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ABSTRACT

The biomechanical behavior and the mechanobiology of cells, tissues and organs have
been intensively investigated in the last decades, with the aim of discovering the key
feedback mechanisms governing the ways in which cascades of chemical signals are
transmitted within the hierarchically organized living structures and interplay with
physical events at different scale levels. Continuum Mechanics has deeply contributed
to develop this research area and to meet related challenges, by creating the phys-
ically and mathematically consistent ground on which large deformation, stresses,
evolving constitutive laws, growth, remodeling and morphogenesis do interact. The
needed multiphysics vision in analyzing the complex behavior of the living matter
has in particular consolidated Tissue Mechanics theoretical approaches and related
modeling strategies which are currently recognized as indispensable tools for explain-
ing experimental evidences, for predicting dynamics of living systems as well as for
supporting the design of prostheses for both soft and hard tissues. Further impulse to
these studies is then given by the rapidly growing advances of the research in tissue
engineering which continuously redraw new scenarios for applications in medicine and
lead to envisage innovative drug delivery systems and biomaterials. Within this vivid
multidisciplinary debate, an increasing interest has been recently registered in the Lit-
erature for the mechanical properties of living cells –and for the understanding of the
dynamics to which they obey at different scale levels– also motivated by some recent
discoveries which seem to allow to envisage new horizons for therapy and diagnosis
of human diseases like cancer, by for example exploiting the different in-frequency
response of single healthy and tumor cells stimulated by Ultrasound. However, at the
macroscopic scale –say at the tissue level– the feedback mechanisms and the cascade
of bio-chemical and physical signals characterizing the complex interaction of dynam-
ics occurring at different scales significantly complicates the biomechanical response
of living matter and growing tumor masses, thus requiring enriched models which
incorporate the mechanobiology at the micro- and meso-scale levels. Cancer diseases
in fact occur when in a healthy tissue the cell-cell and cells-ECM (the Extra-Cellular
Matrix) interactions are altered, and hyperplasia is generated as effect of sudden and
often unforeseeable genetic modifications followed by a cascade of biochemical events
leading to abnormal cell growth, lost of apoptosis, back-differentiation and metastasis.
As a consequence, the determination of models capable to macroscopically describe
how tumor masses behave and evolve in living tissues by embodying tumor invasion
dynamics determined by cell-cell and cells-environment to date still remains an open
issue. Growth of biological tissues has been recently treated within the framework
of Continuum Mechanics, by adopting heterogeneous poroelastic models where the
interaction between soft matrix and interstitial fluid flow is additionally coupled with
inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth de-
termined by cells division, cells growth and extracellular matrix changes occurring
at the micro-scale level. These continuum models seem to overcome some limitations
intrinsically associated to other alternative approaches based on mass balances in
multiphase systems, because the crucial role played by residual stresses accompany-
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ing growth and nutrients walkway is preserved. Nevertheless, when these strategies
are applied to analyze solid tumors, mass growth is usually assigned in a prescribed
form that essentially copies the in vitro measured intrinsic growth rates of the cell
species. As a consequence, some important cell-cell dynamics governing mass evolution
and invasion rates of cancer cells, as well as their coupling and feedback mechanisms
associated to in situ stresses, are inevitably lost and hence the spatial distribution
and the evolution with time of the growth inside the tumor –which would be results
rather than input– are forced to simply be data. In order to solve this sort of paradox,
the present Thesis work, within a consistent thermodynamic framework, builds up an
enhanced multi-scale poroelastic model undergoing large deformation and embodying
inelastic growth, where the net growth terms directly result from the “interspecific”
predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level
between healthy and abnormal cell species. In this way, a system of fully-coupled
non-linear PDEs is derived to describe how the fight among cell species to grab the
available common resources, stress field, pressure gradients, interstitial fluid flows
driving nutrients and inhomogeneous growth do all simultaneously interact to decide
the tumor fate. The stability of the predator-prey dynamics and some original theo-
retical results for the non-linear mechanics of growing media are also developed and
discussed in detail. The general approach –that is the coupling of growth, large defor-
mation and competitive cell dynamics– is therefore applied to actual biomechanical
problems (in particular analyzing growth and stress in tumor spheroids and arterial
walls) and the theoretical outcomes are finally compared with in vivo experiments
and animal models to validate the effectiveness and the robustness of the proposed
strategy.

vi
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INTRODUCTION

In the framework of Tissue Mechanics the contribution of the biomechanics and, more
in general, of the mechanics of materials and structures, to complement biomedical
know-how and support clinical and surgical choices is currently recognized as a success-
ful approach in practical applications. The engineering standpoint often determines
a deeper understanding of the complex behavior related to the physical interaction
between tissues and their constituents, as well as between tissues and synthetic mate-
rials, this in turn giving the possibility to obtain better clinical outcomes and to gain
some new insights into the basic understanding of the phenomena that hide behind
physiological events, in health or disease. To investigate the key feedback mechanisms
regulating the transmission of chemical signals within the hierarchically organized
living structures and their connection with physical events at different scale levels,
Continuum Mechanics provides a well-established theoretical framework in which hy-
perelasticity and evolving constitutive laws can be additionally enriched by growth,
remodeling and morphogenesis.
With focus on the present Research work, one of the arguments treated regards the
characterization of vascular systems – and more specifically pulmonary autograft
transposed into aortic position– through nonlinear anisotropic elasticity and large
deformation theories, additionally including a full coupling of these laws with specific
evolution equations, in order to predict growth and remodeling in blood vessels, and
analyze the effects that altered physiological conditions and interactions with syn-
thetic materials can induce into the evolving living structures, in term of tissue mor-
phology and histology as well as with reference to structural integrity and mechanical
stability. However, needed physiological processes, aside from the impairment between
the mechanical properties of the PA vessels with respect to the aortic systemic pres-
sure, can be compromised by the arising of problems mainly related to two choices:
the material(s) constituting the prosthesis and the microstructure of the device itself.
The consequences deriving from these choices in terms of potential unfavorable re-
modelling have been in detail analyzed by means of simple analytical considerations.
Furthermore, to overcome these issues, recent advances have been done on both biome-
chanical theoretical investigation and on in vivo experimentation of newly assembled
co-polymer scaffolds for the reinforcement of PA in Ross operation. The proposed
biomechanical model in fact provided positive effects coming from the synergy be-
tween the transposed vessel and the composite polymer scaffold, demonstrating the
ability of this implant to accommodate mechanical loads guaranteeing graft integrity,
controlling the progressive graft dilation, allowing regional somatic growth and pre-
venting dilative degeneration.
However, the phenomenological description of the growth and remodelling capabilities
of a biological system can be complicated by the necessity of including further aspects,
which take into account the interactions between the tissue elementary constituents at
the cells scale, since these dynamics are then inexorably connected to the macroscopic
fate of the system itself.
Therefore, in order to catch the sometimes extremely complex functional relation-
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ships and multi-physical interactions governing the organization of a growing tissue,
the sole mechanical considerations can be no more exhaustive, and a multidisciplinary
approach is necessary to take into account other leading aspects related to biochemi-
cal nature of the interplays at basis of the growth and remodelling processes. However,
especially in dealing with the modelling of living structures, it can result sometimes
advantageous to hazard to describe such phenomena by means of a more eclectic
point of view, adopting approaches that are ordinarily not associated to that physical
framework, but instead belong to other disciplinary areas. Nevertheless, the direct
observation of some common elementary, characteristic properties of the natural phe-
nomenon under study and an open-minded attitude allow to transpose some “foreign”
logics to the mechanical problem at hand, opportunely integrating all the building-
blocks in order to furnish a comprehensive description of all the interactions governing
the behavior of the living structures.
In particular, in the present Research work, these strategies have been harnessed to
model the growth of living tumors: the mechanics of the tumor growing mass has
been explicitly modeled by considering the host tumor-host interactions interpreted
in the light of behavioral sciences, and, in particular, by means of the Volterra-Lotka
competitive logics. With the aim of predicting cancer fate, the growth of solid tumors
can be in fact treated physically as a mechanical process according to which a hetero-
geneous tissue expands within a surrounding medium. Tumor expansion is controlled
by some internal driving stresses, which are counterbalanced by mechanical resistance
provided by the surrounding environment. Internal stresses are mostly generated by
cells proliferation dynamics, which is influenced by the diffusion of nutrients within
the tumor. This implies that the physical forces pushing the tumor ahead do not in-
volve the sole surface tension and the pressure of the surrounding medium, but also
the explicit active cellular forces deputy in the momentum balance that, in turn, retro-
spectively activate mechanosensitive cellular processes. To gain new insights into the
basic understanding of the complex machine of the host-tumor interaction, a hetero-
geneous poroelastic model of tumor spheroid can be helpfully constructed taking into
account the mechanically activated stress fields, fluid pressure and nutrient walkway
all coupled with spatially inhomogeneous and time-varying bulk growth. Actually, the
growth is seen as a result of competitive-cooperative dynamics occurring at the micro-
scopic scale level among healthy cells, cancer cells and extra-cellular matrix (ECM)
that —in principle-– cannot be assumed a priori. Nevertheless, these dynamics are
generally neglected in engineering models, as a consequence of both the difficulty
of mathematically describing them with sufficient accuracy and the problems aris-
ing from the coupling of competition equations with the mechanical ones. To try to
overcome these limits –limits which significantly reduce the aptitude of the mathemat-
ical models to predict the destiny of tumor masses-– the idea is to macroscopically
model the dynamics occurring at microscopic scales by introducing ad hoc nonlinear
Volterra/Lotka-like equations (VL), extensively utilized to describe ecological systems
as well as several population dynamics which involve psychological and collective be-
haviors of social communities. In brief, the present PhD thesis is organized as follows.
Chapter 1 recalls the fundamentals of nonlinear solid mechanics, with insights into
the mechanics of growth and remodelling, that will be exploited in the biomechanical
models successively proposed. Chapter 2 presents the basic notion of Volterra-Lotka
system, starting from the original predator-prey logic to the most general form. In
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Chapter 3, some simple uncoupled biomechanical models will be presented with the
aim to gain insight into the understanding of key aspects concerning the growth and
remodelling of living tissues in physiological and non-physiological conditions. Chap-
ter 4 applies a weak coupling strategy in order to investigate the previously described
problem of somatic growth and remodelling of pulmonary autografts in Ross oper-
ations, while Chapter 5 is entirely dedicated to the full coupling strategy in which
mechanical aspects, fluid walkways with nutrient transport, cells-cells and cells-ECM
VL-interactions are simultaneously taken into account to characterize the growth mul-
ticellular tumor spheroids.

ix
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Part I

T H E O R E T I C A L F R A M E WO R K

The aim of the following two chapters is to introduce the basic concepts
of Continuum Mechanics and Volterra-Lotka dynamical systems, that will
be afterward coupled in order to model growth and remodelling processes
of biological systems.
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1FUNDAMENTALS OF CONTINUUM SOL ID MECHANICS

The Biomechanics of growth and remodelling is formulated within the framework of
Continuum Mechanics. Solid mechanics provides in fact a macroscopic description of
the material bodies kinematics and deformation, the stress concept and of the con-
stitutive framework, as well as the statement of the fundamental balance principles
(mass conservation, balance of momentum, balance of energy and entropy inequality).
Also, growth (or conversely, resorption) implies that systems are open with respect
to the mass. Remodelling, which is related to microstructural changes, can be itself
described through the introduction of macroscopic quantities, such as internal stress
and material properties. These widely known evidences are all taken into account
in describing continua conservation equations, and suitable growth and remodelling-
related specific terms are introduced. This chapter recalls some fundamental concepts
of continuum mechanics of solids, with attention on those notions that will be suc-
cessfully encountered in the following chapters dealing with specific biomechanical
applications. For an exhaustive treatment of these arguments, the reader is invited to
the inspiring books by Holzapfel [87], Ogden [148], Bigoni [22], Gurtin [79] and Cowin
[46], as well as to the works by Lubarda et al. [127, 128], Garikipati [74], Schmid et
al. [176] and Cowin [48], on which the most of these notions largely draws from.

1.1 motion of continua and deformation

The characterization of the motion, deformation and stress of a solid body subject
to prescribed loading and constraint is the focus of solid continuum mechanics. The
model of continuum body was introduced by the French mathematician Augustin-
Louis Cauchy in the 19th century. It ignores the atomistic and molecular, and so
discrete (discontinuous), nature of matter, and considers a body as a continuous (or at
least piecewise continuous) distribution of matter in space and time, at a macroscopic
scale. Therefore, a body B can be defined as a continuous set of material points [87].
Let this body be embedded in a frame {Rd, t}, with d denoting the Euclidean space
dimension (in what follows, a three-dimensional space is considered). The geometrical
regions of the Euclidean space occupied by the body at a certain time t –say Ωt ⊂ Rd–
is called configuration. Each configuration is determined uniquely at any time. A
specific configuration can be fixed in order to set timeline, at a conventional starting
time ti = 0, which is denoted as initial time. Consequently, the region Ω0 can be
identified as initial configuration. Similarly, one can fix a reference configuration as
a particular region Ωt in which body particles P ∈ B occupy position denoted by
a position vector X, this configuration being then considered as undeformed (with
respect to which motion is described). It is convenient in the most of cases to make
reference configuration and initial configuration actually coincide (hereinafter, this
hypothesis will be held). Therefore, let the region Ω0 move to a new region Ω at
a time t > 0. In this configuration, material particles P ∈ B will be denoted by a
certain position x. This new configuration is called a current or deformed configuration.

3
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4 fundamentals of continuum solid mechanics

The material and spatial position vectors X = XIEI and x = xiei are respectively
described by means of material basis {EI} and a current basis {ei}, with XI and xi
indicating the corresponding components. Starting from these initial considerations,
there exist a one-to-one correspondence between each particle of the body P ∈ B
and the position X ∈ Ω0(B) at t = 0, defining the map X = κ0 (P, t). A similar
correspondence can be established for a current position vector x mapping P onto Ω,
say x = κ (P, t). Then, since material points P are described by means of the reference
undeformed configuration, an uniquely invertible correspondence between the current
position and the material position can be introduced, which is called motion:

x = κ
[
κ−1

0 (X, t) , t
]
= χ (X, t) (1.1)

X = χ−1 (x, t) (1.2)

This notion let to introduce two different ways to describe motion. The material de-

scription or Lagrangian description characterizes motion with respect to the material
coordinates XI and time t, so serves to describe what happens to the particle as it
moves (the observer moves solidarily with the body particle). The spatial description
or Eulerian description characterizes motion with respect to the spatial coordinates
xi and time t motion by fixing the attention on a region point.
A body B modifying its shape during motion is called a deformable body. Hence,
deformation is related to the change of body particles reciprocal distances during mo-
tion. If inter-particales distances do not vary, motion is rigid. Assuming as coincident
the reference systems for the reference and the current configurations, to adequately
describe the movement of body particles, a displacement field can be introduced, con-
necting body particles material position X in the undeformed configuration to their
current position x. By adopting a Lagrangian description, it results

x = X+ u (X, t) (1.3)

In order to exclude translations, equation (1.4) can be differentiated with respect
to X, in this way obtaining a direct relation between the infinitesimal line element dx
, dX and the differential du:

dx = dX+ du (X, t) = [I+ u⊗∇X] dX (1.4)

where I is the identity second-order tensor in the reference configuration, ∇X is the
vector differential operator {∂/∂X1, ∂/∂X2, ∂/∂X3}T and ⊗ is the standard tensor
product between two vectors, defined in a way to give [a ⊗ b]ij = aibj . Therefore,
u⊗∇X = ∇X u, the latter operator indicating the material displacement gradient.
The deformation process can be characterized by using transport theorems. They de-
scribe the mapping from the reference to current configuration of infinitesimal line,
area, and volume elements, respectively. To do this, we introduce a fundamental kine-
matic quantity: the deformation gradient F, which represents a linear transformation
generating the current infinitesimal line elements dx through the action of the second-
order tensor F on the reference infinitesimal line elements dX ([26]):

dx = F (X, t) dX (1.5)
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1.1 motion of continua and deformation 5

Clearly, it readily follows from the direct differentiation of equation (1.1)1 and the
comparison with (1.4) that the deformation gradient F admits two alternative repre-
sentations, namely:

F = ∇Xχ =
∂x

∂X
, F = I+ u⊗∇X (1.6)

The elements of F are called stretches and represent the relative change in length
between a spatial line element and a material line element. More precisely, the expres-
sion of F reads:

F =
∂xi
∂XJ

ei ⊗Ej = Fijei ⊗Ej (1.7)

from which we see that F is a two-point tensor: one base vector is defined with respect
to the Eulerian configuration and the other is defined with respect to the Lagrangian
configuration, i.e. it is a geometric object having its two feet on different manifolds

(Maugin, [133]). From the statement of the existence of the inverse mapping, it follows
that the deformation mapping is one-to-one. Thus, the deformation gradient F cannot
be singular and its inverse exists:

F−1 = ∇xχ
−1 =

∂X

∂x
(1.8)

Naturally, this implies that det F 6= 0. The determinant of the deformation gra-
dient is connected to the mapping between the infinitesimal current volume dv and
the infinitesimal reference volumes dV . More precisely, given three infinitesimal line
elements individuating an infinitesimal volume element, the latter can be computed
by means of the scalar product between an infinitesimal line element and the cross
product of the other two, for example dv = (dx1× dx2) · dx3. The volume of this par-
allelepiped is algebraically the absolute value of the determinant of the matrix formed
by the rows constructed from the vectors. As a consequence, by using equation (1.5),
it is easy to verify that:

dv = (dx1 × dx2) · dx3 = det

dx1

dx2

dx3

 = det

F dX1

F dX2

F dX3

 = det F det

dX1

dX2

dX3

 (1.9)

Then it follows that

dv = JdV, J := det F (X, t) =
dv

dV
(1.10)

the local volumetric deformation measure J is known as Jacobian of the deformation
gradient. Since both the infinitesimal volumes dv and dV are positive quantities, the
Jacobian must also be positive,

J = det F (X, t) > 0 (1.11)

also implying that interpenetration of volume elements of body B is excluded. Coher-
ently, volumetric dilatation and contraction occur when J > 1 and J < 1, respectively,
while in case J = 1 the transformation is called isochoric. By now observing that a

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



6 fundamentals of continuum solid mechanics

generic spatial (as well as the material) infinitesimal area element da = dan –defined
by means of its surface da and the normal outward vector n– can be obtained from
the cross product of two line elements, the infinitesimal volume can be rewritten as
dv = da · dx. Analogously, dV = dA · dX. Then, the use of equations (1.5) and (1.10)
give [87]:

dv = da · dx = JdV

da ·FdX = JdA · dX[
da− JF−TdA

]
· dX = 0 (1.12)

Since dX cannot vanish, equation (1.12) let to obtain the so called Nanson’s formula

da = JF−TdA = CofF dA (1.13)

which maps each infinitesimal material area dA = daN into an infinitesimal spa-
tial area element da = dan through the application of the CofF. Equations (1.5),
(1.10) and (1.13) give then the aforementioned transport theorems, schematically rep-
resented in Fig. 1.

Figure 1: A hand-made sketch of the kinematics and deformation of material bodies

It can be shown that the deformation gradient F can be algebraically decomposed
in two ways into a pure deformation and a pure rotation. This polar decomposition
is multiplicative and reads as [46]

F = RU = VR (1.14)

where R ∈ Orth+ is an orthogonal tensor (i.e. RTR = RRT = I) representing the
rotation and called the rotation tensor, while U and V are called the right and the left
stretch tensors, respectively, and both represent the pure deformation contribution.
The stretch tensors admit the following spectral decomposition:
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1.1 motion of continua and deformation 7

U = λ1N1 ⊗N1 + λ2N2 ⊗N2 + λ3N3 ⊗N3 (1.15)
V = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3 (1.16)

where λk are the principal stretches, and Nk and nk represent the material and
current eigenvectors. Then, by adopting the first decomposition in (1.14), deformation
occurs by first stretching material elements and then by applying a rigid rotation. The
second decomposition of (1.14) provides a rotation before stretching fibres (still having
material length) into their spatial length. Clearly, it emerges that F incorporates all
the information for describing the deformation at a material point. However, it is not
suitable for describing deformation seen as the change of shape of the body due to
the presence of rigid body rotations. Also, F is not a symmetric tensor. To overcome
these problems, the right Cauchy Green tensor C and the left Cauchy Green tensor

b can be introduced:

C = FTF = UTRTRU = U2, (1.17)
b = FFT = VRRTVT = V2 (1.18)

They respectively connote as a material strain tensor and a spatial strain tensor.
Moreover, they result symmetric and positive definite and do not account for rigid
rotation, by definition.
Further several deformation measures can be adopted. If motion includes a deforma-
tional component, then the length dx will be different from the length dX. To calculate
this change in length the current square length ds2 = dxTdx and the material square
length dS2 = dXTdX can be used. Then the half of the difference between the square
lengths can be computed and, accounting for relationship (1.5) and (1.17)1, one has
[46]:

1
2 (ds

2 − dS2) = dXT 1
2 [C− I] dX (1.19)

The quantity in square brackets is called the Green-Lagrange strain tensor:

E =
1
2 (C− I) (1.20)

An alternative representation of the Green-Lagrange tensor can be given in terms of
the displacement vector u, by recalling (1.6):

E =
1
2

(
FTF− I

)
=

1
2 (∇X ⊗ u + u⊗∇X + (∇X ⊗ u)(u⊗∇X)) (1.21)

This definition emphasizes the linear part and a geometrically nonlinear part. In the so
called small strain theory, which implies the hypothesis ∂ui/∂XJ � 1, nonlinearties
are not taken into account and the linear strain tensor is obtained as:

ε =
1
2 (∇X ⊗ u + u⊗∇X) = sym (u⊗∇X) (1.22)

The eulerian counterpart of the Green-Lagrange tensor is given by the Euler-Almansi

strain tensor, which reads as:
e =

1
2
(
I− b−1) (1.23)
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8 fundamentals of continuum solid mechanics

1.1.1 Seth-Hill strain measures. The logarithmic (Hencky) strain

It is clear that U or V provide a local measure of deformation because their principal
components represent the stretch of the three orthogonal fibres aligned to the eigen-
vectors [22]. As said, the first represents a material measure of deformation since it
transforms material quantities into material quantities, while the second exclusively
acts on spatial quantities. The tensors U and V, as well as C and b can be used
to quantify the strain. However, strain measures are not limited to these choices. To
quantify the strain, different measures can be adopted. More generally, the so-called
Seth-Hill strain family can be defined:

E(m) =

 1
m (Um − I) , m 6= 0

ln U, m = 0
, e(m) =

 1
m (Vm − I) , m 6= 0

ln V, m = 0
(1.24)

defined for every integer m so that they vanish in absence of deformation. Note
that, with attention on material definition, for example, the case m = 1 defines the
engineering strains εi = λi − 1, while the case m = 2 gives the definition of the
Green-Lagrange tensor as defined in equation (1.21). The logarithmic strain tensor
–or Hencky strain– can be defined by considering the logarithm of the eigenvalues in
its spectral decomposition so that

H = E(0) = ln U = lnλi Ni ⊗Ni (1.25)

h = e(0) = ln V = lnλi ni ⊗ ni (1.26)

The isotropy of the logarithmic tensor function implies that, since V = RURT

h = RHRT (1.27)

In particular, the so-called logarithmic strain εH = lnλ can be introduced by
considering the incremental deformation of a fibre of initial length l0 up to the final
length l. An intermediate deformation between these two states is defined by a length
l∗, in a way to define an incremental deformation dεH as

dεH =
dl∗

l∗
(1.28)

The total deformation will be then given by the sum of the several incremental
deformation:

εH =

∫ εH

0
dεH =

∫ l

l0

dl∗

l∗
= ln l

l0
(1.29)

where λ = l/l0 represents the stretch of the fiber. Moreover, at small strain, the fiber
engineering strain is readily obtained, i.e. εH ≈ λ− 1. Also, the advantage of adopting
strain measure resides in the possibility of additively decomposing the stretches that
are indeed multiplicatively combined. In the case of the fiber, for example, let the
stretch λ be seen as the result of two combined stretches, say λ∗ = l/l∗ and λ0 = l∗/l0,
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1.1 motion of continua and deformation 9

where l∗ depicts an intermediate configuration and the two stretches might be elastic
or inelastic. Multiplicative decomposition is in fact widely adopted in finite thermo-
elasticity and plasticity. Naturally, in this simple case, it results λ = λ∗λ0, and the
Hencky strain will be given by:

εH = ln l

l0
= ln l

l∗

l∗
l0

= lnλ∗ + lnλ0 (1.30)

This feature, opportunely generalized in order to take into account the configuration
changes in combining deformations, can be useful for biomechanical problems, in
which the multiplicative decomposition of the deformation gradient into its elastic
and growth part is commonly employed.

1.1.2 The multiplicative decomposition. The elasto-growth case

In continuum mechanics of growing media, finite strain kinematics treats the total
deformation by means of the aforementioned multiplicative decomposition. In partic-
ular, the deformation gradient F is assumed to be the result of a growth tensor Fg
and a geometrically elastic tensor Fe that de facto combine in a multiplicative manner
in order to give back the deformation gradient:

F = FeFg (1.31)

By following this representation, multiple configurations have to be taken into ac-
count. In fact, the body is first supposed to undergo a growth process that drives the
latter towards a grown intermediate configuration, say Bg. In this configuration, the
material particles occupy the position xg (X, t) ∈ Bg and their deformation can be
described through an appropriate growth tensor Fg, in a way that dxg = Fg dX. The
polar decomposition of Fg reads:

Ug = λgi (Ni ⊗Ni) Fg = RgUg = λgi (Ngi ⊗Ni) (1.32)

where λgi are the principal growth stretches, that are inelastic, Jg = det Ug =
dVg/dV0 = λg1λg2λg3 being therefore the volumetric change with respect to the ini-
tial configuration due to growth, while Ngi = RgNi define the rotation on each
eigenvector Ni in the configuration Bg. During the growth process the body is also
supposed to be unloaded, in this way the (inelastic) strain contribution being exclu-
sively caused by the volumetric change induced by the growth itself. However, the
introduction of this intermediate configuration also implies the need of discerning sep-
arately the contribution of volumetric growth and the densification that can combine
together to furnish the growth seen as overall local mass addition/removal. However,
as well-known, the growth strain alone does not completely describe the body motion
since the growth deformation path has been deprived of external loads and it can-
not generally ensure the geometric compatibility of the intermediate configuration. In
fact, infinitesimal volume elements grow (or reasorb) independently from each other,
as conceptually represented in Fig. 2, thus resulting in an overall incompatible con-
figuration. For these reasons, the body experiences an elastic strain which permits to
adapt the response to prescribed boundary conditions (i.e. the external mechanical
loads and/or the given constraints) as well as to compatibilize the grown elements
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10 fundamentals of continuum solid mechanics

by kindling suitable self-equilibrated (residual) stresses within the body. Then, the
elastic strain Fe maps the points xg ∈ Bg onto the actual configuration x ∈ B, having
the in-cascade transformation:

dx = Fe dx
g = FeFg dX (1.33)

The polar decomposition of Fe gives:

Ue = λei (Ngi ⊗Ngi) Fe = ReUe = λei (ni ⊗Ngi) (1.34)

Ue then denoting the principal elastic stretch seen in the grown configuration. By
combining the right stretch tensors introduced in (1.32) and (1.34), the total stretch
tensor U can be determined by considering the right Cauchy-Green tensor and de-
composition (1.31):

C = FTF = U2 = UT
g

(
RT
g UT

e UeRg

)
Ug = UT

g

◦
U

2
eUg (1.35)

with
◦
U

2
e = RT

g U2
eRg thus representing the back rotated version of Ue reported to

the reference configuration. This also let to write:

U =

√
UT
g

◦
U

2
eUg (1.36)

Also, the orthogonal rotation matrix R can be expressed as R = ReRg.
A first Lagrangian type strain measure associated to the deformations Fe and Fg are:

Ee =
1
2

(
FT
e Fe − I

)
, Eg =

1
2

(
FT
g Fg − I

)
(1.37)

The total Green-Lagrange type strain can be expressed as a combination of these
measure as

E =
1
2

(
FTF− I

)
= Eg +FT

g EeFg (1.38)

Clearly, since Ee and Eg are defined with respect to the reference configuration,
it results E 6= Ee + Eg. This additive decomposition becomes instead valid at small
strains: in this case, geometrical small total strain imply that also growth strain keeps
adequately small, in this way having

ε = εg + εe (1.39)

Furthermore, with attention to the Hencky strain measure, by exploiting the loga-
rithm properties together with (1.36), it is possible to write:

H = ln U =
1
2 ln UT

g

◦
U

2
eUg = ln Ug + ln

◦
Ue = Hg +

◦
He (1.40)

where the back rotated tensor
◦
He to ensure the coaxiality of the summed Hencky

strain tensors. Since logarithm is an isotropic function, the relationship
◦
He = RT

g HeRg

can be readily established. In the present work, this strategy will be particularized to
describe the biomechanical problem of tumor spheroids growth.
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1.1 motion of continua and deformation 11

Figure 2: Schematic representation of the kinematics of growth. The body undergoes a
growth process and reaches a grown, incompatible configuration in absence of
external actions, and then experiences elastic adaptation and load-induced defor-
mation.

It is worth to highlight that the Eulerian description of the deformation process can
be argued in a completely analogous manner. In fact, by introducing the left stretch
tensor V = RURT, the left Cauchy-Green tensor, under the decomposition (1.31),
can be written as:

b = FFT = V2 = VeReV
2
gR

T
e VT

e = VeV̌
2
gV

T
e , (1.41)

V =
√

VeV̌2
gV

T
e = λini ⊗ ni (1.42)

V̌g denoting a push-forward operation of the growth left stretch throughout the
current basis. Then the Eulerian Hencky strain is defined as

h = ln V = ln Ve + ln V̌g = he + ȟg (1.43)
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12 fundamentals of continuum solid mechanics

1.1.3 Material time derivative

To fulfill the kinematic description, velocity vector fields have to be defined. A material
time derivative is the derivative with respect to time holding X fixed, i.e.

DA

Dt
=

∂A

∂t

∣∣∣∣
X

(1.44)

For a material field Φ = Φ (X, t) and a spatial field φ (x (X, t) , t) the material time
derivative reads

DΦ
Dt

= Φ̇ =
∂Φ (X, t)

∂t
(1.45)

Dφ

Dt
=

∂φ (x (X, t) , t)

∂t

∣∣∣∣
X=χ−1(x,t)

=
∂φ (x, t)

∂t
+
∂φ (x, t)

∂x

∂x

∂t
(1.46)

Then, in the second case, the material time derivative of a spatial field is performed by
first pulling back the representation of φ to the material description, then a material
derivative is taken and, finally, the resulting expression is again pushed forward to
the spatial description. Therefore, one can introduce the material ẋ and spatial v

descriptions of the velocity:

ẋ (X, t) =
∂χ (X, t)

∂t
and v (x, t) = ẋ

(
χ−1 (x, t) , t

)
(1.47)

and the material ẍ and spatial a acceleration fields

ẍ (X, t) =
∂2χ (X, t)

∂t2
(1.48)

a (x, t) = ẍ
(
χ−1 (x, t) , t

)
=
∂v

∂t
+L

∂x

∂t
(1.49)

where equation (1.49) is written according to definition (1.45). Also, in equation
(1.49), the definition of the spatial velocity gradient has been employed:

L =
∂v (x, t)

∂x
= v⊗∇x (1.50)

The material velocity gradient is instead given by:

Ḟ =
∂ẋ (X, t)

∂X
= λ̇i ni ⊗Ni + λi(ṅi ⊗Ni + ni ⊗ Ṅi) (1.51)

the summation over i being subtended. The relation between the spatial and the
material velocity gradient can be derived through the chain rule differentiation:

Ḟ =
∂ẋ (X, t)

∂X
=
∂ẋ

∂x

∂x

∂X
= LF, (1.52)

L = ḞF−1 =
λ̇i
λi

ni ⊗ ni + ṅi ⊗ ni +
λi
λj

∣∣∣∣
i6=j

(ṅi · nj)ni ⊗ nj (1.53)

Starting from (1.52), the back rotated rate of deformation can be defined as the
symmetric part of the velocity gradient:
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1.1 motion of continua and deformation 13

D = sym(v⊗∇x) =
1
2
(
U̇U−1 +U−1U̇

)
=

=


λ̇1
λ1

ω3
2

(
λ1
λ2
− λ2

λ1

)
ω2
2

(
λ3
λ1
− λ1

λ3

)
λ̇2
λ2

ω1
2

(
λ2
λ3
− λ3

λ2

)
sym λ̇3

λ3

 (1.54)

where ωi are the components of the vector ω = axial
(
ṘR

)
= [ω3 − ω2 ω1]T,

which represents the rotation velocity of the principal axes ni, employing the relation-
ship ṅi = ω×ni. The material time derivative of the Jacobian can be determined by
means of the Jacobi formula and equation (1.52):

J̇ =
∂J

∂F
: Ḟ = JF−T : LF = JI : L = J∇x · v (1.55)

In a completely analogous manner, one can define the rates of the Jacobian Jg and
Je = det Ue in the case of multiplicative decomposition:

Lg = ḞgF
−1
g J̇g = JgI : LgLe = ḞeF

−1
e J̇e = JeI : Le (1.56)

and it readily follows that
L = Le +Fe Lg Fe (1.57)

Also, through the identity Ėk = FT
k sym(Lk)Fk, the following rate expressions can

be obtained:

Ė = FT
g sym(Lg)Fg + 2sym(FT

g EeḞg) +FT sym(Le)F (1.58)

Finally, the rates of the Hencky strain introduced in (1.25) result

Ḣ =
λ̇i
λi

Ni ⊗Ni + ln λi
(
Ṅi ⊗Ni +Ni ⊗ Ṅi

)
(1.59)

ḣ =
λ̇i
λi

ni ⊗ ni + ln λi (ṅi ⊗ ni + ni ⊗ ṅi) (1.60)

which admits, through similar considerations made for the symmetric part of the
velocity gradient (1.54), the following representation:

Ḣ = RTḣR =

=


λ̇1
λ1

ω3 ln
(
λ1
λ2

)
ω2 ln

(
λ3
λ1

)
λ̇2
λ2

ω1 ln
(
λ2
λ3

)
sym λ̇3

λ3

 (1.61)
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14 fundamentals of continuum solid mechanics

1.2 stress measures

As a solid deforms, stresses are internally generated. For a deformable body on which
external forces are applied (in an inertial system), the resulting field of internal reac-
tive forces acting on infinitesimal surfaces within the body is connoted as stress. There-
fore stress physically expresses the interactions among neighboring particles within
the continuous material. While in small deformations stress is uniquely identified as
the force per unit reference area, this implying that stress variations are exclusively
due to forces changes, in large deformation the spatial infinitesimal area cannot be
confused with the reference infinitesimal area and stress variation accounts also for the
geometrical transformations. Therefore an actual measure of stress should be referred
to the current area element. However, in many problems the current configuration
is not known and alternative stress measures, referred to the reference configuration,
might be employed. To define the true stress –or Cauchy stress– let us consider a
cutting surface passing through a material point P ∈ B. The body is subjected to
a system of external forces f , consisting of surface tractions and body forces and is
supposed at equilibrium. When the body is cut by the surface, as a mechanical reac-
tion to external loads, forces are then transmitted through the points of the cutting
surfaces. Hence, each infinitesimal are da will experience a force aliquota df so that,
in the point P the Cauchy surface traction can be defined as the vector (see Fig. 3):

t (x, t) =
df

da
(1.62)

Figure 3: Definition of the Cauchy stress vector

According to Cauchy’s postulate, the traction vector t persists for all surfaces pass-
ing through the point P and having the same normal vector n at P . The state of
stress at a point in the body is then defined by all stress vectors t associated with
all planes that pass through that point. According to Cauchy’s stress theorem, there
exists a second-order tensor σ (x, t), such that t is a linear function of n, i.e.

t (x, t,n) = σ (x, t)n (1.63)
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1.2 stress measures 15

Mechanical equilibrium also implies that t (x, t,n) = −t (x, t,−n) (Fig. 3). There-
fore the stress elements of the Cauchy stress tensor will be the components of the
traction vector at each material point P on that face. The Cauchy stress tensor is a
pure Eulerian stress tensor, and can be represented as

σ (x, t) = σijni ⊗ nj (1.64)

Another useful stress measure is the Kirchhoff stress, which is given by the Cauchy
stress σ multiplied by the Jacobian J :

τ = Jσ (1.65)

The Lagrangian version of the Cauchy’s stress theorem can be formulated as

T (X, t) = P (X, t)N (1.66)

in which N is the normal outward vector to the infinitesimal reference area element,
and T is the corresponding traction. Then the following relation holds:

T (X, t) dA = t (x, t) da (1.67)

Substituting into (1.67) the relations (1.66) and (1.63), and by taking into account
the Nanson’s formula (1.13), the so-called Piola-Kirchhoff stress is obtained as

P = JσF−T = τF−T (1.68)

The Piola Kirchhoff tensor therefore relates the current force to the referential area
element. It is obtained by means of a Piola transformation of the Cauchy stress σ,
and results to be a two-point tensor having representation1

P = Pijni ⊗Nj (1.69)

It is worth noting that the Piola-Kirchhoff stress is not a symmetric tensor:

PT = JF−1σ 6= P (1.70)

In order to have a Lagrangian stress that is also symmetric, the second Piola Kirchhoff

stress is introduced:

S = F−1P = F−1τF−T, S = ST (1.71)

1.2.1 The concept of residual stress in growing bodies

Stress is the response of a deformable body to applied forces. However, a common
feature of biological structures is the presence of nonzero stresses known as residual
stresses. Such stresses reveal that kinematical growth takes place in an incompatible
manner, meaning that the compatible total strain which is macroscopically observed is
the result of an incompatible growth strain accompanied by an elastic adaptation (as
previously discussed). The latter one is directly responsible of restoring tissue geomet-
rical compatibility, this being guaranteed by imprisoned stresses. Therefore, residual

1 The stress tensor is not necessarily coaxial with the deformation tensor.
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16 fundamentals of continuum solid mechanics

stresses are nonzero stresses detectable in a traction-free body (in a loaded configu-
ration, a further superimosed elastic deformation might combine with the adaptive
one). A simple example is represented by vessel structures: the growing overlapping
layer of a vessel structure have to elastically stretch in the circumferential direction
in order to respect geometrical compatibility. This feature implies that nonzero resid-
ual stress resides in vessel walls. In fact, Fung [69] showed that this stress can be
revealed by observing the opening angle of the vessel when a cut is performed in
longitudinal direction. However, the adjective "residual" might be ambiguous (or con-
tradictory) because suggests that one can find residual stresses (also) after cutting a
(grown) material, while - generally - when one ideally or practically cuts a material,
it releases the imprisoned elastic energy so obtaining "stress-free" configurations. The
term is however used to also denote the stresses accumulated in a (continuum model
of a) tissue during growth to guarantee compatibility of the total deformation - that is,
elastic and inelastic (growth-associated) strains - at each time, but the term "prestress"
might suitably replace "residual stress" also in these cases. To qualitatively explain
the nature of growth-induced stresses, let us consider a mechanically analogous de-
formation process in which, as in the growth, elastic and inelastic strains can appear
combined to give the overall strain at each material point (and at any time), say a
(linear) elementary thermo-elastic problem where, for instance, an one-dimensional
bar is subjected to uniaxial stress/strain regime.
Then, one can distinguish two possible cases of interest.

• Force-prescribed case: the bar is subjected to a combined (compressive or tensile)
axial load applied to its constraint-free ends and to a small uniform temperature
increase; the body will homogeneously deform and at each point the total strain
will be given by the sum of a purely inelastic (thermal) and a purely elastic (load-
induced) strain. If an opposite in sign load is then applied (the load is removed
to have homogeneous boundary conditions in term of forces), the beam will
change its previous deformation state and a sole uniform inelastic strain will be
exhibited by the bar, without any stress. As a consequence, by cutting at this
stage the bar at an arbitrary section along its axis, neither (residual) stresses nor
additional strains will be exhibited, but a residual strain (say a thermal strain
analogous to the growth-induced strain) can be however observed by comparing
the initial unladed and at room temperature bar length with the final one.

• Displacement-prescribed case: a complementary case can be constructed by as-
suming the same bar considered above, now subjected to an uniform temper-
ature increase with the clamped (full constrained) ends. In this case, as well-
known, no total strain can be observed at any bar point (at least until the
material strength is reached), elastic strains locally equate inelastic (thermal or
growth) strains and stresses (due to the reaction forces at the clamped ends)
occur. The body already has homogeneous boundary conditions in terms of
displacements (in case of non-zero displacements prescribed, to return to ho-
mogeneous boundary conditions one would have to apply an opposite-in-sign
displacement at the ends) thus, by cutting at this stage in an arbitrary section
the bar, the stored elastic energy is released and the beam will show a stress-free
deformed configuration different from the initial one, characterized - as in the
first case - by the sole inelastic residual strain and no residual stresses.
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1.3 conservation equations 17

But how can we define residual strains and stresses? And what is then the differ-
ence between the two thermo-elastic cases presented above? A possible answer to the
first question (the definition of residual stress and strain) is that the residual strain
can be seen as the strain observed in an element when the material is returned to a
stress-free condition, and the residual stress can be complementary interpreted as the
self-equilibrated stress generated inside an element when it returns to a strain-free
(zero total strain) condition (as also commonly done dealing with plasticity, for exam-
ple). As a consequence, the definition given above allows to elucidate the difference
between the two thermo-elastic cases. In both the situations, after the cutting, one
actually has no residual stresses (both the bar final configurations are in fact stress-
free) and, if the temperature increase was set to be the same, one also observes only
inelastic (thermal, or growth) strains. The sole difference which one can recognize to
distinguish between the two cases is given by the “energy release” after the cutting
observed in the second situations and revealed to the observer by the change of con-
figuration, which implicitly depends on the presence of a self-equilibrated stress field
present into the bar before the cutting. The above described simple paradigm might
be also exploited to interpret the wide use of the thermal stress. If in fact - after the
cutting - one wanted to go back to the undeformed configuration (zero total strain
at each point of the bar), one should ideally apply a stress field exactly equal to the
self-equilibrated stress state present into the bar prior to cut the beam. This stress
state would hence result to be associated to a zero-strain condition and, by virtue of
the above given definitions of residual strains and stresses, should be thus thought as
a residual stress.
Also, from the simple thermo-elastic paradigm utilized above in parallel with growth,
two further aspects can be highlighted. Fist, homogeneous (spatially uniform) de-
formation states can determine residual stresses (the second case above described)
and therefore the stresses can occur not only in “inhomogeneously grown” materials.
Futhermore, as well-known, (in linear thermo-elasticity) if a linearly varying inelastic
deformation field is imposed (e.g. a thermal strain field linearly varying with x, y and
z of a Cartesian coordinate system in a generic three-dimensional domain of a not
constrained and unloaded body with arbitrary shape) the inelastic strain does not
generate stresses (because the compatibility equations ∇× (∇× ε)T = 0 are auto-
matically satisfied and the total strain coincides with the inelastic one, thus producing
vanishing stresses): thus, if inelastic thermal strains are replaced by inelastic growth
strains, a tissue material can inhomogeneously (linearly in this case) grow without
accumulating stresses.

1.3 conservation equations

Conservation equations are material-independent principles. Due to their axiomatic
character, they cannot be derived from other natural laws. In what follows, the main
balance principles will consider continua with a growing mass and, therefore, multi-
plicative decomposition will be adopted. Also, some growth-specific and remodelling-
specific terms will be introduced in order to appropriately provide mass supply/re-
moval as well as remodelling-induced changes, by assuming a pure volumetric growth
process.
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18 fundamentals of continuum solid mechanics

1.3.1 The mass conservation equation

A substantial difference between the theory of open systems and the theory of closed
systems resides in the formulation of the mass balance. Differently from the theory
of closed systems, the mass of open systems is not constant. Then a time rate of the

mass growth rg has to be introduced (see e.g. Lubarda and Hoger [127]), and the mass
balance can be written as

dm = dm0 + dmgen

ρ dv = ρ0 dV +

∫ t

ti

rg dvdτ
(1.72)

where ρ(k) : Ω(k) → R denotes the mass density in the configuration (k), so that
the mass of every dv(k)-measurable subset of Ω(k) is given by dm(k) = ρ(k) dv(k), in
a way that also ρ(k) > 0, ∀x(k) ∈ Ω(k). By deriving (1.72) with respect to time,

d

dt
(ρ dv) = rgdv (1.73)

dρ

dt
dv+ ρ

d(dv)

dt
= rgdv (1.74)

Dividing both members by the initial fixed volume dV and recalling equations (1.10)
and (1.55), one obtains

dρ

dt
+ ρ∇x · v = rg (1.75)

which is the current (Eulerian) local form of the mass balance. Also, a pull-back of
variables in equation (1.73) gives the Lagrangian form of the mass balance:

d(J (X, t) ρ (x (X, t) , t))

dt
= J (X, t) rg (x (X, t) , t)

or d%

dt
= Rg (1.76)

in which the position % = J ρ and Rg = J rg have been introduced to denote
material quantities.

1.3.2 The momentum conservation equations

1.3.2.1 The Reynolds transport theorem

It is convenient to briefly recall the Reynolds transport theorem, which generalizes the
well-known Leibnitz integral rule. Considering a function F (x, t) (that can be tensor,
vector or scalar valued), this theorem states that:

D

Dt

∫
Ω
Fdv =

∫
Ω

dF
dt

+

∫
∂Ω

(v · n)Fda (1.77)
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Also the well-known Gauss divergence theorem is recalled:∫
Ω
∇x ·A =

∫
∂Ω

A · nda (1.78)

1.3.2.2 Conservation of linear momentum

The first Euler’s law of motion is here presented by introducing a specific growth term,
representing the momentum rate associated with the growing mass [47]:

D

Dt

∫
Ω
ρvdv =

∫
∂Ω

tda+

∫
Ω
ρbdv+

∫
Ω
rgvdv (1.79)

where t is the traction vector and b is the body force vector. By then applying
the Reynolds transport theorem (1.77) to the first member of equation (1.79), and
accounting for the balance of mass in (1.75), it results

D

Dt

∫
Ω
ρvdv =

∫
Ω
ρ
dv

dt
+ rgv dv (1.80)

The direct substitution of the latter in equation (1.79), together with the application
of the Cauchy’s theorem (1.63) and the divergence theorem (1.78), leads to the local
spatial form of the linear momentum conservation equation:

∇x ·σ + ρb = ρ
dv

dt
∀x ∈ Ω (1.81)

Also, a pull-back operation on members of balance (1.79) let to derive the material
linear momentum equation, giving

D

Dt

∫
Ω0
%ẋdV =

∫
∂Ω0

TdA+

∫
Ω0
%BdV +

∫
Ω0
Rgẋ dV (1.82)

Since Ω0 is fixed, time differentiation on the left-side of equation (1.82) can be
performed on the integrand

D

Dt

∫
Ω0
%ẋdV =

∫
Ω0

d%

dt
ẋ + % ẍ dV =

∫
Ω0
Rgẋ + % ẍ dV, (1.83)

and, by proceeding in an analogous manner through the account of the Cauchy’s
theorem (1.66) and of the mass balance in the form (1.76), one obtains:

∇X ·P+ %B = %ẍ ∀X ∈ Ω0 (1.84)

where the pull-back evaluation of the acceleration has been considered (see equa-
tions (1.48)). Localized forms of equilibrium equations show therefore an intuitive
representation of equilibrium: the body is entirely at equilibrium if each its element
satisfies equilibrium requirements.
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1.3.2.3 Balance of angular momentum

The second Euler’s law of motion, written in its integral form, also presents a growth
rate-dependent term and reads:

D

Dt

∫
Ω
(x× ρv)dv =

∫
∂Ω

(x× t)da+

∫
Ω
(x× ρb)dv+

∫
Ω
rg(x× v)dv (1.85)

From the application of the Reynolds transport theorem (1.77) (considering the
field F = (x× ρv)), it results

D

Dt

∫
Ω
(x× ρv)dv =

∫
Ω

[
ρ
d

dt
(x× v) + rg(x× v)

]
dv =

=

∫
Ω

[
ρ(x× d

dt
v) + rg(x× v)

]
dv (1.86)

in which the relation ẋ
(
χ−1 (x, t) , t

)
× v (x, t) = 0 has been employed. Then, the

substitution of equation (1.86) into equation (1.85), gives∫
Ω
ρ(x× dv

dt
)dv =

∫
∂Ω

(x× t)da+

∫
Ω
(x× ρb)dv (1.87)

By means of the Cauchy’s theorem (1.63) and the Gauss theorem (1.78), the fol-
lowing identity can be obtained∫

∂Ω
(x× t)da =

∫
∂Ω

(x×σn)da =

∫
Ω

[
x×∇x ·σ + ε : σT

]
dv (1.88)

in which ε is the Levi-Civita permutation tensor. Therefore, substitution of (1.89)
into (1.87), and imposing the conservation of linear momentum, the only remaining
term is

∫
Ω

x×
[
∇x ·σ + ρb− ρdv

dt

]
+ ε : σTdv = 0,∫

Ω
ε : σT dv = 0 (1.89)

By means of localization, the produced scalar equations are of the type σij − σji =
0, i 6= j, which imply the symmetry of the Cauchy stress, i.e.

σ = σT, ∀x ∈ Ω (1.90)

The material form is formulated through a pull-back operation, and the result has
already been reported in terms of second Piola-Kirchhoff stress tensor in equation
(1.71).
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1.3.2.4 Energy conservation equation

The first law of thermodynamics requires the balance of energy. It states that the rate
of total energy, which is the sum of the internal energy E and the kinetic energy K,
equals the rate of mechanical work W plus the rate of non-mechanical work Q:

Ė + K̇ =W +Q (1.91)
The rate at which external surface and body force do work on the current configu-

ration is given by the expression [127]

P =

∫
∂Ω

t · v da+
∫

Ω
ρb · v dv =

∫
Ω

[
ρ
d

dt

(
1
2v · v

)
+ σ : D

]
dv (1.92)

where D = symL. By considering the thermal power, an internal rate of heat source
per unit mass wh and heat flux vector qh are introduced, so that

Q =

∫
Ω
ρwh dv−

∫
∂Ω

qh · n da =

∫
Ω
(ρwh −∇x · qh) dv (1.93)

Therefore, the first law of thermodynamics in the form (1.91) can be written by
considering the specific energy density per unit mass e and by further introducing
two further related to growth (see [47, 127, 149]):

D

Dt

∫
Ω
ρe dv+

D

Dt

∫
Ω

1
2ρv · v dv =W +Q+

+

∫
Ω

k · γ̇ dv+
∫

Ω
rg

(
1
2v · v+ e

)
dv+

∫
Ω
εg ρ
−1 rg dv (1.94)

The last three terms of equality (1.94) are kindled in association with the remod-
elling and growth processes. In particular, the microstructural changes due to remod-
elling can be described at a continuum scale through suitable remodelling variables,
here represented by the vector γ and so k can be viewed as a thermodynamic driving
force conjugated to the rate of remodelling variables. The second term represents the
rate of kinetic energy and specific energy associated with the current mass generation
and the last term takes into account a contribution to the growth enhanced by a
specific metabolic energy supply per unit volume, say εg.
By then developing the first two terms of the energy balance (1.94) in the light of the
Reynolds transport theorem (1.77), one has

D

Dt

∫
Ω
ρ

(
1
2v · v+ e

)
dv =

∫
Ω
ρ
d

dt

(
1
2v · v+ e

)
dv+

∫
Ω
rg

(
1
2v · v+ e

)
dv (1.95)

Inserting the latter into (1.94), the local form of the energy conservation equation
is finally obtained:

ρ
de

dt
= σ : D+ ρwh −∇x · qh + k · γ̇ + εg ρ

−1 rg (1.96)

If the reference configuration is used to formulate the balance in a Lagrangian form,
the mechanical work reads:

P =

∫
Ω0

[
%
d

dt

(
1
2 ẋ · ẋ

)
+P : Ḟ

]
dV (1.97)
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in which the identity Jσ : ḞF−1 = P : Ḟ has been used. Analogously, the pull-back
on Q reads

Q =

∫
Ω0

(%Wh −∇X ·Qh) (1.98)

in which Wh = Jwh is the material heat source and Qh = JqhF
−T is the nominal

heat flux vector. The energy formulation reads

D

Dt

∫
Ω0
%

(
1
2 ẋ · ẋ + e0

)
dV =W +Q+

+

∫
Ω0

K · γ̇0 dV +

∫
Ω0
Rg
(

1
2 ẋ · ẋ + e0

)
dV +

∫
Ω0

εg0 %
−1Rg dV (1.99)

the subscript 0 denoting the corresponding material quantities, i.e. evaluated in
x (X, t). The differentiation of the left side of equation (1.100) together with mass
balance (1.76), as well as of equations (1.97) and (1.98), gives

%
de0
dt

= P : Ḟ+ %Wh −∇X ·Qh +K · γ̇0 + εg0 %
−1Rg (1.100)

1.3.2.5 Balance of Entropy

The total internal dissipation per unit mass can be accounted by introducing two
thermodynamic forces, say fg and fγ (per unit mass), respectively conjugated to the
rates rg and γ̇. In such a way, the total rate of dissipation, which is the product of
the absolute temperature θ and is written down:

θυ = fγ · γ̇ + fgρ
−1rg (1.101)

This term must be positive to be thermodynamically consistent. The second law
of thermodynamics requires that the entropy production, defined as the difference
between the rate of entropy and the entropy power has to be greater than zero. Thus,
by indicating with s the entropy production per unit current mass, one has in the
integral form that:

D

Dt

∫
Ω
ρsdv ≥

∫
Ω
ρ
wh
θ
dv−

∫
∂Ω

1
θ
qh · n da+

∫
Ω
rg s dv+

∫
Ω
ρυ dv (1.102)

The application of the Reynolds transport theorem (1.77) to the left side of equation
(1.102) and the exploitation of the mass balance (1.75) let to straightforwardly obtain:∫

Ω
ρ
ds

dt
dv ≥

∫
Ω
ρ
wh
θ
dv−

∫
∂Ω

1
θ
qh · n da+

∫
Ω
ρυ dv (1.103)

and, by means of the localization theorem, one has

ds

dt
≥ −1

ρ
∇x ·

(qh

θ

)
+

1
θ

(
wh + ρfγ · γ̇ + fg rg

)
(1.104)
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The corresponding material descriptions of (1.103) and (1.104) are respectively∫
Ω0
%
ds0
dt

dV ≥
∫

Ω0
%
Wh

θ
dV −

∫
∂Ω0

1
θ
Qh ·N dA+

∫
Ω0
%υ0 dV (1.105)

ds0
dt
≥ −1

%
∇X ·

(
Qh

θ

)
+

1
θ

(
Wh + %F γ · Γ̇ + FgRg

)
(1.106)

in which s0 is the entropy per unit reference mass, while Γ = Jγ, Fg = fg (x (X, t) , t)
and F γ = fγ (x (X, t) , t).

1.3.2.6 Combined energy and entropy equations

It is convenient to express the local energy and entropy equations in a quasi-isothermal
case:

ρ
de

dt
= σ : D+ ρwh −∇x · qh + k · γ̇ + εg ρ

−1 rg (1.107)

ρθ
ds

dt
≥ −∇x · qh + ρwh + ρfγ · γ̇ + fg rg (1.108)

%
de0
dt

= P : Ḟ+ %Wh −∇X ·Qh +K · γ̇0 + εg0 %
−1Rg (1.109)

%θ
ds0
dt
≥ −∇X ·Qh + %Wh + %F γ · Γ̇ + FgRg (1.110)

By now subtracting (1.108) from energy equation (1.107), it follows that

ρ

(
de

dt
− θds

dt

)
≤ σ : D+

(
k− ρfγ

)
· γ̇ + (εg − ρ fg) rg (1.111)

Then, on the left side of equation (1.111), the Helmholtz free-energy per unit volume
ψ = ρ(e− θs) can be readily recognized, thus obtaining the Clausius-Duhem inequal-
ity

dψ

dt
≤ σ : D+

(
k− ρfγ

)
· γ̇ + (εg − ρ fg) ρ−1rg (1.112)

In an analogous manner, the material rate of free energy is obtained by combining
(1.110) and (1.109):

dψ0
dt
≤ P : Ḟ+ (K− %F γ) · Γ̇ + (εg0 − %Fg) %−1Rg (1.113)

Therefore, provided the set of the state variable on which the internal energy de-
pends, suitable constitutive relations are obtained through direct comparison. More-
over, in what follows, isothermal processes will be conveniently assumed.

1.4 constitutive equations

Constitutive relations are introduced to take into account the material-specific me-
chanical response. In order to deal with biomechanical problems, growth and remod-
elling terms are still considered and the kinematical multiplicative decomposition
of the deformation gradient (1.31) can be employed. Then, in defining the internal

variables, the free energy function will clearly depend upon the elastic part of the
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deformation, as well as to other structural internal variables such as the remodelling
ones. Besides the concept of internal variables, two further important principles for
the construction of material equations are the principle of material objectivity and
the principle of material symmetry.
The principle of material objectivity affirms that constitutive equations are invariant
with respect to the observer. In other words, ψ (QF) = ψ (F) ,∀Q ∈ Orth+. Observ-
ing that the Cauchy-Green tensor (as well as other purely Lagrangian and Eulerian
strain measures) is free from rigid body motions, and so it might be reasonable to
formulate constitutive equations in terms of this strain measure (or the others), this
implying ψ = ψ (C) (or equivalently ψ = ψ (b)).
The principle of material symmetry states that constitutive equations have to be in-
variant with respect to all transformations of the material coordinates, which belong
to the symmetry group Gk of the underlying material. In other words, if one considers
a material coordinate transformation, say X∗ = QX, ∀Q ∈ Gk, the corresponding
deformation gradient and right Cauchy-Green tensor read as

F∗ =
∂x

∂X∗
= FQ C∗ = (F∗)TF∗ = QTCQ (1.114)

Provided that the second Piola-Kirchhoff stress S is work-conjugate with C, the
material symmetry requires that

ψ (C) = ψ
(
QTCQ

)
and S (C) = S

(
QTCQ

)
, ∀Gk ⊆ Orth (1.115)

Consequently, isotropic materials is defined as the class of materials for which Gk =
Orth, and characterizes the materials whose response is the same in all directions.
If volumetric growth is now accounted, and by virtue of objectivity, it is convenient to
consider the Helmoltz free energy ψ as a function of the elastic Cauchy-Green tensor
Ce and of the remodelling parameters. In this case the tensor Ce is defined on the
grown intermediate configuration, and thus it is not in its Lagrangian description.
Then, the relationship

◦
Ce = RT

g CeRg is utilized to describe Ce with respect to the
initial configuration. Also, the following relation has to be considered in expressing
the reference specific free energy:∫

Ωg
ψ
(
Ce, γg

)
dV g =

∫
Ω0
Jgψ(

◦
Ce, Γ)dV

0 (1.116)

with γg = Jeγ. Therefore the relation ψ0 = Jgψ (the overset symbol will be
avoided in what follows for the sake of clarity). Also, by taking into account the
identity Ė = 1

2Ċ = FTdF one can write

1
2S : Ċ = τ : d = P : Ḟ (1.117)

The latter relation, together with (1.116), are inserted into (1.113) in a way to have

Jgψ̇+ ψJ̇g ≤
1
2S : Ċ+ (K− %F γ) · Γ̇ + (εg0 − %Fg) %−1Rg (1.118)
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by also taking into account the multiplicative decomposition of the deformation
gradient (1.31), it is possible to write C = FT

g CeFg in a way that

Jg
∂ψ

∂Ce
: Ċe + Jg

∂ψ

∂Γ
: Γ̇ + JgψI : Lg ≤

1
2S :

(
ḞT
g CeFg +FT

g CeḞg +FT
g ĊeFg

)
+

+ (K− %F γ) · Γ̇ + (εg0 − %Fg) %−1Rg (1.119)

or, since the symmetry of the second Piola-Kirchhoff tensor,

Jg
∂ψ

∂Ce
: Ċe + Jg

∂ψ

∂Γ
: Γ̇ + JgψI : Lg ≤ S : FT

g CeḞg +
1
2S : FT

g ĊeFg+

+ (K− %F γ) · Γ̇ + (εg0 − %Fg) %−1Rg (1.120)

Now, focusing on the last term of (1.120), two considerations can be introduced. By
first observing that the adaptation (elastic) path of the deformation is mass preserving
(i.e. there is no growth/resorption during elastic deformation), the hypothesis

dm = dmg, Jρ = Jgρg (1.121)

can be introduced, with ρg being the body true density in the grown configuration,
and mass balance (1.72) can be rewritten as

ρg Jg = ρ0 +

∫ t

ti

Rg dτ (1.122)

It is reasonable now to assume that density does not change during mass growth
(meaning that growth is purely volumetric), implying that ρg = ρ0. It follows that,
by differentiating with respect to time

Jg = 1 + 1
ρ0

∫ t

ti

Rg dτ, J̇g =
1
ρ0Rg, JgI : Lg =

1
ρ0Rg (1.123)

in which the relation J̇g = Jg tr(Lg) has been used. Also, from the mass balance
(1.76), in the light of the present substitutions one has

d(Jρ)

dt
= ρ0J̇g, ρ̇+ ρ tr(Le) = 0, or ρ̇

ρ
= − J̇e

Je
(1.124)

which coherently describes the change of density throughout the elastic adaptation
path of the whole deformation, implying that a direct relationship between elastic
expansion and density rarefaction (and contrarily, elastic compression implies local
densification).
Substitution of (1.123) into (1.120) let to collect the various terms

(
1
2FgSFT

g − Jg
∂ψ

∂Ce

)
: Ċe +

(
K− Jg

∂ψ

∂Γ
− %F γ

)
· Γ̇+

+

(
Jg

(
ρ0

%
εg0 −ψ

)
I+FgSFT

g Ce − Jg ρ0 FgI

)
: Lg ≥ 0 (1.125)
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This method, also known as Coleman’s method (see ), let to derive through direct
comparison the elastic stress response for the present case, as well as an expression for
the thermodynamic forces above postulated. More precisely, for the first two brackets:

S = 2JgF−1
g

∂ψ

∂Ce
F−T
g = JgF

−1
g SeF

−T
g = 2∂ψ0

∂C
(1.126)

F̃ γ = K− Jg
∂ψ

∂Γ
(1.127)

the tilde indicating the quantity expressed per unit volume. It is clear that the
stress emerges, as known, as a response of the material to a deformation process which
induces a change of the strain energy density. The thermodynamic force F̃ γ can be
interpreted as a driving force guiding the remodeling process and takes into account
the effect of a referential force K with respect to which a certain aliquota of energy
is spent for kindling the remodelling process. With attention on the thermodynamic
force associated to growth, the substitution of (1.126) into the last term of equation
(1.125) let to derive:

Fg = SeCe +

(
ρ0

%
εg0 −ψ

)
I (1.128)

with the position Fg = ρ0 FgI. It follows that the thermodynamic force associated
to growth, i.e. thermodynamically conjugated to the growth deformation gradient
velocity Lg, are inevitably associated to the change of configuration. The physical
quantity underlying this change of natural configuration is called configurational stress

and can be expressed in terms of an Eshelby-like stress tensor Σ, as defined by Cgurtin
[79], for example. A suitable definition for the configurational stress, responsible in
this case of the domain variations induced by the volumetric growth, has been given
by Maugin [133] and it is in this case related to Fg through

Σ = −Fg =
(
ψ− ρ0

%
εg0

)
I− SeCe (1.129)

Remarks

The expression for the first Piola Kirchhoff stress tensor can be obtained by consider-
ing relation (1.71) in conjunction with (1.126). The other stress measures are:

P = FS = 2JgFe
∂ψ

∂Ce
F−T
g = Jg

∂ψ

∂Fe
F−T
g (1.130)

τ = PFT = Jg
∂ψ

∂Fe
FT
e (1.131)

σ = J−1τ = J−1
e

∂ψ

∂Fe
FT
e (1.132)

Furthermore, standard stress-strain relations can be obtained by opportunely de-
priving balances (1.107)–(1.110) of the growth- and remodelling-related terms, or by
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vanishing growth deformation form equations (1.126), (1.130)–(1.132) (i.e. by imposing
Fg = I):

S = 2 ∂ψ
∂C

=
∂ψ

∂E
(1.133)

P = FS =
∂ψ

∂F
(1.134)

τ = PFT =
∂ψ

∂F
FT (1.135)

σ = J−1τ (1.136)

All these stress measures are in accord with the Hill’s [84] general definition:

τ : d = S(m) : E(m) (1.137)

where E(m) is the Hill strain family (1.24). Therefore the first Piola-Kirchhoff tensor
is work-conjugate with F (they are both two-point tensors), the second Piola-Kirchhoff
stress S is work-conjugate with E(2), and each stress has a unique counterpart. For
the sake of completeness, it is here then reported the expression of the stress tensor
T conjugate to the Hencky strain ( [86]):

T(0) = A−1 : (RTτR) (1.138)

where A is a fourth-order structure tensor defined such as:

A =
3∑
i=1

Mi ⊗Mi +
3∑

i,j=1
i6=j

2λiλj ln( λiλj )
λ2
i − λ2

j

Mi ⊗Mj , (1.139)

with the second order tensors Mi, i = {1, 2, 3} being defined through the eigenvec-
tors Ni, in a way that MiMj = δijMi and

∑3
i=1 Mi = I. Relationship (1.138) can

be easily established starting from equality (1.137) and observing that, through direct
comparison, the rate matrices D in (1.54) and Ḣ in (1.61) can be related each other
by the matrix A, i.e. Ḣ = A : D (for a more detailed derivation see also Hoger [86]
and Itskov [100]). In case the stress T(0) and U (thus H) are coaxial, T(0) admits the
following representation

T(0) = TiNi ⊗Ni (1.140)

where Ti denote the principal stresses. In this case only the first term of (1.139)
actually is needed and follows that

T(0) = (RTτR) (1.141)

Furthermore, if deformation is homothetic and no rotations occur, one has the Hencky
strain actually conjugated with the Kirchhoff stress:

T(0) =
∂ψ

∂H
= τ (1.142)
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By finally recalling (1.27), the following relations hold

τ (0) = RT(0)RT = Aτ =
∂ψ

∂h
, (1.143)

τ (0) = τ (1.144)

the second relation being obtained in case that V and τ (0) share the same eigen-
vectors.

1.5 special constitutive models for isotropic hyperelasticity

Some of the most frequently used hyperelastic models are briefly recalled below. As
a direct consequence of the frame indifference, the strain energy functions will exclu-
sively depend on the invariants of the strain measure adopted.

1.5.1 St. Venant-Kirchhoff model

The St. Venant-Kirchhoff model represents one of the simplest hyperelastic material
model involving two sole material constants, here given in terms of terms of Lamé
moduli Λ and µ:

ψ =
1
2E : C : E =

Λ
2 (tr(E))2 + µ tr(E2) (1.145)

The fourth-order tensor C = 2µI+Λ I⊗ I denotes the stiffness tensor. It follows that

S =
∂ψ

∂E
= 2µE+ Λ tr(E)I (1.146)

Under the assumption of small strains this model gives the well-known generalized
Hooke’s law

σ = 2µ ε+ Λ tr(ε)I (1.147)

1.5.2 Ogden incompressible materials. Mooney-Rivlin and Neo-Hookean models

In the context of rubber-like materials, for which a substantial incompressibility occur,
i.e. J = λ1λ2λ3 = 1, Ogden [87, 148] postulated the following phenomenological strain
energy function, given in terms of the principal stretches:

ψ = ψ (λ1, λ2, λ3) =
N∑
p=1

µp
αp

(
λ
αp
1 + λ

αp
2
)
+ λ

αp
3 − 3 (1.148)

On comparison with linear elastic material coefficients, the Ogden model parameters
have to satisfy to the consistency conditions:

N∑
p=1

µpαp = 2µ, µpαp > 0, p = 1, ..., N (1.149)

By setting N = 1, α1 = 2 the so called Neo-Hookean material is found
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ψ =
µ1
2
(
λ2

1 + λ2
2 + λ2

3 − 3
)
= c1 (I1(C)− 3) (1.150)

while, for N = 2, α1 = 2 and α2 = −2, the Mooney-Rivlin model is obtained:

ψ =
µ1
2
(
λ2

1 + λ2
2 + λ2

3 − 3
)
− µ2

2
(
λ−2

1 + λ−2
2 + λ−2

3 − 3
)
=

= c1 (I1(C)− 3) + c2 (I2(C)− 3) (1.151)

1.5.3 Fung model

In relation to the modelling of biological soft materials, which typically exhibit an
exponential like stress-strain response, Fung successfully proposed [46, 69] the follow-
ing strain energy function, constituted of a bilinear standard term and an exponential
term:

ψ =
1
2E : A : E+

c

2 [exp (E : B : E)− 1] (1.152)

The stresses are calculated from the strain energy function as

S =
∂ψ

∂E
= A : E+ c(B : E) e(E:B:E) (1.153)

The Fung-model, under the simplified isotropic hypothesis, can be written in terms
the principal stretches as:

ψ =
1
2a
(
λ2

1 + λ2
2 + λ2

3 − 3
)
+
c

2
[
exp

(
b
(
λ2

1 + λ2
2 + λ2

3 − 3
))
− 1
]

(1.154)

in the sole material constants a,b and c.
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appendix

Invariants and their tensor-derivatives:

Given generic second-order tensor A, its invariants are defined as:

I1 (A) = tr (A) = A : I

I2 (A) =
1
2

[
(tr (A))2 − tr

(
A2)]

I3 (A) = det (A)

and the derivatives of these invariants with respect to A are

∂ I1
∂A

= I

∂ I2
∂A

= I1I−AT

∂ I3
∂A

= det (A)A−T
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2SPEC IES GROWTH AND VOLTERRA-LOTKA SYSTEMS

Turning point of the study of population dynamics in the early 20th can be sine dubio
attributed to A.J. Lotka, an American byophisicist and a statistician, and V. Volterra,
one of the most important Italian mathematicians.
Volterra and Lotka had physics as a reference, but did not consider only mechanics:
they both took also into account the energetic approach of thermodynamics, and in
fact, considered evolution as the expression of the second law of thermodynamics [98].
In the following, some global properties of Volterra-Lotka approach and its extensions
are briefly treated in order to then transpose this exact logic to the modelling of tissues
constituents.

2.1 introduction

Elements of Physical Biology (1925, [115]) by Lotka is actually the first book on math-
ematical biology. In its pages, Lotka described his view of nature as a complex system
plentiful of “energy transformers”, in which natural selection was the result of the
struggle among living organisms to ensure themselves the available energy: species
that survive and prosper are those that maximize both the rate at which resources
are procured and the effectiveness with which this resources are used and converted
into gain (offspring). In particular, among other considerations, the book presented a
mathematical model regarding the interaction of two animal species, one of which was
the parasite of the other, inspired to chemical reaction systems. Lotka then extended
his energetic framework to human society, in demographic studies and economics.
In the same period, and in a completely independent manner, Volterra published his
first result on variations and fluctuations of animal species living together (Variazioni
e fluttuazioni del numero d’individui in specie animali conviventi [206]). He was re-
quested to investigate the possible reasons concealing behind the increase in fish
population of Selachians and other predators in the Adriatic Sea during World War 1
as compared with the preceding and following periods, as well as the decrease in their
prey, which feed on vegetables or invertebrates. Differently from Lotka, Volterra intu-
ition exclusively arose from biological considerations related to the observation of the
biosystem. However, the rationale on which Volterra founded his view of nature is com-
pletely analogous. In the essay Una teoria matematica sulla lotta per l’esistenza[204],
he explains that biocenosis, i.e. the community inhabiting the ecosystem, is consti-
tuted of more species interacting together. Ordinarily, individuals of a certain species
fight for the same amount of food or some species live at the expense of other species
of which they feed. Of course, some species can also cooperate and benefit each other.
The combination of these factors resides in what Volterra calls the fight for life, and
it quantitatively manifests in fluctuations of species individuals, as well as, under dif-
ferent conditions, in the extinction or uncontrolled growth (Mathematical Theory of

Struggle for Existence[205]). This analysis represented to Volterra the mathematical
form to Darwin’s intuition of phenomena of vital competition. The result is the model

31
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which is nowadays known as Volterra-Lotka (VL) equations, treated in the following,
and a particular well-known case in the predator-prey model. This model provides a
generalization of the Verhulst logistic model by accounting for the effects that the
“encounters” among species individuals produce, following the hypothesis that preda-
tion is directly proportional to the rate of encountering between two different species
individuals. The early model was then refined and sophisticated by Volterra, also in
correspondence with Lotka, in collaboration with other scientists such as U. D’Ancona
(zoologist, Volterra’s collaborator and future son-in-law). It is worth noting that the
intuition and the logic on which the VL equations found represent de facto the pro-
genitor of the modern Evolutionary Game Theory (EGT) introduced by J.M. Smith
and the renowned Nash equilibria games. In fact, EGT extended the classical game
theory between two or more players to study the behavior of large populations that
repeatedly engage in strategic interactions, on which the survivor of a population de-
pend. The most of interaction is based on the idea that the current state of a player
depends on the presence of the other players. In brief, in classical games (single round
or repetitive) each player is rational as he considers the opponents strategies in mak-
ing appropriate choices for maximizing utilities. In EGT, it is only required player
to have a strategy (sometimes unwillingly, depending on its natural attitude). This
strategy is known as fitness function and often depends on other players in the game.
In case of natural selection, another hypothesis players (animals) do not choose their
strategy or have the ability to change it, they are born with a strategy and their
offspring will inherit that same identical strategy. As a result, the organism with the
best interaction strategy can have the highest fitness and increase their ability to
reproduce.

2.2 simple-species growth

In particular, Volterra himself remarked that the model of unbounded growth of a
population N with proliferation rate ε > 0

dN

dt
= εN, N(t) = N0e

ε t (2.1)

was “unacceptable for biologists” [98] and mathematically unstable (the case ε < 0
is instead related to the so-called exponential decay). A first simple development of
this model can be introduced by considering the (negative) influence of the number
of individuals through another characteristic coefficient λ

dN

dt
= (ε− λN) N, N(t) =

εN0eε t

ε+ λN0 (eε t − 1) (2.2)

where N0 is the initial number of individuals, this solution highlighting a species in a
given environment develop more realistically until its density distribution approaches
values that modify the conditions of life. The maximum number of individuals po-
tentially sustainable by the environment is limt→∞N(t) = ε/λ; in the VL sense, the
coefficient λ can be also viewed as the weight of the influence that individuals of a
species exert on their similar. In a general case of more species, the extension of the
idea of the simple species logistic behavior lies on the fundamental hypothesis of the
existence of a certain interaction bond between two or more of them, or, as Volterra
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says using a mechanical analogy, a growth under “friction” among individuals of every

single species.

2.3 multiple species systems

A dynamical system can be in general written in the form

ẋ = xf (x), ẋi = fi(x1, ..., xn) (2.3)

where i = 1, .., n and fi : Rn → Rn is C1. It can be demonstrated that populations
that start from non-negative values remain non-negative. Volterra-Lotka system are
of the type f = b + Ax, where b is a n−dimensional vector collecting the intrinsic
rates of each species xi, while A is a n× n matrix collecting the inter-species weight
coefficient, such that

ẋ = x (b+Ax) , ẋi = bi xi +
n∑
j=1

αij xj , xi (2.4)

In this form, if αij < 0 systems are known as competitive systems and each species
competes with all others including itself; contrarily, if αij ≥ 0, i 6= j the system
is denoted as a cooperative system in the sense that each species enhance the other
species growth. The terms αii represent competition between members of the same
population and are known as intraspecific terms. The main interesting properties of
VL systems can be discussed by literally constructing the more general case (2.6)
starting from the simplest two species model up to the more sophisticated models.

2.3.1 The predator-prey model

The simplest VL model, which is the one originally presented by both the scientists,
is the so-called predator-prey model. It is constituted of a couple of ordinary and non-
linear differential equations. In his work [206], Volterra denoted by x the density of
preys and by y that of predators. He assumed that, in absence of predators, preys
tend to grow with a certain positive rate a > 0 and the influence parameter (intro-
duced above with respect to a single species in (2.2)) –say b– is in this case related
to the encounter of the predator y, whose presence then acts negatively on the prolif-
eration of the species x. With regard to the predators, it is assumed that they decay
exponentially with rate c when preys run out, while their growth will be weighted by
the encounters with the preys through an opportune predation rate d. The following
system of differential equations is then obtained:ẋ = x (a− b y)

ẏ = y (−c+ d x)
, b =

[
a

−c

]
, A =

[
0 −b
d 0

]
(2.5)

The phase space consistent with the physics of the problem is represented by the
first Cartesian orthant, i.e. R2

+ = {{x, y}|x ≥ 0, y ≥ 0}. Three solutions can be
immediately obtained. If x(0) = y(0) = 0, the dynamics is not kindled at all and
x(t) = y(t) = 0, ∀ t > 0. If only x(0) = 0 then y(t) = y0 e−c t, while if y(0) = 0
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then x(t) = x0 ea t. The case x(0) > 0 and y(0) > 0 remains to be discussed. It can
be seen from (2.16) that, for the particular values x∗ = c/d and y∗ = a/b, species
rates vanish and the density of predators and preys do not vary. The point {x∗, y∗}
is known as stationary point or equilibrium point. A system with this initial condition
will remain in this state for all t > 0. Also, system (2.16) can be rewritten asẋ = b x (y∗ − y)

ẏ = −d y (x∗ − x)
(2.6)

Hence, the signs of the rates ẋ and ẏ will depend on whether x and y are larger
or smaller than x∗ and y∗ respectively. More precisely, the couple {x∗, y∗} divides
the phase space into four regions, and the sign pattern {ẋ, ẏ} can be determined in
each quarter through (2.6) (see Fig. 4). This operation shows that orbits {x(t), y(t)}
counter-clockwise in the phase space around the point {x∗, y∗}. Such a behavior de-
notes a orbiting motion or periodic, i.e. the two species have periodic solutions and
oscillate around the equilibrium point. This feature can also be revealed by analyzing
the stability of the equilibrium point (stability analysis will be introduced in the follow-
ing; however this case can be simply illustrated). In other words, the linearized system
can be obtained by means of the Jacobi Matrix. By defining also with x = {x(t), y(t)},
the system (2.16) can be written in the form ẋ = f (x). The linearization of the orbits
around a generic state xp then is described by the following linear system

ẋ = J (xp)(x− xp), J (xp) =
∂ f

∂ x

∣∣∣∣
x=xp

(2.7)

where J (xp) is also known as community matrix. In the present case, in correspon-
dence of xp = x∗:

J (x∗) =
∂ f

∂ x

∣∣∣∣
x=x∗

=

[
a− b y −b x
d y d x− c

]
{x= c

d ,y=
a
b }

=

[
0 − b cd
d a
b 0

]
(2.8)

By exploiting the spectral decomposition theorem, one finds that J (x∗) = VHΛV,
where Λ = Diag{λ1, λ2} is the matrix of the eigenvalues and V the corresponding
eigenvectors matrix (the H denoting the hermitian matrix). In correspondence of the
state x∗, eigenvalues result imaginary and opposite in phase:

λ1 = i
√
a c λ2 = −i

√
a c (2.9)

Since system (2.7) is linear, by performing the substitution y = V(x− x∗) and by
then exploiting the fundamental theorem for linear systems [150], local solution can
be given in the ẏ = Λy

y(0) = y0
, y(t) = eΛy0 (2.10)

which in this case gives

y(t) =

[
cos(
√
a c t) − sin(

√
a c t)

sin(
√
a c t) cos(

√
a c t)

][
y01

y02

]
(2.11)
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which represents a cyclic oscillation with no decaying (since the real part of the eigen-
values (2.9) are zero), and amplitude equal to |y0| = |x0−x∗|. This also explains why
the system is stationary if initial conditions approach the equilibrium point, as said
before. Another remarkable property of this system can be derived from the direct ob-
servation of the eigenvalues (2.9): in fact, it can be noticed that tr(J (x∗)) = 0. This
means that the dilatation/shrinkage of the phase space is null. Then, since dynamics
preserves the phase space volume, the system under discussion is conservative. By
definition, with reference to system (2.6), a dynamical system is conservative if there
exists a matrix D > 0 such that AD is skew-symmetric. In the case of (2.16), it simply
results D = Diag{d−1, b−1}, this implying the already discussed consequences.
Furthermore, analogous considerations can be made by observing that the system
(2.16) is Hamiltonian, with H taken to be the Hamiltonian function. In fact the sys-
tem can be written in Hamiltonian canonical form by performing the substitution
p = log x and q = log y. In this case one has:ṗ = ẋ

x = a− b eq = ∂H
∂ q

q̇ = ẏ
y = −c+ c ep = −∂H∂ p

(2.12)

that, integrated, readily gives

H(p, q) = a q− b eq + d p− c ep, or (2.13)
H(x, y) = d (x− x∗ log x) + b (y− y∗ log y) (2.14)

This function remains constant along the orbit, since it is easy to verify by exploiting
equations (2.6) that H provides the constant of motion, since

Ḣ = d (x− x∗)
ẋ

x
+ b (y− y∗)

ẏ

y
= 0 (2.15)

This means that, since H is independent of time, the energy conserves at each time,
i.e. the energy of each state {x(t), y(t)} has the same energy at each point of the orbit,
and, since orbit is closed a curve and species densities are constrained by energy to
remain on this curve, it follows that solution are periodic.

2.3.1.1 Dissipative associations

Now, a first modification that can be taken into account is to relax the ideal hypothesis
according to which preys growth exponentially in absence of predators. Therefore,
by essentially following reasons discussed in section 2.2, luet us suppose that preys
have a limited growth. This can be done by opportunely introducing a intraspecific
logistic term (modeling the competition between preys for the available resources),
analogously to equation (2.2). The system becomesẋ = x (a− b y− e x)

ẏ = y (−c+ d x)
(2.16)

Equilibrium points are the origin, the predators extinction and the coexistence
scenario:

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



36 species growth and volterra-lotka systems

Figure 4: Phase portrait of a predator prey model.

P0 = {0, 0}, P1 = {a
e
, 0}, P2 = { c

d
,
a d− c e
b d

} (2.17)

Then the community matrix will be modified by the presence of the self competition
term as follows

J (x) =

[
a− 2ex− by −bx

dy dx− c

]
(2.18)

and the eigenvalues matrices corresponding to the rest points are in this case

Λ (P0) = Diag {a, −c} (2.19)

Λ (P1) = Diag
{
a d− e c

e
,−a

}
(2.20)

Λ (P2) = Diag
{
−c e2d ±

√
∆

2d

}
, (2.21)

∆ = c
(
c e(4d+ e)− 4a d2) ;

In the light of linearized solution (2.10), we can see that the origin is unstable
since possessing an unstable and a stable eigenvector: this behavior, that is analogous
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Figure 5: Periodic solutions of the predator prey model. It can be qualitatively appreci-
ated the chaining established between preys and predators, in the sense that
preys abundance calls predators, and the peak of the latter ones induces preys
plumbing.

to that one of the pure predator-prey model connotes the well known saddle point.
With an analogous reasoning, the prey dominance point can present a stable manifold.
This situation will occur if prcisely if c > d(a/e), i.e. the predators death rate will be
greater than the predation rate, opportunely weighted by a coefficient indicating the
probability at which live preys can be encountered. Also the third point can be stable.
In particular, if ∆ > 0, one may have a stable coexistence if c e >

√
∆ (otherwise, a

stable and an unstable eigenvector will occur). If ∆ < 0 is verified, complex conjugate
eigenvalue will occur and solution of (2.10) will be

y(t) = e−
c e
2d

[
cos(

√
∆

2d t) − sin(
√

∆
2d t)

sin(
√

∆
2d t) cos(

√
∆

2d t)

][
y01

y02

]
(2.22)

Hence we have an oscillating behavior, but this time, damped by a dissipative

coefficient equal to tr(Λ (P2)) = −c e/d. The presence of term tells us that dynamics
do not conserve energy due to damping, and, therefore, no close orbits will occur.
Moreover, as near the state {x(t), y(t)} is to the point P2, the less will be its energy.
In this case the point P2 is asymptotically stable.

2.3.1.2 Volterra-Lotka competitive case

Let us now consider, in the light of the biologically consistent considerations according
to which species growing in a confined environment fight for the same resources, the
case in which two species have similar nature and are in competition, i.e. suppose that
also the second species can generate offspring independently from the other species
and that interspecific terms are negative and indicated with c1 and c2. In this case
species are competitive. Also, let us introduce intraspecific coefficients, that can be
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Figure 6: Phase portrait of a non-conservative orbit.

expressed in terms of the species environmental carrying capacities, say K1 and K2,
which indicate the maximum density that species can achieve. Let us then express
the system (2.4) in the form:ẋ1 = b1 x1

(
1− x1

K1
− c1 x2

)
ẋ2 = b2 x2

(
1− c2 x1 − x2

K2

) (2.23)

To simplify calculations, the substitutions x = x1/K1 and y = x2/K2, indicating
with a12 = c1 K2 and a21 = c2 K1. Also time can be rescaled by setting t = b1 t and
b = b2/b1. This considerably reduces the number of parameters, without affecting the
topology of solutions: ẋ = x (1− x− a12 y)

ẏ = b y (1− a21 x− y)
(2.24)

Equilibrium points can be found by vanishing rates, i.e. by imposing:x = 0

y = 0

r1 : (1− x− a12 y) = 0

r2 : (1− a21 x− y) = 0
(2.25)
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Figure 7: Oscillating solutions of the predator prey with dissipative associations. The damp-
ing effect is clearly visible. a = 2.4, b = 0.45, c = 0.18, a = 0.15, e =
0.015,

the lines r1 and r2 being denoted as nullclines. From (2.25) the following state
{x∗, y∗} ∈ R2

≥0 can be individuated:

P0 = {0, 0} P1 = {1, 0} P2 = {0, 1} P3 =

{
1− a12

1− a12a21
,

1− a21
1− a12a21

}
(2.26)

Since populations are non-negative, the existence of the last point occurs when
either a12 > 1 and a21 > 1 or a12 < 1 and a21 < 1. We can then write the community
matrix:

J =

[
1− 2x− a12 y −a12 x

−a21 y 1− a21 x− 2 y

]
, (2.27)

and find that

J (P0) = {1, 1}, J (P1) = {−1, 1− a21}, J (P2) = {−1, 1− a12},

J (P3) = {−
(1− a12)(1− a21)

1− a12a21
,−1}, (2.28)

and, by studying the linearized behavior through the observartion of the eigenvalues,
the system near equilibrium will behave as y = eΛy0 with the sole difference that
Λ ∈ R and so trajectories will either converge towards the rest point or diverge from
it, depending on the sign of the eigenvalues. These considerations let to discriminate
four cases of interest, also shown in Fig. 8:

1. Case a12 < 1 and a21 < 1. This is the case of weak interaction. In this case
the point P3 exists and constitutes an attractor, while the other 3 points are
unstable, i.e. candidate equilibria that will not occur and energetically diverging.
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2. Case a12 > 1 and a21 > 1. In this case there is aggressive competition and
ultimately one population wins, while the other is driven to extinction. Then
coexistence P3 is now unstable together with the origin (unstable node), while
P1 and P2 are stable nodes. It can be shown that the prevalence of one of these
points with respect to the others depends on the initial conditions of the problem.
In other words, The winner depends upon which has the starting advantage.

3. Case a12 < 1 and a21 > 1. In this case P4 does not exist. Equivalently, this
conditions says that in the phase space r1 > r2, where r1 and r2 have been
defined in (2.25). This imply that species x has a better strategy, in the sense
that for every y his rate prevail, and so the first species will in time drive the
second to the extinction. In other words, x is dominant and P1 is a stable node.

4. Case a12 > 1 and a21 < 1. In this case situation is inverted, since r2 > r1 and
y is dominant; thus, only P2 will constitute a stable node.

Also, it can be demonstrated that this system does not admit isolated periodic
orbits.

2.4 stability

In the previous section we have checked the stability of the system by analyzing only
neighborhood stability against small perturbations away from equilibrium points. In
the following the definition of stability and the Lyapunov criteria will be resumed. Let
us consider the system (2.4)

ẋ = x (b+Ax) , ẋi = bi xi +
n∑
j=1

aij xj , xi (2.29)

and let the equilibrium values of the ecosystem be known, i.e.

b = −Ax∗, bi = −
∑
j

aijx
∗
j (2.30)

The system is said to be Lyapunov stable [129], if

∀ ε > 0 ∃ δ > 0 : ||x(0)− x∗|| < δ ⇒ ||x(t)− x∗|| < ε (2.31)

This means that trajectories starting close enough to the equilibrium point (within
a certain distance δ) remain close enough to the equilibrium point (within a certain
distance ε), in case of stable system (see Fig. 10).
The equilibrium of the system (2.29) is also asymptotically stable if it is Lyapunov

stable and

∃δ > 0 : ||x(0)− x∗|| < δ ⇒ lim
t→∞

||x(t)− x∗|| = 0 (2.32)

this definition indicating that trajectories (starting near the equilibrium points)
converge to equilibrium point. A stronger condition is the exponential stability, which
occur when the equilibrium is asymptotically stable and ∃α > 0, β, δ > 0 such that

||x(0)− x∗|| < δ ⇒ ||x(t)− x∗|| ≤ α||x(t)− x∗|| e−β t, (2.33)
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Figure 8: Phase planes for 2 species VL equations in the different discussed cases. Stable
nodes are highlighted in each case, and the nullclines r1 and r2 are respectively
in blue and red. Case 1. a12 = 0.15 and a21 = 0.2, Case 2. a12 = 1.5 and a21 = 2,
Case 3. a12 = 0.15 and a21 = 2, Case 4. a12 = 1.5 and a21 = 0.2

∀ t ≥ 0. This then requires that the rate of asymptotic convergence, for solutions start-
ing close enough to the rest point, remains always bounded by a particular known
rate α||x(t)− x∗|| e−β t. In the previous section we have investigated local stability
by linearizing the system in the neighborhood of the equilibrium point, in order to
establish if the latter one constituted a stable node (i.e. a point in which trajectories
converge) or an unstable node (i.e. a point that can become a source of trajectories).
The basin of attraction of x∗ is defined by the set of points x(0) satisfying x(t)→ x∗

as t → ∞. It is standard argument to construct the stability Hurwitz matrix (which
in this case is the Jacobian) and determine the stable directions by studying the sign
of its eigenvalues, recalling that an equilibrium point is asymptotically stable if the
stability matrix eigenvalues have all negative real part. The first theorem of Lyapunov
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Figure 9: Lyapunov stability definition

(Lyapunov theorem for linear systems) also implies that the matrix J with elements
{aijx∗j} is stable if and only if there exists a positive matrix Q such that QJ +J TQ

is definite negative.
Furthermore the presence of one or more eigenvalues with positive real part gives
unstable solutions, while the existence of zero eigenvalues (i.e. no corresponding eigen-
vectors) constitutes a so-called center manifold and the behavior of this point can be
analyzed through the center-manifold theory, for example (see e.g. [107]).
The second method exploits the Lyapunov stability theorem and makes use of Lya-
punov function. Considering a system ẏ = f (y) with f (0) = 0 (this condition can be
fulfilled through the substitution yi = xi − x∗i ), a function V : Rn → R is defined
such that:

V (0) = 0
V (y) ≥ 0, y 6= 0

V̇ =
∂ V

∂y
f (y) ≤ 0 (2.34)

Then, if the system admits a Lyapunov function, then solution is asymptotically
stable. Moreover, if V is radially unbounded, solution is globally stable. The main
advantage of Lyapunov criterion is that stability can be proven without requiring
knowledge of the true physical energy, provided a Lyapunov function can be found to
satisfy the above constraints.
Due to (2.34)1 and (2.34)2 the Lyapunov function presents a strict minimum in

y = 0. Now, let the set Kc be defined as:

Kc = {y : V (y) ≤ c and ||y|| ≤ ε0} (2.35)

Then for any c > 0, there exists a δ(c) > 0 such that

{||y||} ⊂ Kc, (2.36)

and for every 0 < ε < ε0 there is a c(ε) such that

Kc ⊂ {||y|| < ε} for c ≤ c(ε) (2.37)
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Figure 10: Illustration of the geometrical interpretation of the Lyapunov stability theorem.

Statement (2.36) follows immediately from the continuity of V at y = 0. For (2.37)
note that {ε < ||y|| < ε0} is compact and V is therein positive. Therefore min||y||∈(ε,ε0) V (y) =
c(ε) and, chosen c < c(ε) the set Kc satisfies (2.37). Therefore, given 0 < ε < ε0 and
c < c(ε), one has Kc ⊂ {||y|| < ε}. Since for hypothesis

V̇ =
∂ V

∂y
f (y) ≤ 0

V (y) cannot increase. So, if y(0) ∈ Kc, y(t) is in Kc for all t in its forward interval
of existence. By condition (2.36) we can ensure that y(0) ∈ Kc by taking ||y(0)|| ≤
δ(c), which is the delta requested for stability theorem. In fact, if this is guaranteed,
y(t) ∈ Kc ∀t > 0.
A typical Lyapunov function for general LV can be taken in the form

V (x) =
∑
i

qi

[
(xi − x∗i ) + x∗i ln xi

x∗i

]
(2.38)

where qi are the elements of Q−1. In particular, this well-known form of the Lya-
punov function recalls the Boltzmann-type entropy production of statistical mechan-
ics, which therefore implies a substantial equivalence between dynamical system stabil-
ity and entropic, i.e. thermodynamic, stability (see for example the work by Chakrabarti
and Ghosh [36]). This important result de facto confirms what both Volterra and
Lotka had postulated and gives insights in the thermodynamic analysis of mechanical
systems coupled with interspecific dynamics that will be presented in the following.
To this aim, finally, another remarkable result deriving from theses two theorems
has been shown by Tuljapurkar and Semura ([193]). The particular structure of the
general Volterra-Lotka systems let in fact to demonstrate that local stability ensures

global stability in absence of center manifolds.

In the light of the arguments presented, the Volterra-Lotka logic, as well as more
modern EGT framework, can be transposed from the animal species context to the
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scale of biological tissues and in particular, to describe the interactions between cells,
both in ordinary physiological processes and disease. It can be in fact assumed that
in an organism, cells act in an evolving environment (the extra-cellular space) and
share the same spaces, thus inevitably compete for the same resources. If cells growth
were kindled “ignorantly”, probably any biological structure would be originated with
the existing functionality and hierarchy. In a physiological context, this is guaranteed
by an orchestrated by an orchestrated cascade of biophysical, chemical and mechani-
cal stimuli, which likely determine the tissue development. In disease, some of these
balances as well as some cells gene expressions might be altered and disordered mecha-
nisms occur, and also mutations might be present. In particular, in the following chap-
ters, we will assume cancer and healthy cells as populations in evolutionary games,
with fitness functions designed using Volterra-Lotka type functions in order to see tu-
mor development as cancer (mutated) cells ousting normal cells population and host
environment.
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Part II

U N C O U P L E D M O D E L L I N G

Growth and mechanical variables can be studied by essentially starting
from elemental uncoupled models in which either the one or the other
is treated as a free-parameter of the problem. This essential approaches
result highly effective and have the advantage to exploit well-known ana-
lytical solutions and simplified approaches in order to dwell on the impli-
cations that the variation of growth and remodelling parameters have on
the phenomenological aspects in foreground
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3UNCOUPLED MODELS EXPLORING BIOMECHANICAL
I SSUES

Theory of elasticity provides the possibility of taking into account macroscopic body
growth as an inelastic deformation that combines with elastic effects in order both
to find the stresses harboring within the tissue environment and to understand how
these stresses affect the leading physiological processes. In principle, biomechanical
models might constitute a synthesis of all these aspects, endeavoring to describe how
they interlace each other by determining a complex machinery in which mechanical-
driven feedback and growth and remodelling-induced structural changes are compre-
hensively taken into account. However, to better the understand the causes and the
consequences of this crosstalk and to gain insights into the way in which these pro-
cesses can be opportunely modeled, some simplified cases can be first introduced. The
exploitation of small strains hypothesis as a first analysis gives in fact the advantage of
getting key information about the knowledge of the reciprocal influence between the
mechanical environment and the tissue growth and remodelling attitudes, through
a well-established mathematical setting. In this sense, some important theoretical
insights about the consequences that the alterations of the “healthy” mechanical envi-
ronment can have on tissue development –seen as the fate of a growth and remodelling
process– can be readily evidenced. To this purpose, experimental observations then
give a fundamental feedback and allow the development and the optimization of the
mechanically-based hypotheses of some growth phenomena. Therefore, simple uncou-
pled problems can be treated, in which growth is additively combined with geometrical
deformation and is supposed known on the basis of experimental data. Uncoupled mod-
elling then aims to achieve valuable information on tissue properties and evolutionary
tissue response by treating the mechanical problem and the growth-related dynamics
in a relatively separate way, i.e. trying not to explicitly include in the biomechani-
cal model all the feedback mechanisms describing the crosstalk between mechanical
variables and tissue constituents. Thus, the assumption is that these effects can be in
some fashion reported on a side by supposing known the way in which macroscopic
growth affects the mechanical problem, and, on the other side, by analyzing tissue
evolutionary dynamics in the attempt to describe mechanically-driven alterations at
the constituents scale in the simplest way possible.
In the following sections, some elemental models dealing with different physiological
and abnormal situations will be presented, and the focus will be on some qualita-
tive information that these models let to put in evidence despite the aforementioned
assumptions. In particular, some adverse consequences of the maladaptation of pul-
monary arteries reinforced with synthetic and transposed in aortic position will be
investigated by exploiting well known analytical solutions (see for example [60]); also,
the problem of the formation of fibrotic capsula around breast implants will be ana-
lyzed by means of a simple biomechanical model. Finally, the last section is dedicated
to the modelling of the BMU (Basic Multicellular Unit) activity involved in bone

47
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48 uncoupled models exploring biomechanical issues

remodelling process through a straightforward application of the Volterra-Lotka logic
presented in Chapter 2.

3.1 representative examples

3.1.1 Compliance mismatch and compressive wall stresses give clues for explaining

anomalous remodelling of pulmonary arteries with Dacron synthetic grafts

Synthetic grafts are often satisfactory employed in cardiac and vascular surgery, in-
cluding expanded poly(ethylene terephthalate) or expanded poly(tetrafluoroethylene).
However, accumulating evidences suggest the emergence of worrisome issues concern-
ing the long-term fate of prosthetic grafts as large vessel replacement. Disadvantages
related to the use of synthetic grafts can be traced in their inability of mimicking the
elasto-mechanical characteristics of the native vascular tissue, local suture overstress
leading to several prosthesis-related complications and retrograde deleterious effects
on valve competence, cardiac function and perfusion. Motivated by this, in this section
it is analyzed –by means of both elemental biomechanical paradigms and more accu-
rate in silico Finite Element simulations– the physical interactions among aorta, au-
tograft and widely adopted synthetic (Dacron) prostheses utilized in transposition of
pulmonary artery, highlighting the crucial role played by somehow unexpected stress
fields kindled in the vessel walls and around suture regions, which could be traced
as prodromal to the triggering of anomalous remodeling processes and alterations of
needed surgical outcomes. Theoretical results are finally compared with histological
and surgical data related to a significant experimental animal campaign conducted
by performing pulmonary artery transpositions in 30 two-month old growing lambs,
followed up during growth for six months. The in vivo observations demonstrate the
effectiveness of the proposed biomechanical hypothesis and open the way for possible
engineering-guided strategies to support and optimize surgical procedures.
The evidence supporting the large availability and ease of synthetic grafts, including
expanded poly(ethylene terephthalate) (Dacron®) or Valsalva Dacron, has allowed an
extensive application of these conduits in a wide spectrum of vascular pathologies
([40, 162]). To the best of our present knowledge, the advantage of synthetic conduits,
especially Valsalva Dacron, has encouraged the development of aortic valve sparring
operation in surgery of aortic disease ([51, 52, 180]) and recently it has been proposed
as external reinforcement to prevent dilatation of the pulmonary autograft in the Ross
Operation ([33, 34, 141, 190]). Nevertheless, the evidence supporting an implemen-
tation of synthetic graft has not erased the complications related to his employment.
The unresolved issue are represented by degradation for threadbare, impairment of
the electromechanical properties of the vascular wall and elicit the inconvenient issue
of windkessel phenomenon. ([17, 21, 95, 96, 110, 130, 139]). Among persons receiving
polyethylene terephthalate grafts implant, this complication is related to an initial in-
creasing diameter vs. the package size range to 26% ([42, 209]), leaving unanswered
the problem about the morphological impairment of the native aorta and biomechan-
ics future of synthetic grafts ([14, 20, 152, 163]). To re-create the same dynamic
stress, we set out to study in a large experimental growing ovine model the interac-
tion between stress shielding, strain and growth in the synthetic coating and in the
native vascular structure. The rapid growth and systemic blood pressure are used in
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the animal model as a catalyst to induce the dynamic stress. A mathematical model
was developed to quantify these stress distributions and to obtain insights about the
growth and remodeling capability of the pulmonary artery transposed in aortic posi-
tion from a biomechanical point of view, as well as to investigate the physical causes
underlying the above mentioned adverse phenomena.
The experimentation on growing ovine animal model provided the execution of pul-
monary trunk transposition from right ventricular outflow tract and transposed into
the descending aorta. Growth, remodelling and stress shielding of this unitary tubular
structure was studied between two groups of animals receiving an external reinforce-
ment with expanded poly (ethylene terephthalate), or Dacron®, and animals subjected
to PA transposition alone. The measurement were reported at day one, three and six
months by angiography and echocardiography. Biological processes were evaluated
with the histochemistry. In what follows, a biomechanical model describing the me-
chanical conditions of the native aorta and pulmonary artery with synthetic graft
is developed, in order to discuss the relationship between the in vivo model obser-
vations and the mechanics of these systems. We studied the implications that the
mechanical properties of the different constituents can have in determining long-term
non-physiological alterations.

3.1.1.1 Qualitative insights into stress fields and remodelling from elemental elastic

schemes

One of the most relevant aspects for expecting successful outcomes in a clinical in-
tervention –such as the pulmonary autograft transposition reinforced with Dacron
graft– lies in the possibility of restoring ordinary physiological conditions through an
adequate process of remodeling within the transplanted tissue. From a biomechanical
standpoint, it is well known that tissue grows and remodels in response to an altered
mechanical environment ([89]). These adaptations are then inevitably associated with
the (local and average) state of stress, or strain, within the tissue induced by both the
external loads and constraints. Nevertheless, the effectiveness of the remodeling pro-
cess may result unfaithful if such stress-induced stimuli and their alterations are not
compatible with certain physiological ranges, which let the soft vessel tissue undergo a
progressive natural remodeling over characteristic timescales (weeks to months, [135]),
needed to reorganize its microstructure and to accommodate its mechanical properties
to the new environment, in this way reaching a homeostatic configuration. By focusing
on the vascular remodeling, for instance, Fung and Liu ([70]) experimentally induced
morphological and structural alterations of the pulmonary artery in rats by gradually
increasing systemic pressure from 15 mmHg up to 30 mmHg in a month, the tunica
media and adventitia opportunely adapting and thickening over this period. From a
mechanical point of view, it is widely suggested ([43, 82, 216]) that the circumferen-
tial stress assumes a primary role in influencing the process of vessels remodeling. For
these reasons, with the purpose of analyzing the post-operative remodeling potential
of a pulmonary artery vessel tract transposed in aortic position, subjected to arterial
pressure and reinforced with a Dacron graft, a simple mechanical model has been
here proposed to analyze the stresses distribution prodromal to vascular remodeling.
More specifically, three significant scenarios are taken into account: the healthy aorta

(A), the healthy pulmonary artery (PA) and the reinforced pulmonary artery (PA+D)
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transposed in aortic position. The first two cases represent physiological situations,
thus respectively subjected to arterial and venous pressures, while the last case of
interest is simulated by considering a vessel exhibiting venous-like material proper-
ties when subjected to both arterial blood pressure and external confinement due
to the presence of the non-resorbable Dacron mesh, mechanically represented by an
additional outer layer with elastic properties related to its actual material and fabric
structure.

3.1.1.2 Balance equations and closed-form solutions to model vessels structure

Within the above mentioned perspective of determining the essential form and the
order of magnitude of the stress fields in the blood vessels under the cardiac cycle-
induced internal pressure for the three above mentioned scenarios of interest, a first
analysis can be conducted in the realm of linear elasticity ([15, 68]): relevant qualita-
tive information can be in this way gained by exploiting analytical solutions, available
by invoking classical results presented in the literature also with reference to compos-
ite hollow cylinders under different load conditions ([60]), including anisotropic ([61])
and inhomogeneous ([63]) elasticity. By following this line of reasoning, the cases of
healthy aorta and pulmonary artery are therefore modeled as isotropic homogeneous
hollow cylinders, with arterial and venous pressures pA and pPA respectively exerted
at their internal walls. In a similar way, the case of PA reinforced with Dacron (PAD)
is then simulated by considering a two-phase composite hollow cylinder where the
inner layer represents the vessel wall and the surrounding layer replicates the non-
resorbable coating, whose overall mechanical properties are homogenized to take into
account the penalization of the bulky material stiffness due to the low volume fraction
offered by the structure to the effective elastic confinement of the graft. Formally, the
three vessels are thus geometrically described by the cylindrical regions as follows (see
Fig. 11):

A and PA : ri ≤ r ≤ ri + h, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l, (3.1)
PA+D : ri ≤ r ≤ ri + h∨ ri + h ≤ r ≤ ri + h+ hD,

0 ≤ θ ≤ 2π, 0 ≤ z ≤ l (3.2)

where ri is the internal lumen radius, h and l are the vessel thicknesses and heights,
respectively, while hD is the thickness of the Dacron prosthesis. Also, being the aorta
and the pulmonary artery significantly different in terms of intrinsic material param-
eters, corresponding elastic moduli EA and EPA were adopted, while a common Pois-
son’s coefficient ν was instead assumed. With reference to the homogenized Dacron
layer, an effective elasticity modulus ED was assigned to taking into account the non-
linear dependence of the overall stiffness with respect to mesh volumetric fraction
and a different Poisson’s coefficient νD was also selected. By further introducing the
hypothesis of axisymmetric of the problem, the stress vector (in the so-called Voigt
notation) can be written as σk = {σkrr, σkθθ, σ

k
zz}, where σkrr, σkθθ and σkzz denote

the radial, circumferential and longitudinal stress components, respectively (Fig. 11),
while the superscript k = {A,PA,D} specifies the stress components (and the related
moduli) of the material to be considered. In duality with the stress, the deformation
vector, εk = {εkrr, εkθθ, ε

k
zz}, is defined, where εkrr measures the radial strain, εkθθ the
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Figure 11: A hand-made sketch illustrating the geometry and the mechanical features of
the native aorta (on the left), the native pulmonary artery (in the midlle) and
the pulmonary autograft (on the right).

circumferential strain and εkzz the longitudinal (along the z–axis) elongation/contrac-
tion. For the problem at hand, without loss of generality, a plane state of deformation
can be additionally postulated, εkzz = 0 being therefore assumed for all the cases. By
making reference to the above recalled elastic moduli and invoking the generalized
Hooke’s law, stresses can be linearly associated to the strains and, under the hypoth-
esis of cylindrical symmetry, the equilibrium equations reduce to the sole one in the
radial direction, that is

dσkrr
dr

+
1
r
(σkrr − σkθθ) = 0 (3.3)

In particular, symmetry gives the displacements as

ukr = uk(r), uθ = 0, ukz = wk = εk0z (3.4)

to which are associated the strains in the simplified form

εkrr =
dukr
dr

, εkθθ =
ukr
r
, εkzz = εk0 (3.5)

Linear isotropic elasticity allows to therefore write

σkrr = 2µkεkrr + λkεk, (3.6)
σkθθ = 2µkεkθθ + λkεk, (3.7)
σkzz = 2µkεkzz + λkεk (3.8)

where σkθθ = 2µkεkθθ + λkεk is the linear dilation (the trace of the strain tensor),
2µk = Ek

(1+νk) , λ
k = νkEk

(1+νk)(1−2νk) , and Ek and νk are the Young modulus and the
Poisson ratio of the k− th phase, respectively.
By substituting (3.5) in (3.6) and finally in (3.3), the classical Navier-Cauchy

differential equation in terms of displacements is finally obtained as
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r2 d
2uk

dr2 + r
duk

dr
− uk = 0 (3.9)

For the three scenarios and the related boundary conditions, the solutions in terms
of the displacements can be easily found in closed-form as ukr = Ck1 r+Ck2 r

−1, with
the constants Ck1 and Ck2 being particularized for each case. In particular, to obtain
the explicit the solutions, for the case of the aorta (A) the equation (3.9) is inte-
grated between ri and ri + h by imposing the boundary conditions σArr(ri) = −pA
and σArr(ri + h) = 0, whereas in the PA case the equation (3.9) is integrated over
the vessel thickness with conditions σPArr (ri) = −pPA and σPArr (ri + h) = 0. Differ-
ently, the problem of reinforced PA in aortic sight requires to solve equation (3.9)
of equilibrium for each layer, by both assuming the radial stress to balance the ar-
terial pressure at the internal radius, i.e. σPArr (ri) = −pA and to vanish outside of
the Dacron layer, i.e. σDrr(ri + h+ hD) = 0; also, continuity of radial stresses at the
vessel-prosthesis interface, that is σPArr (ri + h) = σDrr(ri + h), as well as compatibil-
ity of radial displacements have to be ensured. Once each displacements function is
defined, stresses can be readily calculated through compatibility equations (3.5) and
constitutive relations (3.6). The discussion of the each vessel’s environmental stress
will be analyzed in order to understand how the reinforced PA and the communicating
healthy aorta interchange forces in correspondence of the interface and predict the
vessels remodelling capabilities. In fact, in the suture ring zone, a more complex stress
distribution occur, which provides the emergence of non-zero shear stresses σθz. This
shear stress can be in fact likely related to the problematic splitting-like phenomena
of the pulmonary autograft. Finally, it is worth to notice that long term effects of
growth and remodelling have not been taken into account in this linear model, since
the latter ones would require a more detailed description involving a nonlinear theo-
retical approach (see for example [143]).

Integration constants for displacements deriving from (3.9)

• Reference Aorta:

CA1 = −
2ν2pAr

2
i

EA
(
r2
i − (h+ ri) 2

) − νpAr
2
i

EA
(
r2
i − (h+ ri) 2

) +
pAr

2
i

EA
(
r2
i − (h+ ri) 2

)
CA2 =

ν pAr
2
i (h+ ri) 2

EA
(
r2
i − (h+ ri) 2

) +
pAr

2
i (h+ ri) 2

EA
(
r2
i − (h+ ri) 2

)
• Reference Pulmonary Artery:

CP1 = −
2ν2r2

i pP

EP
(
r2
i − (h+ ri) 2

) − νr2
i pP

EP
(
r2
i − (h+ ri) 2

) +
r2
i pP

EP
(
r2
i − (h+ ri) 2

)
CP2 =

νr2
i pP (h+ ri) 2

EP
(
r2
i − (h+ ri) 2

) +
r2
i pP (h+ ri) 2

EP
(
r2
i − (h+ ri) 2

)
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• Pulmonary Artery transposed in aortic sight and reinforced with the external
Dacron layer:

C
PA
1 = [(ν + 1)(1 − 2ν)pAr

2
iEPA(νD + 1)(2 (νD − 1) (h+ ri)

2 − 2hD (h+ ri) − h
2
D)+

+ (ν + 1)2(1 − 2ν)pAEDhDr
2
i (hD + 2(h+ ri))]

/
EPA[(ν + 1)EDhD (hD + 2 (h+ ri))

(
(1 − 2ν) (h+ ri)

2 + r2
i

)
+

− h (νD + 1)EPA (h+ 2ri)
(

2 (νD − 1) (h+ ri)
2 − 2hD (h+ ri) − h

2
D

)
]

C
PA
2 = −(ν + 1)pAr

2
i (h+ ri)

2 [2hD (h+ ri)
((

2ν
2 + ν − 1

)
ED − (νD + 1)EPA

)
+

+ 2
(
ν

2
D − 1

)
EPA (h+ ri)

2 + h2
D

((
2ν
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)
ED − (νD + 1)EPA

)
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D

(
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(
h
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i

)
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)
+
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(
h
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i

)
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ν
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)
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ν
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3.1.1.3 Finite Element Modeling of the pulmonary artery

To analyze in more detail the mechanical effects of Dacron net-reinforcement on the
response of the overall vascular system (the artery integrated with the reinforced pul-
monary autograft), a numerical analysis has been performed by means of the Finite
Element Method (FEM). The simulation has been conducted with the aid of the
commercial FEM-based code ANSYS©([1]). The FEM model let to examine the anas-
tomosis zone in a more faithful way by constructing a geometry constituted of the
reinforced PA directly communicating with aorta tract, and internally subjected to
arterial pressure. Each tract was externally provided of the mechanical conditions al-
ready described for the analytical solutions: the artery was externally unloaded, while
the Dacron synthetic graft has been positioned outside the PA tract (Fig. 12). Coher-
ently with the analytical model, the numerical analyses have been performed under
the hypothesis of linear elasticity and small deformations referring to the material
properties reported in Table 1. To this aim, an ad hoc custom made Ansys procedure,
written in APDL parametric language, has been developed to reconstruct the FE
vessels model by considering the geometrical parameters in the Table 1. The woven
structure of the Dacron graft has been built parametrically on the external surface of
the PA tract by fixing a fine mesh net of about 1mm2.
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Table 1: Synoptic table of geometrical and material parameters

Symbol [Unit] ri [mm] hk [mm] Ek [kPa] νk [-]

Aorta (A) 10 1.5 400 0.49
Pulmonary Artery (PA) 10 1.5 20 0.49
Dacron (D) - 0.5 7500 0.4

The Dacron Young modulus here reported accounts for the mesh volume fraction of 5%.

The geometrical models of both PA and aorta have been meshed by means of
about 121 000 standard hexahedral elements and almost 152 000 nodes with three
degrees of freedom for each node, while the synthetic structure of the graft has been
meshed by means of about 10 000 classical beam elements –based on Timoshenko
beam theory– and 9 500 nodes. The magnitude of the applied load was about 16
kPa (representing a typical mean value of the arterial pressure), which acts in radial
direction on the internal vessel walls; in addition, symmetrical boundary conditions
have been considered on the bottom and top circular surface of the structures. This
refined model therefore permits to investigate the stress state generated on the arteries
walls and to evaluate the “cage-effect” of the stiffer Dacron structure on the integrated
system, by then highlighting the perturbations of the analytical solutions when aorta,
PA and the Dacron mesh are working together.

3.1.1.4 The animal model

Preparation of the animals. Thirty two-month (8-10 weeks) old growing lambs weight-
ing about 18±3 kg underwent transposition of pulmonary artery autograft in aortic
position under cardiopulmonary bypass. Technical and anatomical issues imposed
reimplantation of the PA in the descending aorta while the right ventricle outflow
tract was reconstructed with a fresh homograft from another lamb of the same age
and weight. We observed the progression of autograft diameter during the period of
fastest growth such us the biomechanical futures and histological modification.
Non-Resorbable Materials. Meshes used in this study were cut into a rectangle measur-
ing 20 mm in height matching with the height of autograft, rolled out on a metallic
candle, and then reassured by a suture to create a cylinder with an internal diam-
eter of 10 mm (20 mm in height in 10 mm diameter directly adherent to the PA).
In addition to animals subjected to PA transposition (control group, n=15), the ex-
perimental design included a group (n=15) in which the PA was reinforced with an
external synthetic non-absorbable grid of Polyester and group (n=15). The autograft
was then inserted into the fibrillar cylinder and was anastomosed suturing both its
margins and those of the prosthetic structure to the pulmonary autograft trunk.
Implantation. Lambs were premedicated with ketamine (25 mg/kg IM) and anesthesia
was guaranteed by the injection of sodium thiopentothal (6, 8 mg /kg) via the inter-
nal jugular. Animal received 100mg of lidocaine intravenously as prophylaxis against
rhythm disturbance. After endotracheal intubation, ventilation was provided up to
animal awakening and the anaesthesia was maintained with inhalation isoflurane (1%
to 2, 5%). The electrocardiogram was monitored. Chest was prepped and shaved.
The heart was approached via left thoracotomy. After opening the pericardium, the
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Figure 12: Geometry of the FE model, with a detail showing the communication of the
native aorta (in red) with the pulmonary artery tract (blue), integrated with
the external Dacron structure.

right atrium was exposed for cannulation and the trunk of the pulmonary artery was
dissected free from its right ventricular origin up to its bifurcation in the pulmonary
arteries. The same was done for the descending thoracic aorta and a region distal to
the portion of choice for the PA transposition was cannulated. Approximately 8 cm
of the descending thoracic aorta was left for clamp positioning and to perform the
anastomosis with the pulmonary artery trunk under optimal conditions. Three mg/kg
of heparin was given intravenously, and cardiopulmonary bypass was started between
right atrium and descending aorta. The cerebral circulation of the animal was guar-
anteed on a beating heart. Tree cm of the pulmonary artery trunk was transposed
into the descending aorta with an end-to-end anastomosis in 5-0 prolene. A fresh
pulmonary artery homograft, explanted from animals sacrificed on the same day for
another experimental study, was inserted to reconstruct the right outflow tract, with
a proximal and distal end-to-end anastomosis in 5-0 prolene. Left thoracotomy was
closed and aspiration drainage left in place. All experiments have been performed in
respect of guidelines for animal care and handling. The protocol was approved by the
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institutional animal care committee.

3.1.1.5 Pulmonary Catheterization, Angiographic and Echocardiographic study.

The angiography was assessed injecting contrast medium by means of direct puncture
of pulmonary trunk, and its diameter in situ was measured. In addition, a catheter
was positioned for injection in to the ascending aorta and the basal diameter was
determined (BV Pulsera Philips). Animals were humanely sacrificed and tissue har-
vested for histopathological analysis. Measurement of the ascending aorta, descending
aorta proximally and distally to the autograft were made in order to obtain a reference
to be compared to the diameter of the PA. A weight curve for each animal during
the growing period was parallely processed. A serial of standard 2D and Doppler
transthoracique echocardiography examination with colour flow mapping were used
in all animal before and after operation and every two-week during follow-up to cor-
rectly evaluate the unfolding of the experiment (commercially available GE Medical
System, Vivid 7, Milwaukee, Win). Colour flow imaging was performed to determine
the permeability of pulmonary autograft and the presence or absence of any blood
clots.

3.1.1.6 Theoretical outcomes from analytical solutions and FE models.

Analytical results, obtained by using the computational software Mathematica®

[210], for all the scenarios and independently from the vessel type, the maximum ab-
solute value of the principal stresses can be recognized in the circumferential (hoop)
one, whose peaks are in fact strictly greater than both the radial and longitudinal
stresses. In particular, with reference to Fig. 13, the hoop stress σθθ in the reference
aorta is about 120 kPa (compatibly with the most of homeostatic values furnished in
literature, [89]), this value being correlated to both the higher blood pressure regimes
and to the higher degree of distensibility, as well as to the aorta major stiffness and
thickness with respect to the other vessel walls. The circumferential stress in the ref-
erence pulmonary artery is instead visibly smaller, provided that the venous pressure
pPA is about 2 kPa (15 mmHg) and also stretches are sustained. However, a first
relevant difference between these two described situations and the case of the rein-
forced PA in aortic position emerges from Fig. 13: it can be in fact noticed that, while
in the two previous physiological conditions tensile hoop stresses occur in the vessel
walls, the reinforced pulmonary artery results instead to be compressed in circum-
ferential direction. This somehow unexpected compressive stress state, as shown in
Fig. 13 is the result of the confining action of the stiffer Dacron outer mesh, which
de facto absorbs the most part of the extensional mechanical energy induced by the
arterial pressure pA during the entire lifetime (differently from PDS, Dacron is a not
resorbable material [143]), by thus approaching tensions close to the those registered
in the reference aorta and so providing an almost complete shielding effect on the
PA. As a consequence, the partition of the stresses among reinforced PA and Dacron
regions is altered by the significant stiffness mismatch between the biological and syn-
thetic materials: the stress state experienced by the constrained PA walls becomes
compressive and therefore opposite-in-sign with respect to the tensile one needed to
stimulate a tissue PA remodeling towards an arterialization process. As highlighted
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in Fig.13, this creates a distance of the in situ stress from the mechanical signaling
range which would ensure the starting of a favorable and gradual adaptation of the
PA structure to the aortic pressure, the amplitude of this range having been deter-
mined on the basis of experimental findings present in the literature [69]. In addition,
it is worth to notice that also radial stresses (see Fig. 14) are essentially uniform and
compressive in the reinforced PA due to the cooperation of the aortic pressure and
the confining reaction of the polymer graft, with an average value of −16 kPa, that
practically equals the aortic pressure pA. The latter value is very different from the
healty PA radial compression, while the mean radial stress of the native aorta over
the vessel thickness is found to be about −7 kPa. These stress fields allows to infer
that, at long-term, the exceeding mechanical constraints realized by the stiff scaffold
can determine a persistent static compression that in turn stimulate an increased ra-
tio of the collagen/elastin expression in the extra-cellular matrix synthesized by the
cells during growth ([39, 41]). Moreover, in response to the interventional procedure,
the natural reparative process enhances vascular smooth cells (VCMs) proliferation
leading to neointima development and causing hyperplasic intimal remodeling and
stenosis, with an accentuation of hypertension ([135]). This effect can be also aggra-
vated when combined with the external mechanical constriction, that prevents the
elastic stretching of the vessel, and can in turn increase the process of cells migration
over the successive weeks towards the intimal layer, where proliferation in a com-
pressed environment may provoke thicker wrinkled surfaces. Finally, the inability to
adequately sense elastic stretch due to confinement and localized inflammation might
start fibrotic processes. Furthermore, VCMs being so more prone to apoptosis under
hypertension ([135]). In this sense, a prolonged wall compressive stress might represent
an enhancer for starting these physiological processes.
A further interesting results from analytical solutions is that longitudinal stresses

σzz are also compressive in the reinforced PA (15), differently from the tensile regimes
in the same direction occurring in the Dacron as well as in the reference aorta and
pulmunary artery under corresponding physiological pressures. This forces the overall
stress state inside the prosthesized PA towards a hydrostatic compression –which
further suggest a possible compromised arterialization process– in turn generating an
anomalous changing in sign of the stress at hand across the PA-aorta junction.
In particular, it can be predicted that the discrepancy between the stress states

in the PA-tract and native aorta determines the spurious shear σrz across the su-
ture section to ensure the longitudinal equilibrium on, say, a ring of vessel material
with height hs, that represents the segment out of which both the regime aorta and
PA stress states are restored as uniform (see Fig. 16). Despite this more complex
local stress state constitutes a detail behind those caught by the analytical solutions
of the elemental models under analysis, a rough estimation of the averaged value
of this shear stress can however obtained by considering that it must be propor-
tional to the gap between the aorta and the reinforced PA longitudinal stresses, i.e.
σrz ' (σAzz − σPAzz )rm/hs, where rm is the average radius of the vessels. From the
biomechanical standpoint, this implies that the more the PA is compressed, the more
the anastomotic region might become stenotic, this effect being amplified for larger
vessels and reduced heights hs, thus producing strong localized stress gradients. Since
local symmetry of the stress tensor and global rotational equilibrium on the ring zone
give σrz = σzr, tangential stresses also arise perpendicularly to the lines of suture
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Figure 13: Distribution of the circumferential stresses over the vessel thickness. (A-red
line) Reference Aorta. (PA-blue line) Reference Pulmonary Artery. (PAD-purple
full line) Pulmonary artery reinforced with non-resorbable Dacron mesh. (PAD-
Purple dashed line) Stresses in the region occupied by the Dacron region (in
gray). The active remodeling window compatible with PA initial material prop-
erties is highlighted in orange.

(the z-axis, in the model at hand), and the corresponding forces can thus provoke
local pull out distortions correlated to anastomotic disruption phenomena.

To analyze in more detail the influence of these spurious stresses on the localization
of strain prodromal to possible anomalous biomechanical responses of the tissues, a nu-
merical simulation has been performed by means of the finite element method (FEM)
code ANSYS®. The FE model let to include the anastomosis zone by constructing
a geometry constituted of the reinforced PA integrated with the aorta tract, which
were internally subjected to arterial pressure. Each tract was externally provided of
the mechanical conditions already described for the analytical solutions: the artery
was externally unloaded, while Dacron synthetic graft was added to the PA region.
Artery, PA and Dacron were then given the material properties already introduced
(reported in Table 1) and a linear constitutive behavior was assigned to them. Results
of the numerical simulations confirmed the values of the circumferential and longi-
tudinal stresses obtained from the analytical model in the two vessels separately, as
reported in Fig. 17.
In addition, the FEM results revealed the theoretically hypothesized shear stresses

concentrations (see Fig. 18), with peaks of about 75 kPa, within a narrow transition
zone in the suture region whose height is comparable to the vessel thickness. This
means that a steep gradient of stress concentrates in a small height, causing geomet-
rical anastomotic deformation which can affect the generation of local disruptions.
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Figure 14: Distribution of the radial stresses over the vessel thickness. (A-Red line) Refer-
ence Aorta. (PA-Blue line) Reference Pulmonary Artery. (PAD-Purple full line)
Pulmonary artery reinforced with non-resorbable Dacron mesh. (PAD-Purple
dashed line) Stresses in the region occupied by the Dacron region (in gray).

In addition, localized equivalent stresses prone to yielding conditions can potentially
occur in the suture region and can be at the basis of the pseudoaneurysmal degenera-
tion observed in such zone, where the PA wall effectively experiences higher levels of
strains (Fig. 19).
Finally, in order to have a direct comparison with the experimental results of the

control group (the one subjected to not-reinforced PA transplantation), the analytical
procedures have been also applied to the case of not-reinforced PA, by means of the
equation (3.3). Aortic pressure have been imposed on a pulmonary artery material
cylinder, with free stress conditions at the external boundary. The results showed that,
in absence of longitudinal deformation, say εzz = 0), the circumferential stress in the
PA was essentially analogous to the aorta one. However, provided the greater compli-
ance of the PA venous-like structure with respect to the stiffer aorta, such stress results
excessive to be adequately sustained by the PA walls, and inevitably the mechanical
integrity of the vessel would be compromised. In accord with these considerations,
the not-reinforced PA circumferential stretch λnrPAθθ –which measures the increase of
dilation– results to be about four times greater than the aorta circumferential stretch
λAθθ, thus tending to an overall aneurysmal diametral expansion. In addition, if one
relaxes the hypothesis of plane deformations, the difference between the respective
circumferential stresses σnrPAθθ and σAθθ is proportional both to the difference between
the Young moduli and the longitudinal strain, i.e. σnrPAθθ − σAθθ ∝ (EA −EP )εzz (see
Fig. 20).
As a consequence, the combined presence of elevated aortic pressure and longitudi-

nal in situ elastic stretch of the vessels can cause a severe increase of the non-reinforced
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Figure 15: Distribution of the longitudinal stresses over the vessel thickness. (A-Red line)
Reference Aorta. (PA-Blue line) Reference Pulmonary Artery. (PAD-Purple full
line) Pulmonary artery reinforced with non-resorbable Dacron mesh. (PAD-
Purple dashed line) Stresses in the region occupied by the Dacron region (in
gray).

PA stress, approaching theoretical values from 200 kPa up to 700 kPa, already at
strains εzz < 10%. These significantly high magnitudes are close to the aortic stress
thresholds (von Mises stress) reported in some literature works ([88, 178]), and can
be for this reason directly connected to mechanical critical states that invite yielding
processes, irreversible deformations and, therefore, aneurysmal degeneration.

3.1.1.7 Surgical and Histopathological findings

Clinical outcomes obtained from the histological analyses and the animal model overall
confirm the occurrence of some expected pathological events that have been theoreti-
cally predicted by the biomechanical results. The immediate outcome –at day 0 (D0)–
of the surgical implant of both reinforced and not reinforced group is shown in Fig.
21A. The not reinforced PA clearly already exhibits an over distension (25±3 mm)
with respect to the more stable reinforced implant (16±2 mm).

The abnormal dilation of the non reinforced PA with respect to the dimensions of
the surrounding native aorta then progressively increases up to approximately 40 mm,
as the opened structure in Fig. 21C distinctly shows. On the other side, the long-term
histological changes observed in the group polyester, documented by signs of inflam-
matory reaction to a foreign body, are the end results of the abnormal phenomena of
transmural and endoluminal migration of the mesh cutting the PA wall, highlighted in
Fig. 21D, where the knitted Dacron structure can be clearly identified within the PA
wall. This fact can be related to a sort of mechanically induced “cage-effect”, which
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Figure 16: Illustration of the spurious stress state emerging in the anastomosis region, along
the suture line.

produces the particular vessel wall configuration also shown in Fig. 18). As a matter
of fact, the vessel tissue –which already suffers from the anomalous compressive hoop
stresses due to the excessive confinement that degrades its mechanical properties– is
locally over-stressed by the pressure exerted by the Dacron wires: the PA material is
therefore damaged and thus resorbs, allowing the polyester fibers to penetrate across
the wall thickness, finally leading to a gradual embedding of the Dacron structure, as
illustrated in Fig. 22B.
Histological pathways was a conspicuous inflammatory infiltrate and fewer smooth

muscle cells and more interstitial connective tissue could be seen with respect to
control. Abnormal processing of the extracellular matrix protein fibrillin 1 by vas-
cular smooth-muscle cells initiates detachment of vascular smooth-muscle cells from
the extracellular matrix, leading to the release of matrix metalloproteinases (MMPs)
together with their tissue inhibitors. The resulting matrix disruption, elastin and
lamellar fragmentation lead to increased apoptosis of vascular smooth-muscle cells
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Figure 17: Numerical simulation provides the quantitative estimation of shear stresses at
the reinforced PA-aorta interface.

and disruption of the media layer (see Fig.22A), adversely affecting the structural
integrity and flexibility of the autograft reinforced with polyester mesh.
In the control, intima denudation and media disruptions were observed (Fig. 22B).

In the tunica media, smooth muscle cells were present, but had irregular profiles and
no discernible alignment; moreover, cells were widely spaced with intervening collagen
fibers, grouped in thick and dense bundles. Deeper in the media, scant elastic fibers
formed irregular fascicles. Adventitia was formed by dense connective tissue.
All the qualitative considerations derived from the biomechanical analysis of the ves-
sel walls stresses have been then traced in the histological observations. The histo-
logical study of the polyester group actually revealed a pathological structure of the
vessel section constituents, presenting noticeable intimal hyperplasia, inflammatory
reaction and adventitial fibrosis at 10 weeks (see Fig. 22C). Moreover, experimental
observations found that the intensification of these adverse phenomena can bring in
a six-month period to an accentuation of reactive fibrosis and to the formation of
localized calcifications in the tunica media, as reported in Fig. 22E. Also, the ex vivo

examination revealed that the unfaithful remodeling circumstances predicted by the
theoretical models can bring to the formation of macroscopic lesions, as well as to
pathological thinning of the composite layers. The difference with the native grown
and remodeled aorta clearly appears at six months, as shown in Fig. 22F.
Echocardiographic and angiographic measurements were taken by two independent
observers blinded in regard to the treatment group. An interrater reliability analy-
sis using the Kappa statistic was performed to determine consistency among raters.
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Figure 18: Illustration of the spurious shear stresses in the suture zone (Top), and of the
Dacron structure confinement acting on the PA pressurized vessel (Bottom).

K coefficient was 0.82 indicating adequate agreement. Echocardiographic and angio-
graphic time points were assessed at day 0 (D0) and 6 months (M6) postoperatively.
Two main criteria guided the selection of the time span. The finally weight of animal
fixed at 54±12 kg which might reliably reflect the body mass of the average human
patients normally undergoing Ross operations. Also, this time period was assumed
sufficient to observe a likely definitive growth and thus mature remodelling outcomes.
In the PA alone group, an instantaneous distension of implanted trunk (25±3 mm)
was noted, followed by development of one case of intraluminal thrombosis at ten
weeks (39±3 mm, P<0.001, see Fig. 22G-H). A 56% diameter increase was revealed
with respect to D0 (Fig. 23) and indexed ratio of 2.5 with respect to reference. In the
synthetic reinforcement group, the graft diameter increased initially to 16±2 mm, but
remained stable at M6 (20±1 mm, indexed ratio 1.05; overall increase 5%, P=0.4).

Advances in biomechanical features, histological and molecular assessments should
be used to get a better understanding of the mechanisms underlying the improved
use of prosthesis Dacron graft in cardiovascular surgery. The unresolved issue are rep-
resented by evidence of the discrepancy between the elastomechanical properties of
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Figure 19: Von Mises equivalent stress concentrations (on the left) and equivalent strain
(on the right).

Figure 20: Circumferential stress increase in the non reinforced PA with respect to circum-
ferential stress in the reference aorta, as a function of the longitudinal strain.

the grafts and of the native vessel favoring the worrisome sequelae both locally, at the
anastomotic site, and, retrogradely, in terms of valve dysfunction and ventricular work-
load. In this realm, the results of the present study revealed the following findings: 1)
the definition of a “compliance mismatch” phenomenon is appearing as a potentially
important concern in cardiac surgery and might be responsible of daunting issues,
especially in the long-term follow up of patients; 2) the mismatch between prosthetic
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Figure 21: A. Not-reinforced PA at D0; B. The PA reinforcd with Dacron implant at D0; C.
Not-reinforced PA trunk with aneurismal formation (analysis after the break at
3 months); D. The Dacron reinforcement cut through vessel wall at six months
(M6);

material and native vessel biomechanical properties results in a considerable disad-
vantage determining “tissue incompatibility” that can exert detrimental effects on the
normal efficiency of the pulmonary autograft; 3) the compliance loss induced by the
interposition of an inextensible grafting at the level of the neoaortic root may impart
excessive stresses on the suture line, leading to dangerous anastomotic aneurysm. In
perspective, starting from this study and by enhancing the modeling by including
at long-term mathematical descriptions of the biomechanical interaction among ves-
sel growth and remodeling and syntetic grafts, it is felt that mechanically-oriented
strategies can be envisaged and helpfully employed to find alternatives to the Dacron
polymer structure in the PA transposition through the design optimization of new
polymer-based composed prostheses systems.
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Figure 22: A. Medial disruption phenomena occurred at six months; B. Endoluminal mi-
gration of the polyester mesh at six months; C. Histological analysis of the
Dacron reinforced pulmonary artery at 10 weeks; D. Reactive fibrosis of the
external wall after removed of the reinforcement at six months; E. Localized
calcification of the media at six months; F. Syntetic reinforcement macroscopic
lesion at six months; G. Thrombus attached to the wall. Macroscopic lesion in
PA alone explanted at 10 weeks; H. Echocardiographic control of the implant
with throumbus.
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Figure 23: Angiographic controls: A. Non-reinforced group, at D0. B. Reinforced group,
at D0. C. Non-reinforced group, at M6. Ecochardiographic controls at M6: D.
Reinforced group. E. Non-reinforced group.
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3.1.2 The role of biomechanics in breast implants capsular contracture

Breast Capsular Contracture (BCC) is one of the adverse complications occurring
with greater incidence in breast augmentation surgical procedure. Its formation (see
Fig. 24) can be interpreted as the conclusive phase of the physiological process known
as response to a foreign body. By starting from a biochemical standpoint, the for-
mation of the peri-prosthesic capsule is certainly a multifactorial process and many
hypotheses concerning its etiology have been developed, as well as a number of phar-
macological protocols have been suggested in Literature. However, the majority of
the proposed theories seems to be only partially supported by clinical data. On the
other hand, clinical follow-up and observed morphological microstructure of capsules
with respect to the overall size of breast implants address the hypothesis that biome-
chanical interactions between prosthesis and host tissue may play a crucial role in the
biological processes governing the phenomenon.

Figure 24: Silicon implant with a peri-prosthesic capsule.

Silicone breast implants have been widely used in both reconstructive and aesthetic
surgery and breast augmentation has become, nowadays, one of the most frequently
performed operations in plastic surgery: it is estimated, e.g., that more than 1% of
the female population in the only USA has undergone this kind of operation ([134]).
After breast augmentation, many complications may occur, such as double-bubble de-
formity, mal-position, breast ptosis, wrinkling and rippling, as well as hyperanimation
deformity, hematoma and seroma. Anyway, the most common postoperative complica-
tion in breast reconstruction and augmentation is certainly the capsular contracture;
as well known, this phenomenon is the formation of a fibrotic capsule around the
breast implant as the conclusive phase of the physiological process known as response
to a foreign body. Although this peri-prosthetic capsule is useful to the primary sta-
bilization of the implant keeping it in its proper position in the breast, it frequently
contracts around the prosthesis, generating on its surface an anomalous pressure in-
crease. This process causes deformity and hardening of the breast, with consequent
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pain for the patient; it may appear since the early post-operative period until some
years after the breast augmentation ([218]) and it’s also the primary reason for revi-
sion in breast implant studies, ranging from 15% to 30%, with up to 50.000 patients
treated yearly ([19, 188]). Such far-ranging statistical data have urged Literature to in-
vestigate capsular contracture etiology suggesting different pharmacological protocols
in order to minimize its incidence and consequences. By starting from a biochemi-
cal standpoint, many hypotheses concerning capsular contracture etiology have been
developed, but the majority of the proposed theories seems to be only partially sup-
ported by clinical data. Capsular contracture can be regarded as the net result of
the interaction among different factors –such as, e.g., bacteria contamination, tissue
trauma, surgical technique, implant geometry– that ultimately result in a pathologic
state ([2, 154]), but it’s not clear, at the moment, how and how much each factor has
influence on the origin and the development of this pathology. Many studies regarding
the effectiveness of different drugs in the treatment or prevention of capsular contrac-
ture have been carried out in the last years, but further controlled experiments in
humans are required ([18, 71, 175, 218]). The most applied practiced pharmacological
protocol to prevent this complication is the prophylactic administering of antimicro-
bial agents. Indeed, breast pocket irrigation has been universally recommended for
many years; but, since multiple bacteria seem to be implicated in the pathogenesis of
capsular contracture, many of the irrigations used by surgeons have been inadequate
to give broad-spectrum coverage against these bacteria ([2]). The remarkable decrease
in capsular contracture achieved with the polyurethane foam-covered implants and
the contemporary questions about the safety of these kind of devices related to their
no longer manufacture drove to turn out mammary implants with textured surfaces
with the aim of achieving the same favorable outcomes ([59, 134, 211]). What is cur-
rently sure is that any capsular contracture benefit of polyurethane devices was due to
biochemical effects on the capsule and not to the surface texture ([2]); however there
is still a lack of definitive data to support a real benefit of texturization in regard to
capsular contracture ([59, 153]). At the moment, the gold standard for the treatment
of this pathology is a total capsulectomy, which consists of a removal of the entire
affected capsule and implant. When treating a contracted capsule, it is advisable to
use a new implant in the affected breast, other than considering a site change or, in
extreme cases, moving the implant to a fresh pocket ([2]). The will to avoid this kind
of complication with so high economic and clinical impact suggested researchers to
explore the mechanisms at the basis of this pathology, but, up to the present, none
of the proposed studies concern the merely mechanical aspect of the problem. Clini-
cal follow-up and observed morphological microstructure of capsule, with respect to
the overall size of breast implants, address the hypothesis that biomechanical inter-
actions between prosthesis and host tissue may play a crucial role in the biological
processes governing the phenomenon. To encounter these phenomenological aspect
from a mechanical point of view, an analytical biomechanical model of the fibrotic
capsule growing around the prosthesis has been developed, with the aim both of an-
alyzing the mechanical interactions of the two bodies –by evaluating mutual forces
exerted across their surfaces– and of interpreting the role of these forces in terms of
the negative outcomes characterizing the capsular contracture phenomenon. This is
pursued by analyzing by modeling the growth of an elastic homogeneous mass lying
on a spherical substrate, an approach frequently encountered in literature and formu-
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lated by means both of a non-linear and a linear case (see e.g. the works by Defalias
[50] as well as by Araujo and McElwain [12]). The linear approach furnishes from a
side a considerable mathematical simplification and somehow neglects the complexity
of the soft tissue constitutive behavior, but, on the other hand, it may find partic-
ularly helpful in order to interpret from a mechanical standpoint the phenomenona
underlying the adverse outcomes related to the formation of the periprosthesic fibrotic
capsule.

3.1.3 Basic Equations of a linear elastic continuum with growth associated deforma-

tion

The observed microscopic anatomy of the tissue growing around the mammary im-
plants ([56, 157, 168]) addressed us to model the fibrotic capsule like a hollow sphere
made of isotropic material growing around the prosthesis, whose geometry has been
considered spherical. In order to define the suitable boundary value problem, the
formal analogy between the thermo-elasticity equations and the ones ruling biolog-
ical tissues growth mechanics has been used ([127]), the latter providing a parallel
between thermal and growth-associated inelastic strain. In particular, the growth of
a homogeneous elastic biological material around a spherical substrate, which is the
mammary prosthesis, has been simulated in order to study the mechanical influence of
this fibrotic layer in terms of exchanged forces, both at the (lower) capsule-prosthesis
and at the (upper) capsule-breast interfaces. The kinematics of elastic mass growth
has been addressed in continuum mechanics on the basis of the well-established mul-
tiplicative decomposition of the deformation gradient F = FeFg, where Fe is the
elastic component and Fg the growth one ([48, 164]), both of them singularly not
representing a true gradient. Given the symmetry of the spherical problem at hand
and a linearly elastic and isotropic constitutive behavior, the classical linear isotropic
elasticity law involving a Green-Lagrange strain measure will be first employed for
describing the effects of small strains. Under this assumption, the above mentioned
decomposition of the deformation gradient can be reformulated in a way to have an
additive decomposition of the linearized strain tensor into the sum of an elastic and a
pure growth aliquots, in complete agreement with a classical thermo-elastic analogy,
i.e.

E = Ee +Eg = S : σ + g Γ,

E = sym (u⊗∇)
(3.10)

where u ∈ C2 (Ω) is the displacement vector function defined on a closed subset
Ω ⊂ R3, g Γ is a growth strain tensor, with g ∈ R being a pure volumetric growth
strain function and the matrix Γ = Diag {γk} containing the anisotropic multipliers
for each principal direction so that tr (Γ) =

∑
k γk = 1, whereas σ = {σij} is the

Cauchy stress tensor and S represents the compliance fourth rank tensor. By deriving
the stress tensor σ from equation (3.10)1 and by introducing the elastic stiffness tensor
C = S−1 = 2µI + ΛI� I (here given in terms of the Lamé moduli µ and Λ, while
I and I are respectively the fourth order and the second order identity tensors), the
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constitutive relation and the quasi-static equations of motions in three dimensions
read as

σ = C : (E− Γ g)

∇ ·σ = −b,

σ = σT
(3.11)

in which the superscript T denotes the transpose, b the body force vector and ∇· (·)
is the divergence operator. The Cauchy stress is then directly connected to the pure
elastic strain and, more precisely, it is usually derived from the well known de Saint
Venant-Kirchhoff strain energy density:

W (Ee) = µtr
(
E2
e

)
+

Λ
2 tr (Ee)

2 (3.12)

under the further hypothesis of small strain, with the stress tensor then resulting
σ = ∂W/∂Ee. The direct coupling of compatibility equations (3.10)2 with both
constitutive law (3.11)1 and equilibrium equation (3.11)2 gives the Navier-Cauchy
equations:

µ∇ · (u⊗∇) + µ∇ · (∇⊗ u) + Λ∇ (∇ · u) +
− 2µ (∇ · Γ g + Γ · ∇g)−Λ∇g = 0 (3.13)

in which body forces have been neglected. The statement of the boundary value
problem (BVP) also provides the prescription of suitable boundary conditions, either
by imposing known displacements u in correspondence of the subset points ∂Ωu ⊆ Ω
subjected to constraints acting along the direction nu (i.e. u ·nu = u), or by assigning
traction t on the loaded surface ∂Ωt ⊆ Ω –identified by the normal vector nt– through
the widely known Cauchy’s theorem σ · nt = t.

3.1.4 Capsule-Breast system as a double-layered hollow sphere: analytic solution and

clinical clues

By focusing on a spherically symmetric and quasi-static case, a spherical frame of
coordinates {r, θ, φ} has been adopted, so that a bilayer composite hollow sphere has
been used to describe the periprosthetic capsule-breast gland system. More precisely,
the entire body volume Ω can be simply viewed by the union of the capsule region
Ω(c) = {r ∈ R+/{0} : R1 ≤ r ≤ R2} and the breast tissue region Ω(b) = {r ∈
R+/{0} : R2 ≤ r ≤ R3}, where the superscripts c and b indicate the capsule and the
breast, respectively, while R1 is the prosthetic capsule internal radius (coinciding with
the implant radius), R2 is the interface radius that accounts for the capsule thickness
and R3 is the external breast radius (see Fig. 25).
For each hollow spherical layer, the deformation tensor (3.10)2 becomes E(i) =

Diag
{
du(i)/dr, u(i)/r, u(i)/r

}
–the radial displacements u(i) being function of the

sole radial coordinate r– and the the anisotropy coefficients matrix is written as Γ(i) =

Diag
{
γ
(i)
r , (1− γ(i)r )/2, (1− γ(i)r )/2

}
. In order to readily find analytic solutions in
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Figure 25: The multi-layer hollow sphere model

the most straightforward manner, one can introduce incompressibility relations for
both the bodies. This imply a modification of the classical Kirchhoff potential (3.12)
by introducing a pressure, say q(i) for each body, which represents a Lagrangean
multiplier for ensuring the constant elastic volume constraint, then obtaining:

W (i)
(
E
(i)
e

)
= µ(i)tr

(
(E

(i)
e )2

)
+

Λ(i)

2 tr
(
E
(i)
e

)2
− q(i)tr

(
E
(i)
e

)
(3.14)

the two pressures then representing classical Lagrange multipliers. As a conse-
quence, by deriving with respect to the deformation, the Cauchy stresses in a spherical
eigenspace read:

σ
(i)
r = k(i)

((
1− ν(i)

) du(i)
dr

+ 2ν(i) u
(i)

r
−
(
ν(i) +

(
1− 2ν(i)

)
γ
(i)
r

)
g(i)

)
− q(i) (3.15)

σ
(i)
θ

= σ
(i)
φ

= k(i)

(
u(i)

r
+ ν(i)

du(i)

dr
−

1
2

(
1−
(

1− 2ν(i)
)
γ
(i)
r

)
g(i)

)
− q(i) (3.16)

where k(i) = E(i)/((1 + ν(i))(1− 2ν(i))), E(i) and ν(i) are the Young modulus and
the Poisson ratio of each material, respectively. By invoking symmetry, a sole non-
trivial equilibrium equation dσ

(i)
r /dr + 2r−1(σ

(i)
r − σ

(i)
θ ) = 0 emerges from (3.11)2.

Further simplifications can be introduced by assuming both that the fibrotic capsule
undergoes homogeneous growth, also the anisotropy multiplier γ(c)r being taken con-
stant, and that the surrounding breast tissue is in a not growing homeostatic state,
i.e. the bulk net growth function g(b) is null. To close the problem, the method of
Lagrange multipliers is applied, so that the two radial equilibrium equations (above
mentioned) result coupled with the constant volume constraints. In this way an ODE
system of four equations is obtained, the four unknowns being the two displacements
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and the Lagrangean pressures. In addition, the BVP also provides the continuity of
displacements and radial tensions are imposed at the interface, while the other bound-
ary conditions are given by prescribing zero radial stress at the external radius r = R3
and null displacement at r = R1, in this way assuming the silicon prosthesis as a rigid
substrate (due to the fluid incompressibility). Under these considerations, after few
calculations one obtains:



d
dr

(
1
r2

d
dr

(
r2u(c)

))
= 1−2ν(c)

1−ν(c)

(
3γ(c)r − 1

)
g(c)

r +
(1−2ν(c))(1+ν(c))
E(c)(1−ν(c))

dq(c)

dr

d
dr

(
1
r2

d
dr

(
r2u(b)

))
=

(1−2ν(b))(1+ν(b))
E(b)(1−ν(b))

dq(b)

dr

1
r2

d
dr

(
r2u(c)

)
= g(c)

1
r2

d
dr

(
r2u(b)

)
= 0

u(c)|r=R1 = 0

u(c)|r=R2 = u(b)|r=R2

σ
(c)
r |r=R2 = σ

(b)
r |r=R2

σ
(b)
r |r=R3 = 0

(3.17)

System (3.17) is in this form de facto uncoupled, so that it can be readily solved
analytically in a cascade manner. Solutions were performed by using the commer-
cial computational software Mathematica®([210]). Displacements are obtained from
(3.17)3,4 together with conditions (3.17)5,6:

u(c) =
g(c)r

3

(
1− R3

1
r3

)
and u(b) =

g(c)
(
R3

2 −R3
1
)

3r2 (3.18)

The direct substitution of (3.18) in the first two equations of (3.17) let the pressures
q(c) and q(b) be derived through a direct integration. It immediately follows that:

q(c) = Q(c) + 2µ(c)g(c)(1− 3γ(c)r ) log
(
r

R2

)
and q(b) = Q(b) (3.19)

In this way, the stresses within the capsule layer read:

σ
(c)
r = 2µ(c) g

(c)

3

(
(1− 3γ(c)r ) + 2

R3
1
r3

)
− 2µ(c)g(c)(1− 3γ(c)r ) log

(
r

R2

)
−Q(c) (3.20)

σ
(c)
θ

= −µ(c)
g(c)

3

(
(1− 3γ(c)r ) + 2

R3
1
r3

)
− 2µ(c)g(c)(1− 3γ(c)r ) log

(
r

R2

)
−Q(c) (3.21)

and, in the breast external shell, one has
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σ
(b)
r = −4µ(b)

g(c)
(
R3

2 −R3
1
)

3r3 −Q(b)

σ
(b)
θ = 2µ(c)

g(c)
(
R3

2 −R3
1
)

3r3 −Q(b)

(3.22)

where, in (3.19), (3.22) and (3.20), Q(c) and Q(b) are integration constants given
by:

Q(b) = −
4g(c)µ(b)

(
R3

2 −R
3
1
)

3R3
3

(3.23)

Q(c) =
4g(c)

3

(
µ(c)

((
R1

R2

)3
+

1
2

(
1− 3γ(c)r

))
+ µ(b)

(
1
R3

2
−

1
R3

3

)(
R3

2 −R
3
1
))

(3.24)

The linear analysis carried out shows how the growth of the fibrotic periprosthetic
capsule –modeled in terms of an inelastic strain g(c)– implies the accumulation of a self-
equilibrated (residual) stress which can give some important suggestions for analyzing
the biomechanical reasons underlying the clinically observed adverse phenomena of the
capsular contracture. The deformations obtainable from the displacement functions
(3.18), in the light of the linear analysis proposed, suggests a good reliability of the
solutions up to a 10 % of growth strain, this value being then effectively adopted
for the present results. A capsule thickness of 3 mm has been assumed, coherently
with the most of the experimental observations. Regarding the material parameters,
an almost incompressible Poisson’s ratio has been used, equal to 0.495 coherently
with the majority of the literature works concerning the study of the breast tissue
mechanical properties, as well as the Young modulus that was set to E(c) = 28 MPa in
accord with the averaged values proposed in literature ([157]). By observing the stress
distributions over the capsule thickness, reported in Fig. 26, it clearly emerges that the
radial stresses arising in the capsule generate a state of compression in the surrounding
breast tissue, which can effectively justify the clinical evidence of painful sensations.
The circumferential stresses –relevant in magnitude with respect to the radial ones in
the capsule– can be directly connected to the hardening of the capsule. Indeed the
phenomenon of contraction is explained in the clinical practice as a circumferential
tightening which acts as a “wrap”, making the implant feel hard and loose mobility.
Also, the combined actions of radial tractions and negative hoop stresses can be
involved in the detachment phenomena observed at the capsule-prosthesis interface,
and this particular conformation can likely concur in determining the wrinkling of the
prosthesis surface, detectable by means of a nonlinear analysis.
The high circumferential compression are substantially independent from the im-

plant sizes and the capsule thickness (see Fig. 27). Radial stresses instead exhibit a
direct proportionality with the capsule thickness, de facto demonstrating the positive
correlation between capsular thickness and Baker clinical score ([155]). Conversely,
an inverse proportionality with the prosthesis size suggesting a higher incidence of
capsular contracture in the case of smaller implants.

3.1.4.1 Finite Element-based computational model

Standard round smooth silicone gel-filled breast implants have been considered. Nu-
merical simulations, implemented by means of the code ANSYS®([1]), have been car-
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Figure 26: Stresses in the capsula-breast system. The stresses within the capsula generate
a state of compression in the overlying breast tissue (top). The negative circum-
ferential stress is instead responsible of the capsule hardening. Stresses in the
capsula are plotted by varying the anisotropy coefficient γr.

ried out by referring to breast implant sizes ranging from 100 cc to 400 cc, values
suggested by surgical follow-up. In order to create a 3-D model to be used in a FEM
context, a parametric reconstruction algorithm has been defined. We referred to a
standard round gel-filled prosthesis, which has been regarded as a solid of revolution,
obtained by rotating the surface S, shown in Fig. 28, around axis y. As shown in Fig.
28, surface S has been described in a parametric way, where:
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Figure 27: Correlation between stress, prosthesis size (ideal spherical model) and capsular
thickness.

Figure 28: Geometrical features of the breast implant reconstruction.
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a = (1− α)p (3.25)
b = D/2 (3.26)
c = p/2 (3.27)
R = (a2 + b2)/2a (3.28)
r = c(a2 + b2)/(b2 − a2) (3.29)
γ = arctan[b/(R− a)] (3.30)
sin γ = b/R (3.31)
cos γ = (R− a)/R (3.32)

Notation is different from that used in the analytical model: p is prosthesis projec-
tion, b is half diameter, τ is the pathologic capsular thickness, b′ is the x-axis of the
center of gravity of circular segment with basis 2c = αp and radius r. As previously,
we assumed τ = 3mm, that is the average value of the pathologic capsular thickness
found in literature. The geometric symmetry of the problem and the mechanical con-
ditions let us carry out perform FEM analysis on a volume V , equal to a quarter of
the entire prosthesis, calculated as V = V1 + V2, where:

V1 =
πa2

4

(
R− a

3

)
(3.33)

V2 =
π

2

(
b

2S1 + b′S2

)
, (3.34)

b′ = b+ r

[
cos3 γ(

π
2 − γ

)
− sin γ cos γ

− sin γ
]

(3.35)

where S1 is the surface of the rectangle with basis b and height 2c and S2 is the
surface of the circular segment with basis 2c = αp and radius r . This custom-made
algorithm let us to obtain the specific geometric model for any size of the prosthesis,
inputting only the projection p and the diameter D, values simply available from
manufactures web sites. The element type chosen to mesh the volumes is 8 nodes
hexahedral whit 3 degrees of freedom and linear shape functions for each node. A
very fine mesh (about 100.000 elements) let us to minimize geometric distortions and
structural error energy. Figure 29 shows 250cc half prosthesis-capsular mesh.
Both the silicone and the capsular tissue have been considered homogeneous, isotropic

and linear elastic materials. We set E(c) = 28MPa as the average value found in Liter-
ature for pathologic status ([157]) and E(s) = 3MPa ([46]); both silicone and capsule
have been considered near to be incompressible. The formal analogy between equa-
tions ruling growth and thermo-elasticity has been used again, so linear quasi-static
thermo-elastic analyses have been carried out. We set a thermal load |∆T | = 10°C
and the thermal dilation coefficient was set to βT = 0.01[T−1], in order to obtain
a volumetric contraction of the capsular tissue of about 10%. Capsule thickness was
still equal to 3 mm. In particular, the inverse proportionality of the interface average
stress with the prosthesis size has been confirmed also by looking at the numerical
results (Fig. 30), which let to obtain a more faithful geometrical description.
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Figure 29: A half 250 cc prosthesis-capsular mesh

Thermo-growth analogy

It is here briefly reported (for a spherically symmetric case) the direct comparison
between the thermoelastic constitutive equations and the stress-strain relationship
including a growth-associated term, in order to highlight the substantial analogy be-
tween thermal and growth induced deformations, i.e. Aϑ ↔ Γg, with ϑ and A re-
spectively denoting the temperature scalar field and the thermal dilatation coefficient
matrix: 

σr =
E

(1+ν)(1−2ν) [(1− ν) εr + 2ν εθ − (1 + ν)αr ∆ϑ]

σθ =
E

(1+ν)(1−2ν) [εθ + ν εr − (1 + ν)αθ ∆ϑ]

ρ c
kϑ

∂ϑ
∂t +

ϑ′ β
kϑ

∂(εr+2εθ)
∂t = 1

r2
∂(r2ϑ)
∂r +Qϑ

(3.36)


σr =

E
(1+ν)(1−2ν) [(1− ν) εr + 2ν εθ − γrg]

σθ =
E

(1+ν)(1−2ν) [εθ + ν εr − γθg]
∂g
∂t = G (g, σ)

(3.37)

It is worth noting that the full analogy provides also the introduction of a evolution-
ary growth counterpart of the well-known Fourier’s heat equation (3.36)3. Equation
(3.37)3 then represents a scalar equation (or a system) coupled with the mechanical
problem in order to determine the evolution of the growth term g.
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Figure 30: Medium capsular pressure versus size
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3.1.5 Volterra-Lotka equations to predict BMU remodelling

Bone is a complex tissue that, as the most of living tissues, is being dynamically sub-
jected to repair and synthesis processes throughout an individual’s life [219]. These
processes of continuous rebuilt and repair are known to affect bone tissue mechanical
response. For example, among the several theories focusing on bone mechanics, Cowin
and Hegedus’s theory of adaptive elasticity [47] provides that bone tissue elastic con-
stants are weighted by the volume fractions, which accounts for the tissue porosity
and also enters as a key variable into bone-implants optimization procedures (see for
example Fraldi et al. [62]). The macroscopic mechanical properties of bone tissue
are determined, at the cell scale, by the continuous activity of different type of cells,
responsible of resorbing and synthesizing new bone matrix constituents, also in re-
sponse to mechanical signaling, such as local microstrain [81], stress concentrations
and microdamage [73].
The process by which bone adapts its internal microstructure and subsequently changes
its mechanical properties in relation to the specific mechanical and physiological en-
vironment is denoted as bone remodelling cycle. As anticipated, bone remodeling con-
sists of two leading sub-processes: the resorption of old bone and the formation of
new bone. At the cellular level, the former is performed by osteoclasts (OCLs), mult-
inuclear cells of hematopoietic origin, while the latter is carried out by osteoblasts

(OBLs), which are mononuclear cells of mesenchymal origin ([219]).
Therefore bone remodelling can be interpreted as the result of the interaction of dif-
ferent cellular species forming the BMUs (“Basic Multicellular Units”). The whole
process is regulated by the opposite actions of the two aforementioned cell species.
Osteoclasts excavate a resorption space that is subsequently filled with new bone tis-
sue by osteoblasts. In cortical bone osteoclasts dig tunnels through solid bone while
in trabecular bone they dig trenches across the trabecular surface, while osteoblasts
fill these resorption cavities creating osteons and hemi-osteons respectively, which are
aligned to the dominant loading isostatics. As a result bone tissue is continuously
broken down by osteoclasts and rebuilt by osteoblasts and a well-known macroscopic
evidence is that bone tissue fibres are oriented in the meaning loading directions
(Wolff’s laws); so, it can be hypothesized that mechanical signaling regulating bone
macroscopic properties de facto directly orients cellular activity. The biochemical cou-
pling factor between osteoclast resorption and osteoblast remodelling is then assumed
to have a mechanical origin, and recent studies showed that metabolic process is con-
trolled by osteocytes (OCYs), that are the most abundant species in bone tissue with
respect to the transient recruitment of OCLs and OBLs. Osteocytes are mature and
differentiated osteoblasts that have been embedded within the bone matrix after the
bone formation phase. These cells present develop cytoplasmic processes which run
through the canaliculi and form a communication network that can convert mechan-
ical signals into biochemical signals ([77]), so playing a fundamental role. In fact,
Han et al. ([81]) have shown from a mechanical standpoint that the role of osteocyte
mechanotrasduction overcomes a precedent paradox according to which bone tissue
microstrain was too small to initiate cellular response, since the osteocytes tethering
elements excitation amplifies the locomotion strain signal and allows to achieve an
adequate signaling threshold to kindle the BMU remodelling cascade. From a bio-
chemical viewpoint, mechaotrasduction induce osteocytes to secrete growth factors
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that stimulates bone tissue synthesis, as well as the inhibitory factors able to stop
the latter activity. Consequently, osteoblasts are enhanced by these signals and bone
formation occurs in the loaded directions, while osteoclast resorption is triggered by
the lack of them, due to disuse or microcracks in the canicular networks. The result is
that packets of bone are removed where demand is low and new bone is formed where
mechanical strains/stresses are sufficiently detected. This also permits the restoration
of micro-damages caused by fatigue and shocks.

3.1.5.1 The phases of BMU remodelling

In bone remodeling, bone formation succeeds the osteoclastic bone resorption, so that
resorbed lacunae are alternately filled with new bone matrix ([132]). In this sense bone
remodelling connotes as a cyclic physiological process, orchestrated by the complex
interplay of the three cell types previously presented. BMU communication occurs by
means of opportune autocrine signaling (i.e. communication among cells of the same
type) and paracrine signaling (communication among cells of different types). More
precisely, this “cycle” consists of activation, resorption, reversal, and formation phases
([132]). In brief, the development of a single BMU in the bone can be summarized as
follows ([169]):

• Initiation and Resorption. Initially, from 10 to 20 osteoclasts are recruited to the
initiation site and resorb the old bone tissue. This phenomenologically occurs
in response to different stimuli, such as underload (due to disuse), microcracks
generation, low calcium levels and other hormonal alterations. At the single-cell
level, early OCLs hematopoietic progenitors differentiate to osteoclasts when re-
ceive opportune signals from stromal support cells, that belong to the osteoblast
lineage [103]. These stromal cells express macrophage-colony stimulating fac-
tor (M-CSF) and RANKL, which act via their respective receptors (c-fms and
RANK) on osteoclast progenitors to promote their differentiation. Stromal cells
also secrete osteoprotegerin (OPG) which binds to RANKL and thus inhibits os-
teoclasts by lowering the RANK/RANKL binding formation. OPG would thus
act to promote osteoclast death, and active osteoclasts have a life span of about
ten days ([169]). During the whole resorption phase, OCLs aggregate into a
well-confined zone, called cutting cone. Dead cells are continually replaced by
new ones so that the population size remains approximately constant.

• Transition or reversal. Bone formation takes place exclusively in sites when bone
resorption had previously occurred [103]. The recruitment of OBLs is then at-
tributed to the release of coupling factors from the bone matrix during resorption
disarrangement. Therefore, the presence of OCLs stimulates osteoblast precur-
sors to differentiate into active OBLs. Activation of OBLs down-regulates OCls
via OPG/RANKL pathways, and so OCLs undergo apoptosis in Bim/caspase-3
manner. Formation and mineralization. Up to 1000-2000 OBLs ([169]) are re-
sponsible of filling resorbed trench with new bone (closing cone). Furthermore,
osteoblasts are much less efficient than osteoclasts, and the bone formation
takes roughly 10 times longer than the resorption. Finally, the new formed bone
matrix mineralizes and OBLs either undergo apoptosis or differentiate into os-
teocytes. Approximately, BMU activity can take from 100 to 200 days ([58]).
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After activation (approximately 8 days), osteoclastic resorption is completed 9-
34 days. Reversal and coupling period takes about two weeks, while less efficient
osteoblasts fill the caniculi in a period between 60 and 130 days ([16]).

All these considerations let to describe the biological phenomenon of bone remod-
elling by introducing competitive Volterra-Lotka model, in which bone cells and bone
matrix are identified with the “populations” taking part into the system at hand,
and the corresponding rates model the BMU activity. In particular, the focus is on
the modelling of OCLs, OBLs and bone matrix. Each equation will present coupling
terms, which are positive or negative according to the biology of the process. In fact,
following the present analogy, resorbing osteoclasts can be seen as “predators” of the
bone matrix and are simultaneously inhibited by the OBLs during the transition phase
(and thus negatively coupled with them). On the other side, OBLs rate are positively
affected by the previously described communication with OCLs, but OBLs cells are
also progressively preyed by the bone tissue, since some of them are embedded within
the deposed matrix. Naturally, mass does not have an intrinsic activation coefficient
and its rate will be given by the balance between OCLs resorption activity and OBLs
formation.
Furthermore, in order to directly take into account the strain-dependent behavior of
the remodeling rate, suitable coefficients have been introduced to simulate the activa-
tion process of both OBLs and OCLs driven by the osteocytes mechanical signaling. It
has been in fact experimentally observed that mechanical stimulation outside a certain
physiological window, i.e. under disuse and overloading, affects the apoptosis of os-
teocytes, which exhibit a “U-shaped” survival response to mechanical loading ([207]).
More precisely, it was observed that osteocytes apoptosis was significantly high be-
fore 1000µε and over 5000µε, and very low within this range ([146]). In our elemental
model, this characteristic can be used to reproduce the BMU cells activation, in this
way regulating their action on bone matrix on the basis of the tissue resident strain
(that is supposed assigned). This is done by means of two suitable strain dependent
functions which act in order to maximize OBLs recruitment in the central window,
as well as to enhance OCLs resorption in the non-physiological loading windows. The
system in its general form then reads:

ẋ = F (ε, ε1, ε2,x) (3.38)

where the vector x collects the species and the way they interact, while mechanical-
driven recruitment is taken into account through cells activation coefficients and is a
function of the levels of the deformation experienced at the the cell level [81], and is
based on the threshold behavior analyzed by
[207], with ε1 and ε2 denoting such micro-strain thresholds. Furthermore, each species
xi represents the species density opportunely normalized with respect to a reference
value, i.e. xi = ρi/ρ∗i . In the light of the interactions described, the explicit system
actually results:


ẋobl (t) = (r1 (ε, ε1, ε2)− a11xobl (t) + a12xocl (t)− a13xb (t)) xobl (t)

ẋocl (t) = (r2 (ε, ε1, ε2)− a21xobl (t)− a22xocl (t) + a23xb (t)) xocl (t)

ẋb (t) = (a31xobl (t)− a32xocl (t)− a33xb (t)) xb (t)

(3.39)
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with the activation rate r1 and r2 respectively being modeled as

r1 = r10
(
(1 + e−µ1(ε−ε1))−1 − (1 + e−µ2(ε−ε2))−1

)
(3.40)

r2 = r20
(

1− δ
(
(1 + e−µ1(ε−ε1))−1 − (1 + e−µ2(ε−ε2))−1

))
(3.41)

where r10 and r20 denote the differentiation rate of OBLs and OCLs precursors,
respectively. The solutions of the proposed system gives information about the coop-
eration of the cells activity during the remodelling process, in terms of development
of bone density which is formed or resorbed, as well as the time sequencing related to
the alternation of the several phases of the BMU cycle, as shown in Fig. 31. In partic-
ular, at low microstrain OCLs are recruited in order to resorb the unloaded material,
as well as at excessively high microstrain prone to damages. In these two situations,
the stable equiblibrium for the system is represented by the state which provides the
bone matrix extinction see Fig.32. For a physiological value of microstrain, in corre-
spondence of which BMU cycle is activated for promoting bone tissue remodelling,
the BMU cycle phases can be clearly recognized (Fig. 31) by noticing the alternation
of the OCLs resorption period with the (longer) OBLs formation period, until the
process tends to quiescence with an increased bone matrix density. Of course, this
solution provides the coexistence of the three species, and therefore the stability of
the solution will be guaranteed in correspondence of the respective equilibrium point
(Fig.32).

Naturally, bone remodelling might strictly depend upon the spatial distribution
of the strain within the bone tissue. However, this simple example let to highlight
the dynamics underlying the BMU cycle itself in order to propose a way to couple
adaptative elasticity-based algorithm (that focus on a higher scale) with a suitable
remodelling rate, which can be determined on the basis of the knowledge of inner
the cells dynamics. This let to have resorption in hypo-loaded regions as well as bone
matrix production in densely loaded regions and obtain a synthetic index of bone
mass fraction.
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Figure 31: Bone remodelling dynamics obtained from the numerical simulations. Cells num-
ber and bone density have been scaled; r10 = 0.4 d−1, r20 = 0.9[122, 207], a11 =
0.02 d−1[28],a12 = 0.075 d−1, a21 = 0.19 d−1[219], a22 = 0.01 d−1[169], a31 =
0.0012 d−1, a32 = 0.01 d−1[169, 170],a33 = 0.00025 d−1, ρ∗

b = 1.75g/cm3[123],
ρ∗
ocl = 400 cells/mm3, ρ∗

obl = 20000 cells/mm3[97].
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Figure 32: Analysis of the local stability of solutions in correspondence of the equilibrium
points related to non-physiological (black) and physiological (red) stimuli.
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Part III

C O U P L E D M O D E L L I N G

This part is dedicated to the analysis of biomechanical problems in which
growth and remodelling phenomenological equations are in direct coupling
with solid mechanics. In this way, all the interactions describing the influ-
ence of the mechanical environment on cells activities and, vice versa, the
effects of growth and remodelling on the mechanical response of the biolog-
ical material are simultaneously taken into account through a full coupled
strategy.
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4THE “WEAK” COUPL ING

The so-called weak coupling is referred to the modelling of biomechanical problems
in which growth and remodelling are explicitly included with the aim of analyzing
growth-induced stresses and deformations, by opportunely deriving ad hoc constitu-
tive assumptions. This is often done by means of kinematical equations describing the
two processes in a phenomenological way, for example by adopting specific evolution
models whose parameters are calibrated on the basis of experimental observations.
The following sections are dedicated to the application of this modelling strategy to
the problem of effects of growth and remodelling of vessel structures in vascular dis-
eases and surgical practice, demonstrating that they can be strictly correlated to the
mechanical alterations in a non-physiological environment. This is done by means of
a hyperelastic material model in which both growth, remodelling and their mechan-
ical counterpart have simultaneously been taken into account, this interactions also
opening to further considerations about the role that the the communication between
mechanical and physiological events has in determining positive (or either adverse)
outcomes, as well as in driving the cooperation between biological and synthetic pros-
thesis materials.

4.1 biomechanics meets ross operation in cardiovascular dis-

eases

Ross operation, i.e. the use of autologous pulmonary artery to replace diseased aortic
valve, has been recently at the center of a vivid debate regarding its unjust underuse
in the surgical practice. Keystone of the procedure regards the use of an autologous
biologically available graft which would preserve the anticoagulative and tissue home-
ostatic functions normally exerted by the native leaflets and would harmoniously
integrate in the vascular system, allowing for progressive somatic growth of aortic
structures.
Since the introduction in 1967 of Ross Operation in the cardiac surgery scenario, the
PA represented a valuable substitute for both congenital and acquired disease of the
left ventricular outflow tract in children and young adult [167, 189, 196]. Accumu-
lating evidences suggest that the advantages of the PA are related to the ability to
match the somatic growth of cardiovascular structures in pediatric surgery and to the
avoidance of life-long anticoagulation [141, 142]. Conversely, the reported incidence of
PA dilatation without loss of integrity of the leaflets among patients undergone to
Ross Operation ranges from 20 to 40%. The consequence is PA regurgitation that
might lead to severe left ventricular dysfunction in the long-term follow-up of persons
who had surgery for congenital and acquired heart disease [53]. In order to overcome
these issues and design an ad hoc system capable of both allowing somatic growth
and providing mechanical sustain to the PA-vessel, a composite reinforcement consti-
tuted of a resorbable scaffold ([145, 187]) and a e-PTFE armor has been introduced

89
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Figure 33: A. Scheme of the implantation of a cryopreserved pulmonary artery homograft
into the discending aorta. B,C,D. Concept and design of composite semire-
sorbable armored bioprosthesis. The specific design of the GORE-TEX auxetic
armor will allow multidirectional growth and resistance to abnormal dilatation
(B: Initial implantation, C: Intermediate phase, D: Complete development).

in Ross procedure (see Fig. 33). In order to reproduce the clinical scenario in which
this procedure might be applied and allow the development and testing of different
devices or techniques aimed to improve the pulmonary autograft (PA) performance,
a large animal model was successfully pioneered, by performing Ross Operation in a
statistically significant court of growing lambs.
Therefore, to support and supplement the in vivo animal experimentation and to

investigate the impact of this new device on mechanisms of growth, remodelling and
stress shielding of the reinforced PA, a mathematical model has been developed, simu-
lating the biomechanical changes of pulmonary artery subjected to systemic pressure
load and reinforced with a combination of resorbable and auxetic synthetic materials.
The positive biological effects on vessel wall remodeling, the regional somatic growth
phenomena and prevention of dilatative degeneration have been analyzed. The theo-
retical outcomes show that a virtuous biomechanical cooperation between biological
and synthetic materials takes place, stress-shielding guiding the physiological arteri-
alization of vessel walls, consequently determining the overall success of the autograft
system.
The application of principles of tissue engineering through the use of bioresorbable
materials is increasingly considered an attractive and valid alternative for cardiovas-
cular structures replacement ([184]). Specific studies have been also focused on the
development of drug-releasing vascular bioresorbable prosthesis able to ameliorate
and accelerate processes of endothelialization and vascular regeneration using manu-
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Figure 34: Left (top): Sketch of the main biomechanically relevant features of the pul-
monary autograft and the reinforcement. Right (top): Nominal (first Piola-
Kirchhoff) hoop stress versus circumferential stretch in artery and vein-like
materials. Left (bottom): elastic reaction pressure against external vessel radius
dilation exhibited by GORE-TEX auxetic reinforcement during pulmonary au-
tograft growth and deformation. Right (bottom): in-time mass degradation of
bioresorbable polydioxanone (PDS) structure.

facturing techniques which allow for both a permissive action on the biology of the
vessel ([185]) and the realization of graft able to bear significant hemodynamic loads
([35]).

In particular, the PA composite reinforcement enveloping the arterial walls (intima,
media and adventitia) is constituted by a biodegradable scaffold made of polydiox-
anone (PDS), integrated with an external GORE-TEX weave (expanded polytetraflu-
oroethylene, e-PTFE) whose structure is characterized by a negative Poisson’s ratio
(see Figure 34). In particular, it might reliably speculate that the temporary interac-
tion between the bioresorbable reinforcement and the PA might have orchestrated a
complex process of vascular remodelling based on a balance between inflammation and
extracellular matrix production resulting, after biomaterial resorption, in an arterial-
like vessel still biologically alive and capable of growth ([187]). Indeed, the biomaterial
on a side accompanied and accelerated the naturally occurring pressure-load adapta-
tion phenomena attenuating the pressure load exerted on the pulmonary artery and
compensating the tendency to dilation preventing aneurysmal degeneration, but on
the other, still permitted and respected somatic growth of vascular structure over
time ([145]). The observations discussed by ([92]) concerning the differential poten-
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tial of dilation at the various segments of the aorta, i.e. annulus, Valsalva sinuses (0.5
mm/year) and sinutubular junction (increase of 0.7-0.9 mm/year), outlined the need
to study the biomechanical changes of pulmonary artery reinforcements in their dif-
ferent parts. This induced to reconsider their design with the aim to better adapt to
the normal physiology of the aortic root improving the resistance of the zones, which
are meant to majorly suffer from dilatative degeneration. The mechanical stress as-
sociated to progressive overstrain of the pulmonary artery under systemic pressure
might in fact affect PA integrity and the endothelialization process ([186]); therefore,
in this context, prevention of the graft stretching is crucial.
The biomechanical response is then studied to validate the in vivo results and over-
come some unresolved surgical issues of growth and remodelling of pulmonary arteries
subjected to systemic pressure, and to thus analyze the effects of an innovative pros-
thesis system realized by combining resorbable and auxetic synthetic materials. The
proposed biomechanical model seems to provide the positive effects of the synergy of
these two synthetic materials, that accommodate mechanical loads guaranteeing graft
integrity, controlling the progressive graft dilation, allowing regional somatic growth
and preventing dilatative degeneration ([126, 159]).

4.2 details of the experimental animal model

The experimental model of transposition of the pulmonary trunk as autograft in aor-
tic position has been developed and performed under cardiopulmonary bypass in 20
growing lambs ([141, 142, 144]). Technical and anatomical issues imposed reimplanta-
tion of the PA in the descending aorta, with the pulmonary trunk being replaced by
a homograft from another lamb of the same age and weight. The age of the animals
at the moment of the implant was 2 month (8-10 weeks) and baseline mean weight
was about 21±3 kg, allowing to observe the progression of the autograft diameter dur-
ing the period of fastest growth. Morphometric and cardiovascular parameters were
comparable preoperatively among animals. There were no difference in haemoglobin
levels and ventricular function. The group of 20 lambs was divided into two subgroups:
a control group (n=10), subjected to ordinary PA transposition, and a group of 10
animals in which the PA was reinforced with an external synthetic semiresorbable
armored scaffold (prosthetic). All animal experiments have been performed in respect
of the guidelines for animal care and handling and the protocol was approved by the
institutional animal care committee.

Semiresorbable copolymer scaffold. The experimental design of the device consisted
of an internal bio-resorbable scaffold made with Polydioxanone (PDS), arranged in a
frame of hexagonal cells, externally coupled with a non-resorbable layer of e-PTFE,
having an auxetic behavior. The mesh structure and arrangement were specifically de-
signed in order to constrain the excessive enlargement of the vascular graft diameter
by also absorbing wall mechanical stress, while accommodating its natural longitu-
dinal growth by embracing the root of the aorta. For this purpose, the unit cells of
the PDS and e-PTFE plies have been respectively positioned as sketched in Figure 35.

Surgical Model. Lambs were premedicated with ketamine (25mg/kg via intramuscu-
lar injection) and anesthesia was guaranteed by the injection of sodium thiopentothal
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(6-8mg/kg) via the internal jugular. Animal received 100mg of lidocaine intravenously
as prophylaxis against rhythm disturbance. After endotracheal intubation, ventilation
was provided up to animal awakening and the anesthesia was maintained with inhala-
tion isoflurane (1% to 2.5%). The electrocardiogram was monitored and chest was
prepped and shaved. The heart was approached via left thoracotomy. After opening
the pericardium, the right atrium was exposed for cannulation and the trunk of the
pulmonary artery was dissected free from its right ventricular origin up to its bifurca-
tion in the pulmonary arteries. The same was done for the descending thoracic aorta
and a region distal to the portion of choice for the PA transposition was cannulated.
Approximately 8cm of the descending thoracic aorta was left for clamp positioning
and to perform the anastomosis with the pulmonary artery trunk under optimal con-
ditions. Heparin (3mg/kg) was administered intravenously, and cardiopulmonary by-
pass was started between right atrium and descending aorta. The cerebral circulation
of the animal was guaranteed on a beating heart. A 3cm tract of pulmonary artery
trunk was transposed into the descending aorta with an end-to-end anastomosis in
5-0 prolene. A fresh pulmonary artery homograft, explanted from animals sacrificed
on the same day for another experimental study, was inserted to reconstruct the right
outflow tract, with a proximal and distal end-to-end anastomosis in 5-0 prolene, as
in the Ross operation. Left thoracotomy was closed and aspiration drainage left in
place. Before implantation, in the experimental group the PA has been reinforced
with PDS and e-PTFE meshes according to the study design. The resorbable mesh
was prepared at the operative table (time 10±2 min). Meshes used in this study were
cut into a rectangle measuring 20mm in height matching with the height of autograft
and rolled out on a metallic candle and then reassured by a suture to create a cylinder
with an internal diameter of 10mm (20mm in height in 10mm diameter directly ad-
herent to the PA). The autograft was then inserted into the fibrillar cylinder and was
anastomosed suturing both its margins and those of the prosthetic structure to the
pulmonary autograft trunk. The mesh was oriented to allow maximal extensibility in
the longitudinal direction and minimal transverse extensibility. The principal stages
of the implant in situ deployment are reported in Fig. 33B,C,D. All animals survived
to the procedure and did not experience surgical complications. A case of PA initial
rupture and thrombosis occurred at 6 months follow-up in the control group, without
causing animal decease. Procedure did not pose particular technical challenges. At 6
months the lambs weight was doubled ( 21±3kg at day 0 and 55±10kg at 6 months)
suggesting a normal growth process. The animal model was mainly focused on the
development of an effective and reproducible model of pulmonary autograft transpo-
sition into arterial system with the aim to study the behavior of the autograft and
develop suitable strategies to prevent its future dilation, which represents one of the
major drawback of this operation.

4.3 mathematical modelling

4.3.1 Nonlinear mechanics and growth of blood vessels

In the last decades, biomechanical behavior and mechanobiology of cells, tissues and
organs have been intensively investigated, with the aim of discovering key feedback
mechanisms governing the ways in which cascades of chemical signals are transmitted
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within the hierarchically organized living structures and interplay with physical events
at different scale levels ([66]). ContinuumMechanics has deeply contributed to develop
this research area and to meet related challenges, by mainly creating the physically
and mathematically consistent ground on which large deformation, stresses, evolving
constitutive laws, growth, remodeling and morphogenesis do interact ([10],[46],[89]).
Within this framework, by essentially starting from an approach proposed by [90]
and [91] in some recent milestone works on biomechanics of arterial walls, it is here
constructed an ad hoc non-linear mathematical model for PA, by incorporating tissue
growth, remodeling, large deformations and hyperelasticity.
Going in medias res, let us consider the body B(0,0) in its reference stress-free config-
uration, with dV0 indicating its volume elements and X the position of each material
point. The evolution of the elastic body can be entirely described by the motion vector
x = x (X, t) that maps the material points X ∈ B(0,0) onto spatial points x at any time
t through the definition of the deformation gradient F defining an application between
the two tangent spaces. This deformation gradient can be written by also accounting
compatibility with the body particles displacement field u (X, t) ∈ C 2(B(0,0)) as:

F = ∇Xx (X, t) = I+ u (X, t)⊗∇X (4.1)

where ∇ is the nabla operator (the subscript indicating the space to which it is
referred), while ⊗ is the dyadic product. It is standard argument to consider the defor-
mation gradient as composed by different aliquots, respectively responsible of growth,
elastic load-induced deformations and residual stress-associated stretches. The most
common structure adopted to describe these contributions is a multiplicative decom-
position in a way that F = FeFg (see e.g. [164]): herein Fg represents a volumetric
growth tensor and Fe the elastic tensor ensuring compatibility and taking into ac-
count both elastic load-induced deformation and residual stresses1.
As a matter of fact, the presence of self-equilibrated stresses can be traced if, after
cutting out a ring from a blood vessel tract, it contracts (or dilates) along the cylinder
generator to release the elastic energy associated to axial stresses and/or if a nonzero
opening angle α is measured after cutting the cylindrical ring along its generator to
relax hoop stresses ([69, 91]). Material points X are then mapped through the ref-
erence configuration towards first non-compatible grown intermediate configuration
Btg in which they occupy position xg (X, t) ∈ Btg and then onto the current loaded
configuration B(t,s), being here denoted by the position vectors x (X, t) (see Figure
35).

In this configuration, t denotes the ordinary long timescale that follows the growth
process (which is of the order of days or months), whereas s indicates the short
timescale at which typically mechanical equilibrium is reached. Also, volume elements

1 From a rigorous mechanical point of view, the term "residual stress" –although widely used in the
Literature– is often incorrectly adopted: in fact, in absence of applied loads, before to ideally (and
suitably) cut a grown material, the stress kindled within the tissue as a result of the inhomogeneous
growth is "self-equilibrated" rather than "residual" ("remaining"), while –after cutting an inhomoge-
neously grown material– a "stress-free" (deformed) configuration is recovered rather than a "residual
stress." The adjective "residual" is hence erroneous in the first case and ambiguous in the second,
because suggests that one can find residual stresses after cutting a (grown) material, while on the con-
trary a "stress-free" deformed configuration characterized by "residual (inelastic) strain" is actually
found. This is the reason for which, in the present work, the terms "residual strain", "self-equilibrated
(residual) stress" and/or "stress-free deformed state" have been preferred.
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Figure 35: Sketch of the biomechanical model of reinforced pulmonary autograft under
aortic systemic pressure including ab origine self-equilibrated (residual) stresses,
growth, remodeling and elastic deformation.
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in these configurations are dVg = JgdV0 and dv = JedVg = JdV0, with Jg = det Fg,
Je = det Fe and J = det F = JgJe, respectively. Coherently with experimental
observations, the body is assumed to be elastically incompressible, so that Je = 1 and
dv = dV g or J = Jg; this also implies that density ρ does not change, growth being
purely volumetric ([127]). The evolution growth equation then represents a kinematic
relation for the body elementary growing volume; in particular, by introducing a
growth volumetric source (and sink) term rg, under the assumptions of no mass
fluxes and constant density ρ (which implies a pure volumetric growth), the mass
conservation for the elastically incompressible body (i.e. Je = 1) can be expressed by:

d

dt
(dm) = rgdv (4.2)

In order to describe the growth behavior of the experimental animal models and
reproduce the effects of the physiological growth on the stresses in vessel walls, a
logistic rate form will be assigned to the source (or sink) term rg. Mass fluxes have
been neglected, and the hypothesis of constant density leads to:

J̇g =
1
ρ
Jgrg, or F−1

g : Ḟg = rg (4.3)

where dot denotes the material time derivative and rg = ρ−1rg accounts for the
mass supply/removal due to the growth process which describes how the body evolves.
In general, the growth may depend on different factors, such as the availability of
metabolic energy needed for activating the biological process ([69, 201]) and other in-
ternal conditions, defining the type of interaction among biomaterial constituents and
in situ stresses, that is known to inhibit (or eventually enhance) selected cellular pro-
cesses at the basis of the growth mechanisms ([6]). In addition, due to axis-symmetry
of geometry and loads of the problem at hand, the growth is also expected to be
symmetrical and the growth tensor can be thus taken in diagonal form:

Fg = Diag

{
J

1−ζ
2

g , J
1−ζ

2
g , Jζg

}
(4.4)

ζ being a coefficient deputed to catch possible tissue growth anisotropies along the
longitudinal direction and in the vessel cross-section plane.
By neglecting inertia terms, balance of linear momentum can be written by making
reference to both unstressed and current (grown and elastically deformed) configura-
tions as follows (see e.g. [46])

∇X ·P = −b̂, ∀X ∈ B(0,0) (4.5)

P ·N = t̂, ∀X ∈ ∂B(0,0) (4.6)

or

∇x ·σ = −b, ∀x ∈ B(t,s) (4.7)

σ · n = t, ∀x ∈ ∂B(t,s) (4.8)
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where b and b̂ respectively represent the body force vector in the current config-
uration and its pulled-back version, analogous arguments being applied, by recalling
the Nanson’s formula, for geometrically interpreting tractions t and t̂, as well as the
outward normal vectors N and n to the body surfaces, in the reference and current
configurations. In (4.7) σ (x, t) represents the Cauchy stress, while P (X, t) is the first
Piola-Kirchhoff (or nominal) stress, these two second order tensors –which coincides
under small deformations– being related to each other through the Piola transform:

P = JσF−T (4.9)

Furthermore, in order to faithfully reconstruct the biomechanical constitutive be-
havior of the vessel, the strain energy density ψ is here considered as a function of the
elastic deformation tensor Fe and of a vector γ containing nγ remodeling parameters
describing the average microstructural changes occurring at the material particles as
a consequence of growth and deformation processes. Hence, by following the approach
proposed in [149], the total elastic energy referred to the initial configuration takes
the form:

Ψ =

∫
V0
Jgψ (Fe,γ)dV0 (4.10)

with V0 = measure(B(0,0)).
To obtain the specific constitutive laws involving the Piola-Kirchhoff stress and the
growth and remodelling conjugate forces, the dissipation principle has been written
down by essentially following the approach by [127] and [149]. In particular, under
the hypothesis of isothermal process, the balance of energy can be written by taking
into account a contribution to the growth which represents a metabolic energy supply
per unit mass, say εg, and a vector of driving forces k responsible of the remodeling-
associated microstructural changes. In this way one finally obtains:

d

dt

∫
V
ρ

(
1
2v · v+ u

)
dv =

∫
V

(
ρ
d

dt

(
1
2v · v

)
+ σ : d+ k · γ̇

)
dv+

+

∫
V
rg

(
1
2v · v+ u

)
dv+

∫
V
εg rg dv (4.11)

u and V being the internal energy per unit current mass and the current volume
measure, respectively. Also, v is the velocity vector and d = sym(ḞF−1) is the
symmetrical velocity gradient, the other quantities σ and γ̇ defining the Cauchy
stress tensor and the rate of the remodeling parameters vector, as also specified in
the main text. By using (4.2), the balance of energy (4.11) reduces to:

∫
V
ρ
du

dt
dv =

∫
V
(σ : d+ k · γ̇) dv+

∫
V
εg rg dv (4.12)

The total internal dissipation per unit initial mass can be instead accounted by
introducing two thermodynamic forces fg and fγ , respectively conjugated to the
rates rg and γ̇: in such a way the rate of dissipation is written down:
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∫
V
θ
ds

dt
ρ dv =

∫
V

(
fg ρ

−1rg + fγ · γ̇
)
dv (4.13)

where s is the entropy per unit current mass and θ is the absolute temperature. The
second law of thermodynamics requires the right side of (4.13) to be non negative. By
combining the energy equation (4.12) and the entropy equation (4.13), the free energy
per unit volume ψ = ρ (u− θ s) can be thus obtained as a function upon the elastic
deformation Fe and the remodeling parameters γ, as also established in (4.10). At
the end, it results:

d

dt

∫
V
ψ dv = (4.14)

=

∫
V

(
σ : d+

(
k− fγ

)
· γ̇ + (ρεg − fg) ρ−1rg

)
dv

or
d

dt

∫
V0

Jgψ dV
0 = (4.15)

=

∫
V0

(
P : Ḟ+ Jg

(
k− fγ

)
· γ̇ + (ρεg − fg) J̇g

)
dV 0

V0 denoting the referential volume. By means of the localization theorem and ex-
ploiting the deformation multiplicative decomposition F = FeFg one has:

Jg
∂ψ

∂Fe
: Ḟe + Jg

∂ψ

∂γ
· γ̇ + ψJ̇g = (4.16)

= PFTg : Ḟe +FTe P : Ḟg + Jg
(
k− fγ

)
· γ̇ + (ρεg − fg) J̇g

A direct comparison of the terms at both sides of (4.16) leads to:

P = Jg
∂ψ

∂Fe
F−Tg

fγ = k− ∂ψ

∂γ
(4.17)

fg = ρεg + Σ

from which it follows that the growth-conjugate force is the result of the interplay
of metabolic (e.g. biochemical) and mechanical factors, with Σ = Σ : I being the trace
of the Eshelby-like stress tensor related to the change of domain variations induced
by the volumetric growth Σ = FTe ∂ψ/∂Fe − ψI, as obtained for example by [7] and
[149]. As a consequence, the dissipation inequality, derivable by imposing the second
member of (4.13) to be non negative, can be split into two independent contributions:

∫
V0

(
K− Jg

∂ψ

∂γ

)
· γ̇ dV 0 ≥ 0 (4.18)∫

V0
(ρεg + Σ) J̇g dV 0 ≥ 0 (4.19)

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



4.3 mathematical modelling 99

The respect of the first of the reduced dissipation inequalities (4.18)1 allows to write
the remodeling evolution equation in the following form:

γ̇ = cγ

(
K− Jg

∂ψ

∂γ

)
, cγ ≥ 0 (4.20)

cγ being a non-negative term (either constant or not) accounting for the charac-
teristic remodeling time, and K = Jgk representing a proper referential (or drag)
force which drives the remodeling process ([149]). The second inequality is a pressure-
volume relationship (vanishing in the pure remodeling case, J̇g = 0). Its validity
implies that the growth case J̇g > 0 is characterized by the presence of a pressure
responsible of the domain expansion and by an adequate amount of metabolic energy,
convertible into mass growth, that is assumed to be indefinitely available; vice versa,
the resorption case J̇g < 0 can be associated to the lack of energy supply and to the
presence of stresses contracting the volume domain.
Finally, by then recalling constitutive relation (4.17) and the Nanson’s formula (4.9),

the Piola-Kirchhoff and Cauchy stress tensors can be expressed as follows:

P = Jg
∂ψ

∂Fe
F−Tg and σ =

∂ψ

∂Fe
FTe (4.21)

4.3.2 Inflation and growth-associated stresses in vessel walls

From a geometric viewpoint, a blood vessel can be seen as a thick-walled hollow
(composite) cylinder, each layer exhibiting elastic anisotropy as a result of the tissue
microstructure (see Figure 34). From the mechanical standpoint, several works can be
found in literature where the problem of determining the elastic response of composite
cylinders under different load conditions is approached and analytically solved ([60]),
also in case of anisotropy ([61]) and for general inhomogeneous media ([63]). However,
pressure regimes and growth generally induce large deformations in the blood vessels
and therefore non-linear models are required (see for instance [91] and [41]). Within
the non-linear theory of elasticity, and by making reference to the geometrical sym-
metries, the unstressed reference configuration B(0,0) can be then described in terms
of cylindrical coordinates by the region:

Ri ≤R ≤ Ro,
0 ≤Θ ≤ (2π− α) , (4.22)
0 ≤Z ≤ L

where Ri and Ro indicate the inner and the outer radii of a relaxed and excised
configurations, L is the vessel trunk length and α is the opening angle, a measure
of the elastic energy imprisoned within the material before ideally cutting the ves-
sel to go back to a virtual stress-free reference configuration and due to ab origine

self-equilibrated (residual) stress (see Figure 35). Analogously to the pure inflation
problem, under the hypotheses of axis-symmetry of both loads (i.e. the systemic aor-
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tic blood pressure) and growth, the deformed in situ configuration can be instead
described by the region:

ri ≤r ≤ ro,
0 ≤θ ≤ 2π, (4.23)
0 ≤z ≤ l

with θ = hΘ and h = 2π/ (2π− α). This also implies that the deformation gradient
can be helpfully written in terms of principal stretches, i.e. F = λrRer⊗eR+λθΘeθ⊗
eΘ + λzZez ⊗ eZ . By taking into account the residual stress-induced opening angle,
growth and elastic deformations, the total stretches are univocally determined by
starting from the relation dv = JgdV0 accounting the elastic incompressibility, thus
obtaining:

λrR =
∂r

∂R
= J1−ζ

g
R

rhλezZ

λθΘ = h
r

R
(4.24)

λzZ =
l

L
= JζgλezZ

where the axial stretch time-history λzZ may be assumed to be prescribed, for example
deriving it from experimental observations ([141]). In particular, by considering that
in situ vessels exhibit residual axial strains which allometrically increase as the overall
body grows, a possible form of the stretch λzZ can be faithfully described by means
of the following evolution function:

λzZ (t) =
λfzZ + λizZ

2 +

+
λfzZ − λ

i
zZ

2 tanh (ωz (t− tz)) (4.25)

where λizZ and λfzZ represent the initial and the final observed stretch ratios, while tz
and ωz are a characteristic time and a suitable frequency constant, respectively. Fur-
thermore, by virtue of the elastic incompressibility constraint, the following relation
for the radius r at the current time can be derived:

r =

√
2

hλezZ

∫ R

Ri

J1−ζ
g

(
R
)
RdR+ r2

i =

=

√
J1−ζ
g

R2 −R2
i

hλezZ
+ r2

i (4.26)

in which the assumption of uniform growth tensor has been introduced, according to
recent literature works ([160, 202]).
By following the work by [91], arteries can be mechanically modeled by considering
a two-layer hollow cylinder, the inner and the outer layers representing the tunica

media and the tunica adventitia, respectively, the mechanical contribution of the tunica
intima being negligible. Both of them can be constitutively characterized by a strain
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energy function made of an isotropic part and an anisotropic contribution which
accounts for the fibers orientation. Hence, by also introducing a suitable Lagrange
multiplier qξ to take into account the elastic incompressibility constraint, the strain
energy functions reads as:

ψξ =ψξiso (I1) + ψξaniso (I4, I6) =

=
kξ0
2 (I1 − 3) + kξ1

2kξ2

∑
i=4,6

(
e
kξ2

(
Iξi −1

)2

− 1
)
+

− qξ (Je − 1) (4.27)

where ψξiso and ψξaniso (I4, I6) respectively characterize the mechanical response of
the volumetric part and the response of the vessel (elastic and collagen) fibers; the
superscript ξ = {m, a} denotes media and adventitia, while kξ0,1,2 are suitable material
constants, being kξ0 related to the volumetric response. The above introduced energy
densities are then written as a function of the invariants ([91]):

I1 = tr Ce

Iξ4 = Ce :
(
a
ξ
+ ⊗ a

ξ
+

)
(4.28)

Iξ6 = Ce :
(
a
ξ
− ⊗ a

ξ
−

)
where Ce = FTe Fe is the left Cauchy-Green tensor and a

ξ
+,− = cosβeΘ ± sin βeZ rep-

resent the fibers directors lying within the media and the adventitia. The application
of the Piola transform (4.21)2 returns the expression for the Cauchy stress tensor,
connected to (4.27) by the relationship:

σξ = J−1
g PξFT =

∂ψξ

∂Fe
FTe − qξI (4.29)

Then, by rewriting (4.7)1 in absence of body forces and in the current configuration
as ∇x ·σξ = 0, the sole non-trivial equilibrium equation to be satisfied is:

dσξrr
dr

+
σξrr − σξθθ

r
= 0 (4.30)

Direct integration of this equation –separately written for both media and adven-

titia– combined with the condition describing the inner deformed radius once the
tractions on the walls are prescribed, gives:

σarr (ro)− σmrr (ri) = ∆p = (4.31)

=
∑
ξ

∫
Iξ
J
ζ−1

2
g

(
h
r

R

∂ψξ

∂λθΘ
− ∂r

∂R

∂ψξ

∂λrR

)
∂r

∂R

dR

r

with Im = [Ri, Ri +Hm] and Ia = [Ri +Hm, Ro], Hm denoting the thickness of
the tunica media. By prescribing continuity of radial stresses and of displacements at
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the vessel layers interface, the corresponding interface radius in the deformed configu-
ration can be determined through the relation rH =

√
r2
i + J1−ζ

g h−1λ−1
ezZHm (Hm + 2Ri).

The pressures σarr (ro) and σmrr (ri) are instead related to the external loading condi-
tion through the Cauchy’s theorem (4.7)2 or σξ · nξ = tξ, ∀x ∈ ∂Bξ.
From the computational standpoint, it is worth to highlight that, once the loading
conditions have been assigned, the equilibrium relation (4.31) can be analytically
solved for each finite time step during which growth can be assumed constant, in this
way reducing to the sole unknown ri and thus obtaining the deformed configuration
through (4.26).

4.3.3 Biomechanics of reinforced pulmonary artery transposed into aortic position

As already said, by testing an ad hoc designed prosthesis system made of a combined
bioresorbable scaffold and an auxetic reinforcement, a large animal model of transpo-
sition of pulmonary artery in systemic pressure load. This experimental in vivo study,
aimed to replicate actual clinical scenarios, has enabled to observe a physiological ar-
terialization of the reinforced pulmonary vessels transposed into aortic position ([141,
145, 187]), resulting in PA medial thickening and matrix rearrangement (see Figure
36).
To biomechanically explain these in vivo experimental findings and gain insights into
possible enhancements of PA reinforcements design criteria, a mathematical model is
built up by incorporating vessel growth, remodeling and large elastic deformations of
both biological and synthetic materials.
Three theoretical simulations of experimental interest have been then performed:

• Reference Aorta, regarding the modeling of a benchmark aortic tract subjected
to internal systemic pressure, say pi, of 120 mmHg (16 kPa, assumed constant).
This case establishes for the reference aorta selected benchmark quantities, say
the physiological growth over a six-month period (represented by the evolution
of both diameter and thickness of the vessel layers) and the wall mechanical
stresses.

• No Reinforcement, analyzing the case of a not reinforced pulmonary artery trans-
posed into aortic position at the pressure pi and subjected to growth and re-
modeling processes. Results of this simulation are directly compared with the
outcomes from the control group of the animal model.

• Composite Reinforcement, concerning the mechanical analysis of the reinforced
PA system undergoing growth and remodeling. The presence of the prosthesis is
simulated by integrating the mechanical properties of the adventitia with those
of the PDS biodegradable structure, by thus additionally providing an external
variable pressure po, accounting for the e-PTFE armor elastic confinement whose
value depends on the armor constitutive properties and evolves as a function of
the pulmonary artery dilatation and growth.

With reference to the theory presented in the previous Sections, some additional
key features have been introduced to faithfully describe the above mentioned cases.
First of all, the effect of the blood vessel structural remodeling on the tissues elasticity
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Figure 36: A-B) Surgical implant. A. Bioresorbable reinforcement; B. Control. C-D)
Hematoxylineosin staining. C. Bioresorbable reinforcement. Note remnants of
PDS. D. Control. Note medial disruption and inflammatory infilitrates; E-F)
PicroSirius red staining. E. Bioresorbable reinforcement compact collagen or-
ganization: the “elastic zone” of the vessel and less pronounced cellular infil-
trate. F. Control. Dispersed collagen fibers; G-H) Mallory staining; G. Biore-
sorbable reinforcement. Elastin deposition (pink). H. Control. Presence of colla-
gen (blue); I-L) MMP-9 immunohistochemistry. I. Bioresorbable reinforcement.
Note MMP-9 overexpression in the PDS group indicating active matrix remod-
eling phenomena. L. Control.
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has been analyzed and thus mathematically described in terms of change of mechan-
ical properties. To make this, suitable remodeling parameters γm and γa have been
introduced to guide the evolution of bulk moduli km0 and ka0 of media and adventitia,
respectively. As a result, the tunics energy densities become explicitly dependent on
them, i.e. ψξiso = ψξiso

(
I1, γξ

)
, so mimicking the temporal elastic properties changes

also experimentally observed by [101]. Also, with reference to (4.20), the role of the re-
modeling enhancers K is assumed to be played by the average levels of energy densities
occurring in the aortic layers in a physiological situation, in this manner interpreting
the remodeling as an energy-driven process which dynamically responds to energy
supplies with tissue structural changes –over selected timescales– to accommodate
stress and strain and in turn minimize energy, a logic to which many biomaterials
seem to obey if subjected to remodeling ([46]).
For the sake of simplicity, the parameters γξ have been here considered as volume
averaged values, so that the equation (4.20) can be written in the following scalar
form:

γ̇ ξ = cγJg

(
ψ
ξ
A,iso −

∂ψ
ξ
V

∂γξ

)
(4.32)

where cγ ≥ 0 is a dimensional constant which takes into account the characteristic
long-term timescale of remodeling (ranging from about 4000 h to 40000 h, as reported
by [216]), whereas ψξA and ψξV respectively denote the energy functions specialized for
the aorta and the PA trunk subjected to a volume averaging process (see the synoptic
Table 3 for the adopted material parameters):

ψ
ξ
A,V =

1
V0

∫
V0
ψξA,V dV0 (4.33)

Furthermore, to accurately model the reinforced PA case, how degrading polydiox-
anone (PDS) mesh and e-PTFE external armor do cooperate and in-time support
the vessel walls must be additionally mathematically described. With reference to
the PDS structure, this is indirectly done by mechanically enriching the adventitia

with an augmented time-dependent bulk modulus decreasing in time according to a
selected experimentally based degradation law. In this way, the updated adventitia

bulk modulus, say κa0, takes the form:

κa0 = γa (t) ka0 + (φ (t))ν ks0 (4.34)

where ks0 constitutes the PDS contribution to the overall (reinforced) adventitia

bulk modulus, φ (t) is a degradation law which describes the scaffold volume fraction
pauperization2 (according to the actual PDS mass bioresorption program in a six-
months period, see e.g. [147]), here chosen as (see Figure 34, right-bottom graphic):

φ (t) =
φ0

1 + ω1eω2(t−ts)
(4.35)

2 There is thus a direct effect of the PDS pauperization on the growth, remodeling and in turn on the
overall elastic properties of the adventitia, but not vice versa, that is growth and remodeling do not
affect (or perturb) the PDS degradation law.
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where φ0 is a constant representing the initial PDS volume fraction which accounts
for the porosity of the scaffold ([24]) while ν is a dimensionless, strictly positive
(typically between 1 and 3) penalization power, employed to have as a result the well-
known less than proportional stiffness increase with the material volume fraction of
a porous representative volume element ([46, 116]). Also, in (4.35), ts accounts for a
characteristic inflection time and ω1 and ω2 represent constants to be set in order to
fit the experimental PDS degradation curve ([171], [24], [136]). In this way, the model
accurately catches the role exerted by the PDS scaffold in terms of vessel wall stiff-
ening, at the early stages of growth the PDS mesh supporting the pulmonary artery
to resist to higher systemic blood pressures –so avoiding excessive strain in turn pro-
voking high stress and finally aneurysms– then progressively degrading and slowly
accompanying the autograft toward possible remodeling and arterialization-like pro-
cesses. On the other hand, the role played by the e-PTFE auxetic structure –that is
somewhat complementary to that of PDS– has been modeled to reproduce an initial
auxetic-induced relatively low contribution to vessel elastic resistance against load
pressure, becoming the confinement effect increasing as tissue grows up, moving out-
ward the external PA radius. From the mathematical point of view, this is translated
into an elastic reactive pressure transmitted at the PA outer cylindrical surface as the
external radius expands (see Figure 34, left-bottom graphic). Therefore, by imaging
the e-PTFE net as an external layer simply described by an exponential strain energy
potential whose structure is similar to that in (4.10), and assuming that no external
pressure is applied on this layer, the following relationship can be established ([90]):

σnrr (ro) = −
∫ λo

λe

1
λ2
TλZ − 1

∂ψn

∂λT
dλT , (4.36)

ψn =
kn1
kn2

(
ek
n
2 (I

n
4 −1) − 1

)
(4.37)

given that In4 = In6 = λ2
T cos2 ηn + λ2

Z sin2 ηn, ηn being the mesh half-angle. In
equation (4.36) λT and λZ denote the azimuthal and the longitudinal stretches which
completely describe the deformation of the auxetic net, whose associated deformation
gradient is thus

Fn = Diag

{
RLn
rnln

,
rn
R
,
ln
Ln

}
(4.38)

By taking λZ = ln/Ln to be constant, the condition at the interface ro = r (Ro)

immediately gives λZ = JζgλezZ and the e-PTFE structure motion rn can be described
similarly to (4.26) and related to the vessel outer radius as written down:

rn =

√
R2 −R2

o

λZ
+ r2

o =

√
J−ζg

R2 −R2
o

λezZ
+ r2

o , (4.39)

where

ro =

√
J1−ζ
g

R2
o −R2

i

hλezZ
+ r2

i (4.40)

Hence, the equations (4.26) and (4.39) allow to derive the square stretches at the
the boundary as a function of ri:
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λ2
o =

r2
o

R2
o
=

1
R2
o

(
J1−ζ
g

R2
o −R2

i

hλezZ
+ r2

i

)
(4.41)

λ2
e =

r2
e

(Ro +Hn)
2 =

1
(Ro +Hn)

2

(
J−ζg

Hn (2Ro +Hn)

λezZ
+ r2

o

)
whereHn is the initial auxetic armor thickness. The equilibrium equation σnrr (ro) =

σarr (ro) to be satisfied at the interface ro then gives the possibility of finding, by
integrating (4.36), the actual pressure that the armor applies on the adventitia by
elastically reacting to the vessel deformation and growth. In particular, by performing
the substitution x = kn2 (In4 − 1), it is possible to compactly write:

σarr (ro) = −po =
kn1 e
−Q cos2 ηn
λZ

∫ xe

xo

ex+Q

x+Q
dx =

=
kn1 e
−Q cos2 ηn
λZ

(Ei (xe + Q)−Ei (xo + Q)) (4.42)

with Q = 1− kn2λ2
Z sin2 ηn − kn2λ

−1
Z cos2 ηn and Ei (x) representing the exponential

integral function, while xe = x
(
λ2
e

)
and xo = x

(
λ2
o

)
are both functions of the updated

vessel outer radius ro (or equivalently ri) through (4.41)1 and (4.41)2, that is:

xe +Q = kn2 cos2 ηn
(
λ2
e − λ−1

Z

)
xo +Q = kn2 cos2 ηn

(
λ2
o − λ−1

Z

)
(4.43)

Lastly, all the in silico simulations (in detail discussed below) are conducted by as-
suming the growth to obey a typical logistic profile, a law largely encountered in the
literature to describe many different growth dynamics of living systems, at different
scale levels, and hence widely adopted among biologists to fit related experimental
data ([105]); as a consequence, in order to consider the direct effect of the experimen-
tally observed growth of the lambs discussed in [141] on the mechanical analysis of
the vessels alone and the reinforced PA system, it is here proposed to transpose the
logistic growth assumption also to the tissue scale, as a first step also hypothesizing a
stress-uncoupled growth as a simplifying rationale to mimic the physiological growth
curve. Thus, the equation (4.3) can be explicitly given in the form:

J̇g = cgJg

(
1− Jg

Jmaxg

)
(4.44)

where Jmaxg represents a prescribed upper bound reference value, in the present
case evaluated on the basis of the (allometrically scaled) body size achieved by the
adult animal model with respect to the initial size ([141, 142, 144]), while cg ≥ 0 is a
proper growth rate (see e.g. [80]).
With respect to the case of reference artery, only physiological growth during a six-
month period with no internal remodeling has been assumed: also, for both the cases
of reference artery and not reinforced PA, the analyses have been conducted by con-
sidering the presence of the sole systemic aortic pressure, thus prescribing to the
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biomechanical models zero external loads at the outer radius and internal pressure
pi –typically of the order of 100-120 mmHg– assumed to be constant during the time
step of the analyses. As a result, the equation (4.31) becomes:

pi =
∑

ξ∈{m,a}

∫
Iξ
J
ζ−1

2
g

(
h
r

R

∂ψξA,V
∂λθΘ

− ∂r

∂R

∂ψξA,V
∂λrR

)
∂r

∂R

dR

r

with which the two above mentioned cases can be distinguished and separately
treated by specializing the strain energy functions through proper assignments of
different intrinsic parameters, so that ψξA and ψξV can be recognized as representative
of aorta and pulmonary artery (vein-like) materials, respectively.
On the other side, by making reference to the above proposed theoretical strategy for
describing how the bioresorbable scaffold and the auxetic structure do cooperate to
reinforce the pulmonary autograft, the balance equation (4.31) reads as:

pi − po =
∑

ξ∈{m,a}

∫
Iξ
J
ζ−1

2
g

(
h
r

R

∂ψξV
∂λθΘ

− ∂r

∂R

∂ψξV
∂λrR

)
∂r

∂R

dR

r

Finally, the equations (4.44) and (4.45) constitute the system to be solved for ana-
lyzing the reference aorta, in which the sole unknowns are the growth term Jg and the
inner radius ri; the same equations have to be coupled with (4.32) to model the not
reinforced PA biomechanical response. Analogously, to simulate the biomechanical
behavior of the reinforced PA, the equations (4.45), (4.44) and (4.32), which incorpo-
rate the remodeling parameters γa and γm responsible for arterialization phenomena,
have to be instead used.
From the numerical standpoint, the simulations to be conducted for reference artery,
pulmonary artery and reinforced autograft, require suitable material and geometric
parameters, in detail reported in Table 3. For the sake of clarity, the parameters have
been divided in different sections regarding the different model constituents: both
aortic and pulmonary artery constitutive parameters have been deduced from [32, 91,
149, 203], the opening angle value being instead referred to the range proposed by
[4]. The geometric parameters have been extrapolated by the ex vivo data obtained
throughout the experimental observations. Lastly, the material parameters concern-
ing both the PDS and the e-PTFE volumetric response have been determined from
the inflation compliance data reported in literature ([24, 109, 172, 179, 183, 195]).

4.4 the relay race effect of pds scaffold and e-ptfe armor

The analyses have been performed by implementing the above detailed biomechanical
models in the computational software program MATHEMATICA® ([210]). Here, the
partial differential equations governing the problems have been solved analytically
in space, for each time step, and hence the complete solution found by numerically
integrating over the whole six-month observation period related to the animal model
([141]).
The obtained results highlight that, although the PA tracts were initially the same
from a physiological and a constitutive point of view, under the systemic blood pres-
sure their behavior significantly diverges in the two cases, i.e. reinforced and not
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reinforced vessels. In fact, results show that the cooperation between bioresorbable
PDS scaffold and permanent e-PTFE auxetic structure plays a crucial role in pre-
venting a fateful yielding of the vessel, wall intrinsic mechanical properties in absence
of reinforcement being absolutely inadequate to both respond to the new imposed
aortic pressure regimes and limit large deformations prodromal to aneurismal compli-
cations. In particular, theoretical outcomes, illustrated in Figure 39, clearly show a
marked difference among reference aorta, PA alone and PA with prosthesis, in terms of
pressure-induced initial burst dilatation and final associated vessels diameters, a fact
also quantitatively confirmed by experimental observations ([141]) and summarized
in Table 2. Theoretical predictions are indeed in very good agreement if compared
with experimental data, except for a slight underestimation of not reinforced PA sizes,
mainly related to the fact that, in absence of prosthesis, actual strains are not purely
due to combined elastic deformation and growth, additional inelastic strains being
kindled by locally occurring irreversible (i.e. visco-elastic-plastic and damaging) phe-
nomena, as can be seen by direct observations (Figure 37).

Figure 37: A. Not reinforced PA trunk with aneurismal formation (analysis after the break
at 3 months); B. PA reinforced with knitted polydioxanone resorbable copoly-
mer scaffold (explanted at 6 months): note the homogeneous vessel profile de-
noting the success of the implant.

The analytical curves also underline a specific non-linear trend, in terms of vessel
diameters time-history, which shows a sort of asymptotic behavior that furnishes
an upper bound to vessel growth in proximity of body adulthood, a phenomenon
otherwise unforeseeable on the basis of the sole initial (at one day) and final (at
six months) observations and qualitatively crucial to envisage a successful prognosis
of the PA reinforcement also when this surgical protocol is applied to young human
patients. As a matter of fact, the not reinforced PA excessively dilates during the time
window considered, passing from an initial diameter of about 29.5 mm –measured in
the first days– to a diameter of about 38.1 mm, after six months. Moreover, the actual
deformation profiles of the not reinforced PA go off the vessel from the tube-like shape,
by losing the axis-symmetry of the response assumed in the present theoretical model,
as can be observed from the angiographic measures (Figure 38), as well as from in

situ (Figure 36) and explanted ex vivo vessel trunks (Figure 37).
On the contrary, in the doubly reinforced PA, the mathematical model demonstrates

that the prosthesis system overall works as a sort of "relay race", by guaranteeing
the handover of the bearing structure functions from the PDS scaffold (at the early
stages of tissue growth and remodeling) to the e-PTFE armor, initially "dormant" as
a consequence of the typically low stiffness exhibited by stress-free auxetic structures
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Figure 38: A,B,E,F) Angiographic images. A. Not reinforced PA at day 1; E. Not re-
inforced PA at day 180; B. Reinforced PA at day 1; F. Reinforced PA at day
180. Note the uniformity of the vessel profile in case of reinforcement (B,F) and
loss of physiological shape, prone to aneurismal complication (A,E). C,D,G,H)
Ecographic images (vessel cross sections). C. Not reinforced PA at day 1; G.
Not reinforced PA at day 180; D. Reinforced PA at day 1; H. Reinforced PA
at day 180. Note the severe diameter dilation in the not reinforced case (C,G).

at small strains. In this way, the mechanical shielding of the lapse vessel confines
the radial expansion and simultaneously allows to the pulmonary artery to remodel
its tunics for attaining an adequate level of mechanical properties (e.g. elastic bulk
moduli, see Figure 41). Finally, once the bioresorbable scaffold has completed its
degradation program and the strengthened vessel walls can actively respond to the
systolic pressure, the e-PTFE structure accompanies PA media and adventitia toward
their progressive aortic somatic growth, by stretching its weave to gain stiffness and
effectively confine further vessel expansion, so avoiding tissue prolapse and aneurismal
degenerative phenomena.

Table 2: Comparison of the external diameters (expressed in mm) - experimental observa-
tions vs analytical predictions

Day 1 Day 180

Experimental Analytical Experimental Analytical

Reference Aorta 13.0–16.4 13.1 17.0–21.0 21.0
Composite Reinforcement 14.0–20.0 16.3 25.0–33.0 27.2

No Reinforcement 25.0–33.0 24.2 34.3–42.0 36.1

Furthermore, Figure 39 also shows that the mathematical model predicts a "gain"
of the reinforced grown PA to be measured in terms of wall thickness occurring when
the PA tracts are ideally excised and relaxed, as well as when the vessels are sub-
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Figure 39: Left: Evolution of the outer diameters (continuous lines represent theroetical
outcomes while markers are experimental measures). Right: Vessels thicknesses
provided by the simulations at day 1 and at day 180 when the vessels are either
in position or excised.

jected to the in situ inflation pressure, so highlighting an effective thickening of the
reinforced graft after the observation period that can be directly related to actual
PA arterialization. It is worth to notice that the estimated Cauchy (actual) stresses,
predicted by the mathematical model at 180 days and illustrated in Figure 40, bring
to light further aspects that may help to better understand the actual effects of both
PDS scaffold and e-PTFE armor in reinforced PA on growth and elastic response of
the vessel to systemic pressure. In fact, from the stress profiles illustrated in Figure
40, it can be inferred (and somewhat quantified) the mechanical role of the prosthesis
system and, in particular, of the GORE-TEX structure. The effective pressure differ-
ence between the internal systolic push and the external armor confinement de facto

determines a "stress shielding" phenomenon which maintains the stress distribution
over the PA thickness sufficiently uniform, by also forcing the stress level in the tu-

nica media to be moderate with respect to the physiological one in the (ticker and
stiffer) reference aorta, in this way creating a safe state of stress settling at about
100 kPa. On the contrary, from theoretical outcomes, the not reinforced PA exhibits
equivalent (von Mises) and circumferential (hoop) stresses in the tunica media with
peaks of about 800 kPa, a value sufficiently high and close to tissue stress thresh-
old to determine mechanically critical states and invite yielding processes potentially
undergoing aneurismal degeneration. Also, Figure 40 shows the non-linear pressure-
diameter curves one would virtually measure in the three cases examined (reference
aorta, reinforced and not-reinforced PA) at 180 days, if an ex vivo inflation test were
performed. It can be there noticed how the not reinforced PA experiences strong di-
latation in a low range of inflation pressures –below 50 mmHg– with the external
diameter achieving pathological dimensions before the curve exhibits a theoretical
hardening. The behaviors of reference and reinforced pulmonary arteries are instead
different, and, in both the cases, the diameters dilation at systemic pressure is in good
agreement with the experimental observations in the animal model ([141]).
In particular, by comparing pressure-diameter curves for reinforced and not re-

inforced PA, it emerges from the results a significantly and qualitatively different
mechanical response in the two cases, the former exhibiting much smaller variations
of the outer diameter than the latter, within the same pressure interval, say in the
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Figure 40: Cauchy stress profiles along the wall thicknesses in reference aorta (top-right),
reinforced (bottom-left) and not reinforced (top-left) Pulmonary Autografts,
with related pressure-diameter curves at 180 days for the grown vessels (bottom-
right).
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order of tens kPa. In the reinforced PA, this initial stiff behavior can be attributed
to the balancing between the internal push and the e-PTFE external pressure due
to the GORE-TEX elastic reaction to the vessel expansion. After that, a region of
approximately proportional dilatation is observed, followed by an elastic hardening
at higher pressures due to the combined effect of the intrinsic hardening of the vessel
walls related to stress levels and reorientation of elastic fibers and the increasing stiff-
ness of the auxetic material induced by severely dilated armor elements.
It is finally worth to notice that, albeit the stiffer behavior of reinforced PA exhibited
in Figure 40 in terms of pressure-diameter is theoretical derived at 180 days –thus
in absence of PDS– the effect of the bioresorbable scaffold is implicitly taken into ac-
count by the model through the (at six months registered) PA arterialization, a result
biomechanically due to the stress shielding, initially ensured by the biodegradable
PDS and finally stabilized by the confining action of the GORE-TEX structure. The
concrete consequence of this interplay can be explicitly traced in the proposed mathe-
matical model by analyzing the results in terms of in-time remodeling of average wall
bulk moduli k0. In Figure 41 the comparison between reinforced and not reinforced
PA intrinsic stiffness variation during the six-month is for this purpose shown.

Figure 41: Evaluation of the bulk moduli remodeling in reinforced and not reinforced PA.

The theoretical outcomes, related to the modeling of the structural changes of
reinforced pulmonary artery grafts under systemic pressure regimes, have shown that
a virtuous biomechanical cooperation between biological and synthetic materials takes
place, "stress-shielding" guiding the physiological arterialization of the vessel walls,
consequently determining the overall success of the autograft system. The modeling
has in fact theoretically demonstrated that in doubly reinforced PA, the prosthesis
system de facto works as a sort of "relay race", by guaranteeing the handover of the
bearing structure functions from the PDS scaffold (at the early stages of tissue growth
and remodeling) to the e-PTFE armor, initially "dormant" as a consequence of the
typically low stiffness exhibited by stress-free auxetic structures at small strains. In
this way, the mechanical shielding of the lapse vessel contains the radial expansion and
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simultaneously allows to the pulmonary artery to remodel its tunics for attaining an
adequate level of mechanical properties. Once the bioresorbable scaffold has completed
its degradation program and the strengthened vessel walls can actively respond to the
systolic pressure, the e-PTFE structure accompanies PA media and adventitia toward
their progressive aortic somatic growth, by stretching its weave to gain stiffness and to
effectively confine further vessel expansion, so avoiding tissue prolapse and aneurismal
degenerative phenomena. From the engineering point of view, all the results have
essentially shown a very good agreement when compared with experimental data,
also quantitatively, thus encouraging the use of the mathematical model for better
understanding the specific biomechanical dynamics and designing possible new criteria
and strategies for optimizing PA prostheses and successfully applying the surgical
protocols to human patients.
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Table 3: Synoptic table of data and employed parameters
References: 1. [149] ; 2. [203] ; 3. [32] ; 4. [91] ; 5. [4] ; 6. [5] ; 7. [179] ; 8. [116] ;
9. [24] ; 10. [171] ; 11. [109] ; 12. [195] ; 13. [172] ; 14. [183] ; 15. [217] ; 16. [142] ;
17. [144] ; 18. [141] ; 19. [94] ; 20. [80] ; 21. [216]. E. O. - Experimentally Observed
Parameters. F./A. P. - Fitting/Assumed Parameters

Symbol Unit Value References

Aorta PA

Media Adventitia Media Adventitia

Material Parameters

k0 [kPa] 51.1 5.1 16.7 1.67 [1, 2, 3]
k1 [kPa] 18.6 1.86 4.9 0.49 [1, 2, 3]
k2 [-] 17.4 1.74 0.839 0.711 [1, 4]
β [°] 29 62 29 62 [4]
Geometrical Parameters

H [mm] 0.8 0.4 0.667 0.333 E. O.
Ri [mm] 7.8 9.5 E. O.
α [°] 91 120 [5]
λizZ [-] 1.7 1 [4, E. O.]
λfzZ [-] 2 2 [6, E. O.]
PDS Parameters

ks0 [kPa] 267 [7]
ν [-] 1.34 [8]
φ0 [-] 0.25 [9]
ω1 [-] 0.07 F./A. P.
ω2 [-] 0.05 F./A. P.
ts [day] 30 [10]
ePTFE Parameters

kn1 [kPa] 1000 [7, 11, 12, 13, 14]
kn2 [-] 0.4 F./A. P.
Hn [mm] 0.2 [15]
ηn [°] 26 F./A. P.
Growth-Remodeling data

Jmaxg [-] 3.375 [16, 17, 18]
ζ [-] 0.133 F./A. P.
cg [day−1] 0.025 [19, 20]
cγ [kPa−1 day−1] 8.64×10−5 [21]
ωz [day−1] 0.02 F./A. P.
tz [day] 90 F./A. P.
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poroelasticity coupled with volterra-lotka
dynamics in solid tumor growth

The full connection between dynamical systems used as predictive models in computa-
tional biology and the biomechanical theory of growth and remodelling represents the
key activity described in the following. The continuum modeling of growing bodies
draws from time upon the well-known finite strain formulation widely adopted also
in elastoplasticity and thermoelasticity, see e.g. the renowned works by Rodriguez,
Cowin and Lubarda, for example([164], [48], [128]). The mechanics of growth and
remodelling opened a scientific thread which is up to now currently investigated more
and more avidly because of both the increasing interest aroused and the enormous
number of applications, which might have a remarkable resonance on medical treat-
ments and surgical procedures. As mentioned in the previous chapters, a growing soft
biomaterial can be realistically associated with a heterogenous multi-component and
eventually multiphasic body, whose consituents are changing in mass. For this rea-
son, a growing body can be likely thought as an open system in which growth itself
is the overall result of the complex interactions between constituents inhabiting the
body and what enters/leaves the system. Consequently, although the main role in the
growth process is played by the solid constituents, the further coupling with the fluid
counterpart seems necessary, since the latter one plays the role of nutrient carrier
and enhance the growth process by filtrating through the solid compartments and let-
ting the exchange of biochemicals at the cellular level. In order to faithfully describe
solid-fluid interplays connected with growth, the mechanical problem is described by
means of the Biot’s poroelasticity theory, in which the mechanical field variables ac-
count for the presence of a fluid phase and a heterogeneous solid phase that coexist
and interact by experiencing reciprocal forces and exchanging mass. In this way solid
mass generation can be directly connected to growth, and the deriving solid stresses
and interstitial fluid pressure are separately recognizable, the two stresses having a
different physiological interpretation: fluid pressure is in fact connected with the in-
terstitial fluxes that drive macromolecules walkways through the tissue interstitium

previously mentioned, while solid skeleton stress translates the physical forces exerted
by the solid constituents during the growth process. This growth-induced stress might
be therefore expressly determined from the knowledge of the dynamics of such living
constituents within the tissue “ecosystem” (i.e. from the description of the interac-
tions between cells and extra-cellular environments), searching for a suitable way of
determining an expression for the growth-induced strain and related eigenstresses.
With reference to the subsequent applications, this strategy will let to comprehen-
sively present a model of tumor growth, and the focus will be on a byosystem whose
solid part is composed by tumor and healthy cells and extracellular matrix, namely
the ECM, the variations of which are translated in terms of their volumetric fractions

115
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at the tissue scale1. A fully coupled system of PDEs is derived and the effort of en-
riching the mechanical problem with these dynamics lies into the fact that growth
is not treated as a system parameter or a canonical a priori prescribed function, as
often encountered in the most of Literature, but as a variable itself of the problem, i.e.
the growth will be a direct consequence of the way in which the interactions between
the species inhabiting the living tissue will be modeled. In this sense, the popula-
tion dynamics and the games theory offer a powerful tool allowing the possibility of
describing the interaction among biological entities in the same way as individuals
of an ecosystem. In this context, the Volterra-Lotka equations –adopted for the tu-
mor model under discussion– have commonly been used for describing the oscillations
of the number of animals in a restricted ecosystem. For example, they have been
recently adopted to describe the migration and the interations of herbivorouse an-
gulate species (Cervus elaphus, Capreolus capreolus, Sus scrofa) in “Parco Nazionale
dell’Abruzzo" (see e.g. [31]). With an analogous imaginative effort, this way of estab-
lishing inter-specific interactions has been transposed to the scale of the cells and
the other elementary biological constituents, with the difference that the correspond-
ing ecosystem is largely more complicated than its macroscopic ecologic counterpart
and actively affects the behaviour of the species, in this way representing an explicit
unknown. By combining the population dynamics with the mechanical problem, the
result is a heterogeneous poroelastic model, where the interaction between soft ma-
trix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to
simulate the macroscopic volumetric growth determined by cells division, cells growth
and extracellular matrix changes occurring at the micro-scale level. The continuum
modeling framework embracing the poroelastic approach has been preferred since it
seems to overcome some limitations associated to other alternative approaches based
on mass balances in multiphase systems because the crucial role played by resid-
ual stresses accompanying growth, and nutrient walkway (solidarily to fluid flow) is
preserved. However, when these strategies have applied to analyze growth in solid
tumors (see e.g. [166, 192]), some important cell-cell dynamics governing mass evolu-
tion, remodelling and invasion rates of cancer cells are inevitably lost. For this reason,
the enhanced poroelastic model with inelastic growth has been developed through a
full-coupling strategy, where the net growth induced deformation and the rise of inter-
nal pressures result from the competitive dynamics between healthy and cancer cell
species, modeled by Volterra/Lotka-like equations. In this way the following system of
non-linear fully-coupled PDEs has been derived to describe the complex mechanism
of mutual influences among the cell species competition that is due to available com-
mon resources, stress gradients, interstitial fluid flows and inhomogeneous growth are
all taken into account. The description of the activities related to this argument can
be approximately divided into three parts: the linear formulation, the non linear for-
mulation and the experimental setups (with comparisons). Despite the mathematical
description, the complex interactions constituting the problem actually provide that
the tumor and healthy cells compete within the extracellular space for the common
resources, in this way determining a growth strain which is directly responsible of
the rise of inelastic stresses in confined environments. The stress state within the tis-
sue is then straightly responsible to activate and regulate mechano-sensing processes

1 Cells interaction could be also treated by adopting a discrete approach, for example by modelling
populations in terms of the cells number.
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driving changes in cells cycles, proliferation and migration capabilities. In particular,
hydrostatic stress can affect proliferation and impair cell mitosis, in this way deter-
mining a complete coupling between the mechanical and the dynamical physiological
events. The complex machinery deriving from these interactions, in the case of the
MultiCellular Tumor Spheroid –MCTS– growth, can be summarized in the “logical”
scheme proposed in Fig. 42.

Figure 42: Logical connections highlighting the interaction network coinceved for the
MCTS model.

5.1 introduction

The rapidly growing advances of the research in tissue engineering continuously re-
draw new scenarios for applications in medicine, leading to the design of innovative
drug delivery systems and biomaterials ([140, 181], [131]). A multiphysics vision in
analysing the complex behavior of the living matter has in particular consolidated
Tissue Mechanics (TM) theoretical approaches and modeling strategies ([46]) which
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are currently recognized as helpful and indispensable tools for explaining experimen-
tal evidences as well as for supporting the design of prostheses for both soft ([143])
and hard ([62]) tissues. In this framework, an increasing interest has been in par-
ticular registered in literature for the mechanical properties of living cells –and for
the understanding of the dynamics to which they obey at different scale levels– also
motivated by some recent discoveries which seem to allow to envisage new horizons
for therapy and diagnosis of human diseases like cancer, by for example exploiting
the different in-frequency response of single healthy and tumor cells stimulated by
utrasound ([64]).
The challenge to give a unified description of what tumor is, by providing a com-
prehensive model that would include the overall complexity of its physiology, is still
hard to deal with, both because tumors have different natures and characteristics and
since there are several causes that can be associated to their generation and devel-
opment, and each physiological process is actually the integration of a considerable
number of sub-processes occurring at different spatial (and temporal) scales. However,
at the macroscopic scale –say at the tissue level– the feedback mechanisms and the
cascade of bio-chemical and physical signals characterizing the complex interaction
of dynamics occurring at different scales significantly complicates the biomechanical
response of, say, tumor masses, thus requiring enriched models which encorporate the
mechanobiology of solid tumor growth ([3]).
Cancer diseases occur when in a healthy tissue the cell-cell and cells-ECM (the Extra-
Cellular Matrix) interactions are altered, and hyperplasia is generated as effect of
sudden and often unforeseeable genetic modifications followed by a cascade of bio-
chemical events leading to abnormal cell growth, lost of apoptosis, back-differentiation
and metastasis. In this framework, the determination of models capable to describe
how tumor masses behave and evolve in living tissues has been object of several
studies which, by starting from different standpoints, have been aimed to predict
tissue growth –and selected biochemical and physical phenomena– by invoking heuris-
tic, diffusion-based, multiphase-reactive or purely mechanical models. This variety in
theoretical approaches also reflects the difficulties related to harmonize experimental
evidences and theoretical outcomes within an unifying fence, where the complexity
of the mechanobiology at the basis of the tumor development might be better un-
derstood. As a matter of fact, how tumor invasion dynamics determined by cell-cell
and cells-environment, elastic and residual stresses, do interact seems to be crucial
for deeply tracing actual mechanisms occurring in complex heterogeneous materials
like tumor masses during growth ([13]).
From the mechanical point of view, the behavior of heterogeneous bodies is modeled in
the literature by means of different approaches. In particular, to follow different solid
and fluid constituents in a tissue, the Biot poromechanical theory certainly represents
a well-recognized strategy for describing the coupling between fluid and solid phases
([49]), some specific features of living bodies being caught through thermodynamic
models of open systems ([117] and [127]). With reference to the biomechanics of grow-
ing tumors, linearly elastic ([12] and poroelastic ([173]) models, as well as non-linear
hyperelasticity in which the multiplicative decomposition of the deformation gradient
into a growth and an adaptive strain is helpfully adopted ([128], [164], [194]) have
been widely used. The two main approaches employed to model the mechanical be-
havior and the growth of solid tumors are based on the theory of mixtures ([30, 156])
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and on theory of linear poroelasticity ([166]), also in light of the fact that many soft
tissues behave obeying the linear consolidation theory by Terzaghi ([65]). The dual-
ism between mixture’s theory and theory of porous media has been often summoned
in dealing with the characterization of biological tissue, see for example the work by
Garikipati ([74]). The two approaches provide complementary information. In fact,
on a side, multiphase models mainly focus on the microscopic interactions among the
phases of a continuous medium whose solid part is inhomogeneous at the micro- and
the macro-scale levels, as well as the effects that the diffusion of particles (like nu-
trients, enzymes etc.) can have on its constituents. On the other side, heterogeneous
poroelastic models, in this case associated with inelastic growth functions, permit to
characterize of the effective growing stresses harboring in tumor tissues due to the
inner mass expansion into the surrounding medium, to which some stiffness and per-
meability features are attributed. In particular, if one adopts poroelastic models, the
effective stress is partitioned into solid stress and interstitial fluid pressure –in prin-
ciple capable to strain alone the porous matrix– to which a growth-associated stress
is added. In this approach, the observer varies solidarily to the solid phase and the
fluid phase diffuses with respect to the latter one (while nutrient and chemicals can
diffuse with respect to the fluid). The fluid walkway in the porous medium is driven
by interstitial fluid pressure gradients engendered by spatially inhomogeneous pore
volumetric dilation associated with resident stress fields. Nevertheless, some coupled
key dynamics occurring at different scale levels and characterizing tumor growth are
generally not taken into account simultaneously. In particular, to the best authors
knowledge, how the cell populations actually interact at the microscale within the
ECM and determine stresses, strain and nutrients walkway at the macroscopic level,
in turn driving growth and invasion, has been not yet described explicitly ([76]). In
fact, the vast majority of the models dealing with the analysis of growth-induced
stresses introduces an a priori prescribed growth function –generally with a Gom-
pertzian profile ([192])– in the form of a volumetric strain contribution that appears
into the momentum equation ([8]). This implies that the growth-associated strains
influence the stress but not vice versa, because of the absence of both the modeling of
the interactions among cell species and ECM –from which macroscopic mass growth
results– and the coupling between growth and stress. As a consequence, the growth
dynamics is strongly affected by these simplified assumptions and thus the final tu-
mor mass (e.g. multi-cellular spheroid) growth profiles somehow slavishly copies the
growth function given in input, in this way de facto reducing the growth from an
unknown to a data.
Actually, the cell-cell and cells-ECM dynamics –which occur at micro-scale level– con-
tinuously give/receive feedback to/from stress and strain events at the macroscale,
this affecting the growth process, residual stresses and tumor fate as well.
At the microscale level, mechanical interactions between cells and ECM have been de-
scribed in some recent works by simulating the mutual effects in terms of exchanged
forces ([156, 177]) or, by making use of single-cell models based on the tensegrity struc-
ture paradigm by Ingber ([93]), to explain some experimentally observed evidences
related to reorganization of cell cytoskeleton, cell migration, adhesion and evolution
of cell stiffness properties mediated by polymerization-depolymerization phenomena
of the protein filaments.
At the micro/mesoscale level, say the level at which cell populations collectively inter-
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act and can be seen as aggregates, the competition between healthy and tumor cell
species has been very recently presented in the light of the Game Theory - GT ([99,
108, 124, 125, 212]), highlighting the effectiveness of this peculiar standpoint. Overall
tumor growth can be in fact seen as the result of the indirect interaction (interspecific
competition) between tumor and healthy species, both oriented towards the biological
environment to grab resources, the abnormal cells playing the role of a mutant cell
line attacking and compromising the homeostasis of the healthy tissue development.
In the framework of GT, with reference to interspecific competition, Volterra-Lotka
(VL) models certainly represent accredited candidates to describe the above men-
tioned biological dynamics, for example by identifying tumor and healthy populations
as introduced by [75] and more recently proposed by ([208]). However, when these
strategies are applied to analyze growth in solid tumors, some key coupled effects re-
lating mechanics and cell-cell dynamics governing mass evolution and invasion rates
of cancer cells are inevitably lost.
In fact, in dealing with tumor growth, there is the need of inevitably interlacing the
ordinary VL structure with non-constant terms accounting for the mutual –and “inter-
scale”– influence of metabolic and mechanical factors, an example being the influence
of macroscopic solid stresses on the alteration of the resulting duplication rate of the
cell species.
In order to overcome the modeling obstacles above mentioned and to catch the effec-
tive bio-mechanical coupling in solid tumor growth, it here is proposed an enhanced
multiscale poroelastic model with inelastic growth where the net growth terms result
from the internal Volterra/Lotka-like competition between healthy and cancer cells
occurring at the micro-scale level. In this way, a system of fully-coupled non-linear
PDEs is derived to describe the complex machine in which the mutual influences of
the competition among cell species due to available common resources, stress gra-
dients, interstitial fluid flows, nutrient provision and inhomogeneous growth are all
simultaneously taken into account, as schematically summarized with reserence to a
solid tumor (the multi-cellular tumor spheroid (MCTS)) in Fig.42.
In the hereinafter discussed system, the mechanics of tumor growth is constructed by
considering a multi-constituent solid tissue in which each species (cells, ECM and fluid)
is represented by its volumetric fraction φγ , where the subscript γ will be adopted
to indicate the set S of the solid species, i.e. the tumor (T ), the healthy (H) and
the apoptotic (A) cells volume fractions, the ECM and fluid volume fractions being
denoted by the the subscripts (M) and (F ), respectively. Hereinafter, the cascade of
events related to the growth of these species will be described by means of a sim-
pler linear poroelastic model coupled with inelastic growth and then by introducing
a more detailed nonlinear poromechanical model based on the logarithmic Hencky
strain together with a Fung-like hyperelastic constitutive law, to which the coupling
with the interspecific evolution equations is associated through the construction of an
appropriate species-derived growth strain tensor.

5.2 an enhanced interspecific poroelastic model of tumor growth

Cancer can be viewed as a disease involving irreversible genomic alterations affect-
ing intrinsic cellular cycles. These genomic alterations act in combination with the
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modification of the environmental conditions defined by immune response, matrix
metabolism and stiffness, mechanical and biochemical gradients ([8]). The growth of
solid tumors can be treated physically as a mechanical process according to which a
heterogeneous tissue expands within a surrounding medium. Tumor expansion is con-
trolled by some internal driving stresses, which are counterbalanced by mechanical
resistance provided by the surrounding environment. Internal stresses are mostly gen-
erated by cells proliferation dynamics, which is influenced by the diffusion of nutrients
within the tumor. This implies that the physical forces pushing the tumor ahead do not
involve the sole surface tension and the pressure of the surrounding medium, but also
the explicit active cellular forces deputy in the momentum balance that, in turn, ret-
rospectively activate mechanosensitive cellular processes. With the aim to gain some
new insights into the basic understanding of the complex machine of the host-tumor
interaction in growing solid tumors, we present a heterogeneous poroelastic model of
a tumor spheroid subjected to different prescribed boundary conditions, in which the
mechanically activated stress fields, fluid pressure and nutrient walkway are coupled
with spatially inhomogeneous and time-varying bulk growth. This growth is induced
by competitive dynamics occurring at the microscopic scale level among healthy cells,
cancer cells and ECM, macroscopically modeled by introducing ad hoc non-linear
Lotka/Volterra-like equations. The basic idea is that cancer and healthy cell species
do not compete directly, as it would happen in a pure predator-prey logic, but fight
to contend the common resources occupying the shared environment. The common
resources are here constituted by the available fluid content supposed to be saturated
of nutrients, the environment being simply represented by the space that cells can
inhabit at a certain time during growth and proliferation processes. The introduction
of this transitive effect, that permeates through the system and enriches previously
proposed poroelastic models ([173]), well mimics the actual competition among cell
species by reproducing the experimentally observed coupled dynamics in which the
presence of one species tends to somehow limit the development of the other, and here
described as a behavioral phenomenon occurring in the cells community. This mutual
inhibition in turn modifies the intrinsic growth rates of the cell populations and leads
to spatially inhomogeneous elastic and residual stresses as well as non-uniform IFP
distributions within the tumor spheroid. In the present treatment, however, in order
to limpidly elucidate the key aspects of the dynamics at hand, further elements that
would imply a direct competition between cancer and healthy cells depending on ad-
ditional factors, such as the anti-oncogenic potentials of some immune cells or the
aggressiveness of pre-malignant cells which become malignant as a result of mutation
processes, will be neglected.

5.3 the linear mcts model

5.3.1 Poroelasticity equations coupled with the model to tumor spheroids

By recalling the constitutive equations of linear poroelasticity ([46]), the strain tensor
E, defined on a closed subset Ω ⊂ R3 in presence of volumetric growth, can be written
as follows
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E = S : σeff + γ g,

E = sym (u⊗∇) ,

σeff = σ +A p.
(5.1)

where u ∈ C2 (Ω) is the displacement vector, γ g is a growth strain tensor, with
g ∈ R being a pure volumetric growth strain function and the matrix γ = diag {γk}
containing the anisotropic multipliers for each principal direction so that tr (γ) =∑
k γk = 1 (already defined in Chapter 3), whereas S represents the drained compli-

ance fourth rank elasticity tensor (the apex (d) will be avoided not to burden the
notation) and σeff is the effective stress tensor. Its definition includes the Cauchy
stress tensor σ and the interstitial fluid pressure p (IFP), A denoting the so-called
Biot effective stress coefficient symmetric tensor, equal to A =

(
I−C · S(m)

)
· I, in

which C = S−1 is the drained stiffness tensor and S(m) is the matrix-associated compli-
ance fourth order tensor, while I and I respectively indicate the fourth-rank identity
tensor and the second-rank identity vector (in Voigt notation). By deriving the stress
tensor σ from equations (5.1) and in absence of body forces and neglecting inertia
terms, the stress equations of motions in three dimensions read as

σ = C : Ee −
(

I−C · S(m)
)
· I p

∇ ·σ = 0, σ = σ T
(5.2)

in which Ee = (E− γ g) represents the elastic part of the deformation, by assuming
an additive decomposition following the hypothesis of small deformations (see Chap-
ter 1). By combining (5.2)2 with compatibility equations (5.1)2, together with the
hypothesis of considering an elastic isotropic material (also implying that A = AI),
the quasi-static balance of linear momentum can be expressed as:

µ∇ · (∇⊗ u)T + (µ+ λ)∇ (∇ · u) − 2µ (∇ · γ g + γ · ∇g) −λ∇g−A∇p = 0 (5.3)

with A =
(

1−K/K(m)
)
, K and K(m) being the drained and matrix bulk moduli,

while µ = E/2(1 + ν) and λ = E/ (1 + ν) (1− 2ν) are the Lamé moduli.
Also, the other basic field variable of poroelasticity is the dimensionless (under the

hypothesis of constant density) variation in fluid content, named ζ, linearly related
to the elastic strain and the pore pressure field through the relationship [46]:

ζ = φF − φF0 = A : S : σ +Ceff p = A : (E− γ g) +M−1 p,

Ceff = I :
(

S− S(m)
)

: I−ϕ
(

1/K(F ) − I : S(m) : I
)
,

(5.4)

This constitutive assumption let the fluid mass conservation equation–by assuming
constant fluid density–be rewritten as:

∂ζ

∂t
+∇ · qF = ΓF , ΓF = κv (pv − p−$ (πv − πι))− κl (p− pl) (5.5)
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in the balance above qF representing the vector flux that is supposed to obey
Darcy’s law, so that qF = −1/υFK∇p, with υF denoting the fluid viscosity and
K the intrinsic permeability symmetric tensor, whereas ΓF is a source/sink term
(fluid mass supply per unit volume) introduced as a measure of fluid interchange
from the leaky capillaries to the absorbing lymphatic vessels within the interstitial
space at the microcirculation level, modeled according to the Starling’s theory. In the
definition of ΓF , it is taken into account that the difference between the capillary
and the interstitial pressures (pv − p) is the principal driving force regulating IFP
as suggested by [25] affecting the movement of fluid within the microvascular beds,
the latter being contrasted by the difference between the capillary and interstitial
osmotic pressures (πv − πι) weighted by a reflection coefficient $, while the lymphatic
drainage in the opposite direction is mainly driven by the drop related to the IFP and
lymphatic vessels pressure pl ([102, 213, 214]). Naturally, this terms are multiplied by
two conductivity coefficients, named κv and κl respectively. The constitutive equation
(5.4), where φF and φF0 severally connote the current and the initial fluid volume
fractions, introduces other characteristic poroelastic constants, in particular Ceff is
the the effective compressibility factor in which the porosity ϕ and the fluid bulk
modulus K(F ) are also included (the fluid is supposed to be incompressible, so that
1/K(F ) → 0), and M−1 is the inverse of the Biot modulus, expressed as

M−1 = Ceff (1−A : B) ,

B =
1

Ceff
S : A =

1
Ceff

(
S− S(m)

)
: I

(5.6)

In (5.6) further appears the Skempton compliance difference tensor B, that reduces
to B = (B/3) I because of isotropy, with B =

(
1/K − 1/K(m)

)
/Ceff , tending to

unity for fluid-saturated materials, as well as for K(m) approaching to K(F ), wheter
or not the fluid and the matrix are assumed incompressible, in this case being the
porosity ϕ actually uneffective. Introducing the undrained elastic constants as

S(u) = S− S : (A⊗B) (5.7)

and by also invoking isotropy, the scalar Biot effective stress coefficient A got in
equation (5.3) can be expressed in terms of undrained and drained constants and
the Skempton coefficient B

S(u) = S− AB

3 S : (I⊗ I) = S− AB

3
1− 2ν
E

(I⊗ I)

A =
3
B

(
ν(u) − ν

)
(1− 2ν)

(
1 + ν(u)

) (5.8)

Then, by focusing on a spherically symmetric case in a way to have the defor-
mations (5.1)2 be written as E = diag {∂u/∂r, u/r, u/r} and the multiplier γ =
diag {γr, (1− γr) /2, (1− γr) /2}, the stress-strain-pore pressure constitutive equa-
tions (5.2)1 take the form

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



124 the full coupling


σr =

E
(1+ν)(1−2ν)

(
(1− ν) ∂u

∂r + 2ν ur − (ν + (1− 2ν) γr) g
)
− 3

B
(ν(u)−ν)

(1−2ν)(1+ν(u))
p,

σθ = σφ = E
(1+ν)(1−2ν)

(
u
r + ν ∂u∂r −

1
2 (1− (1− 2ν) γr) g

)
− 3

B
(ν(u)−ν)

(1−2ν)(1+ν(u))
p

(5.9)
in agreement with works both by Rice ([161]) and Araujo ([13]), respectively with

regard to the characterization of porous materials and the anisotropic expansion of
linear elasticity through a fixed prescribed growth-strain distribution. Similarly, by
starting from the definition of the isotropic Skempton coefficient B, an analogous
reasoning let to simply obtain that Ceff = A/KB = 9

(
ν(u) − ν

)
/B2E

(
1 + ν(u)

)
,

so that the constitutive relation for fluid content ζ in (5.4)1 combined with the
expression of the Biot modulus given by (5.6)1 becomes

ζ =
3
B

(
ν(u) − ν

)
(1− 2ν)

(
1 + ν(u)

) (ε− g) +
9
(
ν(u) − ν

)
B2E

(
1 + ν(u)

) (1−

(
ν(u) − ν

)
(1− 2ν)

(
1 + ν(u)

)) p (5.10)

with ε = tr (E), the latter also showing the growth g effectively playing a role
against the increase of fluid fraction, but it is actually the associated growth dy-
namics introduced in the following revealing this as the conseguence of an effective
consumption, modeled as a resource sharing/fight dilemma and actually interpreted
as a predation by the cells. The ulterior advantage of having adopted this notation
lies into the fact that equations (5.8) and (5.10) need only four elastic constants
E, ν, ν(u) and B, that can be easily accessible in Literature, also with reference to
biological tissues (see for example [65]).
The poroelastic constitutive equations (5.9) and (5.10) involve the growth strain

function g = g (Φ), Φ here being the vector collecting the volumetric fractions of the
species involved in the dynamics –in this case represented by the healthy and tumor
cells and the ECM, say φH , φT and φM– and g representing an inelastic growth term
that is responsible of the current net generation of the species at each time t. As a
consequence, the poroelastic field equations (5.2)2 and (5.5) naturally result coupled
with the species mass balances in the form

∇ ·σ = 0

∂ζ
∂t −∇ ·

(
K
υF
∇p
)
= ΓF

∂Φ
∂t = Γg

(5.11)

where Γg represents the vector of the net species rates, actually explaining the way
in which the species interact. For this purpose, by focusing on the competition be-
tween cancer and healthy cells interacting with the ECM to survivor in the common
environment by challenging for the same resources, Volterra-Lotka (VL) equations
–largely used in literature to model cell-cell and cell-immune system interactions ([75,
99]) due to the widely recognized contribution that evolutionary game theory as well
as population ecology can give in understanding and predicting the behavior and the
structure of a heterogeneous cells population ([208, 212]) also in complex environ-
ments, like the tissue-level microenvironments– have been here employed to describe
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the dynamics among the species. The mutual inhibiting inter-species parameter is thus
just related to the weight that each species exerts on the other one, modifying the
growth rates through non zero dimensionless competition terms. Equations (5.11)3
can be then explicitly given in the form

∂φT
∂t = ΓT = φF γT φT (1− αTTφT − αTHφH − αTMφM )

∂φH
∂t = ΓH = φF γH φH (1− αHTφT − αHHφH − αHMφM )

∂φM
∂t = ΓM = βTφT + βHφH − δMφM (αMTφT + αMHφH)

(5.12)

By observing equations (5.12)1 and (5.12)2 it can be noticed that they look like
the classical diffusive VL-like ones, while the proliferation rate (i.e. the measure of
converting available resources into replication capability) is here directly proportional
to the variable fluid content φF = φF0 + ζ. In this sense the fluid is a feeding-like term
which enters explicitly in the definition of the payoff functions of the cells populations
rates unlike the classical competitive equations, in which species are supposed to have
food indefinitely. The current food-provison term actually multiplies the inner growth
rates γT and γH , penalized through the VL-coefficients αIJ , with {I, J} = {T,H,M},
representing for I = J a self-inhibiting term, whereas for I 6= J they provide the
effects of the mutual inter-species inhibitions. The third equation simply reproduces
the balance of ECM in which biochemical differences between healthy and tumor
ECM components are neglected and therefore the resulting overall ECM fraction,
φM , dynamically depends on the synthesis and Matrix Degrading Enzymes (MDEs)
processes promoted by cells, through the production characteristic rates βT and βH ,
and the loss rate δM , weighted by the coefficients αMT and αMH .
At this point, it is worth noting that classical poroelastic field equations (5.11)1 shall
be adopted provided that u as well as the stresses σij produce infinitesimal changes
in this quasi-stationary problem, and also that the volumetric growth term g keeps
adequately small; however one should first ascertain what is a small deformation
dealing with growing tumor, as suggested by [78], and this sounds valid especially in
case growth is not an a priori assigned parameter but is instead the result of interior
dynamics, that autonomously evolve once the external and initial conditions are given.
With reference to tumor spheroids made by a central nucleus and a surrounding

hollow sphere with radii a and b, provided with a rigid internal inclusion with radius
ri → 0 in order to avoid singularities, under the hypothesis of isotropic linear elas-
ticity and under the further simplifying assumptions both of isotropic growth, which
means γr = 1/3, and isotropic constant permeability, which gives K/υF = kF I, the
equations (5.3) and (5.5) reduce to those of a spherically symmetric problem in
which the poroelastic variables are those obtained (5.9) and (5.10), and a fully cou-
pled system (5.11) is derived, involving an essential set of measurable parameters and
five variables - say {u, p, φT , φH , φM}-, being the sole radial non zero displacement
component and all the unknown functions depending upon r and time t. In particular,
one has:
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

∂
∂r

((
∂u
∂r + 2ur

)
−
(

1+ν
1−ν

)
γrg− A

3K

(
1+ν
1−ν

)
p
)
= 0

∂ζ
∂t = kF

1
r2

∂
∂r

(
r2 ∂p

∂r

)
+ κv (pv − p−$ (πv − πι))− κl (p− pl)

∂φT
∂t = φF γT φT (1− αTTφT − αTHφH − αTMφM )

∂φH
∂t = φF γH φH (1− αHTφT − αHHφH − αHMφM )

∂φM
∂t = βTφT + βHφH − δMφM (αMTφT + αMHφH)

(5.13)

where the net growth strain term (assuming that the consituents have the same
density) can be defined in terms of the solid constituents as:

g = φT + φH + φM − φT0 + φH0 + φM0 (5.14)

analogously to the variation of fluid content ζ, the additional subscript 0 indicat-
ing the volumetric fractions of tumor and healthy cells and matrix, respectively, at
the conventional initial time t = 0. To take into account the mechanically-coupled
processes affecting growth, the coefficients appearing in the VL equations (5.12) are
thought to be dependent on the mechanical stress in the way explained in the section
below.

5.3.1.1 Physical meaning and estimation of both poroelastic parameters and VL co-

efficients

• Poroelastic Parameters:
Once the ordinary set of poroelastic constants adopted in writing the problem (5.13)
have largely been discussed before, the source/sink term appearing in equation (5.13)2
involve the use of two conductivity parameters. The first one, κv is proportional to
both the hydraulic permebility of the blood vessel wall Lv and the vascular surface
area per unit volume Sv/V , and it is here considered to be constant since no effects of
vascularization have been taken into account at this point, so that the vascular surface
can be supposed homogeneously distributed within the overall volume. However, there
is a wide Literature ([102]) reporting the distinction of tumor and healthy vascular
permeability. The other conductivity parameter κl is instead related to the effective-
ness of the lymphatic drainage within the tissues. It is known that within a tumor
there are no functional absorbing lymphatics due to the fact that ordinary lymphatic
drainage mechanisms are altered and then the interstitial fluid pressure rises to values
that are proportional to the vascular pressure. The draining lymphatics density tends
in fact to decrease in the early stages mainly due to the action of MDEs over-produced
by tumor cells ([214]) and also tumor cell induced-stress such as tumor overcrowding
can cause lymphatic collapse since the lymphatic vessels pressures is generally low.
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Moreover, cancer metastatic cells tend to invade lymphatic vessels and lymphnodes
space (however metastasis is here not treated). The transition from neoplasic tissue
to normal tissue typical values of κl = LlSl/V ,Ll and Sl/V being respectively the
lymphatic vessel permeability and the lymphatic surface area per unitvolume, is then
modeled through a decreasing function by assuming κl linearly decreasing with the
tumor fraction variation:

κl = (1− (φT − φT0)) κln (5.15)

with κln being an assigned constant denoting the nominal value of drainage con-
ductivity in normal tissues. Naturally κl multiplies the pressure drop p− pl, with pl
constant. In the same way κv multiplies the Starling’s gradient pv − p−$ (πv − πι).
The term pv represents the microvascular net pressure (MVP) inside the blood vessels
(the effective pressure is considered due to the fact that vessels can locally be both
afferent and efferent), that in normal conditions exceeds the pressure in IF space and
promotes the movement of fluid toward the latter. The hydrostratic gradient pv − p is
countered by the colloidal osmotic pressure gradient (πv − πι) related to the plasma
proteins, multiplied by a reflection coeffient $ that takes into account the selectivity
of the vessels pores, here assumed constant.

• Volterra-Lotka Parameters

In standard VL models all the coefficients are assumed to be constant because the
food chain is simulated by assuming that preys can access to indefinite reserves of
food, reproducing and being preyed by predators at a constant rate. On the other
hand, to realistically describe the competitive dynamics among cell species and ECM
in tumor spheroids, two main phenomena cooperate to require varying coefficients
in the VL equations (5.12). The first one is that in biological tissues nutrients are
delivered by fluids which in poroelastic models obey the fluid balance equation (5.5)
and whose content is generally neither spatially uniform nor constant in time and can
be explicitely accounted through the term φF = φF0 + ζ. Additionally, some VL pa-
rameters also implicitly vary with space and time through the hydrostatic stress level
perceived by cells, σhyd = tr (σ) /3 , which directly acts to modulate the intrinsic
proliferation rates of the cell species. Accordingly, the rate of tumor cells and healthy
cells in (5.12)1 and (5.12)2 are then influenced by the presence of the mutual compe-
tition term αHT and αTH that weight the way a species is influenced by the presence
of the other one, while the explicit form of the characteristic growth parameters γT
and γH can be constructed to take into account the effect of hydrostatic stress. This
assumption derives from the fact that the local stress is known to induce latency in cell
development known as diapause ([3, 158]), a reversible non-proliferating state during
which the cell metabolism is very low and making this way the cells aggregates not
to expand over a certain size so reaching a standstill of proliferation, whose reasons
are not completely clear yet as well as the way of re-activation. This mechanism, of
phenotypic origin and having crucial role in tissue homeostasis for regeneration and
growth in normal conditions, is also evidently preserved by cancer cells, entering an
inactive and clinically asymptomatic state thanks to which cancer cell are capable
also to regulate or at least delay the achievement of the apoptotic state when criti-
cal conditions are achieved, in this way becoming a concrete possibility for the tumor
itself to control its growth and to undergo dormancy as long as the environmental con-
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ditions are again favorable to progression, as in the case of the angiogenic dormancy
in which cancer cells are not inactive although they look clinically asymptomatic, un-
til adequate vascularization restores their growth potential. This mechanism is also
investigated with therapeutic purposes, in order to induce or maintain the dormancy
and avoid metastasis ([158]). In particular, from a mechanical standpoint, it can be
supposed an interesting connection with the experimental observation according to
which high compressive stresses inhibit tumor growth ([83, 137]). Hence, given that
the hydrostatic stress affects the intrinsic tumor cell growth rates γT and γH in a
way such that if σhyd is less than a critical threshold value σhydcr , and assumed that
cancer cells and healthy cells in the quiescent state are virtually indistinguishable as
the former appear as asymptomatic as the latter, it is thought that the respective in-
trinsic growth rates reduce to a common low growth rate, say γq, while if the critical
stress value is overcome, growth rate approaches abnormal values typical of cancer
cells. The following transition function SK

(
σhyd

)
has been finally introduced:

γK = γK0SK = γK0

 γq
γK0

+

(
1− γq

γK0

)
exp

(
χσ

(
σhyd − σhydcr

))
1 + exp

(
χσ

(
σhyd − σhydcr

))
 , (5.16)

γK0 = TK
−1ln2

where K = {T,H}, χσ is a constant and the corresponding fixed coefficients γT0
and γH0 have been taken depending upon the doubling time TT and TH of tumor
and healthy cell species, respectively, assumed in the range 17-40 hours ([67] and
experimentally determined for two different cell lines (as argued in the following),
whereas the quiescent metabolic rate γq is a reduced non zero metabolic coefficient
resulting from the fact that quiescent cells arrest their division process but not their
metabolic activity, because they maintain a basal metabolic rate in presence of nutri-
ents ([54]) and can increase size until optimal environmental conditions occur. Thus,
it is assumed that γq = εqγH0, with εq � 1 being an appropriate reduction coefficient.
The coefficients αTM and αHM are chosen to be constant and represent the weight

the ECM exerts in terms of restriction of available space. The cross terms αHT and
αTH are instead a measure of the mutual inhibition, while the coefficients αTT and
αHH are self-competition coefficients accounting for the carrying capacity of each
cellular species. These coefficients can be considered constant and not affected by the
mechanical stress, this because tumor quiescent cells keep their aggressive mutagenic
phenotype against normal cells, like their intimate nature was just hidden during
quiescence. All these considerations let to describe a sufficiently complex population
dynamics with respect to the classical one, being the game of interaction affected by
the environmental parameters as well as there possibility of changing the strategy
through the modulation of the the intrinsic rates in order to find the fittest way to
survive. On the other hand, in this first formulation the variability is in the rate
and there is no way of physically discriminating proliferating cells from quiescent
cells, and also necrosis as well as angiogenesis have not been modeled, these aspect
certainly introducing higher degree of complexity to the equations. Finally, it is worth
to note that in the proposed model ECM balance (5.12)3 is also written in a VL-
like form, with a production rate that depends on the amount of cells synthesizing
ECM components, say distinctly βT and βH for cancer and healthy cells, while the
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degrading rate δM is weighted by the interaction coefficients αMT and αMH which
account the way ECM is attacked by the cells lysis, leading to a three-species VL-like
competition. The adopted parameters are summarized in Table 6.

5.3.2 Results of the linear model

Numerical simulations by means of the commercial packageWolframMathematica®([210]).
With focus on the linear model, the respect of the hypothesis of small deformations
introduced in section implies the analyses of solutions effectively remarking this as-
sumption. As a consequence, since it is expected that the whole growth process would
likely generate large deformations on the timescale of the tumor growth, the attention
has been here payed on a reduced time window (in relation with the conducted exper-
imental observations), in order to obtain solutions compatible with the linear model
assumptions. The latter solutions could not provide the needed long-term information
in relation with experimental findings: in this sense, the nonlinear model described in
the following sections will be certainly more effective. However, it is worth noting that
the linear model results of great engineering interest for the evolutionary problems
at hand since it provides a strategy to construct the entire solution by superposing
incremental sub-cases, which can be linearly modeled. In this paragraph, given the
control volume dimensions via the assignment of the external radius b, a confined
in vivo growth has been modeled by analyzing a displacement-prescribed case, i.e.
u(b, t) = 0. In particular, species distributions, pressure and displacement have been
prescribed at the starting time ti = 0+ by giving the following initial conditions:

φM (r, ti) = φM0, φT (r, ti) = φT0 D(r)

φH (r, ti) = φH0(1−D(r)), p (r, ti) = 0, u (r, ti) = 0
(5.17)

Herein D(r) = (1 + exp (χr (r− a) /b))−1 is a function adopted to characterize
the transition from neoplasic core to the host environment, where χr is a proper
smoothing coefficient, a is the initial tumor front and the relation φT0 > φH0 subsists
to take into account internal hyperplasia. In this situation, it was assumed b = 3a
as initial geometrical relation between external and internal initial radii of the tumor
spheroid. In addition, no Darcy fluxes occur at r = b and r = ri, where also null
displacement u(ri, t) has been provided. Moreover, no accumulated stress has been
provided to the body, then a residual stress-free simulation is here considered for the
sake of simplicity, and the simulation time has been set to 1 week. These two fact
imply that some of the previously discussed phenomena, such as growth inhibition
due to mechanical compression, could be not immediately observable as long as the
nonlinear model will be treated and simulations could be carried performed over longer
time. However, as said, the linear model can be used to construct more elaborated
solutions, by iteratively treating linear solutions obtained up to a generic time tk as a
new starting state –including distributions, pressure and internal stress distributions–
in order to construct solutions up to the next time tk+1 = tk + ∆t.
By then focusing on the species development, reported in Fig. 43, the tumor species
fast accrues its amount in the tumor region, by increasing of approximately the 30%,
and slightly starts to invade the surrounding host tissue. In this case, the tumor
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amount growth results greater than its invasiveness potential, meaning that the tumor
cells –for the assigned initial state– tend to “bulky” proliferate by penalizing the
other healthy constituents and by saturating the available space and the nutrients
rather than diffusing and increasing its extension. Additionally, the limited migration
of the case under discussion can be also attributed to the absence of pre-existing
resident compressive stress (here not provided). Experimental observations ([200])
that tumor migration is strongly enhanced by the level of mechanical compression,
which induces border cancer cells to augment their motility. In the present case, an
“unloaded” environment was imagined, and therefore stress within the spheroid can
be considered still sustainable by the internal proliferating cells.

Figure 43: Tumor, healthy and ECM fractions within the control volume at the specified
times.

The IFP was predicted to rise within the tumor interior, this generating an outward
flux at the tumor-host interface (Fig. 44), and this implies that the tumor interior
will be progressively deprived of nutrient exchange due to the IFP barrier, and thus
abnormally high IFP significantly contributes to induce potential internal apoptosis
and necrosis within tumor spheroids.
Also the IFP combines with the growth term and the elastic response directly

derivable from the displacements and the elastic constants to express the effective
stress field that build up into the volume. Solid stresses account the tumor accretion
by generating internal compression –here approaching 800 kPa, as shown in Fig.
45–, decreasing towards the periphery. In particular, radial stress amplitude slightly
decreases and reaches at r = b a value representing the radial reaction exerted against
the confinement made by the outer environment, while circumferential stress exhibits
a more drastic transition from the intratumoral region to the host healthy tissue,
here also exhibiting positive values, probably related to the tissue accommodation in
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Figure 44: Evaluation of the pressure drop and radial flux at different times.

correspondence of the spheroid expansion, and, proceeding toward the exterior, hoop
compression re-occurs as an effect of the peripheral confinement.
As said, the effects of stress accumulation and tumor invasion are long-term effects

that can be depicted for enhanced growth process. Therefore, with a sole illustrative
purpose to both anticipate the results of the nonlinear model and show at the same
time the predictive potential of the full-coupled strategy, two further long-time simu-
lations have been conducted. In particular, different external loading conditions could
have different long-term effects on cells growth: therefore, two limiting conditions
have been compared by considering a stress-free growth (i.e. σrr(b) = 0) and a fully
confined growth. Results are summarized in Fig. 46. Here, tumor cells grown in the
unconfined case result more invasive than those ones grown in the confined case (Fig.
46A and B). Stresses in the unconfined case achieve approximately 600 Pa within the
tumor interior, while confinement induce almost hydrostatic compression increase up
to about 2kPa (Fig. 46C, D,E and F).
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Figure 45: Solid stress obtained from the linear model. (top) Radial Stress. (bottom) Hoop
stress.
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Figure 46: Distributions of tumor and healthy fractions in case of unconfined growth (A)
and fully confined growth (B).
Stresses in the stress-free case: (C) Radial (D) Circumferential
Stresses in the confined case: (E) Radial (F) Circumferential
Illustration of the MCTS formation enhanced by the VL dynamics (G).
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5.4 the nonlinear mcts model

5.4.1 Preliminary remarks on the experimental model

The limitations exhibited by the presented linear model can be overcome by using a
nonlinear theory. Also, the integration of the theoretical description with experimen-
tal observations introduced hereinafter and derived from both in vitro experiments on
cancer cells cultures and in vivo-implanted tumor spheroids, by means of an animal
model, let to even further enhance the previous model. This is done, for example,
by observing the growth variability in function of the available nutrients, in order to
derive an explicit and more accurate dependence of the growth rate upon the extra-
cellular resources availability and in order to better describe the apoptosis mechanism.
For this reason, the nonlinear model has been also enriched by introducing other two
constituents, i.e. the nutrient concentration and the apoptotic cells.
Moreover, the experimental observations accompanying the theoretical results devel-
oped in the subsequent nonlinear model have been opportunely designed in order
to evaluate the dimensional growth and the related mechanical characteristics, in
terms of the (direct and inverse) evaluation of the mechanical properties and residual
stresses. Then, before presenting the mathematical details of the nonlinear fully cou-
pled MCTS model, some details of the animal model and the experimental procedures
are introduced. In particular, two different cell-lines have been adopted:

• Human pancreas cancer cell line MIAPaCa-2, was purchased from American
Type Culture Collection (ATCC, Manassas, VA, USA) and grown in Dulbecco’s
Modified Eagle’s medium (DMEM) supplemented with L-glutamine, antibiotics,
and 10% heat-inactivated fetal bovine serum (FBS, Gibco/Invitrogen, Grand Is-
land, NY, USA). The cells were maintained at 37◦C in a humidified atmosphere
of 5% CO2. All experiments were performed with cultures grown for no longer
than 6 weeks after recovery from frozen stocks.

• Human Triple Negative Breast cancer cell line MDA-MB.231, was purchased
from American Type Culture Collection (ATCC, Manassas, VA, USA) and
grown in RPMI1640 medium (DMEM) supplemented with L-glutamine, an-
tibiotics, and 10% heat-inactivated fetal bovine serum (FBS, Gibco/Invitrogen,
Grand Island, NY, USA). The cells were maintained at 37◦C in a humidified
atmosphere of 5% CO2. All experiments were performed with cultures grown
for no longer than 6 weeks after recovery from frozen stocks.

Twenty eight-week-old female Foxnnu/nu mice were purchased by Harlan (San Pietro
al Natisone, Italy). Mice were housed 5 per cage and maintained on a 12-h light:12-
h dark cycle (lights on at 7.00 a.m.) in a temperature-controlled room (22±2◦C)
and with food and water ad libitum. The experimental protocols were in compliance
with the European Community Council directive (2010/63/EU). Animals were in-
dividually identified using numbered ear tags. All experiments were conducted in a
biological laminar flow hood. The mice were anesthetized using isoflurane during the
high-frequency ultrasound imaging. The anesthetic agent used is Zoletil 100 (Virbac):
combination of 50% of Tiletamine and Zolazepam; it is used to 50 mg/kg by adding
Atropine sulfate at 0.04 mg/kg, and xilazine 2%. After 2-week of acclimation to the
housing conditions, a first group of mice (Mice n.1,...,11) were injected subcutaneously
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(s.c.) with a suspension of MDA-MB.231 cells, 1.5× 106 cells/mouse in the right hind
limb in 150 µl of PBS solution. Mice tumor growth was measured biweekly with a
digital caliper 2BIOL (Besozzo, Italy) and expressed in terms of surface, volume and
measuring two reference diameters.
The experimental protocol provided to sacrifice animals when MDA-MB.231 tumors
reached specific nominal sizes: 2 animals at volume of 300 mm3, 2 animal at volume
of 600 mm3, 2 animals at volume of 900 mm3 and 2 animals at volume of 1200 mm3

or when presenting signs of pain. Another group of mice (Mice I,II,III) was instead
injected subcutaneously (s.c.) with a suspension of MiaPaCa-2 cells, approximately
2× 106 cells/mouse, with analogous procedures. Tumors growth was monitored every
5 days by means of caliber (C) and through echography (US). Animals were sacrificed
after three weeks and after tumor implantation and organs were dissected and ana-
lyzed. All in vivo procedures were carried out in accordance with protocols approved
by the European Animal Care and Use Committee. In the end, time of tumor dis-
section, each animal was subject to Ultrasound (US) and Magnetic Resonance (MR)
imaging.

5.4.1.1 Imaging and Data Processing

High-frequency ultrasound imaging

Imaging and measuring of adrenal glands were performed by high-resolution ultra-
sound imaging system Vevo® 2100 (System Visualsonics, Toronto Canada). It is char-
acterized by high-frequency, high-resolution digital imaging platform with linear array
technology and Color Doppler Mode; and is used in preclinical research in a wide range
of animal models and applications including cancer, cardiovascular and inflammation,
etc. Mice, were anesthetized by isoflourane/O2 (4% for induction and 2, 5% for main-
tain sedation) and placed in prone position on a temperature-controller surgical table
to maintain rectal temperature at 37◦C, continual ECG monitoring was obtained
via limb electrodes. Tumor dimensions was evaluated by B-Mode (2D) imaging for
anatomical visualization, with 22-55 hMHz transducer (operating frequency of 40
MHz, axial resolution 40 µm), with enhanced temporal resolution with frame rates
up to 740 fps (in 2D for a 4× 4 mm2 FOV), and enhanced image uniformity with
multiple focal zones.
Magnetic resonance imaging

Animals were subjected to magnetic resonance imaging (MRI) at 1.5 T (Magnetom
Symphony, Syngo MR 2002B, Siemens, Erlangen, Germany) and a dedicated phased
array coil. Mice were placed in a supine, head first position. Axial, sagittal and coronal
T2-weighted two-dimensional BLADE images of whole body were obtained. Sequence
parameters are: TR/TE 4000/127 msec.; flip angle 150 degrees; slice thickness 2 mm;
gap 0 mm; matrix 256x256; FOV 120× 120 mm2; pixel spacing 0.5× 0.5 mm2; ac-
quisition time 4 min). Images assessment was performed in a single reading session
for each animals by an expert radiologists. The radiologists, based on T2-weighted
images, manually drawn regions of interests (ROI) along contours of tumor, covering
the whole lesion with exclusion of peripheral fat, artefacts and blood vessels were
drawn over the tumor. The segmentation was done on axial, coronal and sagittal
plane and following the segmented volumes (SV) were calculated, for each plane, as
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Figure 47: 2D visualization of tumours on mouse n.4, n.9, n.11 and n.1. Coronal and sagit-
tal T2-weighted images, applying intensity colouring maps of mouse n.4 (A,B),
mouse n.9 (F,G), mouse n.11 (M,N) and mouse n.1 (R,S). There were single
slice segmentation superimposed on coronal T2 weighted images need to volume
calculation. Volumes measured are 231.8mm3 (mouse n.4), 504.5mm3 (mouse
n.9), 818.1mm3 (mouse n.11) and 935, 1mm3 (mouse n.1), respectively. Ultra-
sound images (C,H,O,T) and tumor specimen images (D-E, I-L,P-Q, U-V)
were reported for the mouse n.4, n.9, n.11 and n.1, respectively

product between the number of voxels, pixel spacing and slice thickness. The results
were reported in term of mean value of three volume measures.

5.4.2 Imaging results

Table 4 showed the results of tumor size measures from caliber in vivo, ex vivo, US
and MR imaging. The days indicated in the table represented the days between the
inoculation and sacrifice time. MR Imaging was resulted more accurate than US
imaging considering the percentage difference of volume measure respect to caliber
ex vivo volume measure. In fact for MR imaging was obtained a median ± standard
deviation value of 1.9% ± 13.8% while for US imaging was obtained a median ±
standard deviation value of 8.7%± 33.8%. Figure 47 showed a panel of digital image
acquisitions for mouse n.4, n.9, n.11 and n.1. 2D view of MRI allowed a more accurate
tumor size estimation and a more accurate interpretation of involvement with adjacent
structures (as muscle infiltration) than US imaging. Similar considerations have been
made to estimate the morphology of MiaPaCa-2 tumors. In particular, Fig. 48 shows
the time development of tumor in Mouse II and the digital processing to accurately
evaluate the sample volumes through 3D reconstructions.
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Figure 48: Digital image acquisitions with reference to Mouse II. A. Ultrasound image
at Time I. B. Ultrasound image at Time II. C. Ultrasound image at Time
III (the yellow lines indicate maximum and minimum diameter); Coronal and
Transversal (D-E) T1-weighted images (T1-w) at Time III (red lines indicate
maximum and minimum diameter); Volumetric image (F) obtained by MRI at
Time III.
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gTable 4: Caliber measurements, US measurements ans MRI volumes reconstructions in MDA.MB-231 tumor at different sizes

US C vivo C ex vivo MR

ID size days Dmax dmin A V Dmax dmin A V Dmax dmin A V Dmax dmin A V SV
1 1200 14 14,0 10,5 147,0 771,8 14,1 13,6 165,3 1304,0 12,2 10,1 123,8 627,7 14,5 11,4 165,3 942,2 935,1
6 300 14 11,7 6,9 80,9 279,0 10,5 9,5 76,3 470,0 9,3 8,1 75,5 305,7 10,6 7,2 76,3 274,8 308,9
3 600 21 12,2 6,4 78,2 251,0 13,9 10,5 116,8 761,1 13,8 7,6 104,3 394,1 13,9 8,4 116,8 490,4 403,3
4 300 21 8,7 7,2 62,7 226,5 8,9 8,0 63,2 281,9 7,8 7,2 56,5 203,8 8,1 7,8 63,2 246,4 231,8
7 600 29 16,0 9,0 144,0 648,0 11,5 9,8 91,6 552,2 10,2 8,8 89,8 394,9 10,7 8,6 91,6 392,0 367,5
2 900 40 15,5 10,0 155,0 775,0 13,5 11,6 152,6 908,3 13,5 13,2 178,1 1171,6 15,0 10,2 152,6 778,2 986,3
11 900 40 15,5 10,0 155,0 775,0 13,8 11,8 137,9 960,8 15,2 10,3 156,4 805,2 13,1 10,5 137,9 726,3 818,1
9 600 50 9,5 7,6 72,2 274,4 11,5 10,4 107,9 624,5 10,2 9,6 97,6 467,1 11,6 9,3 107,9 501,6 504,5
10 1200 50 16,0 12,0 192,0 1152,0 16,2 13,2 185,3 1411,3 17,2 12,8 220,5 1411,5 14,2 13,1 185,3 1211,1 1271,3
5 1200 55 13,5 10,0 135,0 675,0 14,4 13,6 168,8 1320,2 13,8 12,3 169,7 1043,9 13,5 12,5 168,8 1054,7 1199,4
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5.4.3 The kinematics of tumor growth in finite deformation

Let B0 be a body in its reference configuration and let V 0 be its volume. The growth
and the deformation of the elastic body is entirely governed by the body motion
x = x (X, t) that maps the material points X ∈ B0 onto spatial points x at any time t,
so that the overall deformation gradient F is additionally introduced by accomplishing
compatibility with the body particles displacement field u (X, t) ∈ C 2 (B0), thus
giving:

F =
∂x (X, t)

∂X
= I+ u (X, t)⊗∇X (5.18)

where⊗ is the dyadic product and∇ is the nabla vector, the subscript indicating the
coordinates with respect to which the differentiation is performed. By exploiting the
polar decomposition theorem, the existence of a proper orthogonal matrix R ∈ Orth3

+

is ensured and introducing the diagonal right stretch tensor U one has:

U = λi

(
N̂i ⊗ N̂T

i

)
F = RU = λi

(
n̂i ⊗ N̂T

i

)
(5.19)

where λi and N̂i are respectively the principal stretches and the eigenvectors of U

(the summation symbol over i = 1, 2, 3 being subtended), while n̂i = RN̂i determines
the rotation of the eigenbasis in the current configuration (the superscript T indicating
the transpose of the tensor matrix representation). By adopting the multiple natural
configuration approach introduced by [164] and in following more recent inherent
works ([48]), the deformation gradient is assumed to be the result of a growth tensor
and an elastic tensor that de facto combine in a multiplicative manner in order to
give back (5.18), so that one can read:

F = Fe Fg Fs (5.20)

Herein, a further starving deformation gradient Fs is formally introduced in order to
take into account the fact that, in principle, one could not simply choose as reference
configuration an initial stress-free configuration, but rather a state in which residual
stress have been previously imprisoned in the body. However, for the sake of simplicity,
in what follows it is assumed that Fs = I. As a consequence, the body is first supposed
to undertake a growth process that drives the latter towards a grown intermediate
configuration, say Bg. In this configuration, the material particles occupy the position
xg (X, t) ∈ Bg and their motion can be described through an appropriate growth
tensor Fg. Assuming that the growth is isotropic, the polar decomposition of Fg
leads to write:

Ug = λg

(
N̂i ⊗ N̂T

i

)
Fg = RgUg = λg

(
N̂gi ⊗ N̂T

i

)
= λg I (5.21)

with λg = J
1
3
g , Jg = det Ug = dVg/dV0 denoting the relative volume change with

respect to the initial configuration, whereas N̂gi = RgN̂i defines the rotation on
each eigenvector N̂i in the configuration Bg. During the growth process the body is
also supposed to be unloaded, in this way the (inelastic) strain contribution being
exclusively caused by the volumetric change induced by the growth itself. However,
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the introduction of this intermediate configuration also implies the need of discern-
ing separately the contribution of volumetric growth and the densification that can
combine together to furnish the growth seen as overall local mass addition/removal.
Coherently with the idea of a body system as a multiphasic continuum, this approach
allows to translate the concept of growth –seen as flow of material particles entering
(or leaving) the system– into an equivalent geometrical deformation of an infinitesi-
mal volume element within the body, the mass flows being so interpreted as intrinsic
growth rates of the living species. However, as well-known, the growth strain alone
does not completely describe the body motion since the growth process is supposed
stress-free and, in general, it could not ensure compatibility of the intermediate config-
uration since the infinitesimal volume elements grow independently from each other,
as conceptually represented in Fig. 49. For this reason, the body must experience an
elastic strain which permits to adapt the response to prescribed boundary conditions
(i.e. the external mechanical loads and/or the given constraints) as well as to com-
patibilize the grown elements by kindling suitable self-equilibrated (residual) stresses
within the body. Then, the elastic strain Fe maps the points xg ∈ Bg onto the actual
configuration x ∈ B and, through the already adopted decomposition, gives:

Ue = λei

(
N̂gi ⊗ N̂T

gi

)
Fe = ReUe = λei

(
n̂i ⊗ N̂T

gi

)
(5.22)

Ue then denoting the principal elastic stretch seen in the grown configuration. By
combining the right stretch tensors introduced in (5.21) and (5.22), the baptized
total stretch tensor U appearing in (5.18) can be determined by considering the right
Cauchy-Green tensor:

C = FTF = U2 = UT
g

(
RT
g UT

e UeRg

)
Ug = UT

g

◦
U

2
eUg (5.23)

with
◦
U

2
e = RT

g U2
eRg thus representing the back rotated version of Ue reported to

the reference configuration. This also let to write:

U =

√
UT
g

◦
U

2
eUg (5.24)

Also, the orthogonal rotation matrix R can be expressed as R = ReRg.
For the problem at hand, that is a MCTS under uniform boundary conditions, a spher-
ically symmetric geometry is introduced, so that X = {R,Θ,Φ}, the field variables
depending exclusively on R. A spherical body is then considered by simply setting
an external radius Ro delimiting the control volume and an inner radius Ri → 0.
Furthermore, spherical symmetry ensures that the deformation gradient F can be
conveniently referred to its principal coordinates:

F = Diag{λr λθ λθ} (5.25)

In addition, the forms of the deformation gradient (5.25) and of the growth tensor
(5.21) imply that the elastic tensor Fe is also diagonal:

Fe = F F−1
g = Diag

{
λr
λg

λθ
λg

λθ
λg

}
Je = JJ−1

g (5.26)

J = det F and Je = det Fe being the Jacobians of the transformations.
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Figure 49: Illustration of the kinematics of growth in finite strain by adopting a multi-
plicative decomposition of the deformation gradient F into a growth part Fg
mapping the body points onto an intermediate and generally incompatible con-
figuration and an elastic part Fe which moves the body toward the current com-
patible (grown) configuration, which is also subjected to external load-induced
deformations.

5.4.4 Hencky strain measure and associated growth strain

It is well-known that the finite deformation theory provides general strain measures,
generated by the Seth-Hill formula ([84]), recalled from Chapter 1:

E(m) =
1

2m

((
FTF

)m
− I
)
=

1
2m (Cm − I) =

1
2m

(
U2m − I

)
(5.27)

where C the right Cauchy-Green tensor. In the present work, the Hencky’s loga-
rithmic strain measure is adopted, in such a way obtaining:

H := E(0) = lim
m→0

E(m) =
1
2 ln

(
FTF

)
=

1
2 ln C = ln U (5.28)

The reason of this albeit legitimate choice is motivated by several advantages, first
of all the possibility of extending the natural properties of the logarithm –i.e. the addi-
tive decomposition and the power law– to the logarithmic isotropic tensor function, in
this way reducing the nonlinear multiplicative decomposition of the deformation gra-
dient into the linear superposition of elastic and inelastic (growth-associated) strain
contributions. In fact, by recalling eq. (5.24), one has:
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H = ln U = ln Ug + ln
◦
Ue = Hg +

◦
He (5.29)

where the back rotated tensor
◦
He is here adopted in order to account the coax-

iality of the three Hencky strain tensors, the relationship
◦
He = RT

g HeRg deriving
from both the position introduced in eq. (5.23) and the properties of the logarith-
mic isotropic tensor function. In particular, if the spherical symmetry is assumed,
one has that

◦
He and He coincide. Also, by introducing the spatial velocity gradient

L = ∂ẋ/∂x = Ḟ F−1 and D = sym (L), which represent the incremental deforma-
tions, the diagonalized structure let to write

Ḣ =
3∑
i=1

λ̇i
λi

N̂i ⊗ N̂T
i = RTdR = D (5.30)

This also provides a simplified intuitive interpretation of H as the time summation
of incremental deformations, a particularly suitable standpoint when dealing with
evolutionary and incremental problems, in this way proposing a solution to the issue
suggested by Graziano and Preziosi [78] through the adoption of a particular nonlinear
deformation measure that simplifies the complexity of the problem related to the
presence of multiplicative stretches because of its properties, being also effectively
interpreted as an incremental deformation process at the limit. It is worth to highlight
that the Eulerian description of the deformation process can be argued in a completely
analogous manner. In fact, by introducing the left stretch tensor V = RURT, the
left Cauchy-Green tensor, under the decomposition (5.20), can be written as:

b = FFT = V2 = VeReV
2
gR

T
e VT

e = VeV̌
2
gV

T
e , (5.31)

V =
√

VeV̌2
gV

T
e = λin̂i ⊗ n̂T

i (5.32)

V̌g denoting a push-forward operation of the growth left stretch throughout the
current basis. Then the eulerian Hencky strain is defined as

h = ln V = ln Ve + ln V̌g = he + ȟg (5.33)

Obviously, it is immediate to verify that H and h are linked each other by the
relationship:

H = RThR (5.34)

This also implies that, for a generic isotropic and scalar valued tensor function ϕ (·),
one has ϕ (H) = ϕ (h). In addition, it is possible to bring back to the linear additive
formulation E = Ee +Eg by simply considering a first order approximation of (5.29)
for both growth and elastic small stretches.
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5.4.5 The hyperelastic potential for MCTS solid phase

To derive suitable and thermodynamically consistent constitutive assumptions, let us
first introduce a geometrically nonlinear strain energy density in the form (see, for
example, [11, 27, 174, 215]):

ψHyp (He) =
1
2 He : C0 : He, C0 > 0 (5.35)

so that the (back-rotated) work-conjugate Kirchhoff stress τ results to be linearly
dependent on He, as also reported by [86] (in this context the elastic aliquot is
considered by depriving the total strain H of the anelastic growth term Hg):

τ e = C0 : He (5.36)

where C0 = 2G I + Λ I � I represents the (positive definite) tangential stiffness
tensor, with G and Λ being the Lamé moduli2. Additionally, it is here proposed
to enrich the elastic strain energy density (5.35), commonly adopted in problems
involving the logarithmic strain measure, in order to take into account the constitutive
nonlinearities typically exhibited by biological tissues, that are normally captured by
exponential laws. To do this, the well-known Fung exponential constitutive model
([69]) has been extended by replacing the elastic strain tensor Ee with the general
Hill’s expression given by (5.27) in order to obtain a bilinear-exponentiated Hencky
potential:

ψHyp

(
E
(m)
e

)
=

1
2 E

(m)
e : A : E

(m)
e +

c

2

(
exp

(
E
(m)
e : B : E

(m)
e

)
− 1
)

(5.37)

so that the case m→ 0 leads to the elastic strain energy density effectively adopted
to model the solid part response:

ψHyp (He) =
1
2 He : A : He +

c

2 (exp (He : B : He)− 1) (5.38)

in which the fourth-order tensors A, B and the scalar c are material parameters.
The consistency conditions for (5.38) read:

ψHyp
∣∣
He→0 = 0

∂ψHyp
∂He

∣∣∣∣
He→0

=
(

A : He + cB : He e(He :B:He)
)
|He→0 = 0 (5.39)

∂2ψHyp
∂He∂HTe

∣∣∣∣
He→0

=
(

A + (B + (He : B)� (B : He)) c e(He :B:He)
)
|He→0 =,

= A + cB

The � operator denoting the standard tensor product between second order tensors.
Then, eq. (5.39)3 reproduces the tangential stiffness tensor C0 appearing in eq. (5.35)

2 More precisely, the relation between the Kirchhoff stress and the Hencky strain should account the
presence of a structure tensor, as also in detail reported in Chapter 1. In this case, this fabric results
in the identity because of the symmetric and diagonal structure of the deformation tensor He.
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in terms of the material parameters A, B and c, so that one can assume –due to
isotropy– that the latter tensor quantities present an analogous structure, i.e. A =
a1I + a2I� I and B = b1I + b2I� I, the energy (5.38) reducing to:

ψHyp (He) =
1
2 a1tr

(
H2
e

)
+ a2tr (He)

2 +
c

2

(
e(b1tr(H2

e)+b2tr(He)
2) − 1

)
(5.40)

This also requires A+ cB be positive definite, and –for the particular form (5.40)–
the respect of the conditions a1 + c b1 > 0 and a1 + 3a2 + c (b1 + 3b2) > 0 in any fitting
procedure of experimental data for the determination of the material constants. In
this manner, a nonlinear fitting procedure has been carried out in order to match the
experimental data resulting from an uniaxial compression test performed on tumor
samples in order to experimentally derive the tumor effective mechanical response.
Results shown in Fig. , in which simple compression tests performed both on Mia-
PaCa2 and MDA.MB231 tumor samples are reported, clearly show how the Hencky
enriched law introduced is highly capable of fitting experimentally observed mechani-
cal behavior. The effectiveness of the choice of the hyperelastic potential ψHyp slected
to represent the elastic/conservative part of the “actual” response of the overall bio-
logical (tumor mass) material is shown in Figure 50, where a very good agreement
between the experimental points and the theoretical predictions can be seen.

Figure 50: Uniaxial compression test of a tumor specimen. (A) Comparison between ex-
perimental data and fitting performed by making use of both a classical Hencky
stress-strain curve and the proposed modified Fung-like Hencky law. (B) A pic-
ture showing the biological sample positioned in the load cell to perform the
laboratory test. (C) Evaluation of the experimentally measured tangent stiffness
(Young moduli varying with strain) fitted by means of the proposed Fung-like
model.
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Table 5: Material coefficients obtained from mechanical tests on MiaPaCa-2 and
MDA.MB231 tumor samples.

Material Coeffcient→
Cell Line↓

a1 [MPa] a2 [MPa] c [MPa] b1 [-] b2 [-]

MiaPaCa-2 0.0226992 1.17955 0.00310748 −5.52926 1.65771
MDA-MB.231 0.0662486 3.22843 0.0153308 −4.04314 1.72176

5.4.6 Effective stress and fluid-strain-pore pressure in poroelastic media undergoing

large deformations

In the classical poroelastic approach the saturated porous continuum is composed
by a solid part, namely the skeleton, enriched with a fluid phase which flows within
the interstitial spaces when the pore network is connected. The presence of the fluid
phase thus introduces a further stress contribution, here indicated as interstitial fluid
pressure p (IFP). In this framework, the displacement field u (X, t) is referred to the
skeleton, so that F in (5.18) represents its deformation gradient. As a consequence,
the motion of the skeleton can be naturally thought as the result of the (intrinsic)
elastic response of the solid material and the contribution of the fluid pressure. This
let to write the Terzaghi effective stress given as the uncoupled sum of the elastic
stress and the IFP, the validity of which is also provided in finite strain regime (see
e.g. the work [29]. Therefore, one can write the purely elastic and isotropic Cauchy
stress tensor as:

σ = σeff − α (p− p0) I (5.41)

with σeff denoting the effective stress connected with the material effective con-
stitutive response, in this case provided by the conservative potential introduced by
(5.40); in addition, αI and p0 respectively indicate the isotropic Biot effective stress
tensor and the IFP reference pressure. In this way, after neglecting the body forces
and inertia terms, the conservation of linear momentum in the reference configuration
requires:

∇X ·P = 0 (5.42)

the second order tensor P being the first Piola-Kirchhoff stress (e.g. the nominal
stress), which is considered the work-conjugate tensor of the skeleton deformation
gradient F and thus actually representing the Lagrangian form for the state of the
skeleton. It can be shown (see the Appendix B for more details) that the stress tensor
P is related both to the hyperelastic strain energy density describing the effective
response of the body and to the IFP through a constitutive relation completely anal-
ogous to the Terzaghi decomposition (5.41) which reads as:

P = JgF
−T
e

∂ψHyp
∂He

F−T
g − Jα (p− p0)F−T (5.43)

where the expression τ e = ∂ψHyp/∂He playing the role of the effective Kirchhoff
stress for the porous material (with respect to the grown configuration), in analogy

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



146 the full coupling

with linear constitutive equation (5.36) that is commonly adopted when the Hencky
strain measure is employed. This additive decoupling –deriving from the conservation
of the Terzaghi’s effective stress principle in finite strain regime– reasonably suggests
the possibility of adopting a decoupled potential for the fluid and the solid part, giving
in this manner a suitable expression for the poroelastic potential from which one can
properly derive the stress constitutive equation, as well as the other poroelastic fluid-
strain-IFP constitutive relation. Details are reported in Appendix A at the end of the
Chapter.
In fact –with regard to the variation in fluid content for the fluid-saturated poroelastic
body at hand– a fluid content-elastic strain-IFP constitutive equation can be explicitly
derived, as also reported by [106]. In particular, the current fluid content at time t
can be defined in terms of the kinematics of the mixtures, i.e. in terms of the fluid
mass per unit volume of the reference configuration, that is here ρF = J%FφF , with
φF and %F being respectively volume fraction and its true density (fluid mass per
unit fluid volume). The following differential state equation is then introduced:

dρF = J%F

(
αdhe +Ceffdp

)
= J%F

(
αdhe +

(
1
M

+
φF
KF

)
dp

)
(5.44)

in which isothermal condition have been considered, he = tr (He) = He : I, while
Ceff is the effective compressibility factor containing both M and KF , respectively
the Biot and the fluid bulk moduli. Also, the hypothesis of fluid incompressibility
(considering %F constant) leads the incremental fluid fraction variation be defined as:

d (JφF ) = J

(
αdhe +

1
M
dp

)
(5.45)

The above relationship can be further simplified by considering moderate variations
of the fluid, in this way obtaining:

JφF = φ0
F + Jαhe + JM−1 (p− p0) (5.46)

in this way providing a relationship analogous to those of classical linear poroelas-
ticity, as also discussed by [46], in which φ0

F is the initial fluid fraction.
The fluid balance equation already introduced in (5.11) is then rewritten, under

large deformations, in the following way:

dρF
dt

+ J∇x · qF = JΓF , ΓF = κv (pv − p−$ (πv − πι))− κl (p− pl) (5.47)

where qF still denotes the fluid vector flux and ΓF is the source/sink term (fluid
mass supply per unit volume) introduced as a measure of fluid interchange from the
leaky capillaries to the absorbing lymphatic vessels within the interstitial space at the
microcirculation level, modeled as in (5.13). By taking into account the relationship
(5.46), the conservation equation (5.47) becomes:

J

(
α
dhe
dt

+
1
M

dp

dt

)
+ J∇x · qF = JΓF(

α
dhe
dt

+
1
M

dp

dt

)
+ J−1∇X ·QF = ΓF

(5.48)
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where QF = JF−1 qF is the material flux vector (i.e. per unit reference area).
Furthermore, the vector flux qF is supposed to obey Darcy’s law, so that qF =
−υF−1k∇xp, with υF denoting the fluid viscosity and k the intrinsic permeability
symmetric tensor in the current frame of reference. Thus, by further including the
transformations ∇x (·) = F−T∇X (·) and Jk = F k0 FT, the explicit Lagrangian
expression of (5.48) is:(

α
dhe
dt

+
1
M

dp

dt

)
− (JυF )

−1∇X · (k0∇Xp) = ΓF (5.49)

in this way obtaining the second poroelastic field equation for the IFP, with the
operator d (·) /dt representing material derivative. The pressure equation (5.49) still
exhibits the source/sink term ΓF , modeled according to the Starling’s law, reported
in equaton (5.47). Herein, κv is proportional to both the hydraulic permebility of
the blood vessel wall Lv and the vascular surface area per unit volume Sv/V , and it
is here considered to be constant since no effects of vascularization have been taken
into account, so that the vascular surface can be supposed homogeneously distributed
within the overall volume. However, there is a wide Literature ([102]) reporting the
distinction of tumor and healthy vascular permeability. The other conductivity pa-
rameter κl is instead related to the effectiveness of the lymphatic drainage within the
tissues. It is known that within a tumor there are no functional absorbing lymphatics
due to the fact that ordinary lymphatic drainage mechanisms are altered and then
the interstitial fluid pressure rises to values that are proportional to the vascular pres-
sure. The draining lymphatics density tends in fact to decrease in the early stages
mainly due to the action of MDEs over-produced by tumor cells ([214]) and also
tumor cell induced-stress such as tumor overcrowding can cause lymphatic collapse
since the lymphatic vessels pressures is generally low. Moreover, cancer metastatic
cells tend to invade lymphatic vessels and lymphnodes space (however metastasis is
here not treated). The transition from neoplasic tissue to normal tissue typical values
of κl = LlSl/V ,Ll and Sl/V being severally the lymphatic vessel permeability and
the lymphatic surface area per unit volume, is then thought to be affected by the
presence of tumor cells, in this case represented by their fraction φT . Furthermore, it
is assumed the lymphatic conductivity to be locally affected also by the apoptotic cell
fractions, namely φA since the apoptotic material is removed by filtration through
the lymphatic space itself. In particular, for the sake of simplicity, it is assumed that
this parameter decreases linearly with tumor fraction, i.e.:

κl = κl0
(
1−

(
φT + φA − φ0

T − φ0
A

))
(5.50)

being φ0
T and φ0

A the initial tumor and apoptotic fractions, where κl0 is the un-
perturbed lymphatic hydraulic conductivity. In this model, both lymphangiogenesis
and angiogenesis as well as vascular collapse phenomena have not been taken into
account, and thus κv has been considered constant. Moreover, the IFP is assumed to
be initially at equilibrium, and this implies that the reference pressure p0 results to
be p0 = (κv (pv −$ (πv − πι)) + κl0pl) / (κv + κl0),. The other ordinary poroelastic
constants, in accord with the structure of relationship (5.10), have been evaluated by
explotiting the well known expressions also proposed by Rice ([161]) and Cowin ([46])
and are reported below:
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α = 3
B

(ν(u)−ν)
(1−2ν)(1+ν(u))

(5.51)

1
M =

9(ν(u)−ν)
B2E(1+ν(u))

(
1− (ν(u)−ν)

(1−2ν)(1+ν(u))

)
(5.52)

where B is the material Skempton coefficient that tends to unity for saturated
biological material, ν(u) is the undrained Poisson ratio, whereas E and ν are the
tangential Young modulus and Poisson’s ratio.

5.4.7 Nutrients

The poroelastic problem here discussed applied to a biological continuum differs from
the classical known also because the fact that the fluid phase is known to transport
molecular solutes that represent the feeding or the enhancer of the cell population
metabolism, so playing an essential to the growth mechanism their digestion actually
provides the cells of the required energy. It is here imagined that this energy derives
from a single nutrient species dissolved within the fluid because of simplicity. For
this reason, if en is the specific energy provided by a single mole of nutrient species
n (x (X, t) , t), by assuming there is direct proportionality between the burning energy
and the nutrients, i.e. E = enn with en assumed constant, the balance of energy is
obviously linked to that of the nutrients according to:

∫
V (t)
EdV =

∫
V (t)

(
dE
dt

+ E∇x · v
)
dV = E0 + Ψ0 −

∫
V (t)
EconsdV

d

dt

∫
V (t)
EdV =

∫
V (t)

(
dE
dt

+ E∇x · v
)
dV = − d

dt

∫
V (t)
EconsdV

d

dt

∫
V (t)

ndV =

∫
V (t)

(
dn

dt
+ n∇x · v

)
dV = − d

dt

∫
V (t)

∫ t

t0
nΓconsdτdV

d (Jn)

dt
= −JnΓcons, Γcons = χγ

(
φγ − φγ0) , ∀V (t) ⊆ B

(5.53)

In (5.53) a constant total energy E0 and a constant boundary flux Ψ0 have been
introduced, whereas Econs represents the aliquota of energy consumed, which is given
by the time integral of a consumption term, here modeled as a first order reaction in
terms of the nutrients n through a consumption rate Γcons depending on the tumor and
healthy cells volumetric fractions (discussed in the subsequent section and denoted
respectively by the subscripts γ = T and γ = H), in a way to have Γcons (t = 0+) = 0.
In addition, the overall quantity of nutrient must account that the latter are dissolved
in the fluid phase, so that it is hypothesized that the moles of nutrients n depend
simultaneously both on a concentration function, say η, and the fluid fraction φF . By
substituting n = ηφF into the last of (5.53) one has:
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d (Jn)

dt
= −JnΓcons

d (JφF η)

dt
= −JφF ηΓcons

(JφF )
dη

dt
+ η

d (JφF )

dt
= −JφF ηΓcons

(5.54)

in which the quantity JφF is then replaced with relationship (5.46).
The poroelastic equations above introduced, precisely given by equations (5.42)

and (5.49), also enriched by the presence of the nutrients through equation (5.54),
are naturally coupled with the evolution equations describing the behaviour of the
solid matrix, modeled as a heterogeneous phase in which the main constituents are the
tumor cells, the healthy cells and the extra-cellular matrix. Their interlaced activity,
promoted/inhibited by both the environmental conditions in terms of available space
and mechanical stress as well as by the presence/lack of available nutrients carried by
the fluid phase, is responsible of the growth of the heterogeneous tissue. This both
permits to define the growth strain intervening in the balance equations presented
without prescribing any growth function, and moreover causes the rise of the residual
stresses imprisoned within the tissue structure that have been recently experimentally
observed for example by [192]. The next section is thus dedicated to the derivation
of these evolutionary laws, by translating the cell-cell and the cells-ECM interaction
occurring at a micro-scale level to the continuum macro-scale with the help of a
multiphasic approach.

5.4.8 Solid Species Equations

The recent Literature provides formulations on the mechanics of solids with a growing
mass establishing a constitutive connection between the evolution equations describing
the mass exchange and the kinematic related strain, the most of these taking into exam
a homogeneous body undergoing the growth process, see e.g. the review article by Kuhl
([118]), or the extensive analysis by Lubarda and Hoger ([127]), or even the outline
involving multiple growing constituents suggested by Schmid et al. ([176]). Also, a
mixture theory-based formulation of tissue interstitial growth to describe the change
in mass of a solid heterogeneous body even in the light of a poroelastic approach has
been recently illustrated by Cowin and Cardoso ([49]). Here, the problem focuses on
the definition of the interspecific interactions among the species (introduced above)
which can be recognized in the growth process of a multicell tumor spheroid.
Therefore, by considering the RVE of a body in a generic configuration k, with the
aim of defining a suitable growth strain for the porous body with multiple biological
constituents, the following useful quantities taken into account within the text sections
are reported ([176]):

• the total density ρ(k):

ρ(k) =
dm(k)

dV (k)
(5.55)
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• the partial density for each constituent γ:

ργ
(k) =

dm
(k)
γ

dV (k)
(5.56)

• the true density for each constituent γ:

%γ
(k) =

dm
(k)
γ

dV
(k)
γ

(5.57)

• the constituent volume fraction φ(k)γ defined as:

φ
(k)
γ =

dV
(k)
γ

dV (k)
(5.58)

By combining equations (5.56), (5.57) and (5.58) it immediately follows that:

ρ
(k)
γ =

dm
(k)
γ

dV (k)
=
dm

(k)
γ

dV
(k)
γ

dV
(k)
γ

dV (k)
= %

(k)
γ φ

(k)
γ (5.59)

whereas the total density can be expressed as:

ρ(k) =
dm(k)

dV (k)
=

1
dV (k)

∑
γ

dm
(k)
γ =

∑
γ

dm
(k)
γ

dV (k)
=
∑
γ

ρ
(k)
γ =

∑
γ

%
(k)
γ φ

(k)
γ (5.60)

By means of relation (5.59) the change of density expressing the densification (or
conversely the the “rarefaction”) between two different body states (h) and (k) can
be easily computed for the single constituent

ρ
(k)
γ

ρ
(h)
γ

=
%
(k)
γ φ

(k)
γ

%
(h)
γ φ

(h)
γ

(5.61)

as well as referring to the total change of density if (5.60) is employed, i.e.

ρ(k)

ρ(h)
=

∑
γ
%
(k)
γ φ

(k)
γ∑

γ
%
(h)
γ φ

(h)
γ

(5.62)

The hypothesis of constant true density implies that equation (5.62) can be rewrit-
ten for a body state k with respect to the initial configuration as:

ρ(k)

ρ0 =

∑
γ
φ
(k)
γ∑

γ
φ0
γ

(5.63)

with k denoting for the application in exam either the growth path which drives
the body from the reference B0 configuration to the grown configuration Bg or the
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adaptative (elastic) deformation path towards the current configuration at time t,
namely Bt. It is worth noting that (5.63) implies that the body grows without
keeping a constant total density along the growth/resorption path and thus the total
solid mass exchange will obviously results into the combined densification and volume
effects:

dm(k)

dm0 =
ρ(k) dV (k)

ρ0 dV 0 =

∑
γ
φ
(k)
γ∑

γ
φ0
γ

dV (k)

dV 0 = Jk

∑
γ
φ
(k)
γ∑

γ
φ0
γ

(5.64)

where eq. (5.63) together with condition (5.71) have been used, while Jk =
dV (k)/dV 0 = det(Fk) represents the volume change given by the Jacobian of the
deformation gradient associated with the mapping toward the configuration k.
By focusing on the specific problem, the solid constituents involved in the growth
process, described in the current configuration by their volumetric fractions φγ on a
continuum scale, are namely: the tumor and the healthy cell species, namely T and
H, the extra-cellular phase which is denoted with M , whereas the apoptotic cells
fraction is indicated by A. As anticipated, the way of describing their rate is strictly
guided by their phenotype –in the case of the cells– and by the way the cells interact
with the environment, for the ECM. Here, these interactions are modeled through a
modified Volterra-Lotka (VL) model, largely used in Literature to describe cell-cell
interactions ([75, 99, 108, 124, 125, 212]), in which the inter-species coefficients are
not constants as in the classical population models assuming constant feeding and
free space, but instead vary as an effect of the changes of the environment in terms
of mechanical sensing and nutrient supply. It is in fact reasonably assumed that cells
do not compete each other as in a pure predator-prey logic, rather they compete for
the same resources and for the shared space. In addition, the mutual inhibiting inter-
species parameters are thus related to the weight that each species exerts on the other
one, modifying the growth rates through non zero competition terms. The evolution
equations for the solid mass constituents are obtained by imposing the conservation
principle and also accounting that the solid masses are related to the volume elements
through the equation dmγ = %γ φγ dV . Therefore, by considering the current volume
fractions at time t one has:

dmγ = dm0
γ + dmgen

γ

%γ φγ dV = %γ φ
0
γ dV

0 +

∫ t

ti

%γ φγ Γγ dV dτ

d

dt
(Jφγ) = J φγ Γγ

(5.65)

that represents the Lagrangian form of conservation of mass for the generic con-
stituent γ, where a suitable intrinsic source and sink term Γγ has been introduced,
which explicitly contains interaction inter-specific terms as well as other parameters
that directly influence the growth dynamics. The rates Γγ in equation (5.65) are here
reported:
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

ΓT = γT (1− αTTφT − αTHφH − αTMφM )− δT
ΓH = γH (1− αHTφT − αHHφH − αHMφM )− δH
ΓM = (βTφT + βHφH)φ−1

M − δM (αMTφT + αMHφH)

ΓA = δTφT + δHφH − δAφA

(5.66)

where, to take into account the mechanically-activated processes occurring during
growth, the coefficients γT , γH and αIJ appearing in the VL rates (5.66) inserted into
equations (5.65) are thought to be dependent both on the mechanical stress, analo-
gously to the linear model. However, provided the considerations already discussed in
the linear case, there is here the need to specify what stress measure has been adopted
for expressing cells mechano-sensing. To do this, it is supposed that cells rates are
affected by the spherical part of the Piola-Kirchhoff stress in the intermediate con-
figuration Bg in agreement with [127], which is here obtained as P sphe = tr (Pe) /3,
with Pe = J−1

g FT
e PFT

g . This environmental elastic stress directly acts to modulate
the intrinsic proliferation rates of the cell species.
In addition, the coupling with the fluid φF that had been postulated in equation
(5.12), has been here opportunely replaced by the more specific coupling with nutri-
ent concentration delivered by the interstitial fluid. This implies that cells growth rate
is assumed to be proportional to the nutrient concentration η in the way that the rate
is maximum when nutrients are abundant and decreases in case of their depletion.
In particular, a standard Michaelis-Menten type dependence has been chosen, identi-
cally for both the cells for the sake of simplicity. Furthermore, constant apoptosis is
assumed for healthy cells, whereas tumor apoptosis peaks where nutrients are absent
and decreases to a minimum value for plenty nutrient concentration, according to the
fact that tumor cells are known to evade apoptosis.
Hence, given that the hydrostatic stress affects the intrinsic tumor cell growth rates
γT and γH in a way such that if P sphe is less than a critical threshold value P sphcr ,
and assumed that cancer cells and healthy cells in the quiescent state look practically
asymptomatic ([158]), it is thought that the respective intrinsic growth rates reduce
to a common low growth rate, say γQ. Dually, if the critical stress value is overcome,
growth rate approaches abnormal values typical of cancer cells. All these considera-
tions lead to re-write the functional forms for the tumor and healthy cells intrinsic
rates γT and γH appearing in equations (5.66)1 and (5.66)2:

γK = γK0

(
η/η0

aη + bη η/η0

)
SK(∆P ) (5.67)

with aη and bη being the coefficients of the Michaelis-Menten term related to the
nutrients consumption and η0 a baseline nutrient concentration. These coefficients
have been determined by observing the variations of intrinsic growth rates of both
the cells species on the basis of the nutrients availability. In fact, a slight dependence
of the cells growth capability upon the nutrients abundance within the environment
has been preliminarily studied. Specifically, by looking at Fig. 51, an increase of the
replicating potential of both in vitro cultured MiaPaCa-2 cells and MDA.MB-231
cells occurred by augmenting the quantity of FBS (Fetal-Bovine-Serum) in the cul-
ture medium. For the sake of simplicity, this particular feature has been supposed to
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likely transpire also in vivo on the basis of the nutrients accessibility.

Figure 51: (A,B) Growth curves of cells species obtained in vitro by varying the percentage
of Fetal Bovine Serum of the medium. (C,D) Cells vitality measurements in
normal medium. (E,F) Image of the in vitro cell cultures. (G) Construction of a
suitable growth curve describing the functional dependence of the growth rate
upon the nutrient availability.

Furthermore, these curve let to obtain experimentally a mean estimation of the
intrinsic growth rates of the cell lines. In fact, from the trends above illustrated, the
MiaPaCa-2 and the MDA cells mean doubling times are respectively 24 hours and 35
hours. With reference to the stress-dependent factor in equation (5.67), the form of
relationship appearing in equation (5.16) has been preserved, with the sole difference
of substituting the Cauchy stress of the linear case with the nonlinear stress Pe:

SK(∆P ) =
γQ
γK0

+

(
1−

γQ
γK0

) exp
(
χP

(
P sphe − P sphcr

))
1 + exp

(
χP

(
P sphe − P sphcr

)) (5.68)

where γK0 = T−1
K ln 2 and K = {T,H}, γK0 being the intrinsic growth coefficient

depending upon the cells’ doubling time that is specific for the cell line under exam.
The quiescent metabolic rate γQ is a reduced metabolic coefficient resulting from the
fact that quiescent cells arrest their division process but not their activity, because
they maintain a basal metabolic rate in presence of nutrients ([54]) until optimal en-
vironmental conditions occur. Thus, it is assumed that γQ = εQγK0, with εQ being
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an appropriate reduction coefficient.
The coefficients αTM and αHM are chosen to be constant and represent the weight the
ECM exerts in terms of restriction of available space. The cross terms αHT and αTH
are instead a measure of the mutual inhibition, while the coefficients αTT and αHH
are self-competition which wheight the influence that the cells can exert on their sim-
ilar and account for the carrying capacity of each cellular species. These coefficients
can be likely considered constant, in virtue of the fact that tumor quiescent cells are
supposed to keep their aggressive mutagenic phenotype against normal cells, like their
intimate nature was just hidden during quiescence. All these considerations let to de-
scribe a sufficiently complex population dynamics with respect to the classical one,
being the game of interaction affected by the environmental parameters as well as
there possibility of changing the strategy through the modulation of the the intrinsic
rates in order to find the fittest way to survive. On the other hand, in this first for-
mulation the variability is in the rate and there is no way of physically discriminating
proliferating cells from quiescent cells, and also necrosis as well as angiogenesis have
not been modeled, these aspect certainly introducing higher degree of complexity to
the equations.
The third rate in (5.66) simply represents the net balance of ECM in which bio-
chemical differences between healthy and tumor ECM components are neglected and
therefore the resulting overall ECM fraction, φM , dynamically depends on the synthe-
sis and Matrix Degrading Enzymes (MDEs) processes promoted by cells through the
production coefficients βT and βH and the lysis coefficients αMT and αMH . In conclu-
sion, following an analogous reasoning, the loss rates δK are assumed to be dependent
on the nutrients deficiency, in particular their lack accentuating the aggregates rate
of apoptosis:

δK = δK0
cη

cη + η/ηA
(5.69)

cη being a proper function parameter and ηA being a critical nutrient concentration
above which apoptosis rate rises.

5.4.9 Definition of the growth strain

The solid body is supposed undergoing volumetric isotropic growth, leading to a
diagonal mapping between the reference configuration and the grown configuration,
so that the isotropic growth stretch for growth strain tensor (5.21) can be written as:

dxg = Fg dX, Fg = λg I, λg = J
1
3
g (5.70)

In searching a suitable expression for the volumetric growth it is taken into account
that the body under exam is here thought as a porous heterogeneous continuum made
of a certain number of solid constituents with a perfusant filling the interstitial cav-
ities, capable of flowing through the latter. The recent Literature provides several
formulations on the mechanics of solids with a growing mass establishing a constitu-
tive connection between the evolution equations describing the mass exchange and
the kinematic related strain, the most of these taking into exam a homogeneous body
undergoing the growth process, see e.g. the review article [118], or the extensive anal-
ysis by [127], or even the outline involving multiple growing constituents suggested by
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[176]. Also, a mixture theory-based formulation of tissue interstitial growth to describe
the change in mass of a solid heterogeneous body even in the light of a poroelastic
approach has been recently illustrated in [49]. Here, the problem focuses on the defini-
tion of the interspecific interactions among the species (introduced above) which can
be distinctly recognized in the growth process of a multicell tumor spheroid. Along the
growth path of the deformation process the solid species accrue or reasorb enhanced
by the nutrients contained within the fluid phase, the growth then determining the rise
of an adaptive solid strain that, together with the action of a pore-pressure field, also
drives the perfusion of the fluid, whose characterization is here accounted by means of
the poroelasticity approach. Any increase/decrease of fluid volume due to inflow/out-
flow can in fact be considered a poroelastic effect, like a "sponge-like" swelling which
follows the skeleton deformations. Moreover, by focusing on the specific application,
for example, although the fluid is doubtless an enhancer of the growth of the cells
populations inhabiting the solid, is not a self-reproducing, i.e. growing, constituent
and also it is not directly consumed by cell themselves because cells feeds the nutrients
dissolved within the fluid and its movement is exclusively an elastic effect. For these
reasons, the growth process is assumed to be entirely the responsibility of the solid
phase, and so it is assumed that the volume change can be completely determined by
the solid growth under the assumption of a dense structure (e.g. by supposing the solid
phase to be present at each material point). In a completely opposite way, the solid
constituents mass achieved at the end of the growth process is assumed to preserve
on the elastic adaptation path. In particular, the partial masses of the constituents
in the grown configuration and in the current configuration are assumed to coincide.
This hypothesis is stronger than assuming an unchanging overall mass, because the
latter could potentially keep the same as a result of the partial masses changes which
in some way balance each other. Thus, to sum up the speech, by indicating by S the
set of solid constituents (i.e. the tumor and healthy cells and the ECM constituents)
and with F the fluid one, the two following hypotheses are introduced:

• for γ ∈ S, dm0
γ 6= dmg

γ and dmg
γ = dmγ

• for the fluid species, dm0
F = dmg

F and dmg
F 6= dmF .

In the framework of multiple configurations description, it is likely to introduce the
following simplifying hypothesis: all the solid constituents are characterized by the
same constant true densities (e.g. the constituent unit mass per unit volume of the
constituent itself), that is

%
(k)
γ = %, ∀γ and for each configuration (k). (5.71)

This hypothesis is supposed reasonable both because the biological constituents
have very similar true densities each other and the latter does not significantly change
either after a growth process or in response to a mechanical insult, so giving back
the fact that the change of density depends exclusively on the volumetric rearrange-
ment (i.e. on the fractions) of the constituents after volumetric growth or after a
mechanically-induced volumetric change. By using formula (5.57), under the hypoth-
esis of constant true density for the solid constituents , one has that dm(k)

γ = % dV
(k)
γ

for each configuration (k) of the deformation process. In this way, by also account-
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ing fluid incompressibility in what follows, the partial mass gain for each constituent
results to coincide with the normalized volume change:

ξ
(k)
γ =

dm
(k)
γ

dm0
γ

=
% dV

(k)
γ

% dV 0
γ

=
dV

(k)
γ

dV 0
γ

, ξ0
γ = 1∀γ (5.72)

The total volume change due to growth is then obtained as

Jg =
dV g

dV 0 =
∑
γ

dV gγ
dV 0 =

∑
γ

dV gγ

dV 0
γ

dV 0
γ

dV 0 =
∑
γ

ξgγ φ
0
γ =

∑
γ

dmg
γ

dm0
γ

φ0
γ (5.73)

herein the hypotheses made about the partial masses lead to:

Jg =
∑
γ

dmg
γ

dm0
γ

φ0
γ =

∑
γ∈S

dmγ

dm0
γ

φ0
γ + φ0

F (5.74)

and also ascertaining that, by mean of equations (??) and (??) and taking con-
stant true density

dmγ

dm0
γ

=
ργ dV

ρ 0
γ dV

0 =
% φγ dV

%φ 0
γ dV

0 = J
φγ
φ 0
γ

(5.75)

After that it follows that:

Jg = J
∑
γ∈S

φγ + φ0
F (5.76)

By exploiting the fluid saturation condition (also used to define poroelastic rela-
tionships) one gets

Jg = 1 +
∑
γ∈S

(
Jφγ − φ0

γ

)

λg =

1 +
∑
γ∈S

(
Jφγ − φ0

γ

) 1
3 (5.77)

The above result can be expressed in its rate form by considering the mass conser-
vation principle (5.65), in this way obtaining a comprehensive balance equation for
pure volumetric growth:

dJg
dt

=
∑
γ∈S

1
ρ0
γ

d

dt
(Jργφγ) =

∑
γ∈S

d

dt
(Jφγ) = J

∑
γ∈S

φγ Γγ = Jgrg (5.78)

in which rg = Je
∑
γ∈S

φγ Γγ is a net volumetric generative term in the current con-

figuration and referred to the grown configuration by means of the jacobian Je.
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•Remark:
The derived growth induced strain (5.77) let to write the deformation term by means
of the Hencky strain measure, say:

hg =
1
3 ln (Jg) =

1
3 ln

1 + J
∑
γ∈S

φγ −
∑
γ∈S

φ0
γ

 (5.79)

In case of small strain3, this expression reduces to:

εg =
1
3
∑
γ∈S

(
φγ − φ0

γ

)
= γr g (5.80)

that is the relationship that had been used in the linear model (see equation (5.14)).

5.4.9.1 Stresses and Growth in the nonlinear MCTS

The hypothesis of a spherically symmetric problem is here maintained by writing all
the variables of the problem as a function of the sole radial material coordinate R
in a space-time frame {R, t} ∈ R+ ×R+. More specifically, the variables involved
reduce to: the radial displacement u, the interstitial fluid pressure p, the nutrient
concentration η and the solid constituents volume fractions φγ denoting the tumor
cells, the healthy cells, the apoptotic cells and the ECM fractions. Then the MCTS
can be modeled as a multiphasic spheroid –immersed in a host multiphasic crown–
in which the interaction between the biological constituents (at the microscale) can
be described at the continuum scale by means of their volumetric fractions, the solid
ones constituting the porous tissue network, as sketched in Fig. 52. In particular,
R ranges from an internal inclusion with radius Ri → 0+ to an external radius Re
(where mechanical tractions and boundary condition are imposed), while the time t
starts at a conventional starting time ti = 0+, by setting a three weeks simulation
for both the theoretical case and the MiaPaCa cells, compatibly with the duration of
the experiments regarding this cell-line, while, because of the different experimental
protocol adopted for the MDA.MB-231 cell-line, numerical solutions were calculated
up to 50 days. The simulations, numerically performed by means of the NDSolve
package furnished by the computational software Mathematica®([210]), consider the
growth of a tumor nucleus with a given initial radius equal to a infiltration at the
time ti and surrounded by the external host crown with Re.

3 This case highlights how the hypothesis of small strain, in order to make the current configuration
coincide with the initial one, has to be separately valid for both the total strain and the growth strain.
In other words, it is not possible to provide a large growth strain and combine it with a suitable
elastic strain in order to obtain small total deformations.
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Figure 52: Sketch of the mathematical modeling of the MCTS. The focus is on the different
scales in order to highlight the roles of the several constituents in determining
the modeled phenomena at the tissue scale.

The entire system of PDEs describing the problem illustrated in Fig. 52 then reads:

∂PRR
∂R + 2

R (PRR − PΘΘ) = 0

α dhe
dt + 1

M
dp
dt −

kF
J R2

∂
∂R

(
R2 ∂p

∂R

)
= ΓF

φF
dη
dt + η

(
α dhe

dt + 1
M

dp
dt

)
= −φF ηΓcons

1
J
d(JφT )
dt = φT ΓT

1
J
d(JφH )
dt = φHΓH

1
J
d(JφM )

dt = φMΓM

1
J
d(JφA)
dt = φAΓA

(5.81)

in the unknown variables {u, p, η, φT , φH , φM , φA}.
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Initial and Boundary Conditions. The initial conditions at ti = 0+ have been as-
signed by setting a constant ECM initial fraction φ0

M and a baseline nutrient con-
centration η0, while the cells volume fraction distribution have been determined by
estimating the tumor nucleus initial radius a from the number of tumor cells injected
Nc (approximately 2 × 106 cells in the experiments conduced) as Rc

(
Nc P

−1
f

)1/3
,

Rc representing the tumor cell radius ([121]) and Pf = 0.68 being a packaging
factor calculated under the simplifying hypothesis of rigid spheres. The given ini-
tial distribution within the observed area is supposed to be φ0

T = φ̃TΠ (R), with
Π (R) = exp(−R/

√
2a)2 being a chosen starting profile and φ̃T its amplitude rep-

resenting the tumor cells fraction within the volume. In an opposite manner, the
healthy cells fraction distribution results φ0

H = φ̃H (1−Π (R)), while null apoptotic
fraction is also assigned. Furthermore, the saturation condition let to automatically
write φ0

F . The IFP is set at its reference value p0 and also null initial displacement
u have been supposed. With reference to the boundary conditions, no internal and
external fluxes respectively towards the inner inclusion and the skin overlying layer
have been assigned, i.e. ∂p/∂R = 0 both for R = Ri and R = Re. In addition, the
internal inclusion is thought to be motionless, i.e. u = 0 at R = Ri for each time. At
the external boundary R = Re, different illustrative cases of theoretical and practical
interest have been analyzed. In particular, the simulations performed refer to:

• a stress-free condition, simulating an unconfined growth case, i.e. σrr|Re = 0.

• a stress-prescribed condition, to analyze the effect of a (constant) environmen-
tal pressure on the growth, to meet recent experimental evidences according
to which mechanical stress impairs tumor spheroids proliferation ([137, 138,
198]). Interestingly, theses studied in viro showed that an isotropic environmen-
tal stress ranging from 500 Pa up to 10 kPa can actually reduce cell proliferation
and volume expansion, and showed that a compression between 2 and 5 kPa
is sufficient to reduce the spheroids volumes (with reference to the unstressed
spheroid growth). Therefore, in order to analyze the sensitivity of the model at
hand in terms of the influence of the stress conditions on the growth of the tu-
mor spheroid, a confined problem has been also studied, by applying a constant
confining compression σrr(re) = −pext.

• to find a correlation with the experimental model in the most faithful man-
ner, it is finally imagined that, at the external boundary, the growing MCTS
feels the contact with a skin-like layer. This hypothesis have been introduced
in order to mimic the possibility of the growing spheroid of exchanging forces
with an overlying elastic layer, also directly observing that the animals skin
appeared to be more tensed around the grown tumor (see Fig. 53). Therefore,
assuming that the deformation process is entirely governed by the evolution
of the spheroid, that consequently provokes also the elastic stretching of the
skin-like layer, and that the latter layer exhibits a linear constitutive behavior
with the true strain, the continuity of the radial Cauchy stresses at R = Re,
i.e. σrr|Re = σskinrr |Re as well as the coincidence of the hoop stretches, that
is λΘΘ|Re = λskinΘΘ |Re , are then required. If the skin layer is assumed nearly
incompressible, one can finally write a leakage-like boundary condition, by im-
posing the continuity of the normal stresses. In terms of the nominal stresses it
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Figure 53: Detail showing the stretched skin layer surrounding the grown tumor in contrast
with the more lapse and wrinkled skin appearing in the other “unperturbed”
anatomic regions.

results PRR|Re = −4Gs
(
1 + u (Re)R−1

e

)2 ln
(
1 + u (Re)R−1

e

)
, where Gs is the

skin shear modulus.

5.4.10 Numerical solutions of the MCTS model

The modeling of the here presented Volterra-Lotka dynamics between tumor and host
fractions let to get knowledge about the tumor aggressiveness in terms of the tumor
fraction growth, i.e. of its amount and invasion level within the control volume. As
shown in Fig. 54, the result of this competition leads the tumor cells be prevailing into
the environment, consequently occupying the most of the available space and thus au-
tomatically inhibiting the growth of normal cells. In particular, with reference to the
unconfined growth case, tumor invasion appears highly aggressive: the combination
between growth dynamics and free-stress condition, which also implies free-expansion
capability, abet the MCTS to invade almost all the available space, causing the host
tissue fraction pauperization. By referring to a stress-prescribed case, the combination
of the VL growth kinetics with mechano-sensing processes makes the MCTS aggres-
siveness effectively reduces in terms of invasiveness radius and presents enhanced
apoptosis, in good agreement with the aforementioned experimental works.
Tumor species invasion and stretch together determine the expansion of the tumor

volume and consequently, the push of the external environment. This interaction
is reasonably accompanied by the development of mechanical forces at the interface
region. By looking for example at the unconfined case, one can see that, at three weeks,
the most of the environment has been invaded by the tumor species, which forms a
compact hyperproliferative spheroid of about 9 mm in radius, as shown in Fig. 55, thus
almost entirely pervading the initial healthy volume. Furthermore, Fig. 55 additionally
shows the presence of a non zero net (e.g. deviatoric, in the particular case) stress
arising at the tumor/host interface, which well represents the previously hypothesized
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interface exchange of mechanical stress. The presence deviatoric stress peaks also
suggests that growth –that is a dissipation process– could locally be associated to
plastic phenomena, related to a reorganization of the cells and compression in the
surrounding tissue. Moreover, as also suggested by Ambrosi et al. ([9]), this interface
stress could be also related to the formation of a sort of peri-tumoral capsule, since
the motion of the expanding tumor spheroid drags and compress the communicating
ECM layers.
The growth term and the fluid pressure actually combine with the effective stress

in order to express the solid stress field that builds up into the MCTS, which plays a
non-negligible role in many phenomena related to the growth of the multicell spheroid,
from the influence that mechanical stress exerts on tumor expansion to the adverse
importance in determining central necrosis processes, vascular collapse and represent-
ing a stress-induced drug-barrier. By focusing on the analysis of these stresses (Fig.
56), it emerges that its hydrostatic stress (Fig. 56B) is predicted to be almost com-
pletely compressive in the inner spheroid due to the adverse regime of hyperplasia, to
which is related the almost completely hydrostatic stress distributions (see Fig. 56A
and C). As anticipated, the latter stresses also represent a mechanical barrier for the
perfusants to enter the interior of the tumor, an hypothesis largely put forward in
literature, according to which tumor hypertension and high intratumoral IFP (Fig.
56D) can actually compromise the interstitial transport of macromolecules towards
the tumor interior and cause a diversion of biological fluids towards the periphery due
to the pressure drop at the tumor/host boundary. The aggressive growth of the in-
ternal tumor spheroid also determines the push of the surrounding host crown which
experiences a positive hydrostatic stress at the tumor-host interface. At the tumor
front, where proliferation occurs, a quick rise of hydrostatic stress can be in fact ob-
served, which settles on values (positive, in this case) accounting the thrust of the
internal volumetric growth as well as the effects of the absence of an external confine-
ment and actually indicating a deformation of the surrounding tissue. Also the hoop
stress shows a similar behavior, see Fig. 56C, and clearly indicates the accumulation
of the stress necessary for the compatibilization of the tissue growing elementary vol-
umes during the growth process. The storage of this compressive eigenstress, here
exclusively determined by the inner growth dynamics, may be manifested in different
ways, for example by acting on the tissue integrity, in order to catch the effects of
the its sudden release. For instance, recent literature works analyze the accumulation
of residual stress in the tumor spheroid interior (see e.g. [191] and [192]) by engrav-
ing the explanted tumor spheroid and estimating the growth-induced stress stored
within the tissue from the opening of the slit, as well as by observing the bending of
the cut interfaces which then would result no more compatible each other along the
discontinuity surface.
In this sense, a less invasive way to determine the accumulation of the growth associ-

ated stress could be certainly more effective in order to also account the time evolution
that accompanies the accrual of the in situ residual stresses. A direct measurement
would also consider the compression aliquota induced by the presence surrounding
tissues (which instead disappears when the tumor is removed, causing a partial re-
laxation of the tissue), this representing a further pre-stress that would contribute to
the stress-related unfavorable phenomena previously described. In addition, a direct
experimental in loco estimation, that could be efficiently supported by the present the-
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oretical results, can have a key role in modulating the ad hoc design of mechanically
driven drug delivery therapies. In fact, one could also think to model a further coupling
in order to include the effects of therapeutic agents on cells proliferation. This could
be likely predicted, for example, by explicitly including in the present evolutionary
model the alterations of cells metabolism due to the (direct) interaction with drugs,
modeled as a further chemical antagonist species into the VL dynamics. Moreover,
the recent literature deeply emphasizes in understanding the role of the mechanical
interaction between the growing tumor spheroid and a (stressed) surrounding environ-
ment, focusing both on the role of stresses exerted by the tumor grown in a stressed
environment (see for example [83]) and on the possibility of inhibiting spheroids prolif-
eration potential as an effect of applied mechanical stresses, see e.g. [137, 138, 198]. As
seen, results shown (assuming pext 2 kPa and 3 kPa) are effectively able to capture a
mechanically-induced reduction of the tumor growth of the spheroid in a constrained
(compressed) environment, see the bottom panel Fig. 54. Accordingly, the stresses
are obviously affected by the external pressure. In particular, 57 (here referred to
the case pext = 2 kPa) shows everywhere compressive distributions along the radius,
with higher internal compression and weaker stress gradients at the interface. In fact,
the host tissue practically feels a hydrostatic compression, that equals the external
confinement. As a consequence, the external pressure transparently transfers to the
tumor boundary, where Cauchy stresses start to increase towards the tumor center,
approaching in this case values of about 5 kPa and thus slightly higher than both the
external loads and to the corresponding stresses in the unconfined case (Fig. 56).

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



5.4 the nonlinear mcts model 163

Figure 54: Tumor cells fractions versus host tissue fraction evolving at different times. (top)
Unconfined growth case (middle, bottom) Stress prescribed cases, including
apoptotic fractions. Pressure applied were 2 kPa and 3 kPa, respectively.
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Figure 55: Invasion of the tumor spheroid in the healthy region and representation of the
associated non-zero interface stress
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Figure 56: Evolution of the Cauchy stress components at different times. A. Radial stress.
B. Hydrostatic stress. C. Circumferentisl stress. D. Interstitial Fluid Pressure

Figure 57: Stress of the spheroid when a compression of 2 kPa is applied. A. Radial stress.
B. Hydrostatic stress. C. Circumferentisl stress. D. Interstitial Fluid Pressure
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5.4.11 Comparison of theoretical and experimental results

Focusing on the third set of simulations, the main results, emerging from the numerical
solution of problem (5.81) when matched with experimental observations, certainly lie
in the possibility of predicting the growth of the tumor species –the MiaPaCa-2 and
MDA.MB-231 cell lines in the case at hand– and thus also obtaining the level of inva-
sion of the tumor in the host tissue. In fact, by referring to Fig. 59, it can be seen how
the tumor internal phase grows in time by consequently occupying a significant por-
tion of the available domain. More specifically, MiaPaCa-2 cell line seems to growth
and invade host tissue faster than the breast cancer counterpart. In fact, approxi-
mately 7 mm are achieved in a three-weeks period, while MDA.MB-231 cell line has a
slightly greater variability, but averagely implies 40 days to achieve the same dimen-
sions. This also implies that MDA tumor cells interior are progressively more deprived
of nutrients because they result to be in a hypoxic region longer than pancreatic cells
and also feel constant compression in such region: as a consequence, the percentage of
apoptosis in the tumor inner layers is more enhanced, and this metabolic/stress-driven
alteration actually makes the MCTS exhibit a non-proliferative core surrounded by a
proliferating ring of tumor MDA cells (see e.g. 59). This results in complete agreement
with the experimental evidences according to which mechanical stress accumulation
produces enhances central apoptosis, with the MCTSs de facto exhibiting proliferat-
ing cells rings in the peripheric regions which have been also experimentally observed
in the present Literature, see e.g. the work by Cheng et al., [38] (however, proprietary
hystological analysis to evaluate caspase-3 activity should be properly conducted in
order to find an exact correlation with the theoretical model outcomes).
This can be interpreted as the overall result of both the inter-specific VL dynamics

explicitly included in the model between the tumor and the host tissue species and the
effect of the other environmental variables affecting the growth process, as well as the
external conditions to which the body is subjected which derive from the biological
structures in contact with the tumor. In particular, from Fig. 59 information about
the composition of the phases (in terms of percentage of cells, ECM and fluid) as
well as a quantitative observation of the invasiveness can be readily derived. Also, the
theoretically predicted growth curve related to the time progress of the tumors radius
seems to be in good agreement with the experimental data, in terms of experimentally
measured dimensions; the complete set of experimental measure is reported to Table
4, while the comparison between numerical simulations and experimental findings is
synthetically shown in Fig. 60.
As previously discussed, the growth of the MCTS is connected the genesis of in

situ internal stresses. These stresses account for both the internal pressure exerted
by the growing mass and the elastic compatibilization of the grown volume, as well
as the elastic deformation because of the external mechanical stimuli. In absence
of external loads, the stress within the body is expressively related to the internal
inelastic deformation, i.e. it is the expression of the mechanical force exerted by the
growing tissue elements. In the present case, the numerical results serve also the
introduction of the elastic confinement aimed to simulate the tension exchange with
the skin layer and the spheroid will thus project an external radial reactive tension,
which is not constant as in the previous section, but its magnitude evolves with
the tumor development (in this sense, it is more realistic to think this mechanical
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Figure 58: Tumor fraction vs host fraction in MiaPaCa-2 (top) and MDA.MB-231 (bottom)
cell lines

interaction as a progressively increasing reaction rather than a constant pressure, in
terms of consequences on tumor spheroid growth kinetics). Fot both the cells, the
analysis of the radial stresses show the progressive accumulation of a slightly variable
radial compression which is quantitatively more enhanced (and uniform) in the tumor
region. The combination of radial and circumferential solid stresses –the case of MDA-
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Figure 59: Cancer cell spheroid (red) showing that proliferative zone (green) concentrates
towards the periphery, while proliferation is suppressed in the regions of higher
mechanical stress, where apoptosis is induced. Image from Cheng et al. [38],
doi:10.1371/journal.pone.0004632.g003.

MB231 cells is illustrated in Fig.61– gives an internal hydrostatic state of stress that
attains, in this case, a value of 8 kPa (about 60 mmHg) inside the tumor and slightly
decreases toward the periphery, where the proliferation front advances because of the
minor resistance. Also the host surrounding crown is consequently radially constrained,
and it is additionally compressed by the external increasing reaction.
The circumferential Cauchy stresses in Fig.61 show a quantitatively similar trend to

the radial stresses in the inner layers; however, a sharper gradient occurs at the inter-
face at each time, provoking also peri-tumoral circumferential positive tensions before
relaxing and re-approaching compressive values due to the host external confinement.
Also, MiaPaCa-2 tumors exhibited very similar behavior in terms of mechanical stress,
as shown in 62, with internal compression equal to approximately 4 kPa.
Importantly, it is widely accepted ([191]) that residual stress are a general feature

of avascular tumor spheroids, i.e. human tumors accumulate growth-induced mechan-
ical stress in an analogous manner with respect to the animal models here presented.
Accordingly, this enhanced approach combining VL dynamics, hyperelasticity of the
biological samples under exam and fluid contribution are able to reproduce the most
of the stress characteristics that Jain et al.([191]) have described in their works. They
in fact demonstrated that accumulated solid stress ranged in the interval 2-19 kPa
and presents circumferential distributions with intratumoral compression and periph-
eral tensions. In the case just discussed, the presence of the host tissue crown and the
external confinement would dimish the latter feature, but it can be somehow restored
–in order to investigate the mechanical properties of the tumor itself– by virtually
“explanting” the tumor spheroid, then depriving it of the external layers and com-
pression. Moreover, it could be pairwise interesting to provide the time-evolution of

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



5.4 the nonlinear mcts model 169

Figure 60: Comparison between the experimenatal size measure and the predicted spheroid
redius development obtained from the numerical simulations. (top) MiaPaCa-2
cell line (bottom) MDA.MB-231 cell line.

this stresses combined with the tumor interspecific development, as shown by the
present models, and it is thought that growth-induced stress and deformation also
affect the material properties of the evolving tissue. In addition, it is possible that
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local material properties and resident stress have a close relationship. As anticipated,
from a physiological point of view, elevated solid stresses cause compression of blood
capillaries and lymphatic vessels. The former is at the bases of the hypoxia and the
lack of an adequate level of nutrients and can induce central necrosis, whereas the
latter provokes an increase of the interstitial fluid pressure which makes peripheral
backflow phenomenona carrying fluids outside the mass more likely to happen. All
these factors combined promote tumor progression, invasion and immuno-suppression.
As a consequence, the exact knowledge of the in situ solid stress combined with the
knowledge of evolved material properties of the tissue would furnish a complete view
of the tumoral micro-environment in order to obtain several important therapeutic
implications, for example in mechanically relaxing tumor compression to control in-
ternal permeability, in this way improving the efficacy of drug perfusion and also
designing ad hoc drug-delivery procedures.
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Table 6: Synoptic table of the parameters adopted in the MCTS model (exp.det. = experi-
mentally determined)

Parameter Value Unit Source

Poroelastic/Conductivity parameters

νu 0.49999 [-] [46, 65]
B 0.9999 [-] [65]
kF 4.13× 10−8 cm2mmHg−1d−1 [166, 192]
Lp 3.6× 10−8 cm mmHg−1d−1 [166, 192]
S/V 100 cm−1 [102, 166]
κl0 1.33× 10−5 mmHg−1d−1 [214]
pv 25 mmHg [102, 192]
$ 0.91 [-] [102, 192]

πv − πl 10 mmHg [102, 192]
Cells rates and interspecific coefficients

TT = TH
24 (MiaPaCa-2)

35 (MDA.MB231)
hours exp. det.

αTT = αTH = αMH 1 [-] [75, 99, 208]
αHT = αHH 3 [-] [75, 99, 208]

αMT 2 [-] [75, 99, 208]
βT .05 d−1 [37]
βH .1 d−1 [37]

δT = δH
0.0314 (MiaPaCa)

0.0719 (MDA.MB231)
d−1 [121]

εq 0.1 [-] [197]
aη 0.1 [-] exp. det.
bη 0.9 [-] exp. det.
cη 0.25 [-] exp. det.
η0 10−8 g cm−3 [113]

φ̃T = φ̃H 0.2 [-] assumed
φ̃M 0.4 [-] assumed
a 1 mm exp. det.
Gs 15 kPa [55]
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Figure 61: Stresses in the heterogeneous MCTS, MDA.MB-231 cells. (Top) Radial Stress.
(Bottom) Circumferential Stress.
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Figure 62: Stresses in the heterogeneous MCTS, MiaPaCa-2 cells. (Top) Radial Stress.
(Bottom) Circumferential Stress.
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5.5 relating residual stress to the mcts mechanical proper-

ties

The nonlinear model here presented, which provides a strategy combining interspecific
evolution equations aimed to replicate the interaction between the tissue constituents
and a poroelastic framework which describes the fluid-solid interplay, leads to the
characterization of the growth-induced intratumoral stresses. Such stresses, which are
commonly defined as the self-equilibrated stresses in a free-traction body, are known
to influence the mechanical behavior of many tissues, as well as of many engineering
materials, and can be strongly related to the growth and remodelling processes (see,
for example the case of arteries discussed by Fung [69]). As said, in the case of solid
tumors, stress seems to concur in many physiological events related to their develop-
ment, such as internal necrosis and vascular collapse as well as peripheral migration
and lymphangiogenesis: this happens by influencing cell proliferation and squeezing,
and by altering nutrients and chemicals walkways through mechano-sensing activated
inhibition and flow impairment. The role of stress gradients in biological media is
in fact critical in promoting cells reconfiguration and motility and, naturally, plays
also a driving role in chemicals diffusion within the fluid phase as well as macro-
molecules extravasation throughout the interstitium. In the case of tumors, there is a
wide literature dedicated to the investigation of tumor mechanical micro-environment
to establish the nature as well as the causes and the effects of intratumoral residual
stresses ([12, 182, 191, 192]), and are aimed also to offer mechanically based hypotheses
to prospect intratumoral drug inflow as well as to reduce peritumoral convective flow
and thus likely decrease metastasis of cancer cells ([102]). Furthermore, from a kine-
matic standpoint, the presence of residual stress basically reveals that body growth
takes place in an incompatible manner, meaning that the compatible observable strain
of a grown tissue is the combination of an incompatible growth strain (which would
cause growth with disruptions) and an incompatible strain due to elastic stress [182],
which is then responsible of restoring the geometrical and structural compatibility of
the tissue. In the case, the presence of a residual stress manifests through the bending
of the tissue halves (see Fig. 63).
This implies that in loco residual stress can be revealed, as largely known, by mak-

ing cuts and by noticing the resulting change in configuration. By virtue of these
considerations, several models of tumor growth have been proposed ([165]) and, to
date, no direct quantitative measurements of residual stress in solid tumors have been
shown, except for indirect estimations performed by measuring the deformation re-
sulting from the opening of the two halves of an excised tumor spheroid after that a
partial cut is realized on the mass itself, by then relating the experimental findings
with cutting finite element simulations (see the work by Stylianopoulos et al. [191]).
This particular behavior has also been qualitatively replicated on a tumor spheroid,
by first making a partial cut (up to half the spheroid height) and observing the pro-
gressive opening of the slit with the characteristic opening angle, and then performing
a complete cutting and observing the curvature of the generated surface, as reported
in Fig. 63.
However, it is well-known that residual stress influences the mechanical behavior of the
material. Nonzero residual stress field in a traction-free body is necessarily inhomoge-
neous and anisotropic ([85]), as well as an imposed deformation out of the residually

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



5.5 relating residual stress to the mcts mechanical properties 175

Figure 63: Visualization of the opening angle when a partial cut is performed (left) and
of the bending of the tumor spheroid halves in case of a complete cut (right),
revealing the presence of residual stress.

stressed configuration can relieve the internal loads at some points and load other
points, while a residual stress-free material would be only loaded by such deforma-
tion. Also, another essential evidence is that the actual (tangent) material properties
can depend on residual stress, and consequently material properties of a homogeneous
and isotropic “ground” material can become inhomogeneous and anisotropic as a re-
sult of the accumulation of both residual stress and, of course, deformation: therefore,
the knowledge of the latter ones together with strain energy density (which measures
how much a material point is loaded or unloaded by a given deformation) can com-
prehensively characterize the global mechanical behavior of a residually stressed body.
Nonlinear tumor spheroids are not excluded from these considerations, and it is there-
fore thought that tangent stiffness can represent a valid candidate to be an indirect
way to trace residual stress. Starting from this idea, before presenting further details,
the previous sections results have been here summarized for the sake of clarity:

• An enhanced MCTS model has been developed, by proposing a full coupling
strategy between the nonlinear mechanical problem and interspecific dynamic,
to describe tumor growth kinetics and stress accumulation. Starting from the
whole stress distributions (including external loads due to the imposed boundary
conditions), an estimation of the residual stress within the sole tumor has been
made by considering the stress distribution at each time deprived by the external
radial reaction, by assuming the latter to essentially determine a hydrostatic
aliquota associated with external load.

• An in vivo experimental model has been conducted, by following a size-controlled
protocol. The explanted were thus measured in size and mechanically tested in
compression. This particular explantation procedure has been designed in order
to both trace tumor effective size and obtain time/size-dependent information
about the mechanical properties evolution. Hence, the variation of tangent mod-
uli has been experimentally evaluated during tumor development. Also, a refer-
ence (small) tumor spheroid was utilized to reconstruct the theoretical nonlinear
stress-stretch law.
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Starting from these experimental data and theoretical results, in very good agree-
ment between each other in terms of resulting tumor size growth, a correlation between
the theoretically obtained stress and deformation and the experimentally determined
tangent moduli is then investigated. Therefore, the residual stress-modified elastic co-
efficients have been all analytically estimated by adopting a well-known small-on-large

strategy, which has the advantage to explicitly emphasize the prestress contribution
with respect to the deformation contribution in tangent matrix calculation, and by
taking into account both induced transverse isotropy and inhomogeneous variation
(with respect to the radius) of the stiffness coefficients. To reproduce in silico the
provided mechanical tests, mechanical properties have been inserted in an appropri-
ate FE model, by simulating a sphere compression between two parallel rigid plates:
in this way, stress-strain curves have been numerically derived and compared with
experimental findings.

5.5.1 The small-on-large approach

The established constitutive equations accounting for growth and elastic deformation
at each time let to obtain the different stress measures. In particular, given the elastic
second PK stress tensor Se, the following relations among the various stress tensors
are here recalled (see Chapter 1):

Se = 2 ∂ψe
∂Ce

= 2Fg
∂ψe
∂C

FT
g = 2FgSFT

g (5.82)

P = JgFeSeF
−T
g (5.83)

τ = JgFeSeF
T
e = JgFSFT (5.84)

σ = J−1
e FeSeF

T
e = J−1

e FSFT (5.85)

With the aim of evaluating the tangent stiffness of the tumor body tensor at each
time stage, the presence of non-trivial resident stretch –and stress– has to be taken
into account. These quantities in fact are known to affect the evaluation of the mate-
rial properties. It is then here supposed that the tangent moduli to be estimable by
means of a small on large procedure, in which a small strain (the one related to the
testing of the material properties) can be superimposed to the (large) finite strain at
a certain time t. This strategy can be somehow viewed as a generalization of the well
known evaluation of the elastic modulus of a cord under constant tension, and its
formulation has been encountered in many classical elasticity works (see for example
[85, 151, 199]) as well as more recent biomechanical works ([15]). By focusing on this
specific application, the growth and compatibilization processes occurring in tumor
development will likely imply that the incremental material parameters will depend
on the history of growth-induced stresses and deformations at time t.
By identifying the body motion at time t with the deformation gradient F(t), a further
(small) gradient is then applied, say F∗ = I + H∗, where H∗ = ∂u∗/∂x (X, t) is the
gradient of the additional displacement u∗, which drives the body to a new current
configuration (the system will move towards this configuration at a certain time t∗).
The displacement gradient can be obviously decomposed into its symmetric and skew-
symmetric parts, i.e. H∗ = E∗+Ω∗, which respectively denote the infinitesimal strain
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and rotation tensors in case of small deformations. Therefore, a new small-on-large

deformation gradient F(t∗) can be defined by means of the standard multiplicative
decomposition as F(t∗) = F∗F(t). Starting from this position, the stress τ (t∗) can be
expressed by starting from the knowledge of the stress at time t and the deformation
gradient. In particular, by denoting the quantities at time t with the subscript 0, and
provided that J∗ → 1, the constitutive relation (5.82)3,4 let to write

σ∗ = J−1
e0 F∗F0

(
S0 +

∂S

∂C

∣∣
C0

: (C−C0)

)
FT

0 F∗T =

= F∗
(
σ0 + 4J−1

e0 F0
∂2ψe
∂C∂C

∣∣∣∣
C0

FT
0 : (FT

0 E∗F0)

)
F∗T (5.86)

where (C−C0) = 2FT
0 E∗F0. Given that F∗ = I + H∗, the hypothesis of small

displacement gradient H∗ leads to

σ∗ u σ0 + (I⊗σ0 + σ0⊗ I) : H∗ + 4J−1
e0 F0

∂2ψe
∂C∂C

∣∣∣∣
C0

FT
0 : (FT

0 E∗F0) (5.87)

where the non standard tensor products ⊗ and ⊗ can be defined by means of the
double contraction rules (X⊗Y) : Z = XZYT and (X⊗Y) : Z = XZTYT (see for
example [111, 112]). Derivation with respect to E∗ gives the expression of the tangent
stiffness matrix:

C
∗ =

∂σ∗

∂E∗

∣∣∣
F∗→I

u I ⊗σ0 + σ0 ⊗ I + 4J
−1
e0 (F0 ⊗ FT

0)•◦ ∂2ψe

∂C∂C

∣∣∣
C0

•◦(FT
0 ⊗ F0) (5.88)

where the double contraction operation “•◦” appearing in (5.88) are defined such
that [X•◦Y]ijhk = XimnkYmjhn ([111, 112]). Therefore, the tangent moduli of a pre-
stressed material will account for the presence of such resident stress through a direct
linear dependence (as in the simpler linear situation), and a further contribution which
depends on the deformation achieved at time t when the small deformation is super-
imposed. Furthermore, by also considering the symmetry of the deformation tensor
E∗ in contracting the tangent stiffness to the Voigt 6× 6 usual notation, the position
Cαβ = (C∗ijhk + C∗ijkh)/2, α, β = {1, .., 6}, i 6= j and h 6= k, has been automatically
employed4. With reference to the adopted strain energy function ψe(He) (Equation
(5.38)), involving the Hencky strain measure He = ln(Ce)/2, the tangent stiffness is
evaluated by means of the chain rule:

C
∗ = I ⊗σ0 + σ0 ⊗ I+

+ 4J
−1
e0

[
(F0 ⊗ FT

0)•◦∂Ce

∂C
•◦ ∂He

∂Ce

•◦
(

∂2ψe

∂He∂He

∣∣∣
He0

)
•◦ ∂He

∂Ce

•◦∂Ce

∂C
•◦(FT

0 ⊗ F0)

]
(5.89)

in which the following tensor derivatives have been introduced:
4 For the sake of clarity, full the following second-order tensors representation has been em-

ployed: X = {X11, X12, X13, X21, X22, X23, X31, X32, X33}; the Voigt notation reduced to XV =
{X11, X22, X33, X23, X13, X12}
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∂Ce

∂C
= F−T

g ⊗F−1
g (5.90)

∂He

∂Ce
=

3∑
i=1

1
2λ2

ei

Mi ⊗Mi +
3∑

i,j=1
i6=j

ln( λeiλej
)

λ2
ei − λ2

ej

Mi ⊗Mj , (5.91)

with the second order tensors Mi, i = {1, 2, 3} being defined through the eigenvec-
tors ni of the configuration at time t (defined in Section 5.4.3), in a way that MiMj =
δijMi and

∑3
i=1 Mi = I. Therefore, by referring to the spherically symmetric prob-

lem described, and adopting the specific constitutive relation (5.40), at each time t
a deformation Fe0 = Diag{λer0, λeθ0, λeφ0} and stress state σ0 = Diag{σr0, σθ0, σφ0}
can be identified, in which λeφ0 = λeθ0 and σφ0 = σθ0, respectively. The resulting tan-
gent stiffness matrix exhibits transverse isotropy and its independent elastic constants
have the following expressions:

C11 = C
∗
rrrr =

=
1

λ2
eθ0

λer0

(
a1 + a2 + c eQ

(
1

4

(
2b2 logλ

2
eθ0 + (b1 + b2) logλ

2
er0

)2
+ b1 + b2

))
+ 2σr0, (5.92)

C22 = C
∗
θθθθ =

=
1

λ2
eθ0

λer0

(
a1 + a2 + ceQ

(
1

4

(
(b1 + 2b2) logλ

2
eθ0 + b2 logλ

2
er0

)2
+ b1 + b2

))
+ 2σθ0, (5.93)

C12 = C
∗
rrθθ =

=
4
(
a2 + c eQ

(
1
4

(
2b2 logλ2

eθ0 + (b1 + b2) logλ2
er0

)(
(b1 + 2b2) logλ2

eθ0 + b2 logλ2
er0

)
+ b2

))
λ−1
er0(log2 λer0 − log2 λeθ0)−1

(
λ2
er0 − λ2

eθ0

)2
,

(5.94)

C23 = C
∗
θθφφ =

=
λer0

λ2
eθ0

(
a2 + c eQ

(
1

4

(
(b1 + 2b2) logλ

2
eθ0 + b2 logλ

2
er0

)2
+ b2

))
, (5.95)

C66 = C
∗
rθrθ =

=
λer0

(
a1 + b1c e

Q
)

log2 λer0
λeθ0(

λ2
er0 − λ2

eθ0

)2
+
a1 + b1c e

Q

4λ3
er0

+
1

2
(σθ0 + σr0) (5.96)

where Q = b1tr(H2
e) + b2(tr(He))2, while transverse isotropy further implies that

C∗rφrφ = C∗rθrθ, C∗rrφφ = C∗rrθθ and C∗θφθφ = (C∗θθθθ −C
∗
θθφφ)/2.

It is worth noting that, as a consequence of both the assumed spherically symmetry
of the problem at hand and of isotropic growth hypothesis, the obtained transverse
isotropy implies that the five elastic contants (5.92)–(5.96) result to be dependent
upon five unknown function, i.e. Cαβ = Cαβ (σr, σθ, λr, λθ, λg). Therefore, in principle,
the possibility of measuring the entire set of elastic constants (with respect to a
previous measure) might permit to locally find a numerical solutions of a closed non
linear system, in order to then find stresses and deformations.
With focus on the present application, the distribution of elastic constants within the
tumor at different times and accounting for growth, residual stress and deformations,
is shown in Fig. 64.
In particular, one can observe from Fig. 64 the Cαβ , α, β = {1, 2, 3} decrease with

volume (see also Fig. 65), this being in accord with theoretical evidences demonstrat-
ing that resident residual stress can make the body more compliant [104]. Also, one
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Figure 64: Tangent elastic constants in the MCTSs at different volume size

might hypothesize that this can be considered an overall integration effect –at the tis-
sue scale– of the experimental evidences –at the single-cell scale– according to which
cancer cells are more deformable than healthy cells, see e.g. Fraldi et al. [64].
Also, Fig. 64 shows how the tissue actually results a weakly transversely isotropic

material. Also, from a quantitative point of view, two main considerations emerge.
Perhaps the most evident not ordinary aspect is that radially varying tangent shear
moduli exhibit a negative part. This, combined with both weak anisotropy (or, as
a matter of fact, an almost isotropic behavior) and a substantial incompressibility
(the Poisson’s ratios approach 0.5 almost everywhere, especially towards the tumor
center), tells us that all the growing tumor inhomogeneous spheroids would exhibit an
internal core with negative tangent elastic moduli –thus inherently unstable– and an
external ordinary phase (which is stable). Negative stiffness can occur, for example,
when deforming a body that stored (or received) energy [119], and so, also in case of
the presence of residual stress. However, this unexpected result does not represent a
theoretical issue, since the global stability of elastic composites with this particular
configuration has been theoretically provided by the works by Drugan and Lakes (see
e.g. [57, 114, 120]). Residually stressed tumors seem to replicate this feature, and this
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Figure 65: Tangent elastic constants of the superior block as a function of the volume size

tissue softening effect still being in accord with the microscopic cancer cells more
compliant structure, in the sense that to further grow and deform under residual
compression, tissue locally behaves by intensifying its compliance, and by exhibiting
fluid-like behavior.
Another observation to take into account is that the bulk constants are quantitatively
very similar each other due to combined weak anisotropy and substantial incompress-
ibility, and this could generate problems in the in-progress finite element procedure
(for example, numerical instabilities might occur, the matrix becoming singular). How-
ever, the mechanical response of the MCTS due to bulk growth –evaluated by perform-
ing a compression test like that one under discussion– mainly involves the volumetric
part of the stored energy density, and the respective tangent modulus will be affected
by the latter aliquota, rather than the shear tangent response which is minimally
implicated. For these reasons, the elastic modulus of interest has been calculated by
inverting the superior third-order minor of the tangent stiffness matrix and consider-
ing the first compliance constant, i.e. E = [S]−1

11 , S = C−1
3×3, and then passed to the

FE model. As seen from Fig. 66, despite the weak anisotropy, the contribution of the
volumetric deformation energy makes stiffens the radial response of the material.

As a first implementation, to avoid possible problems related to the presence of the
(limited) core with negative Young modulus, the internal core has been in principle
substituted by an internal incompressible phase with sufficiently low Young modulus
(approaching that one of the first layer with positive modulus).

5.5.2 Finite Element modeling

Finite Element simulations have been developed with the aim to evaluate the me-
chanical response of the MCTS subjected to uniaxial compression, by essentially in-
vestigating the influence that growth, deformation and residual stress can have in
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Figure 66: Tangent Young moduli obtained from the compliance matrix at different tumor
dimensions.

determining the effective elastic behavior of the material, given in terms of tangent
properties. Hence numerical models have been considered, each one being represen-
tative (in size and internal elastic properties) of an explanted MTCS according to
the experimental protocol summarized in table Table 4. Each numerical simulation
aims to reproduce the experimental mechanical compression test performed on ex vivo

spheroidal tumors. The simulation has been conducted with the aid of the commercial
FEM-based code Ansys® ([1]). Since the soft tissue samples under exam exhibit high
deformability properties, to simulate the compression action of a rigid plate on them
particular attention is required in modeling the dynamics of the contact. This implies
the introduction of both geometrical and body contacts-related nonlinearities. For
this purpose, an ad hoc custom made Ansys procedure, written in APDL parametric
language, has been developed to reconstruct all FE models.
In order to reduce the computational efforts and gain advantage in performing

several nonlinear analyses, only one-eighth of the sphere has been considered, taking
into account the appropriate symmetric boundary conditions (see Fig. 67-left). As
already said, to practically avoid numerical instabilities, a spherical cavity has been
provided at the center of each sphere and negative YM cores have been replaced by an
elastic phase with an high incompressibility and very low stiffness (see Fig. 67-right).
By referring to the animal model measurements (see Table 4) and simulated sizes,
different spherical geometries have been generated by considering the experimentally-
derived external radii and maintaining the same central void (Fig. 67-bottom).
The geometrical models of both rigid plate and hollow sphere have been meshed by

means of about 10.000 standard hexahedral elements - SOLID185 - and almost 11.500
nodes with three degrees of freedom for each node, while, to simulate the non linear
contact, the external spherical cap and the bottom surface of the plate have been
meshed with contact-target elements (CONTA170 TARGE175 respectively). Efforts
have been devoted to characterize the tangent stiffness of each numerical simulation
of spheroid compression, in which isotropic elastic properties take into account the
resident residual stress. Each spherical model has been divided into a wider exter-
nal spherical region, in which the Young modulus varies radially according to the
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Figure 67: (Top-left) Representation of the FEM modeled uniaxial test. (Top-right)
Schematic representation of the assignment of radially varying material proper-
ties to the sphere elements. (Down) Considered volumes.

analytically defined law and the Poisson’s ratio is equal to ν = 0.495, and a limited
central core in which the Young modulus was assumed constant and equal to the
lower modulus of the communicating previous zone, with and a more incompressible
characteristic, say ν = 0.499 (see Fig. 67-right). Each analysis simulates a compres-
sion along z-axes, and was realized by imposing a displacement to the plate of about
one-tenth of the external radius of the sphere. A displacements sequence of the com-
pression simulation is reported in the Fig. 68, in which it is also possible to appreciate
the effect of the contact confinement and the resultant reactive stress state developing
the spheroid at various deformations.
For each numerical substep the reaction force Fz has been evaluated and, together

with the computed deformation εz, a force-deformation curve for each spheroid has
been obtained. Finally, these numerical results have been put in direct comparison
with the experimental dataset, finding a good agreement between them as reported in
Fig. 69. This agreement is more evident in terms of tangent moduli, as highlighted in
Fig. 70. Actually, the good agreement between experimental results and the coupled
analytic/Finite element strategy let to consider this procedure a reliable and less
invasive technique to investigate the nature of residual stress and stored energy within
tumor masses in a way to preserve their integrity, as well as to convincingly validate
the results given by the hyperelastic/VL model also in terms of predicted mechanical
features.
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Figure 68: (Top-left) Representation of the FEM modeled uniaxial test. (Top-right)
Schematic representation of the assignment of radially varying material proper-
ties to the sphere elements. (Down) Considered volumes.
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Figure 69: Experimental (blue points) and numerically obtained (green points) force-
deformation curves in direct comparison for each MCTS. (Middle) fitting of
two experimental dataset with the hyperelastic law adopted in the analytical
model

Figure 70: Experimental (dashed line) and numerically obtained (continuous line) develop-
ment of the tangent moduli as a function of the tumor sizes.
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appendix a

Mathematical Details for the derivation of the Strain Energy Density and of the solid

stress:

The total mechanical energy can be defined from the referential volumetric energy
density ψ0 as well as from the volumetric energy density ψ, respectively related to the
configurations B0 and Bg and connected each other by (also provided by Ganghoffer,
[72]):

∫
V 0
ψ0(

◦
He, ρF )dV

0 =

∫
V g
ψ (He, ρF ) dV

g =

∫
V 0
Jgψ (He, ρF ) dV

0 (A.1)

the relationship ψ0 = Jgψ being useful in the following. Apart from the elastic
strain, both of them are supposed to depend explicitly also on the fluid content ρF =
J%FφF as discussed in section 5.4.6. By neglecting thermal terms contributions, the
dissipation inequality can be written as ([7]):∫

V
σ : D dV −

∫
∂V

µqF · n dS ≥
d

dt

∫
V 0
Jgψ dV

0 (A.2)

which can be expressed by means of localization theorem as:

Jσ (x (X, t) , t) : D−∇X · (µQF ) ≥
d Jgψ

dt
(A.3)

where, in (A.2) and (A.3), µ denotes the fluid chemical potential and QF =
JqFF−T is the referential flux vector, while the tensor D = sym(ḞF−1) is the
symmetrical velocity gradient. The fluid conservation equation (5.47)1 returns the
relation:

dρF
dt

+∇X ·QF = JΓF (A.4)

so that a simple manipulation of (A.3) by also accounting (A.4) gives:

P : Ḟ−QF · ∇Xµ− µJΓF + µ ρ̇F ≥ ψJ̇g + Jg
∂ψ

∂He
: Ḣe + Jg

∂ψ

∂ρF
ρ̇F (A.5)

where the symmetry of the Cauchy stress tensor and the identity Jσ : D = Jσ : L

have been used, this giving JσF−T : Ḟ = P : Ḟ. Terms in equation (A.5) can
be reorganized keeping in mind the multiplicative decomposition of the deformation
gradient (5.20) and by applying the Jacobi formula and the chain rule respectively
on the first term and the second term of the right side, in this way having:

(
P FT

g − JgF−T
e

∂ψ

∂He

)
: Ḟe +

(
µ− Jg

∂ψ

∂ρF

)
ρ̇F +

(
FT
e P− JgψF−T

g

)
: Ḟg+

−QF · ∇Xµ− JµΓF ≥ 0 (A.6)

From which it is immediately obtained through the standard application of the
Coleman’s method ([44]) on the first two brackets that:
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P = JgF
−T
e

∂ψ

∂He
F−T
g = F−T

e
∂ψ0

∂
◦
He

F−T
g (A.7)

and

µ = Jg
∂ψ

∂ρF
=
∂ψ0
∂ρF

(A.8)

in which it is assumed that the growth deformation term associated with the solid
species does not depend explicitly on the elastic deformation and the fluid content.
In addition, the respect of the dissipation inequality (A.7) is fulfilled by adopting for
the fluid flux and the fluid source term structures of the type QF = −k0∇Xµ, with
k0 being a positive definite permeability tensor, and ΓF proportional to −µ through
a positive conductivity parameter, which in the case of an incompressible fluid can be
represented for instance by Darcy law and Starling equation respectively, given by the
equations (5.47)2 encountered in section 5.4.6. The last remaining term in equation
(A.7) is actually connected to the dissipation processes due to growth, the Eshelby-
like stress Σ = FT

e ∂ψ0/∂Fe − ψ0I being related to the material (configurational)
forces arising because of the domain changes (see e.g. [7, 72, 149]) and conjugated to
Lg = ḞgF

−1
g .

The potential ψ0 has to be made explicit then also in the light of the poroelastic
approach here adopted. In this context the Terzaghi decomposition is frequently used
in order to express the stress in terms of the solid stress/deformation and interstitial
fluid pressure, the validity of this uncoupling in finite strain regime having also been
discussed in Literature (see e.g. the work [29]). This (partial) change of arguments
can be perceived by introducing a strain energy density which is dual to that one
introduced in equation (A.1), by means of a Legendre transform, performed in what
follows on the referential energy for the sake of clarity. Additionally, a general decom-
position for the latter is introduced, in a way that the potential ψ0, connected with
the skeleton response, can be intuitively derived from the effective response of the
material (described by the hyperelastic law proposed in section 5.4.5) by subtracting
a second potential taking into account the sole fluid response. Hence:

ψ0 = ψHyp,0(
◦
He)−ψF,0(

◦
He, ρF ) (A.9)

Hence, a variation of ψ0 gives:

dψ0 =
∂ψ0

∂
◦
He

: d
◦
He +

∂ψ0
∂ρF

dρF =
◦
τ e : d

◦
He + µdρF (A.10)

so that by subtracting the variation d (µρF ) = µdρF + ρF dµ one obtains:

dψ∗0 =
◦
τ e : d

◦
He − ρF dµ (A.11)

with ∂ψ0/∂
◦
He = ∂ψ∗0/∂

◦
He and

ψ∗0(
◦
He, µ) = ψHyp,0(

◦
He)−ψ∗F,0(

◦
He, µ) = ψ0 − µρF (A.12)

Furthermore, a constitutive relationship for the fluid content is derived since:
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ρF = −∂ψ
∗
0

∂µ
=
∂ψ∗F,0
∂µ

(A.13)

The latter also implying that:

dρF = − ∂

∂µ
(dψ∗0) = −

∂
◦
τ e
∂µ

: d
◦
He +

∂ρF
∂µ

dµ = J%F α : d
◦
He + J%2

F C
effdµ (A.14)

in which the positions ∂ ◦τ e/∂µ = ∂2ψ∗0/∂µ∂
◦
He = −J%Fα and ∂ρF/∂µ = −∂2ψ∗0/∂µ2 =

J%2
FC

eff have been introduced. The coefficients α and Ceff are denoted respectively
as Biot effective stress tensor and Biot effective compressibility modulus, multiplied
by the Jacobian J in order to take into account their material expression. As known,
their physical meaning have been largely elucidated in the poroelasticity Literature
(see e.g. the pioneering work by [23] as well as other more recent works such as [45].
By further considering an incompressible fluid ( i.e. by considering %F constant and
an elevated fluid bulk modulus) and by assuming isotropy, equation (A.14) reduces
to the constitutive relationship (5.45):

d (JφF ) = J
(
αdhe +M−1dp

)
(A.15)

where the fluid chemical potential definition µ = µ0 + %−1
F (p− p0) has been implied.

The relationships (A.14) and (A.15) can be further simplified by considering moderate
variations of the fluid, in a way to write:

ρF = ρ0
F + J%Fα :

◦
He + J%2

FM
−1 (µ− µ0) (A.16)

or
JφF = φ0

F + Jαhe + JM−1 (p− p0) (A.17)

being ρ0
F = %Fφ

0
F . As a consequence, by considering (A.16) and (A.13), a direct

integration returns that:

ψ∗F,0(
◦
He, µ) = ρ0

F (µ− µ0) + J%F (µ− µ0)α :
◦
He + J

%2
F

2M (µ− µ0)
2 (A.18)

so that the poroelastic uncoupled potential can be derived from (A.12) as:

ψ∗0(
◦
He, µ) =ψHyp,0(

◦
He)− ρ0

F (µ− µ0)− J%F (µ− µ0)α :
◦
He+

− J
%2
F

2M (µ− µ0)
2 (A.19)

from which, accounting also (A.1), it follows that the Kirchhoff stress can be also
given by the Terzaghi decomposition:

◦
τ e = Jg

∂ψHyp
∂He

− J%F (µ− µ0)α (A.20)
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and, consequentially, the first Piola-Kirchhoff elastic stress is written, also provided
isotropy and fluid incompressibility, according to (A.7):

P = F−T
e
◦
τ eF

−T
g = JgF

−T
e

∂ψHyp
∂He

F−T
g − Jα (p− p0)F−T (A.21)

appendix b

Thermodynamic forces associated to the linear growth model:

The theoretical model introduced in the previous sections combines the classical
poroelastic field equations with linear growth through the direct (full) coupling with
a suitable dynamical system –whose motion follows the Volterra-Lotka logic– in order
to express the inelastic deformation due to volumetric growth as a result of the net
interaction of the biological solid species. It could pairwise interesting for this reason
to make some thermodynamic considerations in order to derive from a dissipation
principle both the constitutive assumptions and determine an expression for the ther-
modynamic forces the model conjugated to state variables, as well as the conditions
which ensure both the global stability and the thermodynamic consistence of the sys-
tem in a linear theoretical framework. The latter can be seen as a multi-component
system, in which the solid constituents are denoted by a subscript i ∈ S, while the
fluid one is indicated by the subscript i = F . However, the high water content in
the so-called solid species let to assume a constant true density – say %– for each
constituent, so that the total density of the system remains unchanged:

ρ = ρS + ρF =
∑
i∈S

% φi + %φF = % (B.1)

since the sum of all the volumetric fractions gives unity (in what follows, the sub-
script i will exclusively refer to the solid constituents and the hypothesis of constant
density will be hold true). Also, growth, which is described as an inelastic process, in-
evitably implies the presence of a dissipation. For this reason, the free energy density
ψ is here expressed as the sum of a reversible energy aliquota, which is linked to the
purely (poro)elastic contribution, and a dissipative term, which is instead function of
the solid growing species , in a way to write:

ψ = ψe (Ee, φF ) + ψg (φi) (B.2)

In particular, under the hypothesis of an isothermal process, the balance of energy
can be made explicit by introducing a specific and metabolic energy contribution, say
εg which is directly responsible of the growth process g. Hence, the first principle
explicitly reads: ∫

V
ρ
dU

dt
dv =

∫
V
σ : D dv+

∫
V
εg ġ dv (B.3)

U and V being the internal energy per unit mass and the volume measure, respec-
tively. Also, v is the velocity vector and D = sym(v⊗∇) is the symmetrical velocity
gradient. Analogously, the second principle can be instead expressed by introducing
a thermodynamic force fg conjugated to the rate ġ –representing a volumetric rate of
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entropy supply– and a conductive rate of entropy supply due to the fluid flux vector,
in a way to have: ∫

V

dS

dt
ρ dv ≥

∫
V
fg ġ dv+

∫
∂V
µF qF · dA (B.4)

By subtracting equation (B.4) from (B.3), and identifying the free energy per unit
volume defined in (B.2) as ψ = ρ(U − S), the dissipation inequality can be readily
obtained:

∫
V
σ : D dv−

∫
∂V
µF qF · dA+

∫
V
εg ġ dv−

∫
V
fg ġ dv ≥

d

dt

∫
V
ψ dv (B.5)

where µF = ρ−1
F (p − p0) is the fluid chemical potential. To further express the

former equation in a local form, the Gauss theorem is applied on the second member
of the left side of (B.5), while the chain rule on the right side, with ψ given by (B.2).
It results:

σ : D−∇µF · qF − µF ∇ · qF + εg ġ− fg ġ ≥
∂ψe
∂Ee

: Ėe +
∂ψe
∂φF

φ̇F +
∑
i

∂ψg
∂φi

φ̇i

(B.6)
The terms in equation (B.6) can be then collected by invoking both the strain

additive decomposition of the deformations under isotropy, i.e. E = Ee+ (g/3)I, and
the fluid continuity equation (5.5):

(
σ− ∂ψe

∂Ee

)
: Ėe +

(
p− p0 −

∂ψe
∂φF

)
φ̇F −∇µF · qF − (p− p0)ΓF+

+
(
σhyd + εg − fg

)
ġ−∇φψg · φ̇ ≥ 0 (B.7)

from which one gets the following constitutive assumptions for the ordinary poroe-
lastic variables

σ =
∂ψe
∂Ee

,

p = p0 +
∂ψe
∂φF

(B.8)

In addition, relation (B.7) results satisfied by taking a Darcy type flux vector qF =
−K∇µF (with K > 0) and by opportunely introducing a fluid source term such that
ΓF ∝ p0 − p (which is expressed by the Starling law in (5.5)). In order to introduce
explicit constitutive assumptions and obtain a suitable expression for the linear elastic
potential as a function of the ordinary poroelastic variable –the strain tensor and the
interstitial pressure, according to the most of the classical models ([46])– a Legendre
transform is performed on ψe in a way to have a partially dual energy:

ψ∗e (Ee, p) = ψe (Ee, φF )− φF (p− p0) (B.9)
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By further considering its differential form and accounting (B.8)2 one has the iden-
tity:

dψ∗e =
∂ψe
∂Ee

: dEe − φF dp =
∂ψ∗e
∂Ee

: dEe +
∂ψ∗e
∂p

dp, (B.10)

from which

∂ψe
∂Ee

=
∂ψ∗e
∂Ee

and φF = −∂ψ
∗
e

∂p
(B.11)

Equation (B.11)2 together with (B.9) then let to obtain the explicit constitutive
relation (5.4)1 for the fluid content by linearizing the incremental fluid fraction dφF ,
thus having

φF = φF0 +A : Ee +M−1(p− p0) (B.12)

in which A = −∂2ψ∗e/∂Ee∂p and M−1 = −∂2ψ∗e/∂p2, and φF0 being the ini-
tial fluid fraction at zero elastic strain and at the reference pressure p0. Hence, the
substitution of (??) into (B.11)2 and a direct integration of with respect to p gives:

ψ∗e = ψ̂ (Ee)− φF0(p− p0)− (p− p0)A : Ee −
1

2M (p− p0)
2 (B.13)

where the introduced energy density term ψ̂ can be interpreted as the effective
energy aliquota, the one connected to the displacement gradient. In a linear isotropic
framework, this naturally coincides with the quadratic elastic St. Venant-Kirchhoff
strain energy density, i.e.:

ψ̂ =
1
2 Ee : C : Ee (B.14)

with C = ∂2ψ∗e/∂E2
e = 2µI + λI � I being the isotropic fourth order stiffness

tensor, in a way that, together with the relation (B.8)1, the Terzaghi stress (5.1)3 is
immediately derivable.
Once dealt about the elastic potential, in the light of the specific constitutive as-

sumptions that have been introduced, the reduced dissipation inequality (B.7) reads:(
σhyd + εg − fg

)
ġ−∇φψg · φ̇ ≥ 0 (B.15)

These terms are clearly not independent, since the growth function g is related to the
species vector by (5.14). However, they singularly carry different information for the
system at hand and, for this reason, the conditions of their positivity is separately
analyzed. The first term actually associates the growth volumetric strain to both
mechanical and metabolic factors, from which one obtains that the thermodynamic
driving force conjugated to the growth can be expressed as fg = σhyd+ εg (this can be
seen as a linear expression of an Eshelbian stress previously discussed for the nonlin-
ear case). This relation also qualitatively suggests that growth takes place in presence
of available and adequate metabolic resources, in a way to sustain growth also in
a stressed (e.g. compressed) environment, in which growth could be likely inhibited.
The respect of (B.15) would in fact imply that the lack of metabolities (nutrients),
as well as the simultaneous presence of unfavorable compressive state of stress would
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either arrest the growth or cause a resorption process, which is still in agreement with
the sign of (B.15). Furthermore, this coupling term (less intuitive than the other ones)
can be seen as an effective cross-talk between the purely mechanical part of the prob-
lem and the biological one, which focuses on the kinematic description of the growth,
and in this sense also authorizes the possibility of establishing the "two-way" feedback
mechanism already discussed. In particular, one can assume a direct influence of the
mechanical stress on the growth, here modeled by introducing non-constant VL coef-
ficients as above discussed, which have been explicitly built as a (positive) function of
the hydrostatic stress in a way to enforce the mechanical inhibition of the proliferative
potential of cell species in a compressed environment.
The last term in (B.15) deals instead with the condition ψ̇g = ∇φψg · φ̇ ≤ 0, which
is strongly connected to the ecological stability of the species dynamics. In partic-
ular, the condition emerged represents the well-known Lyapunov stability criterion
([129]) which relates the stability of a certain stationary point of the ecosystem to
the existence of a positive-definite Lyapunov function in the positive octant of the
phase field, that vanishes at the equilibrium points and such that its time derivative
is locally negative semidefinite in a neighborhood of the candidate attractor point(s).
Inequality (B.15) then actually states a substantial equivalence between the thermo-
dynamical and dynamical stability of the multi-species system, in the light of the fact
that the entropy principle can be attributed to the study of the stability of the Lya-
punov function of the generalized VL system at hand, a key parallel for the present
application that has been also deeply investigated –without considering mechanical
coupling– in the field of ecological modeling recent literature (see, for example, the
work by Chakrabarti and Ghosh - [36]). For these reasons, compatibly with the Lya-
punov stability theorem assessments, one can suppose that, in the neighborhood of an
equilibrium point φ∗, the dissipation potential can assume the following expression:

ψg (φi, φ
∗
i ) =

∑
i={T,H,M}

(φi − φ∗i ) + φ∗i ln
(
φ∗i
φi

)
,

ψ̇g =
∑

i={T,H,M}
(φi − φ∗i ) Γi (B.16)

which is very similar to the Boltzmann entropy formula. In order to define a specific
dissipation function for the species, the study of the stationary points is then required.

Equilibria

Then, with the aim to discuss the stability of the system (5.13) in a simpler way, it is
here proposed of separating the first two poroelastic nonhomogeneous PDEs from the
multispecies equations on the basis of their characteristic times. In fact, apart from
the static momentum equation, the poroelastic equations are intrinsically governed by
the speed of the elastic medium (that is proportional to

√
K/%) and by the rise/decay

times of the pressure τ+p ≈ (κvM)−1 and τ−p ≈ (κlM)−1, that are of the order of the
seconds/fraction of seconds. On the other hand, cells dynamics processes will adapt
nearby their attractors presumably in a slower manner, because of both the greater
biological intrinsic proliferation times –of the order of the day– and the VL mutual
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interactions. In other words, by condensing the poroelastic field variables within the
vector S = {u, p}, the dynamic-coupled differential equations (5.13) posed in the wayL(S, Ṡ) = Π (S,φ)

φ̇ = Γ (S,φ)
(B.17)

presents the fast variables S and slow variables φ, since regardless of how time can
be scaled, so that the relative rates will verify the condition ‖ Ṡ ‖∞�‖ φ̇ ‖∞. Hence,
for rescaled times t′ comparable with the rate of S, one can obtain a fast subsystem
FS corresponding to L(S, Ṡ) = Π (S,φ; t′)

φ̇ = 0
(B.18)

and, for rescaled t′′ compatible with the (slowest) characteristic time of the species,
a slow subsystem SS is L(S, Ṡ) = 0

φ̇ = Γ (S,φ; t′′)
(B.19)

The dynamics of the original system can be explained in terms of the respective fast
and slow subsystems. This procedure also validates the adoption of a decoupled po-
tential in (B.2), with the functions ψe and ψg being independent of the species vector
and of the poroelastic variables, respectively. Since φ are fixed in the FS, the growth
term is quasi static in time t′, so that the problem would reduce to a classic poroelastic
problem with a constant growth strain, whose stability is guaranteed the ellipticity of
the poroelastic classical problem. At the slow time scales, the conditions (B.19) let to
study the dynamics of the species, during longer time intervals, for fixed quantities S.

By following this way of reasoning, at sufficiently slow time scales t′′ the state
variables Ee and φF of the coupled potential (B.2) can be assumed to hold at a certain
constant value, say {Ee, φF } (or, equivalently, {Ee, p}), in a way that condition (B.15)
can be rewritten as:

∇φψg ·
∂φ

∂t′′
|(Ee,p) ≤ 0 (B.20)

Thus, also by virtue of the theorem proposed by Tuljapurkar (see [193]), this condi-
tion is equivalent to study the local stability of the species motion around a given equi-
librium point φ∗ in the phase space delimited by the tetrahedron I = {(φT , φH , φM ) ∈
R3
≥0 : φT +φH +φM < 1− ζ(Ee, p)}. In addition, it is noticed that the localization of

the entropy inequality naturally implies the study of the stability of the local species
time trajectories, that is to say the requirement –at each point P of the open domain
Ω– of the ordinary condition:

∀ ε > 0 and ∀P ∈ Ω

∃ δ(ε) > 0 : ‖φ|t′′=0+ −φ∗‖ < δ → ‖φ|t′′≥0+ −φ∗‖ < ε (B.21)
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Thus, considering the specific case of a radially symmetric problem, by introduc-
ing a non-dimensional variable z = r/b− cγT0t′′, the focus is on the following non-
dimensional subsystem:



−cdφTdz = q
(
Ee, p

)
φT (1− αTTφT − αTHφH − αTMφM )

−cdφHdz = q
(
Ee, p

)
γ̃H0φH (1− αHTφT − αHHφH − αHMφM )

−cdφMdz = β̃TφT + β̃HφH − δ̃MφM (αMTφT + αMHφH)

(B.22)

in which tilde denotes the initial rates divided by γT0, while the function q > 0 takes
into account the influence of the (mechanical) coupling parameter, which are fixed at
the slow time scales. The positivity of the latter can be assumed by observing that
(5.16) is a positive function, together with the adoption of a linear porosity law which
ensures small porosity variations, avoiding in this way a complete saturation of the
pore space. Moreover, the non-dimensional constant c does not influence the search
of equilibrium points, and thus one can assume c = −1 in what follows for the sake
of simplicity. Equations (B.22) clearly represent a three-species system, that let to
determine in a more direct way both the physically/biologically consistent equilibrium
points and the physically/biologically consistent trajectories lying in the domain I.
This is also guaranteed by considering positive initial conditions for the species, which
ensures that the positive octant is invariant and that all trajectories of motion keep
bounded in this (0,R+) × (0,R+) × (0,R+), as shown by Itik ([99]). These two
lemmas can be reported for completeness:
Lemma 1. With all positive initial conditions, the solutions of the system (B.22)

lie in (0,R+)× (0,R+)× (0,R+) . This follows by observing that each coordinate
hyper-plane is invariant.

Lemma 2. The solutions of (B.22) with initial values in (0,R+)× (0,R+)× (0,R+)
are bounded from above in (0,R+)× (0,R+)× (0,R+) for all t ≥ 0.

Then, starting from (B.22), the Jacobi matrix JΓ = ∇φΓ of the linearized system
results to be (tildes are omitted for clarity):

JΓ =

 q(1 − αTHφH − φMαTM − 2φTαTT ) −qαTHφT −qαTMφT
−qαHTφH q(1 − 2αHHφH − αHMφM − αHTφT ) −qαHMφH

βT − αMTφM βH − αMHφM −αMHφH − αMTφT


(B.23)

Steady state points are founded by posing Γ = 0. The physically admissible points
which can potentially occur describe the following exclusive situations of interest:

1. Cells fractions extinction. This first situation is depicted by three equilibrium
points, and it can be written as φ∗1 = {φ∗T1 = 0, φ∗H1 = 0, φ∗M1}, with φ∗M1 being
determined in the first two cases respectively as 1/αHM and 1/αTM , while it is
undetermined in the third of them. Then, the first two cases are included in the
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last one and only the point φ∗1 ⊂ I can be analyzed. Basically, this equilibrium
state points out that, in the instant in which cells trajectories approach cells
extinction, matrix will remain unchanged (this derives also from the fact that
no self-degradation had been provided).

2. Healthy fraction dominance. It is associated to the steady state φ∗2 with expres-
sion {

φ∗T2 = 0, φ∗H2 =
1

αHH

(
1− βHαHM

δMαMH

)
, φ∗M2 =

βH
δMαMH

}
(B.24)

and would correspond to a system in its healthy stage, without invading tumor.

3. Tumor fraction dominance. The equilibrium point –say φ∗3– is given by{
φ∗T3 =

1
αTT

(
1− βTαTM

δMαMT

)
, φ∗H3 = 0, φ∗M3 =

βT
δMαMT

}
(B.25)

and it is associated to a complete tumor stage.

4. Solid species coexistence. These (two) points have an articulate expression in
terms of model coefficients, so let them be denoted simply as φ∗4 = {φ∗T4, φ

∗
H4, φ

∗
M4}

and φ∗5 = {φ∗T5, φ
∗
H5, φ

∗
M5} not to burden the speech.

With reference to parameters adopted (see table Table 6), a situation of strong
dominance occurs for the tumor species. The introduction of the aggressive tumor
species with a fitness function that, in relation to the modified coefficients, possesses
a strategy prevailing on the healthy counterpart, de facto turns the ECM-healthy cell
coexistence (i.e. in absence of tumor species) into an unstable equilibrium state. In
particular, the insurgence of a predator species within the ecosystem possessing the
given characteristics heavily affects the normal system homeostasis. In other words,
provided that points in 1) and 4) have no physical interest for the consideration at
hand (in particular, equilibria 4) do not give acceptable states), one can see that the
tumor presence generates an unstable direction in correspondence of point 2). The
eigenvalues associated to points 2) and 3) –say y2 and y3– are:

y2 = JΓ(φ
∗
2) =

{
−q (δMαMH − βHαHM )

δMαMH
,−δMαMH − βHαHM

αHH
,

q (−βHαHHαTM + βHαHMαTH + αHHδMαMH − δMαMHαTH)

αHHδMαMH

}
(B.26)

y3 = JΓ(φ
∗
3) =

{
−q (δMαMT − βTαTM )

δMαMT
,−δMαMT − βTαTM

αTT
,

q (−αHMβTαTT − αHT δMαMT + αHTβTαTM + δMαMTαTT )

δMαMTαTT

}
(B.27)

The projections in the phase space of Fig. 71A and B respectively show equilibria
φ∗2 and φ∗3 in their planes, i.e. φT = 0 and φH = 0. In particular, focusing on Fig. 71A
, the projections of phases trajectories in the plane φT = 0 exhibit a convergent trend
towards the point φ∗2; this means that the plane φT = 0 constitutes a stable subspace
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for state 2., described by the two dimensional stable subspace E2 = span{v21,v22},
where v21 and v22 are the eigenvectors corresponding to the eigenvalues y2 with neg-
ative real part. In particular, the third eigenvalue y23 has positive real part by substi-
tuting the adopted coefficients and also given that the function q is strictly positive,
and thus generates an unstable direction v23 according to the first Lyapunov stability
theorem (here denoted by means of the red arrow in Fig. 71A and C ). Therefore, the
effect of tumor strategy, as highlighted in Fig. 71C, is to “divert” trajectories from the
healthy subspace towards the tumor stage. Furthermore, it results that <{y3} < 0,
and consequently φ∗3 is a stable attractor (Fig. 71B and Fig. 71D).

Figure 71: A. Representation (projection) of the phase portrait in the plane φT = 0, with
focus on the equilibrium point φ∗

2. B. Representation of the phase in the plane
φH = 0, that evidences the equilibrium point φ∗

3. C. Projection of the phase
portrait in the plane φM = φM2∗. The stable manifolds (blue arrows) directed
in direction φT = 0 and the unstable manifold (red arrow) driving trajectories
towards the tumor invasion stage are here clearly distinguishable. D. Tumor
dominance stage, constituting a stable attractor.
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Naturally, these considerations are related to the chosen set of coefficients. The
variation of the coefficients αIJ , δI and βI may generate scenarios, in which altered
dynamics may occur exhibiting different stable attractors –like those ones related to
the cells cohexistence that additionally include oscillating patterns here not obtained,
or the one related to the tumor extinction in which the healthy species is able to
survive to a given ad hoc treatment– also in presence of a tumor-type fitness function
in the species rates. All the coefficient must in fact be interpreted as the translation
of the microscopic interactions between cells and between cells and ECM, and this
implies that the coefficients themselves may be actually the net result of multiple
reactions-based processes that occur at a subcellular scale. There could be therefore
the possibility of modelling the latter interaction by considering a more realistic mul-
tiscale approach in which chemical species actually work as intermediate regulators of
the cross-talks among populations at the tissue scale. In this way also the interaction
between tumor and immune system could be considered by also introducing perturba-
tion of these mechanisms, in particular by explicitly inserting antagonist species like
drugs in order to analyze the variations of the tumor strategy coefficients and capture
possible changes into the system fate, by operatively prospecting the possibility to
determine a metamorphosis of the biosystem asymptotic behavior.
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CONCLUS IONS

In this Research work different biomechanical topics have been analyzed. In particular,
the different themes have been treated with increasing complexity, by progressively
including new phenomena and tracing new strategies in order to faithfully describe
some important cells interspecific dynamics and the way they determine macroscopic
tissue growth and residual stresses. Different key aspects and cues on the physics of
development growing tumors, from the modelling of a multi-cell environment through
the eclectic adoption of behavioral scheme of the Volterra-Lotka approach to their
direct relationship with harboring intratumoral stresses and the mechanical response
of the tumor tissue, have been harvested in Chapter 5 in order to furnish a faithful
model of tumor complex dynamics, believing that a logical scheme (those one of the
VL population dynamics) could have been able to describe a chaotic event such as the
occurrence of a tumor disease. However, although some important feature depending
on direct competition between cancer and healthy cells have been elucidated, other
important aspects remain to date partially excluded. Among these, there is the possi-
bility to include the oncogenic potentials of some immune cells or the aggressiveness of
malignant cells which become malignant as a result of mutation processes, thus even
further from the classical evolutionary logic. Also, the coupling with chemical species
could be enriched in order to replicate a more complex environment in which the
interspecific coefficients themselves can be viewed as the result of the chemical path-
ways through which cells communicating with the environment, in this way realizing
a more structured and multiscale model. Alterations of the equilibria of the system
could be analyzed by considering the introduction of antagonist chemical species in
order to investigate their effectiveness on the cells proliferation potential as well as in
terms of their capability of perfusing withing the tuor interstitium. In the field of ther-
apy, other applications could be investigated, based on the possibility of mechanically
targeting tumor cells aggregates through selected resonant ultra-sounds stimulations.
The strategy proposed can be of course applied also in the other fields of the re-
search presented. In fact, starting from the results obtained in Chapter 4, the full
coupling could be used to enhance biomechanical models of arterial walls by integrat-
ing diffusion/reaction-based cell dynamics into macroscopic description of growth,
remodeling and mechanics of the vessel structure, by exploiting the feedback from
histological analyses and the ad hoc designed biaxial experimental tests to character-
ize the constitutive behavior of vessel structures. Also, the integrated Finite Element
simulations would allow to force numerical algorithms to replicate in vivo responses,
by reconstructing detailed 3D geometries of anatomic districts of interest with the
help of imaging techniques. In this way FE-guided topology optimization would be
coupled with enhanced biomechanical strategies to improve the biomechanical syn-
ergy between the vessel and the prostheses, realized with optimized materials and
micro-structure.
Finally, all these activities, apart from the degree of detail with which have been
presented throughout the Thesis work, are motivated by a common denominator: the
attempt to contribute to pave the way –by means of enlarged multidisciplinary and
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multiphysic perspective which is nowadays necessary in the contemporary Research–
to unloose, at least partially, the Gordian knot of the knowledge of the microcosm of
the living materials, in the belief they can be described through the simple principle
that govern the macro-systems around us.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



ACKNOWLEDGEMENTS

This work would not have the spirit that it has without the invaluable support of each
person that has believed in me. I would like to thank all people I met during my Ph.D,
in particular my Ph.D advisor, mentor and friend Prof. Massimiliano Fraldi. During
these years, he gave me the sense of dedication and the passion that this fascinating
subject constantly requires, and the patience and the tenacity needed to achieve your
own personal goals in the academic world. I would like to thank him especially for his
great human and scientific honesty. The American Physicist R. Feynman in one of his
most famous books hoped that people could always feel free to embrace Science (and I
would add any interest and any job) maintaining their integrity, without being forced
by any kind of policy. This can be a provocative phrase, especially in a modern context,
but I am grateful to Prof. Fraldi for being a great example of this integrity and for the
continuous enthusiasm and encouragement that let us grow as scientific researchers
motivated by this sense of freedom. I would like to embrace all my colleagues and
labmates for their valuable support. My sincere thanks to Dr. Arsenio Cutolo, Dr.
Luca Esposito and Dr. Giampaolo Perrella, who provided me an opportunity to join
their team, for their precious advice and suggestions in general. I would like to thank
all my Ph.D fellows for the time spent together and their invaluable friendship, for
all the learning moments and for all the valuable discussions that let us to ameliorate
our works and especially to feed our scientific curiosity. I thank you especially for the
hours spent laughing together. Special thanks: Donato Di Vito (with whom I shared
many rush moments before the deadlines), Andrea Cugno, Aurora Marzullo, Stefania
Palumbo, Manuel Zappia and Dario Schiano Moriello for their scholarly and first of
all personal interaction. I would like to thank all my friends and all the important
persons I encountered in my life. I wish you all the best. Last but not the least, I
would like to thank my family: my parents and my brother, to whom all my work is
dedicated, for unconditionally supporting me and for always believing in my capacity.
I will always do my best to make you proud of me.

199

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



Part IV

B I B L I O G R A P H Y

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



BIBL IOGRAPHY

[1] ANSYS Mechanical User’s Guide. Release 15.0. ANSYS, Inc. 2013.
[2] William P. Adams. ?Capsular Contracture: What is It? What Causes It?

How Can It Be Prevented and Managed?? In: Clinics in Plastic Surgery 36.1
(2009), pp. 119–126. doi: 10.1016/j.cps.2008.08.007.

[3] Julio a Aguirre-Ghiso. ?Models, mechanisms and clinical evidence for cancer
dormancy.? In: Nature reviews. Cancer 7.11 (2007), pp. 834–846. issn: 1474-
175X. doi: 10.1038/nrc2256.

[4] Victor Alastrué, Estefanía Peña, Miguel Ángel Martínez, and Manuel Doblaré.
?Assessing the Use of the “Opening Angle Method” to Enforce Residual
Stresses in Patient-Specific Arteries.? In: Annals of Biomedical Engineering

35.10 (2007), pp. 1821–1837. doi: 10.1007/s10439-007-9352-4.
[5] Victor Alastrué, Estefanía Peña, Miguel Ángel Martínez, and Manuel Doblaré.

?Experimental study and constitutive modelling of the passive mechanical
properties of the ovine infrarenal vena cava tissue.? In: Journal of Biomechan-

ics 41.14 (2008), pp. 3038 –3045. issn: 0021-9290. doi: http://dx.doi.org/

10.1016/j.jbiomech.2008.07.008.
[6] D. Ambrosi and F. Guana. ?Stress-Modulated Growth.? In: Mathematics and

Mechanics of Solids 12.3 (2005), pp. 319–342. doi: 10.1177/1081286505059739.
[7] D Ambrosi and A Guillou. ?Growth and dissipation in biological tissues.? In:

Continuum Mechanics and Thermodynamics 19.5 (2007), pp. 245–251. doi:
http://dx.doi.org/10.1007/s00161-007-0052-y.

[8] D. Ambrosi and F. Mollica. ?On the mechanics of a growing tumor.? In: In-
ternational Journal of Engineering Science 40.12 (2002), pp. 1297–1316. issn:
00207225. doi: 10.1016/S0020-7225(02)00014-9.

[9] D. Ambrosi, L. Preziosi, and G. Vitale. ?The interplay between stress and
growth in solid tumors.? In: Mechanics Research Communications 42 (2012),
pp. 87–91. doi: 10.1016/j.mechrescom.2012.01.002.

[10] D Ambrosi et al. ?Perspectives on biological growth and remodeling.? In: Jour-
nal of the Mechanics and Physics of Solids 59.4 (2011), pp. 863–883. issn:
0022-5096. doi: http://dx.doi.org/10.1016/j.jmps.2010.12.011.

[11] L. Anand. ?On H. Hencky’s Approximate Strain-Energy Function for Moder-
ate Deformations.? In: Journal of Applied Mechanics 46.1 (1979), p. 78. doi:
10.1115/1.3424532.

[12] R. P. Araujo and D. L S McElwain. ?The nature of the stresses induced during
tissue growth.? In: Applied Mathematics Letters 18.10 (2005), pp. 1081–1088.
issn: 08939659. doi: 10.1016/j.aml.2004.09.019.

[13] R. Araujo. ?A history of the study of solid tumour growth: the contribution of
mathematical modelling.? In: Bulletin of Mathematical Biology (2004). doi:
10.1016/s0092-8240(03)00126-5.

203

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1016/j.cps.2008.08.007
http://dx.doi.org/10.1038/nrc2256
http://dx.doi.org/10.1007/s10439-007-9352-4
http://dx.doi.org/http://dx.doi.org/10.1016/j.jbiomech.2008.07.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.jbiomech.2008.07.008
http://dx.doi.org/10.1177/1081286505059739
http://dx.doi.org/http://dx.doi.org/10.1007/s00161-007-0052-y
http://dx.doi.org/10.1016/S0020-7225(02)00014-9
http://dx.doi.org/10.1016/j.mechrescom.2012.01.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmps.2010.12.011
http://dx.doi.org/10.1115/1.3424532
http://dx.doi.org/10.1016/j.aml.2004.09.019
http://dx.doi.org/10.1016/s0092-8240(03)00126-5


204 Bibliography

[14] T. Aybek, M. Sotiriou, T. Wohleke, A. Miskovic, A. Simon, M. Doss, S. Dogan,
G. Wimmer-Greinecker, and A. Moritz. ?Valve opening and closing dynamics
after different aortic valve-sparing operations.? In: J. Heart Valve Dis. 14.1
(2005), pp. 114–120.

[15] S. Baek, R.L. Gleason, K.R. Rajagopal, and J.D. Humphrey. ?Theory of small
on large: Potential utility in computations of fluid–solid interactions in arter-
ies.? In: Computer Methods in Applied Mechanics and Engineering 196.31-32
(2007), pp. 3070–3078. doi: 10.1016/j.cma.2006.06.018.

[16] Steven D. Bain and Ted S. Gross. ?Structural Aspects of Bone Resorption.?
In: Topics in Bone Biology. Springer Science + Business Media, pp. 58–66.
doi: 10.1007/1-84628-016-8_4.

[17] Peter D Ballyk, Colin Walsh, Jagadish Butany, and Matadial Ojha. ?Com-
pliance mismatch may promote graft–artery intimal hyperplasia by altering
suture-line stresses.? In: Journal of Biomechanics 31.3 (1997), pp. 229–237.
doi: 10.1016/s0197-3975(97)00111-5.

[18] Erika M. Bastos, Miguel S. Neto, Maria Teresa S. Alves, Élvio B. Garcia,
Rafael A. Santos, Thaís Heink, Juliana B. Pereira, and Lydia M. Ferreira.
?Histologic Analysis of Zafirlukast’s Effect on Capsule Formation Around Sili-
cone Implants.? In: Aesth Plast Surg 31.5 (2007), pp. 559–565. doi: 10.1007/

s00266-006-0257-7.
[19] B. P. Bengtson. ?Complications, reoperations, and revisions in breast augmen-

tation.? In: Clin Plast Surg 36.1 (2009), pp. 139–156.
[20] K. Berger and L. R. Sauvage. ?Late fiber deterioration in Dacron arterial

grafts.? In: Ann. Surg. 193.4 (1981), pp. 477–491.
[21] Olivier Michel Bical, Jérome Héran, Bernard Thébault, and François Funck.

?Pseudoaneurysm following Dacron replacement of the ascending aorta.? In:
European Journal of Cardio-Thoracic Surgery 35.3 (2009), pp. 536–536. doi:
10.1016/j.ejcts.2008.12.013.

[22] Davide Bigoni.Nonlinear Solid Mechanics. Cambridge University Press (CUP),
2009. doi: 10.1017/cbo9781139178938.

[23] M. A. Biot. ?General Theory of Three-Dimensional Consolidation.? In: J.

Appl. Phys. 12.2 (1941), p. 155. doi: 10.1063/1.1712886.
[24] Eugene D Boland, Branch D Coleman, Catherine P Barnes, David G Simp-

son, Gary E Wnek, and Gary L Bowlin. ?Electrospinning polydioxanone for
biomedical applications.? In: Acta Biomaterialia 1.1 (2005), pp. 115–123. issn:
1742-7061. doi: http://dx.doi.org/10.1016/j.actbio.2004.09.003.

[25] Y. Boucher and R. K. Jain. ?Microvascular pressure is the principal driving
force for interstitial hypertension in solid tumors: Implications for vascular
collapse.? In: Cancer Research 52.18 (1992), pp. 5110–5114. issn: 00085472.

[26] S. Brinkhues. ?Modeling and simulation of arterial walls with focus on damage
and residual stresses.? PhD thesis. Universitat Duisburg-Essen, 2012.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1016/j.cma.2006.06.018
http://dx.doi.org/10.1007/1-84628-016-8_4
http://dx.doi.org/10.1016/s0197-3975(97)00111-5
http://dx.doi.org/10.1007/s00266-006-0257-7
http://dx.doi.org/10.1007/s00266-006-0257-7
http://dx.doi.org/10.1016/j.ejcts.2008.12.013
http://dx.doi.org/10.1017/cbo9781139178938
http://dx.doi.org/10.1063/1.1712886
http://dx.doi.org/http://dx.doi.org/10.1016/j.actbio.2004.09.003


Bibliography 205

[27] O. T. Bruhns, H. Xiao, and A. Meyers. ?Constitutive inequalities for an
isotropic elastic strain-energy function based on Hencky’s logarithmic strain
tensor.? In: Proceedings of the Royal Society of London A: Mathematical, Phys-

ical and Engineering Sciences 457.2013 (2001), pp. 2207–2226. issn: 1364-
5021. doi: 10.1098/rspa.2001.0818.

[28] Pascal R. Buenzli, Peter Pivonka, and David W. Smith. ?Bone refilling in cor-
tical basic multicellular units: insights into tetracycline double labelling from
a computational model.? In: Biomechanics and Modeling in Mechanobiology

13.1 (2013), pp. 185–203. doi: 10.1007/s10237-013-0495-y.
[29] Patrick de Buhan, Xavier Chateau, and Luc Dormieux. ?The constitutive equa-

tions of finite strain poroelasticity in the light of a micro-macro approach.?
In: European Journal of Mechanics - A/Solids 17.6 (1998), pp. 909–921. issn:
09977538. doi: 10.1016/S0997-7538(98)90501-0.

[30] H. Byrne. ?Modelling solid tumour growth using the theory of mixtures.? In:
Mathematical Medicine and Biology 20.4 (2003), pp. 341–366. doi: 10.1093/

imammb20.4.341.
[31] et al C. Cascone. ?Modelli di diffusione di specie in ambienti frammentati.?

In: (2003).
[32] M.S. Cabrera, C.W.J. Oomens, C.V.C. Bouten, A.J.J.C. Bogers, S.P. Hoer-

strup, and F.P.T. Baaijens. ?Mechanical analysis of ovine and pediatric pul-
monary artery for heart valve stent design.? In: Journal of Biomechanics 46.12
(2013), pp. 2075 –2081. issn: 0021-9290. doi: http://dx.doi.org/10.1016/j.

jbiomech.2013.04.020.
[33] Thierry Carrel. ?The autograft inclusion: An obligatory step to avoid late fail-

ure following the Ross procedure?? In: The Journal of Thoracic and Cardio-

vascular Surgery 149.2 (2015), S53–S54. doi: 10.1016/j.jtcvs.2014.09.023.
[34] Thierry Carrel, Markus Schwerzmann, Friedrich Eckstein, Thierry Aymard,

and Alexander Kadner. ?Preliminary results following reinforcement of the
pulmonary autograft to prevent dilatation after the Ross procedure.? In: The
Journal of Thoracic and Cardiovascular Surgery 136.2 (2008), pp. 472–475.
doi: 10.1016/j.jtcvs.2008.02.004.

[35] M Centola, A Rainer, C Spadaccio, S De Porcellinis, J A Genovese, and M
Trombetta. ?Combining electrospinning and fused deposition modeling for
the fabrication of a hybrid vascular graft.? eng. In: Biofabrication 2.1 (Mar.
2010), p. 14102. issn: 1758-5090 (Electronic). doi: 10.1088/1758-5082/2/

1/014102.
[36] C.G. Chakrabarti and Koyel Ghosh. ?Non-equilibrium thermodynamics of

ecosystems: Entropic analysis of stability and diversity.? In: Ecological Mod-

elling 220.17 (2009), pp. 1950–1956. doi: 10.1016/j.ecolmodel.2009.04.055.
[37] M. A. J. Chaplain. ?Mathematical modelling of the loss of tissue compression

responsiveness and its role in solid tumour development.? In: Mathematical

Medicine and Biology 23.3 (2006), pp. 197–229. doi: 10.1093/imammb/

dql009.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1098/rspa.2001.0818
http://dx.doi.org/10.1007/s10237-013-0495-y
http://dx.doi.org/10.1016/S0997-7538(98)90501-0
http://dx.doi.org/10.1093/imammb20.4.341
http://dx.doi.org/10.1093/imammb20.4.341
http://dx.doi.org/http://dx.doi.org/10.1016/j.jbiomech.2013.04.020
http://dx.doi.org/http://dx.doi.org/10.1016/j.jbiomech.2013.04.020
http://dx.doi.org/10.1016/j.jtcvs.2014.09.023
http://dx.doi.org/10.1016/j.jtcvs.2008.02.004
http://dx.doi.org/10.1088/1758-5082/2/1/014102
http://dx.doi.org/10.1088/1758-5082/2/1/014102
http://dx.doi.org/10.1016/j.ecolmodel.2009.04.055
http://dx.doi.org/10.1093/imammb/dql009
http://dx.doi.org/10.1093/imammb/dql009


206 Bibliography

[38] Gang Cheng, Janet Tse, Rakesh K Jain, and Lance L Munn. ?Micro-environmental
mechanical stress controls tumor spheroid size and morphology by suppressing
proliferation and inducing apoptosis in cancer cells.? In: PloS one 4.2 (2009),
e4632. issn: 1932-6203. doi: 10.1371/journal.pone.0004632.

[39] Matthias Chiquet. ?Regulation of extracellular matrix gene expression by me-
chanical stress.? In: Matrix Biology 18.5 (1999), pp. 417–426. doi: 10.1016/

s0945-053x(99)00039-6.
[40] J Chlupac, E Filova, and L Bacakova. ?Blood vessel replacement: 50 years

of development and tissue engineering paradigms in vascular surgery.? In:
Physiol Res 58 (2009), Suppl 2: S119–139.

[41] C J Chuong and Y C Fung. ?Three-dimensional stress distribution in arteries.?
eng. In: Journal of biomechanical engineering 105.3 (Aug. 1983), pp. 268–274.
issn: 0148-0731 (Print).

[42] G. P. Clagett, J. M. Salander, W. L. Eddleman, S. Cabellon, J. R. Youkey,
D. W. Olson, J. E. Hutton, and N. M. Rich. ?Dilation of knitted Dacron
aortic prostheses and anastomotic false aneurysms: etiologic considerations.?
In: Surgery 93.1 Pt 1 (1983), pp. 9–16.

[43] J. M. Clark and S. Glagov. ?Transmural organization of the arterial media.
The lamellar unit revisited.? In: Arteriosclerosis, Thrombosis, and Vascular

Biology 5.1 (1985), pp. 19–34. doi: 10.1161/01.atv.5.1.19.
[44] Bernard D. Coleman and Morton E. Gurtin. ?Thermodynamics with Internal

State Variables.? In: The Journal of Chemical Physics 47.2 (1967), pp. 597–
613. doi: 10.1063/1.1711937.

[45] Olivier Coussy. Mechanics and Physics of Porous Solids. Wiley-Blackwell,
2010. doi: 10.1002/9780470710388.

[46] S C Cowin and S B Doty. Tissue Mechanics. Springer, 2007.
[47] S. C. Cowin and D. H. Hegedus. ?Bone remodeling I: theory of adaptive

elasticity.? In: Journal of Elasticity 6.3 (1976), pp. 313–326. doi: 10.1007/

bf00041724.
[48] Stephen C. Cowin. ?Continuum kinematical modeling of mass increasing bio-

logical growth.? In: International Journal of Engineering Science 48.11 (2010),
pp. 1137–1145. issn: 00207225. doi: 10.1016/j.ijengsci.2010.06.008.

[49] Stephen C. Cowin and Luis Cardoso. ?Mixture theory-based poroelasticity as
a model of interstitial tissue growth.? In: Mechanics of Materials 44 (2012),
pp. 47–57. issn: 01676636. doi: 10.1016/j.mechmat.2011.07.005.

[50] Yannis F. Dafalias and Zacharias Pitouras. ?Stress field in actin gel growing
on spherical substrate.? In: Biomechanics and Modeling in Mechanobiology 8.1
(2007), pp. 9–24. doi: 10.1007/s10237-007-0113-y.

[51] Tirone E. David, Susan Armstrong, Cedric Manlhiot, Brian W. McCrindle,
and Christopher M. Feindel. ?Long-term results of aortic root repair using the
reimplantation technique.? In: The Journal of Thoracic and Cardiovascular

Surgery (2012), pp. 1–4. doi: 10.1016/j.jtcvs.2012.11.075.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1371/journal.pone.0004632
http://dx.doi.org/10.1016/s0945-053x(99)00039-6
http://dx.doi.org/10.1016/s0945-053x(99)00039-6
http://dx.doi.org/10.1161/01.atv.5.1.19
http://dx.doi.org/10.1063/1.1711937
http://dx.doi.org/10.1002/9780470710388
http://dx.doi.org/10.1007/bf00041724
http://dx.doi.org/10.1007/bf00041724
http://dx.doi.org/10.1016/j.ijengsci.2010.06.008
http://dx.doi.org/10.1016/j.mechmat.2011.07.005
http://dx.doi.org/10.1007/s10237-007-0113-y
http://dx.doi.org/10.1016/j.jtcvs.2012.11.075


Bibliography 207

[52] Tirone E. David, Susan Armstrong, Cedric Manlhiot, Brian W. McCrindle,
and Christopher M. Feindel. ?Long-term results of aortic root repair using the
reimplantation technique.? In: The Journal of Thoracic and Cardiovascular

Surgery 145.3 (2013), S22–S25. doi: 10.1016/j.jtcvs.2012.11.075.
[53] Tirone E. David, Carolyn David, Anna Woo, and Cedric Manlhiot. ?The Ross

procedure: Outcomes at 20 years.? In: The Journal of Thoracic and Cardio-

vascular Surgery 147.1 (2014), pp. 85–94. doi: 10.1016/j.jtcvs.2013.08.007.
[54] Ralph J. DeBerardinis, Julian J. Lum, Georgia Hatzivassiliou, and Craig B.

Thompson. ?The Biology of Cancer: Metabolic Reprogramming Fuels Cell
Growth and Proliferation.? In: Cell Metabolism 7.1 (2008), pp. 11–20. doi:
10.1016/j.cmet.2007.10.002.

[55] S. Derler and L. C. Gerhardt. ?Tribology of Skin: Review and Analysis of
Experimental Results for the Friction Coefficient of Human Skin.? In: Tribol
Lett 45.1 (2011), pp. 1–27. doi: 10.1007/s11249-011-9854-y.

[56] Wolfram Dolores, Rainer Christian, Niederegger Harald, Piza Hildegunde, and
Wick Georg. ?Cellular and molecular composition of fibrous capsules formed
around silicone breast implants with special focus on local immune reactions.?
In: Journal of Autoimmunity 23.1 (2004), pp. 81–91. doi: 10.1016/j.jaut.

2004.03.005.
[57] W. J. Drugan. ?Elastic Composite Materials Having a Negative Stiffness Phase

Can Be Stable.? In: Phys. Rev. Lett. 98.5 (2007). doi: 10.1103/physrevlett.

98.055502.
[58] Erik Fink Eriksen. ?Cellular mechanisms of bone remodeling.? In: Rev Endocr

Metab Disord 11.4 (2010), pp. 219–227. doi: 10.1007/s11154-010-9153-1.
[59] Dan Fagrell, Anders Berggren, and Erkki Tarpila. ?Capsular Contracture

around Saline-Filled Fine Textured and Smooth Mammary Implants: A Prospec-
tive 7.5-Year Follow-Up.? In: Plastic and Reconstructive Surgery 108.7 (2001),
pp. 2108–2112. doi: 10.1097/00006534-200112000-00046.

[60] M. Fraldi, F. Carannante, and L. Nunziante. ?Analytical solutions for n-phase
functionally graded material cylinders under de saint venant load conditions:
Homogenization and effects of poisson ratios on the overall stiffness.? In: Com-

posites Part B: Engineering 45.1 (2013), pp. 1310–1324. issn: 13598368. doi:
10.1016/j.compositesb.2012.09.016.

[61] M. Fraldi and F. Guarracino. ?An improved formulation for the assessment of
the capacity load of circular rings and cylindrical shells under external pres-
sure. Part 1. Analytical derivation.? In: Thin-Walled Structures 49.9 (2011),
pp. 1054 –1061. issn: 0263-8231. doi: http://dx.doi.org/10.1016/j.tws.

2011.03.014.
[62] M. Fraldi, L. Esposito, G. Perrella, A. Cutolo, and S. C. Cowin. ?Topologi-

cal optimization in hip prosthesis design.? In: Biomechanics and Modeling in

Mechanobiology 9.4 (2009), pp. 389–402. doi: 10.1007/s10237-009-0183-0.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1016/j.jtcvs.2012.11.075
http://dx.doi.org/10.1016/j.jtcvs.2013.08.007
http://dx.doi.org/10.1016/j.cmet.2007.10.002
http://dx.doi.org/10.1007/s11249-011-9854-y
http://dx.doi.org/10.1016/j.jaut.2004.03.005
http://dx.doi.org/10.1016/j.jaut.2004.03.005
http://dx.doi.org/10.1103/physrevlett.98.055502
http://dx.doi.org/10.1103/physrevlett.98.055502
http://dx.doi.org/10.1007/s11154-010-9153-1
http://dx.doi.org/10.1097/00006534-200112000-00046
http://dx.doi.org/10.1016/j.compositesb.2012.09.016
http://dx.doi.org/http://dx.doi.org/10.1016/j.tws.2011.03.014
http://dx.doi.org/http://dx.doi.org/10.1016/j.tws.2011.03.014
http://dx.doi.org/10.1007/s10237-009-0183-0


208 Bibliography

[63] M. Fraldi, L. Nunziante, a. Gesualdo, and F. Guarracino. ?On the bounding of
limit multipliers for combined loading.? In: Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences 466.2114 (2010), pp. 493–
514. issn: 1364-5021. doi: 10.1098/rspa.2009.0240.

[64] M. Fraldi, A. Cugno, L. Deseri, K. Dayal, and N. M. Pugno. ?A frequency-
based hypothesis for mechanically targeting and selectively attacking cancer
cells.? In: J. R. Soc. Interface 12.111 (2015), p. 20150656. doi: 10.1098/rsif.

2015.0656.
[65] G. Franceschini, D. Bigoni, P. Regitnig, and G.A. Holzapfel. ?Brain tissue

deforms similarly to filled elastomers and follows consolidation theory.? In:
Journal of the Mechanics and Physics of Solids 54.12 (2006), pp. 2592–2620.
doi: 10.1016/j.jmps.2006.05.004.

[66] Peter Fratzl and Richard Weinkamer. ?Nature’s hierarchical materials.? In:
Progress in Materials Science 52.8 (2007), pp. 1263–1334. issn: 0079-6425.
doi: http://dx.doi.org/10.1016/j.pmatsci.2007.06.001.

[67] J. P. Freyer and R. M. Sutherland. ?Regulation of growth saturation and
development of necrosis in EMT6Ro multicellular spheroids by the glucose
and oxygen supply.? In: Cancer Res. 46.7 (1986), pp. 3504–3512.

[68] Y C Fung. Introduction to Bioengineering. WORLD SCIENTIFIC, 2001. doi:
10.1142/4183.

[69] Y Fung. Biomechanics: mechanical properties of living tissues. Biomechanics
Y. C. Fung. Springer-Verlag, 1981.

[70] YC Fung and SQ Liu. ?Changes of zero-stress state of rat pulmonary arteries
in hypoxic hypertension.? In: Journal of Applied Physiology 70.6 (1991).

[71] Matias Gancedo, Luis Ruiz-Corro, Adriana Salazar-Montes, Ana Rosa Rincón,
and Juan Armendáriz-Borunda. ?Pirfenidone Prevents Capsular Contracture
After Mammary Implantation.? In: Aesth Plast Surg 32.1 (2007), pp. 32–40.
doi: 10.1007/s00266-007-9051-4.

[72] J.F. Ganghoffer. ?Mechanical modeling of growth considering domain varia-
tion. Part II: Volumetric and surface growth involving Eshelby tensors.? In:
Journal of the Mechanics and Physics of Solids 58.9 (2010), pp. 1434–1459.
doi: 10.1016/j.jmps.2010.05.003.

[73] J. M. Garcia-Aznar, T. Rueberg, and M. Doblare. ?A bone remodelling model
coupling microdamage growth and repair by 3D BMU-activity.? In: Biome-

chanics and Modeling in Mechanobiology 4.2-3 (2005), pp. 147–167. doi: 10.

1007/s10237-005-0067-x.
[74] K Garikipati. ?A continuum treatment of growth in biological tissue: the cou-

pling of mass transport and mechanics.? In: Journal of the Mechanics and

Physics of Solids 52.7 (2004), pp. 1595–1625. doi: 10.1016/j.jmps.2004.01.

004.
[75] Robert a Gatenby. ?Population Ecology Issues in Tumor Growth Population

Ecology Issues in Tumor Growth.? In: Cancer Research 51.10 (1991), pp. 2542–
2547.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1098/rspa.2009.0240
http://dx.doi.org/10.1098/rsif.2015.0656
http://dx.doi.org/10.1098/rsif.2015.0656
http://dx.doi.org/10.1016/j.jmps.2006.05.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.pmatsci.2007.06.001
http://dx.doi.org/10.1142/4183
http://dx.doi.org/10.1007/s00266-007-9051-4
http://dx.doi.org/10.1016/j.jmps.2010.05.003
http://dx.doi.org/10.1007/s10237-005-0067-x
http://dx.doi.org/10.1007/s10237-005-0067-x
http://dx.doi.org/10.1016/j.jmps.2004.01.004
http://dx.doi.org/10.1016/j.jmps.2004.01.004


Bibliography 209

[76] Klika V Goriely A. Current challenges in the mechanobiology of growth. Tech.
rep. Banff International Research Station, 2012.

[77] Jason M. Graham, Bruce P. Ayati, Sarah A. Holstein, and James A. Mar-
tin. ?The Role of Osteocytes in Targeted Bone Remodeling: A Mathemati-
cal Model.? In: PLoS ONE 8.5 (2013). Ed. by Luc Malaval, e63884. doi:
10.1371/journal.pone.0063884.

[78] L. Graziano and L. Preziosi. ?Mechanics in Tumor Growth.? In: Modeling of

Biological Materials. Springer Science + Business Media, 2007, pp. 263–321.
doi: 10.1007/978-0-8176-4411-6_7.

[79] Morton E. Gurtin, Eliot Fried, and Lallit Anand. The Mechanics and Ther-

modynamics of Continua. Cambridge University Press (CUP), 2009. doi: 10.

1017/cbo9780511762956.
[80] Mohamed Ben Hamouda and Naziha Atti. ?Comparison of growth curves

of lamb fat tail measurements and their relationship with body weight in
Babarine sheep.? In: Small Ruminant Research 95.2-3 (2011), pp. 120–127.
doi: 10.1016/j.smallrumres.2010.10.001.

[81] Y. Han, S. C. Cowin, M. B. Schaffler, and S. Weinbaum. ?Mechanotrans-
duction and strain amplification in osteocyte cell processes.? In: Proceedings
of the National Academy of Sciences 101.47 (2004), pp. 16689–16694. doi:
10.1073/pnas.0407429101.

[82] I. Hariton, G. deBotton, T.C. Gasser, and G.A. Holzapfel. ?Stress-driven colla-
gen fiber remodeling in arterial walls.? In: Journal of Biomechanics 39 (2006),
S317. doi: 10.1016/s0021-9290(06)84245-4.

[83] G Helmlinger, P a Netti, H C Lichtenbeld, R J Melder, and R K Jain. ?Solid
stress inhibits the growth of multicellular tumor spheroids.? In: Nature biotech-
nology 15.8 (1997), pp. 778–783. issn: 1087-0156. doi: 10.1038/nbt0897-

778.
[84] R. Hill. ?On constitutive inequalities for simple materials.? In: Journal of the

Mechanics and Physics of Solids 16.5 (1968), pp. 315–322. doi: 10.1016/

0022-5096(68)90018-5.
[85] Anne Hoger. ?On the determination of residual stress in an elastic body.? In:

Journal of Elasticity 16.3 (1986), pp. 303–324. doi: 10.1007/bf00040818.
[86] Anne Hoger. ?The stress conjugate to logarithmic strain.? In: International

Journal of Solids and Structures 23.12 (1987), pp. 1645–1656. issn: 00207683.
doi: 10.1016/0020-7683(87)90115-6.

[87] G.A. Holapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engi-

neering. Wiley, 2000.
[88] G. A. Holzapfel. ?Determination of layer-specific mechanical properties of

human coronary arteries with nonatherosclerotic intimal thickening and re-
lated constitutive modeling.? In: AJP: Heart and Circulatory Physiology 289.5
(2005), H2048–H2058. doi: 10.1152/ajpheart.00934.2004.

[89] G A Holzapfel and R W Ogden. Mechanics of Biological Tissue. Springer,
2006.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1371/journal.pone.0063884
http://dx.doi.org/10.1007/978-0-8176-4411-6_7
http://dx.doi.org/10.1017/cbo9780511762956
http://dx.doi.org/10.1017/cbo9780511762956
http://dx.doi.org/10.1016/j.smallrumres.2010.10.001
http://dx.doi.org/10.1073/pnas.0407429101
http://dx.doi.org/10.1016/s0021-9290(06)84245-4
http://dx.doi.org/10.1038/nbt0897-778
http://dx.doi.org/10.1038/nbt0897-778
http://dx.doi.org/10.1016/0022-5096(68)90018-5
http://dx.doi.org/10.1016/0022-5096(68)90018-5
http://dx.doi.org/10.1007/bf00040818
http://dx.doi.org/10.1016/0020-7683(87)90115-6
http://dx.doi.org/10.1152/ajpheart.00934.2004


210 Bibliography

[90] Gerhard A Holzapfel and Ray W Ogden. ?Constitutive modelling of arteries.?
In: Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences 466.2118 (Apr. 2010), pp. 1551–1597.
[91] GerhardA. Holzapfel, ThomasC. Gasser, and RayW. Ogden. ?A New Con-

stitutive Framework for Arterial Wall Mechanics and a Comparative Study
of Material Models.? English. In: Journal of elasticity and the physical sci-

ence of solids 61.1-3 (2000), pp. 1–48. issn: 0374-3535. doi: 10 .1023/A:

1010835316564.
[92] Jurgen Horer et al. ?Neoaortic root diameters and aortic regurgitation in

children after the Ross operation.? eng. In: The Annals of thoracic surgery

88.2 (Aug. 2009), 594–600; discussion 600. issn: 1552-6259 (Electronic).
doi: 10.1016/j.athoracsur.2009.04.077.

[93] Ingber DE Huang S. ?Cell tension, matrix mechanics, and cancer develop-
ment.? In: Cancer Cell 8.3 (2005), pp. 175–6. doi: doi:10.1016/j.ccr.2005.

08.009.
[94] J D Humphrey. Cardiovascular Solid Mechanics. Springer-Verlag New York,

2002. doi: 10.1007/978-0-387-21576-1.
[95] C.V. Ioannou, N. Stergiopulos, A.N. Katsamouris, I. Startchik, A. Kalangos,

M.J. Licker, N. Westerhof, and D.R. Morel. ?Hemodynamics induced after
acute reduction of proximal thoracic aorta compliance.? In: European Journal

of Vascular and Endovascular Surgery 26.2 (2003), pp. 195–204. doi: 10 .

1053/ejvs.2002.1917.
[96] Christos V. Ioannou, Denis R. Morel, Asterios N. Katsamouris, Sofia Katran-

itsa, Irena Startchik, Afksentios Kalangos, Nico Westerhof, and Nikos Stergiop-
ulos. ?Left Ventricular Hypertrophy Induced by Reduced Aortic Compliance.?
In: J Vasc Res 46.5 (2009), pp. 417–425. doi: 10.1159/000194272.

[97] Hanna Isaksson, Corrinus C. van Donkelaar, Rik Huiskes, and Keita Ito. ?A
mechano-regulatory bone-healing model incorporating cell-phenotype specific
activity.? In: Journal of Theoretical Biology 254.3 (2008), p. 717. doi: 10.

1016/j.jtbi.2008.07.003.
[98] Giorgio Israel and Ana Millán Gasca. The Biology of Numbers. Springer Sci-

ence + Business Media, 2002. doi: 10.1007/978-3-0348-8123-4.
[99] Mehmet Itik and Stephen P. Banks. ?Chaos in a three dimensional cancer

model.? In: International Journal of Bifurcation and Chaos 20.01 (2010),
pp. 71–79. doi: 10.1142/s0218127410025417.

[100] M. Itskov. ?The Derivative with respect to a Tensor: some Theoretical Aspects
and Applications.? In: ZAMM 82.8 (2002), pp. 535–544. issn: 1521-4001. doi:
10.1002/1521-4001(200208)82:8<535::AID-ZAMM535>3.0.CO;2-U.

[101] Jeffrey G Jacot, Ibrahim Abdullah, Michael Belkin, Marie Gerhard-Herman,
Peter Gaccione, Joseph F Polak, Magruder C Donaldson, Anthony D Whit-
temore, and Michael S Conte. ?Early adaptation of human lower extremity
vein grafts: wall stiffness changes accompany geometric remodeling.? eng. In:
Journal of vascular surgery 39.3 (Mar. 2004), pp. 547–555. issn: 0741-5214
(Print). doi: 10.1016/j.jvs.2003.09.045.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1023/A:1010835316564
http://dx.doi.org/10.1023/A:1010835316564
http://dx.doi.org/10.1016/j.athoracsur.2009.04.077
http://dx.doi.org/doi:10.1016/j.ccr.2005.08.009
http://dx.doi.org/doi:10.1016/j.ccr.2005.08.009
http://dx.doi.org/10.1007/978-0-387-21576-1
http://dx.doi.org/10.1053/ejvs.2002.1917
http://dx.doi.org/10.1053/ejvs.2002.1917
http://dx.doi.org/10.1159/000194272
http://dx.doi.org/10.1016/j.jtbi.2008.07.003
http://dx.doi.org/10.1016/j.jtbi.2008.07.003
http://dx.doi.org/10.1007/978-3-0348-8123-4
http://dx.doi.org/10.1142/s0218127410025417
http://dx.doi.org/10.1002/1521-4001(200208)82:8<535::AID-ZAMM535>3.0.CO;2-U
http://dx.doi.org/10.1016/j.jvs.2003.09.045


Bibliography 211

[102] Rakesh K. Jain, Ricky T. Tong, and Lance L. Munn. ?Effect of vascular nor-
malization by antiangiogenic therapy on interstitial hypertension, peritumor
edema, and lymphatic metastasis: Insights from a mathematical model.? In:
Cancer Research 67.6 (2007), pp. 2729–2735. issn: 00085472. doi: 10.1158/

0008-5472.CAN-06-4102.
[103] Robert L. Jilka. ?Biology of the basic multicellular unit and the pathophysiol-

ogy of osteoporosis.? In: Med. Pediatr. Oncol. 41.3 (2003), pp. 182–185. doi:
10.1002/mpo.10334.

[104] B. E. Johnson and A. Hoger. ?The Use of Strain Energy to Quantify the Effect
of Residual Stress on Mechanical Behavior.? In: Mathematics and Mechanics

of Solids 3.4 (1998), pp. 447–470. doi: 10.1177/108128659800300405.
[105] Arseniy Karkach. ?Trajectories and models of individual growth.? In: Demo-

graphic Research 15 (2006), pp. 347–400. doi: 10.4054/demres.2006.15.12.
[106] Ali Karrech, Thomas Poulet, and Klaus Regenauer-Lieb. ?Poromechanics of

saturated media based on the logarithmic finite strain.? In: Mechanics of

Materials 51 (2012), pp. 118–136. doi: 10.1016/j.mechmat.2012.03.011.
[107] H.K. Khalil. Nonlinear Systems. Prentice Hall, 1996.
[108] Ardeshir Kianercy, Robert Veltri, and Kenneth J Pienta. ?Critical transitions

in a game theoretic model of tumour metabolism.? In: Interface focus 4.4
(2014), p. 20140014. issn: 2042-8898. doi: 10.1098/rsfs.2014.0014.

[109] Sang-Hoon Kim, ChoHay Mun, Youngmee Jung, Sang-Heon Kim, Dong-Ik
Kim, and SooHyun Kim. ?Mechanical properties of compliant double layered
poly(L-lactide-co-ε-caprolactone) vascular graft.? English. In: Macromolecular

Research 21.8 (2013), pp. 886–891. issn: 1598-5032. doi: 10.1007/s13233-

013-1095-5.
[110] Shin Y. Kim, Thomas J. Hinkamp, William R. Jacobs, Robert C. Lichtenberg,

Harold Posniak, and Roque Pifarré. ?Effect of an inelastic aortic synthetic
vascular graft on exercise hemodynamics.? In: The Annals of Thoracic Surgery
59.4 (1995), pp. 981–989. doi: 10.1016/0003-4975(95)00068-v.

[111] O. Kintzel. ?Fourth-order tensors–tensor differentiation with applications to
continuum mechanics. Part II: Tensor analysis on manifolds.? In: ZAMM 86.4
(2006), pp. 312–334. doi: 10.1002/zamm.200410243.

[112] O. Kintzel and Y. Başar. ?Fourth-order tensors – tensor differentiation with
applications to continuum mechanics. Part I: Classical tensor analysis.? In:
ZAMM 86.4 (2006), pp. 291–311. doi: 10.1002/zamm.200410242.

[113] Kanchi Lakshmi Kiran, Devaraj Jayachandran, and S. Lakshminarayanan.
?Mathematical modelling of avascular tumour growth based on diffusion of
nutrients and its validation.? In: Can. J. Chem. Eng. 87.5 (2009), pp. 732–
740. doi: 10.1002/cjce.20204.

[114] D.M. Kochmann and W.J. Drugan. ?Dynamic stability analysis of an elastic
composite material having a negative-stiffness phase.? In: Journal of the Me-

chanics and Physics of Solids 57.7 (2009), pp. 1122–1138. doi: 10.1016/j.

jmps.2009.03.002.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1158/0008-5472.CAN-06-4102
http://dx.doi.org/10.1158/0008-5472.CAN-06-4102
http://dx.doi.org/10.1002/mpo.10334
http://dx.doi.org/10.1177/108128659800300405
http://dx.doi.org/10.4054/demres.2006.15.12
http://dx.doi.org/10.1016/j.mechmat.2012.03.011
http://dx.doi.org/10.1098/rsfs.2014.0014
http://dx.doi.org/10.1007/s13233-013-1095-5
http://dx.doi.org/10.1007/s13233-013-1095-5
http://dx.doi.org/10.1016/0003-4975(95)00068-v
http://dx.doi.org/10.1002/zamm.200410243
http://dx.doi.org/10.1002/zamm.200410242
http://dx.doi.org/10.1002/cjce.20204
http://dx.doi.org/10.1016/j.jmps.2009.03.002
http://dx.doi.org/10.1016/j.jmps.2009.03.002


212 Bibliography

[115] E.W. Kopf and A.J. Lotka. ?Elements of Physical Biology.? In: Journal of
the American Statistical Association 20.151 (1925), p. 452. doi: 10.2307/

2965538.
[116] J. Kováčik. ?Correlation between Young’s modulus and porosity in porous

materials.? English. In: Journal of Materials Science Letters 18.13 (1999),
pp. 1007–1010. issn: 0261-8028. doi: 10.1023/A:1006669914946.

[117] E. Kuhl and P. Steinmann. ?Mass- and volume-specific views on thermo-
dynamics for open systems.? In: Proceeding of the Royal Society of London

459.2038 (2003), pp. 2547–2568. issn: 1364-5021. doi: 10.1098/rspa.2003.

1119.
[118] Ellen Kuhl. ?Growing matter: A review of growth in living systems.? In: Jour-

nal of the Mechanical Behavior of Biomedical Materials 29 (2014), pp. 529–
543. doi: 10.1016/j.jmbbm.2013.10.009.

[119] R. S. Lakes, T. Lee, A. Bersie, and Y.C. Wang. ?xtreme damping in composite
materials with negative-stiffness inclusions.? In: Nature (2001). doi: http :

//dx.doi.org/10.1038/35069035.
[120] R.S. Lakes and W.J. Drugan. ?Dramatically stiffer elastic composite materials

due to a negative stiffness phase?? In: Journal of the Mechanics and Physics

of Solids 50.5 (2002), pp. 979–1009. doi: 10.1016/s0022-5096(01)00116-8.
[121] James J. Lee, Justin Huang, Christopher G. England, Lacey R. McNally, and

Hermann B. Frieboes. ?Predictive Modeling of In Vivo Response to Gem-
citabine in Pancreatic Cancer.? In: PLoS Comput Biol 9.9 (2013). Ed. by
Mark S. Alber, e1003231. doi: 10.1371/journal.pcbi.1003231.

[122] Vincent Lemaire, Frank L. Tobin, Larry D. Greller, Carolyn R. Cho, and Larry
J. Suva. ?Modeling the interactions between osteoblast and osteoclast activ-
ities in bone remodeling.? In: Journal of Theoretical Biology 229.3 (2004),
pp. 293–309. doi: 10.1016/j.jtbi.2004.03.023.

[123] Jianying Li, Haiyan Li, Li Shi, Alex S.L. Fok, Cemal Ucer, Hugh Devlin,
Keith Horner, and Nick Silikas. ?A mathematical model for simulating the
bone remodeling process under mechanical stimulus.? In: Dental Materials

23.9 (2007), pp. 1073–1078. doi: 10.1016/j.dental.2006.10.004.
[124] David Liao and Thea D Tlsty. ?Evolutionary game theory for physical and

biological scientists. II. Population dynamics equations can be associated with
interpretations.? In: Interface Focus 4.4 (2014), pp. 20140038–20140038. issn:
2042-8898. doi: 10.1098/rsfs.2014.0038.

[125] David Liao and Thea D. Tlsty. ?Evolutionary game theory for physical and
biological scientists. II. Population dynamics equations can be associated with
interpretations.? In: Interface Focus 4.4 (2014), pp. 20140038–20140038. issn:
2042-8898. doi: 10.1098/rsfs.2014.0038.

[126] Shuyang Lu, Peng Zhang, Xiaoning Sun, Feirong Gong, Shouguo Yang, Li
Shen, Zheyong Huang, and ChunshengWang. ?Synthetic ePTFE Grafts Coated
with an Anti-CD133 Antibody-Functionalized Heparin/Collagen Multilayer
with Rapid in vivo Endothelialization Properties.? In: ACS Applied Materials

& Interfaces 5.15 (2013), pp. 7360–7369. doi: 10.1021/am401706w.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.2307/2965538
http://dx.doi.org/10.2307/2965538
http://dx.doi.org/10.1023/A:1006669914946
http://dx.doi.org/10.1098/rspa.2003.1119
http://dx.doi.org/10.1098/rspa.2003.1119
http://dx.doi.org/10.1016/j.jmbbm.2013.10.009
http://dx.doi.org/http://dx.doi.org/10.1038/35069035
http://dx.doi.org/http://dx.doi.org/10.1038/35069035
http://dx.doi.org/10.1016/s0022-5096(01)00116-8
http://dx.doi.org/10.1371/journal.pcbi.1003231
http://dx.doi.org/10.1016/j.jtbi.2004.03.023
http://dx.doi.org/10.1016/j.dental.2006.10.004
http://dx.doi.org/10.1098/rsfs.2014.0038
http://dx.doi.org/10.1098/rsfs.2014.0038
http://dx.doi.org/10.1021/am401706w


Bibliography 213

[127] V A Lubarda and A Hoger. ?On the mechanics of solids with a growing mass.?
In: International Journal of Solids and Structures 39.18 (2002), pp. 4627–
4664. issn: 0020-7683. doi: http://dx.doi.org/10.1016/S0020-7683(02)

00352-9.
[128] V.A. Lubarda. ?Constitutive theories based on the multiplicative decompo-

sition of deformation gradient: Thermoelasticity, elastoplasticity, and biome-
chanics.? In: Applied Mechanics Reviews 57.2 (2004), pp. 95–108. doi: 10.

1115/1.1591000.
[129] A. M. Lyapunov. ?The general problem of the stability of motion.? In: In-

ternational Journal of Control 55.3 (1992), pp. 531–534. doi: 10 . 1080 /

00207179208934253.
[130] HAJIME MAETA and MOTOKAZU Hori. ?Effects of a lack of aortic “wind-

kessel” properties on the left ventricle.? In: Jpn Circ J 49.2 (1985), pp. 232–
237. doi: 10.1253/jcj.49.232.

[131] P.S. Malchesky. ?Artificial Organs 2012: a year in review.? In: Artificial Or-

gans 37.3 (2013), pp. 324–349. doi: 10.1111/aor.12057.
[132] Koichi Matsuo and Naoko Irie. ?Osteoclast–osteoblast communication.? In:

Archives of Biochemistry and Biophysics 473.2 (2008), pp. 201–209. doi: 10.

1016/j.abb.2008.03.027.
[133] Geard Maugin. Configurational Forces. Chapman and Hall/CRC, 2010. doi:

10.1201/b10356.
[134] G. Patrick Maxwell and Allen Gabriel. ?The Evolution of Breast Implants.?

In: Plastic and Reconstructive Surgery 134 (2014), 12S–17S. doi: 10.1097/prs.

0000000000000348.
[135] Luis G. Melo, Massimiliano Gnecchi, Christopher A. Ward, and Victor J. Dzau.

?Vascular Remodeling in Health and Disease.? In: Cardiovascular Medicine.
Springer Science + Business Media, 2007, pp. 1541–1565. doi: 10.1007/978-

1-84628-715-2_74.
[136] G. Molea, F. Schonauer, G. Bifulco, and D. D’Angelo. ?Comparative study on

biocompatibility and absorption times of three absorbable monofilament su-
ture materials (Polydioxanone, Poliglecaprone 25, Glycomer 631).? In: British
Journal of Plastic Surgery 53.2 (2000), pp. 137–141. doi: 10.1054/bjps.1999.

3247.
[137] Fabien Montel et al. ?Stress Clamp Experiments on Multicellular Tumor

Spheroids.? In: Phys. Rev. Lett. 107.18 (2011). doi: 10 .1103/physrevlett .

107.188102.
[138] Fabien Montel, Morgan Delarue, Jens Elgeti, Danijela Vignjevic, Giovanni

Cappello, and Jacques Prost. ?Isotropic stress reduces cell proliferation in
tumor spheroids.? In: New Journal of Physics 14 (2012). issn: 13672630. doi:
10.1088/1367-2630/14/5/055008.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/http://dx.doi.org/10.1016/S0020-7683(02)00352-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-7683(02)00352-9
http://dx.doi.org/10.1115/1.1591000
http://dx.doi.org/10.1115/1.1591000
http://dx.doi.org/10.1080/00207179208934253
http://dx.doi.org/10.1080/00207179208934253
http://dx.doi.org/10.1253/jcj.49.232
http://dx.doi.org/10.1111/aor.12057
http://dx.doi.org/10.1016/j.abb.2008.03.027
http://dx.doi.org/10.1016/j.abb.2008.03.027
http://dx.doi.org/10.1201/b10356
http://dx.doi.org/10.1097/prs.0000000000000348
http://dx.doi.org/10.1097/prs.0000000000000348
http://dx.doi.org/10.1007/978-1-84628-715-2_74
http://dx.doi.org/10.1007/978-1-84628-715-2_74
http://dx.doi.org/10.1054/bjps.1999.3247
http://dx.doi.org/10.1054/bjps.1999.3247
http://dx.doi.org/10.1103/physrevlett.107.188102
http://dx.doi.org/10.1103/physrevlett.107.188102
http://dx.doi.org/10.1088/1367-2630/14/5/055008


214 Bibliography

[139] M. J. Moreno, A. Ajji, D. Mohebbi-Kalhori, M. Rukhlova, A. Hadjizadeh, and
M. N. Bureau. ?Development of a compliant and cytocompatible micro-fibrous
polyethylene terephthalate vascular scaffold.? In: Journal of Biomedical Ma-

terials Research Part B: Applied Biomaterials 97B.2 (2011), pp. 201–214. doi:
10.1002/jbm.b.31774.

[140] Bahrami AR. Naderi H Matin MM. ?Review paper: critical issues in tissue
engineering: biomaterials, cell sources, angiogenesis, and drug delivery sys-
tems.? In: Journal of Biomaterials Applications 26.4 (2011), pp. 383–417. doi:
10.1177/0885328211408946.

[141] Francesco Nappi, Cristiano Spadaccio, Clotilde Castaldo, Franca Di Meglio,
Daria Nurzynska, Stefania Montagnani, Massimo Chello, and Christophe Acar.
?Reinforcement of the pulmonary artery autograft with a polyglactin and
polydioxanone mesh in the Ross operation: experimental study in growing
lamb.? eng. In: The Journal of heart valve disease 23.2 (Mar. 2014), pp. 145–
148. issn: 0966-8519 (Print).

[142] Francesco Nappi, Cristiano Spadaccio, Pierre Fouret, Nadjib Hammoudi, Juan
Carlos Chachques, Massimo Chello, and Christophe Acar. ?An experimental
model of the Ross operation: Development of resorbable reinforcements for pul-
monary autografts.? In: The Journal of Thoracic and Cardiovascular Surgery

149.4 (July 2015), pp. 1134–1142. doi: 10.1016/j.jtcvs.2014.12.056.
[143] Francesco Nappi, Angelo Rosario Carotenuto, Donato Di Vito, Cristiano Spadac-

cio, Cristophe Acar, and Massimiliano Fraldi. ?Stress-shielding, growth and
remodeling of pulmonary artery reinforced with copolymer scaffold and trans-
posed into aortic position.? In: Biomechanics and Modeling in Mechanobiology

(2015). doi: 10.1007/s10237-015-0749-y.
[144] Francesco Nappi, Cristiano Spadaccio, Massimo Chello, and Christophe Acar.

?The Ross procedure: Underuse or under-comprehension?? In: The Journal of
Thoracic and Cardiovascular Surgery 149.5 (July 2015), pp. 1463–1464. doi:
10.1016/j.jtcvs.2015.01.021.

[145] Francesco Nappi, Cristiano Spadaccio, Nawwar Al-Attar, and Christophe Acar.
?The Ross procedure at the crossroads: Lessons from biology: Is Dr Ross’s
dream concluded?? In: International Journal of Cardiology 178 (2015), pp. 37
–39. issn: 0167-5273. doi: http://dx.doi.org/10.1016/j.ijcard.2014.10.134.

[146] B. S. Noble, N. Peet, H. Y. Stevens, A. Brabbs, J. R. Mosley, G. C. Reilly,
J. Reeve, T. M. Skerry, and L. E. Lanyon. ?Mechanical loading: biphasic
osteocyte survival and targeting of osteoclasts for bone destruction in rat
cortical bone.? In: AJP: Cell Physiology 284.4 (2002), pp. C934–C943. doi:
10.1152/ajpcell.00234.2002.

[147] Juha-Pekka Nuutinen, Claude Clerc, Raija Reinikainen, and Pertti Törmälä.
?Mechanical properties and in vitro degradation of bioabsorbable self-expanding
braided stents.? In: Journal of Biomaterials Science, Polymer Edition 14.3
(2003), pp. 255–266. doi: 10.1163/156856203763572707.

[148] R.W. Ogden. Nonlinear Elastic Deformations. Dover Publications, 1997.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1002/jbm.b.31774
http://dx.doi.org/10.1177/0885328211408946
http://dx.doi.org/10.1016/j.jtcvs.2014.12.056
http://dx.doi.org/10.1007/s10237-015-0749-y
http://dx.doi.org/10.1016/j.jtcvs.2015.01.021
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijcard.2014.10.134
http://dx.doi.org/10.1152/ajpcell.00234.2002
http://dx.doi.org/10.1163/156856203763572707


Bibliography 215

[149] Tobias Olsson and Anders Klarbring. ?Residual stresses in soft tissue as a
consequence of growth and remodeling: application to an arterial geometry.?
In: European Journal of Mechanics - A/Solids 27.6 (2008), pp. 959–974. issn:
0997-7538. doi: http://dx.doi.org/10.1016/j.euromechsol.2007.12.006.

[150] Lawrence Perko. Differential Equations and Dynamical Systems. Springer US,
1996. doi: 10.1007/978-1-4684-0249-0.

[151] Gianpietro Del Piero. ?Some properties of the set of fourth-order tensors, with
application to elasticity.? In: Journal of Elasticity 9.3 (1979), pp. 245–261.
doi: 10.1007/bf00041097.

[152] Giuseppe Pisani, Raffaele Scaffa, Ornella Ieropoli, Edoardo M. Dell’Amico,
Daniele Maselli, Umberto Morbiducci, and Ruggero De Paulis. ?Role of the
sinuses of Valsalva on the opening of the aortic valve.? In: The Journal of

Thoracic and Cardiovascular Surgery 145.4 (2013), pp. 999–1003. doi: 10.

1016/j.jtcvs.2012.03.060.
[153] N. Poeppl, S. Schreml, F. Lichtenegger, A. Lenich, M. Eisenmann-Klein, and

L. Prantl. ?Does the Surface Structure of Implants Have an Impact on the For-
mation of a Capsular Contracture?? In: Aesth Plast Surg 31.2 (2007), pp. 133–
139. doi: 10.1007/s00266-006-0091-y.

[154] J. L. Del Pozo et al. ?Pilot Study of Association of Bacteria on Breast Implants
with Capsular Contracture.? In: Journal of Clinical Microbiology 47.5 (2009),
pp. 1333–1337. doi: 10.1128/jcm.00096-09.

[155] Lukas Prantl, Stephan Schreml, Stefan Fichtner-Feigl, Nina P??ppl, Marita
Eisenmann-Klein, Hartmut Schwarze, and Bernd F??chtmeier. ?Clinical and
Morphological Conditions in Capsular Contracture Formed around Silicone
Breast Implants.? In: Plastic and Reconstructive Surgery 120.1 (2007), pp. 275–
284. doi: 10.1097/01.prs.0000264398.85652.9a.

[156] Luigi Preziosi and Andrea Tosin. ?Multiphase modelling of tumour growth
and extracellular matrix interaction: Mathematical tools and applications.? In:
Journal of Mathematical Biology 58.4-5 (2009), pp. 625–656. issn: 03036812.
doi: 10.1007/s00285-008-0218-7.

[157] V. Quaglini, S. Mantero, and T. Villa. ?Mechanical properties of breast peripros-
thetic capsules and the correlation to capsule contracture.? In: J Appl Bio-

mater Biomech 3.3 (2005), pp. 184–191.
[158] Aparna C. Ranganathan, Alejandro P. Adam, and Julio A. Aguirre-Ghiso.

?Opposing Roles of Mitogenic and Stress Signaling Pathways in the Induction
of Cancer Dormancy.? In: Cell Cycle 5.16 (2006), pp. 1799–1807. doi: 10.

4161/cc.5.16.3109.
[159] Mikael C Rechtsman, Frank H Stillinger, and Salvatore Torquato. ?Negative

Poisson’s Ratio Materials via Isotropic Interactions.? In: Phys. Rev. Lett. 101.8
(2008), p. 85501. doi: 10.1103/PhysRevLett.101.085501.

[160] Jiu-Sheng Ren. ?Growth and residual stresses of arterial walls.? In: Journal of
Theoretical Biology 337 (2013), pp. 80–88. doi: 10.1016/j.jtbi.2013.08.008.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/http://dx.doi.org/10.1016/j.euromechsol.2007.12.006
http://dx.doi.org/10.1007/978-1-4684-0249-0
http://dx.doi.org/10.1007/bf00041097
http://dx.doi.org/10.1016/j.jtcvs.2012.03.060
http://dx.doi.org/10.1016/j.jtcvs.2012.03.060
http://dx.doi.org/10.1007/s00266-006-0091-y
http://dx.doi.org/10.1128/jcm.00096-09
http://dx.doi.org/10.1097/01.prs.0000264398.85652.9a
http://dx.doi.org/10.1007/s00285-008-0218-7
http://dx.doi.org/10.4161/cc.5.16.3109
http://dx.doi.org/10.4161/cc.5.16.3109
http://dx.doi.org/10.1103/PhysRevLett.101.085501
http://dx.doi.org/10.1016/j.jtbi.2013.08.008


216 Bibliography

[161] James R. Rice and Michael P. Cleary. ?Some basic stress diffusion solutions
for fluid-saturated elastic porous media with compressible constituents.? In:
Rev. Geophys. 14.2 (1976), p. 227. doi: 10.1029/rg014i002p00227.

[162] G. Riepe et al. ?Long-term in vivo alterations of polyester vascular grafts in
humans.? In: European Journal of Vascular and Endovascular Surgery 13.6
(1997), pp. 540–548. doi: 10.1016/s1078-5884(97)80062-7.

[163] Francis Robicsek and Mano J Thubrikar. ?Role of sinus wall compliance in
aortic leaflet function.? In: The American Journal of Cardiology 84.8 (1999),
pp. 944–946. doi: 10.1016/s0002-9149(99)00475-0.

[164] Edward K Rodriguez, Anne Hoger, and Andrew DMcCulloch. ?Stress-dependent
finite growth in soft elastic tissues.? In: Journal of Biomechanics 27.4 (1994),
pp. 455–467. issn: 0021-9290. doi: http : / / dx . doi . org / 10 . 1016 / 0021 -

9290(94)90021-3.
[165] Tiina Roose, S. Jonathan Chapman, and Philip K. Maini. ?Mathematical

Models of Avascular Tumor Growth.? In: SIAM Rev. 49.2 (2007), pp. 179–
208. doi: 10.1137/s0036144504446291.

[166] Tiina Roose, Paolo A. Netti, Lance L. Munn, Yves Boucher, and Rakesh K.
Jain. ?Solid stress generated by spheroid growth estimated using a linear poroe-
lasticity model.? In: Microvascular Research 66.3 (2003), pp. 204–212. doi:
10.1016/s0026-2862(03)00057-8.

[167] DonaldN. Ross. ?Replacement of aortic and mitral valves with a pulmonary
autograft.? In: The Lancet 290.7523 (1967), pp. 956–958. doi: 10 .1016/

s0140-6736(67)90794-5.
[168] Corrado Rubino, Vittorio Mazzarello, Francesco Farace, Francesco D???Andrea,

Andrea Montella, Grazia Fenu, and Gian Vittorio Campus. ?Ultrastructural
Anatomy of Contracted Capsules Around Textured Implants in Augmented
Breasts.? In: Annals of Plastic Surgery 46.2 (2001), pp. 95–102. doi: 10.1097/

00000637-200102000-00001.
[169] Marc D. Ryser, Svetlana V. Komarova, and Nilima Nigam. ?The Cellular

Dynamics of Bone Remodeling: A Mathematical Model.? In: SIAM J. Appl.

Math. 70.6 (2010), pp. 1899–1921. doi: 10.1137/090746094.
[170] Marc D Ryser, Nilima Nigam, and Svetlana V Komarova. ?Mathematical

Modeling of Spatio-Temporal Dynamics of a Single Bone Multicellular Unit.?
In: Journal of Bone and Mineral Research 24.5 (2009), pp. 860–870. doi:
10.1359/jbmr.081229.

[171] Marcos A Sabino, Susana González, Leni Márquez, and José L Feijoo. ?Study
of the hydrolytic degradation of polydioxanone PPDX.? In: Polymer Degra-

dation and Stability 69.2 (2000), pp. 209–216. issn: 0141-3910. doi: http:

//dx.doi.org/10.1016/S0141-3910(00)00062-8.
[172] Henryk J. Salacinski, Sean Goldner, Alberto Giudiceandrea, George Hamilton,

Alexander M. Seifalian, Alan Edwards, and Robert J. Carson. ?The Mechani-
cal Behavior of Vascular Grafts: A Review.? In: Journal of Biomaterials Appli-

cations 15.3 (2001), pp. 241–278. doi: 10.1106/NA5T-J57A-JTDD-FD04.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1029/rg014i002p00227
http://dx.doi.org/10.1016/s1078-5884(97)80062-7
http://dx.doi.org/10.1016/s0002-9149(99)00475-0
http://dx.doi.org/http://dx.doi.org/10.1016/0021-9290(94)90021-3
http://dx.doi.org/http://dx.doi.org/10.1016/0021-9290(94)90021-3
http://dx.doi.org/10.1137/s0036144504446291
http://dx.doi.org/10.1016/s0026-2862(03)00057-8
http://dx.doi.org/10.1016/s0140-6736(67)90794-5
http://dx.doi.org/10.1016/s0140-6736(67)90794-5
http://dx.doi.org/10.1097/00000637-200102000-00001
http://dx.doi.org/10.1097/00000637-200102000-00001
http://dx.doi.org/10.1137/090746094
http://dx.doi.org/10.1359/jbmr.081229
http://dx.doi.org/http://dx.doi.org/10.1016/S0141-3910(00)00062-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0141-3910(00)00062-8
http://dx.doi.org/10.1106/NA5T-J57A-JTDD-FD04


Bibliography 217

[173] Malisa Sarntinoranont, Frank Rooney, and Mauro Ferrari. ?Interstitial stress
and fluid pressure within a growing tumor.? In: Annals of Biomedical Engi-

neering 31.3 (2003), pp. 327–335. issn: 00906964. doi: 10.1114/1.1554923.
[174] B. Schieck and H. Stumpf. ?The appropriate corotational rate, exact formula

for the plastic spin and constitutive model for finite elastoplasticity.? In: Inter-
national Journal of Solids and Structures 32.24 (1995), pp. 3643–3667. doi:
10.1016/0020-7683(95)00007-w.

[175] S Schlesinger. ?Zafirlukast (Accolate): A new treatment for capsular contrac-
ture.? In: Aesthetic Surgery Journal 22.4 (2002), pp. 329–336. doi: 10.1067/

maj.2002.126753.
[176] H. Schmid, L. Pauli, A. Paulus, E. Kuhl, and M. Itskov. ?Consistent formu-

lation of the growth process at the kinematic and constitutive level for soft
tissues composed of multiple constituents.? In: Computer Methods in Biome-

chanics and Biomedical Engineering 15.5 (2012), pp. 547–561. doi: 10.1080/

10255842.2010.548325.
[177] G. Sciumé, S. Shelton, C. T. Gray W. G.and Miller, F. Hussain, M. Ferrari,

P. Decuzzi, and B. A. Schrefler. ?A multiphase model for three-dimensional
tumor growth.? In: New Journal of Physics 15 (2013). doi: doi:10.1088/1367-

2630/15/1/015005.
[178] Christine M. Scotti, Jorge Jimenez, Satish C. Muluk, and Ender A. Finol.

?Wall stress and flow dynamics in abdominal aortic aneurysms: finite element
analysis vs. fluid–structure interaction.? In: Computer Methods in Biomechan-

ics and Biomedical Engineering 11.3 (2008), pp. 301–322. doi: 10 . 1080 /

10255840701827412.
[179] S.A. Sell, M.J. McClure, D.C. Knapp, B.H. Walpoth, D. G. Simpson, and

G. L. Bowlin. ?Electrospun polydioxanone-elastin blends: potential for biore-
sorbable vascular grafts.? In: Biomed Mater 1 (2006), pp. 72–80. doi: 10.

1088/1748-6041/1/2/004.
[180] Malakh Shrestha, Hassina Baraki, Ilona Maeding, Sebastian Fitzner, Samir

Sarikouch, Nawid Khaladj, Christian Hagl, and Axel Haverich. ?Long-term
results after aortic valve-sparing operation (David I).? In: European Journal

of Cardio-Thoracic Surgery (2011). doi: 10.1016/j.ejcts.2011.04.012.
[181] A. Sionkowska. ?Current research on the blends of natural and synthetic poly-

mers as new biomaterials: Review.? In: Progress in Polymer Science (2011).
doi: 10.1016/j.progpolymsci.2011.05.003.

[182] Richard Skalak, Stephen Zargaryan, Rakesh K. Jain, Paolo A. Netti, and
Anne Hoger. ?Compatibility and the genesis of residual stress by volumet-
ric growth.? In: J. Math. Biol. 34.8 (1996), pp. 889–914. doi: 10 . 1007 /

bf01834825.
[183] Hiromichi Sonoda, Shin-Ichi Urayama, Keiichi Takamizawa, Yasuhide Nakayama,

Chikao Uyama, Hisataka Yasui, and Takehisa Matsuda. ?Compliant design
of artificial graft: Compliance determination by new digital X-ray imaging
system-based method.? In: Journal of Biomedical Materials Research 60.1
(2002), pp. 191–195. issn: 1097-4636. doi: 10.1002/jbm.10055.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1114/1.1554923
http://dx.doi.org/10.1016/0020-7683(95)00007-w
http://dx.doi.org/10.1067/maj.2002.126753
http://dx.doi.org/10.1067/maj.2002.126753
http://dx.doi.org/10.1080/10255842.2010.548325
http://dx.doi.org/10.1080/10255842.2010.548325
http://dx.doi.org/doi:10.1088/1367-2630/15/1/015005
http://dx.doi.org/doi:10.1088/1367-2630/15/1/015005
http://dx.doi.org/10.1080/10255840701827412
http://dx.doi.org/10.1080/10255840701827412
http://dx.doi.org/10.1088/1748-6041/1/2/004
http://dx.doi.org/10.1088/1748-6041/1/2/004
http://dx.doi.org/10.1016/j.ejcts.2011.04.012
http://dx.doi.org/10.1016/j.progpolymsci.2011.05.003
http://dx.doi.org/10.1007/bf01834825
http://dx.doi.org/10.1007/bf01834825
http://dx.doi.org/10.1002/jbm.10055


218 Bibliography

[184] Cristiano Spadaccio, Massimo Chello, Marcella Trombetta, Alberto Rainer,
Yoshiya Toyoda, and Jorge A Genovese. ?Drug releasing systems in cardiovas-
cular tissue engineering.? eng. In: Journal of cellular and molecular medicine

13.3 (Mar. 2009), pp. 422–439. issn: 1582-4934 (Electronic). doi: 10.1111/j.

1582-4934.2008.00532.x.
[185] Cristiano Spadaccio, Alberto Rainer, Matteo Centola, Marcella Trombetta,

Massimo Chello, Mario Lusini, Elvio Covino, Yoshiya Toyoda, and Jorge A
Genovese. ?Heparin-releasing scaffold for stem cells: a differentiating device
for vascular aims.? eng. In: Regenerative medicine 5.4 (July 2010), pp. 645–
657. issn: 1746-076X (Electronic). doi: 10.2217/rme.10.25.

[186] Cristiano Spadaccio, Alberto Rainer, Raffaele Barbato, Massimo Chello, and
Bart Meyns. ?The fate of large-diameter Dacron® vascular grafts in surgical
practice: are we really satisfied?? eng. In: 168.5 (Oct. 2013), pp. 5028–5029.
issn: 1874-1754 (Electronic). doi: 10.1016/j.ijcard.2013.07.165.

[187] Cristiano Spadaccio, Stefania Montagnani, Christophe Acar, and Francesco
Nappi. ?Introducing bioresorbable scaffolds into the show. A potential adjunct
to resuscitate Ross procedure.? In: International Journal of Cardiology 190
(July 2015), pp. 50–52. doi: 10.1016/j.ijcard.2015.04.098.

[188] Scott L. Spear, Diane K. Murphy, Araceli Slicton, and Patricia S. Walker.
?Inamed Silicone Breast Implant Core Study Results at 6 Years.? In: Plastic
and Reconstructive Surgery 120.Supplement 1 (2007), 8S–16S. doi: 10.1097/

01.prs.0000286580.93214.df.
[189] P Stelzer, DJ Jones, and RC Elkins. ?Aortic root replacement with pulmonary

autograft.? In: Circulation 80.5 Pt 2 (1989). issn: 0009-7322.
[190] Paul Stelzer. ?The Ross Procedure: State of the Art 2011.? In: Seminars in

Thoracic and Cardiovascular Surgery 23.2 (2011), pp. 115–123. doi: 10.1053/

j.semtcvs.2011.07.003.
[191] T. Stylianopoulos et al. ?Causes, consequences, and remedies for growth-

induced solid stress in murine and human tumors.? In: Proceedings of the

National Academy of Sciences 109.38 (2012), pp. 15101–15108. doi: 10.1073/

pnas.1213353109.
[192] T. Stylianopoulos, J. D. Martin, M. Snuderl, F. Mpekris, S. R. Jain, and R. K.

Jain. ?Coevolution of Solid Stress and Interstitial Fluid Pressure in Tumors
During Progression: Implications for Vascular Collapse.? In: Cancer Research
73.13 (2013), pp. 3833–3841. doi: 10.1158/0008-5472.can-12-4521.

[193] S. D. TULJAPURKAR. ?Stability of Lotka Volterra systems.? In: Nature
264.5584 (1976), pp. 381–381. doi: 10.1038/264381a0.

[194] Larry A. Taber. ?Biomechanics of Growth, Remodeling, and Morphogenesis.?
In: Applied Mechanics Reviews 48.8 (1995), p. 487. doi: 10.1115/1.3005109.

[195] N. R. Tai, H. J. Salacinski, A. Edwards, G. Hamilton, and A.M. Seifalian.
?Compliance properties of conduits used in vascular reconstruction.? In: British
Journal of Surgery 87.11 (2000), pp. 1516–1524. issn: 1365-2168. doi: 10 .

1046/j.1365-2168.2000.01566.x.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1111/j.1582-4934.2008.00532.x
http://dx.doi.org/10.1111/j.1582-4934.2008.00532.x
http://dx.doi.org/10.2217/rme.10.25
http://dx.doi.org/10.1016/j.ijcard.2013.07.165
http://dx.doi.org/10.1016/j.ijcard.2015.04.098
http://dx.doi.org/10.1097/01.prs.0000286580.93214.df
http://dx.doi.org/10.1097/01.prs.0000286580.93214.df
http://dx.doi.org/10.1053/j.semtcvs.2011.07.003
http://dx.doi.org/10.1053/j.semtcvs.2011.07.003
http://dx.doi.org/10.1073/pnas.1213353109
http://dx.doi.org/10.1073/pnas.1213353109
http://dx.doi.org/10.1158/0008-5472.can-12-4521
http://dx.doi.org/10.1038/264381a0
http://dx.doi.org/10.1115/1.3005109
http://dx.doi.org/10.1046/j.1365-2168.2000.01566.x
http://dx.doi.org/10.1046/j.1365-2168.2000.01566.x


Bibliography 219

[196] J. J.M. Takkenberg, L. M.A. Klieverik, P. H. Schoof, R.-J. van Suylen, L. A.
van Herwerden, P. E. Zondervan, J. W. Roos-Hesselink, M. J.C. Eijkemans,
M. H. Yacoub, and A. J.J.C. Bogers. ?The Ross Procedure: A Systematic
Review and Meta-Analysis.? In: Circulation 119.2 (2008), pp. 222–228. doi:
10.1161/circulationaha.107.726349.

[197] Marcus J. Tindall, Louise Dyson, Kieran Smallbone, and Philip K. Maini.
?Modelling acidosis and the cell cycle in multicellular tumour spheroids.? In:
Journal of Theoretical Biology 298 (2012), pp. 107–115. doi: 10.1016/j.jtbi.

2011.11.009.
[198] X. Trepat. ?Forcing Tumor Arrest.? In: Physics 4 (2011). doi: 10 . 1103 /

physics.4.85.
[199] C. Truesdell and W. Noll. ?The Non-Linear Field Theories of Mechanics.?

In: The Non-Linear Field Theories of Mechanics. Springer Science + Business
Media, 1965, pp. 1–541. doi: 10.1007/978-3-642-46015-9_1.

[200] J. M. Tse, G. Cheng, J. A. Tyrrell, S. A. Wilcox-Adelman, Y. Boucher, R. K.
Jain, and L. L. Munn. ?Mechanical compression drives cancer cells toward in-
vasive phenotype.? In: Proceedings of the National Academy of Sciences 109.3
(2011), pp. 911–916. doi: 10.1073/pnas.1118910109.

[201] A. M. Turing. ?The Chemical Basis of Morphogenesis.? In: Philosophical

Transactions of the Royal Society of London B: Biological Sciences 237.641
(1952), pp. 37–72. issn: 0080-4622. doi: 10.1098/rstb.1952.0012.

[202] R. Vandiver and A. Goriely. ?Differential growth and residual stress in cylindri-
cal elastic structures.? In: Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 367.1902 (2009), pp. 3607–
3630. doi: 10.1098/rsta.2009.0114.

[203] J. Veselý, L. Horný, H. Chlup, T. Adámek, M. Krajíček, and R. Žitný. ?Consti-
tutive modeling of human saphenous veins at overloading pressures.? In: Jour-
nal of the Mechanical Behavior of Biomedical Materials 45 (2015), pp. 101 –
108. issn: 1751-6161. doi: http://dx.doi.org/10.1016/j.jmbbm.2015.01.023.

[204] V. Volterra. ?Una teoria matematica sulla lotta per l’esistenza.? In: Scientia
V (1927), pp. 112–124.

[205] V. Volterra. ?Mathematical theory of struggle for existence.? In: (1928).
[206] V. Volterra. ?Variations and Fluctuations of the Number of Individuals in

Animal Species Living Together.? In: Journal du Conseil international pour

l’exploration de la mer (1928).
[207] Hong Wang, Baohua Ji, X. Sherry Liu, René F. M. van Oers, X. Edward

Guo, Yonggang Huang, and Keh-Chih Hwang. ?Osteocyte-viability-based sim-
ulations of trabecular bone loss and recovery in disuse and reloading.? In:
Biomechanics and Modeling in Mechanobiology 13.1 (2013), pp. 153–166. doi:
10.1007/s10237-013-0492-1.

[208] Mao Xiang Wang and Pik Yin Lai. ?Population dynamics and wave propaga-
tion in a Lotka-Volterra system with spatial diffusion.? In: Physical Review E

- Statistical, Nonlinear, and Soft Matter Physics 86.5 (2012), pp. 8–15. issn:
15393755. doi: 10.1103/PhysRevE.86.051908.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1161/circulationaha.107.726349
http://dx.doi.org/10.1016/j.jtbi.2011.11.009
http://dx.doi.org/10.1016/j.jtbi.2011.11.009
http://dx.doi.org/10.1103/physics.4.85
http://dx.doi.org/10.1103/physics.4.85
http://dx.doi.org/10.1007/978-3-642-46015-9_1
http://dx.doi.org/10.1073/pnas.1118910109
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1098/rsta.2009.0114
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmbbm.2015.01.023
http://dx.doi.org/10.1007/s10237-013-0492-1
http://dx.doi.org/10.1103/PhysRevE.86.051908


220 Bibliography

[209] Samuel E. Wilson, Richard Krug, Gregory Mueller, and Latresia Wilson. ?Late
Disruption of Dacron Aortic Grafts.? In: Annals of Vascular Surgery 11.4
(1997), pp. 383–386. doi: 10.1007/s100169900065.

[210] Inc. Wolfram Research. Mathematica. Wolfram Research, Inc., 2015.
[211] Chin-Ho Wong, Miny Samuel, Bien-Keem Tan, and Colin Song. ?Capsular

Contracture in Subglandular Breast Augmentation with Textured versus Smooth
Breast Implants: A Systematic Review.? In: Plastic and Reconstructive Surgery

118.5 (2006), pp. 1224–1236. doi: 10.1097/01.prs.0000237013.50283.d2.
[212] Amy Wu, David Liao, Thea D Tlsty, James C Sturm, and Robert H Austin.

?Game theory in the death galaxy: interaction of cancer and stromal cells in
tumour microenvironment.? In: Interface focus 4.4 (2014), p. 20140028. issn:
2042-8898. doi: 10.1098/rsfs.2014.0028.

[213] Jie Wu, Zu Rong Ding, Yan Cai, Shi Xiong Xu, Gai Ping Zhao, and Quan Long.
?Simulation of tumor microvasculature and microenvironment response to
anti-angiogenic treatment by angiostatin and endostatin.? In: Applied Mathe-

matics and Mechanics (English Edition) 32.4 (2011), pp. 437–448. issn: 02534827.
doi: 10.1007/s10483-011-1428-7.

[214] Min Wu, Hermann B. Frieboes, Mark A.J. Chaplain, Steven R. McDougall,
Vittorio Cristini, and John S. Lowengrub. ?The effect of interstitial pressure
on therapeutic agent transport: Coupling with the tumor blood and lymphatic
vascular systems.? In: Journal of Theoretical Biology 355 (2014), pp. 194–207.
doi: 10.1016/j.jtbi.2014.04.012.

[215] H. Xiao, O. T. Bruhns, and A. Meyers. ?Logarithmic strain, logarithmic spin
and logarithmic rate.? In: Acta Mechanica 124.1-4 (1997), pp. 89–105. doi:
10.1007/bf01213020.

[216] Shijia Zhao and Linxia Gu. ?Implementation and validation of aortic remodel-
ing in hypertensive rats.? eng. In: Journal of biomechanical engineering 136.9
(Sept. 2014), p. 91007. issn: 1528-8951 (Electronic). doi: 10.1115/1.4027939.

[217] Meital Zilberman and Robert C. Eberhart. ?DRUG-ELUTING BIORESORBABLE
STENTS FOR VARIOUS APPLICATIONS.? In: Annual Review of Biomed-

ical Engineering 8.1 (2006), pp. 153–180. doi: 10.1146/annurev.bioeng.8.

013106.151418.
[218] Oscar A. Zimman, Jorge Toblli, Inés Stella, Marcelo Ferder, Leon Ferder, and

Felipe Inserra. ?The Effects of Angiotensin-Converting Enzyme Inhibitors on
the Fibrous Envelope around Mammary Implants.? In: Plastic and Reconstruc-

tive Surgery 120.7 (2007), pp. 2025–2033. doi: 10.1097/01.prs.0000287381.

93729.e2.
[219] Martin Zumsande, Dirk Stiefs, Stefan Siegmund, and Thilo Gross. ?General

analysis of mathematical models for bone remodeling.? In: Bone 48.4 (2011),
pp. 910–917. doi: 10.1016/j.bone.2010.12.010.

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]

http://dx.doi.org/10.1007/s100169900065
http://dx.doi.org/10.1097/01.prs.0000237013.50283.d2
http://dx.doi.org/10.1098/rsfs.2014.0028
http://dx.doi.org/10.1007/s10483-011-1428-7
http://dx.doi.org/10.1016/j.jtbi.2014.04.012
http://dx.doi.org/10.1007/bf01213020
http://dx.doi.org/10.1115/1.4027939
http://dx.doi.org/10.1146/annurev.bioeng.8.013106.151418
http://dx.doi.org/10.1146/annurev.bioeng.8.013106.151418
http://dx.doi.org/10.1097/01.prs.0000287381.93729.e2
http://dx.doi.org/10.1097/01.prs.0000287381.93729.e2
http://dx.doi.org/10.1016/j.bone.2010.12.010


L I ST OF F IGURES

Figure 1 A hand-made sketch of the kinematics and deformation of ma-
terial bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2 Schematic representation of the kinematics of growth. The
body undergoes a growth process and reaches a grown, incom-
patible configuration in absence of external actions, and then
experiences elastic adaptation and load-induced deformation. 11

Figure 3 Definition of the Cauchy stress vector . . . . . . . . . . . . . . 14
Figure 4 Phase portrait of a predator prey model. . . . . . . . . . . . . 36
Figure 5 Periodic solutions of the predator prey model. It can be qual-

itatively appreciated the chaining established between preys
and predators, in the sense that preys abundance calls preda-
tors, and the peak of the latter ones induces preys plumbing. . 37

Figure 6 Phase portrait of a non-conservative orbit. . . . . . . . . . . . 38
Figure 7 Oscillating solutions of the predator prey with dissipative as-

sociations. The damping effect is clearly visible. a = 2.4, b =
0.45, c = 0.18, a = 0.15, e = 0.015, . . . . . . . . . . . 39

Figure 8 Phase planes for 2 species VL equations in the different dis-
cussed cases. Stable nodes are highlighted in each case, and
the nullclines r1 and r2 are respectively in blue and red. Case
1. a12 = 0.15 and a21 = 0.2, Case 2. a12 = 1.5 and a21 = 2,
Case 3. a12 = 0.15 and a21 = 2, Case 4. a12 = 1.5 and a21 = 0.2 41

Figure 9 Lyapunov stability definition . . . . . . . . . . . . . . . . . . . 42
Figure 10 Illustration of the geometrical interpretation of the Lyapunov

stability theorem. . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 11 A hand-made sketch illustrating the geometry and the me-

chanical features of the native aorta (on the left), the native
pulmonary artery (in the midlle) and the pulmonary autograft
(on the right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 12 Geometry of the FE model, with a detail showing the commu-
nication of the native aorta (in red) with the pulmonary artery
tract (blue), integrated with the external Dacron structure. . 55

Figure 13 Distribution of the circumferential stresses over the vessel thick-
ness. (A-red line) Reference Aorta. (PA-blue line) Reference
Pulmonary Artery. (PAD-purple full line) Pulmonary artery
reinforced with non-resorbable Dacron mesh. (PAD-Purple dashed
line) Stresses in the region occupied by the Dacron region (in
gray). The active remodeling window compatible with PA ini-
tial material properties is highlighted in orange. . . . . . . . . 58

221

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



222 Bibliography

Figure 14 Distribution of the radial stresses over the vessel thickness.
(A-Red line) Reference Aorta. (PA-Blue line) Reference Pul-
monary Artery. (PAD-Purple full line) Pulmonary artery rein-
forced with non-resorbable Dacron mesh. (PAD-Purple dashed
line) Stresses in the region occupied by the Dacron region (in
gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 15 Distribution of the longitudinal stresses over the vessel thick-
ness. (A-Red line) Reference Aorta. (PA-Blue line) Reference
Pulmonary Artery. (PAD-Purple full line) Pulmonary artery
reinforced with non-resorbable Dacron mesh. (PAD-Purple dashed
line) Stresses in the region occupied by the Dacron region (in
gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 16 Illustration of the spurious stress state emerging in the anas-
tomosis region, along the suture line. . . . . . . . . . . . . . . 61

Figure 17 Numerical simulation provides the quantitative estimation of
shear stresses at the reinforced PA-aorta interface. . . . . . . 62

Figure 18 Illustration of the spurious shear stresses in the suture zone
(Top), and of the Dacron structure confinement acting on the
PA pressurized vessel (Bottom). . . . . . . . . . . . . . . . . . 63

Figure 19 Von Mises equivalent stress concentrations (on the left) and
equivalent strain (on the right). . . . . . . . . . . . . . . . . . 64

Figure 20 Circumferential stress increase in the non reinforced PA with
respect to circumferential stress in the reference aorta, as a
function of the longitudinal strain. . . . . . . . . . . . . . . . 64

Figure 21 A. Not-reinforced PA at D0; B. The PA reinforcd with Dacron
implant at D0; C. Not-reinforced PA trunk with aneurismal
formation (analysis after the break at 3 months); D. The
Dacron reinforcement cut through vessel wall at six months
(M6); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 22 A. Medial disruption phenomena occurred at six months; B.
Endoluminal migration of the polyester mesh at six months;
C. Histological analysis of the Dacron reinforced pulmonary
artery at 10 weeks; D. Reactive fibrosis of the external wall
after removed of the reinforcement at six months; E. Local-
ized calcification of the media at six months; F. Syntetic re-
inforcement macroscopic lesion at six months; G. Thrombus
attached to the wall. Macroscopic lesion in PA alone explanted
at 10 weeks; H. Echocardiographic control of the implant with
throumbus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 23 Angiographic controls: A. Non-reinforced group, at D0. B.
Reinforced group, at D0. C. Non-reinforced group, at M6.
Ecochardiographic controls at M6: D. Reinforced group. E.
Non-reinforced group. . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 24 Silicon implant with a peri-prosthesic capsule. . . . . . . . . . 68
Figure 25 The multi-layer hollow sphere model . . . . . . . . . . . . . . 72

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



Bibliography 223

Figure 26 Stresses in the capsula-breast system. The stresses within the
capsula generate a state of compression in the overlying breast
tissue (top). The negative circumferential stress is instead re-
sponsible of the capsule hardening. Stresses in the capsula are
plotted by varying the anisotropy coefficient γr. . . . . . . . . 75

Figure 27 Correlation between stress, prosthesis size (ideal spherical model)
and capsular thickness. . . . . . . . . . . . . . . . . . . . . . . 76

Figure 28 Geometrical features of the breast implant reconstruction. . . 76
Figure 29 A half 250 cc prosthesis-capsular mesh . . . . . . . . . . . . . 78
Figure 30 Medium capsular pressure versus size . . . . . . . . . . . . . . 79
Figure 31 Bone remodelling dynamics obtained from the numerical sim-

ulations. Cells number and bone density have been scaled;
r10 = 0.4 d−1, r20 = 0.9[122, 207], a11 = 0.02 d−1[28],a12 =
0.075 d−1, a21 = 0.19 d−1[219], a22 = 0.01 d−1[169], a31 =
0.0012 d−1, a32 = 0.01 d−1[169, 170],a33 = 0.00025 d−1, ρ∗b =
1.75g/cm3[123], ρ∗ocl = 400 cells/mm3, ρ∗obl = 20000 cells/mm3[97]. 84

Figure 32 Analysis of the local stability of solutions in correspondence
of the equilibrium points related to non-physiological (black)
and physiological (red) stimuli. . . . . . . . . . . . . . . . . . 85

Figure 33 A. Scheme of the implantation of a cryopreserved pulmonary
artery homograft into the discending aorta. B,C,D. Concept
and design of composite semiresorbable armored bioprosthesis.
The specific design of the GORE-TEX auxetic armor will allow
multidirectional growth and resistance to abnormal dilatation
(B: Initial implantation, C: Intermediate phase, D: Complete
development). . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 34 Left (top): Sketch of the main biomechanically relevant fea-
tures of the pulmonary autograft and the reinforcement. Right
(top): Nominal (first Piola-Kirchhoff) hoop stress versus cir-
cumferential stretch in artery and vein-like materials. Left (bot-
tom): elastic reaction pressure against external vessel radius di-
lation exhibited by GORE-TEX auxetic reinforcement during
pulmonary autograft growth and deformation. Right (bottom):
in-time mass degradation of bioresorbable polydioxanone (PDS)
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 35 Sketch of the biomechanical model of reinforced pulmonary au-
tograft under aortic systemic pressure including ab origine self-
equilibrated (residual) stresses, growth, remodeling and elastic
deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



224 Bibliography

Figure 36 A-B) Surgical implant. A. Bioresorbable reinforcement; B.
Control. C-D) Hematoxylineosin staining. C. Bioresorbable
reinforcement. Note remnants of PDS. D. Control. Note medial
disruption and inflammatory infilitrates; E-F) PicroSirius red
staining. E. Bioresorbable reinforcement compact collagen or-
ganization: the “elastic zone” of the vessel and less pronounced
cellular infiltrate. F. Control. Dispersed collagen fibers; G-H)
Mallory staining; G. Bioresorbable reinforcement. Elastin de-
position (pink). H. Control. Presence of collagen (blue); I-
L) MMP-9 immunohistochemistry. I. Bioresorbable reinforce-
ment. Note MMP-9 overexpression in the PDS group indicat-
ing active matrix remodeling phenomena. L. Control. . . . . 103

Figure 37 A. Not reinforced PA trunk with aneurismal formation (anal-
ysis after the break at 3 months); B. PA reinforced with knit-
ted polydioxanone resorbable copolymer scaffold (explanted at
6 months): note the homogeneous vessel profile denoting the
success of the implant. . . . . . . . . . . . . . . . . . . . . . . 108

Figure 38 A,B,E,F) Angiographic images. A. Not reinforced PA at day
1; E. Not reinforced PA at day 180; B. Reinforced PA at day 1;
F. Reinforced PA at day 180. Note the uniformity of the vessel
profile in case of reinforcement (B,F) and loss of physiological
shape, prone to aneurismal complication (A,E). C,D,G,H)
Ecographic images (vessel cross sections). C. Not reinforced
PA at day 1; G. Not reinforced PA at day 180; D. Reinforced
PA at day 1; H. Reinforced PA at day 180. Note the severe
diameter dilation in the not reinforced case (C,G). . . . . . . 109

Figure 39 Left: Evolution of the outer diameters (continuous lines rep-
resent theroetical outcomes while markers are experimental
measures). Right: Vessels thicknesses provided by the simula-
tions at day 1 and at day 180 when the vessels are either in
position or excised. . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 40 Cauchy stress profiles along the wall thicknesses in reference
aorta (top-right), reinforced (bottom-left) and not reinforced
(top-left) Pulmonary Autografts, with related pressure-diameter
curves at 180 days for the grown vessels (bottom-right). . . . 111

Figure 41 Evaluation of the bulk moduli remodeling in reinforced and
not reinforced PA. . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 42 Logical connections highlighting the interaction network co-
inceved for the MCTS model. . . . . . . . . . . . . . . . . . . 117

Figure 43 Tumor, healthy and ECM fractions within the control volume
at the specified times. . . . . . . . . . . . . . . . . . . . . . . . 130

Figure 44 Evaluation of the pressure drop and radial flux at different times. 131
Figure 45 Solid stress obtained from the linear model. (top) Radial Stress.

(bottom) Hoop stress. . . . . . . . . . . . . . . . . . . . . . . 132

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



Bibliography 225

Figure 46 Distributions of tumor and healthy fractions in case of uncon-
fined growth (A) and fully confined growth (B). Stresses in
the stress-free case: (C) Radial (D) Circumferential Stresses
in the confined case: (E) Radial (F) Circumferential Illustra-
tion of the MCTS formation enhanced by the VL dynamics
(G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 47 2D visualization of tumours on mouse n.4, n.9, n.11 and n.1.
Coronal and sagittal T2-weighted images, applying intensity
colouring maps of mouse n.4 (A,B), mouse n.9 (F,G), mouse
n.11 (M,N) and mouse n.1 (R,S). There were single slice seg-
mentation superimposed on coronal T2 weighted images need
to volume calculation. Volumes measured are 231.8mm3 (mouse
n.4), 504.5mm3 (mouse n.9), 818.1mm3 (mouse n.11) and 935, 1mm3

(mouse n.1), respectively. Ultrasound images (C,H,O,T) and
tumor specimen images (D-E, I-L,P-Q, U-V) were reported
for the mouse n.4, n.9, n.11 and n.1, respectively . . . . . . . . 136

Figure 48 Digital image acquisitions with reference to Mouse II. A. Ul-
trasound image at Time I. B. Ultrasound image at Time II.
C. Ultrasound image at Time III (the yellow lines indicate
maximum and minimum diameter); Coronal and Transversal
(D-E) T1-weighted images (T1-w) at Time III (red lines in-
dicate maximum and minimum diameter); Volumetric image
(F) obtained by MRI at Time III. . . . . . . . . . . . . . . . 137

Figure 49 Illustration of the kinematics of growth in finite strain by
adopting a multiplicative decomposition of the deformation
gradient F into a growth part Fg mapping the body points
onto an intermediate and generally incompatible configuration
and an elastic part Fe which moves the body toward the cur-
rent compatible (grown) configuration, which is also subjected
to external load-induced deformations. . . . . . . . . . . . . . 141

Figure 50 Uniaxial compression test of a tumor specimen. (A) Compari-
son between experimental data and fitting performed by mak-
ing use of both a classical Hencky stress-strain curve and the
proposed modified Fung-like Hencky law. (B) A picture show-
ing the biological sample positioned in the load cell to per-
form the laboratory test. (C) Evaluation of the experimentally
measured tangent stiffness (Young moduli varying with strain)
fitted by means of the proposed Fung-like model. . . . . . . . 144

Figure 51 (A,B) Growth curves of cells species obtained in vitro by
varying the percentage of Fetal Bovine Serum of the medium.
(C,D) Cells vitality measurements in normal medium. (E,F)
Image of the in vitro cell cultures. (G) Construction of a suit-
able growth curve describing the functional dependence of the
growth rate upon the nutrient availability. . . . . . . . . . . . 153

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



226 Bibliography

Figure 52 Sketch of the mathematical modeling of the MCTS. The focus
is on the different scales in order to highlight the roles of the
several constituents in determining the modeled phenomena at
the tissue scale. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure 53 Detail showing the stretched skin layer surrounding the grown
tumor in contrast with the more lapse and wrinkled skin ap-
pearing in the other “unperturbed” anatomic regions. . . . . . 160

Figure 54 Tumor cells fractions versus host tissue fraction evolving at
different times. (top) Unconfined growth case (middle, bottom)
Stress prescribed cases, including apoptotic fractions. Pressure
applied were 2 kPa and 3 kPa, respectively. . . . . . . . . . . 163

Figure 55 Invasion of the tumor spheroid in the healthy region and rep-
resentation of the associated non-zero interface stress . . . . . 164

Figure 56 Evolution of the Cauchy stress components at different times.
A. Radial stress. B. Hydrostatic stress. C. Circumferentisl
stress. D. Interstitial Fluid Pressure . . . . . . . . . . . . . . . 165

Figure 57 Stress of the spheroid when a compression of 2 kPa is ap-
plied. A. Radial stress. B. Hydrostatic stress. C. Circumfer-
entisl stress. D. Interstitial Fluid Pressure . . . . . . . . . . . 165

Figure 58 Tumor fraction vs host fraction in MiaPaCa-2 (top) and MDA.MB-
231 (bottom) cell lines . . . . . . . . . . . . . . . . . . . . . . 167

Figure 59 Cancer cell spheroid (red) showing that proliferative zone (green)
concentrates towards the periphery, while proliferation is sup-
pressed in the regions of higher mechanical stress, where apop-
tosis is induced. Image from Cheng et al. [38], doi:10.1371/journal.pone.0004632.g003.168

Figure 60 Comparison between the experimenatal size measure and the
predicted spheroid redius development obtained from the nu-
merical simulations. (top) MiaPaCa-2 cell line (bottom) MDA.MB-
231 cell line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Figure 61 Stresses in the heterogeneous MCTS, MDA.MB-231 cells. (Top)
Radial Stress. (Bottom) Circumferential Stress. . . . . . . . . 172

Figure 62 Stresses in the heterogeneous MCTS, MiaPaCa-2 cells. (Top)
Radial Stress. (Bottom) Circumferential Stress. . . . . . . . . 173

Figure 63 Visualization of the opening angle when a partial cut is per-
formed (left) and of the bending of the tumor spheroid halves
in case of a complete cut (right), revealing the presence of
residual stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Figure 64 Tangent elastic constants in the MCTSs at different volume size179
Figure 65 Tangent elastic constants of the superior block as a function

of the volume size . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 66 Tangent Young moduli obtained from the compliance matrix

at different tumor dimensions. . . . . . . . . . . . . . . . . . . 181
Figure 67 (Top-left) Representation of the FEM modeled uniaxial test.

(Top-right) Schematic representation of the assignment of radi-
ally varying material properties to the sphere elements. (Down)
Considered volumes. . . . . . . . . . . . . . . . . . . . . . . . 182

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



Bibliography 227

Figure 68 (Top-left) Representation of the FEM modeled uniaxial test.
(Top-right) Schematic representation of the assignment of radi-
ally varying material properties to the sphere elements. (Down)
Considered volumes. . . . . . . . . . . . . . . . . . . . . . . . 183

Figure 69 Experimental (blue points) and numerically obtained (green
points) force-deformation curves in direct comparison for each
MCTS. (Middle) fitting of two experimental dataset with the
hyperelastic law adopted in the analytical model . . . . . . . . 184

Figure 70 Experimental (dashed line) and numerically obtained (contin-
uous line) development of the tangent moduli as a function of
the tumor sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Figure 71 A. Representation (projection) of the phase portrait in the
plane φT = 0, with focus on the equilibrium point φ∗2. B. Rep-
resentation of the phase in the plane φH = 0, that evidences
the equilibrium point φ∗3. C. Projection of the phase portrait
in the plane φM = φM2∗. The stable manifolds (blue arrows)
directed in direction φT = 0 and the unstable manifold (red
arrow) driving trajectories towards the tumor invasion stage
are here clearly distinguishable. D. Tumor dominance stage,
constituting a stable attractor. . . . . . . . . . . . . . . . . . . 195

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]



L I ST OF TABLES

Table 1 Synoptic table of geometrical and material parameters . . . . 54
Table 2 Comparison of the external diameters (expressed in mm) -

experimental observations vs analytical predictions . . . . . . 109
Table 3 Synoptic table of data and employed parameters References:

1. [149] ; 2. [203] ; 3. [32] ; 4. [91] ; 5. [4] ; 6. [5] ; 7. [179] ;
8. [116] ; 9. [24] ; 10. [171] ; 11. [109] ; 12. [195] ; 13. [172] ; 14.
[183] ; 15. [217] ; 16. [142] ; 17. [144] ; 18. [141] ; 19. [94] ; 20.
[80] ; 21. [216]. E. O. - Experimentally Observed Parameters.
F./A. P. - Fitting/Assumed Parameters . . . . . . . . . . . . 114

Table 4 Caliber measurements, US measurements ans MRI volumes
reconstructions in MDA.MB-231 tumor at different sizes . . . 138

Table 5 Material coefficients obtained from mechanical tests on MiaPaCa-
2 and MDA.MB231 tumor samples. . . . . . . . . . . . . . . . 145

Table 6 Synoptic table of the parameters adopted in the MCTS model
(exp.det. = experimentally determined) . . . . . . . . . . . . . 171

228

[ April 15, 2016 at 17:50 – classicthesis version 4.2 ]


	Dedication
	Abstract
	Introduction
	Contents
	Theoretical framework
	1 Fundamentals of Continuum Solid Mechanics
	1.1 Motion of Continua and Deformation
	1.1.1 Seth-Hill strain measures. The logarithmic (Hencky) strain
	1.1.2 The multiplicative decomposition. The elasto-growth case
	1.1.3 Material time derivative

	1.2 Stress Measures
	1.2.1 The concept of residual stress in growing bodies

	1.3 Conservation Equations
	1.3.1 The mass conservation equation
	1.3.2 The momentum conservation equations

	1.4 Constitutive Equations
	1.5 Special constitutive models for isotropic hyperelasticity
	1.5.1  St. Venant-Kirchhoff model
	1.5.2 Ogden incompressible materials. Mooney-Rivlin and Neo-Hookean models
	1.5.3 Fung model


	2 Species growth and Volterra-Lotka Systems
	2.1 Introduction
	2.2 Simple-species growth
	2.3 Multiple species systems
	2.3.1 The predator-prey model

	2.4 Stability


	Uncoupled Modelling
	3 Uncoupled models exploring biomechanical issues
	3.1 Representative Examples
	3.1.1 Compliance mismatch and compressive wall stresses give clues for explaining anomalous remodelling of pulmonary arteries with Dacron synthetic grafts
	3.1.2 The role of biomechanics in breast implants capsular contracture
	3.1.3 Basic Equations of a linear elastic continuum with growth associated deformation
	3.1.4 Capsule-Breast system as a double-layered hollow sphere: analytic solution and clinical clues
	3.1.5 Volterra-Lotka equations to predict BMU remodelling



	Coupled Modelling
	4 The ``weak'' coupling
	4.1 Biomechanics meets Ross operation in cardiovascular diseases
	4.2 Details of the experimental animal model
	4.3 Mathematical modelling
	4.3.1 Nonlinear mechanics and growth of blood vessels
	4.3.2 Inflation and growth-associated stresses in vessel walls
	4.3.3 Biomechanics of reinforced pulmonary artery transposed into aortic position

	4.4 The relay race effect of PDS scaffold and e-PTFE armor

	5 The full Coupling
	5.1 Introduction
	5.2 An enhanced interspecific poroelastic model of tumor growth
	5.3 The Linear MCTS Model
	5.3.1 Poroelasticity equations coupled with the model to tumor spheroids
	5.3.2 Results of the linear model

	5.4 The nonlinear MCTS model
	5.4.1 Preliminary remarks on the experimental model
	5.4.2 Imaging results
	5.4.3 The kinematics of tumor growth in finite deformation
	5.4.4 Hencky strain measure and associated growth strain
	5.4.5 The hyperelastic potential for MCTS solid phase
	5.4.6 Effective stress and fluid-strain-pore pressure in poroelastic media undergoing large deformations
	5.4.7 Nutrients
	5.4.8 Solid Species Equations
	5.4.9 Definition of the growth strain
	5.4.10 Numerical solutions of the MCTS model
	5.4.11 Comparison of theoretical and experimental results

	5.5 Relating residual stress to the MCTS mechanical properties
	5.5.1 The small-on-large approach
	5.5.2 Finite Element modeling

	Conclusions
	Acknowledgements


	Bibliography
	Bibliography
	List of Figures
	List of Tables



