ of Eq. 3, marginalized for
all the parameters except the angles strike, dip, and rake. Then, we computed the
log-likelihood of each group, assuming independence, and we compared the
obtained distribution with the log-likelihood of the observations. Under H0, the
rank of observations should be larger than a pre-defined conventional confidence
level (one-tailed test).

The same test is performed for all the 12 events in the testing dataset of Fig. 5a,
both collectively (all the events together) and individually (all events taken
separately). We tested both preferred fault and double-couple planes, and H0 is
evaluated at standard confidence levels. Even if the dependence of a single CMT
solution is weak, we repeated the same tests restricting to the nine events that
occurred after the production of the method68 (in September 2016).

All the results are discussed in the Main Text and in Supplementary Note 7.

Testing tsunami forecasts. The test of PTF against tsunami observations is
performed simultaneously at all the locations with available data. Considering that
they are correlated to each other, we adopted a two-step strategy. First, we sampled
scenarios from the source model PðsijE; t ¼ t*Þ of Eq. 1 and considered the spa-
tially correlated results. Second, we stacked the comparisons at all forecast points
by taking the difference between the observations and the expected value (the
mean) of PðX > xjsi; pÞ (the propagation factor) for the sampled scenarios, allowing
us to compare all locations simultaneously. In this way, the uncertainty on the
source is fully sampled, while the uncertainty on the propagation is averaged.
Under the null hypothesis that PTF source and propagation factors are not sig-
nificantly and systematically biased (in the sense of a large systematic over/
underestimation), we expect that the distribution of the differences will contain the
value 0. Where multiple observations associated with the same forecast point are
available, the difference is computed against the maximum observation to guar-
antee a balanced and robust forecast evaluation. We verified that 0 is not in the tails
of the distribution, but it is contained between the percentiles 2.5–97.5 for
α ¼ 0:05. An example of this test is reported in Fig. 5b.

Whenever the available observations are all equal to 0, a bias would be found by
the previous test, since PTF always forecasts >0. This occurs for seven events
(see Supplementary Notes 6 and 7). In this case, the test described above is
modified by verifying that 0.10 m (minimum threshold of Advisory AL) is unlikely
at all the locations where observations are available. Adopting as above α ¼ 0:05,
we tested that 0.10 m falls at percentiles larger than 95th, respectively (one-tailed
test). An example of this test is reported in Fig. 5c.

Data availability
All data generated or analysed during this study are included in this published article, in
its supplementary information files, and in the referenced datasets (e.g., NEAMTHM18:
http://www.tsumaps-neam.eu, IRIS Data Services and Data Management Center: https://
ds.iris.edu/ds, Orpheus EIDA data services: https://www.orfeus-eu.org/data, VLIZ-IOC/
UNESCO repository: http://www.ioc-sealevelmonitoring.org, Earthquake Sourve Model
Database: http://equake-rc.info/SRCMOD).

Code availability
The PTF Matlab code used for this paper is available on Github at https://github.com/
INGV/matPTF.
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Tsunamis are unpredictable and infrequent but potentially large impact natural disasters.
To prepare, mitigate and prevent losses from tsunamis, probabilistic hazard and risk
analysis methods have been developed and have proved useful. However, large gaps and
uncertainties still exist and many steps in the assessment methods lack information,
theoretical foundation, or commonly accepted methods. Moreover, applied methods have
very different levels of maturity, from already advanced probabilistic tsunami hazard
analysis for earthquake sources, to less mature probabilistic risk analysis. In this review
we give an overview of the current state of probabilistic tsunami hazard and risk analysis.
Identifying research gaps, we offer suggestions for future research directions. An extensive
literature list allows for branching into diverse aspects of this scientific approach.
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INTRODUCTION

Tsunamis are rare but potentially devastating natural hazards.
With often limited available data, a coherent framework that
incorporates data, physical assumptions (i.e., the general model of
the system), and statistical methods for hazard and risk analysis is
necessary to assess consequences affecting different layers of
societies. To further develop, standardize and document such
a framework is the underlying objective of COST Action
AGITHAR (Accelerating Global Science in Tsunami Hazard
and Risk Analysis; AGITHAR, 2020) and this article forms
one outcome of the Action.

Probabilistic tsunami hazard and risk analyses (PTHA and
PTRA, respectively) offer structured and rigorous procedures that
allow for tracing and weighting the key elements in
understanding the potential tsunami hazard and risk in
globally distributed applications (e.g., Basili et al., 2021).
Because of this, PTHA are becoming a standard basis for
tsunami risk assessment around the world. Significant
challenges in this analysis method are 1) the choice of
hypothetical events and assigning “correct” probabilities, and
ii) the impact of source regions distributed throughout an
ocean basin and, conceivably, unifying distinct types of
sources in a homogeneous probabilistic framework with a
comprehensive treatment of uncertainty. The great importance
of PTHA is due to its practical implications for society providing
information for long-term planning and coastal management in
areas where potential tsunamis may occur. Conversely, PTRA are
still less abundant and standardized than PTHA, as elaborated in
this review.

Few mega-tsunamis have been observed in the instrumental
period, a timeframe spanning from approximately the 1960s to
today. Thus, it is challenging to confidently assess the rate at
which consequential tsunamis will occur. Predominantly
seismically triggered tsunamis comprise about 80% of all
tsunamis worldwide (e.g., Harbitz et al., 2014) with the
remainder caused by landslides, volcanoes, or meteorological
phenomena.

The sparsity of background data and requirements in
engineering applications have driven the development of
probabilistic methods for assessing tsunami hazard and risk
aiming for unbiased comparisons of different hazards (natural
and anthropogenic) as well as their uncertainty quantification. In
recent years, the probabilistic framework has been increasingly
applied. However, broadly accepted approaches are not yet
defined, and potentially incompatible implementations of
probabilistic methods are used in different regions across the
world, and different tsunami source types are often treated
separately and are rarely combined.

In this study, we have documented current gaps and open
research questions related to PTHA and PTRA. We have
organized this review into two main sections, one focused on
tsunami hazard and the other on risk. We preface these topics
with a brief introduction to the probabilistic framework
underlying both PTHA and PTRA. Note that we grouped the
gaps in numerical modeling in the hazard analysis related section,
even though modeling may also be considered a cross-cutting

topic. We believe, however, that the mentioned gaps are more
related and addressed in a similar way as the other hazards related
research gaps.

While PTHA and PTRA allow for including uncertainty in a
consistent way, it is necessary to point out that it is not always
simple to describe the knowledge gaps formally, for example
through alternative models, and quantify their impact on hazard
and risk models in terms of epistemic uncertainty (i.e., caused by
lack of knowledge or data, Kiureghian and Ditlevsen, 2009).
Overall, the research gaps identified in this study are “known
unknowns” (e.g., Logan, 2009) and deserve more thorough
research efforts, in order to determine their influence on the
overall outcome of the PTHA or PTRA workflow.

This fact makes it hard to determine quantitatively the
importance of each of the research gaps. Nevertheless, we tried
to assess—in a qualitative way—the relative priority of research
gaps and discuss this in the last section of this report.

PROBABILISTIC FRAMEWORK

In this section, we present a structure for probabilistic hazard and
risk analyses. An overview is given in Figure 1. More in-depth
reviews of identified gaps related to the individual probabilistic
framework components are discussed in sections “Probabilistic
Tsunami Hazard Analysis” and “Probabilistic Tsunami Risk
Assessment”.

The purpose of PTHA is to find the probability for a tsunami
intensity measure (IM) to exceed a given threshold in a
predefined time interval. Note that, in the PTHA framework,
“Intensity Measure” is used with a meaning that differs from the
“tsunami intensity scale” used, for instance, in tsunami catalogs to
define the “size” of a tsunami or the effects it produces inland. In
the PTHA context, an IM is a physical observable strictly
connected to the physics of the process. Common IMs are
wave amplitude, flow depth, current velocity, momentum flux,
or maximum inundation height, depending on the problem
setting (Grezio et al., 2017).

Different probabilistic framework alternatives for
computational PTRA exist. One option, rooted in seismic risk
analysis, is performance-based risk assessment, presented by
PEER (Pacific Earthquake Engineering Center) in 2000. The
term performance-based is often used in contraposition to
traditional prescriptive assessment procedures for seismic-
resistant building design (Fardis, 2009). The performance-
based framework aims to provide a practical yet rigorous
workflow and has also been used for risk assessment for
hurricanes (e.g., van de Lindt and Dao, 2009; Barbato et al.,
2013), floods (De Risi et al., 2013; Jalayer et al., 2016), and
tsunamis (Chock et al., 2011; Chock, 2016; Attary et al., 2017).
This framework can be organized in different modules; for
example, hazard and vulnerability or hazard, fragility and
consequence. Modules communicate with each other through
intermediate variables and their conditional probabilities.
Examples of intermediate variables are intensity measure (IM),
damage measure (DM) and decision variable (DV). IM serves as
an intermediate variable between hazard and vulnerability. DM
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connects vulnerability with fragility and describes physical damage.
DV connects fragility with consequences and reaches out to decision-
makers with numbers of casualties, repair costs, or downtimes.
Interestingly, several risk-informed decision-making processes
related to tsunamis are based on PTHA information only (e.g.,
hazard-based evacuation zones, hazard-based land-use planning).
As an example, the criterion “flow depth (IM) larger than a threshold
(im)” can be used as a basis for decision-making (e.g., assigning
evacuation zones). In other words, an IM can act as an intermediate
variable (intensity measure) as well as a decision variable.

To illustrate the framework, suppose a finite set of N
hypothetical tsunamigenic sources representing all possible
tsunami events affecting the site of interest. Each event occurs
randomly in time and independently of all others (i.e., as a
Poisson process). The tsunami hazard curve–the main
outcome of PTHA–describes the mean annual rate of a

tsunami event affecting location x with an intensity measure
IM(x) greater than some threshold im, denoted as λ(IM(x)≥im).
This can be expressed as:

λ(IM(x)≥ im)

� ∑
N

i

λMmin,i ∫ P(IM(x)≥ im|s,m)fS|M(s|m)fM(m) dsdm (1)

where λMmin,i is the mean annual rate of occurrence of
tsunamigenic events from source i (e.g., earthquakes,
landslides, etc.) having magnitudes M exceeding Mmin, fM is
the conditional probability density function for M ≥ Mmin,i,
and fS|M is the probability density function of the set of source
parameters S given magnitude M. The aleatoric uncertainty
associated with variable source characteristics can be
represented by probabilistic prediction models of the source

FIGURE 1 | Roadmap of PTHA and PTRA frameworks: The entire process of risk evaluation needs to interact with the (risk-informed) decision-making process.
Composite multi-dimensional risk and vulnerability indicators (“Probabilistic Tsunami Hazard Analysis” section) are shown as defining the context for the complex tsunami
risk evaluation. The exposure modeling (“Probabilistic Tsunami Risk Assessment” section) defines groups of individuals and assets at risk. The horizontal flowchart at the
bottom of the figure shows the PEER-like workflow for risk assessment. Probabilistic hazard analysis (“Probabilistic Tsunami Hazard Analysis” section) discusses
estimation of the mean annual frequency (rate) of exceedance of a given value (im) of an intensity measure (IM, Eq. 1) commonly visualized as a hazard curve. The IM can
be a vector or a scalar that describes the intensity of a tsunami. Examples of IM’s are flow depth, maximum tsunami inundation height, etc.M refers in a generic manner to
the size of various tsunami sources (e.g., earthquake magnitude, landslide volume). The tsunami sources, probability and modeling (earthquake, landslide, volcanic and
meteotsunami) are discussed in “Probabilistic Tsunami Hazard Analysis” section. s denotes the vector of source parameters. N denotes the number of tsunamigenic
sources. λMmin,i denotes the mean annual frequency of tsunamigenic events exceeding Mmin from source i. “Gaps in Hydrodynamic Tsunami Modeling, Generation,
Propagation, and Run-up” section discusses hydrodynamic tsunami modeling, generation, propagation and run-up. The physical vulnerability (“Gaps in Physical
Vulnerability” section) discusses the estimation of the probability distribution for a damage measure (DM, specific value dm) given IM (specific value im), known as the
fragility function. The most common example of a DM is the physical damage state. The risk and resilience metrics section (“Gaps in Risk and Resilience Metrics” section)
discusses the estimation of various decision variables (e.g., fatalities, repair costs, downtime) denoted as DV (specific value dv). More specifically, it discusses the
probability distribution for DV given DM also known as the consequence function. The vulnerability function (Eq. 3) describes the (mean and standard deviation) of the
probability distribution for DV given IM and is obtained by integrating over the entire domain of DM. One way to show the PTRA results is through visualizing the mean
annual frequency of exceeding a specific value dv of DV (e.g., the loss exceedance curve (LEC) or the annual average loss (AAC)) shown inEq. 2, referred to generically as
the risk curve.
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parameters. Finally, p(IM(x)≥im|s,m) is the complementary
cumulative distribution function of IM given S � s and M �
m, and can be evaluated through tsunami simulations. Note that
Eq. 1 can be used only if sources are independent; a
counterexample being a landslide generated from the same
earthquake that amplifies the ensuing tsunami’s destruction.

Epistemic uncertainty in PTHA is often accounted for using
logic trees or, more recently, ensemble modeling, which allow
alternative hypotheses for uncertain parameters, each of which is
assigned a weight reflecting confidence in the respective
parameter value (e.g., Geist and Parsons, 2006; Selva et al.,
2016; Grezio et al., 2017). Equation 1 is computed for each
logic tree ‘end branch’.

Building on tsunami hazard, the tsunami loss curve at any
location is calculated by convolving vulnerability and hazard over
the entire span of IM:

λ(DV ≥ dv) � ∫
im

GDV |IM(dv|im)|dλ(IM(x)≥ im)| (2)

where λ(DV ≥ dv) is the mean annual rate of occurrence of DV
larger than a threshold dv. Vulnerability is expressed through the
complementary probability distribution function denoted as
GDV |IM(dv|im), for DV given IM, and is itself calculated by
integrating fragility and consequence functions (see also
Figure 1):

GDV |IM(dv|im) � ∫
dm

GDV |DM(dv|dm)fDM|IM(dm|im)ddm, (3)

with

• fDM|IM , the tsunami fragility function, predicts the
probability of incurring a particular value (dm) of
damage measure DM (e.g., damage states) for a given
IM � im;

• GDV |DM(dv|dm), the tsunami consequence function (e.g., the
damage-loss function), expressed as the complementary
cumulative distribution function of DV given DM.

Strictly speaking, Eqs. 1 and 2 do not consider multi-hazard
and multi-risk aspects such as cascading effects, combined
damage due to tsunami loading and earthquake shaking.
Assuming a Poisson process, the rate of exceedance λ is often
transformed the first excursion of a specific value dv for a generic
decision variable DV in the time Δt (e.g., 1 year, 50 years):

P(DV ≥ dv;Δt) � 1 − exp( − λ(DV ≥ dv)Δt) (4)

PROBABILISTIC TSUNAMI HAZARD
ANALYSIS

This section discusses gaps in PTHA, focusing on those in
tsunami sources and hydrodynamic modeling. Each subsection
includes a summary of the present state-of-the-art, followed by an
in-depth discussion of the gaps.

Gaps in Earthquake Source Representation
Existing Methods
Seminal Seismic PTHA (SPTHA) was performed using crude
source and tsunami representations (Lin and Tung, 1982;
Rikitake and Aida, 1988; Tinti, 1991). Since then, the
methodology has evolved dramatically (Geist and Parsons.,
2006; Annaka et al., 2007; Power et al., 2007; Thio et al., 2007;
Burbidge et al., 2008; González et al., 2009; Sørensen et al., 2012;
Hoechner et al., 2016; Miyashita et al., 2020), also in the
framework of large programs (e.g., Horspool et al., 2014;
Davies et al., 2018; Davies and Griffin, 2018; Basili et al., 2021).

SPTHA methodology for spatio-temporal and kinematic
source treatment and the basic uncertainty framework were
mostly transcribed from Probabilistic Seismic Hazard Analysis
(PSHA, Esteva, 1967; Cornell, 1968; a historical perspective:
McGuire, 2008). Due to tsunami data scarcity, it is challenging
to derive hazard estimates directly from historical records (Geist
and Parsons, 2006; Grezio et al., 2017). Consequently, numerical
modeling is a distinctive characteristic of SPTHA where seafloor
displacement and tsunami evolution from generation to
inundation are simulated for each scenario (Geist and Parsons,
2006; Geist and Lynett, 2014). Source parameters can be inferred
from past seismicity or from balancing the seismic moment
across a fault zone, potentially constrained by geodetic strain
rates (Grezio et al., 2017). Often only major subduction zones are
considered in SPTHA, assuming that they are the main hazard
drivers (e.g., González et al., 2009; Davies et al., 2018). In this case,
spatial characterization provides geometrical and kinematic
constraints, such as the fault geometry, preferential slip
direction, and other source zone properties. Crustal and
general seismicity from unconstrained or unknown faults is
treated with a larger uncertainty (e.g., Selva et al., 2016; Basili
et al., 2021). Earthquakes are usually simplified to having either
uniform (e.g., Horspool et al., 2014) or heterogeneous
instantaneous slip (e.g., De Risi and Goda, 2017). Seafloor
deformation is predominantly computed analytically assuming
an elastic homogeneous half-space (Mansinha and Smylie, 1971;
Okada, 1992; Meade, 2007; Nikkhoo and Walter, 2015).

State-of-the-art seismic source representation for tsunami
simulations is reviewed by Geist and Oglesby (2014) and Geist
et al. (2019). Additionally, we note some innovative efforts for
complex, yet computationally affordable, approaches to source
simulation (Melgar et al., 2016; Murphy et al., 2016; Sepúlveda
et al., 2017; Scala et al., 2020), and methods for handling source
modeling uncertainties and sensitivity including temporal aspects
and recurrence (Grezio et al., 2010; Basili et al., 2013; Lorito et al.,
2015; Selva et al., 2016; Lotto et al., 2017; Davies, 2019; Goda,
2019; Davies and Griffin, 2020).

Identified Gaps
Limited Past Events and Data to Inform Hazard Models (S1)
Completeness and quality of historical earthquake data, needed to
constrain seismic source parameters, varies greatly depending on
the history of the investigated geographical region (Stucchi et al.,
2004; Albini et al., 2014). Event catalogs are generally too short to
account for the source frequency needed to model large average
return periods in PTHA. The description of earthquake
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recurrence and of the tail of the frequency-magnitude
distribution is highly uncertain (Kagan, 2002; Geist and
Parsons, 2014; Rong et al., 2014; Bommer and Stafford, 2016).
In the attempt of constraining this uncertainty, seismic source
parameters have been estimated globally using seismic or geodetic
data or both (e.g., Bird and Kagan, 2004; Bird et al., 2015; Bird and
Kreemer, 2015); however, these types of input data are not always
considered by PTHAs. Moreover, a framework for constraining
PTHA directly from tsunami observations exists (Geist and
Parsons, 2006; Grezio et al., 2017), while treatment of
incomplete catalogs is described by Smit et al. (2017). Where
possible, other data types should also be considered. Paleo-
seismic and paleo-tsunami catalogs may help constrain or
validate at least large event recurrence (e.g., Priest et al., 2017;
Paris et al., 2020), while GPS-constrained strain accumulation can
indicate the total seismic moment rate (e.g., Hayes et al., 2018).
Care should be taken of potential biases coming from
overweighting evidence of large tsunamis in the past (Geist
and Parsons, 2006).

Fault Identification, Fault and Source Zone Parameterization
and Tsunamigenic Potential Characterization (S2)
Tsunami sources are often constrained from infrequent offshore
geologic studies investigating very large areas. Therefore, geologic
fault data are often incomplete, causing a wide range of source
knowledge levels (Basili et al., 2013). Seismic source
characterization for SPTHA generally refers to properties of
pre-existing large faults, and often only to great subduction
zone sources. All other–mostly crustal–faults are seldomly
considered in PTHA, although non-subduction earthquakes
may control tsunami hazard, especially when located near the
target site (Selva et al., 2016). Despite overall good constraint of
subduction interface geometries (e.g., Hayes et al., 2018), along-
strike trench segmentation and its impact on rupture propagation
remains uncertain, limiting rupture forecasts and hindering
estimates of subduction earthquake maximum magnitude (e.g.,
Bilek, 2010; Kopp, 2013; Grezio et al., 2017). Whenever fault
knowledge is incomplete, more randomized “background”
seismicity modeling is needed, with less predictable geometry
and seismic behavior compared to subduction interfaces
(Sørensen et al., 2012; Selva et al., 2016). Fault slip rates can
constrain seismicity recurrence parameters; these can vary both
spatially (Zechar and Frankel, 2009) and temporally (e.g., Ota and
Yamaguchi, 2004; Ramírez-Herrera et al., 2011; Tiberti et al.,
2014) but usually only averages are considered due to a lack of
information. Kagan and Jackson (2014) pointed out that more
research would be needed for focal mechanism forecasting;
identifying the prevailing faulting mechanism is a critical task
particularly in tectonically complex environments. This is
expected, in turn, to exert a strong influence on tsunami hazard.

Variety, Complexity, and Dynamics of Fault Mechanics (S3)
Source simplification represents a dominant uncertainty in
SPTHA (Geist and Oglesby, 2014). Its effect on seafloor
deformation needs to be investigated better, concerning
deformation models that incorporate complex material
properties, geometrical complexity, varying depth-dependent

fault conditions, dynamic simulations including off-fault
damage and near-surface amplification, which all may increase
tsunami hazard (Masterlark, 2003; Ma, 2012; Kozdon and
Dunham, 2013; Ryan et al., 2015; Murphy et al., 2016; Lotto
et al., 2017; Murphy et al., 2018; Scala et al., 2019; Scala et al.,
2020; Tonini et al., 2020). Secondary ruptures including splay
faulting may happen as an independent source or as part of a large
earthquake on the subduction interface (Wendt et al., 2009; Li
et al., 2014; Hananto et al., 2020).

Tsunami earthquakes produce excessively large tsunami
intensities compared to their moment magnitude (Polet and
Kanamori, 2016), and their global and local frequency is
unconstrained. A simplified characterization of tsunami
earthquakes, which is sometimes adopted, assumes larger slip
associated with less rigid materials at shallow depths to preserve
the seismic moment (e.g., Bilek and Lay, 1999; Geist and Bilek,
2001). These and other very complex ruptures, potentially
containing fault branching, rupture jumping, and mixed-mode
slip (e.g., Ulrich et al., 2019a; Ulrich et al., 2019b), are not well
represented in PTHA. On a larger scale, rupture area may be
shared by more than one subduction interface, like in the case of
triple junctions (e.g., Solomon event 2007, Lorito et al., 2016).
Due to a lack of observations the likelihood of such events is
uncertain and quantification of their relative contribution to
SPTHA therefore difficult.

Due to all these uncertainties and the extreme computational
demand for dynamic computation, numerical simulations are de
facto replaced with heterogeneous stochastic slip modeling (e.g.,
Herrero and Bernard, 1994; Mai and Beroza, 2002; Davies et al.,
2015; Sepúlveda et al., 2017), and less frequently with stochastic
stress modeling (e.g., Wendt et al., 2009). Because source
observations are relatively scarce, more statistical tests (Davies
and Griffin, 2019) are needed for source model validation.

Empirical Scaling Relations (S4)
Several different empirical scaling relations are used to define
earthquake rupture properties, such as length, width, average slip,
and earthquake magnitude (e.g., Wells and Coppersmith, 1994;
Murotani et al., 2008; Blaser et al., 2010; Strasser et al., 2010;
Murotani et al., 2013; Goda et al., 2016; Skarlatoudis et al., 2016;
Allen and Hayes, 2017; Thingbaijam et al., 2017). These
relationships quantify appreciable uncertainties that are
seldomly accounted for in SPTHA. These relations imply
stress drop and time-dependent rupture characteristics and
self-similarity of earthquakes across scales, but this is
apparently violated in some cases. For example, the 2011
Tohoku earthquake released a huge amount of slip in a
relatively small portion of the subduction interface compared
to the Sumatra 2004 or Chile 1960 earthquakes (Okal, 2015);
scaling relations are not directly applicable to abnormally slow
and unusually large shallow slip occurring in low-rigidity zones
during tsunami earthquakes.

Complex, Non-stationary Seismic Cycle (S5)
Even in the simplest subduction environment, the seismic cycle
over co-seismic, inter-seismic and post-seismic phases is complex
and non-stationary, for example due to visco-elastic rheology and
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the role of fluids (Wang et al., 2012; Moreno et al., 2014; Melnick
et al., 2017). Time-dependent models could potentially be used to
estimate the stress transfer from one earthquake to the
neighboring faults (King et al., 1994). Stress transfer from
megathrust earthquakes triggering outer-rise ruptures or
possibly even the opposite are such examples (e.g., Lorito
et al., 2016). Based on seismic catalogs, it is possible to infer
non-Poissonian earthquake recurrence, for example earthquake
clustering (Kagan and Jackson, 1991). A time-dependent model,
which could better describe the probability of earthquake
occurrence for some specific applications or timeframes, is
taken into account by only a few PTHAs (e.g., Goda et al.,
2017; Goda, 2020).

Other Constraints (S6)
It is reasonable to assume that high seismic coupling correlates
with future slip location. Under simplifying assumptions, along-
strike geodetic coupling variation can be inferred from geodetic
strain (Métois et al., 2012). Large uncertainty remains,
particularly regarding the near-trench region (Loveless and
Meade, 2011). Recent developments in seafloor geodesy and
modeling techniques are offering improved constraints (e.g.,
increasing offshore coupling resolution, Bürgmann and
Chadwell, 2014; Foster et al., 2020), and slow slip events and
consequently the stress evolution on the fault (e.g., Araki et al.,
2017). High seismic coupling combined with stress accumulation
in areas of seismic inactivity is described as a seismic gap. The
possibility of using seismic gaps to identify zones of enhanced
seismic hazard has long been debated (e.g., Bilek and Lay, 2018).
Attempts to obtain physically motivated constraints on the
maximum magnitude utilizing convergence rate, age of the
oceanic crust and sediment thickness have been rather
unsuccessful (Okal, 2015). Ongoing research explores these
and other controlling factors of subduction zone seismicity,
including small- and large-scale roughness of the subduction
interface, static friction coefficient, upper plate strain and rigidity,
dip angle and curvature (e.g., Heuret et al., 2012; Bletery et al.,
2016; Sallarès and Ranero, 2019; Rijsingen, et al., 2019;
Muldashev and Sobolev, 2020). Additionally, rupture cycles
and supercycles over multiple segments controlled by
geological asperities have been proposed (Philibosian and
Meltzner, 2020). Similar to some of the previously discussed
items in this section, no consensus has been reached on the
statistical meaning of such information and on how to frame it
within SPTHA.

Gaps in Landslide Source Representation
Existing Methods
Landslide tsunami PTHA (LPTHA) was introduced less than a
decade ago (Geist and Lynett, 2014). Its application is often
similar to SPTHA (e.g., ten Brink et al., 2006; Lane et al.,
2016), but can also be based on geotechnical interpretations
with a strong emphasis on expert judgment (e.g., Grilli et al.,
2009; Hermanns et al., 2013; Løvholt et al., 2020). Salamon and Di
Manna (2019) derive empirical scaling relations for landslides
triggered by onshore earthquakes. In LPTHA, the landslide
volume is used analogously to the seismic moment in SPTHA

as a rate of occurrence. The slide volume is generally also the most
influential factor on tsunami genesis (Snelling et al., 2020).
Landslide motion has a strong influence too (Løvholt et al.,
2015b; Yavari-Ramshe and Ataie-Ashtiani, 2016). LPTHA
source models are coupled to numerical tsunami models in
Monte Carlo simulations. Methods for simulating both the
landslide dynamics and tsunami generation range from block
models (Harbitz, 1992; Tinti et al., 1997; Watts, 2000; Grilli and
Watts, 2005; Tinti et al., 2006; Løvholt et al., 2015b), depth-
averaged rheological models of viscoplastic or granular nature
(e.g., Kelfoun and Druitt, 2005; Jop et al., 2006; Løvholt et al.,
2017; Kim et al., 2019), to computational fluid dynamics (CFD)
based approaches with different landslide complexity (e.g., Crosta
et al., 2016; Abadie et al., 2020). Submarine landslide tsunamis are
mainly characterized by the Froude number (landslide velocity
over wave celerity) measuring the degree of critical landslide
velocity, the landslide acceleration, and the rate of landslide mass
mobilization (e.g., Ward, 2001; Løvholt et al., 2015b). Subaerial
landslides are characterized by the landslide frontal area, along with
the Froude number, landslide density, and slope angle (e.g., Fritz et al.,
2003; Heller and Hager, 2010; Bullard et al., 2019).

Identified Gaps
Lack of Understanding and Likelihoods for Tsunamigenic
Landslide Volumes (L1)
For submarine landslides, we refer to the reviews of Huhn et al.
(2019) and Harbitz et al. (2014). The challenge can be attributed
to several factors:

• Limited or insufficient mapping of past landslide
occurrences. Their characteristics and lack of dating
prevent constraining the age of the sediments without
excessive uncertainty ranges (e.g., Geist et al., 2013). The
new global landslide database initiative (Clare et al., 2019) is
a good starting point for standardizing, but not yet complete
enough for feeding LPTHA. Good data coverage exists for
certain regions such as the Mediterranean (Urgeles and
Camerlenghi, 2013), Gulf of Mexico (Pampell-Manis et al.,
2016) and the US East Coast (Chaytor et al., 2009, Geist
et al., 2014).

• Limited understanding of how past landslide recurrence can
be projected into the future hazard, including time and
geological context dependency. For example, we cannot yet
generally link climatically driven trends to past landslide
frequency (Urlaub et al., 2013). However, it is concluded
that the last ice age affect present landslide probability
offshore US (Lee, 2009) and Norway (Bryn et al., 2005).

• Limited available geological and geotechnical data inhibit
identification of failure-prone sediments and discrimination
from stable areas, including weak failure zones, pore
pressure conditions or fractures, as well as obstacles or
structures. When data exist, they may be proprietary, and
a challenge is related to the need for covering very large
geographical and heterogeneous regions. A methodological
gap exists in bridging geotechnical data and slope stability
models (e.g., Carlton et al., 2019) to volume-frequency
relationships.

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 9 | Article 6287726

Behrens et al. PTHA and PTRA Research Gaps

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


• Limited data and knowledge on triggers of landslides, such
as meteorological or seismic events, impedes the
quantitative assessment of potential landslide magnitude.

Difference of Onshore and Offshore Landslides (L2)
The specific character of subaerial and submarine landslides is
often vastly different. Potential direct or indirect trigger
mechanisms are sometimes not fully understood or difficult to
embed into the probability of failure (e.g., precipitation-induced
landslides, weak zones and fluid overpressure, range of failure
propagation and cascading failure propagation spread).
Understanding and estimating the annual probability of
landslide failure in rock slopes with complex fracture patterns
and stress conditions is associated with large uncertainty.
Extensively monitored rock slopes in Norway (e.g., Blikra
et al., 2005) show large motion over decades before failure
takes place, rendering assessment of failure probability
difficult. Matching expert judgment (e.g., Hermanns et al.,
2013) to observed landslide magnitude frequency statistics
(e.g., Nes, 2018) will help aggregate understanding of landslide
frequencies and help link knowledge on failure-prone areas to
probability. While epistemic uncertainties in the described
situations are large, current LPTHA models do not
incorporate them.

Limited Constraints on Landslide Dynamics and Material
Behavior (L3)
The interplay of diverse tsunamigenic landslide parameters
makes the generation complex, implying that much less
voluminous landslides may be more effective tsunami
generators than respectively larger ones. As an example, we
note that the approximately 500 km3 Trænadjupet Slide that
occurred 4,500 years BP likely produced a moderate coastal
impact possibly of just a few meters (e.g., Løvholt et al., 2017),
while the 100 times less voluminous 1998 Papua New Guinea
landslide induced more than 10 m run-up locally (e.g., Tappin
et al., 2008). Because tsunami genesis is tightly linked to landslide
acceleration as well as rate of mobilization of the landslide volume
(e.g., Løvholt et al., 2005), quantifying the rate and nature of the
slope failure is important. Just a few studies discuss the effect of
initial failure rate on tsunami generation (e.g., Trapper et al.,
2015; Germanovich et al., 2016; Puzrin et al., 2016) and related
aspects such as remoulding and cascading failures on the
landslide tsunami generation (e.g., Løvholt et al., 2017; Kim
et al., 2019; Zengaffinen et al., 2020). How to include these
factors and their associated probabilities in PTHA is not
resolved. While advanced numerical models for landslide
dynamics exist (e.g., Tinti et al., 1997; Jop et al., 2006; Savage
et al., 2014; Si et al., 2018a; Si et al., 2018b; Kim et al., 2019; Wang
et al., 2019; Gallotti and Tinti, 2020), their complexity and variety
obfuscate understanding on which models are most suitable to be
used. Furthermore, some models (e.g., Savage et al., 2014; Si et al.,
2018a; Si et al., 2018b) are presently too comprehensive to be used
in PTHA. Procedures for linking them to measured material
properties and geological settings are not in place. Finally, fluid
resistance forces (pressure drag, skin friction, and added mass)
may be as important as the landslide properties, in particular for

submarine landslides and further investigating physical
understanding is necessary to constrain epistemic uncertainty.

Limited Availability of Benchmarks (L4)
Suitable benchmarks have recently been made available (e.g.,
Huang and Garcia, 1998; NTHMP, 2018; Kim et al., 2019), but are
arguably less mature and fewer than their hydrodynamic
modeling counterparts (e.g., Pedersen, 2008; Synolakis et al.,
2008). A challenge is a transition from simplified laboratory
tests to real-world landslide representation. Moreover, while
numerous empirical lab experiments exist, they are
significantly influenced by scale effects (Heller, 2011). Neither
complex rheological behavior nor real-world complexity is
covered in the benchmarks. Complex laboratory experiments
(e.g., Rondon et al., 2011) can be used for validating CFD
models, but CFD models are presently too computationally
expensive for tsunami hazard analysis modeling.

Limited Past Events to Inform Hazard Models (L5)
Information about past landslides and tsunamis can be used to
infer landslide dynamics uncertainty. This can be done using
landslide run-out information alone (e.g., Salmanidou et al.,
2017), which consequently yields broad epistemic uncertainties
in LPTHA. By using tsunami information, such uncertainties can
be drastically reduced (e.g., Gylfadóttir et al., 2017; Kim et al.,
2019; Løvholt et al., 2020). In practice, however, very few
landslide tsunami data are available.

Gaps in Volcano Source Representation
Existing Methods
Volcanic PTHA, coined VPTHA here, is even less developed than
LPTHA (Grezio et al., 2017). Among the few examples are the
VPTHA framework developed in Ulvrova et al. (2016) and Paris
et al. (2019) for underwater explosions at Campi Flegrei, and
Grezio et al. (2020) for pyroclastic flows of Vesuvius. Given that
risk reduction measures at volcanoes are often related to the
identification of precursory patterns preceding eruptions or to
recognizing unrest episodes with increased volcanic activity, the
volcanic hazard is often computed conditional to eruptions or
unrest, and without an explicit quantification of long-term
probability. For example, in Paris et al. (2019), the hazard
analysis (Campi Flegrei, Naples, Italy) is confined to
conditional tsunami intensity probabilities, due to probabilistic
realizations of eruptions with different vent size and location.

Identified Gaps
Variety of Potential Volcanic Sources (V1)
Tsunamigenic volcanic events are diverse and they include both
eruptive and non-eruptive triggering phenomena, such as
underwater explosions, pyroclastic flows, lahars, slope failures,
volcanic earthquakes, shock waves from large explosions, and
caldera subsidence (Latter, 1981; Kienle et al., 1987; Begét et al.,
2005; Day, 2015; Paris, 2015; Grezio et al., 2017). A large range of
wave characteristics is typical for volcano tsunamis, even if most
such sources are localized and generate mainly short-period
waves with greater dispersion and limited far-field effects
compared to earthquake-generated tsunamis (e.g., Yokoyama,
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1987; Nomanbhoy and Satake, 1995; Le Méhauté and Wang,
1996; Choi et al., 2003; Watts and Waythomas, 2003; Bellotti
et al., 2009; Maeno and Imamura, 2011; Ulvrova et al., 2016; Selva
et al., 2019, 2020). However, tsunamis are among the farthest
propagating volcanic perils, often generating regional impact
(e.g., Krakatau, Stromboli, Ischia, etc., see for example Paris
et al., 2014; Rosi et al., 2018; Selva et al., 2019; Gallotti et al.,
2020). Notably, some of the tsunamigenic volcanic events overlap
with those recorded for seismic and landslide tsunami: flank
collapse, slope failure and even pyroclastic flows are related to
landslides (Løvholt et al., 2015b; Paris, 2015); volcano-tectonic
earthquakes occur with high frequency in volcanic areas (Paris,
2015). Such frequency information as well as understanding
material properties and transformation during flow should
draw upon volcanological expertise. It is often difficult to
define a single generation phenomenon since different
potentially tsunamigenic processes can occur during the same
volcanic episode, especially during large caldera-forming
eruptions (Paris, 2015).

Difficulties in Constraining Recurrence Rates (V2)
Since volcanic tsunami generation is so diverse, constraining
recurrence rates for the different source types as eruptive
phenomena (Walter et al., 2019), unrest episodes (Tinti
et al., 1999; Selva et al., 2020), and triggered subaerial
landslides (Selva et al., 2019) is difficult. The integration
into a multi-source VPTHA is further complicated by the
need for accounting for the complex interdependencies that
may exist among the different source mechanisms. The
hazard is often nonstationary through time (e.g.,
Bebbinghton, 2008; Bebbinghton, 2010), which represents
another challenge.

Gaps in Modeling Tsunami Generation and
Propagation (V3)
Extensive reviews on existing strategies to model volcanic sources
are found in Paris, (2015), Grezio et al. (2017) and Paris et al.
(2019). Given the complexity, an important part of the hazard
analysis is oriented toward understanding the physical
mechanism of generation, and how to represent this
probabilistically. Similar to landslide generated tsunamis,
volcano tsunami modeling suffers from the difficulty of
coupling the complex dynamics of the generating event and its
interaction with wave propagation. For example, pyroclastic flows
are complex, multi-phase phenomena involving the interaction of
high-temperature gases and volcanic clasts covering a very large
range of granulometric dimensions (Freundt, 2003; Bougouin
et al., 2020). This difficulty leads to simplified modeling schemes
(e.g., Bevilacqua et al., 2017; Sandri et al., 2018). These simplified
strategies may be too reduced for an effective constraint of their
tsunami potential (Grezio et al., 2020). Some phenomena may be
represented by empirical models (for submarine explosions, see
Paris et al., 2019, and for caldera collapse, see Ulvrova et al., 2016).
Experimental and numerical simulations coupled with field data
increased understanding of the physics and main parameters of
volcanic tsunamis (Grezio et al., 2017).

Lack of Data From the Geological Record (V4)
Tsunami is often not dealt with in the volcanological community,
although it may be more fatal than other volcanic hazards such as
lava flows or ash falls (Auker et al., 2013; Brown et al., 2017).
Consequently, a systematic investigation of tsunami-related data
in geological surveys at volcanoes is often missing. Because
different volcanic phenomena may trigger tsunamis, even
when tsunami data exist, attributing the observation to a
specific mechanism is difficult (e.g., Krakatau 1883 eruption:
Paris et al., 2014). Therefore, a systematic collection of
available volcano-generated tsunami data and linking to
potential volcanic generating processes is required. This will
imply defining a strategy of tsunami-oriented monitoring
around coastal volcanoes. It would be useful to combine such
efforts with existing data collections such as the Global Volcanism
Program (Global Volcanism Program, 2013).

Limited Availability of Well Recorded Past Events or
Benchmark Studies (V5)
Only a few past events are well constrained in terms of both the
source and of the subsequent tsunami (e.g., Unzen 1792,
Karymskoye Lake 1996; Montserrat 1997 and 2003, Anak
Krakatau 2018; Stromboli 2002 and 2019). The lack of
consensus in modeling procedures for each type of
tsunamigenic volcanic event, along with the tendency to
consider all sources as “unique”, complicates the task of
defining benchmarks for volcano tsunamis.

Gaps in Meteorological Source
Representation
Existing Methods
Meteotsunami PTHA, coined MPTHA here, was developed
only recently (see Grezio et al., 2017). A framework for
MPTHA development is proposed by Geist et al. (2014).
The dynamics of meteotsunamis are fairly well-known (e.g.,
Monserrat et al., 2006; Sibley et al., 2020), related to unusually
strong and rapid atmospheric pressure fluctuations and
resonance effects causing strong waves closely associated
with the behavior of tsunamis. The source mechanisms of
meteotsunamis are also well understood (Monserrat et al.,
2006; Pattiaratchi and Wijeratne, 2015) with a major driver
a Proudman resonance (Proudman, 1929). Because
meteotsunamis are strongly linked to (un)favorable
combinations of pressure fluctuations, shallow (shelf)
bathymetry, and directivity of the weather system, they take
place more frequently in specific geographical areas, such as in
the Adriatic Sea (Vilibić and Šepić, 2009), the Baltic Sea
(Pellikka et al., 2020), and the East Coast of the
United States (Pasquet et al., 2013). The main input data
for meteotsunamis include meteorological pressure data,
preferably with full spatial and temporal characteristics of
the pressure field for given meteorological events. Such data
can be used to provide synthetic probabilistic source scenarios
as input to an MPTHA, where an example for the Northeast US
coastline is given by Geist et al. (2014). While this field does
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not share the data sparsity issues that are associated with
volcanoes and landslides, large uncertainties persist, as
briefly discussed below.

Identified Gaps
Lack of Understanding the Potential and Likelihood for
Tsunamigenic Meteorological Patterns (M1)
A systematic assessment of potential source areas and exposed
coastal regions is not available. Some regional studies can serve as a
preliminary indication (e.g., Dusek et al., 2019; Šepić et al., 2012;
Šepić et al., 2016), but a rigorous catalog is missing. Climatological
information is likely available, but a systematic extraction of data
concerning meteotsunami potential has not been performed. It is
not clear whether the resolution of available climatological data
(e.g., from reanalysis) is sufficiently fine to allow for the extraction
of corresponding relevant meteotsunami source patterns.

High Sensitivity to Several Parameters and Lack of
Understanding of Local Amplification Factors (M2)
Whitmore and Knight (2014) demonstrate the high sensitivity of
typical tsunami impact to source parameters and hence a large
gap in knowledge on relevant localized parameters. The size,
speed, amplitude, directivity, and duration of an atmospheric
disturbance resonating with the water column in a specific
topographic setting need to be known to assess the hazard.
Therefore, such parameters need to be derived for all
tsunamigenic regions, then applied to available climatological
data sets, and finally fed into corresponding models for
assessment of hazard. An assessment of amplifying tidal
conditions in each of such regions is also missing.

Limited Availability of Benchmark Studies (M3)
While there are many individual meteotsunami events
described in the literature (e.g., Churchill et al., 1995;
González et al., 2001; Pasquet et al., 2013; Vilibić et al.,
2014), no truly validated benchmark data are available for
meteotsunami benchmarking. In principle, a similar
methodology as described in Synolakis et al. (2008) could
be followed. However, only very little unification of source
modeling has been achieved and except for preliminary
simplified tests (as in Vilibić, 2008), there exists no widely
accepted test suite. This applies in particular to verification and
validation of the probabilistic workflow of MPTHA.

Limited Past Events and Data to InformHazardModels (M4)
There is no consistent catalog of occurrences, although regional
studies have been performed (e.g., Haslett et al., 2009; Woodruff
et al., 2018). As stated before, there are no unified
parameterizations of meteotsunami sources, which could be
entered into such a catalog. Even though many individual
events are described in the literature (see subsection above),
these are by no means representative or complete to be used
in hazard models. More rigorous collection of data with the
special focus on meteotsunamis–background climatology,
meteorological situation, ocean state, topo-bathymetry–for the
diverse areas of interest would be desirable.

Gaps in Hydrodynamic Tsunami Modeling,
Generation, Propagation, and Run-up
Existing Methods
Hydrodynamic tsunami modeling includes numerical simulation
of tsunami generation, propagation as well as coastal and onshore
impact. It is an essential part of any PTHA or PTRA analysis.
Reviews of commonly applied methods are available (e.g.,
Pedersen, 2008; Synolakis et al., 2008; Behrens and Dias,
2015). The pre-eminent challenge is the need to bridge a
broad range of scales. First, in the probabilistic regime, a
comprehensive PTRA must consider a very large number of
scenarios to cover all relevant tsunamigenic sources, explore
wave physics, and quantify uncertainties. Second, for each
individual scenario source, large-scale propagation and coastal
inundation modeling (optimally at scales of 1–10 m) need to be
represented to quantify tsunami-related on-shore damages and
losses. However, the fastest HPC simulation workflows (e.g., de la
Asunción et al., 2013; Oishi et al., 2015; Macías et al., 2017; Musa
et al., 2018) still require typically 10–60 min to simulate tsunami
inundation at a scale of tens of meters, rendering them unsuitable
for extensive PTRA studies with up to millions of scenarios (Basili
et al., 2021). To overcome this “challenge of scales”, modeling
approximations are presently necessary for PTHA feasibility and
can either involve 1) largely reducing the number of inundation
scenarios (e.g., González et al., 2009; Lorito et al., 2015; Volpe
et al., 2019; Williamson et al., 2020), 2) use of approximate
models or statistics such as amplification factors (e.g., Løvholt
et al., 2012; Kriebel et al., 2017; Gailler et al., 2018; Glimsdal et al.,
2019), or 3) machine learning-based tsunami emulators (e.g.,
Sarri et al., 2012; Salmanidou et al., 2017; Giles et al., 2020).

Identified Gaps
PTHA Uncertainty Treatment for Tsunami Inundation
Processes (H1)
At present, we lack well tested local PTHA benchmarks where the
sources of uncertainties are effectively characterized, in a way that
allows their formal propagation along the PTHA/PTRA
assessment chain. Moreover, the effect of coseismic coastal
displacement due to near field sources (e.g., Volpe et al.,
2019), which affects tsunami inundation, should be
investigated more deeply, especially when using techniques for
reducing the number of scenarios. For this purpose, a large
number of inundation scenarios are needed to quantify the
epistemic uncertainty and bias caused by simplifications
introduced through approximate methods. A local PTHA
application using more than 40,000 earthquake sources
(Gibbons et al., 2020) is only a start.

Tsunami Generation (H2)
Unit source models (Kajiura, 1963; Nosov and Kolesov, 2007;
Molinari et al., 2016) of varying computational cost and
complexity approximate the volumetric deep-water source
displacements. While Lotto et al. (2019) clarified that the
horizontal momentum does not effectively contribute to
tsunami generation in deep-water sources, an extensive
sensitivity analysis of how such simplifications affect PTHA
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has not been carried out. Incorporating time-dependent and
moving sources, be it earthquakes (e.g., Ulrich et al., 2019a),
landslides (e.g., Løvholt et al., 2015b) or volcanoes, will involve
much higher computational burden. How to limit the number of
source time steps for time-dependent source modeling is sparsely
studied (e.g., Zengaffinen et al., 2020). For landslide tsunamis,
closed-form models (e.g., Watts et al., 2003; Cecioni and Bellotti,
2010) represent a simple alternative but can introduce biases
when conveyed to real geographical settings, due to
oversimplification or inadequacy for the real situation.
Subaerial landslides and volcanoes are often simplified because
the required consideration of full 3D hydrodynamics (e.g., Abadie
et al., 2020) into PTHA poses too high computational demand.
Hence, more research is needed for developing simplified time-
dependent sources compatible with PTHA demands, while
quantifying the epistemic uncertainty and bias caused by the
simplification. New methods may facilitate more detailed
characterization of past inundation scenarios and their sources
(e.g., Chagué-Goff et al., 2012; Sugawara et al., 2014; Paris et al.,
2020).

Uncertainty and Variability due to Numerical Model for
Tsunami Propagation (H3)
Most non-linear shallow water (NLSW) simulation codes
produce similar results in the propagation phase, in particular
in controlled benchmark cases (e.g., Synolakis et al., 2008).
However, clear model differences can appear due to varying
components (applied numerical method, workflow, sources,
setup etc.) in practical applications. Comparing different
numerical forecast models in the Indian Ocean, Greenslade
et al. (2014) found large variations, attributed to differences in
the workflow and source representation rather than to the
tsunami model itself. Testing how such kinds of uncertainty
quantification relate to “heterogeneous modeling practices” has
not been carried out systematically. Moreover, a rigorous
investigation of the performance of far-field propagation is
sparse (Dao and Tkalich, 2007; Davies and Griffin, 2020).
Differences in numerical dissipation and discretization can
also contribute to modeling deviations. As there is no
standardized test case for far-field propagation that could
reveal the differences in performance of different approaches,
it is pressing to address these issues more systematically. Due to
the computational burden, most PTHA applications today
employ shallow water type models, neglecting frequency
dispersion, which can lead to bias. Dispersion can be
incorporated through conventional dispersive wave solvers
(e.g., Bellotti et al., 2008; Løvholt et al., 2008; Kim et al., 2009;
Shi et al., 2012), or through manipulating numerical schemes in
NLSW codes (like MOST, e.g., Wei et al., 2008), although the
general applicability of the latter is presently not clear. A
systematic investigation quantifying the effect of dispersion (as
in Glimsdal et al., 2013) on PTHA for practical source
configurations would be desirable.

Nonlinearity and Resonances (H4)
Most tsunami simulations to date start from an ocean at rest and
assume that interaction of currents with gravity waves is

negligible. Androsov et al. (2011) demonstrated that significant
alterations of the wave height can be attributed to tidal activity. A
quantitative sensitivity analysis of this effect, its dependence on
bathymetry, and its correlation to the choice of model (NLSW) is
necessary. Huthnance (1975) described the phenomenon of
trapped waves on continental shelves that may trigger edge
waves and other amplified phenomena. Tsunami resonance
effects in Chile and the Balearic Islands are studied in
Aranguiz et al. (2019) and Vela et al. (2014). Pattiaratchi and
Wijeratne (2015) describe the effect of such phenomena as
amplifying factors for meteotsunamis. It is currently unclear
how such amplifying phenomena can be represented in the
numerical model, nor if the strength is captured adequately.

Quantifying the Influence of Modeling Assumptions and
Scaling (H5)
A hierarchy of modeling approaches, from shallow water
assumption, over dispersive long wave solvers, to Navier
Stokes type models, can be used to numerically treat tsunami
hazard analysis in varying complexity. Due to ever-increasing
computational resources, a trend toward more involved model
equations can be observed. However, a clear quantitative
assessment of the difference has only partly been performed.
Lynett et al. (2017) use extensive benchmarking to study and
compare modeling approaches to currents induced by tsunami
waves. While this study is enlightening and provides very good
benchmarking tools, further assessment is necessary to quantify
the influence of higher fidelity modeling techniques. Generally,
we note that current benchmarking (e.g., Synolakis et al., 2008)
stays behind current high-fidelity modeling capabilities.
Additionally, some benchmarks based on laboratory
experiments have issues with scaling (see Heller, 2011;
Pedersen et al., 2013), and related bias and accuracy have not
been investigated systematically.

Modeling Situations With Complex Tsunami
Inundation (H6)
NLSW models are predominantly used to simulate tsunami
inundation. However, real inundation situations involve
features too complex for NLSW approximate modeling, such
as urban structures, or damage and erosion due to debris
transport. At present, these topics are only partly represented,
often using heuristic model formulations. Examples include
spatially variable friction mapping (e.g., Gayer et al., 2010;
Kaiser et al., 2011), or porous body equivalent friction models
representing buildings (e.g., Yamashita et al., 2018). Bottom
friction parameterization is almost insensitive for offshore
modeling (see Arcos and LeVeque, 2015). However, variable
bottom friction parameterizations may pose a viable tool for
simulating detailed inundation, but large uncertainties still
prevail (e.g., Griffin et al., 2015; Macías et al., 2020). While
small scale laboratory tests exist (Park et al., 2013), the
heuristic nature of named models and the difficulty to
perform controlled tests, implies potentially large epistemic
uncertainties. Debris impact and transport are predominantly
addressed through post-disaster surveys and experimental
analysis of data so far (e.g., Nistor et al., 2017a; Nistor et al.,
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2017b; Stolle et al., 2019), and is mostly embedded in only
vulnerability analysis (see below), and not in hydrodynamic
modeling or PTHA to our knowledge. Extending the modeling
dimensions and physical complexity is desirable (e.g., Marras and
Mandli, 2021). Open and related to this issue is the influence and
potential bias of the accuracy of topo-bathymetric grids,
including filtering of structures and vegetation, on the
accuracy of inundation simulations (see Griffin et al., 2015;
Goda and Song, 2019). Unphysical bias can also be introduced
when coupling high resolution (nested) models to large-scale
propagation models as shown in Harig et al. (2008).

PROBABILISTIC TSUNAMI RISK
ASSESSMENT

This section discusses identified gaps in PTRA. We go through
current state for exposure modeling, physical vulnerability, and
risk and resilience metrics, as they naturally follow each other in a
consequence-based risk workflow (Figure 1). Methods
characterizing the complex social, organizational, and
economic context in a tsunami risk assessment are discussed
subsequently.

Gaps in Exposure Modeling
Existing Methods
Exposure data provide information about the characteristics and
location of people and assets at risk. There are several techniques
for the acquisition of exposure data, with different degrees of
resolution and precision (Pittore et al., 2017). Data from
governmental agencies are most commonly used, as they are
open and available in most developed countries. These data often
provide coverage for the entire building inventory (e.g., physical
assets) and are regularly updated for asset management (e.g.,
national technical maps) and fiscal reasons (e.g., cadastral data).
Different exposure databases exist. The Global Exposure
Database—GED (De Bono and Mora, 2014; De Bono and
Chatenoux, 2015) developed for GAR13 and updated later for
GAR15 (UNISDR, 2013; 2015) provides a global dataset at 5 km
grid resolution at inland and 1 km at coastal locations, including
data for buildings, their use, and exposed value. The 2013 and
2015 versions of the GED served as the exposure databases for the
global risk model by the United Nations Office for Disaster Risk
Reduction, which considered earthquakes, hurricanes, tsunamis
and riverine floods as hazards. The DRMKC Risk Data Hub
WebGIS tool (Antofie et al., 2019) has been developed to provide
access and sharing of EU-wide information relevant for disaster
risk management. Initiatives such as the Open Exposure Data
(OED) with roots in proprietary catastrophe modeling and
reinsurance industry, provide the opportunity to generate
exposure data, including those relevant to tsunami risk, with
interoperability between different modeling tools. These
databases mainly contain data from census or remote sensing.
A recent interview-based approach, relying on local practicing
engineers with knowledge of building features, has been adopted
for the compilation of building inventories at regional scales
(Polese et al., 2020). Careful validation needs to address possible

heterogeneity in data. At present, the only guidelines and tools
that exist for capturing and classifying exposure data for a
tsunami are the multi-hazard exposure taxonomy, and
associated tools, provided by GED4ALL (Silva et al., 2018b).

Identified Gaps
Lack of Detail (E1)
Most available exposure data have not been collected for the
purpose of tsunami risk assessment and may be missing
important information for modeling tsunami fragility or
vulnerability. For instance, population cadastral data are often
collected at the municipal, district or residential unit level,
requiring extra assumptions to determine the geographical
distribution. Tsunami hazard intensities can vary considerably
between two nearby locations. Accurate geo-localization of the
exposed assets and people is needed to obtain robust results,
necessitating a minimum resolution level for the exposure
databases. While main building construction characteristics are
often known, tsunami relevant features (e.g., building lateral load
resistance, foundation) are missing (Rivera et al., 2020). Exposure
data for critical structures and infrastructure should include
functionality information for the exposed asset. This would
allow for proper modeling and hence assessment of
community resilience, considering different services such as
healthcare and education. In other cases, data gaps and
uncertainties are associated with regulatory and privacy
limitations or outdated sources.

Lack of Exposure Data (E2)
In many developing countries, where cities have rapid
urbanization processes and long-term planning is not
consistently enforced, exposure data are not always available
or updated. Such data may be inferred from satellite and aerial
imagery, from freeware data made available from international
projects (e.g., NASA’s EOSDIS), from volunteered geographic
information systems (e.g., Huyck et al., 2011; Huyck and Eguchi,
2017; OpenStreetMap, 2020), or through intergovernmental
organizations (e.g., JRC Risk Data Hub, 2020).

Lack of Tsunami Exposure Model and Taxonomy (E3)
Significant efforts have been made in the earthquake risk
community to define a common exposure taxonomy (e.g.,
GED4GEM, Silva et al., 2018a; METEOR, Huyck et al., 2019).
However, these taxonomies do not contain all the required
structural attributes for estimating tsunami risk such as
geomorphological, land use, and land cover datasets, or
number and size of openings in buildings. A recent
development is GED4ALL, a multi-hazard taxonomy (Silva
et al., 2018b), which considers tsunami as a hazard. GED4ALL
also discusses multiple asset types like buildings, people,
infrastructure systems and crops. Common taxonomy and
attributes are fundamental to avoid heterogeneity, especially
when considering multiple asset types.

Spatio-Temporal Variability (E4)
Most exposure models are static in time and do not consider the
spatio-temporal variability of exposure components. This aspect
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is critical when modeling human exposure since there can be
daily and seasonal variations. For example, coastal regions often
attract tourists, visitors and seasonal workers, leading to
significant seasonal fluctuations in the population (Fraser
et al., 2014). Spatio-temporal variation in exposure heavily
influences the tsunami risk.

Gaps in Physical Vulnerability
Existing Methods
As tsunami losses are closely connected to damages to buildings
and infrastructure, the vulnerability component is often cut into
two parts: a tsunami-to-damage fragility function, and a damage-
to-loss consequence function (Figure 1). Advancements in
tsunami vulnerability models have significantly lagged behind
those of tsunami hazard, with almost no studies found to precede
the 2004 Indian Ocean Tsunami (Charvet et al., 2017). However,
with the recent devastating tsunamis providing a large quantity of
observed damage and loss data to develop and validate fragility
and vulnerability models, this field of study has rapidly grown.
Several empirical fragility functions for the assessment of
buildings (Koshimura et al., 2009; Mas et al., 2012; Suppasri
et al., 2014; Charvet et al., 2015; Chock et al., 2016) and
infrastructure (Eguchi et al., 2014; Hatayama, 2014) have been
derived from observed damage in the 2004 Indian Ocean, 2009
Samoa, 2010 Chile, and 2011 Tohoku tsunamis. Recently,
analytical fragility functions were derived from numerical
simulations of building response under tsunami inundation
(Petrone et al., 2017; Alam et al., 2018; Karafagka et al., 2018;
Páez-Ramírez et al., 2020), and under sequential earthquake and
tsunami impact (Park et al., 2012; Attary et al., 2019; Petrone
et al., 2020). Only a few studies exist that move from fragility to
vulnerability modeling (De Risi et al., 2017). There is a lack of
consensus on many aspects of physical fragility and vulnerability
modeling.

Identified Gaps
Limitation in Asset Types and Geographical Scope (P1)
The vast majority of existing tsunami fragility and vulnerability
models relate to buildings, few exist for bridges, fuel tanks, or
other types of infrastructure. The main reason is that most
fragility functions are empirical, and few observational damage
or loss data are available for infrastructure components. Even for
buildings, the geographical scope of existing vulnerability and
fragility models is limited. Most empirical fragility functions are
based on data from the 2004 Indian Ocean and 2011 Tohoku
events, and hence represent non-engineered buildings in
countries surrounding the Indian Ocean and engineered
buildings typical of Japan. With analytical fragility functions
only covering a small number of building types, large portions
of the world’s exposure remain unrepresented by current studies.

Effect of Multiple Hazard on Empirical Tsunami Fragility
Mode (P2)
Tsunamis are commonly triggered by large earthquakes. Near-
source, observational data on asset damage and loss collected
after the tsunami often include the combined effects of
earthquake ground shaking and tsunami inundation. Hence,

empirical fragility and vulnerability models derived from such
data inherently comprise the effects of both hazards. Therefore,
corresponding empirical fragility models may be regarded as
inappropriate for use in a tsunami-only risk assessment. Pure
tsunami damage data is rare and currently limited to non-
engineered structures (Charvet et al., 2017).

Lack of Consensus Regarding Best Tsunami Intensity
Measure (P3)
The intensity measure IM (Figure 1) links the hazard and
vulnerability components within risk models. Traditionally,
tsunami inundation maps are presented in terms of
inundation depth. While the majority of fragility and
vulnerability models adopt inundation depth as IM, other
tsunami IM have also been used such as the flow velocity or
momentum flux. The absence of inundation velocity
measurements in field data requires running tsunami
inundation simulations to use such IM (Koshimura et al.,
2009; Song et al., 2017). More recently, force-based IM (e.g.,
flow velocity, momentum flux) were used in fragility functions for
engineered buildings yielding better correlation to observed
damage than inundation depth (Macabuag et al., 2016).
However, no consensus on the most appropriate IM could be
reached. As a consequence, mismatches between representations
of hazard and vulnerability in risk modeling may exist.

Gaps in Building Analysis and Assessment for Use in
Analytical Tsunami Fragility (P4)
Buildings are often used as vertical evacuation shelters and an
assessment of their structural fragility is therefore an important
information in the risk assessment workflow. Tsunami
engineering being a younger discipline than earthquake
engineering has adopted approaches from the latter
community. This was supported by the physical similarity of
both hazards applying predominantly horizontal loads to
structures. However, there are fundamental differences in how
earthquake and tsunami loads are applied to buildings. For
example, tsunami loads affect the lower floors of a high-rise
building, whereas seismic loads are inertial forces usually causing
increasing magnitude for higher floors (Baiguera et al., 2019).
Thus, earthquakes induce large bending moments in structural
elements, whereas tsunamis typically induce large shear. Since
typical structural modeling approaches tend to prioritize flexural
effects, the bias in tsunami fragility assessment may be large.
Furthermore, seismic loads are dynamic, whereas loads from
tsunami inundation can be considered quasi-static, and Rossetto
et al. (2018) have shown that building ductility is often not crucial
in the tsunami response of structures. Although no consensus has
been reached in this regard, more fragility functions based on
static rather than time-dependent non-linear approaches are
derived now (Petrone et al., 2017; Rossetto et al., 2019). As a
tsunami applies direct pressures to a structure, non-structural
components like infill walls (and their openings) are seen to play
an important role in determining tsunami forces (Del Zoppo
et al., 2021). Furthermore, buoyancy, foundation scour and debris
impact, which significantly affect building damage from tsunami
inundation are rarely modeled (Del Zoppo et al., 2019). These
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effects are still to be investigated; therefore, published analytical
tsunami fragility functions are subjected to large modeling
uncertainties. Progress towards more comprehensive and
reliable analytical fragility and vulnerability models is needed.

Gaps in Risk and Resilience Metrics
Existing Methods
Tsunami risk assessments typically reflect the impact on the
exposed population and infrastructure. The most commonly
used decision variables (or metrics) are the number of
fatalities, injuries, affected people, besides the direct and
indirect economic losses. Direct economic losses represent the
repairing/replacement costs of damaged assets, whereas indirect
losses reflect costs as down-time, partial loss of functionality of
buildings and infrastructure, loss or reduction in network
connectivity, flow and/or capacity. These metrics can be used
in alternative approaches such as worst-case scenarios, scenario-
based for a prescribed return-period, and fully probabilistic. A
review of early methods for tsunami risk assessment can be found
in Jelínek and Krausmann (2008).

Fully probabilistic risk assessments require the integration of
hazard estimates (PTHA) with vulnerability functions (see
Figure 1, Løvholt et al., 2015a; 2019). Since the results of
PTHA are not always available, tsunami risk assessments are
often performed considering selected (worst-case) scenarios as
hazard input (e.g., Triantafyllou et al., 2019), which sometimes
represent past disasters (e.g., Daniell et al., 2017). Having the
results of PTHA available, tsunami risk assessment can also be
performed for a limited number of scenarios (e.g., Nadim and
Glade, 2006; Okumura et al., 2017). When the PTHA results are
available in the form of stochastic event sets, a fully probabilistic
tsunami risk assessment (PTRA) can be performed (Ordaz, 2000;
Strunz et al., 2011; Salgado-Gálvez et al., 2014), although these
types of analyses usually demand an extensive computational
effort (e.g., Løvholt et al., 2015a; Jaimes et al., 2016; Goda and
Song, 2019; Ordaz et al., 2019).

In a fully probabilistic tsunami risk assessment workflow, risk
results are obtained in terms of exceedance frequencies for the
above-mentioned metrics (Figure 1). For instance, loss
exceedance curves (LEC) provide the relationship between loss
values and their exceedance frequencies (Løvholt et al., 2015a;
Jaimes et al., 2016; Attary et al., 2017; Ordaz et al., 2019). The
area under the LEC corresponds to the average annual loss (AAL), a
metric that provides a long-term overview of risk and accounts for
the contribution of large and infrequent events as well as small and
more frequent ones. From the LEC, loss values associated with a
given return period can be obtained, such as loss values estimated by
Løvholt et al. (2015a) at a global level representing direct losses. The
Hazus tsunami loss estimation methodology provides state-of-the-
art decision-support software for estimating potential losses from
tsunami events (FEMA, 2017a; FEMA, 2017b).

Risk assessment is not necessarily limited to quantifying the
direct and indirect impact on exposed populations and
infrastructures. The evaluation of safety and reliability of
physical systems is of interest too and for this, fragility
functions (“Gaps in Physical Vulnerability” section) can be
integrated with hazard to obtain the frequency of exceeding a

given damage level (see Figure 1, e.g., Park et al., 2019; Fukutani
et al., 2019). The risk metrics provide valuable data also for the
assessment of quantitative resilience (also denoted as engineering
resilience), which aims to estimate the resilience of a network, an
infrastructure, or even an urban ecosystem to a specific natural
hazard (see Mebarki et al., 2016 for industrial plants, Akiyama
et al., 2020 for bridges). Quantitative resilience should not be
confused with coastal community resilience which is discussed in
detail in the following section.

Identified Gaps
Gaps Related to Characterization and Propagation of
Uncertainties (R1)
Most existing PTRA models rely on a homogeneous Poisson
process as the probabilistic backbone for the occurrence process
(Eq. 4). The Poisson model, strictly speaking, should be used for
propagating only those uncertainty sources that renew with the
occurrence of each new event (Kiureghian, 2005). This means
that propagation of other sources of uncertainties in a PTRA
framework (i.e., those that lack renewal properties), such as the
uncertainties in modeling, analysis method, and in general
epistemic uncertainties, need more research (Goda and De
Risi, 2018; Goda, 2020). One possible direction could point to
Bayesian methods (Jalayer and Ebrahimian, 2020).

Challenges in Characterizing Vulnerability Functions (R2)
PTRA lacks a clear distinction and definition of the different loss
components that are quantified through the vulnerability
functions. On the one hand, direct economic losses can be
estimated with a good degree of confidence using existing
methodologies (Pagnoni et al., 2019). Long-term direct (e.g.,
cost of maintenance) and indirect losses (e.g., down-time and
reduced functionality including business interruption) typically
represent a significant component of the total economic loss
(direct + indirect) yet require better quantitative approaches.

Lack of a Tsunami Consequences Database (R3)
There is a lack of tsunami-specific consequence databases
accounting for casualties and losses (Yamao et al., 2015).
These types of databases exist for disasters in general (e.g.,
EM-DAT) and more specifically for earthquakes (So et al.,
2012; Cardona et al., 2018). They are useful not only to keep a
consistent record of past events and the affected regions but to
disaggregate the impacts of large events in terms of losses (direct
and indirect) and casualties (fatalities and injured), besides
assessing the consequences in particular sectors (e.g., road
networks, heritage sites, etc.) at different resolution levels. The
information included in the consequences databases provides
valuable data to validate and calibrate different components of the
models (e.g., fragility curves, vulnerability functions). Some data
can be partially acquired from collections of documented
eyewitness accounts (Santos and Koshimura, 2015), or other
sources (e.g., ITIC, 2020).

General Lack of Risk Studies for Networks and Lifelines (R4)
Current implementations of PTRA are mainly focused on
residential buildings and emergency planning activities such as
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the definition of evacuation routes. However, the resilience of
coastal areas relies on conventional and strategic infrastructures
(Akiyama et al., 2013; Pitilakis et al., 2019). Conventional
infrastructure such as roads, bridges, power, water, sanitation
and communication networks, underpin economic and social
activities in most urban areas (Salgado-Gálvez et al., 2018).
Schools and hospitals support the provision of education and
health services, which are essential to recovery. Critical
infrastructures in coastal areas include harbors (nuclear)
power plants, gas and oil storage, and early warning
infrastructure, such as tidal buoys and offshore bottom
pressure gauges (De Risi et al., 2018). Such infrastructures are
complex, often interconnected and geographically distributed
systems involving multiple sectors (Duenas-Osorio and
Vemuru, 2009; Argyroudis et al., 2019), where further research
is needed to quantify their resilience to tsunamis.

Assessing Tsunami Risk in a Multi-Hazard and Multi-Risk
Framework (R5)
As triggered events, tsunamis fit naturally within a multi-hazard
framework. Moreover, there can be several cascading
consequences associated with the occurrence of tsunamis, such
as technological disasters induced by natural hazards known as
NATECH risks (e.g., the Fukushima Disaster), disruption to
supply chains, and societal impacts. Therefore, management
and decision-making for tsunami risk should be framed in a
multi-risk context. To be able to make risk-informed decisions
considering tsunamis, it is important to model the interaction of
tsunamis with other phenomena at the level of hazards,
vulnerabilities, and socio-economic consequences. An
important gap related to risk assessment for tsunamis (and in
general) is the lack of a streamlined and standard workflow for
modeling the multi-hazard and multi-risk aspects. Currently,
most studies consider the different hazards to be independent
or “simultaneous” (e.g., earthquake and tsunami as independent
events); whereas, few works consider interacting hazards such as
coupled simulation of tsunami and earthquake (De Risi and
Goda, 2016; Goda et al., 2017; Goda and De Risi, 2018; Ordaz
et al., 2019; Park et al., 2019), the cumulation of tsunami and
earthquake damages and losses (Ordaz, 2015; Attary et al., 2019;
Park et al., 2019; Petrone et al., 2020), and interaction of tsunami
and aging infrastructure (Akiyama et al., 2020).

Lack of Understanding and Quantification of Mortality (R6)
Strikingly, the 2004 tsunami with more than 226,000 dead and
missing people (EM-DAT, 2020) caused an order of magnitude
higher fatalities than the 2011 Tohoku tsunami with 19,846
(EM-DAT, 2020). Hence, past major disasters indicate that the
vulnerability to tsunami mortality of a population is much more
sensitive to demographic factors (Løvholt et al., 2014) than to
physical vulnerabilities (“Gaps in Physical Vulnerability” section).
Correlations of tsunami flow depth and number of fatalities
following the 2004 Indian Ocean, 2006 Java and 2011 Tohoku
tsunamis reveal much larger scatter than those observed in
physical vulnerability functions, even when derived from the
same events (Reese et al., 2007; Koshimura et al., 2009; Suppasri
et al., 2016). As human behavior influences mortality strongly

(Johnston et al., 2016; Blake et al., 2018), deriving simplified
vulnerability charts based on single tsunami intensity measures
may not be appropriate. Tsunami awareness and availability of
tsunami early warning systems and infrastructure are important
(Gregg et al., 2006; Fraser et al., 2014), as well as proximity to
source areas. Our understanding and ability to quantify and
assess the effect of all these factors on tsunami mortality is
still very limited.

The Weakness of Capturing Multi-Faceted Aspects of
Vulnerability (R7)
Quantitative risk assessments typically address several socio-
economic parameters (e.g., safety, downtime, direct and
indirect economic losses, and even human behavior and
response) as dimensions of consequences to disruptive
tsunami events. However, PTRA falls short in modeling some
dimensions of vulnerability that are part of a given context and
not directly caused by a disruptive event (e.g., governance-related
issues, adaptation and coping capacities, societal inequalities).
There are no established methodologies, within the context of the
PTRA framework (Equations 1–4), for characterizing context-
based impacts of tsunami on the social, political and economic
dimensions, leaving it unclear how to address these dimensions.
Integrated and heuristic approaches such as "MOVE" (Birkmann
et al., 2013) or holistic approaches as those proposed by Carreño
et al. (2007) or Aguirre-Ayerbe et al. (2018), have strived to
address the context-based and multi-dimensional nature of
vulnerability and risk and could be adapted to be used as
physical risk indicators in the outcomes of PTRA.

Gaps in Social Vulnerability,
Multi-Dimensional Vulnerability and Risk
Indicators
Existing Methods
Although not directly addressing tsunami risk, Jasanoff (1993)
pointed out the urge to bridge the two cultures of quantitative
and qualitative risk assessment, stressing the importance to view risk
in a larger context of social justice (who should we protect, from
which harm, at what cost, and by foregoing what other
opportunities). The societal factors impacting vulnerability and
risk are mainly rooted in a complex and diverse aggregate, which
varies over time and space. Qualitative vulnerability investigations
use models and frameworks considering several dimensions (e.g.,
economic, demographic, psychological, political or physical),
summarized by composite vulnerability and risk indices. These
indicators can be distinguished from the risk and resilience
metrics discussed in the previous section (“Gaps in Risk and
Resilience Metrics” section) since some of them cannot be
directly integrated into a computational PTRA procedure.
Examples of existing multi-dimensional vulnerability and risk
indicators are: The community resilience (e.g., Lam et al., 2016;
Saja et al., 2019), the urban disaster risk index (Carreño et al., 2007;
Salgado-Gálvez et al., 2016), the social vulnerability index (Cutter
et al., 2003; Flanagan et al., 2011), the Coastal vulnerability index
(McLaughlin and Cooper, 2010), Metropolitan Tsunami Human
Vulnerability Assessment (Tufekci et al., 2018).
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Identified Gaps
The Difficulty of “Quantifying” Social Vulnerability (I1)
Social vulnerability describes combinations of social, cultural,
economic, political, and institutional processes that determine
differentials in the experience of hazards and recovery from
dangerous events (Spielman et al., 2020). Experts may construct
meaningful indicators to include a social component in hazard
planning, preparation, and response. Integrating social vulnerability
research into emergency and disaster riskmanagement is essential, but
caution is required to assign quantitative elements. Integration of
social factors may allow planners and decision-makers to better
identify problems in case of destructive events and provide insights
into addressing recovery solutions (Cardona, 2001; Chakraborty et al.,
2005; Schmidtlein et al., 2008). Social Vulnerability Index (SoVI) is a
single quantitative indicator which was developed through a review of
hazard case studies by Cutter et al. (2003) examining the spatial
patterns of social vulnerability to natural hazards at the county level in
the United States. Because of the complex and multidimensional
nature of factors contributing to vulnerability, no variable has yet been
identified to fully validate SoVI. An alternative approach to assess its
reliability is to identify how the changes in the SoVI algorithm
construction may lead to the changes in the outcome. Schmidtlein
et al. (2008) investigated the sensitivity of quantitative features of the
SoVI such as the scale of application, the set of used variables, and
various geographic contexts.

Ambiguities in Definition of Community Resilience (I2)
Resilience is a frequently used term to discuss the capacity of a
society or ecosystem to recover quickly from a disaster. The United
Nations Office for Disaster Risk Reduction has defined resilience as
“the capacity of a system, community or society potentially exposed to
hazards to adapt, by resisting or changing in order to reach and
maintain an acceptable level of functioning and structure. This is
determined by the degree to which the social system is capable of
organizing itself to increase this capacity for learning from past
disasters for better future protection and to improve risk reduction
measures” (UNISDR, 2007). A comprehensive review of various
definitions of resilience can be found in Davoudi et al. (2012) and
Ayyub (2014). The definition of coastal resilience is hindered by
varying definitions and non-unified terminology, difficulties in
selecting and combining different resilience indicators, and lack
of data for validation (Lam et al., 2016). In fact, resilience is still
lacking rigorous measurement methods (Bozza et al., 2015),
especially in the context of tsunami hazard (Genadt, 2019).

Lack of Tsunami Vulnerability Index (I3)
A specific tsunami Disaster Risk Index (TDRI), similarly to the
Disaster Risk Index (DRI) developed by the UN Development
Program to compare disaster risk between countries exposed to
hazards (UNDP, 2004) or the Urban Seismic Risk Index by
Carreño et al. (2007) should be developed.

Integrated Approaches to Consider the Multi-Dimensional
Aspects of Tsunami Risk (I4)
Vulnerability and risk are multi-faceted concepts and encompass
various assets, physical, organizational, and institutional

dimensions (e.g., Herslund et al., 2016). Vulnerability and risk
assessment considering these different facets often requires
different scientific backgrounds and approaches (Hufschmidt
et al., 2005). A consequence-based approach to risk assessment
(e.g., the PEER framework, or computational PTRA in general)
has its roots in engineering. The approach follows a logical flow
from causes associated with a disruptive event toward quantifying
its direct and indirect socio-economic consequences. This
approach focuses on the physical dimension of vulnerability,
acting as a “container” of functions and services and thereby
invokes–directly or indirectly–other dimensions of vulnerability
such as social, economic and organizational vulnerability. On the
other hand, the context-based approach (e.g., approaches based
on integrated indicators) has its roots in the humanities and social
disciplines. This approach deals with the context and the
interactions between different actors, the respective territory,
the different drivers (climate, societal changes) and how
decisions can affect the overall context and the complex
interplay between actors and drivers. Needless to say, the two
approaches complement each other and have to be taken into
account in policymaking for DRR in an integrated manner
(O’Brien et al., 2007).

Considering Community Response and Organizational
Capacities (I5)
Recent tsunami events worldwide have highlighted the need to
critically revisit how human behavior in tsunami evacuation, and
more generally, the human dimension of preparedness for
tsunamis is addressed within the risk assessments. The lessons
from Japan 2011, Chile 2010 and Indonesia in 2010 and 2018
events highlight such needs. Questions arise on how and if the
different and seemingly inconsistent human behavior can be
addressed in tsunami risk assessments. Moreover, atypical
events such as the Krakatoa, Indonesia 2018, do not allow for
conventional prevention, warning and mitigation strategies. In
most cases, aid and help arrive late due to limited organizational
capacities, leaving the affected communities in even more
vulnerable conditions, especially during the first critical hours
and days after the event. Events with growing levels of complexity
are likely to continue to occur in the future and this calls for a
more in-depth consideration of how different communities
respond and how those variations can be integrated within the
risk assessment framework.

Incorporating Risk Perception in the Formulation and
Analysis of Complex Risks (I6)
Perceptions are dynamic and socially constructed. Perceptions
can change abruptly or gradually, depending on the context.
Understanding evacuation behavior requires an understanding of
risk perceptions. This can help explain why the response to
tsunami drills may be different than when responding to a
real event. It is quite challenging for risk methodologies to
consider the dynamic, complex and subjective aspects of risk
perception. Only by understanding the subjective meanings of
perceived risks allows risk communication to be designed and
applied more effectively.
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CONCLUSIONS AND DIRECTIONS

In this review, we discuss a large number of research gaps in
PTHA and PTRA. It becomes obvious that methods have
substantially improved over the past decades, but also that
open questions remain in the physical description,
conceptualization, modeling, as well as the social and
psychological dimensions of the topic.

The physics and geological complexity of tsunamigenic
sources are still not captured nor understood adequately,
leading to large uncertainties. For SPTHA, neither all
earthquake faults nor their exact location, geometry, boundary
and initial conditions (e.g., stress, friction) are fully constrained.
Statistical models of recurrence constitute the largest
uncertainties in large and rare events, including tsunami
earthquakes. Uncertainty may become excessive for landslide
tsunamis, where statistics on past events often are absent, and
our understanding of slope failure probability is limited. The need
for covering vast geographical scales, source diversity and related
uncertainties, render LPTHA extremely challenging. For VPTHA
additional difficulties arise due to the complexity of tsunamigenic
volcano sources and triggers, but they are constrained spatially.
MPTHA may benefit from a large meteorological data network
allowing for (prototypical) forecasting as well as PTHA
applications, but sensitivity to source parameters is still
unconstrained.

While modeling and parameterization of individual
phenomena are possible, they are often excessively
computationally expensive or highly uncertain due to missing
constraints on input parameters. The multiple scales involved in
PTHA from far-field propagation over oceanic distances to the
need to resolve small scale inundation features while capturing
physics and resolving uncertainties still represent an open
challenge. Yet, this solution is needed to convey PTHA
information properly into risk analysis.

Even more challenging is the situation in PTRA, where gaps
exist in the transformation of physical hazard to risk and
quantifying the uncertainties in the assessment of risk and
resilience. Key concepts, such as physical vulnerability and
mortality and their related uncertainties, are less developed
than the main PTHA elements. There are gaps regarding
selection of IM, limited observed damage asset- and location-
wise, and limited experimental validation.

Furthermore, tsunami science is immature concerning
embedding issues with intrinsically multi-hazard and multi-
risk aspects, such as the cascading events that are entangled
with tsunami hazards. A weakly developed link between
quantitative PTRA and the social sciences is a clear gap. At
this point, it is worth noting that terms “vulnerability” and
“resilience” are multi-dimensional concepts that are used both
in the consequence-based–natural sciences inspired–as well as
context-based approaches–motivated by social sciences.
Therefore, they may have quite different interpretations
depending on the analysis context.

The overarching issue is integrating all the above components
and developing an overall consistent sensitivity and uncertainty
quantification framework, to understand tsunami risk and

identify risk drivers, from the probability of the sources
causing hazards to the probability of their physical
consequences and societal impact. This understanding must be
developed and prioritized in future research.

To guide such efforts, we have performed an expert judgment
exercise that we discuss in the following subsection. It may help to
identify most pressing research needs as well as prioritize research
efforts.

Prioritizing Research Gaps
A scientific sensitivity analysis of the impact of each research gap,
as conducted for individual sources in Sepúlveda et al. (2017) or
Davies and Griffin (2020), on the overall result of a PTHA or
PTRA is certainly out of the scope of a single review paper.
However, some guidance on prioritization of efforts is certainly
desirable. Since we focused our description on research gaps, we
suggest two important metrics for the prioritization: The
susceptibility of PTHA and PTRA results on uncertainty due
to the research gap (sensitivity) and the difficulty or amount of
research effort needed to fill that respective gap (tractability).

In order to assess these two metrics, we conducted a first-pass
expert judgment among the more than 50 co-authors of this
article–all experts in one or more of the aspects of our review. A
questionnaire was designed that asked three questions for each of
the 47 research gap subsections that we have described before.
The first two questions addressed the twometrics just mentioned.
The third question asked if experts were of the opinion if the
research gap existed because of a missing theoretical
understanding, a lack of data, or both. While this somewhat
ad hoc prioritization is not as solid as a rigorous expert elicitation
(e.g., Cooke, 1991; Budnitz et al., 1997; Morgan, 2014; for tsunami
hazard see an application in Basili et al., 2021, or the discussion in
Grezio et al., 2017) and hence could be somehow biased, we
believe it still provides a valuable starting point for future efforts.
It is a qualitative broad-brush answer to the question, which
research gap may be of highest importance. More details on this
exercise are given in the Supplementary Material.

The result of this exercise is visualized in a priority matrix
(Figure 2). It may appear natural to respond first to those
research gaps that are located in the left upper quadrant of the
matrix, since these gaps are considered less difficult to solve, while
they are expected to influence the risk considerably. It can be
noted that most of the research gaps are judged hard to solve but
with a highly sensitive impact on the overall result. This seems
natural, since high impact but simple problems would have been
solved already.

Based on our qualitative assessment, we can therefore identify
some overall trends. First, we see some common challenges
related to establishing annualized source probability of
occurrence, which tend to cluster in the upper right corner of
Figure 2. This means that they are considered relatively most
important, yet hardest to solve. Of these, obtaining landslide
related annual source probabilities (L1) is considered both the
largest yet most important obstacle, while a just slightly lower
similar prioritization is evident for earthquake and volcano
sources (S1 and V2). Another aspect that is considered
important (and challenging) is the multi-hazard and cascading
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hazard aspect (R5). On the other hand, the research gaps that
appear to be least sensitive and also easy to be filled are related to
the numerical modeling of wave propagation (H3), as well as lack
of joint intensity measures (I3) and gaps related to earthquake
scaling relations (S4). Finally, we also note Figure 2 allows us to
analyze several instances of components with similar sensitivity
but with clearly different tractability. For instance, the lack of
tsunami exposure data (E2) is considered as important as
modeling complicated aspects of inundation (H6), but the
former is assumed by the authors of this paper to be more
easily achieved. Several other similar examples can be analyzed
from Figure 2.

It is noteworthy that most of the research gaps that most
experts find consensus on are highly sensitive in their impact (all
located at the upper margin of the point cloud). It is also worth

noting that most research gaps are considered to relate to data
and theory gaps and that those that relate to only a missing
theoretical understanding are considered of relatively low
sensitivity. This may be related to the fact that when we don’t
understand a phenomenon, we cannot really judge whether it
affects our results or not. In other words, this may be an
“unknown”. Whereas a data related research gap may already
have proved to be sensitively influential by a specific example, but
due to a lack of data cannot be involved concisely into the
workflow.

This priority matrix is just a very first approach. Since tsunami
research eventually aims at protecting life from natural hazard,
one could also prioritize those research gaps with direct impact
on this goal. These would be in particular those topics mentioned
in sections “Gaps in Physical Vulnerability,” “Gaps in Risk and

FIGURE 2 | Priority Matrix for all the 47 research gaps identified. Letters indicate seismic source gaps (S), landslide source gaps (L), volcanic source gaps (V),
meteorological source gaps (M), hydrodynamical modeling gaps (H), exposure related gaps (E), physical vulnerability related gaps (P), resilience related gaps (R), social
vulnerability and risk indicators related gaps (I). The size of each marker relates to the agreement of experts, larger marker size means less spread in the answers. Colors
are used to indicate if the gap is caused by missing theoretical understanding (blue), a lack of data (red), or both (cyan).
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Resilience Metrics,” and “Gaps in Social Vulnerability, Multi-
Dimensional Vulnerability and Risk Indicators” (marked with
P, R, and I; respectively).

Final Considerations
We have described and prioritized a comprehensive list of
research gaps in PTHA and PTRA. While our approach to
prioritization and the metric used to do so are to some extent
subjective, it remains for the scientific community and further
investigation as well as future incentives to decide, which
directions to choose from. Nevertheless, our priority matrix
will serve as a first impression on the weight of each of the
identified research gaps.

An important part of the future puzzle will be exploring how
uncertainties propagate to risk across disciplines. While
uncertainties are more extensively explored in earthquake-
related hazard analysis, non-seismic hazard, vulnerability,
exposure and risk are lagging behind. On the other hand,
different levels of maturity of methods and understanding will
always exist. Hence, it is imperative to develop PTRA standards
and guidelines to appropriately merge all risk analysis
components considering their different uncertainty exploration
and maturity level.

While validation of individual components has been addressed
in several of the sections in our text, validating the PTHA and
PTRA workflow as a whole is still ongoing research. Marzocchi
and Jordan (2014) propose a methodology for a meaningful test
of general probabilistic hazard models and an example of a
successful application can be found in Meletti et al. (2021).

Certainly, research gaps exist also outside of the scope of
PTHA and PTRA. New computational methods, like fuzzy
methods, machine learning techniques and even advances in
classical computational methods have to be considered.
Rigorous, information theory inspired approaches to validation
may also be explored.

Considering the goals of the Sendai Framework for Disaster
Risk Reduction and acknowledging the vast number of challenges
outlined in the sections before, a concerted interdisciplinary effort
to close the most pressing gaps is required. Attempts to gather
expertize, facilitate exchange and development, and coordinate
community efforts are represented by the Global Tsunami Model
(GTM, 2020) and the COST Action AGITHAR. A thorough
consolidation of available sources of information in openly
accessible databases, documentation of standard workflows,
unification of terminology and metrics, as well as information
hubs need to be established.
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Pasquet, S., Vilibić, I., and Šepić, J. (2013). A survey of strong high-frequency sea
level oscillations along the US East Coast between 2006 and 2011. Nat. Hazards
Earth Syst. Sci. 13, 473–482. doi:10.5194/nhess-13-473-2013

Pattiaratchi, C. B., and Wijeratne, E. M. S. (2015). Are meteotsunamis an
underrated hazard? Phil. Trans. R. Soc. A. 373, 20140377. doi:10.1098/rsta.
2014.0377

Pedersen, G. (2008). Advanced numerical models for simulating tsunami waves and
runup. Modeling runup with depth integrated equation models. Singapore:
World Scientific, 3–41.

Pedersen, G. K., Lindstrøm, E., Bertelsen, A. F., Jensen, A., Laskovski, D., and
Sælevik, G. (2013). Runup and boundary layers on sloping beaches. Phys.
Fluids. 25 (1), 012102. doi:10.1063/1.4773327

Pellikka, H., Laurila, T. K., Boman, H., Karjalainen, A., Björkqvist, J.-V., and
Kahma, K. K. (2020). Meteotsunami occurrence in the Gulf of Finland over the
past century. Nat. Hazards Earth Syst. Sci. 20, 2535–2546. doi:10.5194/nhess-
20-2535-2020

Petrone, C., Rossetto, T., Baiguera, M., la Barra Bustamante, C. D., and Ioannou, I.
(2020). Fragility functions for a reinforced concrete structure subjected to
earthquake and tsunami in sequence. Eng. Struct. 205, 110120. doi:10.1016/j.
engstruct.2019.110120

Petrone, C., Rossetto, T., and Goda, K. (2017). Fragility assessment of a RC
structure under tsunami actions via nonlinear static and dynamic analyses. Eng.
Struct. 136, 36–53. doi:10.1016/j.engstruct.2017.01.013

Philibosian, B., and Meltzner, A. J. (2020). Segmentation and supercycles: a catalog
of earthquake rupture patterns from the Sumatran Sunda Megathrust and other
well-studied faults worldwide. Quat. Sci. Rev. 241, 106390. doi:10.1016/j.
quascirev.2020.106390

Pitilakis, K., Argyroudis, S., Fotopoulou, S., Karafagka, S., Kakderi, K., and Selva, J.
(2019). Application of stress test concepts for port infrastructures against
natural hazards. The case of Thessaloniki port in Greece. Reliab. Eng. Syst.
Saf. 184, 240–257. doi:10.1016/j.ress.2018.07.005

Pittore, M., Wieland, M., and Fleming, K. (2017). Perspectives on global dynamic
exposure modelling for geo-risk assessment. Nat. Hazards 86 (1), 7–30. doi:10.
1007/s11069-016-2437-3

Polese, M., Di Ludovico, M., Gaetani d’Aragona,M., Prota, A., andManfredi, G. (2020).
Regional vulnerability and risk assessment accounting for local building typologies.
Int. J. Disaster Risk Reduct. 43, 101400. doi:10.1016/j.ijdrr.2019.101400

Polet, J., and Kanamori, H. (2016). “Tsunami earthquakes,” in Encyclopedia of
complexity and systems science. Editor R. A. Meyers (Berlin, Heidelberg:
Springer), 1–22. doi:10.1007/978-3-642-27737-5567-2

Power, W., Downes, G., and Stirling, M. (2007). Estimation of tsunami hazard in
New Zealand due to south American earthquakes. Pure Appl. Geophys. 164,
547–564. doi:10.1007/s00024-006-0166-3

Priest, G. R., Witter, R. C., Zhang, Y. J., Goldfinger, C., Wang, K., and Allan, J. C.
(2017). New constraints on coseismic slip during southern Cascadia subduction
zone earthquakes over the past 4600 years implied by tsunami deposits and
marine turbidites. Nat. Hazards 88, 285–313. doi:10.1007/s11069-017-2864-9

Proudman, J. (1929). The effects on the sea of changes in atmospheric pressure.
International 2, 197–209. doi:10.1111/j.1365-246x.1929.tb05408.x

Puzrin, A. M., Germanovich, L. N., and Friedli, B. (2016). Shear band propagation
analysis of submarine slope stability. Géotechnique 66 (3), 188–201. doi:10.
1680/jgeot.15.lm.002

Ramírez-Herrera, M. T., Kostoglodov, V., and Urrutia-Fucugauchi, J. (2011).
Overview of recent coastal tectonic deformation in the Mexican subduction
zone. Pure Appl. Geophys. 168, 1415–1433. doi:10.1007/s00024-010-0205-y

Reese, S., Cousins, W. J., Power, W. L., Palmer, N. G., Tejakusuma, I. G., and
Nugrahadi, S. (2007). Tsunami vulnerability of buildings and people in South
Java—field observations after the July 2006 Java tsunami. Nat. Hazards Earth
Syst. Sci. 7, 573–589. doi:10.5194/nhess-7-573-2007

Rijsingen, E.V, Funiciello, F., Corbi, F., and Lallemand, S. (2019). Rough
subducting seafloor reduces interseismic coupling and mega-earthquake
occurrence: insights from analogue models. Geophys. Res. Lett. 46 (6),
3124–3132. doi:10.1029/2018GL081272

Rikitake, T., and Aida, I. (1988). Tsunami hazard probability in Japan. Bull.
Seismol. Soc. Amer. 78, 1268–1278.

Rivera, F., Rossetto, T., and Twigg, J.(2020). An interdisciplinary study of the
seismic exposure dynamics of Santiago de Chile. Int. J. Disaster Risk Reduct. 48,
101581. doi:10.1016/j.ijdrr.2020.101581

Rondon, L., Pouliquen, O., and Aussillous, P. (2011). Granular collapse in a fluid: role
of the initial volume fraction. Phys. Fluids 23 (7), 073301. doi:10.1063/1.3594200

Rong, Y., Jackson, D. D., Magistrale, H., and Goldfinger, C. (2014). Magnitude
limits of subduction zone earthquakes. Bull. Seismol. Soc. Amer. 104,
2359–2377. doi:10.1785/0120130287

Rosi, M., Di Traglia, F., Pistolesi, M., Esposti Ongaro, T., de’ Michieli Vitturi, M.,
and Bonadonna, C. (2018). Dynamics of shallow hydrothermal eruptions: new
insights from Vulcano’s Breccia di Commenda eruption. Bull. Volcanol. 80, 83.
doi:10.1007/s00445-018-1252-y

Rossetto, T., De la Barra, C., Petrone, C., De la Llera, J. C., Vásquez, J., and Baiguera,
M. (2019). Comparative assessment of nonlinear static and dynamic methods
for analysing building response under sequential earthquake and tsunami.
Earthq. Eng. Struct. Dyn. 48, 867–887. doi:10.1002/eqe.3167

Rossetto, T., Petrone, C., Eames, I., De La Barra, C., Foster, A., and Macabuag, J.
(2018). Advances in the assessment of buildings subjected to earthquakes and
tsunami. In European Conference on Earthquake Engineering Thessaloniki
Greece (Cham, Switzerland: Springer), 545–562.

Ryan, K. J., Geist, E. L., Barall, M., and Oglesby, D. D. (2015). Dynamic models of
an earthquake and tsunami offshore Ventura, California. Geophys. Res. Lett. 42,
6599–6606. doi:10.1002/2015GL064507
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Romano, Salamon, Scala, Stepinac, Tappin, Thio, Tonini, Triantafyllou, Ulrich,
Varini, Volpe and Vyhmeister. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 9 | Article 62877228

Behrens et al. PTHA and PTRA Research Gaps

https://doi.org/10.3390/geosciences8010012
https://doi.org/10.1007/s10346-016-0734-2
https://doi.org/10.1016/0377-0273(87)90097-7
https://doi.org/10.1029/2009JB006325
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


210 
 

 

CONCLUDING REMARKS 

 

The earthquake source in PTHA is generally modeled as a uniform slip distribution on a 

rectangular fault. However, PTHA has a remarkable dependency on the slip distribution. 

Therefore, different slip generation techniques have been proposed in the scientific literature. 

Nonetheless, there is still the need to understand how much these techniques may accurately 

represent the slip distribution of a real tsunamigenic earthquake. One way to test them is to 

compare tsunami models generated with synthetic slip distributions to tsunami observations, 

to quantify the uncertainty related to the tsunami source model. 

In this study, we have used different slip generation techniques to generate synthetic 

tsunamis and tested them with observations of 15 events from open ocean DART sensors in 

the Pacific Ocean over the last two decades.  

We have compared the tsunamis generated with slip models, obtained from the 

telesesimic finite fault inversion (Ye et al., 2016) with observed tsunamis for 10 of the same 

15 earthquakes. It has been observed that the tsunamis generated by kinematic slip models, 

are in a quite poor agreement with the tsunami observations, possibly due to the simplified 

model and the fact that teleseismic data resolve better different features of the seismic 

source, rather than the slip position and amplitude which control the tsunami on the first 

order.  

Starting from the magnitude and the location of this set of tsunamigenic earthquakes, we 

have then produced an ensemble of tsunami simulations from stochastic slip models using 
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different physical assumptions using an extended version of the Scala et al. (2020) model. 

Rupture areas are obtained with different aspect ratio and scaling laws and using these areas 

heterogeneous slip models are generated for both depth-dependent and depth-independent 

rigidity profiles. The positions and magnitudes of the events are free to vary around those of 

the real events. If the tsunami generation technique is accurate, the observed tsunamis should 

appear as one member of a statistically homogeneous population of synthetic tsunamis 

(Davies, 2019). The comparison of each model class, RECT-Murotani, RECT-Strasser, CIRL-

Murotani and CIRL-Strasser, with observations reveals that the model scenarios have 

comparably good fit to the observed data. The model ensemble is also compared with each of 

the classes explored by Davies (2019). We observed that depth-independent Strasser models 

generate scenarios with better agreement to the observation than the models of Davies 

(2019). It is important to note that the number of scenarios used in this study is more than 

one order of magnitude smaller than that used by Davies (2019). Therefore, it can be argued 

that if Strasser model is used while creating an ensemble for PTHA, proper results can be 

obtained even with much smaller number of scenarios. 

 The bias of each model from ensemble is also tested. While the whole ensemble seems 

unbiased by passing null-hypothesis significance test, the separate examination of each model 

class reveals that our models show some biases. While Strasser models over-estimate the 

observations by generating larger tsunamis, Murotani models generally under-estimate the 

observations, at least for a depth-independent rigidity profile. However, Murotani models 

show the same tendency as Strasser models in the case of dept-dependent rigidity. Although 

models are biased, they feature reasonable kinematic properties in slip and size. The bias 

adjustment of each model can be done by using non-uniform weights to scenarios. One of the 
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first possible future developments of the study is adjusting model biases and repeat the 

coverage statistics analysis.   

It has been observed that shallow slip amplification often occurs during tsunamigenic 

earthquakes and it should be incorporated into tsunami hazard analysis. However, the 

comparison of scenario fit shows that depth-dependent and depth-independent models 

provide similar results, so there is not a significant improvement with a depth-dependent 

model. It must be considered though that we are using data mostly in the far-field of the 

tsunami source, and that the presence of shallow slip may be highly variable depending on 

the specific event. Moreover, scenarios with depth-dependent rigidity show a tendency to 

generate larger tsunamis which cause an over-estimation of the observations. Calibrating 

rigidity and coupling profiles that are used to enhance shallow slip may adjust this bias and 

this calibration can be another step to expand this study. Moreover, keeping the rigidity 

constant and considering a variation of stress drop, or a combination of rigidity and stress 

drop variation with depth (e.g. Bilek and Lay, 1999) can be applied for the generation of depth-

dependent models. 

The method, which is implemented for the generation of stochastic slip models in this 

study, is already used in the computation of a probabilistic tsunami hazard map for the North-

East Atlantic, Mediterranean and connected seas (NEAM) region (Basili et al., 2021). This study 

is the first attempt to test this technique against the real observations since there is a lack of 

tsunami records in the NEAM region. It has been observed that depth-dependent slip models 

generally produce larger tsunamis relative to observations. This behavior may also cause over 

estimation of hazard. Therefore, after the correction of all biases on stochastic slip models 



213 
 

 

depending on the observations in Pacific, hazard estimations in NEAM region may also be 

calibrated accordingly. 
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Figure 3.5.2a: Synthetic tsunami waveforms of a random scenario from 2011 Tohoku event for different model types 
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Figure 3.5. 2b: Synthetic tsunami waveforms of a random scenario from 2011 Tohoku event for different model types 
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Figure 3.4.3: Tsunami time-series at different synthetic gauge points for the Tocopilla, Chile 2007 event. 
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Figure 3.4.4: Tsunami time-series at different synthetic gauge points for Maule, Chile, 2010 event. 
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Figure A1: Location of each subduction zone used in the generation of stochastic slip modelling. 
The colors yellow, blue, green, red, cyan and pink represent the location of the Kurils-Japan, 
Solomons, New-Hebrides, Kermadec-Tonga, Puysegur and South America slabs, respectively.
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Figure A2: Triangular discretization of each slab used in the generation of stochastic slip 
modelling. 
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