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Abstract 
 

Hot-driven riveted connections are one of the most common structural details 
adopted for existing metal structures built prior to the ‘60s of the XXth Century. 

Nowadays, several existing riveted constructions are still in service and 
usually exhibit structural deficiencies, owing to both i) a significant increase of 
acting loads with respect to erection time and/or ii) the lack of detailed provisions 
in earlier normative codes. 

The present work is hence devoted to study the static and fatigue performance 
of lap-shear riveted connections accounting for their peculiarities.  

After a initial state-of-the-art review dealing with i) manufacturing 
technology, ii) past significative applications, iii) peculiar issues, iv) normative 
provisions and v) previous literature studies related to hot-driven riveted 
connections, in this work some refined predictive models for the static and fatigue 
resistance of connections are proposed, calibrated and preliminarily validated.   

To this end, advanced damage formulations and fatigue analysis techniques 
are adopted to account for peculiarities of riveted connections. For instance, both 
the effects of hot-driving process and stress concentrations nearby geometrical 
discontinuities are properly accounted as described in dedicated Sections. 

Relevant model parameters have been calibrated against the results of three 
comprehensive experimental campaigns. The first set of tests, which was carried 
out in collaboration with Norwegian University of Science and Technology 
(NTNU), aimed at validating energetic approaches for fatigue assessment of 
blunt notched components made of mild steels. 

The second set of trials, which was previously carried out by the Candidate’s 
Research Group, was devoted to parametrically inspect the static behaviour of 
different lap-shear riveted connections accounting for the influence of i) 
hammering process and ii) specimens’ geometrical features.  

The most recent experimental campaign aimed at parametrically 
investigating the fatigue performance of a second set of identical hot-driven 
connections. Each experimental set-up and experimental outcomes are illustrated 
in detail in relevant Sections of the present work.  

Based on a careful revision of obtained results, semi-empirical formulations 
are finally derived and compared with normative requirements reported in 
EN1993:1-8 & EN1993:1-9.  

Finally, the effect of common constructional imperfections (i.e. the so called 
“camming” defects induced by plates misalignment) on the static performance of 
hot-driven riveted connections is preliminarily investigated and discussed. 

 Eventually, main conclusive remarks and possible further developments of 
the present research activity are summarized at the end of this work. 
 

Keywords: Riveted Connections, Hot-Driving, Static Resistance, Fatigue 
Performance, Parametrical Study. 
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Sintesi in lingua italiana 
 

I collegamenti chiodati a caldo sono uno dei dettagli strutturali più comuni 
nelle strutture metalliche esistenti realizzate prima degli Anni '60 del XX secolo. 

Al giorno d'oggi, diverse costruzioni chiodate esistenti sono ancora in 
servizio e presentano solitamente inadeguatezze strutturali, dovute sia a i) un 
significativo aumento dei carichi agenti rispetto all’epoca di costruzione e/o ii) la 
mancanza di indicazioni dettagliate nei precedenti codici normativi. 

Il presente lavoro è pertanto dedicato allo studio della performance statica e 
a fatica di connessioni a taglio chiodate in virtù delle peculiarità di queste ultime.  

Dopo una disamina dello stato dell'arte riguardante i) la tecnologia esecutiva, 
ii) alcune rilevanti applicazioni passate, iii) le problematiche tipiche, iv) le 
indicazioni normative e v) i precedenti studi di letteratura relativi a connessioni 
chiodate a caldo, in questo lavoro vengono proposti, calibrati e preliminarmente 
validati dei modelli predittivi della resistenza statica e a fatica delle connessioni.   

A tal fine, vengono adottate delle formulazioni di danno e delle tecniche di 
analisi a fatica avanzate per tener conto delle peculiarità delle connessioni 
chiodate. Per inciso, sia gli effetti del processo di battitura a caldo che le 
concentrazioni tensionali in prossimità delle discontinuità geometriche sono 
propriamente tenuti in conto come descritto nelle Sezioni dedicate. 

I parametri rilevanti per tali modelli sono stati calibrati rispetto ai risultati di 
tre estese campagne sperimentali. La prima serie di test, che è stata condotta in 
collaborazione con la Norwegian University of Science and Technology 
(NTNU), mirava a validare l’uso di approcci energetici per l’assessment a fatica 
di componenti intagliati di acciaio dolce. 

La seconda serie di test, precedentemente effettuata dal Gruppo di Ricerca 
del Candidato, ha riguardato lo studio parametrico del comportamento statico di 
diverse connessioni a taglio chiodate per indagare l'influenza i) del processo di 
battitura e ii) delle caratteristiche geometriche dei provini.  

La più recente campagna sperimentale è stata rivolta a studiare 
parametricamente le prestazioni a fatica di connessioni chiodate a caldo aventi 
identica geometria. I set-up di prova ed i risultati sperimentali sono illustrati in 
dettaglio nelle Sezioni pertinenti di questo lavoro.  
Sulla base di un'attenta revisione dei risultati ottenuti, delle formulazioni semi-
empiriche vengono infine derivate e confrontate con i requisiti normativi riportati 
nelle norme EN1993:1-8 & EN1993:1-9. 

Infine, viene preliminarmente studiato e discusso l'effetto di comuni 
imperfezioni costruttive (i cosiddetti difetti di "camming" indotti dal 
disallineamento delle piastre) sulle prestazioni statiche dei collegamenti chiodati 
a caldo. In ultimo, le principali conclusioni e i possibili futuri sviluppi della 
presente attività di ricerca sono riassunti al termine di questo lavoro di Tesi. 

 

Parole Chiave: Connessioni Chiodate, Battitura a Caldo, Imperfezioni 
Costruttive, Resistenza Statica, Comportamento a Fatica, Studio Parametrico. 
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1. Introduction 
1.1. Objectives of the work 

Hot-driven riveted connections are one of the most common structural details adopted 
for existing metal structures built prior to the ‘60s of the XXth Century (D’Aniello et al., 
2011). 
Main structural applications of hot-driven rivets concerned railway bridges (e.g., the 
Coalbrookdale Bridge or the Sydney Harbour Bridge), monumental buildings (with the 
Eiffel Tower being the most iconic realization) and large span domes (notable is the 
example of the Umberto I Gallery in Naples).  
Nowadays, several existing riveted constructions are still in service and usually exhibit 
structural deficiencies, owing to both i) a significant increase of acting loads with respect 
to erection time and/or ii) the lack of detailed provisions in earlier normative codes. 
The primary objective of this work is hence to investigate the influence of relevant 
geometrical and mechanical parameters on the static and fatigue performance of lap-
shear riveted connections accounting for their peculiarities. 
To this end, it is worth emphasizing that current European normative provisions (CEN, 
2005a, 2005b) only provide few indications with regard to both the static and fatigue 
assessment of riveted connections, e.g., mostly derived from bolted connections 
provisions in spite of some significant differences. 
For this purpose, a comprehensive set of experimental activities is performed. Namely, 
a total of fifteen connection configurations are investigated, i.e., with varying i) splice 
arrangement (symmetric or unsymmetric), ii) rivet diameter (16, 19 or 22 mm), iii) rivets 
number (1 or 2), iv) plate thickness (10 or 12 mm) and v) plate width (70 or 90 mm). 
Based on careful interpretation of obtained results, the influence of the hot-driven 
hammering process on both the monotonic and cyclic behaviour of such connections is 
deeply investigated. Indeed, as shown by earlier research works (Hetchman, 1948; 
Munse et al., 1956), termo-mechanical alterations induced by hot-driving can drastically 
alter base material properties of rivets and, on a local extent, connected plates. 
The effect of lateral compression among connected plates induced by shrinking of 
cooling rivets (that is, the so-called clamping force) is also parametrically investigated. 
Indeed, as opposed to high-strength bolted connections, the actual magnitude of 
clamping action is affected by a significant degree of uncertainty owing to the peculiar 
installation technique of hot-driven rivets (Leonetti et al., 2020).  
Additionally, the effect of common constructional imperfections found in existing hot-
driven riveted constructions (i.e., the so called “camming” defects induced by plates 
misalignment - Sustainable Bridge, 2006) is preliminarily investigated and discussed 
with reference to the lone static performance of connections. 
The second aim of the present work is to inspect the validity of some advanced methods 
to assess the performance of lap-shear riveted connections. For instance, to properly 
inspect both static and fatigue response of splices, refined ductile damage models derived 
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from the pioneering work of Rice & Tracey (1969) are introduced and calibrated against 
experimental results. Moreover, advanced fatigue verification techniques are 
implemented alongside standard methods encoded in EN1993:1-9 (CEN, 2005a). In 
particular, the Strain Energy Density (SED) Method (Lazzarin et al. 2001, Livieri & 
Lazzarin, 2005; Berto et al. 2009, 2014) is initially applied and validated for blunt-V 
notched components made of mild steel and hence extended to lap-shear riveted 
connections. For this purpose, an additional set of experimental tests on both plain and 
notched mild steel coupons is appositely performed. 
Both damage models and fatigue assessment methods are implemented with the aid of 
refined Finite Element Models (FEMs), which resemble specimens tested within the 
framework of relevant experimental activities. 
The third and final objective of this thesis work is to provide some semi-empirical 
formulations to predict the static and fatigue response of investigated hot-driven 
connections based on the introduced theoretical background and observed results. 
Whenever possible, such formulations are presented in a simplified form with the aim to 
give designers additional and straightforward tools for the assessment of riveted 
connections belonging to actual existing constructions. To this end, presented 
expressions are critically compared with relevant provisions encoded in normative 
documents in force (EN1993:1-8 – CEN, 2005b; EN1993:1-9 – CEN, 2005a). Finally, 
reliability of each formulation is statistically assessed within the framework of EN1990 
(CEN, 2002) performance-based approach. 

1.2. Outline of the work 

The main body of the present work is divided in seven Chapters. 
 
In Chapter 2, a comprehensive state-of-the-art review about hot-driven riveted 
connections is presented. Namely, key aspects concerning i) manufacturing technology, 
ii) past significative applications, iii) peculiar issues, iv) normative provisions and v) 
notable earlier literature studies are addressed in detail to provide a summary of the 
current scientific knowledge related to hot-driven riveted connections. 
 
In Chapter 3, an overview about damage and fatigue modelling of structural steel 
elements is reported. For instance, a theoretical background about main damage models 
for ductile materials is first introduced; hence, most suitable models are applied to hot-
driven riveted connections in order to account for their peculiarities. 
An analogous logic is followed with reference to fatigue verification techniques. Indeed, 
standard fatigue assessment methods, both drawn from current normative provisions or 
established literature studies, are initially presented before quickly moving to advanced 
techniques. Namely, a strong emphasis is given to energetic approaches and especially 
to the Strain Energy Density (SED) method. Presented methods are hence applied to the 
relevant case of hot-driven riveted connections. 
 
In Chapter 4, a detailed description of three experimental campaigns on mild steel 
components and aged hot-driven riveted connections is presented. In particular, the first 
set of tests, which was carried out in collaboration with Norwegian University of Science 
and Technology (NTNU), aims at validating energetic approaches for fatigue assessment 
of blunt V-notched components made of mild steels. 
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The second set of trials, which was previously carried out by the Candidate’s Research 
Group, is devoted to parametrically inspect the static behaviour of different lap-shear 
riveted connections accounting for the influence of i) hammering process and ii) 
specimens’ geometrical features.  
The most recent experimental campaign aims at parametrically investigating the fatigue 
performance of assembled hot-driven connections having similar geometry to those 
tested by D’Aniello et al. (2011). 
 
In Chapter 5, each of the peculiar aspects affecting the static performance of hot-driven 
riveted connections is addressed based on theoretical background and experimental 
activities presented in previous Chapters. For this purpose, refined FEMs resembling 
experimental specimens are developed in ABAQUS software (Simulia, 2017). 
Numerical analyses enable to quantify i) the impact of hot-driving process in terms of 
alteration of base material properties, ii) the effect and magnitude of clamping action 
and iii) the influence of geometrical features on the static performance of connections. 
Additionally, the effect of some common constructional imperfections found in existing 
hot-driven riveted constructions (“camming” defects due to plates misalignment) is 
preliminarily investigated and discussed. 
Each presented formulation is hence critically compared with current normative 
provisions reported in EN1993:1-8 (CEN, 2005b) and statistically assessed according to 
EN1990 (CEN, 2002) provisions. 
 
In Chapter 6, the fatigue performance of mild steel components is preliminarily 
investigated before addressing the cyclic performance of assembled riveted connections. 
Namely, results of relevant experimental tests are interpreted through both standard and 
advanced verification techniques. 
For this purpose, a second set of refined FEMs is properly developed. As a result, 
energetic fatigue approaches are validated for mild steels, allowing the extension of such 
methods to hot-driven riveted splices. 
 
In Chapter 7, the fatigue performance of full-scale hot-driven riveted connections is 
eventually investigated by extending the same approaches adopted for single 
components. Namely, the SED method is employed to derive an equivalent master 
fatigue curve for hot-driven splices accounting for geometrical and mechanical 
peculiarities. Once again, each proposed formulation is critically compared against 
relevant literature formulations and encoded provisions reported in current and future 
version of EN1993:1-9 (CEN, 2005a, 2020). 
 
In Chapter 8, main conclusions of the work are finally summarized, in conjunction with 
possible further research developments.  
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2. Hot-Driven Riveted Connections: 
A State-of-the-Art Review 

Hot-driven riveted connections had their heyday among the XIXth and the first half of 
the XXth century (D’Aniello et al., 2011). Indeed, as the advent of the industrial 
revolution resulted in major technological advances of the iron and steel industry, a 
strong popularity was rapidly gained by metallic constructions, in which rivets became 
massively adopted as the most common type of fastener (Collette et al., 2011). 
The spreading of such kind of connection system led to established techniques for design 
and installation of rivets, although mostly based on empirical findings (Marmo, 2011). 
As the use of high-strength bolts became more and more advocated starting from the 30s 
of XXth century (Batho et al., 1934), riveting gradually fell out of favour and therefore 
the required skilled labour became progressively unavailable. Nevertheless, a growing 
interest for this technology rekindled in recent times in the framework of i) preservation 
of the historical built heritage and ii) vulnerability mapping of older infrastructures still 
in service. For instance, the Italian railway network includes more than 3500 steel 
bridges in service, the majority of which was realized prior to the 1960s with hot-driven 
riveted connections (Marmo, 2011).  
Also, in light of some calamitous events of the recent past, it has become really clear 
that assessing the vulnerability of such infrastructures is a crucial task in order to prevent 
unacceptable human and economic losses. 
All the above considerations motivated the research study summarized in this thesis 
work. Before moving to the core of performed activities, in this Chapter a detailed state-
of-the art review about hot-driven riveted connections is presented.  
The following key related aspects are addressed in following Sections, namely: i) 
manufacturing technology (Section 2.1), ii) past significative applications (Section 2.2), 
iii) peculiar and recurring issues (Section 2.3), iv) normative provisions (Section 2.4) and 
v) notable past literature studies (Section 2.5). 

2.1. Manufacturing technologies for hot-driven riveted 
connections 

1. 2.1.1   Generality about rivets 

Rivets are a type of permanent mechanical fastener which can be used to join adjacent 
plates (usually also referred as “plies”) or profiles by being installed in apposite holes. 
An undriven (i.e., still not installed) rivet consists of (Figure 2.1):  

 a cylindrical shank having “undriven” diameter dU and grip length hS;  

 an ending head having an enlarged diameter D and depth hH;  
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Figure 2.1 Most common typologies of rivets and relevant geometrical features (adapted from Duggal, 
2000; Marmo, 2011; Collette, 2014). 

To clearly distinguish it from the one manufactured by on-site hammering, the first head 
is usually referred as shop head, while the other one is referred as field head (Duggal, 
2000).  
Although several typologies of shop heads were developed during past centuries (i.e., 
round, pan, cone, flat or round countersunk), the round-shaped shop head became 
arguably the most popular owing to complex implementation of other solutions (pan or 
cone heads) or due to the undesirable loosening of rivets in time (countersunk heads) 
(Collette, 2014). 
Regarding shop head-to-shank proportions, usually a D/d ratio among 1.60 ÷ 1.80 was 
adopted to ensure a sufficient restraint action on connected plates (Duggal, 2000). 
Notably, typical shop head width-to-depth ratio D/hH ranged between 2.00 ÷ 3.00. As a 
matter of fact, hemispherical shop heads (D/hH = 2) were not the most common solution, 
as button-shaped shop heads (D/hH > 2) proved to be more popular instead, most likely 
for both aesthetic and technological reasons (Kulak et al., 1987). 
As for the grip length hS of the undriven rivet, an empirical formula was adopted to 
account for the required amount of material to form the field head (Equation 2.1): 

hS ≈ 1.1  ti + 1.3 d0
i

 (2.1) 

with ti being the thickness of the i-th plate to be connected and dU < d0 < D being the hole 
diameter (Masi, 1996). 

2. 2.1.2   Techniques for rivet driving 

To install rivets and thus permanently tighten plies, two main techniques were available 
to form the field head, i.e., cold-driving and hot-driving. While the former technology 
was mostly adopted for soft metals (e.g., aluminium, brass) and/or in case of rather small 
diameters (6 ÷ 10 mm), hot-driving was the most popular solution to install ferrous rivets 
for civil engineering applications (Kulak et al., 1987). 
Both technologies required the preliminary realization of accommodation holes in 
elements to be connected. Thus, both kinds of riveted connections configured themselves 
as intermittent joints, as opposed to welded (and hence, continuous) ones. Such need 
clearly introduced an additional source of structural weakness to be accounted. 
This condition, in conjunction with the lack of redundancy of earlier metallic 
constructions (which were indeed realized with truss structural schemes, i.e., basically 
inherited by consolidated practice for timber structures) identified such joints as critical 
structural details from the very beginning of their technological development (Guerrieri 
et al., 2005). 
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Two alternative techniques were used to form holes in plies to be connected, i.e., drilling 
or punching. Drilling consists in removing fragments of base material from plates with 
the aid of an helicoidal drill (Figure 2.2a). As the resulting inner hole surface could be 
excessively rough, an additional finishing (reaming) was sometimes applied after the 
initial drilling (Duggal, 2000). 
With respect to punching (Figure 2.2b), such technique involves an apposite device 
(cylindrical puncher) having an end with diameter equal (or, in some limiting cases, 
smaller) to d0, which is pushed against the steel plate. In this way, holes are formed by 
removing a single cylindrical piece of base material.  
 

                     
                     a) b) 

Figure 2.2 Example of hole (a) drilling and (b) punching (Marmo, 2011). 

Punching holes with diameter directly equal to d0 is allowed only for limited plate 
thicknesses (usually, for t ≤ 10 mm). For thicker plates, holes having smaller diameter 
were usually punched and hence the required hole diameter was obtained by additional 
machining (boring). Once again, a reamed finishing was finally applied if required, 
although boring usually already ensured an excellent surface quality (Duggal, 2000).  
As a matter of fact, the main drawback of punching technique lied in the strong local 
damage induced in perforated plates, which proved to have a detrimental effect on both 
the static and fatigue performance of riveted connections (Iwankiw et al, 1982). 
Moreover, hole punching was technologically unfeasible for very large holes (i.e., for d0 
> t), for which drilling was the only available option (Marmo, 2011). 
As for the field head formation, both cold and hot riveting involved the use of a 
pneumatic or hydraulic hammer (see Figure 2.3a), which was used to realize the field 
head by applying a pressure (≈ 100 N/mm2 in case of hot driving) on the protruding part 
of the undriven shank while the shop head was held firmly in place. This last operation 
was usually carried out with the aid of an appropriate device having a concave 
hemispherical end (i.e., the so-called “bucking bar”, see Figure 2.3b).  
Hand hammering was also sometimes performed when installing small diameter rivets 
directly on field. In this case, a mould was used to properly shape the field head of rivets, 
which were referred as hand-driven rivets (Duggal, 2000; Marmo, 2011). 
The main difference between cold-driving and hot-driving obviously concerned the 
driving temperature of rivets. 
For instance, cold riveting was directly performed at room temperature. On one hand, 
without the necessity of an apposite heat source, the process was arguably less energy 
and time consuming. On the other hand, hammering required a sensibly higher forming 
pressure.  
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Moreover, clamping action between connected plies turned out to be lower and less 
controllable due to the absence of cooling-induced shrinking. Indeed, although a certain 
degree of proportionality was experimentally observed among forming pressure and 
residual clamping force in cold-driven rivets, no clear correlations were detected 
between such parameters (Deng et al., 1998). 
Nevertheless, it is worth remarking that cold driving technology still finds its niche 
nowadays for connecting thin cold-formed steel (CFS) profiles (Landolfo et al., 2022). 
For what concerns hot-driving process, installation of rivets was carried out after 
preemptively heating them in a special forge up to a temperature of ≈ 900 °C (D’Aniello 
et al., 2011), which was recognizable by the peculiar colour of heated rivets’ surface 
(i.e., the so-called “cherry red”, see Figure 2.4a). 
Hot rivets were then held in place into holes with the bucking bar and thus the second 
field head was formed with the pneumatic or hydraulic hammer (Figure 2.4b). As 
opposed to cold-driven rivets, heated rivets reached a “plastic” (i.e., softened) 
consistency which allowed to use a lower forming pressure. 
Hammering rivets while in this plastic state induced a strong lateral dilatation of the rivet 
shank, resulting in null final clearance between the driven rivet shank and the relative 
plate hole (Figure 2.4c). Therefore, for hot-driven riveted connections, the final shank 
diameter d occurred to be the same as the hole diameter d0, thus differently from cold-
driven riveted or bolted connections (D’Aniello et al., 2011). 
Hot-hammering resulted in two positive effects on the performance of riveted 
connections, namely i) an increase of the yield strength of the rivets base material fyr0 
(roughly estimated in ≈ 20% of fyr0 - Hetchman, 1948; Munse et al., 1956) and ii) a 
stronger tightening of connected plates due to rivet shrinking as opposed to cold riveting. 
 

  
a) b) 

 

 
a) b) 

Figure 2.3 a) Popular kind of pneumatic hammer (“Chicago Boyer Long Stroke” hammer – Collette, 
2014) and b) example of a bucking bar (Marmo, 2011). 
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c) 

Figure 2.4 a) Rivets heating in a special forge up to the “cherry red” colour, b) on-site hot hammering of a 
rivet c) section of a hot-driven rivet showing no clearance between plate hole and rivet shank. 

Nevertheless, it is worth remarking that both the increment of yield strength and the 
magnitude of clamping action strictly depended on the actual driving temperature and 
on-site cooling conditions, thus still resulting in a significant degree of uncertainty with 
regard to such key mechanical parameters (Leonetti et al., 2020) 

3. 2.1.3   Structural applications of hot-driven riveted connections 

Within the framework of civil engineering constructions, hot-driven riveted connections 
mainly had their field of application in i) coupling iron or steel profiles and/or plates to 
obtain complex cross-section shapes (built-up sections) or ii) connecting structural 
members by means of shear or tensile joints (Kulak et al., 1987; Duggal, 2000). 
With respect to built-up sections, a wide variety of open or hollow sections could be 
obtained by properly coupling straight plates, angle, and channel profiles (Figure 2.5a). 
A common solution involved the use of riveted battens to couple spaced profiles, 
especially when high bending moments and/or axial forces were expected in structural 
members (e.g., for bridge girders or main trusses, see Figure 2.5b). 
A peculiar use of riveted battens also concerned the realization of built-up cruciform 
sections, in which connecting plates were alternatively placed in longitudinal and 
transversal direction to join two angle sections (e.g. for diagonal bracings, see Figure 
2.5c). Nevertheless, use of rivets to directly connect two or multiple back-to-back 
profiles was also quite popular, e.g. for the realization of hollow columns (Figure 2.5d). 
It is worth noting that, in case of built-up sections, hot driving was entirely performed in 
shop, while only structural assemblage was performed on site (Collette, 2014). 
 

 
a) 
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b) 

 
c) 

 
d) 

Figure 2.5 Examples riveted built-up sections: a) I-shaped compact section used as vertical strut (Bridge 
over Oliva torrent, Italy), b) battened box-shaped section employed as main diagonal truss (Bridge over 
Gesso River, Italy), c) cruciform battened section used as transverse bracing (Bridge over Oliva torrent, 
Italy), d) different kinds of hollow sections adopted for columns (adapted from Freitag, 1904). 
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It is worth remarking that, in case of built-up sections, hot driving was entirely performed 
in shop, and hence only the subsequent structural assemblage was performed on site 
(Collette, 2014). 
The main advantage of riveted built-up sections was arguably represented by their 
intrinsic adaptability to various structural necessities. 
Namely, rather deep and/or asymmetric cross-sections could be easily obtained 
(similarly to modern built-up welded sections). Moreover, U-shaped, Π-shaped, or box-
shaped sections could be easily strengthened by means of additional back plates when 
needed. As a counterpoint, the adoption of complex built-up section often resulted in 
intricated joints involving a significant number of rivets and gusset plates (Figure 2.6). 
 

 
Figure 2.6 Structural details adopted in railway riveted bridge over Gesso River, in which i) a variable 
number of back plates (1 ÷ 4) is adopted for lower chords to resist increasing gravity effects towards mid-
span and ii) rather complex KT truss joints are used to connect chords, struts and diagonals. 
[Original design drawings are courtesy of Italian Railway Network (RFI)] 

Nevertheless, even most complex riveted joints could be typologically reduced to a small 
class of “basic” connections (Kulak et al., 1987, Bresler et al., 1960): 

 Shear connections, in which internal actions were (predominantly) transferred 
by rivet shearing. Depending on the arrangement of connected plates, lap or butt 
shear configurations could be obtained, both symmetric (S) or unsymmetric (U), 
and with one or multiple rivet rows (Figure 2.7a); 

 Tension connections, in which internal actions were (predominantly) transferred 
by rivets in tension. T-stub configuration was arguably the most common 
arrangement (Figure 2.7b), although mild steel bolts were already preferred in 
past centuries when significant tensile actions were expected in fasteners 
(Collette et al., 2011); 
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Figure 2.7 Examples of “basic” typologies of riveted connections: a) shear connections, b) T-stub tension 
connection, c) cleat angle hybrid connection. 

 Hybrid shear-tension connections, in which internal actions were transferred by 
rivets under simultaneous shear and tension. Several configurations of hybrid 
connections were used, usually for framing (Figure 2.7c). 

When multiple rivets had to be installed in lap or butt joints, two alternative 
configurations were usually adopted, i.e., chain riveting, with rivets being arranged in a 
regular grid of parallel rows, or zig-zag riveting, with adjacent rows being staggered 
instead (Figure 2.8a-b - Kulak et al., 1987). 
In earlier manuals and handbooks, zig-zag configuration was regarded as stronger than 
an equivalent chain configuration having the same number of fasteners (Collette, 2014), 
as it was deemed able to spread shear forces more uniformly among the rivets. 
 

Chain Zig-Zag Convergent Zig-Zag 

   
a) b) c) 

Figure 2.8  Adopted configurations for lap or butt splices with multiple rivet rows. 
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Such belief originated from the popular work of Schwedler (1867), which proposed a 
handy design method for splices with multiple rivets in zig-zag configuration. 
As zig-zag riveting became more and more widespread, a further development of such 
configuration gained popularity, i.e., the convergent zig-zag configuration (Figure 2.8c).  
In this arrangement, the number of rivets in outer rows was gradually reduced. For this 
purpose, diamond-shaped cover plates were appositely used, with the aim to minimize 
net-area stress concentrations on perforated plates. 
However, convergent zig-zag riveting induced significant shear forces in lone end rivets; 
such detrimental effect was dangerously overlooked during past centuries owing to 
oversimplified design assumptions adopted at the time (Collette, 2014). 

2.2. Past significative applications of hot-driven 
riveted connections 

As the iron and steel industry quickly progressed during the Industrial Revolution, 
riveted constructions became widely popular within the framework of civil engineering. 
Main structural applications of hot-driven rivets concerned i) railway bridges, in which 
rivets were adopted both to couple plates and profiles through battens and to join 
structural members, ii) monumental buildings, in which the apparent lightness of riveted 
metallic structures was used to obtain sleek and elegant structures and iii) large span 
domes, with riveted frames being often coupled with glass panels to achieve remarkable 
aesthetic effects (Masi, 1996; Ballio et al., 2020). 
In the present Section, a collection of some significative examples of riveted 
constructions is presented. 

4. 2.2.1   Coalbrookdale Bridge (1779) 

The Coalbrookdale Bridge or Iron Bridge (Figure 2.9) was the first major cast-iron 
bridge erected in the world (Duggal, 2000). The bridge, which was designed by the 
architect Thomas Pritchard, resembled earlier masonry bridges with its arch structural 
scheme.  
 

 
Figure 2.9 View of the Coalbrookdale Bridge. 
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This choice naturally descended from mechanical properties of cast-iron, which is rather 
strong in compression (up to 300 ÷ 350 N/mm2 – Di Lorenzo et al., 2021), but exhibits 
brittle and premature failure in tension owing to its high carbon content (≥ 2.0%). 
Construction of the bridge started in 1777 with masonry abutments and piles placed 
amidst the Severn riverbed, while cast-iron ribs belonging to the superstructure were 
realized in 1779 by assembling more than 1600 individual components with riveted 
connections (Cossons et al., 2002). 
The bridge, which features a main span of 30.6 m and a rise of 20 m above the Severn 
River, was open to traffic in 1781. However, as the Ironbridge gorge showed dangerous 
tendency to landslides and owing to early cracks found in piles and abutments, several 
repairments were carried out in 1784, 1791 and 1792, e.g., local replacement of cracked 
rivets or installation of wrought iron and steel ties to confine masonry elements (Cossons 
et al., 2002; Marmo, 2011). 
After several traffic limitations, the Coalbrookdale Bridge was permanently closed to 
traffic in 1934, and it is now included in UNESCO world heritage (since 1986) as one 
of the most prominent symbols of the industrial revolution (Cossons et al., 2002). 
The success of this first cast-iron riveted bridge of considerable size strongly influenced 
the field of bridge engineering, leading the way for several subsequent applications with 
wider and wider span and rise (Cossons et al., 2002; Marmo, 2011). 

5. 2.2.2   Sydney Harbour Bridge (1932) 

The Sydney Harbour Bridge (Figure 2.10) is a railway, highway, and pedestrian arch 
bridge crossing the Parrammatta estuary in the Sydney Harbour. Being opened to traffic 
in 1932, Sydney Harbour Bridge is still the tallest arch bridge in the world, with a rise 
of 134 m over the water level (Spearritt, 2011). 
Conception and construction of Sydney Harbour Bridge took over nine years (1923-
1932), with design being commissioned to the Australian engineer John Bradfield. The 
massive arch-through bridge was realized through a cantilever system, with the two 
halves being finally joined at midspan for a main span length of 503 m (Marmo, 2011). 
 

 
Figure 2.10 View of the Sydney Harbour Bridge. 
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Over 52000 tonnes of structural steel were used for the bridge construction, including 
the two side (323 × 2 m long) approaching spans. Sydney Harbour Bridge is held 
together by over 6 millions hot-driven rivets, with the last one being installed on site in 
January, 1932 (Mackaness, 2006; Marmo, 2011). 
After ninety years of service life, Sydney Harbour Bridge is still daily crossed by an 
average of 160435 vehicles, 204 trains and 1650 bicycles (NSW Government, 2017) and 
it is recognized as one of the main icons of Sydney, in conjunction with the nearby 
Sydney Opera House, and of Australia itself. 

6. 2.2.3   Golden Gate Bridge (1937) 

The Golden Gate Bridge (Figure 2.11) is arguably the world’s best-known suspended 
bridge in service. Conception and design of Golden Gate Bridge was first attempted in 
1917 by Joseph Strauss, which initially proposed a massive double cantilever system 
with a central suspended segment (Van der Zee, 2000).  
After local authorities expressed major concerns about this antiaesthetic and impractical 
solution, the idea of a suspended bridge was finally developed also in light of recent 
advances of metallurgy industry (Marmo, 2011).  
The final design of Golden Gate Bridge implied an impressive 1282 m-long main span, 
two 345 m-long lateral spans and two 227 m-high towers. Each of the towers features 
more than 600000 hot-driven rivets.  
250 pairs of vertical hangers, which are in turn connected to the two main cables, are 
devoted to carry the weight of the bridge deck, which is approximately hanged 67 m 
above the waterline. Each main cable is made of over 27500 wire strands, for a total 
outer diameter of 91 cm (Van der Zee, 2000; Marmo, 2011). 
Golden Gate Bridge standed as the longest and tallest suspended bridge in the world until 
the Verrazzano-Narrows Bridge (1298 m-long) and the Mezcala Bridge (236 m-high) 
were opened to traffic in 1964 and 1993, respectively. 
Nevertheless, after 85 years of service, the Golden Gate Bridge still experiences an 
average daily traffic of more than 112000 vehicles/day and it remains one of, if not the 
most renowned bridge in the world, being declared one of the Modern Wonders of the 
World by American Society of Civil Engineers (ASCE) in 1994 (ASCE, 2010). 
 

 
Figure 2.11 View of the Golden Gate Bridge. 
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7. 2.2.4   Eiffel Tower (1889) 

Designed by the celebrated French engineer Gustave Eiffel, the Eiffel Tower (Figure 
2.12) was constructed between 1887 and 1889 to act as the centrepiece of 1889 Paris 
Universal Exposition. 
The iconic and elegant 330 m tower was conceived with a pyramidal lattice structure in 
light of its intended temporary destination and to minimize the wind effect on what is 
still the tallest construction in Paris nowadays (Hanser, 2006). 
For the tower construction, more than 7300 tonnes of wrought iron were involved, and 
about 2 million and a half hot-driven rivets were used to couple and connect metallic 
profiles (Billington, 1983). 
After taking six months to realize the concrete slabs serving as base foundations, 
metalwork started in July 1887 with the erection of the four legs, which were designed 
to self-stand as cantilevers before being joined at the first floor. 
An exceptional precision was adopted in specifying locations of rivet holes and mutual 
positions of structural components to deal with the bold design of the tower, which traces 
a large, squared footprint at the base (124 × 124 m2) while being only 10.4 m wide at the 
second floor (Hanser, 2006). 
Notably, small segments of the tower were carried on the building site being held 
together by mild bolts, which were subsequently removed and replaced by hot-driven 
rivets during construction (Billington, 1983). 
Eiffel planned to dismantle the tower 20 years after its opening to public. However, the 
increasing popularity of the monument, which featured 1’896’987 visitors only during 
the Universal Exposition, and the possibility of hosting radio telegraphy services lead 
the City of Paris to extend its standing permission (Hanser, 2006). 
 

 
Figure 2.12 View of the Eiffel Tower. 
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Nowadays, Eiffel Tower stands as one of the most notable successes in the field of civil 
engineering, being the most-seen paid monument in the world, with over 250 million 
people having visited it since its completion in 1889 (Hanser, 2006). 

8. 2.2.5   Umberto I Gallery (1890) 

The Umberto I Gallery (Figure 2.13) is a monumental shopping gallery located in 
Naples. Construction of the gallery started in 1887, after conspicuous funds were granted 
to rehabilitate the city with the approval of King Umberto I, to which the construction 
was entitled (Carughi, 1996). 
Design of the gallery, which was carried out by Neapolitan engineer Emanuele Rocco, 
involved a cruciform plan with four entrances facing main streets of the historic city 
centre. The most recognizable detail of Umberto I Gallery, which immediately became 
the cornerstone of Neapolitan Rehabilitation (“Risanamento”), is arguably the huge iron-
glass roof, which consists of four-barrel vault-wings and a central dome. For designing 
such impressive roof system, the aid of professor and engineer Francesco Paolo Boubée 
was asked (Carughi, 1996). 
Lateral vaults are supported by reticular semi-circular arches having 15 m span and 
uniformly spaced 4.5 m away from each other. The dome, which is inscribed in an 
octagonal plan and covers a total surface of 1076.8 m2, features sixteen wrought iron ribs 
(“meridians”) and eleven wrought iron belts (“parallels”) that were installed to carry the 
weight of glass and secondary elements (≈ 24 tonnes). The largest parallel, which stands 
on eight arches directly installed over masonry constructions, has an internal diameter 
of 36 m. Hot-driven rivets were used to connect and/or couple all structural elements 
(Carughi, 1996). 
 

 
Figure 2.13 Interior view of the Umberto I Gallery. 
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Nowadays, Umberto I Gallery is one of the most popular attractions freely visitable in 
Naples, as well as one of the main pieces of evidence of neo-baroque and proto-liberty 
architectural style in Italy (Carughi, 1996). 

2.3. Peculiar issues of hot-driven riveted connections 

As shown in Section 2.1, hot-driven riveted connections are characterized by a 
distinctive manufacturing process which requires skilled labour and a proper equipment 
for on-field driving. Such a complex technology obviously implies a wide range of 
peculiar issues that should be properly accounted for while dealing with this kind of 
structural detail. In the present Section, an overview of such complexities and of their 
possible implications on the performance of connection is presented. 

9. 2.3.1   Disassembly, re-use or repairment of riveted constructions 

The main feature that distinguishes riveted connections (both cold- and hot-driven) from 
bolted ones is clearly their permanent nature (D’Aniello et al., 2011). Indeed, once the 
field head is formed, the rivet acts as a unique piece tightening the connected plies. 
Moreover, the resulting clamping action and the possible permanent (i.e., plastic) 
deformation of hammered plates makes dismantling of connections even more complex. 
From a practical perspective, disassembly of hot-driven riveted connections can be only 
performed with the aid of a blowtorch or a chisel, thanks to which the heads can be burnt-
out or fragmented, respectively (Marmo, 2011).  
Consequently, only partial re-use of riveted constructions is viable, as lone connected 
members can be preserved while rivets are inevitably destroyed during dismantling. This 
issue represented one of the main reasons for high-strength bolts to gain popularity since 
the ‘30s of XXth century (Batho et al., 1934; D’Aniello et al., 2011).  
Indeed, as i) high strength steels progressively became more affordable and reliable and 
ii) bolted connections proved to be leak- and slip-proof when sufficiently tightened, the 
use of hot-driven rivets quickly fell out of favour. Indeed, the possibility to quickly 
remove and/or replace even small portions of a metallic structure without the need of a 
specific labour and equipment strongly pushed bolted connections onto the market of 
metallic constructions up to present time (Duggal, 2000). 
The issue of dismantling/replacing hot-driven riveted connections is often regarded as 
so critical that in recent times many operators preferred to replace rivets belonging to 
damaged metallic structures with same diameter high-strength bolts (Figure 2.14 – 
Sustainable Bridge, 2006) or injection bolts (Pedrosa et al., 2017a, 2017b). 
 

 
Figure 2.14 Replacement of rivets with bolts in an existing metallic bridge (Sustainable Bridge, 2006). 
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The latter technology has become especially popular in Portugal in recent times, where 
it was adopted to retrofit old metallic infrastructures such as the bridge in Figueira da 
Foz (Pedrosa et al., 2017a). Injection bolts involve the use of an epoxy resin to 
completely fill the bolt-hole gap, thus making these kind of connections slip-resistant. 
This condition, which is achieved by means of injection holes through the bolt heads, 
makes this kind of fasteners more similar to actual hot-driven riveted connections. 
Nevertheless, it should be remarked that the practice of adopting modern fasteners for 
refurbishing old riveted connections is currently being discouraged, as not only it 
irremediably impairs the historical value of existing riveted constructions, but also owing 
to the different stiffness of high-strength bolts (especially if clamped) with respect to 
rivets. Namely, the actual behaviour of hot-driven joints featuring multiple rivets is 
already affected by a significant degree of uncertainty due to clamping variability (see 
Section 2.3.2 for further details). This phenomenon locally affects the magnitude of plate 
pre-stress, resulting in an uneven repartition of actions on rivets. The introduction of pre-
loaded high-strength bolts further exacerbates this effect, altering the structural 
performance of repaired joints in ways that can be difficult to predict (Sustainable 
Bridge, 2006). 

10.  2.3.2   Variability of clamping action and shear overstrength 

One of the main concerns related to structural performance of hot-driven riveted 
connections is represented by the strong variability of both clamping action (Leonetti et 
al., 2020) and “effective” shear strength fyr (D’Aniello et al., 2011). Indeed, the unique 
thermo-mechanical nature of hot-driving is responsible of strong local alterations of base 
material properties and it also controls the magnitude of clamping action. 
With respect to mechanical properties, strong increments in terms of ultimate resistance 
of hot-driven connections failing due to rivet shearing have been reported in literature 
At the same time, a significant reduction of connections’ ultimate ductility in static 
condition was observed (Hrennikof, 1934; Hetchman, 1948; Munse et al., 1956; 
D’Aniello et al., 2011). 
Such outcomes, which are rather complex to quantify and are affected by a significant 
degree of uncertainty, have been plausibly justified in terms of i) increment of rivet shear 
strength and ii) ductility and toughness reduction of both rivets’ and plates’ base material 
(D’Aniello et al., 2011). 
On one hand, tests performed by Hechtman (1948) showed that fyr increases with 
increasing temperature. This effect could be recognized up to a temperature threshold of 
≈ 900 °C. Contrariwise, no appreciable variations were found by varying the temperature 
within the range 900 ÷ 1200 °C. 
On the other hand, the experimental campaign carried out by D’Aniello et al. (2011)  
suggested how plates could be locally affected by a significant ductility reduction (up to   
≈ 50 ÷ 55% in terms of ultimate strain decrease). Moreover, earlier studies on ductility 
alteration of connected plies showed a strong dependence on the holes forming technique 
(that is, hole punching induces a stronger local damage on perforated plates with respect 
to drilling – Iwankiw et al, 1982). 
Randomness associated to these phenomena mostly lead to empirical and sometimes 
overconservative approaches for designing riveted connections, which have been 
subsequently implemented in normative provisions (EN1993:1-8 and EN1993:1-9 for 
static and fatigue performance, respectively - CEN, 2005a, 2005b). Therefore, properly 
understanding the structural performance of hot-driven riveted connections has to be still 
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considered as an open and wide field of research (D’Aniello et al., 2011; Collette, 2014; 
Milone et al., 2023). 
With respect to magnitude of clamping action, the significant variability encountered in 
hot-driven connections is shared with cold-driven ones, although owing to different 
motivations (Deng et al., 1998; Leonetti et al., 2020). Namely, while clamping action in 
cold-riveting loosely depends on rivet geometry, yield stress and on hammering 
pressure, in hot-riveting this phenomena is mainly governed by rivet shrinking due to on 
field cooling (D’Aniello et al., 2011).  
Therefore, both forge’s and ambient temperature play a key role in defining the real 
magnitude of clamping action, and their exact determination is obviously rather 
impractical, as rivets were deemed as ready to be hammered based on a qualitative 
criterion (that is, achievement of the “cherry red” colour, see Section 2.1.2). 
Experimental measures carried out by Leonetti et al. (2020) indeed showed how 
clamping stresses in historical riveted connections are extremely variable, ranging from 
0.1 ÷ 0.8 fyr0. This condition, which may strongly affect both the static (especially if 
tensile) and fatigue performance (owing to unpredictable variations of the stress ratio R) 
of connections (Milone et al., 2023), is only indirectly accounted for by current 
normative provisions. Indeed, according to EN1993:1-8 recommendations, riveted 
connections cannot be regarded as slip-resistant ones, but only as bearing-type 
connections (D’Aniello et al., 2011)  
These kinds of uncertainties are further worsened by the possible presence of 
constructional imperfections, which can alter the distribution of both shear/tensile and 
clamping stresses. To this end, an overview about common constructional imperfections 
found in existing riveted structures and their implications in terms of structural 
performance is reported in the following Section 2.3.3. 
It is worth reporting that an attempt to carefully account for all the aforementioned 
phenomena is carried out in the present thesis work, namely in Chapters 5 and 7. 

11. 2.3.3   Common constructional imperfections 

Owing to the peculiar installation process, hot-driven riveted are often affected by a 
multitude of constructional imperfections (Figure 2.15). Such imperfections can be 
either detectable by the naked eye or rather be invisible and hence only recognizable by 
means of destructive inspections (Twelvetrees, 1900; Collette, 2014). 
With respect to visible defects, one of the most common imperfections is represented by 
rivets being loose (Figure 2.15a). This defect, which is caused by an improper tightening 
 

 
a) Loose rivet 

 
b) Rivet head lip 
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c) Rivet head eccentricity/distortion 

 
d) Insufficient shank upset 

 
e) Rivet hole deformation 

 
f) Strain hardened plate edge 

 
g) Camming defect 

Figure 2.15 Common constructional imperfections found in existing hot-driven riveted connections 
(adapted from Twelvetrees, 1900). 

of plies to be connected, can impair the development of clamping action and induce 
slight rivet movements under transient loads, although no significative effects are 
expected on the static performance of connections and only slight reductions of fatigue 
life may occur (Collette, 2014). 
If the undriven rivet shank is not properly cut to match the thickness of stacked plates 
and/or a pneumatic hammer with excessively small snap is used, the field head can 
present a perimetral lip (Figure 2.15b). Although being often overlooked in visual 
inspections, head lips should be carefully considered, as wider lips may underlie an 
insufficient upset of the rivet shank (Vermes, 2007). 
Another common visible imperfection found in existing riveted connections is the 
eccentricity/distortion of the rivets field head (Figure 2.15c). Indeed, if the pneumatic 
hammer is actioned while not being perfectly centred and/or perpendicular to the plies 
to be connected, a misaligned and/or distorted field head will be formed (Twelvetrees, 
1900; Vermes, 2007). On one hand, severe head eccentricity or distortion can sometimes 
lead to fatigue collapse of hot-driven rivets due to premature head detachment (Collette, 
2014). On the other hand, with respect to static conditions, head distortion slightly affects 
the tensile resistance of the rivets and the distribution of clamping stresses, owing to the 
alteration of restraints acting on the rivet shank. 
With respect to invisible defects, one of the trickiest imperfections is represented by 
insufficient shank upset (Figure 2.15d). Several reasons can trigger this kind of defect, 
e.g., an insufficient driving temperature and/or pressure, the presence of multiple 
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(usually ≥ 4) plies to be connected or improper hand-driving (Frémont, 1906). In this 
case, owing to the reduction of the shank resisting area, a decrease of both bearing and 
especially shear resistance occurs in static conditions. Moreover, stress concentrations 
nearby the minimum cross-section can lead to unexpected shear fatigue failure of rivets, 
as opposed to net-area fatigue failure usually observed in pristine riveted connections 
(Collette, 2014; Milone et al., 2022a). 
Contrariwise, if an excessive driving pressure is applied, lateral dilatation of the rivet 
shank can be so significant to induce a permanent rivet hole deformation (Figure 2.15e). 
Although this effect has no significant influence on the static resistance of rivets, it can 
i) make removal of rivets quite difficult and ii) detrimentally affect the fatigue 
performance of connections, as deep grooves may occur on the rivet shank owing to 
plate edge-to-rivet indentation (Collette, 2014). 
Fatigue behaviour of connections can also be affected by strain hardening of hole edges 
(Figure 2.15f). This condition may occur if holes are perforated through the punching 
technique (see Section 2.1.2) without subsequent reaming. In this case, local damage on 
plates can result in unexpected brittleness and (micro)cracks that sensibly reduce the 
fatigue life of connections (Twelvetrees, 1900; Collette, 2014).  
Finally, if plates to be connected are not properly aligned during the hammering process, 
the heat forging can result in a distorted shank with several geometric discontinuities 
nearby the shear planes (Figure 2.15g). This condition, which is known as “camming 
defect” (Sustainable Bridge, 2006; Vermes, 2007; Collette, 2014), can decrease both the 
static and fatigue strength of hot-driven riveted connections owing to i) a significant 
modification in terms of stress transmission along the shear planes (which may result in 
a reduction of the “effective” shear resisting cross-section), ii) a sharp rise of hot-spot 
stresses, which may promote crack propagation across the rivet shank and iii) an 
alteration of the clamping stresses distribution (Milone et al., 2022a, 2023). Moreover, 
in presence of cammed shanks, replacement of rivets can be more complex (Twelvetrees, 
1900; Collette 2014). 
Camming defect is arguably the most influent defect on the structural performance of 
hot-driven riveted connections. Therefore, in Chapter 5, an attempt to parametrically 
investigate its detrimental effect in static conditions is carried out. 

2.4. Normative provisions for hot-driven riveted 
connections 

12. 2.4.1   Failure modes of hot-driven riveted connections 

Failure modes of hot-driven riveted connections can be identified depending on the type 
of sustained action, namely: 

 In case of shear connections (butt- or lap-splices, see Figure 2.7a), collapse may 
occur due to four different mechanisms, namely (Bresler et al.,1960): i) rivet 
shearing (Figure 2.16a), ii) plate bearing (Figure 2.16b), iii) plate net-area tensile 
failure (Figure 2.16c) or iv) plate shear-out (Figure 2.16d); 

 In case of tensile connections (e.g., T-stubs, see Figure 2.7b), collapse may occur 
only due to rivet tensile failure (Figure 2.16e), while plate punching mechanism 
is considered to be prevented. 

It is worth noting that these collapse mechanisms resemble the ones that may occur in 
bolted connections, although i) no frictional resistance is assumed for rivets owing to the 
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unreliability of clamping action (D’Aniello et al., 2011) and ii) plate punching resistance 
is assumed to be always greater than the corresponding rivet tensile resistance. 
 

 
a)  Rivet shearing 

 
b) Plate bearing 

 
c)  Plate net-area tensile failure 

 
d) Plate shear-out 

 
e) Rivet tensile failure 

Figure 2.16 Possible collapse mechanisms for hot-driven riveted connections. 

Several formulations were derived in the past to estimate the resistance of riveted 
connections failing due to all introduced mechanisms, mostly on the basis of 
experimental evidence. Remarkably, such formulations relied (and still rely in current 
normative provisions, e.g., EN1993:1-8 – CEN, 2005b) on a significant stress 
redistribution in ultimate conditions with respect to elastic response of connections 
(Marmo, 2011). 
For example, failure due to rivet shearing is assumed to occur when shear plane(s) 
achieve an uniform stress equal to the shear strength of the rivet, while a simple 
application (yet approximate) of Jourawsky’s formula (Irgens, 2008) rimmediately 
shows how shear stresses strongly vary along the shank cross-section in elastic 
conditions (Figure 2.17a). 
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Likewise, in case of plate bearing collapse, an uniform distribution of stresses (i.e., on 
the hole diametral plane) is nominally considered, while in elastic regime the “point 
bearing” condition implies a significantly higher stress on the hole tip in contact with the 
shank (Figure 2.17b). In case of plate bearing, uniform stresses are also assumed through 
the thickness; this hypothesis can be considered realistic only for inner plates, while, in 
reality, stresses considerably vary along the thickness of outer plates. 
Stress inhomogeneity is further exacerbated by secondary bending, which occurs in case 
of unsymmetric joints, where forces transferred by plates form a couple which is resisted 
by an equal and opposite couple acting on the rivet heads (Bresler et al., 1960). 
Secondary bending, which becomes less influent only in case of rather long joints, also 
explains the inferior performance shown by countersunk rivets (Marmo, 2011). 
Similarly, in case of net-area tensile failure of plates, the achievement of an uniform 
stress (that is, the plate ultimate tensile stress) on the net area is assumed at collapse, 
while linear elastic fracture mechanics (LEFM) suggests how the maximum elastic stress 
at hole’s tip is about 3 times higher than the far field stress σ0 acting on plates ends 
(Figure 2.17c – Anderson, 2017). 
Contrariwise, stresses distribution in elastic conditions and at failure can be considered 
sufficiently similar for rivets in tension (Bresler et al., 1960). 
It is really worth reporting that, while the above discrepancies may not play a significant 
role in static conditions, they have a key importance under fatigue conditions (especially 
in high-cycle fatigue, or HCF, regime – Milone et al., 2022b).  
For instance, fatigue cracking of existing hot-driven riveted constructions was almost 
always found across net sections of connected elements (that is, due to near-hole stress 
amplifications and high tensile mean stress), although some cases of rivets head 
detachment have been also reported, e.g., in presence of relevant secondary bending 
and/or when constructional imperfections were detected (e.g., field head distortion or 
eccentricity – Pipinato et al., 2009; Taras et al., 2010). 
 

 
a) Rivet shearing 

 
b) Plate bearing 
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c)  Plate net-area tensile failure 

 

Figure 2.17 Stress redistribution from elastic to ultimate conditions for shear collapse mechanisms of 
hot-driven riveted connections (adapted from Bresler et al., 1960). 

13. 2.4.2   EN1993:1-8 prescriptions for hot-driven riveted connections 

Relevant provisions for the estimation of design static resistance of riveted connections 
are reported in EN1993:1-8 (CEN, 2005b). Namely, for each of the introduced collapse 
mechanisms, a resistance model is provided, with the only notable exception of plate 
shear-out. 
Indeed, as this kind of mechanism proves to be rather fragile and premature (Ballio et 
al., 2020), EN1993:1-8 implicitly avoids the occurrence of shear-out by means of 
geometrical limitations on edge-to-hole distance e1 along the loaded direction. 
Additional prescriptions are also provided with regard to rivets pitch p1 (for nr ≥ 2) and 
with respect to geometrical limitations in transverse direction. It should be remarked that 
these kind of restrictions are shared among all kinds of connections with mechanical 
fasteners (i.e., rivets, bolts, pins). 
Geometrical prescriptions on riveted connections are summarized in Table 2.1, in which 
the symbology introduced in Figure 2.18 is used.  
 
Table 2.1 Minimum and maximum spacing, end and edge distances for mechanically fastened connections 
(adapted from Table 3.3 of EN1993:1-8 –  CEN, 2005b). 

Distances and 
spacings 

Minimum 

Maximum1) 2) 3) 

Structures made from steels 
conforming to EN 10025 except 
steels conforming to EN 10025-5 

Structures made 
from steels 

conforming to 
EN 10025-5 

Steel exposed to 
the weather or 
other corrosive 

influences 

Steel not exposed 
to the weather or 
other corrosive 

influences 

Steel used 
unprotected 

End distance e1 1.2 d0 4t + 40 mm  
max 

{8t; 125 mm} 

Edge distance e2 1.2 d0 4t + 40 mm  
max 

{8t; 125 mm} 
Distance e3 in 
slotted holes 

1.5 d0 4)    

Distance e4 in 
slotted holes 

1.5 d0 4)    



xlvi 
 

Spacing p1 2.2 d0 
min 

{14t; 200 mm} 
min 

{14t; 200 mm} 
min 

{14t; 175 mm} 

Spacing p1,o  
min 

{14t; 200 mm} 
  

Spacing p1,i  
min 

{28t; 400 mm} 
  

Spacing p2 5) 2.4 d0 
min 

{14t; 200 mm} 
min 

{14t; 200 mm} 
min 

{14t; 175 mm} 
1) Maximum values for spacings, edge and end distances are unlimited, except in the 

following cases: 
- for compression members in order to avoid local buckling and to prevent corrosion in 

exposed members (the limiting values are given in the table); 
- for exposed tension members to prevent corrosion (the limiting values are given in 

the table). 
2) The local buckling resistance of the plate in compression between the fasteners should be 

calculated according to EN:1993-1-1 using 0.6 p1 as buckling length. Local buckling 
between the fasteners need not to be checked if p1/t is smaller than 9ε. The edge distance 
should not exceed the local buckling requirements for an outstand element in the 
compression members, see EN:1993-1-1. The end distance is not affected by this 
requirement.  

3) t is the thickness of the thinner outer connected part. 
4) The dimensional limits for slotted holes are given in 1.2.6 Reference Standards: Group 7. 
5) For staggered rows of fasteners a minimum line spacing of p2 = 1.2 d0 may be used, 

provided that the minimum distance L between any two fasteners is greater or equal than 
2.4 d0. 

 
In addition, the British National Annex (BSI, 2008) provides further indications about 
rivets’ grip length hS. For instance, hS should not exceed a limit value equal to 4.5 d or 
6.5 d for hammer riveting or press riveting, respectively (Marmo, 2011). 
Provided limitations grant that i) reported resistance models can reliably estimate the 
actual strength of fasteners (as they were calibrated on the basis of experimental 
outcomes) and ii) repartition of actions between multiple fasteners (if present) can be 
performed with simplified assumptions (Ballio et al., 2020), namely (CEN, 2005b): 

 Resistance of joints should be estimated starting from resistances of its basic 
components; 

 Linear-elastic or elastic-plastic analysis may be used to design and check joints; 

 If elastic-plastic analysis is adopted, deformations descending from rigid body 
rotations and/or in-plane deformations should be physically possible; 

 Assumed internal forces and moments should be in equilibrium with forces and 
moments acting on the joints; 

 Each joint component should be able to resist relevant internal forces/moments; 

 Deformations implied by the assumed forces distribution should not exceed the 
deformation capacity of fasteners and connected parts; 

 Assumed distribution of internal forces should be realistic with respect to 
relative stiffness of joint components (e.g., in case of shear loads, it is 
recommended to distribute internal actions only among stiffer fasteners); 

 In any case, adopted resistance models should comply with test results. 
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Figure 2.18 Symbols for end and edge distances and spacing of fasteners (adapted from Figure 3.1 of 
EN1993:1-8 –  CEN, 2005b). 
 

Although different methods complying with the above assumptions can be used to derive 
a realistic distribution of internal actions among fasteners, the most popular technique is 
arguably the so-called “rigid plates-elastic fasteners” (hence also referred as “RP-EF”) 
method (Duggal, 2000; Ballio et al., 2020), in which connected plies are assumed to be 
infinitely rigid, while fasteners behave in a purely elastic manner. If this condition holds, 
repartition of actions can be carried out as follows: 

 Shear loads can be equally spread among all the fasteners, provided that they 
share the same stiffness. Otherwise, loads can be equally spread among all stiffer 
fasteners (Figure 2.19a); 

 Tensile loads can be spread among fasteners on account of their distance from 
the neutral axis, if present. In other terms, in case of pure tension acting on the 
joint, tensile loads can be equally spread among the fasteners (Figure 2.19b); 

p1 p1 e1

e2

e2

p2

p2

p2

L

p1

p2

Spacing of Fasteners

Staggered Spacing in Compression Members

Staggered Rows of Fasteners

Staggered Spacing in Tension Members

Slotted Holes

Outer row

Inner row

p1,o

p1,i

0.5d0
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 If bending moments act on the joint, most centrifugated fasteners will carry the 
higher tensile loads. Under no circumstances, compressive forces equilibrating 
the tensile actions should be attributed to fasteners, as they will be transferred 
by plies in contact (Figure 2.19c); 

 Torques are resisted by a couple given by shear forces acting on fasteners, which 
are proportional to the distance among a given fastener and the centroid of the 
assembly of fasteners (Figure 2.19d); 

 Any composition of forces and moments acting on a joint can be addressed with 
the above rules using superimposition principle. 

By using the RP-EF method, it can be easily recognized how the resistance of a riveted 
joint can be estimated by monotonically scaling apportioned internal actions Fi until the 
weakest element reaches its design resistance (limit conditions). Hence, the joint overall 
resistance will be equal to the resultant (force and/or moment) acting on the joint itself 
in limit conditions. 
 

 

 

      a) Shear force               b) Tension force 

 

 

        c) Bending moment               d) Torque 
Figure 2.19 Repartition of internal actions according to the “rigid plates-elastic fasteners” method. 

For example, in case of a lap-shear riveted joint involving nr rivets, the overall shear 
resistance can be estimated as nr times the shear resistance of the weakest fastener, which 
in turn is equal to the minimum between the rivet shear and the plate bearing resistance 
(that is, provided that the joint does not prematurely collapse due to net-area failure). 
In light of the above, the resistance of any given hot-driven riveted connection can be 
estimated on the basis of four basic resistance models provided by EN1993:1-8, one for 
each of the collapse mechanisms shown in Figure 2.16 (besides plate shear-out): 

 In case of rivet shear failure, the design shear resistance FV,Rd is given by 
Equation 2.2: 

FV,Rd=
0.6 nS A0 fur

γM2

 (2.2) 

V

V/nr V/nr V/nr

T

T/nr

T/nr

T/nr

M

T ∝ yi

yi

V ∝ di

di MT
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with:  
0.6 being the shear-to-tensile strength ratio (empirical coefficient); 
nS = nP – 1 being the number of shear planes per rivet;  
A0 = πd0

2/4 being the rivet hole area;  
fur being the rivet ultimate tensile strength; 
γM2 = 1.25 being the partial safety factor for connections resistance; 

 In case of plate bearing failure, the design bearing resistance Fb,Rd is given by 
Equation 2.3: 

Fb,Rd=
αb k1 fup d tmin 

γM2

 (2.3) 

with:  
αb and k1 being coefficients accounting for the stress diffusion along the 
longitudinal and transverse direction, respectively;  
fup being the plate ultimate tensile strength;  
d = d0 being the driven rivet diameter;  
tmin being the minimum thickness among connected plies or, if multiple (≥ 3) 
plates are present, the minimum overall thickness of plates subjected to bearing 
pressure of the same sign; 
γM2 = 1.25 being the partial safety factor for connections resistance. 
As for αb and k1, the following expressions are given (Equation 2.4a-d): 

αb= min ൝
e1

3 d0
; 

fur

fup

; 1ൡ  for end bolts (2.4a) 

αb= min ൝
p1

3 d0
-
1

4
; 

fur

fup

; 1ൡ  for inner bolts  (2.4b) 

k1= min ൜
2.8 e2

d0
-1.7; 2.5ൠ  for edge bolts (2.4c) 

k1= min ቊ
1.4 p2

d0
-1.7; 2.5ቋ  for inner bolts (2.4d) 

 In case of plate net-area failure, the design tensile resistance NU,Rd is given by 
Equation 2.5: 

NU,Rd=
0.9 Anet fup 

γM2

 (2.5) 

with:  
Anet = Ap – d0t being the minimum net cross-section of the plate having gross 
cross-section equal to Ap;  
fub being the plate ultimate tensile strength;  
γM2 = 1.25 being the partial safety factor for connections resistance; 

 In case of rivet tensile failure, the design tensile resistance FT,Rd is given by 
Equation 2.6: 

FT,Rd=
0.6 A0 fur 

γM2

 (2.6) 

with:  
A0 = πd0

2/4 being the rivet hole area;  
fur being the rivet ultimate tensile strength; 
γM2 = 1.25 being the partial safety factor for connections resistance; 



l 
 

Remarkably, a maximum work ratio of 60% is allowed for rivets in tension, as 
opposed to high-strength bolts, for which a maximum tensile work ratio of 90% 
is permitted. As a result, shear and tensile resistance of rivets basically share the 
same formulation for nS = 1.  

 In case of combined shear VEd and tensile TEd design actions, the following 
design resistance domain is provided for rivets (Equation 2.7): 

VEd

FV,Rd
 + 

TEd

FT,Rd
 ≤ 1 (2.7) 

 In case of long joints (i.e., joints in which the distance Lf between the first and 
the last rivet measured along the direction of applied loads is higher than 15d), 
assumptions of RP-EF method become less reliable, as plate deformations 
become non-negligible and thus outer rivets are more loaded than inner ones. In 
this case, the resistance of single fasteners should be properly reduced by means 
of a coefficient βLf (Equation 2.8): 

βLf = 1 - 
Lf - 15 d

200 d
 ∈ [0.75 ÷ 1.0] (2.8) 

In conclusion, mechanical and physical parameters governing static failure of hot-driven 
riveted connections according to EN1993:1-8 can be summarized as follows: 

- Ultimate strength of rivets fur and plates fup; 
- Rivets diameter d, number nr, end/edge distances e1/e2 and pitch p1/p2; 
- Plates width w, thickness t and number np. 

14. 2.4.3   EN1993:1-9 prescriptions for hot-driven riveted connections 

EN1993:1-9 (CEN, 2005a) provides two alternative approaches to perform fatigue 
checks of structural steel components, i.e. the Safe Life (SL) approach and the Damage 
Tolerant (DT) approach:  

 SL approach does not contemplate any fatigue damage in checked structures, 
and it is addressed by means of a punctual stress-based verification (i.e., it refers 
to the worst load conditions occurring in the service life); 

 DT approach admits the development of controlled fatigue damage in verified 
structures. Expected damage D, which is estimated accounting for the entire 
service life, should not exceed a threshold value (D* = 1.0 in absence of more 
detailed provisions) associated with failure. 

When dealing with existing steel structures such as historic riveted constructions, the DT 
approach is clearly the most suitable option, as it allows to account for the damage 
endured by steel elements during their past service life. Indeed, the amount of cumulated 
damage can be often significant for older structures, mainly owing to the inadequacy of 
the design requirements available at the erection time and/or to a progressive increase in 
cyclic loads over the years (Milone et al., 2022b). 
Within the framework of DT approach, EN1993:1-9 provides fatigue resistance domain 
in the form of a limited range of Wohler (or S-N) curves. The selection of the S-N curve 
of concern depends on the nature of the structural detail to check, and each curve is 
identified by means of the so-called “detail class” ΔσC, i.e., the applied stress range 
inducing fatigue collapse for a conventional number of cycles NC = 2 ∙ 106. 
Therefore, for a given value of applied stress range Δσf, the number of cycles at failure 
N can be estimated as follows (Equation 2.9a-b): 
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N (γFF∆σf)
m1  = NC ቆ

∆σC

γMF

ቇ

m1

for N ≤ 5∙106  (2.9a) 

N (γFF∆σf)
m2  = ND ቆ

∆σD

γMF

ቇ

m2

 for 5∙106 ≤ N ≤ 108 (2.9b) 

with:  
m1 and m2 being the inverse logarithmic slopes of the two branches of the design S-N 
curve, respectively (m1 = 3 and m2 = 5 unless otherwise stated); 
γFF = 1.0 and γMF = 1.0 ÷ 1.25 being the partial safety factor for fatigue demand and 
strength, respectively; 
ΔσD being the constant amplitude fatigue limit (CAFL), i.e. the applied stress range 
inducing fatigue collapse for a conventional number of cycles ND = 5 ∙ 106. 
Further details concerning i) the proper value of γMF, ii) theoretical background and 
advantages/drawbacks of DT approach and iii) indications on how to deal with complex 
and aperiodic load histories within the framework of DT approach are reported in the 
relevant sections of Chapter 3. 
Remarkably, no detail classes are reported in the current version of EN1993:1-9 for hot-
driven riveted connections, thus leaving a critical normative vacuum when assessing the 
structural performance of riveted constructions subjected to relevant cyclic loads, such 
as railway bridges (Pipinato et al., 2009; Taras et al., 2010; Milone et al., 2022a). 
Nevertheless, it is worth reporting that, in earlier drafts of EN1993:1-9, two separate 
detail classes were associated to riveted details, identified as “Category 2”, i.e., 
unsymmetrical joints, and “Category 3”, i.e., symmetrical joints (Table 2.2): 
 
Table 2.2 Detail classes for hot-driven riveted details provided by earlier drafts of EN1993:1-9. 

Detail  
Category 

Detail 
Class ΔσC 

Detail 
Description & 

Examples 
Additional 
Remarks 

Category 2 
71 MPa 

m1 = m2 = 5 
 

One-shear joint with 
gusset plates 

(unsymmetrical joint) 

If the calculated shear 
force in the rivets is 

lower than the 
minimum value of slip 
resistance, ΔσC = 85 

MPa can be used 

Category 3 
90 MPa 

m1 = m2 = 5 

 

Symmetrical joint 
with splice plates 

 

Middle plates (having 
thickness t) in two-
shear connections 

should be verified using 
ΔσC = 90 MPa 

 

Splice plates themselves 
(having thickness tL) 

should be verified using 
ΔσC = 80 MPa. no 

verification is required 
when 2tL > 1.12 t  

 

The ratio Δσbearing to 
Δσnet should be smaller 

than 2.  
 

When rivets of steel 
grade St44 or higher 
were employed no 

corrosion protection 
coating must have been 

applied. 
 

If one of these 
conditions does not 
hold, ΔσC = 80 MPa 

should be used instead. 
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2.5. Notable previous literature studies on hot-driven 
riveted connections 

As stated in previous Sections, peculiar issues related to technology and structural 
performance of hot-driven riveted connections represent a rather old question, in respect 
of which numerous research efforts have been made through the years, although several 
aspects still need to be properly addressed (Collette, 2014; Leonetti et al., 2020; Milone 
et al., 2022a, 2023). Hence, in the present Section an overview of notable previous 
literature studies concerning the static and fatigue performance of hot-driven riveted 
connections is presented. 

15. 2.5.1   Literature studies on the static performance of hot-driven 
riveted connections 

Among the several contributions dealing with static performance of hot-driven riveted 
connections, it is worth mentioning pioneering studies carried out by Hrennikof (“Work 
of Rivets in Riveted Joints”, 1934), Hetchman (“A Study of the Effects of Heating and 
Driving Conditions on Hot-Driven Structural Steel Rivets”, 1948) and Munse & Cox 
(“The Static Strength of Rivets Subjected to Combined Tension and Shear”, 1956). 
Results of such and further studies have been hence collected by  Kulak, Fisher & Struik, 
(Guide to design criteria for bolted and riveted joints, 1987). 
In Munse & Cox (1956), round headed steel rivets were tested under different tension-
to-shear ratios m, ranging from pure shear (m = 0) to pure tension (m →  ∞) by means 
of orientable pull plates drilled with 15° spacings (Figure 2.20). A wide parametrical 
study was carried out accounting for the variation of the following parameters, namely:  
i) steel processing (rimmed, killed or semi-killed); 
ii) rivet diameter (3/4 ÷ 1 inches, i.e., 19 ÷ 25 mm);  
iii) grip length (1 ÷ 5 inches, i.e., 25 ÷ 125 mm); 
iv) driving technique (hot- or cold-driving, machined or handmade); 
v) forge temperature, when relevant (1800 ÷ 1950 F, i.e., 982 ÷ 1066 °C); 
iv) soaking time before driving, when relevant (43 ÷ 138 min). 
Relevant variables for the parametric study were determined based on preliminary tests 
regarding common technical practices for rivets making and installation during the ‘50s.   
In compliance with experimental findings, the Authors concluded that i) no significant 
difference in terms of ultimate strength (< 5%) could be observed depending on steel 
processing for identical heating and driving conditions, ii) a slight dependence on forge 
temperature (≈ 5% when decreasing T from 1850 to 1800 F) and driving technique could 
be observed instead, iii) clamping stress in rivets could be up to the yield point, although 
measures were made only for 2 inches long rivets and iv) a strong decrease of ultimate 
resistance could be observed for increasing soaking times (≈ 10%, Munse & Cox, 1956). 
With regard to the actual set of 403 shear-tension tests, a notable decrease of peak 
strength (≈ 8% for identical driving and test conditions) was noticed when increasing 
grip length from 1 inch to 5 inches.  
This outcome probably derived from the shank upset becoming gradually insufficient 
for increasing grip length (Figure 2.21 – Kulak et al., 1987). 
A moderate diminishing trend of ultimate strength with increasing rivet diameter was 
also observed for all tension-to-shear ratios m (≈ 7% on average when ranging from 3/4 
÷ 1 inch rivets). 
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Figure 2.20 Experimental set-up designed by Munse & Cox (1956) to statically test hot-driven rivets 
under different tension-to-shear ratios. 

 

 
Figure 2.21 Sawed sections of hot-driven rivets with different grip length. An increasing clearance 
between rivet shank and holes can be observed for longer rivets (Munse & Cox, 1956). 

Notably, the parameter showing the larger range of variation for different values of m 
was the energy absorbing capacity (or, equivalently, the ultimate ductility) of rivets, 
which strongly reduced for decreasing values of m (Figure 2.22a).  
Consistently, a stronger propension to necking at failure was observed for increasing m 
(Figure 2.22b). Specimens subjected to prevalent tension also showed a significant 
increase of nominal ultimate strength (up to 33%), although the worst conditions in terms 
of resistance and absorbed energy at failure proved to be for m = 0.577 rather than in 
pure shear (see Figure 2.22a, white circle markers). 
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a) 

 
b) 

Figure 2.22 Typical a) force-displacement curves and b) fractures for rivets under different tension-to-
shear ratios (adapted from Munse & Cox, 1956). 

Based on test results, the Authors derived an ellipsoidal resistance domain for rivets 
subjected to contemporary tension and shear (Figure 2.23), which could be analytically 
expressed in terms of the lone rivets shear strength as follows (Equation 2.10, maximum 
error with respect to experimental results = ± 7% - Munse & Cox, 1956): 

ቀ
y

 1.333 
ቁ

2
 + ቀ

x

 1.000 
ቁ

2
≤ 1 (2.10) 

with y being the tension demand to shear capacity ratio and x being the shear demand to 
capacity ratio. 
Almost identical findings are reported in Kulak et al. (1987), in which further hybrid 
tests are drawn from literature resulting in the same equation for the resistance domain. 
Almost identical findings are reported in Kulak et al. (1987), in which further hybrid 
tests are drawn from literature resulting in the same equation for the resistance domain. 
To this end, it is worth remarking that the resistance model reported in current normative 
provisions (see Figure 2.23, red dashed line) is exceedingly conservative (Equation 2.7) 
with respect to experimental results. 
Moreover, as test outcomes were normalized with respect to the average shear resistance 
of driven rivets rather than against base material properties, the beneficial effect of hot-
driving was also implicitly neglected.  
 



lv 
 

 
Figure 2.23 Experimental hybrid tension-shear domain for hot-driven rivets. Normative prescriptions for 
hybrid resistance are reported for the sake of comparison (adapted from Munse & Cox, 1956). 

 

This effect, which is widely recognized in scientific literature (Hrennikof, 1934; 
Hetchman, 1948; Kulak et al., 1987; Marmo, 2011; Collette, 2014) and is completely 
disregarded by EN1993:1-8 (Equation 2.2), was experimentally investigated by the 
Candidate’s Research Group (D’Aniello et al., 2011) for a wide group of connections 
configurations (that is, symmetric or unsymmetric, with one or multiple rivets having 
different diameter and connecting plies with varying thickness). 
According to test outcomes, an average increase of ≈ 40% in terms of ultimate shear 
resistance was observed with respect to EN1993:1-8 predictions (Figure 2.24), which 
could be ascribed to i) the hot-driving induced overstrength Ω1 of rivets being neglected 
and ii) the actual shear-to-tensile strength ratio Ω2 being underestimated.  
Namely, while current normative provisions set the shear to tensile strength ratio to 0.6, 
a ranging value of Ω2 = 0.71 ÷ 0.84 (average value = 0.76) was found by the Authors, 
thus confirming similar outcomes reported in earlier studies carried out by Schenker et 
al. (1954). 
With regard to rivets overstrength, the average value of Ω1 was found to be equal to 1.25, 
while single ratios ranged from 1.14 ÷ 1.34 for connections failing due to rivet shearing. 
Furthermore, in case of multiple shear planes (≥ 2), EN1993:1-8 often yielded wrong 
predictions in terms of collapse mechanism. Indeed, four (out of nine) specimens deemed 
to collapse due to plate net-area tension failure actually collapsed due to rivet shearing 
(see Figure 2.24, green square markers labelled with “V”). The Authors ascribed this 
effect to the “net-area efficiency” effect, i.e., an increase of the plies tensile strength (≈ 
13%) due to constrained lateral deformations nearby holes. This condition, which was 
already pointed out by several researchers (Koegler et al., 1943; Schutz, 1952; Schenker 
et al., 1954; Munse, 1970), descends from multiple factors, namely: i) the arise of a 
multi-axial stress state around the hole, ii) the beneficial effect of clamping action and 
iii) the local strain hardening of plates induced by perforation (D’Aniello et al., 2011). 
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Figure 2.24 Experimental resistances and collapse mechanisms for hot-driven lap-shear connections 
against EN1993:1-8 predictions (adapted from D’Aniello et al., 2011). 

It should be remarked that average values of rivet overstrength and shear-to-tensile 
strength ratios were determined on the basis of a simple comparison with EN1993:1-8 
prescriptions, hence only the product Ω1Ω2 was (to rigor) actually estimated. To properly 
distinguish these two phenomena (which are, in principle, always co-present in hot-
driven riveted connections), Finite Element Analyses (FEAs) should be performed. 
An attempt to do so is reported in this work (Chapter 5), in which plasticity and damage 
parameters for hot-driven connections tested by D’Aniello et al. (2011) have been 
estimated. Moreover, further details related to this earlier experimental investigation are 
reported in Chapter 4, as i) it served as a basis for subsequent parametrical FEAs and ii) 
specimens were nominally equal to the ones tested in fatigue conditions within the most 
recent campaign. 
D'Aniello et al. (2011) also pointed out the high variability of clamping forces in hot-
driven riveted connections, although no quantitative measures were carried out on tested 
specimens. To this end, a wide experimental and numerical study was carried out by 
Leonetti et al. (2020), which measured clamping forces in rivets extracted from a 
dismantled riveted roadway bridge (Botlek Bridge in Rotterdam). 
Rivets, which were made of St44 mild steel (average yield stress fyr0 = 277 N/mm2), 
exhibited a large dispersion in terms of clamping stresses, although a clear increasing 
(and less scattered) trend was observed for increasing grip length/diameter ratios (Figure 
2.25). Namely, for hS/d = 0.80, an average clamping stress σC,av of 102 N/mm2 (0.37 fyr0, 
COV 0.59) was measured, while for hs/d = 4.76, σC,av = 241 N/mm2 (0.87 fyr0, COV 0.07). 
The Authors also pointed out that, for a given total grip length, connections with more 
plies (see Figure 2.25, red markers) usually show lower and strongly scattered clamping 
stresses, mainly due to constructional imperfections (e.g., camming defects) becoming 
more likely to occur. For instance, if only specimens with three plates are considered, 
σC,av drops to 60 N/mm2 (0.22 fyr0, COV > 2).  
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Figure 2.25 Experimental clamping stress vs. grip length/rivet diameter ratios for hot-driven rivets 
extracted from an existing roadway bridge (adapted from Leonetti et al., 2020). 

It should be remarked that, for most common structural application (that is, for hs/d = 
0.8 ÷ 2.5), a roughly average value of σC,av ≈ 0.5 fyr0 can be assumed, although with a 
significant scatter. This outcome complies with preliminary remarks reported in 
D’Aniello et al. (2011). 
With regard to FE modelling of hot-driven riveted connections, it is worth mentioning 
the work of Al-Bahkali (2011) and Kafie-Martinez et al. (2017). Namely, both authors 
aimed at investigating the effects of hot-driving process on the structural performance 
of lap-shear connections. For this purpose, coupled thermo-mechanical analyses were 
performed in order to i) reliably estimate clamping stresses in rivets (Figure 2.26b) and 
ii) investigate the effect of hot-driving on the static performance of such connections 
(Figure 2.26c). In both cases, rivets and plates were modelled by means of 8-node 
thermo-mechanical coupled bricks, with reduced integration (C3D8RHT). In order to 
properly capture phenomenology of clamping action, a very fine mesh was adopted 
nearby the rivet hole, while coarser elements were employed towards the plates’ ends 
(Figure 2.26a – Al-Bahkali, 2011; Kafie-Martinez et al. ,2017). Cooling-induced 
clamping was modelled by assuming an initial temperature of the rivets equal to 1000 
°C, and hence simulating on-site cooling up to ambient temperature (i.e., 20 °C). 
Thermo-mechanical analyses basically confirmed experimental outcomes reported in 
earlier research (i.e., average clamping stress equal to ≈ 0.5 fyr0 and beneficial effect of 
hot-driving on the static performance of connections, see Figure 2.26b, black dashed 
line). 
 

 
a) 
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b) 

 
c) 

Figure 2.26 Coupled thermo-mechanical FEAs on riveted joints: a) adopted meshing and interactions 
for rivets and plates (Al-Bahkali, 2011), b) resulting clamping stresses in rivets (adapted from Kafie-
Martinez et al., 2017) and b) estimated effect of clamping action on the static performance of connections 
(Al-Bahkali, 2011). 

Works of Al-Bahkali (2011) and Kafie-Martinez et al. (2017) prove how advanced FEAs 
can be proficiently used to predict the structural performance of hot-driven riveted 
connections, provided that consistent and robust modelling assumptions are adopted. To 
this end, in Chapters 5 to 7, a particular focus on this aspect is given when presenting 
refined numerical analyses for connections subjected to both static and fatigue 
conditions. 

16. 2.5.2   Literature studies on the fatigue performance of hot-driven 
riveted connections 

Owing to their peculiar fields of applications (e.g., railway steel bridges), several 
attempts to capture the fatigue performance of hot-driven riveted connections have been 
made in the past. Within this framework, it is worth mentioning the works of Leahey et 
al. (1954) and Parola et al. (1964). 
In Leahey et al. (1954), the fatigue performance of both hot-driven riveted and bolted T-
stub connections in direct tension was compared. As the study mainly aimed at 
investigating the effect of preloading on the fatigue performance of high-strength bolts, 
18 bolted specimens were cyclically tested while only 3 riveted specimens were 
considered as a comparison.  
Nevertheless, the Authors pointed out that, with regards to direct tension conditions, 
riveted connections always showed a worse fatigue strength with respect to nominally 
identical bolted ones, i.e., independently from connections geometrical features and 
applied stress ratio R (Leahey et al., 1954) For instance, bolted specimens showed an 
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almost 2 times higher fatigue strength (i.e., for N* = 2 ∙ 106 cycles) with respect to riveted 
T-stubs. Moreover, while bolts rupture always occurred in shanks threaded sections, 
multiple riveted specimens collapsed due to field head detachment, i.e., proving the 
critical role played by this component in terms of fatigue performance of hot-driven 
rivets (Figure 2.27). 
 

Figure 2.27 Examples of hot-driven rivets failing under cyclic tension due to field head detachment 
(adapted from Leahey et al., 1954). 

In Parola et al. (1964) fatigue performance of lap-shear riveted connections was 
addressed to investigate the influence of bearing ratio BR (that is, the ratio of the nominal 
bearing stress σbear on the rivet shanks over the average net section tensile stress σnet, see 
Equation 2.11).  

BR = 
σ

bear

σ
net

 = 
FEd

d t

(w - nrow d) t

FEd
 = 

(w - nrow d)

d
 = 

w

d
 - nrow (2.11) 

with FEd being the applied force and nrow being the number of rivets per row.  
A total of 120 2 × 2 rivets lap-shear specimens were tested, considering four different 
bearing ratios (1.37, 1.83, 2.36, 2.74) and three increasing stress ratios R = -1, 0, 0.5 
(Figure 2.28a-b). To achieve this purpose, 7/8 inches (i.e., 22 mm) rivets were always 
used, while plates geometry was varied according to indications reported in Figure 2.28a. 
 

 
a) 
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b) c) 

Figure 2.28 Experimental setup developed by Parola et al. (1964) for fatigue tests on lap-shear riveted 
connections: a) main setup geometrical features, b) adopted fatigue machine and c) example of reduced 
clamping specimen. 

The Authors also investigated the influence of clamping action on the fatigue strength 
of specimens, i.e., by reducing clamping in some specimens by i) machining away most 
of the rivet heads and ii) pressing the rivet head in order to slightly detrude the shank 
(Figure 2.28c). 
According to the Authors, results of performed fatigue tests could be summarized as 
follows (Parola et al., 1964): 
i) independently from the considered stress ratio R, higher bearing ratios resulted in 
lower fatigue resistance of specimens. The only notable exception was represented by 
full-reversal tests (R = -1), in which connections having BR = 1.83 revealed a slightly 
higher fatigue strength with respect to BR = 1.37; 
ii) decreasing plate thickness t and/or increasing transverse rivets spacing p2 resulted in  
less uniform stress distribution on plates’ net section, which reduced the fatigue strength; 
ii) in most specimens, fracture initiated in the central plate, i.e., nearby the first row of 
rivet holes and hence the crack progressed outwards; 
iii) as expected, reduced clamping specimens showed larger and premature slips. 
Although the tendency for the fatigue resistance to decrease with increasing slips per 
cycle was noticed, no clear relation among such entities was pointed out by the Authors 
owing to the large number of variables involved; 
iv) uncertainty in terms of actual rivets clamping stress was the main reason behind 
observed scatter in results; 
v) nevertheless, higher clamping stresses, which were obtained in case of longer rivets, 
resulted in longer fatigue life of specimens owing to the beneficial influence of plates 
precompression; 
vi) apparently higher fatigue strengths were obtained for specimens subjected to 
increasing stress ratios R. However, results are reported in terms of maximum net 
stresses σnet,max; hence, as R rises, lower stress ranges are actually applied on connections 
for given values of σnet,max. Moreover, appreciably flatter S-N curves are derived for 
increasing stress ratios (Figure 2.29); 
vii) fatigue design abaci were preliminary derived in the form of expressions depending 
on the material allowable stress σa and expected cycles at failure N* (Equation 2.12):  
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a) 

 
b) 

 
c) 

Figure 2.29 Experimental fatigue results derived by Parola et al. (1964): a) fully-reversal tests (R = -1), 
b) zero-to-tension tests (R = 0), c) half-tension tests (R = 0.5). 
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σnet,max = 
k1 σa

1 - k2 R
 (2.12) 

with k1 = 0.7 ÷ 1.0, k2 = 0.50 ÷ 0.65 depending on the expected value of N*. For instance, 
lower values of k1 and higher values of k2 should be assumed shifting from low-cycle 
(LCF) towards high-cycle fatigue (HCF) conditions, respectively (Parola et al., 1964).  
Similar remarks and further fatigue tests confirming outcomes pointed out by Leahey et 
al. (1954) and Parola et al. (1964) can be found in Maarschalkerwaart (1982), Out et 
al. (1984), DiBattista et al., (1998) and in Kulak (2000). 
More recently, Taras et al. (2010) attempted at defining a set of detail categories for 
most popular riveted connections and structural assemblies. Namely, five different 
categories were proposed (that is, symmetrical lap-/butt-shear joints, built-up girders, 
latticed members, bracings’ gusset plates, cover plates – Figure 2.30). 
Remarkably, for all considered categories, m1 = m2 = 5 and ΔσC ranged between 71 ÷ 90 
N/mm2, i.e., consistently with provisions reported in the earlier drafts of EN1993:1-9 
(CEN, 2005a – see also Section 2.4.3). 
Reliability of derived categories was statistically checked accounting for EN1990 
provisions (CEN, 2002) by means of the maximum likelihood method (MLE – Pascual 
et al., 1996), which enabled the use of run-outs (that is, not failed for a given number of 
maximum cycles Nmax) as valid inputs for data regression, as opposed to standard 
regression techniques (e.g. “direct” loglinear regression – Taras et al., 2010). 
The Authors also investigated the influence of the material used for plates, profiles and 
rivets on the resulting fatigue performance of assemblies. Namely, a fatigue strength 
correction factor f(R) depending on i) material properties and ii) stress ratio R was 
introduced (Equation 2.13): 

f (R) = 
1 - R

1 - k(R; MP) R
 (2.13) 

with recommended values for k(R; MP) being summarized in Table 2.3. 
It is worth remarking Equation 2.13 highly resembles the analytical expression proposed 
by Parola et al. (1964). Moreover, i) for a given value of R, wrought iron and older mild 
steel (ante-1900) are associated with more severe correction factors. This condition 
clearly descends from the recognized brittleness of earlier metallic materials (Di Lorenzo 
et al., 2021); ii) for a given material, tension-to-tension loads (R > 0) are penalized with 
respect to fully-reversal cycles (R = -1), owing to the detrimental effect of mean tensile 
stresses on crack propagation (Anderson, 2017). 
 

 
a) 
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b) 

Figure 2.30 a) Statistical analysis and b) detail categories proposed by Taras et al. (2010) for riveted 
connections and assemblies. 

Table 2.3 Values of k(R; MP) proposed by Taras et al. (2010) for the fatigue strength correction factor. 
Stress Ratio  

R 
Material Properties k(R; MP) 

-1.0 ÷ 0.0 

Wrought iron 
Mild steel ante-1900 

0.70 

Mild steel post-1900 
St37, St48, St52, … 

0.40 

0.0 ÷ 1.0 

Wrought iron 
Mild steel ante-1900 

0.75 

Mild steel post-1900 
St37, St48, St52, … 

0.60 
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A further advance in fatigue assessment of hot-driven riveted connections was arguably 
represented by the use of refined, calibrated FEAs (Da Silva, 2015). Indeed, if base 
material properties are carefully estimated and peculiarities of hot-driving are accounted 
for, fatigue performance of riveted assemblies can be on principle reliably predicted. 
However, the main drawback of such approach lies in the need of a wide set of 
experimental tests aimed at deriving (at least) i) cyclic constitutive behaviour, ii) crack 
initiation properties and iii) crack propagation properties for both rivets and plates 
(Lesiuk et al., 2017; Correia et al., 2017). 
Moreover, as material fatigue properties should be derived using standardized specimens 
and test conditions (Anderson, 2017), effects of hot-driving and clamping action 
variability cannot be accounted directly, and should be hence assessed a-posteriori with 
the aid of further experimental tests. 
Nevertheless, if robust statistical analyses for both assumed material parameters and 
numerical outputs are carried out, numerical fatigue life predictions can be surely 
considered as a viable option for hot-driven riveted connections. To this end, it is worth 
mentioning the recent contribution of Da Silva et al. (2019). 
The Authors addressed the numerical fatigue analysis of downscaled riveted joints 
resembling structural details adopted in a dismantled railway bridge located in Trezòi, 
Portugal. For this purpose, several samples of historic steel were extracted and tested to 
derive both flat and compact-tension (CT) specimens (Figure 2.31). Hence, the Authors 
derived Ramberg-Osgood parameters (hysteretic behavior – Ramberg & Osgood, 1943), 
Coffin-Manson parameters (crack initiation properties – Manson, 1953; Coffin, 1954) 
and Paris’ law parameters (crack propagation properties – Paris et al., 1961) for the 
analysed historic steel (i.e., a low-carbon steel comparable with modern European S235 
steel grade). 

 

 
a) 

 
b) 
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c) 

Figure 2.31 Plasticity and cracking properties for an historic mild steel adopted for a riveted bridge 
structure: a) cyclic plastic properties, b) crack initiation properties, c) crack propagation properties 
(adapted from Da Silva, 2015 and Da Silva et al., 2019). 

Based on derived properties, Authors performed experimental and numerical estimations 
of the fatigue live of downscaled joint belonging to Trezòi bridge (Figure 2.31). For this 
purpose, both standard and extended (or enriched) finite elements (XFEMs, Moës et al., 
1999) able to capture crack growth without iterative model remeshing. 
Total fatigue life N* for a given load condition was estimated by adding crack initiation 
life (Ni) estimated with damage-accounting FEAs to crack propagation life (Np) 
calculated with the aid of XFEMs (Da Silva, 2019). 
Experimental setup for one of the tested joints (R1 joint – shear tab joint in which a 2 m-
long IPN220 beam is connected to an end-plate by means of five 19 mm hot-driven rivets 
passing through two 120 × 120 mm web angles)  is depicted in Figure 2.32a.  
In order to reliably estimate cyclic performance of assemblies, XFEM cracks were 
modelled starting from both the upper rivet hole and from the corner of the L profile 
(Figure 2.32b). Results were hence finally transposed into conventional S-N diagrams, 
in which stress ranges were properly corrected to account for tensile means stresses. 
Comparison between numerical and mean experimental outcomes confirmed the 
reliability of the proposed procedure (Figure 2.32c). 
 

 
a) 
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b) 

 
c) 

Figure 2.32  Fatigue life prediction for a riveted joint: a) experimental setup, b) FE modelling enriched 
with XFEM cracks, c) comparison of experimental and numerical results (adapted from Da Silva, 2015 
and Da Silva et al., 2019). 

The work of Da Silva et al. (2019) prove how refined FEAs can be proficiently used to 
predict the fatigue performance of hot-driven riveted assemblies by means of local 
approaches. Moreover, derived experimental parameters could be used as a term of 
comparison for further investigations on fatigue properties of historic mild steels, 
although it should be remarked that this operation has to be carefully performed, as even 
nominally identical older metallic materials showed strong variability in terms of both 
chemical composition and mechanical properties (Di Lorenzo et al., 2021).  
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3. Damage and Fatigue Modelling of 
Hot-Driven Riveted Connections 

As stated in previous Sections, in the present work both static and fatigue performance 
of hot-driven riveted connections will be addressed by means of refined local 
approaches, namely:  

 With regard to the static response of connections, advanced damage models for 
ductile materials will be introduced and properly calibrated against experimental 
results; 

 With regard to the cyclic performance of connections, advanced energetic 
fatigue approaches will be introduced, validated for mild steel components (see 
Chapter 6 for further details) and hence properly calibrated against experimental 
results. 

Therefore, in the present Chapter, an overview of main damage and fatigue models is 
provided. For instance, the following key topics are addressed in following Sections: i) 
damage models for ductile materials (Section 3.1), ii) application of damage models for 
hot-driven riveted connections (Section 3.2), iii) standard fatigue analysis techniques for 
structural components (Section 3.3), iv) advanced fatigue analysis techniques for 
structural components (Section 3.4) and v) application of presented fatigue analysis 
techniques for hot-driven riveted connections (Section 3.5). 

3.1. Main damage models for ductile materials 

When dealing with the ductile fracture of metallic materials, it is widely recognized that 
two post-elastic behavioural stages can be identified before collapse, i.e., plasticity-
dominated stage (hence also referred as “PDS”) until the onset of necking and damage-
dominated stage (hence also referred as “DDS”) until fracture (Voyiadjis et al., 1992). 
However, it is worth remarking that this distinction is somewhat conventional, as i) on 
one hand, highly localized (i.e. at void scale) damage almost immediately occurs when 
the metallic component is experiencing PDS, while ii) on the other hand, damaged 
material still behaves plastically, albeit showing degradation, up to void coalescence and 
fracture (Xin et al., 2021). 
Nevertheless, for engineering purposes, PDS and DDS can be conveniently separated 
and addressed by means of distinct models, which can be hence individually calibrated 
and hence coupled while analysing ductile fracture. This approach is known as 
“uncoupled (damage) analysis” in scientific literature (Yang et al., 2019).  
In the following Subsections, after briefly dealing with the issue of post-necking 
behaviour of ductile materials, some of the main uncoupled damage models are 
introduced. 

17. 3.1.1   Post-necking behaviour of ductile materials 

While performing uncoupled analysis, it is necessary to define a post-necking plastic 
behaviour for the considered materials, as “classic”, constant-volume, relations linking 
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engineering and true stress-strain parameters are no longer valid after the onset of 
necking (Figure 3.1). When an uniaxial tensile test is performed, this condition can be 
easily recognized as the engineering stress-strain curve starts to decrease after reaching 
its maximum. In other words, necking manifests as an instability phenomenon occurring 
during tensile deformation, in which the specimen cross-section starts to decrease by a 
larger proportion than the material strain hardens. 
Hence, the so-called Considére criterion (Considére, 1885) can be formulated in limit 
conditions, i.e., immediately before diffuse necking, when no net load increment dP (and 
thus, engineering stress dσeng) occurs for an infinitesimal increment of engineering strain 
dεeng (Equation 3.1a-b – Tu et al., 2019): 

dσeng = (dσtrue - σtrue dεtrue)  exp(- εtrue) = 0 (3.1a) 

dσtrue - σtrue dεtrue = 0 →
dσtrue

dεtrue
|necking= σtrue,neck   (3.1b) 

A second, obvious condition at the onset of necking descends from the so-called 
continuity criterion, according to which the true stress at the onset of necking is the last 
stress value that can be estimated with constant-volume relations (Equation 3.2):  

σtrue|necking = σeng,max ൫1 + εeng,neck൯ = σtrue,neck (3.2) 

Thus, every analytical model attempting at capturing post-necking behaviour of a ductile 
material should fulfil conditions reported in Equations 3.1-3.2. It should be remarked 
that Considére and continuity criteria (hence also referred as “CCC”) do not provide 
sufficient information about the shape of the post-necking branch of the true stress-true 
strain curve, hence multiple formulations with increasing level of complexity can be 
adopted (Tu et al., 2019). 
To this end, the simplest post-necking formulation is represented by the linear hardening 
model (hence also referred as “LHM”). Accordingly, the post-necking hardening branch 
of the true stress-strain curve can be modelled by means of a straight line (Equation 3.3): 
 

 
Figure 3.1 Typical constitutive law of a ductile material in plasticity-dominated and damage-dominated 
stages up to failure (for the sake of simplicity, it is assumed that εeng,neck ≈ εtrue,neck). 
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LHM: σtrue = a1 εtrue + b1 (3.3) 

in which coefficients a1, b1 should be derived to ensure fulfilment of CCC (Equation 3.4, 
Tu et al., 2019): 

LHM: ൜
a1 = σtrue,neck

b1 = σtrue,neck (1 - εtrue,neck) (3.4) 

It should be remarked that, although a1 and b1 are known when adopting LHM, the actual 
value of true strain at failure (εtrue,fail) is still unknown and should be calibrated according 
to tensile test results (Tu et al., 2019). 
Another popular post-necking formulation is represented by the power-law hardening 
model, or Hollomom hardening model (hence also referred as “HHM” – Hollomom, 
1945). Accordingly, a power law expression can be used to capture the post-necking 
branch of the true stress-strain curve (Equation 3.5): 

HHM: σtrue = a2 (εtrue)మ (3.5) 

in which coefficients a2, b2 should be derived to ensure fulfilment of CCC (Equation 3.6, 
Tu et al., 2019): 

HHM: ቐ
a2 = 

σtrue,neck

εtrue,neck
εtrue,neck

 

b2 = εtrue,neck

 (3.6) 

Similarly to LHM, HHM yields known a2, b2 constants, while the actual value of εtrue,fail 
should be properly calibrated.  
With regard to b2 (also known as “hardening exponent” in scientific literature – Callister 
Jr., 2005), it is worth remarking that it is strictly included within the range 0.0 ÷ 1.0, 
with 0.0 representing an ideal perfectly plastic material, while for b2 = 1.0 the LHM is 
obtained once again. 
“Hybrid” LHM-HHM formulations (line-power hardening models, hence also referred 
as “LPHM”) can be also found in scientific literature, in which a weighted average 
between the two models is assumed by means of a relative weight w (Equation 3.7 – 
Ling, 1996): 

LPHM: σtrue = w (a1 εtrue + b1) + (1 - w) [a2 (εtrue)b2] (3.7) 

LPHM can, on principle, more accurately capture the post-necking behaviour of the 
considered material. However, a complex calibration procedure is required as both w 
and εtrue,fail should be estimated based on experimental results (Wang et al., 2016). 
Although LHM, HHM and LPHM are among the most popular post-necking hardening 
models adopted in literature, it is worth noting that even more complex, yet reliable 
formulations are currently available, e.g. the three-parameters Misiolek exponential 
hardening model, or analytical shape-depending models, which attempt at deriving the 
triaxial post-necking stress field accounting for the shape of the tensile specimen 
(cylindrical, flat, … – Wang et al., 2016; Tu et al., 2019). 
The main common drawback for all above formulations lies in their intrinsic piecewise 
nature. Indeed, each of the presented models relate only on the post-necking branch of 
the true stress-strain curve, hence a separate formulation should be used for the PDS up 
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to the onset of necking. This issue can be overcome by adopting a continuous 
formulation which covers both PDS and DDS. 
Among all the possible alternatives, the most popular formulation is arguably 
represented by the Ramberg-Osgood model (Equation 3.8 – Ramberg & Osgood, 1943): 

εtrue

εtrue,y
 = 

σtrue

σtrue,y
 + αRO ቆ

σtrue

σtrue,y
ቇ

nRO

 (3.8) 

with εtrue,y and σtrue,y  being the true strain and true stress at yielding, respectively, and 
αRO (also known as “yield offset”) and nRO (also known as “hardening exponent”) being 
empirical parameters which can be obtained by fitting experimental results. 
When adopting Ramberg-Osgood model, a careful effort has to be placed in calibrating 
actual values of αRO, nRO and εtrue,fail in order to obtain reliable results. Indeed, as the latter 
addendum in Equation 3.8 is always non-null for σtrue > 0, plasticity is predicted to occur 
also in elastic range. The magnitude of this error, which represents the trade-off of 
adopting a continuous hardening model, can be controlled by appropriately manipulating 
yield offset and hardening exponent (Callister Jr., 2005). 

18. 3.1.2   Pioneering works related to damage of ductile materials 

The next step in performing uncoupled analysis of ductile materials is represented by the 
selection of a proper damage model to capture DDS. To this end, it is worth recalling the 
phenomenology of ductile damage of metals before addressing the topic of predictive 
damage models. 
Ductile fracture of metals occurs due to the nucleation and growth of microstructural 
voids, which are intrinsically present in metals as they surround inclusions and second-
phase particles (Anderson, 2017). When subjected to multiaxial stress fields, such voids 
may get distorted and enlarged enough to cause local plastic deformations and necking 
(small-scale plasticity) up to void coalescence, which leads to macroscopical ductile 
fracture (Figure 3.2). 
 

 
Figure 3.2 Phenomenology of ductile fracture of metals (adapted from Anderson, 2017). 
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In light of this peculiar phenomenology, it is clear that every attempt to analytically 
capture the nature of ductile fracture should account for void enlargement to some extent. 
To this end, pioneering contributions of McClintock (1968) and Rice & Tracey (1969) 
should be certainly mentioned. In both works, ductile voids enlargement in triaxial stress 
fields is addressed under some simplifying assumptions, namely:  
i) the base material is isotropic and obeys the Hencky-Von Mises (Von Mises, 1913; 
Hencky, 1924) yield criterion;  
ii) the considered void is isolated;  
iii) an uniform stress field is remotely applied to the solid enclosing the void; 
iv) the undeformed void has an a-priori known geometry (cylindrical or spherical 
according to McClintock (1968) or Rice & Tracey (1969), respectively). 
Based on the following assumptions, an analytical expression for the void size increase 
in dependence from applied remote stresses was derived. With reference to the lone Rice 
& Tracey (1969) model, which met the highest popularity owing to a more realistic 
representation of voids, the following relation was derived (Equation 3.9 – Rice & 
Tracey, 1969): 

ln
R

R0
 = 

3

2
e - 

5
3 න e 

3
2 T

εpl,eq

0
dεpl,eq (3.9) 

with R being the deformed radius of the isolated void having initial radius equal to R0, 
εpl,εq being the equivalent plastic strain (PEEQ, Equation 3.10a) and T being the so-called 
triaxiality degree (Equation 3.10b): 

εpl,eq= ඨ 
2

3
εpl,ij : εpl,ij  (3.10a) 

𝑇 =
𝜎

𝜎,ெ
 (3.10b) 

with εpl,ij being the ij-th component of the plastic strain tensor εpl (“:” denotes the scalar 
product operator), σm being the mean pressure, i.e., the arithmetic average of the three 
principal stresses (σI + σII + σIII)/3 and σeq,VM being the the equivalent Von-Mises stress. 
It is worth remarking that, consistently with above formulations, PEEQ can be regarded 
as the direct “strain equivalent” of the Von Mises stress, while T allows to identify the 
nature of applied stress field (e.g., T = 1/3 for uniaxial tension or T = 0 for pure shear). 
Moreover, sign(T) allows to tell apart compressive (T < 0) from tensile (T > 0) stress 
fields, which result in shrinkage or enlargement of microstructural voids, respectively 
Kanvinde et al., 2006). 

19. 3.1.3   Void Growth Model (VGM) 

Starting from the Rice & Tracey model, a failure criterion based on void coalescence 
can be immediately formulated, i.e., by postulating the occurrence of fracture for a 
critical value R* of the deformed void radius (Equation 3.11a-b – Kanvinde et al., 2006): 
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R = R*→ VGI = න e 
3
2 T

εpl,eq

0
dεpl,eq = VGI*→ Failure (3.11b) 

with A being a numerical coefficient recollecting all constant terms, VGI being the Void 
Growth Index, i.e., the integral on the right hand member which actually governs void  
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growth and VGI* being the critical value of VGI for which failure is predicted. 
This failure model is known as Void Growth Model (VGM) in scientific literature, and 
it was first proposed by Rice & Tracey themselves as an extension of their void 
enlargement formulation (Kanvinde et al., 2006). 
Critical Void Growth Index has to be intended as a material property, which should be 
calibrated on the basis of experimental results. According to Kanvinde et al. (2006), 
VGI* can be related to Charpy fracture energy for sharp-V notched specimen (CVN) as 
follows (Equation 3.12): 

VGI* ≈ 0.018 CVN [J] - 1.30 (3.12) 

In order to actually predict failure due to void coalescence, fulfilment of VGM criterion 
(VGI ≥ VGI*) has to be achieved in a finite neighbourhood of the plasticized zone having 
size l* (characteristic microstructural size).  
Actual values of l*, which are intended as an intrinsic material constant, are usually 
within the range 10 ÷ 200 μm, and can be found in Kanvinde et al., (2006) for several 
steel alloys. 

20. 3.1.4  Stress Modified Critical Strain (SMCS) Criterion 

In numerous realistic situations of monotonic loadings, the entity of stress triaxiality T 
remains substantially constant during the load history (Kanvinde et al., 2006). Therefore, 
as first noticed by Hancock et al. (1976), this condition allows to directly calculate the 
critical equivalent plastic strain associated to failure εpl,eq* as a function of T, i.e., with 
higher triaxiality degrees leading to lower critical PEEQ and vice-versa.  
This simplifying assumption underlies the so-called Stress Modified Critical Strain 
(SMCS) criterion, according to which εpl,eq* can be directly estimated as follows 
(Equation 3.13a-b – Kanvinde et al., 2006):  

VGI*= න e 
3
2 T

εpl,eq
*

0
dεpl,eq → Failure (3.13a) 

Failure|T ≈ const. → εpl,eq
*  ≈ α e- 

3
2 T (3.13b) 

with α being an empirical material parameter (usually known as “toughness coefficient”) 
with a similar meaning to VGI*. According to Kanvinde et al. (2006), α can be related 
to CVN as follows (Equation 3.14): 

α ≈ 0.016 CVN [J] - 0.93 (3.14) 

In analogy with VGM, SMCS criterion predicts failure due to voids coalescence when 
εpl,eq  ≥ εpl,eq* in a finite volume having size l*.  
The SMCS criterion is arguably simpler with respect to VGM, as it does not require the 
integration of triaxiality and equivalent plastic strain along the load path. Indeed, only 
an “instantaneous” check of PEEQ demand against εpl,eq* is needed, with the latter 
parameter being a function of the relevant stress triaxiality.  
Nevertheless, it should be remarked that, when T considerably changes during the 
loading history, the SMCS criterion may yield less accurate results with respect to the 
VGM (Kanvinde et al., 2006). 
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21. 3.1.5  Cyclic Void Growth Model (CVGM) 

Starting from the theoretical framework of VGM, Kanvinde et al. (2007) proposed an 
useful extension of ductile damage criteria with regard to cyclic loadings, i.e. load 
histories in which stress triaxiality changes sign multiple times. Accordingly, fracture 
initiation is monitored by means of a cyclic Void Growth Index (VGIcyc) which can be 
estimated according to Equation 3.15 (Kanvinde et al., 2007): 

VGIcyc =  න e 
3
2 |T|

εpl,eq,i+1

εpl,eq,i

dεpl,eq 
i-th tensile cyc

-  න e 
3
2 |T|

εpl,eq,j+1

εpl,eq,j

dεpl,eq

j-th compr.  cyc

 (3.15) 

Differently from monotonic VGM, absolute value of stress triaxiality |T| is considered 
for calculation, hence the integration over each i-th tensile and j-th compressive cycles 
has to be conducted separately, depending on the sign of the mean pressure σm. 
According to the Authors, VGIcyc should always remain non-negative. Therefore, when 
the index reaches zero (if it is the case) due to the contribution of a compressive cycle 
(in which the voids are shrinking, thus inhibiting coalescence), it stays null until the next 
tensile cycle (Tartaglia et al., 2022).  
The fracture is predicted to occur when VGIcyc reaches a critical value VGI*cyc, in a finite 
volume having characteristic size l*. VGI*cyc can be expressed in function of fracture 
toughness parameter α (see Section 3.1.4) and accumulated PEEQ (εpl,eq,acc.) as follows 
(Equation 3.16 – Kanvinde et al, 2007): 

VGIcyc,crit.
*  = α e- λ εpl,eq,acc. (3.16) 

with λ being an experimental parameter which accounts for the material degradation 
under cyclic actions exceeding the elastic range. According to Kanvinde et al. (2007), 
recommended values for λ range between 0.4 ÷ 0.5.  
VGI*cyc has to be updated at the end of each compressive cycle and stays fixed during 
the following tensile excursion (Figure 3.3). In light of this, Equation 3.16 further 
clarifies how α represents the asymptotic value of material fracture toughness for 
elements subjected to monotonic tensile stress histories (that is, in absence of cyclic 
degradation phenomena – Tartaglia et al., 2022). 
 

 
Figure 3.3 Graphical interpretation of failure according to CVGM (adapted from Kanvinde et al., 2007). 
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22. 3.1.6   Generalized Ductile Damage Criteria 

Each of the damage initiation criteria discussed earlier has the main drawback of 
requiring its fulfilment in a small, yet finite, neighbourhood of the plasticized zone 
having size equal to l* (that is, few tens or hundreds of μm). Indeed, monitoring such a 
small volume can be really demanding, especially if this task is addressed by means of 
FEAs, as strongly refined meshes will be required (Kanvinde et al., 2007). 
To overcome this issue, characteristic volume-independent (“generalized”) ductile 
damage criteria (GDDC) can be introduced (Jia et al., 2014) by further extending Rice 
& Tracey void enlargement model. To this end, a damage state variable ωD = 0.0 ÷ 1.0 
can be introduced according to Equation 3.17: 

ωD = න
dεpl,eq(t)

εpl,eq
*  (t; σij; …)

tf

ti

 (3.17) 

with ti and tf being the considered initial and final analysis steps, respectively and ε*pl,eq 
being a generalized critical equivalent plastic strain, which can be, on principle, a 
function of the considered time step t, of the stress field (or appropriate combinations of 
stress variables) and, generally speaking, of other field variables such as temperature 
(Johnson & Cook, 1985).  
In light of a peculiar choice of ε*pl,eq trend, generalized ductile damage criteria can be 
“specialized” to model different materials. Nevertheless, when ωD equals unity, punctual 
damage (i.e., generally speaking, not failure) is predicted to occur, and therefore the 
material locally starts to soften until fracture.  
The most immediate choice for ε*pl,eq is represented by the critical strain predicted by 
SCMS criterion (Equation 3.13b). Although this choice leads to a very similar failure 
model with respect to SMCS formulation, it should be remarked that, in this case, no 
assumptions are made on the control volume in which the failure criterion has to be 
fulfilled, as to each point is associated a distinct damage state variable. 
It is worth remarking that, when selecting stress triaxiality T as the main parameter 
affecting the value of critical PEEQ, the use of an analytical expression to link these 
variables is not essential. Indeed, T- ε*pl,eq relation can be conveniently expressed by the 
so-called triaxiality curves (Bonora, 1997). Triaxiality curves can also directly account 
for the material strain rate dependence, if relevant (Callister Jr., 2005). 
 

 
Figure 3.4 Typical triaxiality curves for ductile metals. 
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The typical shape of triaxiality curves for ductile metals is depicted in Figure 3.4. As a 
corollary of Rice & Tracey (1969) findings, triaxiality curves usually have a decreasing 
tendency for increasing values of T, with the worst condition represented by hydrostatic 
tension (T = 1).  
However, it is worth noting that metallic materials may have a non-monotonic T- ε*pl,eq 
trend when subjected to plane stress conditions (Kõrgesaar, 2019), with a maximum 
value of critical equivalent plastic strain achieved for T ≈ 1/3. Indeed, when plane stress 
conditions are achieved (e.g., in case of in plane-loaded thin shells and plates), a clear 
distinction can be between shear-failing specimens (T < 1/3) and necking-failing 
specimens (T ≥ 1/3). Nevertheless, generally speaking, the assumption of monotonically 
decreasing triaxiality curve can be considered sufficiently accurate for most practical 
purposes (Yang et al., 2019). 
With regard to some metallic materials (e.g., Titanium or Nickel alloys – Mirone et al., 
2016), a dependence of critical equivalent plastic strain on the so-called Lode angle 0 ≤ 
ξ ≤ π/3 (Equation 3.18 – Lode, 1926) was also observed, i.e., the angle between the stress 
tensor projection on the deviatoric plane and the pure shear line (Malcher et al., 2014): 

ξ =
1

3
arccos ቆ

3√3

2
 

J3

J2
3 2⁄

ቇ (3.18) 

with J2 and J3 being the second and the third main stress tensor invariant, respectively 
(that is, stress invariants associated to the deviatoric stress tensor S – Irgens, 2008). In 
case of Lode angle-sensitive materials, Lode curves with analogous meaning to 
triaxiality curves can be conveniently defined (Figure 3.5 – Erice et al., 2014) based on 
interpretation of coupled axial-torsional experimental tests (Mirone et al., 2016). 
Equivalently, shear fracture failure, when relevant, can be governed by means of the 
shear stress ratio θs = (ks σm + σeq,VM)/τmax, with ks being an experimental material 
parameter. A typical value of ks for aluminium is ks = 0.3 (Hooputra et al., 2004). 
Finally, an explicit dependence on J3 is also usually introduced in case of unsymmetric 
tensile-compressive fracture locus (e.g., in case of wrought and puddle iron, which show 
ductile compressive failure and brittle and premature tensile failure in light of the 
significant carbon content C > 2% – Di Lorenzo et al., 2021). 
 

 
Figure 3.5 Typical Lode curves for some ductile metals, e.g. Titanium or Nickel alloys (adapted from 
Erice et al., 2014). 
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Indeed, J3 is the only main stress invariant parameter able to tell apart hydrostatic tension 
from hydrostatic compression, as J2 is an even function and J1 is identically null (Irgens, 
2008). 

23. 3.1.7   Damage Evolution Criteria 

When GDDC are adopted to capture ductile failure of metals, proper damage evolution 
criteria (DEC) could be also introduced to account for material damaged behaviour for 
εpl,eq ≥ ε*pl,eq. Indeed, as opposed to VGM, SMCS and CVGM criteria, GDDC may 
account for a residual, post-cracked stiffness of materials before macroscopic fracture 
(Hillerborg et al., 1976). 
DEC postulate the existence of a single damage evolution variable De = 0.0 ÷ 1.0 
according to which the equivalent (Von-Mises) stress-strain constitutive law softens up 
to failure (Equation 3.19): 

σeq,VM,D = (1 - De) σeq,VM (3.19) 

with σeq,VM,D being the “effective” Von-Mises equivalent stress for the damaged material. 
Consistently, extreme values of De = 0.0 and De = 1.0 are associated to a pristine and a 
completely failed material, respectively. It is worth remarking that, in the most general 
case of non-monotonic loadings, De both affects i) the material “effective” yield stress 
and ii) the re-loading residual stiffness Eres = (1 – De) E, with E being the pristine material 
Young Modulus (Figure 3.6 – Hillerborg et al., 1976). 
Among the several literature proposals, two approaches linking the damage evolution 
variable with equivalent plastic strains gained the highest popularity, i.e. the energy-
based approach and the displacements-based approach.  
Accordingly, De monotonically increases depending on the fracture energy dissipation 
Gf or on the plastic displacement upl up to failure, respectively (Equation 3.20a-b):  

Gf = න Lchar σeq,VM,D dεpl,eq

ε̅pl,eq

εpl,eq
*

 (3.20a) 

upl = Lchar ൫ε̅pl,eq - εpl,eq
* ൯ (3.20b) 

 

 
Figure 3.6 Typical softening behaviour of a damaged material according to DEC (adapted from 
Hillerborg et al., 1976). 
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with ε̅pl,eq being the PEEQ (≥ ε*pl,eq) for a given analysis step and Lchar being a 

characteristic length parameter. 
The introduction of Lchar in both Gf and upl definitions is not a coincidence, as both 
quantities were conceived to be implemented in the framework of the Finite Element 
Method. Namely, by including a characteristic length in damage evolution monitoring, 
the strong mesh dependency exhibited by dissipated energy, yield stress and plastic 
strains for a damaged material can be effectively mitigated (Hillerborg et al., 1976).  
In both cases, critical values of G*f and u*pl are assumed to be attained in correspondence 
of a (conventional) ultimate equivalent plastic strain εpl,eq,u (that is, failure is predicted to 
occur when ε̅pl,eq = εpl,eq,u in Equation 3.20a-b). Conventionality of εpl,eq,u derives from 

the impracticability, in many real situations, of its explicit derivation on the basis of 
experimental outcomes. For practical purposes, direct estimation of G*f or u*pl is usually 
pursued with the aid of numerical tools to interpretate test results (Yang et al., 2019). 
Although the energy-based formulation is sometimes used when dealing with some Ti, 
Cu or Ni alloys (Qu et al., 2016), it is worth noting that the displacement-based approach 
is arguably the most suitable for ductile metals. To this end, both linear (Equation 3.21a) 
and exponential (Equation 3.21b) trends have been proposed to describe the functional 
link among upl and De (Ammar et al., 2022): 

Linear DEC: De = 
upl

upl
*  (3.21a) 

Exponential DEC: De = 
1 - eαD൫upl upl

*⁄ ൯

1 - eαD
 (3.21b) 

with αD ≥ 0 being an experimental parameter accounting for damage-displacement non-
linearity. Notably, linear DEC can be considered as a particular case of exponential DEC 
for αD → 0 (Figure 3.7). Moreover, when such analytical relations are used to link the 
damage state variable and the plastic displacement, equivalent energy-based 
formulations can be immediately deduced by observing that Gf is directly proportional 
to the underlying area in the σeq,VM - upl plane for any given value of upl. For example, 
regarding to the simplest case of linear DEC, it can be easily derived that Gf = upl σeq,VM/2 
(Ammar et al., 2022). 
 

 
Figure 3.7 Graphical representation of linear and exponential displacement-based DEC. 
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3.2. Application of damage models for hot-driven 
riveted connections 

As stated in Section 2.3.2, main peculiar issues affecting hot-driven riveted connections 
lie in the strong variability of i) rivets material overstrength, ii) rivets and plates material 
ductility reduction and iii) cooling-induced clamping action. Each of these effects may 
be regarded as a consequence of hot-driving process and, to a lesser extent, of holes 
perforation technique (D’Aniello et al., 2011; Marmo, 2011; Collette, 2014). 
To this end, introduced post-necking and damage formulations can be suitably applied 
to quantitatively describe the influence of hammering process. In the present work, a two 
stages procedure is introduced to calibrate material parameters accounting for the effect 
of hot-driving (Figure 3.8). 
In Stage I, calibration of base material properties for both plates and undriven rivets is 
addressed based on tensile coupon test results. Subsequently, hot-driving effects can be 
quantitatively estimated (Stage II) by interpretating static tests results on assembled hot-
driven riveted connections. For this purpose, few non-dimensional parameters with a 
clear physical meaning are introduced and inversely calibrated. Finally, a statistical 
interpretation of derived values is carried out to emphasize the actual degree of 
variability of driving-induced effects. 
Within Stage II, a peculiar and immediate attention is given to clamping actions effect, 
which can be parametrically investigated by simulating variable σclamp stress fields 
according to D’Aniello et al. (2011) and Leonetti et al. (2020) experimental findings. 
In order to preserve the governability of investigated phenomena from the clearest and 
most quantitative possible point of view, the following assumptions are made, namely: 
Within Stage I 
i) the LHM is used to model post-necking behaviour of both pristine plates and undriven 
rivets (Equations 3.3-3.4). For PDS, constant-volume stress-strain formulation 
(Equations 3.1-3.2) is used until the onset of necking, i.e., until CCC are fulfilled; 
ii) a stress triaxiality-dependent GDDC (Equation 3.17) is introduced to capture the onset 
of damage in DDS for both pristine plates and undriven rivets. Namely, an analytical, 
monotonically decreasing expression is assumed for triaxiality curves (Equation 3.22 – 
Figure 3.9a) according to Yang et al., (2019): 

εpl,eq
*  (T) = εpl,eq,uniax

*  e ቂ - 
3
2 ቀT - 

1
3ቁቃ (3.22) 

with εpl,eq,uniax
*  being the critical equivalent plastic strain at the onset of damage for the 

simplest case of uniaxial tension (T = 1/3). 
Accordingly, a single GDDC parameter can be conveniently calibrated with the aid of 
inverse method (Tu et al., 2019) based on tensile coupon tests. Triaxiality-dependent 
formulation is preferred to more shear-oriented damage models (Section 3.1.6) to 
account for diverse collapse mechanisms occurring in connections without loss of 
generality (see Chapter 4 for further details). Besides, no J3 dependence is assumed as 
tested rivets and plates were made of mild steels rather than wrought or puddle iron. 
iii) a linear displacement-based DEC (Equations 3.20b-3.21a – Figure 3.9b) is assumed 
for both pristine plates and undriven rivets to provide a simple, yet reliable description 
of material failure. To this end, u*pl values are directly estimated in place of εpl,eq,u with 
the aid of refined FEAs (Tu et al., 2019). 
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Figure 3.8 Adopted two stages procedure for the quantitative description of hot-driving effects on the 
structural performance of investigated riveted connections. 
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Within Stage II 
i) no coupled thermo-mechanical analysis is performed to assess the influence of hot-
driving process, as it would result in a further source of uncertainty and a severe 
increment of computational effort. Indeed, as heating and cooling conditions are overly 
impractical to monitor in many real situations (Section 2.1.2 – Kulak et al., 1987; 
Duggal, 2000; D’Aniello et al., 2011), the definition of realistic (time-depending) 
temperature fields on investigated assemblies is not a viable option. Moreover, a coupled 
analysis would require the introduction of a proper, thermo-mechanically formulated, 
finite element (Dassault, 2014) and of a temperature-dependent GDDC (Johnson & 
Cook, 1985). 
Therefore, purely mechanical FEAs are performed, based on which the effects of hot-
driving are a-posteriori estimated; 
ii) as a consequence, the parametrical study on clamping actions effect is carried out by 
imposing a clamping stress field on rivets, i.e., having variable amplitude within the 
ranges suggested by D’Aniello et al. (2011) and Leonetti et al. (2020). 
iii) the same post-necking, damage onset and damage evolution formulations assumed 
for base components are used for hot-driven connections, thus providing a congruent 
comparison among the mechanical response of undriven and assembled parts. Effects of 
hot-driving are hence estimated by recalibrating relevant model parameters based on 
static tests results. 
For this purpose, four non-dimensional parameters are appositely introduced. For the 
sake of clarity, in the following the subscript “0” is referred to undriven material 
properties, while no subscript is adopted for “real”, post hot-driving material properties:  

 The rivet strength ratio Ω = fyr /fyr0 ≥ 1, which describes the beneficial effect of 
hot-driving on the yield and ultimate strength of rivets. Accordingly, Ω is used 
to homothetically scale the true stress-strain behaviour of pristine rivets (Figure 
3.10a); 

 The ultimate strain ratio Φ = εtrue,fail,p/εtrue,fail,p0 ≤ 1, which describes the 
detrimental reduction of plates ultimate true strain due to holes perforation and 
hot-driving. Accordingly, Φ is used to reduce plates’ plastic true strains with no 
corresponding alteration of true stresses (Figure 3.10b); 

 The damage threshold ratio Δ = ε*pl,eq,uniax / ε*pl,eq,uniax,0 ≤ 1, which describes the 
negative influence of hot-driving in terms of anticipation of damage onset on 
rivets and, to a local extent, plates. Accordingly, Δ is used to downscale 
triaxiality curves based on Yang et al. (2019) formulation (Figure 3.10c);   

  
a) b) 

Figure 3.9 Adopted a) triaxiality curves (Yang et al., 2019) and b) linear DEC for pristine plates and 
undriven rivets. 
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 The plastic displacement ratio Π = u*pl/u*pl0 ≤ 1, which describes the 
detrimental, hot-driving induced embrittlement of rivets and, on a local extent, 
plates. Accordingly, Π is used to downscale the critical plastic displacement 
within the framework of a linear DEC (Figure 3.10d). 

 

iv) statistical assessment of the above parameters is addressed by assuming that each 
quantity behaves as a random variably following either a normal or, when relevant, 
lognormal probability distribution, i.e., in compliance with EN1990 recommendations 
(CEN, 2002). Accordingly, mean values and standard deviations are derived for all 
parameters by means of consolidated data regression techniques (Wakefield, 2013). 

3.3. Standard fatigue analysis techniques for 
structural components 

Fatigue performance of steel structures and structural components has become a relevant 
topic for civil engineering since the first half of XXth century, mainly due to the 
occurrence of some relevant fatigue-related failures (Anderson, 2017). Sudden collapses 
indicated that steel constructions conceived to endure relevant cyclic actions during 
service life had to be preserved from fatigue failures due to their brittle nature, in order 
to avoid severe human and economic losses (ECCS, 2018). 
Several advances in the understanding of fatigue phenomenology have been made up to 
recent times and, while the general topic of fatigue assessment of structural components 
still remains one of the most fruitful fields of research nowadays, “standard” techniques 
for the fatigue assessment of structural components in the framework of civil engineering 
can be now found in literature and normative provisions in force (Milone et al., 2022b). 
Two main families of standard methods are regarded as the most popular options for 
fatigue performance analysis, namely the stress-life methods (or S-N methods) and the 
strain-life methods (or ε-N methods), although only the former assessment philosophy is 

  
a) b) 

  
c) d) 

Figure 3.10 Graphical interpretation of non-dimensional parameters introduced to assess the effects of 
hot-driving: a) rivet strength ratio Ω, b) ultimate strain ratio Φ, c)  damage threshold ratio Δ, d) plastic 
displacement ratio Π. 
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currently encoded in European normative provisions (i.e., EN1993:1-9 for structural 
steel – CEN, 2005a). 

24. 3.3.1   Overview of Stress-Life Methods 

The main concept behind the whole family of stress-life methods derives from the 
experimental observation that, when structural components are subjected to fluctuating 
stresses of constant (nominal) amplitude σa, a decreasing trend of fatigue life against 
increasing values of σa is obtained, albeit with a certain scatter of results. Contrariwise, 
for rather low values of σa, fatigue life proves to be basically unlimited, as tested 
specimens do not break even for an exceedingly large number of loading cycles.  
Such phenomena can be noticed independently from the actual complexity of the 
considered structural detail (ECCS, 2018). 
In light of the above, stress-life methods attempt to derive a functional link between 
fatigue life in terms of cycles to failure (N) and applied stresses (S), which are regarded 
as the main parameter influencing fatigue performance. 
Comprehensive experimental campaigns dating back up to 150 years ago, starting from 
pioneering works of Wohler (1860) on rail car axes, revealed that fatigue cracks rarely 
occur and propagate in the base material remotely from any geometrical discontinuity or 
constructional detail, e.g., sharp corners, holes, mechanically fastened and welded 
connections. Such details remain critical spots for fatigue performance even if their static 
resistance is higher than assembled members, as they act as stress raisers (ECCS, 2018). 
Within the framework of S-N methods, two alternative approaches can be followed to 
deal with such issue, namely (Figure 3.11 – ECCS, 2018):  

 the definition of “detail categories”, each one of them characterized by a given 
geometry, for which fatigue strength domains are defined in terms of nominal 
applied stresses and derived based on experimental tests; 

 the characterization of base material fatigue properties (regarded as an intrinsic 
material parameter) and the subsequent estimation of fatigue life based on actual 
maximum stresses attained nearby a given constructional detail. 

The former option is referred as “Nominal Stress Method(s)” (CEN, 2005a; ECCS, 2018, 
see Section 3.3.2 for further details) and it arguably represents the simplest option for 
engineers addressing fatigue design, since the complex task of deriving the fatigue 
strength domain for a given detail is unrequired in many real situations, as it can be easily 
found within documents of sanctioned validity (i.e., normative codes and/or standards). 
Therefore, after global structural analysis is performed, elastic stresses in parent 
members nearby the detail can be easily calculated and used for fatigue verifications. 
Currently, within the framework of steel structures, a wide list of 114 detail categories 
is encoded in EN1993:1-9 (CEN, 2005a), ranging from plain members to mechanically 
fastened joints, welded connections, stiffening details, tubular joints, orthotropic bridge 
decks, etc… Additionally, 5 fatigue categories are reported in EN1993:1-11 (CEN, 2006) 
for tension structural components (e.g., wires, strands, ropes, or prestressing bars). 
The latter option is instead referred as “Hot-Spot Stress Method(s)” (CEN, 2005a; ECCS, 
2018, see Section 3.3.4 for further details), and it is usually adopted for critical structural 
details in which fatigue cracking is a-priori regarded as a design-governing phenomenon 
(e.g., load carrying welded joints). In this case, the aid of refined FEAs is allowed and 
fatigue checks are performed through few “master” fatigue strength domains. Notably, 
although a single domain should be sufficient for a given base material, multiple curves 
are usually available to account for the effect of different manufacturing processes. 
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Figure 3.11 Stress-Life Methods for the fatigue analysis of a typical bridge constructional detail (adapted 
from ECCS, 2018). 

25. 3.3.2   Nominal Stress Methods 

When applying Nominal Stress Methods, the main theoretical model describing the 
evolution of fluctuating stresses is represented by the sinusoidal stress cycle (Figure 
3.12), i.e., an idealization of a real stress history shaped as a sine-wave. Such an 
approximation is a convenient choice as its mathematical description is provided by a 
periodic function of few and easily governable parameters, namely: 

 The maximum stress σmax, which is representative of the combined (additive) 
action of permanent loads (if any) and fluctuating stresses; 

 The minimum stress σmin, which is representative of the combined (subtractive) 
action of permanent loads (if any) and fluctuating stresses; 
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 The mean stress σm = (σmax + σmin)/2, i.e. the average stress applied during the 
load cycle, which can detrimentally affect fatigue performance in some relevant 
cases (Milone et al., 2022c). Alternatively, the stress ratio R = σmin/σmax ≤ 1 can 
be used to non-dimensionally describe the entity of mean stresses; 

 The stress range Δσ = σmax – σmin, i.e. the “true” fatigue demand associated to 
the load cycle, depurated from static stress components. Alternatively, stress 
amplitude σa = Δσ/2 can be used to describe the fatigue demand. 

 

 
Figure 3.12 Representation and governing parameters for a sinusoidal stress cycle (Anderson, 2017). 

It is worth remarking that only two independent parameters are needed to fully describe 
a sinusoidal stress cycle, as other quantities can easily derived from each other with 
arithmetical expressions (Equation 3.23a-c). Common choices are the following couples 
(σmax; σmin), (σa, σm) and (Δσ, R): 

σmax; σmin ∆σ = 2σa = σmax -  σmin; σm = 
σmax+ σmin

2
; R =

σmax

σmin
  (3.23a) 

σa; σm ∆σ = 2σa; σmax, σmin = σm ± σa; R = 
σm - σa

σm + σa
 (3.23b) 

Δσ; R σa = 
∆σ

2
; σmax = 

∆σ

1 - R
; σmin = 

R ∆σ

1 - R
; σm = 

(1 + R) ∆σ

2 (1 - R)
  (3.23c) 

 
For this simplest case of sinusoidal load histories, the fatigue strength of a given 
structural detail can be conveniently expressed in terms of S-N (or Wohler) curves 
linking the nominal stress range Δσ to the observed number of cycles at failure N* 
(Figure 3.13 – ECCS, 2018). 
S-N curves graphically summarize the outcomes of an experimental program for the 
detail of concern, which shall involve a sufficient amount of specimens in order to 
properly measure the results scatter. Indeed, even nominally identical test conditions for 
apparently identical test specimens systematically result in different values of N*. This 
occurs due to ineradicable small differences in the parameters which affect fatigue life 
(misalignments, tolerances, etc… – ECCS, 2018).  
Remarkably, earlier experimental campaigns already proved how this scatter becomes 
larger for lower stress ranges (Schijve, 2009). Nevertheless, mean values of constant-
amplitude fatigue tests results appear to order themselves on straight lines when plotted 
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Figure 3.13 Fatigue resistance domain (S-N curve) for a structural steel detail tested under constant 
amplitude loading (adapted from ECCS, 2018). 

on a double logarithmic scale (Figure 3.13 – bold dashed line). This property, which is 
not coincidental as it can be derived according to fracture mechanics considerations 
(Anderson, 2017; ECCS, 2018), is used to provide an handy analytical description of S-
N curves (Equation 3.24): 

N*= C (∆σ) - m ↔ log N* = log C - m log ∆σ (3.24) 

with C, m being logarithmic regression coefficients representing the influence of the 
structural detail (i.e., the fatigue strength of the detail for a conventional number of 
cycles at failure NC) and the reciprocal (log-)slope of the mean results line, respectively. 
This expression is often referred as “Basquin formula”, as it was first proposed by 
Basquin (1910), although in a slightly different form relating elastic strain reversals 
Δεel/2 to the number of reversal at failure 2N*. It is trivial that Equation 3.24 can be 
immediately deduced from Basquin original formulation by introducing the base 
material Young Modulus E. 
In case of fully reverse (or “alternate”) cycles, i.e. for R = -1, the upper limit of the S-N 
curve is represented by twice the ultimate material strength fu. 
Following the curve pattern, the region within 101 ≤ N* ≤ 104 is referred as Low-Cycle 
Fatigue range (LCF), i.e., a range in which significant cyclic plasticity is expected for 
ductile materials. For civil engineering purposes, LCF strength is considered relevant 
only in peculiar conditions, e.g., in case of earthquakes or pressure surges (ECCS, 2018). 
The subsequent region (101 ≤ N* ≤ 108) is referred as High-Cycle Fatigue range (HCF), 
i.e., a range in which fatigue fracture occurs while the base material behaves elastically. 
The lower limit of the line is represented by the so-called endurance limit, or constant-
amplitude fatigue limit (CAFL). Accordingly, lower values of Δσ < CAFL (having 
constant amplitude) can be applied to the structural component without incurring in 
fatigue failure even for a very large number of cycles (> 108 – ECCS, 2018). 
The emphasis on requiring a constant amplitude for test stress ranges is not coincidental, 
as aperiodic stress histories can lead to fatigue failure even if applied Δσ are below the 
endurance limit (Anderson, 2017). Indeed, if earlier stress fluctuations are sufficiently 
high to induce crack opening, thus even small Δσ can contribute to crack propagation 
and hence cause fatigue damage. 
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Moreover, in some relevant cases no fatigue limit can be clearly defined even under 
constant-amplitude loadings (e.g., for aluminium components or for pre-stressing high-
strength steel strands – ECCS, 2018; Milone et al, 2022c). 
This issue can be overcome by i) explicitly accounting for fatigue cracking development 
or, approximately, ii) assuming a finite, yet superior, fatigue strength for Δσ < CAFL. 
As proposed by Haibach (1970), this can be accomplished by adopting a broken line 
shaped S-N curve with increased reciprocal slope m2 = 2m – 1 for Δσ < CAFL. A similar 
expedient was suggested by ECCS (1985), which recommended a value of m2 = m + 2 
(Figure 3.14a). Accordingly, identical values of m2 are obtained for m = 3 (→ m2 = 5), 
while for m > 3, ECCS correction results in more severe fatigue checks. 
To this end, EN1993:1-9 (CEN, 2005a), EN1993:1-11 (CEN, 2006) and EN1999:1-3 
(CEN, 2007) all follow ECCS suggestions for the relevant case of steel, high-strength 
steel (HSS) and aluminium details, respectively (Figure 3.14b). 
  

 
a) 

 
b) 

Figure 3.14 a) Correction of the S-N curve accounting for variable-amplitude fatigue loadings (adapted 
from ECCS, 2018) and b) EN1993:1-9 S-N curves (CEN, 2005a). 
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The only differences refer to i) the adoption of different slopes m for the first branch of 
S-N curves (i.e., m = 3 for all steel structural details – CEN, 2005a, m = 4 for HSS details 
– CEN, 2006 – while m = 3.4, 4.0, 4.3 or 7 for aluminium components depending on the 
considered detail – CEN, 2007) and ii) the presence of a cut-off limit (COL), i.e. a stress 
range limit below which no fatigue damage is assumed even under variable-amplitude 
loadings (that is, no COL is present for HSS and aluminium details according to 
experimental evidence – ECCS, 2018).  
In all mentioned normative provisions, the influence of a given structural detail (see 
Equation 3.24, regression coefficient C) is conventionally addressed by introducing a 
detail class ΔσC, i.e., the constant-amplitude stress range leading to fatigue failure for 
NC = 2 ∙ 106 cycles. In EN1993:1-9, 14 different detail classes (ΔσC = 36 ÷ 160 N/mm2, 
see Figure 3.14b) are appropriately associated to each of the 114 detail categories as 
suggested in the relevant Chapter 8. 
As for the CAFL (referred as ΔσD in structural Eurocodes), its definition is provided for 
a conventional number of cycles at failure ND = 5 ∙ 106. Finally, the COL (referred as 
ΔσL in structural Eurocodes) is associated to a threshold value of NL = 108 cycles. 
Notably, as assumed reciprocal slopes are the same for all listed S-N curves, CAFL and 
COL can be directly estimated by downscaling ΔσC as follows, independently from the 
detail category of concern (Equation 3.25a-b):  

∆σD = ൬
NC

ND
൰

1/m

∆σC = ൬
2

5
൰

1/3

∆σC = 0.737 ∆σC (3.25a) 

∆σL = ൬
ND

NL
൰

1/(m+2)

∆σL= ൬
5

100
൰

1/5

∆σD = 0.549 ∆σD = 0.405 ∆σC  (3.25b) 

26. 3.3.3   Fatigue Assessment for Variable-Amplitude Nominal Stresses 

As clearly remarked in the previous Section, aperiodic stress histories represent a 
delicate topic when assessing the fatigue performance of structural components. 
Provided that an appropriate correction of S-N curves has been applied to account for 
the fatigue strength sensitivity to variable-amplitude nominal stresses (Haibach, 1970; 
ECCS, 1985), two further aspects need to be properly addressed when dealing with 
complex load histories, namely i) the reduction of such histories to a finite ensemble of 
stress ranges Δσi that can be compared against S-N curves and ii) the cumulation of 
fatigue damages di associated to each extrapolated stress range Δσi. 
With regard to the former aspect, several so-called cycle-counting algorithms can be 
found in both scientific literature and normative provisions, e.g., peak count methods, 
level crossing count methods, the reservoir count algorithm, the rainflow count 
algorithm. Among the others, the last two methods gained the highest popularity owing 
to their reliability and sound mathematical formulation (ECCS, 2018), and they are 
currently listed in normative provisions in force (CEN, 2005a; CEN, 2006; CEN, 2007). 
Main steps of the reservoir count method can be summarized as follows (Figure 3.15): 
i) rearrangement of the stress history, i.e., by cutting it at its absolute maximum and 
moving the left part so obtained at the end of the diagram, in such a way that the modified 
diagram is bounded by two absolute maxima; 
ii) sort of the relative minima (“valleys”) of the stress history in ascending order (1’, 2’, 
…, i’, …, n’); 
iii) consideration of the modified stress history as the bottom of a water reservoir, 
virtually filled up to the absolute maxima (this operation give name to the algorithm); 
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Figure 3.15 Main steps of the reservoir and rainflow counting methods (adapted from CEN, 2020). 

iv) drainage of the reservoir from the valleys sorted in ascending order until it is 
completely empty. Accordingly, each discharging operation corresponds to one cycle 
having stress range Δσi equal to the height of the discharged water. 
v)  coupling of cycles having the same stress range by adding up the relevant number of 
cycles. 
The reservoir count method is sometimes preferred to the rainflow count method in light 
of its higher simplicity, as the two methods yield the exact same results, provided that 
they are applied correctly (CEN, 2005a). Nevertheless, the rainflow algorithm is 
recommended by EN1993:1-9 as it retains some (indirect) information about loading 
sequences owing to the adopted counting condition (ECCS, 2018). 
Main steps of the rainflow count method, which was originally developed by the 
Japanese engineer Tatsuo Endo and his collaborator Masanora Matsuishi (Matsuishi & 
Endo, 1968), can be summarized as follows (Figure 3.15): 
i) rearrangement of the stress history, i.e., by cutting it at its absolute maximum and 
moving the left part so obtained at the end of the diagram, in such a way that the modified 
diagram is bounded by two absolute maxima; 
ii) virtual rotation of the stress history diagram by 90 degrees (clockwise), in such a way 
that the positive direction of the time axis is pointing downwards; 
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iii) sort of the relative maxima (“peaks”) of the stress history in descending order (1, 2, 
…, i, …, n) and of the relative minima (“valleys”) of the stress history in ascending order 
(1’, 2’, …, i’, …, n’). 
iv) consideration of the rotated diagram as a guide for a sequence of raindrops falling 
from peaks and valleys due to the effect of gravity (this operation give name to the 
algorithm); 
v) release of each drop from peaks in descending order and from valleys in increasing 
order of the stress history itself. Accordingly, the followed path by each drop on a dry 
part of the guide identifies a semi‐cycle and its width measured along the ordinates 
represents the stress range of the semi‐cycle Δσi. Each drop path ends when an already 
wet part or the end of the diagram is encountered; 
vi) coupling of semi-cycles having the same stress range by adding up the relevant 
number of semi-cycles. 
Rainflow method is regarded as the “gold standard” option for cycle counting, as it 
provides a better statistical reduction of load histories featuring numerous peaks and 
valleys with respect to other methods. Moreover, it allows an improved handling of both 
very large extreme values and small intermediate ranges, independently from the nature 
of the load history (narrow- or broad-band, flat or steep – Schijve, 2009; ECCS, 2018). 
Soundness of rainflow method lies also in its correlation to the phenomenology of cyclic 
plasticity, when relevant. Indeed, as originally showed by Matsuishi & Endo (1968), 
each drop path uniquely relates to a closed hysteresis stress-strain (half-)loop. 
This counting algorithm finally established its superiority during the ‘80s of XXth 
century, when Rychlik (1987) provided a closed-form mathematical definition for it, thus 
enabling its large-scale implementation in fatigue analysis software. 
Independently from the adopted algorithm, the result of cycle counting operation is 
represented by the so-called load spectrum, i.e., a convenient description of the load 
history in terms of number ni of equivalent, constant-amplitude, stress cycles having 
range Δσi. In many real applications, load spectra show a monotonically decreasing trend 
(Figure 3.16); that is, a given load history can be usually decomposed in few high-ranged 
stress cycles and in a significant number of small fluctuations. 
Moreover, if the original stress history is represented by a continuous function, the 
resulting load spectrum is continuous as well. However, for practical purposes, the 
spectrum can be further reduced to a histogram, in which a convenient set of stress 
intervals can be assumed.  
 

 
Figure 3.16 Example of derivation of the load spectrum for a given stress history and subsequent 
reduction to a load histogram (adapted from ECCS, 2018). 
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When doing so, the maximum stress range for each resulting block should be 
conservatively taken as a reference for the enveloped portion of the original load 
spectrum (ECCS, 2018). 
With regard to damage cumulation, the simplest, yet most popular formulation is 
represented by the linear superposition of i-th elementary damage values di, one for each 
counted stress range Δσi (Equation 3.26): 

DTOT =  di

nTOT

i = 1
 = 

ni

Ni
*

nTOT

i = 1
 = න

dn

N*
LS

 (3.26) 

with DTOT being the total fatigue damage associated to a load history described by a load 
spectrum LS, which can be conveniently regarded as a number nTOT of stress blocks.  
Linear damage cumulation formula was first proposed by Palmgren (1923) and hence 
popularized by Miner (1945), thus it is usually referred as Palmgren-Miner’s (PM) rule. 
According to PM rule, the i-th elementary damage is expressed as the ratio between the 
number of cycles ni associated to the i-th stress range Δσi and the expected number of 
cycles at failure Ni* for the same stress range, with the latter being estimated using the 
relevant S-N curve.  
When cumulating damage, stress ranges below the COL threshold may or may not be 
accounted for. The most conservative approach is clearly to disregard the COL and to 
further extend the previous branch of the S-N curve (Figure 3.17a – ECCS, 2018) 
Alternatively, to stress ranges Δσi < COL an infinite fatigue life can be associated; that 
is, di (Δσi < COL) = 0. However, as PM completely overlooks the actual sequence of 
applied loads, it is recommended to assume an infinite fatigue life only if the entire load 
spectrum in enclosed below the COL, in light of considerations reported in Section 3.3.2 
(Figure 3.17b – ECCS, 2018). 
Fatigue failure is assumed to occur for a total damage threshold value D*TOT = 1.0. It is 
worth remarking that several experimental outcomes contradict this assumption, not 
least the ones derived by Wohler (1860) in its original work on fatigue of rail car axes. 
Indeed, as noticed by Wirsching (1987) when statistically assessing Wohler’s results, the 
fatigue failure threshold for variable-amplitude loadings rather behaves as a lognormally 
distributed random variable with unitary mean and COV = 0.3 → D*TOT ~ LN(1.0; 0.3). 
However, for practical engineering purposes, assuming D*TOT = 1 is often the only viable 
option, while uncertainties related to unavoidable constructional imperfections and to 
the influence of load sequences are overcome by means of proper partial safety factors. 
 

  

a) b) 
Figure 3.17 Linear damage cumulation (PM) rule for load spectra exceeding (a) or not exceeding (b) the 
COL (adapted from ECCS, 2018). For the sake of simplicity, a constant slope is assumed for Δσ > COL.  
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For instance, this is the approach followed by EN1993:1-9, which encodes PM rule with 
unitary threshold for Damage-Tolerant (DT) fatigue checks. Accordingly, partial safety 
factors are applied to both fatigue demand (stress ranges) and fatigue strength (S-N 
curves), i.e., γFF and γMF, respectively (Table 3.1, first row). Fatigue damage is assumed 
to be tolerable provided that PM checks are fulfilled and that proper and periodic 
inspections are performed to detect macroscopic fatigue cracks (CEN, 2005a). 
An alternative philosophy is represented by the Safe-Life (SL) approach, which requires 
to perform only a punctual check on the highest stress range Δσf,max, which should be 
compared with the relevant COL ΔσL (Equation 3.27 – CEN, 2005a):  

SL:   γFF ∆σf,max = ∆σEd ≤ ∆σRd = 
∆σL

γMF

 (3.27) 

Uncoincidentally, this resembles the condition depicted in Figure 3.17b. Within the 
framework of SL approach, fatigue damage is assumed to be null for the entire reference 
structural life Lref. Therefore, no inspections are required to detect fatigue damage  
(CEN, 2005a). However, considerably higher partial safety factors are needed as a trade-
off for performing a simplified check and disregarding on-site fatigue damage detection 
(Table 3.1, second row). 
 
Table 3.1 Partial safety factors recommended by EN1993:1-9 (CEN, 2005a) for fatigue checks. 

Fatigue Demand γFF = 1.0 in absence of more accurate evaluations 

Fatigue Strength 

Failure consequences 
Selected approach           γMF = 

Low consequences High consequences 

Damage-Tolerant (DT) 1.00 1.15 

Safe-Life (SL) 1.15 1.35 

 

27. 3.3.4 Mean-Stress Effect in Nominal Stress Methods 

Experimental tests on several structural components proved how the fatigue life can 
significantly reduce in presence of high tensile mean stresses σm > 0 (Dowling, 2004). 
Contrariwise, no decrease or even, in some cases, a slight improvement of fatigue 
performance was observed for σm < 0 (Anderson, 2017). 
This phenomenon, which is referred as “mean-stress effect” in scientific literature, can 
be easily explained in terms of enhanced crack propagation for σm > 0, as tensile stresses 
promote crack opening, while propagation gets inhibited by compressive stress fields 
(Anderson, 2017). Moreover, as reported in Section 3.1.2, in case of ductile metals, 
tensile stress fields (especially if multiaxial) accelerate voids enlargement, leading to 
damage and premature voids coalescence (Rice & Tracey, 1969). 
Mean-stress effect can be relevant in many civil engineering applications, e.g., bridge 
structures, owing to the presence of significant permanent loads and in light of adopted 
structural schemes (Gimsing et al., 2012). Nevertheless, while several literature models 
have been proposed to account for this effect (Dowling, 2004), it still remains only 
partially addressed in normative provisions in force (CEN, 2005a).  
For instance, HSS wire ropes adopted for cable-stayed bridges usually endure fluctuating 
loads having stress ratio R ≈ 0.4 (Milone et al., 2022c) while, for riveted and bolted 
details adopted in truss bridges, common values of R are in the range 0.0 ÷ 0.5 in service 
conditions (Parola et al., 1964). 
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Therefore, unconservative fatigue predictions may be obtained by applying the nominal 
stress method if mean-stress effect is completely overlooked. 
Within the framework of stress-life methods, several corrections to Basquin formula 
(Equation 3.24) have been proposed to account for the mean-stress effect (Gerber, 1874; 
Goodman, 1899; Soderberg, 1930; Morrow, 1968; Walker, 1970; Smith, Watson & 
Topper, 1970). 
Gerber (1874) first proposed a fatigue strength domain according to which strength 
reduction is proportional to the mean-stress work rate, i.e. the ratio between σm and the 
material ultimate tensile strength (UTS) fu. Notably, a quadratic dependence on σm/fu 
ratio was suggested on the basis of experimental evidences on puddle-iron components 
(Equation 3.28): 

Gerber (1874):  
σa

ff
 + ቆ

σm

fu
ቇ

2

≤ 1 (3.28) 

with ff being the fatigue strength for fully-reversal loadings (R = -1) estimated for the 
target number of cycles at failure N*. Accordingly, fatigue failure in presence of tensile 
mean stresses was predicted when exceeding the unitary threshold value. 
Goodman (1899) cautiously suggested to linearly account for mean-stress work rate, 
proposing an equation that still finds common application in fatigue design nowadays 
(Equation 3.29): 

Goodman (1899):  
σa

ff
 + 

σm

fu
 ≤ 1 (3.29) 

Moreover, Goodman also first introduced a graphical interpretation of fatigue strength 
domains in the σa – σm plane bearing his name (Goodman-Haigh diagram, Figure 3.18a). 
In Goodman-Haigh diagram, all possible fatigue demands sharing a given stress ratio R 
lie on a pencil of straight lines, i.e., centred in the origin and sweeping the diagram 
clockwise for increasing values of R.  
When adopting such representation, the Gerber criterion is represented by a parabolic 
segment having ff and fu as intersections with the σa- and σm-axis, respectively. 
Conversely, Goodman criterion acts as the linearization of the Gerber’s parabola, with 
this operation being safe due to Gerber’s domain convexity.  
In both cases, fatigue strength corrections are assumed for the lone range of tensile mean 
stresses (R > -1), while the fatigue strength for σm < 0 should be always cautiously equal 
to ff even if an higher resistance is predicted.  
 

 
a) 
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b) 

Figure 3.18 Graphical interpretation of  Gerber (1874), Goodman (1899) and Soderberg, (1930) mean-
stress corrections in the σa – σm plane: a) fatigue strength domains and b) equivalent fully-reversal fatigue 
demands (adapted from Milone et al., 2022c). 

For both Goodman and Gerber criteria, a slight incongruence can be graphically noticed 
with respect to yield lines, that is, the loci of points for which σmax (for R ≥ -1) or σmin 
(for R ≤ -1) equate the base material yield stress fy, thus defining a threshold for LCF 
regime. Indeed, extreme portions of Gerber and Goodman domains both cross the tensile 
yield line (which is indeed inclined of – 45 degrees with respect to coordinate axes). This 
is an obvious consequence of considering fu in defining the mean-stress work rate. 
This issue was overcome by Soderberg (1930), which upgraded Goodman’s formula by 
redefining the mean-stress work rate in function of fy as follows (Equation 3.30): 

Soderberg (1930):  
σa

ff
 + 

σm

fy
 ≤ 1 (3.30) 

Accordingly, Soderberg domain traces a second straight line in the Goodman-Haigh 
diagram, intersecting coordinate axes for σa = ff and σm = fy, respectively, which can be 
conveniently truncated at ff for R ≤ -1. Therefore, this latter fatigue domain is coherently 
enclosed among the yield lines, and it represents the most severe option when compared 
with Gerber and Goodman criteria. 
Still, Soderberg criterion did not encounter unanimous support among the scientific 
community, mainly because it leaded to overly conservative fatigue strength predictions 
in case of small, yet positive mean tensile stresses (Milone et al, 2022c). To this end, 
Goodman criterion gained the highest consent in light of its simplicity and ability to 
provide satisfactory strength estimations. 
Nevertheless, as first highlighted by Morrow (1968), Goodman criterion does not yield 
enough accurate results for very high stress ratios (R ≈ 0.7 ÷ 1.0). Therefore, the Author 
suggested to shift the Goodman domain horizontal intercept towards the material true 
fracture strength fu,true, resulting though in a loss of accuracy for small values of R. 
Therefore, alternative approaches were followed both by Smith, Watson & Topper 
(1970), hence also referred as “SWT”, and by Walker (1970) to provide a more 
consistent description of mean-stress effect. 
In both works, the effect of mean stresses was assumed to act on the fatigue demand 
side, rather than on the fatigue strength as suggested by earlier researchers. Accordingly, 
two similar formulations were proposed by the Authors (Equation 3.31a-b): 

Mean Stress σm
Compression (R < -1) Tension (R > -1)

Fu
ll

y-
R

ev
.

(R
 =

 -
1)

Fatigue demand σa

Yield strength fy

UTS fu

Gerber equivalent demand σar,g

Goodman equivalent demand σar,G

Soderberg equivanelt demand σar,S

Stress amplitude σa
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SWT (1970):   σar,SWT = ඥσa σmax = σaඨ
2

1 - R
 (3.31a) 

Walker (1970):   σar,W = σa
γ
 σmax

1 - γ
 = σa ൬

2

1 - R
൰

1 - γ

 (3.31b) 

with σar,SWT and σar,W being the equivalent fully-reversal fatigue demands that are 
expected to produce the same fatigue life as σa, respectively, and γ = 0.0 ÷ 1.0 being an 
empirical material parameter (“Walker exponent”) quantifying the sensitivity to mean-
stress effect. 
Namely, for γ = 0.0 no influence of σm is assumed (that is, γ = 0.0 → σar = σa for any 
value of σmax). Contrariwise, for γ = 1.0 the mean-stress effect is totally governing fatigue 
failure, as any stress cycle will be regarded as a fully-reversal one with the same peak 
value (that is, γ = 1.0 → σar = σmax for any value of σa). 
From Walker criterion perspective, SWT formulation can be clearly regarded as a 
particular case obtained by assuming γ = 0.5, i.e. considering a “balanced” sensitivity to 
mean-stress effect. The introduction of slightly different formulations descends from the 
considered sets of experimental observations (Dowling, 2004). 
Indeed, while SWT (1970) investigated the fatigue performance of mild steel specimens 
(for which γ is actually rather close to 0.5), Walker (1970) focussed on aluminium 
components, proposing a calibrated value of γ = 0.65 (that is, aluminium is averagely 
more sensitive to mean-stress effect with respect to mild steel). 
It is worth remarking that the above Gerber, Goodman and Soderberg criteria can all be 
equivalently expressed in terms of amplified fatigue demands, that is, by imposing the 
occurrence of fatigue failure in the right members of Equations 3.28-3.30  and thus 
solving for ff (Equation 3.32a-c): 

Gerber (1874):   σar,g = σa 
1

1 - ൬
σm
fu

൰
2 

(3.32a) 

Goodman (1899):   σar,G = σa 
1

1 -
σm
fu

 (3.32b) 

Soderberg (1930):   σar,S = σa 
1

1 -
σm
fy

 (3.32c) 

Notably, a graphical insight for equivalent fully-reversal fatigue demands according to 
Gerber (1874), Goodman (1899) and Soderberg (1930) formulations can be presented 
in the Goodman-Haigh diagram (Figure 3.18b). To this end, also Walker (1970) and SWT 
(1970) criteria could be represented in the σa – σm plane, although neither of such criteria 
would result in a single trend on the plot, but rather they would form a family of curves 
(Dowling, 2004). 
Addressing the mean-stress effect from the perspective of fatigue demand retains the 
undoubted advantage of using “standard” (i.e., encoded) S-N curves for fatigue checks. 
Accordingly, fatigue damage can be estimated based on equivalent fully-reversed stress 
ranges Δσeq = 2 σar. In this regard, it is worth mentioning that both reservoir and rainflow 
count methods (see Section 3.3.3) easily allow to calculate mean stresses associated to 
each stress (half-)cycle. 
Adopting the above formulations in presence of significant tensile stresses can be a 
suitable option when addressing normative-compliant fatigue design. 
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Indeed, EN1993:1-9 (CEN, 2005a) completely overlooks mean-stress effect for R > 0. 
This assumption can be considered sufficiently realistic for welded details (provided that 
they are non-stress relieved), as residual tensile stresses induced by welding process 
usually exceed tension fields in connected members. Therefore, experimental tests 
considered in the definition of welded detail categories intrinsically accounted for the 
mean-stress effect (ECCS, 2018). 
Contrariwise, for the relevant case of stress-relieved or mechanically fastened details, a 
(favourable) mean-stress correction is only provided for R ≤ 0 (Figure 3.19). Indeed, if 
σmin < 0, the compressive quota of the stress cycle can be reduced by 40%. Moreover, if 
the entire stress cycle is in compression, the whole stress range can be reduced by 40% 
(Equation 3.33a-c): 

σmin ≥ 0 → ∆σEd = σmax - σmin (3.33a) 

σmax ≥ 0, σmin < 0 → ∆σEd,red = σmax - 0.6 σmin (3.33b) 

σmax < 0 → ∆σEd,red = 0.6 (σmax - σmin) (3.33c) 

 

 
Figure 3.19 Graphical interpretation of mean-stress correction encoded in EN1993:1-9 (ECCS, 2018). 

28. 3.3.5 Hot-Spot Stress and Modified Stress Methods 

As stated in Section 3.3.1, an alternative option to assess the fatigue performance of 
structural components within the framework of stress-life approaches is represented by 
the so-called hot-spot stress method. These methods aim at estimating the real stress 
acting on a potential crack spot, i.e. including all possible sources of stress rising 
associated to the structural detail of concern (ECCS, 2018). 
Hot-spot stress method is particularly suitable for welded details in which the main 
principal stress is normal to the weld toe and thus fatigue cracking is expected to initiate 
from such spot (e.g., non-load carrying fillet welded details – Niemi et al., 2006). 
To this end, standard procedures are available to extrapolate the hot-spot stress σhs at the 
weld toe starting from nearby locations, as a direct measure of weld-toe hot-spot stress 
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is unfeasible. Accordingly, local stress measures derived from testing or refined FEAs 
can be linearly projected up to the surface perpendicular to the weld toe (Figure 3.20a-b 
– Schumacher, 2003; Niemi et al., 2006; ECCS, 2018). 
The extension of the extrapolation regions, within which the stresses to be projected 
should be estimated, is defined in documents of sanctioned validity for each relevant 
case (e.g., IIW, 2000 for welds connecting plates and/or open profiles, CIDECT, 2001 
for hollow sections employed in tubular joints or DNV, 2010 for FEM-based 
extrapolation). 
It is worth remarking that, in both cases, microscopic effects (i.e., notch effects due to 
weld type and shape, flaws, etc…) cannot be directly accounted for even with highly 
refined measures. Therefore, a restricted, yet multiple set of hot-spot S-N curves should 
be used for fatigue checks to account for such effects (ECCS, 2018). To this end, 7 hot-
spot welded detail categories are provided by EN1993:1-9, Annex B (CEN, 2005a), 
which are variously associated to 3 detail classes (ΔσC,hs = 90, 100 or 112 N/mm2, 
respectively – Figure 3.21). 
 

 
a) 

 
b) 

Figure 3.20 Extrapolation techniques of hot-spot stresses at the weld toe based on a) detail testing and 
b) advanced solid or shell FE modelling (adapted from ECCS, 2018). 
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Figure 3.21 Hot-spot S-N curves for welded details encoded in EN1993:1-9 (adapted from CEN, 2005a). 

Within the framework of normative provisions, the hot-spot stress method is only 
recommended for welded details that cannot be reduced to any of the standard detail 
categories or in case of complex stress fields expected at the weld toe. In other cases, 
modified nominal stresses should be used for fatigue checks (CEN, 2005a). 
Modified nominal stress σmod is introduced for encoded structural details, yet subjected 
to stress raising sources not accounted for by normative S-N curves (e.g., macroscopic 
eccentricities, angular misalignments, re-entrant corners, complex shaped holes, etc…). 
The transformation of nominal stresses into modified ones is performed through non-
dimensional stress magnification (or concentration) factors (SMFs – Equation 3.34), 
which should be borrowed from documents of sanctioned validity (e.g.,  BS 7608, 2014; 
BS 7910, 2019; DNV, 2010): 

ෑ SMFi

N stress raisers

i = 1

 = 
σmod

σ0
 (3.34) 

Differently from the hot-spot stress method, modified nominal stress method finds its 
application also in the relevant case of riveted (and bolted) joints, that is, to account for 
the presence of holes (ECCS, 2018). 
In this regard, SMFs for several configurations of perforated plates can be found in the 
renowned Peterson’s Handbook (Figure 3.22 – Peterson & Pilkey, 1997). Namely, 
factors depending from geometrical properties of plates and rivets are there recollected 
in the form of charts (i.e., based on numerical analyses performed by several Authors). 
Consistently, presented abaci reduce to the well-known result of linear fracture 
mechanics (LFM), i.e. σmod,t = 3σ0 for an thin, infinitely wide plate with a mid circular 
hole, with the maximum tensile stress being attained on both hole transverse quadrants 
(Anderson, 2017).  
Conversely, the ideal LFM result in terms of maximum compressive stress (i.e., attained 
on the hole longitudinal quadrant closest to the plate edge) acts as a lower limit for plies 
in bearing, as Hertzian contact stresses (Hertz, 1881) superimpose to LFM solution.  
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Figure 3.22 SMF charts suitable for riveted details (adapted from Peterson & Pilkey, 1997). 
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Clearly, for a widely spread contact (d/w → 1),  σmod,b → –σ0 as predicted by LFM 
(Anderson, 2017).  
It is worth recalling that, while mean-stress effect can be neglected if the hot-spot stress 
method is used, σm > 0 should not be overlooked when applying the modified nominal 
stress method. Indeed, when adopting the latter approach, standard S-N curves should 
be used. Therefore, σm is not explicitly accounted for in fatigue checks, except for the 
sole stress range correction reported in Equation 3.33a-c for R ≤ 0. 
In this regard, mean stress can be conveniently accounted for by means of an equivalent 
stress magnification factor SMFms (Milone et al., 2022c) defined as σar/σa, that is, 
according to one of the formulations reported in Section 3.3.4 (Equation 3.35a-b): 

SMFms,g = 
1

1 - ൬
σm
fu

൰
2 ;  SMFms,G = 

1

1 - 
σm
fu

;   SMFms,S = 
1

1 - 
σm
fy

  
(3.35a) 

SMFms,SWT = ඨ
2

1 - R
;   SMFms,W = ൬

2

1 - R
൰

1- γ

 (3.35b) 

3.3.6 Overview of Strain-Life Methods 

The main limit of all stress-life approaches is represented by the assumption of materials 
indefinitely behaving as linear elastic (Osgood, 1982). Indeed, even though some sources 
of non-linearity are (more or less explicitly) accounted for, e.g. contacts, friction, etc…,  
material plasticity is completely overlooked while performing fatigue analyses.  
To partially overcome this issue, the range of validity for normative S-N curves is 
superiorly limited to 1.5 fy (CEN, 2005a). However, when dealing with details featuring 
sharp stress raisers, localized plasticity can occur even for rather small nominal stresses. 
For instance, the LFM solution for infinitely wide perforated plate (see Figure 3.21, first 
chart, d/w → 0) already predicts localized plasticity around the hole for a nominal, far 
field stress σ0 = 0.33 fy.  
While it is true that this aspect is implicitly addressed by EN1993:1-9 with respect to 
encoded details (ECCS, 2018), it is worth mentioning that, in the general case, neglecting 
plasticity can lead to highly non-conservative fatigue life estimations, especially with 
low-tenacity metals (Schijve, 2009). 
As mentioned is Section 3.3.2, the idea of addressing strain (half-)cycles to assess fatigue 
performance of components was first introduced by Basquin (1910). Further, crucial 
developments were provided independently by Manson (1953) and Coffin (1954). 
Namely, while Basquin attempted to relate fatigue life to elastic strain reversals Δεe/2, 
Coffin & Manson focussed on the influence of plastic reversals Δεp/2, and hence to total 
strain reversals (hence also referred as strain amplitude εa) (Dowling, 2004). 
Accordingly, the strain-life Basquin-Manson-Coffin (BMC) model can be expressed 
according to Equation 3.36a-b: 

εa = 
∆εtot

2
 = 

∆εe

2
 + 

∆εp

2
 (3.36a) 

BMC:   εa = 
∆εe

2
 + 

∆εp

2
 = 

σf
'

E
൫2 N*൯

b
 + εf

'  ൫2 N*൯
c
 (3.36b) 

with σ’f [F L-2], ε’f [-] being the so-called fatigue strength coefficient and fatigue ductility 
coefficient, respectively and b, c being the so-called fatigue strength exponent and 
fatigue ductility exponent, respectively. BMC coefficients are intended as intrinsic 
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material parameters that can be calibrated based on experimental, constant-amplitude, 
strain-control tests on round or flat smooth coupons (Anderson, 2017). 
Usual values of c are in the range – 0.5 ÷ – 0.7 (the greater is |c|, the longer is fatigue 
life), while σ’f ranges among 500 ÷ 1000 N/mm2 for mild steels (Schijve, 2009). 
According to Equation 3.36b, it can be easily noticed that, while σ’f and b govern HCF 
regime, ε’f and c account for LCF material behaviour. A convenient graphical 
interpretation of this fact can be provided in the double-logarithmic strain-life diagram 
εa – N* (Figure 3.23), namely: 

 for very high εa values, LCF failure points asymptotically follow a straight line 
l having a slope equal to c < 0 and passing through the point L = (ε’f, 1); 

 for rather small εa values, HCF failure points asymptotically follow a second 
straight line h having a slope equal to b < 0 and passing through the point 
H = (σ’f/E, 1); 

 for intermediate εa values, failure points follow a parabolic arc m gradually 
changing slope from c to b. 

Accordingly, while estimating BMC parameters, it is recommended to account for at 
least five different strain amplitude levels, namely three for intermediate εa ranges and 
the remaining two identifying LCF and HCF asymptotes (Da Silva et al., 2019). 
Nevertheless, it is worth reporting that some techniques for a rough estimation of BMC 
parameters based on static base material properties can be found in literature (Schijve, 
2009). Among the different correlations proposed, Boller-Seeger’s formulas (Boller & 
Seeger, 1987), based on interpretation of experimental tests for various metals, are quite 
commonly used (Equation 3.37a-b): 
 

Mild steels:   

⎩
⎪
⎨

⎪
⎧ σf

'  = 1.5 fu
εf

'  = 0.59 min൫1 ; 1.375 - 125 fu E⁄ ൯

b = -0.087
c = -0.57

 (3.37a) 

Other metals:   

⎩
⎨

⎧
σf

'  = 1.67 fu
εf

'  = 0.535
b = -0.095
c = -0.69

 (3.37b) 

 

 
Figure 3.23 Graphical interpretation of the BCM fatigue life criterion (strain-life diagram). 
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It is worth recalling that, when using strain-life methods, an appropriate material cyclic 
constitutive law is required to deal with yielding and cyclic hardening. To this end, the 
already mentioned Ramberg-Osgood model (Equation 3.8 – Ramberg & Osgood, 1943) 
represents the most popular option. When addressing cyclic plasticity, Equation 3.8 is 
often used in an engineering, yet equivalent form involving the Ramberg-Osgood 
strength coefficient KRO in place of the yield offset αRO (Equation 3.38):    

εeng = 
σeng

E
+ ൬

σeng

KRO
൰

nRO

 (3.38) 

where KRO and nRO should be estimated with reference to the material stabilized cyclic 
response. 
Uncoincidentally, Boller & Seeger (1987) provide handy empirical relations to roughly 
estimate KRO and nRO for various metals based on their UTS (Equation 3.39a-b): 

Mild steels:   ൜
KRO = 1.65 fu

nRO = 6.67
 (3.39a) 

Other metals:   ൜
KRO = 1.61 fu

nRO = 9.09
 (3.39b) 

29. 3.3.7 Mean-Stress Effect in Strain-Life Methods 

Mean-stress effect can be conveniently accounted for in BMC equation by introducing 
appropriate corrections (Schijve, 2009). Notably, the same models introduced to account 
for σm in nominal stress methods (Section 3.3.4) can be easily placed in the framework 
of ε-N methods. As a matter of fact, many of the earlier described formulations were 
originally conceived for strain-life analysis and only later transposed to S-N methods.  
For instance, the Morrow (1968) model involving the mean-stress work rate was initially 
proposed to correct the elastic term of BMC formula as follows (Equation 3.40): 

Morrow:   εa = 
σf

'  - σm

E
൫2 N*൯

b
 + εf

'  ൫2 N*൯
c
 (3.40) 

Accordingly, mean-stress effect is thought of having an appreciable influence only for 
the HCF regime. As this assumptions contrasts with experimental results, Manson & 
Halford (1981) proposed to extend Morrow’s correction also to the plastic term of BMC 
formula (Equation 3.41): 

Manson & Halford:   εa = 
σf
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 (3.41) 

The original work of Smith, Watson & Topper (1970) also concerned mean-stress effect 
within the framework of strain-life predictions. Indeed, the already mentioned 
dependence on σmax was originally proposed to modify BMC formula as follows 
(Equation 3.42): 

SWT:   σmax εa = 
൫σf

' ൯
2

E
൫2 N*൯

2b
 + σf

'  εf

'
 ൫2 N*൯

b+c
 (3.42) 

Dowling (2004) subsequently demonstrated how Walker (1970) model could be 
equivalently transposed into strain-life methods by substituting b with (2 – 2γ)b in 
Equation 3.42, with γ being the aforementioned Walker exponent. 
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30. 3.3.8 Hints about Crack Propagation and Stress Intensity Factors 

All the above formulations presented in Sections 3.3.1-3.3.7 address the topic of total 
fatigue life of structural components N*. More properly, fatigue life can be regarded as 
composed by two subsequent stages, namely i) the crack initiation life N*i and ii) the 
crack propagation life N*p. 
The relative influence of crack initiation stage (CIS) and crack propagation stage (CPS) 
on the total fatigue life depends on many different factors (base material properties, 
manufacturing process, geometrical features, etc… – Anderson, 2017). For instance, in 
plain and narrow components N*i ≫ N*p, while fatigue life of welded and/or severely 
notched elements is mainly governed by crack propagation (ECCS, 2018). 
To separately deal with CIS and CPS when relevant, two aspects should be addressed, 
namely: i) clearly identifying the boundary between the two stages and ii) introducing a 
reliable crack propagation model (Anderson, 2017). 
On one hand, t\he former aspect can be easily handled by performing constant-
amplitude, displacement-control fatigue tests on plain narrow coupons. Indeed, provided 
that specimens have an appropriate gauge segment with length Lg, both S-N and ε-N 
diagrams for the sole CIS can be easily derived by assessing experimental results.  
Indeed, the absence of stress raisers and the narrow cross section ensure a negligible 
value of N*p, which can be further filtered if the specimen stiffness is monitored through 
the test by means of a simple strain gauge (Anderson, 2017).  
Moreover, as stresses and strains can be reasonably assumed to be uniform within the 
gauge segment, the endured εa can be directly estimated as δa/Lg, with δa being the 
imposed displacement amplitude, while σa is calculated as Fa A0/Ag, with Fa being the 
force amplitude measured by the load cell, A0 being the cross-section at grips and Ag 
being the minimum cross-section within the gauge segment. 
To this end, it is worth mentioning that several standards in force regulate the shape and 
size of strain-life smooth specimens (Figure 3.24a), which is usually defined as a 
parametric function of its diameter d (round coupons) or thickness t (flat coupons), e.g. 
ASTM E606 (2012). 
On the other hand, crack propagation modelling is a rather complex topic which is still 
an open field of research nowadays, especially for two- or three-dimensional problems 
(Anderson, 2017). Therefore, only some related hints are summarized in this Section. 
The basic formulation addressing CPS was introduced by Paul C. Paris (Paris et al., 
1961; Paris & Erdogan, 1963), which proposed the homonymous crack growth equation 
(Equation 3.43 & Figure 3.25):  

Paris:  
𝑑

dN
a = C (∆K)m (3.43) 

where a is the crack length, da/dN is the crack growth rate against the number of loading 
cycles N, ΔK = Kmax – Kmin is the stress intensity factor range and C, m are experimental 
regression parameters depending on i) material composition, ii) environmental 
conditions (temperature, corrosivity) and iii) applied stress ratio R. Further insights 
about ΔK and stress intensity factors (SIFs, usually also referred as “K”) are provided at 
the end of the present Section. 
Paris parameters for one-dimensional fracture propagation in tension (i.e., Mode I, crack 
opening – Anderson, 2017) are usually determined by means of compact-tension (CT) 
specimens with standard shape and size (Figure 3.24b – ASTM E647, 2016). 



ciii 
 

  
a) b) 

Figure 3.24 Standardized shapes and sizes for a) smooth and b) CT specimens according to ASTM E606 
(2012) and ASTM E647 (2016) recommendations. 

Paris law traces a straight line in the bi-logarithmic da/dN – ΔK plane, notably 
resembling Basquin’s formula (Figure 3.25). The range of validity for Paris law is 
defined as stable crack propagation region (or region II), and it refers to intermediate 
ΔK values (Anderson, 2017).  
For rather small values of ΔK, cracks do not propagate at all (that is, da/dN = 0). This 
condition occurs up to a threshold value ΔKth which separates region II from the inhibited 
crack propagation region (or region I). Contrariwise, for large values of ΔK (i.e., larger 
than a critical value ΔKc) crack propagation greatly accelerates until failure. This 
behaviour range is defined ad instable crack propagation region (or region III – 
Anderson, 2017). It is worth remarking that both ΔKth and ΔKc are functions of the same 
variables affecting C and m values. 
Provided that Paris parameters have been accurately determined for the boundary 
conditions of concern, N*p can be easily estimated by integrating Equation 3.43 over a 
given load history LH (Equation 3.44): 

Np
* = න

da

C (∆K)m
LH

 (3.44) 

 

 
Figure 3.25 Crack propagation diagram and graphical interpretation of Paris law (Anderson, 2017). 
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Equation 3.44 provides an approximate estimation of N*p as it assumes a region II 
behaviour for the entire LH. A more accurate estimation of crack propagation life can be 
immediately performed by disregarding LH phases for which ΔK ≤ ΔKth and arresting 
integration as soon as a value of ΔK ≥ ΔKc (i.e., by conservatively assuming m → ∞ for 
region III – Anderson, 2017). Nevertheless, several modifications of Paris Law 
attempting at capturing all the three behaviour regions can be found in scientific 
literature (e.g., Klesnil & Lucas, 1972; Donahue et al., 1972; Forman & Mettu, 1992), 
although neither of them gained the same popularity as the original formulation in light 
of their complexity. 
The physical meaning of the stress intensity factor range ΔK relates to basic concepts of 
linear fracture mechanics (LFM). ΔK is defined as the difference between the extremal 
SIFs (usually also referred as “K”) associated to a given load cycle Kmax – Kmin. 
The concept of stress intensity factor was first introduced by Irwin (1956) while 
extending the pioneering work of Griffith (1920) on brittle fracture of materials featuring 
sharp cracks in tension (Mode I). Namely, it was well-known at the time that regarding 
a sharp crack as a limit case of elliptical hole in a wide plate (w/2a ≫ 0), infinite tensile 
stresses σA → ∞ at the crack tip would be predicted by the classic elasticity theory, as 
they inversely depend on the curvature radius ρ → 0 (Figure 3.26a-b – Anderson, 2017).  
This outcome clearly contrasts with experimental observations, as ideally brittle 
materials (e.g. glass, PMMA, etc…) would instantaneously break for any small value of 
the far-field stress σ0, while they exhibit a finite, yet reduced tensile resistance even in 
presence of sharp cracks. 
While Griffith (1920) proposed an enlightening solution involving an energetic balance 
among potential and surface material energies, Irwin (1956) introduced a closed form 
expression for stresses in polar coordinates (r, θ) centred at the crack tip (Figure 3.26c). 
Accordingly, singular stresses σij on a given director sweeping an angle θ with respect 
to the crack bisector can be expressed as a power series of the polar radius r (i.e., with 
first exponent = – 1/2 and following ones > 0). Hence, for r → 0, higher order terms can 
be conveniently neglected, leading to the following expression for σij (Equation 3.45): 
 

  
a) b) 
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c) 

Figure 3.26 a, b) Sharp crack regarded as a limit case of elliptical hole and c) local stress field at the 
crack tip in polar coordinates (adapted from Anderson, 2017). 

 

σij(r, θ) = 
KI

√2π r
 fij

(I)(θ) → lim
r → 0

σij = ∞ (3.45) 

with KI being a constant defined as the stress intensity factor for Mode I (hence also 
referred as SIFI) and fij

I (θ) being an appropriate dimensionless, Mode I-related function 
of the angular coordinate θ. 
Equivalent formulations can be derived for Mode II (in-plane shear) and Mode III (out-
of-plane shear), with the superposition principle being valid for mixed-Mode fracture 
(Anderson, 2017). 
SIFI is hence defined as the (finite) limit of singular stresses multiplied by r- and θ- 
depending terms as follows (Equation 3.46): 

KI = lim
r,  → 0

 
σij(r, θ)

fij
(I)(θ)

 √2π r < ∞ (3.46) 

Existence and finiteness of limit featured in Equation 3.46 is granted by the √2π r term, 
which eliminates stress singularity at crack tip ∝ r –1/2. Several closed forms for KI exist 
for elastic isotropic bodies featuring variously shaped cracks (misaligned, edge, “penny-
shaped” cracks, etc… – Anderson, 2017). As for the mentioned case of middle crack in 
an large, elastic isotropic plate subjected to Mode I, an elegant solution is obtained for 
KI (Equation 3.47 – Irwin, 1956): 

Middle crack, 
w

2a
≫ 0:   KI = σ0 √π a (3.47) 

that is, fij
I (0) = √2.  

Remarkably, SIFI is linearly proportional to the far-field stress σ0 and depends on the 
crack size a. These two “simple” findings serve as foundation of the entire linear elastic 
fracture mechanics (Anderson, 2017). 
Equation 3.47 proves that KI has rather “unusual” measure units, i.e., [F / L3/2]. As it will 
be shown in Section 3.4.1, this is an intrinsic property of sharp cracks, while it is not 
true for other components featuring singular stresses (e.g., elements with re-entrant sharp 
corners – Williams, 1952). 
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The resulting difficulties in comparing the performance for varying geometries partly 
underlay the development of advanced techniques for fatigue and fracture analyses, e.g., 
the Strain Energy Density (SED) method (Lazzarin & Zambardi, 2001), which will be 
addressed in detail in Section 3.4.2 before being suitably applied to the relevant case of 
hot-driven riveted connections. 
The basic idea of LFM is that fracture of isotropic, linear elastic materials can be 
conveniently expressed in terms of SIFs, one for each of the three fracture Modes M. 
Namely, failure is predicted to occur when a critical value of KM = KMC is attained. 
KMC is regarded as an intrinsic material property referred as Mode M fracture toughness 
(Anderson, 2017).  
For practical purposes, standardized CT specimens (see Figure 3.24b) can be suitably 
used to estimate KIC, provided that an initial sharp crack is formed at the corner, i.e., by 
means of cyclic pre-loading (ASTM E1820, 2018). 
As discussed earlier in this section, the same concept was extended by Paris (Paris et 
al., 1961; Paris & Erdogan, 1963) to HCF by replacing K with ΔK to properly isolate 
fluctuating stresses from monotonic loadings.  
Although based on rather complex ideas with respect to fatigue assessment techniques 
reported in previous Sections, SIFs and Paris law can be substantially regarded as 
“standard” fatigue analysis techniques, as they are widely used within the framework of 
mechanical engineering (Anderson, 2017) and, although for peculiar applications, civil 
engineering (e.g., Jiang et al., 2018; Da Silva et al., 2019). 
Finally, it is really worth remarking that, although all the above concepts relate to linear 
elastic brittle materials, they have been successfully extended to fatigue performance of 
ductile materials, e.g., mild steels (Radaj & Wormwald, 2013).  
Indeed, on one hand, material plasticity only occurs on a local scale nearby the crack tip 
in HCF regime (small-scale yielding). In this case, small or even no corrections are 
required to assess fatigue failure of ductile materials (Radaj & Vormwald, 2013; 
Anderson, 2017). 
On the other hand, while it is true that large-scale yielding occurring in LCF regime can 
be addressed with alternative, yet more complex approaches (elasto-plastic fracture 
mechanics – EPFM – Anderson, 2017), it is also true that LCF is not particularly relevant 
for civil engineering structures, except in particular circumstances (ECCS, 2018). 

3.3.9 Applied Statistics for Standard Fatigue Analysis Techniques 

As constantly seen in previous Sections, logarithmic regression model finds a crucial 
field of application in “standard” fatigue analysis techniques, namely because either 
Basquin’s formula, BMC model and Paris law feature power law expressions governed 
by experimental parameters.  
However, it is well-known that the adoption of a logarithmic regression model underlies 
the assumption of constant data dispersion (homoskedasticity – Wakefield, 2013), which 
contrasts with observations reported in Schijve (2009) (e.g., the larger are the fluctuating 
stresses, the lower is the scatter shown by results and vice-versa). 
Therefore, it may appear that some information about fatigue performance of structural 
components could be missed. This issue is practically overcome by i) performing a 
significant number of tests, whenever possible (at least ≥ 15, with ≥ 60 tests being the 
“gold standard”), ii) accounting for tests numerosity in the regression model and/or iii) 
providing additional information about the reliability of the model itself, usually by 
means of synthetic indicators (Schijve, 2009; ECCS, 2018).  
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To this end, Liebermann beta coefficients βL (Liebermann, 1957) can be proficiently 
used to account for test numerosity within the framework of loglinear regression. 
According to EN1990 (CEN, 2002), the characteristic value Rk for any resistance model 
can be estimated by moving β standard deviations s away from the mean model results 
Rμ (provided that statistical significance tests for such model are successful). 
β is defined as the structural reliability, which is a function of the assumed probability 
of failure Pf (Equation 3.48): 

β = f(Pf) = Φ-1(Pf) (3.48) 

with Φ-1 being the inverse cumulative distribution function (CDF) for a standard Normal 
random variable (i.e., with null mean μ and unitary standard deviation s) N ~ (0; 1). 
Accordingly, the characteristic value (i.e., defined by a survival probability PS = 1 – PF 
= 95%) can be estimated by assuming β = 1.64, while to design resistance value Rd (PF 
= 10-4) an higher value of β = 3.00 is usually associated (CEN, 2002). 
However, when Equation 3.48 is used, only the failure probability for the structural 
component is explicitly accounted for, while no information explicitly concerning with 
the model reliability are provided. Contrariwise, by adopting Liebermann coefficients βL 
in place of β, test numerosity Ntest and model reliability (in the form of a required 
confidence level CL) can be explicitly accounted for (Liebermann, 1957). 
In other words, while β = f(Pf), βL = f(Pf; Ntest; CL) ≥ β. As a limit case, for a sufficient 
number of tests (≈ Ntest ≥ 30) and the same confidence level (which EN1990 “implicitly” 
sets equal to 90% – ECCS, 2018), βL → β.  
For instance, the practically relevant case of PF = 5%, CL = 90% and “intermediate” test 
numerosity (15 ≤ Ntest ≤ 30) yields βL = 2.00 > 1.64. Nevertheless, it is worth remarking 
that this finding is reported in technical background documents for structural Eurocodes, 
and this reliability gap is definitely overcome by means of partial safety factors γMF 
(ECCS, 2018), 
In light of the above, when dealing with details encoded in European provisions, 
“soundness” and conservativity of fatigue predictions (that is, of listed S-N curves) is 
guaranteed within the framework of the semi-probabilistic Limit States Method (CEN, 
2002; CEN, 2005a; ECCS, 2018). Contrariwise, when a particular detail category is 
missing (as for the relevant case of hot-driven riveted connections), a strong attention 
should be paid to the statistical assessment of results, even for the simplest approach of 
the Nominal Stress Method. 
To this end, two summarizing indicators are mainly used to prove the reliability of 
interpreted results, namely the coefficient of determination R2 = 0.0 ÷ 1.0 and the scatter 
ratio Tv ≥ 1 for the variable v of concern (Equation 3.49a-b – Wakefield, 2013): 

R2 = 1 - 
s err

2

s tot
2  (3.49a) 

Tv = 
vsup

vinf
=

vμ +  βL stot

vμ -  βL stot
 (3.49b) 

with s2
err being the variance of the errors εi of the regression model, s2

tot being the total 
variance of data for the variable v having mean equal to vμ and vsup/vinf being the extreme 
values of the scatter band associated to relevant Pf, CL and Ntest values (Figure 3.27). 
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s2
err  and s2

tot can be conveniently estimated in terms of i) i-th experimental values vi, ii) 
estimated regression coefficients ai (= m), bi according to the least-squares method and 
iii) the number nDOF of degrees of freedom of the sample (Wakefield, 2013). 
Notably, both R2, Tv → 1 for ideal (i.e., totally reliable) models. However, a loss of 
accuracy is hinted in opposite ways, as R2 → 0 for scarce prediction capability, while 
the scatter band will clearly widen (that is, Tv → ∞). 
Although they relate to similar quantities, it is worth recalling that R2 and Tv provide 
different insights about the soundness of regression and results scatter. Indeed, while R2 
only accounts for model reliability, disregarding structural reliability as opposed to basic 
EN1990 recommendations (CEN, 2002), Tv both encloses model and structural 
reliability as it depends on βL. However, as Pf and CL can be arbitrarily selected, more 
favourable values of Tv can be “artificially” obtained by assuming less strict 
predictability properties. In other words, a coherent reliability assessment for any given 
resistance model cannot exclude the estimation of either R2 and Tv (Wakefield, 2013). 
As a relevant example, in case of very large reciprocal slopes 1/m, a logarithmic 
regression model would result in basically constant predictions vത, for which R2 is 
identically null (that is, s2

err → s2
tot  for m → 0).  

Hence this condition, e.g., that is rather common in case of fatigue failure for elevated 
stress ratios (Schijve, 2009), would result in no prediction capability at all according to 
R2 index, while this result actually unveils the phenomenology of investigated 
phenomena. Contrariwise, by introducing the scatter ratio Tσ for stress ranges at failure, 
the reliability of results can be still proved if Tσ ≤ Tσ,th, i.e., an upper threshold separating 
“clustered” and scattered results. For instance, a typical value of Tσ,th ≈ 1.50 is commonly 
adopted for fatigue analyses (Schijve, 2009). 

 
Figure 3.27 Reliability analysis of fatigue results with graphical interpretation of R2 and Tσ indexes. 

3.4. Advanced fatigue analysis techniques for 
structural components 

In the previous Sections, standard fatigue assessment methods and their 
advantages/limitations have been briefly addressed. In the present Section, an overview 
of two advanced fatigue assessment techniques is presented, namely the Notch-Stress 
Intensity Factor (N-SIFs) approach and the Strain Energy Density (SED) method. 
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Within the present thesis work, only the latter approach will be conveniently applied to 
the relevant case of hot-driven riveted connections. To this end, the required theoretical 
background will be introduced in Sections 3.4.2-3.5.2, while its application with respect 
to performed experimental activities is the subject of both Chapters 6 (mild steel 
components) and 7 (assembled connections). 
Nevertheless, reporting some key hints about the N-SIF approach is deemed appropriate 
i) to fill some basic knowledge gaps concerning fatigue performance of weakened 
components and ii) for “historical” reasons, as the main concepts of the SED method 
were initially developed to overcome some issues related to fatigue and fracture analyses 
based on N-SIF approach (Lazzarin & Zambardi, 2001). 

31. 3.4.1 Hints about Notch-Stress Intensity Factors (N-SIF) Approach 

As preliminarily remarked in Section 3.3.8, singular stresses arising at tip of a sharp 
crack embodied in an isotropic linear elastic materials can be conveniently described by 
means of SIFs related to the three basic fracture Modes (Anderson, 2017). 
However, as first noticed by Williams (1952), sharp cracks are not the only source of 
singular stresses in weakened components. Indeed, using an appropriate Airy stress 
function for the case of a re-entrant corner under a remote stress field, Williams proved 
how polar coordinate-stresses are proportional to rλM – 1, with λM being the so-called 
Williams’ eigenvalues, one for each of the three fracture Modes (Williams, 1952). 
λi were found to depend on the notch opening angle 2α, with λ1, λ3 being always ≤ 1 for 
re-entrant corners (that is, for 2α = 0 ÷ π), while λ2 ≤ 1 for 2α = 0 ÷ 0.57 π, e.g., 102.6° 
(Figure 3.28 – Lazzarin et al., 2004). Therefore, all the three fracture modes are actually 
singular for re-entrant sharp notches (that is, λi –  1 < 0 and thus σij → ∞ for r → 0), even 
though in-plane shear stresses can be non-singular for shallow corners (2α > 102.6°). 
In this regard, the condition of sharp crack can be regarded as a particular case of re-
entrant corner having 2α = 0. Uncoincidentally, all Williams’ eigenvalues approach 0.5 
for null opening angle, returning the σij ∝ r –1/2 proportionality already discovered by 
Irwin (1956). Contrariwise, for 2α > 0, stresses σij at the notch tip still tend to an infinite 
value, although with a smaller degree of singularity (λM – 1 > – 0.5). 
Intuitively, as for the case of cracks, also stresses around a pointed V-notch can be 
expressed in polar coordinates in function of r, θ and a proper notch-stress intensity 
factor for the relevant fracture Mode (N-SIF or KN

M – Radaj & Vormwald, 2013), i.e., 
as follows (Equation 3.50 & Figure 3.29): 
 

 
Figure 3.28 Williams’ eigenvalues λi for re-entrant notches (Lazzarin et al., 2004; adapted from Radaj 
& Vormwald, 2013 and Anderson, 2017). 
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σij(r, θ) = 
KM

N

√2π
 r λM - 1 fij

(M)(θ) (3.50) 

Therefore, the three N-SIFs KN
M may be estimated based on the above stress components 

considering the limit values for r → 0 (Equation 3.51 – Gross & Mendelson, 1972): 

KM
N  = lim

r, θ → 0
 

σij(r, θ)

fij
(M)(θ)

 √2π r1 - λM (3.51) 

In analogy with assumptions made for sharp cracks, fracture behaviour of notched 
components can be addressed by considering critical N-SIF values KN

MC associated to 
failure, with them being function not only of the base material but also of the notch 
geometry (Anderson, 2017).  
As for the fatigue performance of notched components, a conceptual extension of 
Basquin’s formula can be conveniently used to estimate N* depending on the relevant 
value of N-SIF (Equation 3.52). For example, this approach was successfully applied by 
Lazzarin & Tovo (1998) to fillet-welded transverse steel joints under tensile loading. 

N*= C ൫∆KM
N ൯

 - m
 ↔ log N* = log C - m log ∆KM

N  (3.52) 

An equivalent option is represented by the definition of the fatigue notch factor Kf, i.e. 
the ratio among the COLs for a smooth and a notched specimen, respectively (Radaj & 
Vormwald, 2013). Considering the simplest case of uniaxial fatigue, Kf can be related to 
KN

I by means of a material depending notch sensitivity factor q > 0 (Equation 3.53): 

Kf = 
∆σL

∆σL,notch
= 1 + q (KI

N - 1) (3.53) 

Accordingly, a given material has no sensitivity to notch effect for q = 0. Typically, for 
mild steels and aluminium alloys, q increases with UTS. Recommended values can be 
e.g. found in Schijve (2009). Fatigue performance of notched components can be hence 
assessed by amplifying Kf times the nominal stress range Δσ and using relevant S-N 
curves (Radaj & Vormwald, 2013). 
Notably, as it descends from Equation 3.51, measure units for N-SIFs are not univocal, 
but they rather depend on the notch-stress degree of singularity; that is, [F L– (1 + λM)].  
 

 
Figure 3.29 Local stress field at the notch tip in polar coordinates (adapted from Anderson, 2017). 
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Therefore, comparing the fatigue and fracture performance of notched specimens 
featuring different opening angles is somewhat difficult, as non-consistent measure units 
will be involved. This issue is usually overcome by normalizing N-SIFs with respect to 

r1 - λM for a conventional value of r (Anderson, 2017). 
Moreover, the introduction of mixed Modes fracture criteria become quite complex 
(Radaj & Vormwald, 2013). Indeed, even for the same specimen the N-SIFs related to 
each Mode are proportional to different William’s eigenvalues (that is, generally 
speaking, λ1 ≠ λ2 ≠ λ3 for a given value of 2α, see Figure 3.28).  
As stated earlier, such incongruences related to i) experimental against theoretical values 
of Kf, ii) N-SIF comparability and iii) addressment of mixed Mode fracture notably lead 
to the development of the SED method, which elegantly overcomes these issues 
(Lazzarin & Zambardi, 2001). 
Finally, it is worth remarking that N-SIF approach has been further extended to deal with 
different configurations of weakened components, namely rounded (or blunt) V notches, 
U-notches or keyholes (Lazzarin & Tovo, 1998).  
Notch rounding substantially changes the stresses at the notch tip, as the stress 
singularity is removed for a notch radius ρ > 0 (Radaj & Vormwald, 2013). Nevertheless, 
similar stress field expressions as respect to Equation 3.50 can be analytically derived 
for blunt notches, with σij being governed by generalised N-SIFs KN

Mρ, which are in turn 
depending on ρ. Formulations for KN

Mρ can be found in literature with respect to many 
relevant cases, and they all reduce to “standard” N-SIFs for the limit case of ρ = 0 
(Lazzarin & Tovo, 1998). 
For the sake of brevity, stress analysis addressed through generalised N-SIFs is not 
reported in this Section. However, blunt notches will be addressed in detail within the 
framework of SED method, in order to provide the required theoretical background for 
i) the fatigue assessment of blunt-V notched specimens of mild steel (Chapter 6) and ii) 
the fatigue analyses of hot-driven riveted connections, which will be carried out based 
on SED method application to U-notches. 

32. 3.4.2 Strain Energy Density (SED) Method 

Lazzarin & Zambardi (2001) first noticed that applying N-SIF approach to fatigue 
analysis would lead in many cases to the prediction of a higher fatigue strength than the 
value obtained by simply dividing the fatigue limit of a plain specimen by the theoretical 
value of KN

M (that is, for 0 ≤ q ≤ 1, see Equation 3.53).  
This suggested that fatigue failure of notched components was not governed by the notch 
stress, but rather by a mean stress averaged over a finite neighbourhood centred at the 
notch tip (Lazzarin & Zambardi; 2001). The Authors elegantly dealt with this aspect and 
with all the limitations of the N-SIF approach by means of an energetic formulation.  
Accordingly, an energetic, stress-related parameter was introduced to describe fatigue 
and fracture behaviour of notched components, i.e., the averaged strain energy density 
(ASED, hence also referred as Wഥ ) over a control volume ΩSED centred at (or nearby) the 
notch tip (Equation 3.54 & Figure 3.30 – Lazzarin & Zambardi; 2001; Berto & Lazzarin, 
2009, 2014; Lazzarin et al., 2010): 

Wഥ  =
1

ΩSED
න σij dεij = 

1

2

σij εij

ΩSED
 = 

1

2

εij

0

(σθθ εθθ + σrr εrr + σzz εzz + τrθ γrθ)

ΩSED
  (3.54) 

with εij being the notch strain components.  
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Range of validity for Equation 3.54 includes linear elastic materials exhibiting brittle or 
quasi-brittle failure (Berto & Lazzarin, 2014). Shape and size of the control volume ΩSED 
were determined based on theoretical considerations related to the stress distribution 
around the notch tip. Accordingly, for the relevant case of plain stresses and plain strains, 
ΩSED is shaped as follows depending on the notch opening angle 2α and on the notch 
radius ρ (Berto & Lazzarin, 2014): 

 In case of sharp V-notches and cracks, the control volume has a circular sector 
footprint centred at the notch tip, sweeping an angle 2π - 2α and having radius 
R0 (Figure 3.30a-b); 

 In case of blunt V- or U-notches in Mode I loading, the control volume has a 
crescent moon footprint, aligned with the notch bisector and having maximum 
depth R0. ΩSED is given by the intersection between the component and a 
cylinder of radius r + R0, where r = ρ(π - 2α)/(2π - 2α) (Figure 3.30c-d); 

 In case of blunt V- or U-notches in Mode II or mixed Mode loading, the 
control volume is identical to Mode I, yet aligned with a segment containing 
the notch centre N and the point S where the maximum principal stress is 
attained (Figure 3.30e-f). 
 

  
a) b) 

  
c) d) 

  
e) f) 

Figure 3.30 Shape and size of control volume ΩSED for ASED calculations: sharp V-notches and cracks 
(a-b), blunt V- and U-notches under Mode I loading (c-d), blunt V- and U-notches under mixed Mode 
loading (e-f) (Berto & Lazzarin, 2014). 
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The control volume radius R0 is intended as a material parameter independent on the 
notch geometry, although it is affected by the nature of applied stress field (e.g., plain 
stress or plain strain conditions – Berto & Lazzarin, 2014). Therefore, convenient limit 
conditions can be used to infer its value (e.g., sharp cracks for which 2α = 0). 
Accordingly, for monotonic Mode I fracture, R0 can be related to the material UTS and 
fracture toughness KIC as follows (Equation 3.55 – Lazzarin & Zambardi, 2001): 

R0 = 
I1(γ = π)

π
 ቆ

KIC

fu
ቇ

2

 (3.55) 

where I1 is the opening-angle depending elastic integral and γ = π – α. I1 values for 
varying γ were numerically derived by  Lazzarin & Zambardi (2001), which proposed 
quadratic interpolating functions depending on 2α. However, for the relevant case of 
sharp cracks in plane stresses/strains conditions, elegant expressions for I1(π), and thus 
for R0, have been derived by Yoshibash (2004) (Equation 3.56a-b): 

Plain stresses:   R0 = 
5 - 3 ν

4π
 ቆ

KIC

fu
ቇ

2

 (3.56a) 

Plain strains:   R0 = 
(1 + ν) (5 - 8 ν)

4π
 ቆ

KIC

fu
ቇ

2

 (3.56b) 

In monotonic conditions, fracture is predicted to occur when a critical ASED value Wഥ C 
is attained. For an ideally elastic, isotropic and brittle material, critical ASED can be 
estimated directly as follows (Equation 3.57 – Berto & Lazzarin, 2014): 

Wഥ  = Wഥ C = 
fu
2

2E
 → Failure (3.57) 

As for the relevant case of fatigue collapse, SED method can be successfully applied by 
introducing the ASED range ΔWഥ  = Wഥ max - Wഥ min as a fracture indicator (Radaj & 
Vormwald, 2013). To this end, Basquin’s formula can be conveniently expressed in 
terms of ΔWഥ  as follows (Equation 3.58 – Berto & Lazzarin, 2014): 

N*= C (∆Wഥ ) - m ↔ log N* = log C - m log ∆Wഥ  (3.58) 

In cyclic Mode I conditions, R0 can be conveniently estimated by replacing KIC with the 
endurable N-SIF range ΔKN

E for a proper value of N* (usually NC = 2 ∙ 106)  and the 
material UTS with the fatigue strength ΔσE of a smooth specimen for the same N*, e.g., 
the detail class ΔσC if N* = NC is assumed (Equation 3.59 – Lazzarin & Zambardi, 2001): 

R0 = ቈ
∆𝐾ா

ே

𝑓ଵ(2𝛼) ∆𝜎ா


1
1 - λ1

 (3.59) 

with f1(2α) being a dimensionless function of the notch opening angle. f1 values for 
varying 2α based on FEAs can be found in Lazzarin & Zambardi (2001). 
Equation 3.59 suggests that the control volume size is, on principle, different for the 
same material under monotonic and cyclic conditions. However, as suggested by 
Lazzarin et al. (2004) when investigating welded steel joints, only minor differences in 
terms of fatigue predictions are obtained for different values of R0, provided that Mode 
II stresses (if present) are non singular. 
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Therefore, a preliminary investigation of fatigue performance of components can be 
made by estimating the control volume radius R0 according to Equation 3.56a-b. 
Fatigue analysis through ΔWഥ  parameter was successfully applied to a bulk of more than 
900 experimental tests on fillet welded cruciform joints, both made of steel and 
aluminium (Figure 3.31 – Livieri & Lazzarin, 2005). 
 

 
Figure 3.31 Validation of the SED method for the fatigue analysis of welded steel and aluminium joints 
(adapted from Livieri & Lazzarin, 2005). 

It is worth mentioning that, differently from standard conditions for fatigue analyses 
(e.g., referring to fully-reversal loading, R = -1), ASED fatigue approach assumes zero-
to-tension loading as a reference condition, i.e., R = 0 (Radaj & Vormwald, 2013). 
Nevertheless, mean-stress effect can be explicitly accounted for by means of a non-
dimensional prestress coefficient cw depending on the stress ratio as follows (Equation 
3.60a-b – Lazzarin et al., 2004): 

∆Wഥ (R ≠ 0) = cw ∆Wഥ (R = 0) (3.60a) 

cw = 
1 - sign(R) R2

(1 - R)2  (3.60b) 

cw can be graphically regarded as the ratio among the areas underlying stress-strain 
curves (that is, ∆Wഥ ), bounded by the same stress range Δσ but for R ≠ 0 and R = 0, 
respectively (Figure 3.32 – Lazzarin et al., 2004)   
 

 
Figure 3.32 Graphical interpretation and relevant values of the prestress coefficient cw against the stress 
ratio R (adapted from Lazzarin et al., 2004). 
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Notably, Equation 3.60b yields cw = 1 for zero-to-tension loading (R = 0) and cw = 0.5 
for fully-reversal loading (R = –1). 
Several closed forms for ASED estimations have been developed up to present time for 
both sharp and blunt notches. Some relevant expressions for plain stresses/strains Mode 
I conditions are reported in the following, as they can serve as an useful tool of 
comparison for more complex cases (Equation 3.61a-c – Berto & Lazzarin, 2014): 

Sharp notches (ρ = 0, 2α ≥ 0):   Wഥ  = 
e1(2α)

E
ቀKI

N R0
λ1 - 1

ቁ
2
 (3.61a) 

Blunt V-notches (ρ > 0, 2α > 0):   Wഥ  = 
F(2α) H ቀ2α,

R0
ρ , νቁ

E
 σmax

2  
(3.61b) 

U-Notches (ρ > 0, 2α = 0):   Wഥ  = 
 H ቀ

R0
ρ , νቁ

E
 
 π σmax

2

4
 

(3.61c) 

with e1(2α), F(2α), H(2α, R0/ρ, ν) being dimensionless functions of the notch opening 
angle and, as for H, the control volume radius, the notch radius and the material 
Poisson’s ratio ν. 
Remarkably, ASED for sharp notches has to be expressed in terms of the relevant N-SIF 
due to stress singularity, while for blunt notches Wഥ  can be directly related to the 
maximum (finite) stress at the notch tip σmax. Moreover, as U-notches can be regarded 
as a particular case of blunt V-notches having 2α = 0, the simplified expression reported 
in Equation 3.61c can be used, as F(2α = 0) = π/4 and the dependence of H on 2α is 
removed (Radaj & Vormwald, 2013). 
Values of the above functions are reported in Table 3.2 for the relevant case of steel, i.e., 
for ν = 0.3 (Berto & Lazzarin, 2014). 
 
Table 3.2 Values of e1(2α), F(2α) and H(2α, R0/ρ, ν = 0.3) functions for different configurations of steel 
notches (Berto & Lazzarin, 2014). 

2α [°] e1 [-] F [-] 
H (ν = 0.3) [-] 

R0/ρ = 0.01 R0/ρ = 0.1 R0/ρ = 1 

0 0.1330 0.7850 0.5638 0.4518 0.1314 
45 0.1498 0.6692 0.6609 0.5264 0.1447 
90 0.1449 0.7049 0.629 0.4955 0.1328 

135 0.1182 1.0717 0.4114 0.3206 0.1037 

 

3.5. Application of fatigue analysis techniques for 
hot-driven riveted connections 

Presented formulations for the fatigue analysis of structural components can be suitably 
applied to the relevant case of hot-driven riveted connections.   
In the present work, an appropriate procedure is introduced to provide design charts for 
the fatigue assessment of hot-driven riveted connections, namely based on both nominal 
stress method and SED method (Figure 3.33). 
The control volume radius R0 for the application of the SED method is conveniently 
estimated based on experimental activities and further results drawn from literature with 
reference to historic steels. Indeed, as stated in the previous Section, R0 does not depend 
on the specimen geometry, but it is rather a base material parameter. 
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Figure 3.33 Adopted two stages procedure for the definition of design charts devoted to the fatigue 
analysis of hot-driven riveted connections. 

The applicability of SED method with reference to blunt notched components made of 
mild steels is further investigated in Chapter 6. The influence of high stress ratios (R ≥ 
0.7) is also investigated to ensure that randomness of clamping actions will not invalidate 
the reliability of results. 
In Stage II, fatigue analysis of hot-driven riveted connections is performed. Mean stress 
effect is suitably accounted for by means of corrective models reported in Section 3.3.4 
(stress-life methods) and Section 3.3.7 (strain-life methods). 
For this purpose, a dedicated sensitivity analysis for clamping actions is preliminarily 
performed owing to their intrinsic variability (Leonetti et al., 2020). 
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Within the framework of modified nominal stress methods, a Δσ correction proposed by 
Maljaars & Euler (2021) is also used as a comparing tool. Notably, this correction will 
be featured in the next version of European fatigue provisions, which is only available 
in form of an under review draft at present time (prEN1993:1-9-2020 – CEN, 2020). 
According to the Authors, Δσmod should be estimated as follows (Equation 3.62a-b): 

Δσmod = kmod ∆σnet = kmod
w

w - d0
∆σ (3.62a) 

kmod = a + ൬b - c
d0

w
൰

3

 (3.62b) 

 

with a, b, c being calibrated non-dimensional parameters depending on the number of 
fasters rows. Suggested values are reported in Table 3.3. 
 
Table 3.3 Suggested values of a, b, c for fatigue assessment of non-preloaded fitted bolted connections 
(CEN, 2020; Maljaars & Euler, 2021). 

Number of rivet rows a [-] b [-] c [-] 
1 1.0 1.6 2.7 
2 1.0 1.3 2.2 

≥ 3 1.0 1.1 1.8 

 
It is worth remarking that Equation 3.62a-b has not been originally formulated by 
Maljaars & Euler (2021) as respect to hot-driven assemblies. Indeed, the Authors 
derived the above formulation for non-preloaded fitted bolts, proposing a detail class 
ΔσC = 71 N/mm2. Nonetheless, geometries for hot-driven riveted and fitted bolted joints 
are quite similar due to hammering-induced shank dilatation (D’Aniello et al., 2011).  
Moreover, as clamping action cannot be reliably controlled in hot-driven riveted 
connections (Leonetti et al., 2020), a further analogy can be established with non-
preloaded bolts. 
Comparison of experimental results with Equation 3.62a-b can provide an useful insight 
about the effect of hot-driving on the fatigue performance of riveted details, as the above 
detail class was derived with respect to connections unaffected by any thermo-
mechanical manufacturing process. 
As for the application of SED method to hot-driven assemblies, perforated plates can be 
conveniently addressed with the theory of U-notches (Figure 3.34). 
Refined parametrical FEAs are performed to account for possible alterations of the 
control volume due to hot-driving. Indeed, realistic values of R0 for mild steels are in the 
range 0.2 ÷ 1.0 mm (Radaj & Vormwald, 2013), therefore ΩSED is always included in the 
hot-driven affected zone (that is, the projection of the rivet field head on the perforated 
plate). 
Finally, in order to provide handy design charts devoted to the fatigue assessment of hot-
driven riveted connections, SED results can be also reduced to a stress-based 
formulation. Indeed, by manipulating Equations 3.60-3.61 an equivalent, SED-based 
stress magnification factor (SMFeq,SED) can be introduced to account for connections 
geometry and mechanical features (Equation 3.63a-b): 
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Figure 3.34 Application of SED method to hot-driven riveted connections. 

 

∆Wഥ  = cw
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ρ ቁ

E
 
 π ∆σtip

2

4
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2E
 

(3.63a) 

SMFeq,SED =ඨ
2E

cw
 ∆Wഥ  

1

∆σ
 (3.63b) 

Values of ΔWഥ  and SMFeq,SED can be conveniently estimated by means of free mesh 
FEAs. Indeed, as shown by Lazzarin et al., 2010 and Foti et al., 2020, the Finite Element 
Method is a potent tool to perform ASED calculations. 
Common finite elements (e.g. solid bricks, either 8-node linear or 20-node quadratic 
ones) feature displacement-based formulations (Cook, 1995). Therefore, calculated 
stresses (i.e., recollected in a stresses vector σ) are strongly mesh-sensitive, as they are 
estimated based on the following quantities, namely (Equation 3.64):  

 the vector of global nodal displacements d; 

 the displacement vector u(x), which collects interpolated displacements for any 
given point x within the element; 

 the strain vector ε(x) which collects interpolated strains for any given point x 
within the element; 

 the constitutive matrix C, that is, a square matrix describing the constitutive 
material behaviour. For the simplest and relevant case of elastic isotropic 
material, C only involves constant quantities expressed in terms of E and ν;  

 the strain-displacement matrix B(x), that is, a square matrix containing space 
derivatives of shape functions Ni(x), which are in turn recollected in the shape 
functions interpolating matrix N(x). 

u(x) = N(x) d (3.64a) 

ε(x) =
du(x)

dx
=

dN(x)

dx
 d = B(x) d (3.64b) 

σ(x) = C ε(x) = C B(x) d (3.64c) 
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Therefore, stress (and strain) estimation accuracy outside integration points ultimately 
depends on the nature of N(x), and hence on the ability of shape functions to simulate 
complex displacements, strains and stresses fields (Cook, 1995). 
However, shape functions degree is bounded to be equal to the number of DOFs of the 
finite element in order to preserve N(x) invertibility, i.e., a condition required to provide 
a solution of the FE problem. Therefore, stress and strain estimation accuracy is 
intrinsically limited by the nature of the finite element and further penalized by the 
derivative introduced in Equation 3.64b, which lowers the degree of functions dNi(x)/dx 
collected in the B(x) matrix (Cook, 1995). 
Contrariwise, Lazzarin et al., (2010) proved how averaged strain energy density is 
directly estimated based on the vector of nodal displacements. Indeed, if ASED 
definition is transposed in the framework of FEM, the following expressions hold true 
(Equation 3.65 – Lazzarin et al., 2010): 

W(x) =
1

2
εT(x) σ(x) =

1

2
dTBT(x) C B(x) d (3.65a) 

Wഥ =
1

ΩSED
න W dV

ΩSED

=
1

2ΩSED
dTK d (3.65b) 

𝑲 =  න BT(x) C B(x) dV
FE

  (3.65c) 

where W(x) is the SED estimated on a given point x of the finite element and K is the 
so-called stiffness matrix of the FE (Cook, 1995). 
Therefore, significantly coarser meshes can be used for ASED calculations with respect 
to stresses, as nodal displacement values are “exact” quantities (Cook, 1995). 
Lazzarin et al. (2010) originally suggested a control volume-based FEM application of 
the SED method; that is, the Authors partitioned components in order to separate ΩSED 
from the rest of the FE model. Accordingly, finite elements could be refined only within 
ΩSED, while a very coarse mesh could be adopted elsewhere. The Authors successfully 
proved how this technique would result in negligible errors (≤ 5%) with respect to 
theoretical ASED values. 
However, this control volume-based FEM application reveals two major drawbacks 
when applied to blunt notched components, namely i) the necessity of performing two 
separate FEAs if the control volume centre is unknown (e.g., in case of mixed Mode 
loading) and ii) the difficulty in performing wide parametrical analyses, as the control 
volume needs to be partitioned and re-meshed several times. These issues were both 
overcome by developing and validating a free mesh FEM application of the SED method. 
As demonstrated by Foti et al. (2020), if free mesh (i.e., with no partitioned control 
volume) is adopted, accurate ASED estimations can be still achieved, provided that i) 
quadratic solid or shell elements are used and ii) the mesh size in the neighbourhood of 
the notch tip is smaller or equal than R0/4.  
If both conditions are met, the control volume can a-posteriori approximated with a 
cylindric selection command (Dassault, 2014), and Wഥ  can be estimated by considering 
the total strain energy and the volume of the sole picked elements, although the selection 
has jagged borders due to the lack of ΩSED partition (Figure 3.35 – Foti et al., 2020). 
This latter approach is followed in the present thesis work, in order to allow performing 
the aforementioned parametrical analyses on the value of R0 for hot-driven plates. 
Accordingly, the minimum mesh size will be selected equal to 1/4 of the minimum 
assumed control volume radius R0,min. 
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Figure 3.35 Comparison among control volume-based and free mesh FEM SED calculations for blunt 
notches under mixed Mode loading (adapted from Foti et al., 2020). 
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4. Experimental Activities 
The present Chapter provides a detailed description of performed experimental activities 
devoted to the static and fatigue performance of mild steel components and assembled 
hot-driven riveted connections. 
For instance, the following test campaigns and relevant experimental results are 
presented in the following Sections: i) static and fatigue tests on mild steel blunt V-
notched specimens (Section 4.1), ii) static tests on hot-driven riveted connections 
(Section 4.2) and iii) fatigue tests on hot-driven riveted connections (Section 4.3). 

4.1. Experimental tests on mild steel blunt-V notched 
specimens  

33. 4.1.1 Generality 

The present Section summarizes the experimental activities carried out on the 
characterization of the fatigue behavior of blunt V-notched cylinders made of mild steel 
grade C45 (ISO 683-1, 2016). Experimental tests were performed with the aid of the 
Candidate during his visiting period at Norwegian University of Science and Technology 
(NTNU, Trondheim, Norway). 
In particular, the present experimental campaign aimed at i) investigating the validity of 
SED method for mild steel specimens and ii) assessing the cyclic behaviour of these 
specimens under high or very high stress ratios (R = 0.7 ÷ 0.9), in order to highlight the 
effect of these stress regimes on fatigue performance. 
Two different configurations of notched cylindrical specimens were used for the fatigue 
characterization of C45 steel, for a total of 35 (18 + 17) specimens. In particular, the two 
geometries differ in terms of the diameter of the minimum section, as reported in Table 
4.1. Geometrical features for investigated specimens are also depicted in Figure 4.1. 
parameters of these geometries.  
  

 
Figure 4.1 Geometrical features for the tested cylindrical notched specimens made of mild steel. 

Table 4.1 Geometrical features for the tested cylindrical notched specimens made of mild steel. 
 Configuration I Configuration II 

Outer diameter D [mm] 10.0 10.0 
Inner (minimum) diameter d [mm] 5.0 7.5 

Notch radius ρ [mm] 0.1 0.1 

Notch opening angle 2α [°] 60 60 

 

60°

1
0 5R0.1

D

2α

d
rρ
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The specimens characterized by the same geometry were all nominally identical and 
made of C45 steel, the nominal physical and mechanical properties of which, as 
prescribed by ISO 683-1 (2016), are summarized in Table 4.2. 
 
Table 4.2 Nominal physical and mechanical parameters of C45 steel (ISO 683-1, 2016). 

Steel d ≤ 16 mm 

C45 

Re,min Rm Amin Zmin KVb
min 

[N/mm2] [N/mm2] [%] [%] [J] 
490 700 ÷ 850 14 35 - 

16 mm ≤ d ≤ 40 mm 
Re,min Rm Amin Zmin KVb

min 
[N/mm2] [N/mm2] [%] [%] [J] 

430 650 ÷ 800 16 40 - 
40 mm ≤ d 

Re,min Rm Amin Zmin KVb
min 

[N/mm2] [N/mm2] [%] [%] [J] 
370 630 ÷ 780 17 45 - 

Re,min: 
Rm: 

Amin: 
Zmin: 

KVb
min:  

Minimum (granted) tensile resistance; 
Mean tensile resistance; 
Minimum elongation at failure; 
Minimum Z-quality (through thickness); 
Minimum impact energy. 

 

In the next Sections, the following key aspects related to performed experimental 
activities are addressed, namely: 

 Experimental test plan; 
 Summary of the results of the tests conducted; 

 Issues encountered during the experimental campaign; 

 Statistical characterization and preliminary interpretation of results. 

34. 4.1.1 Plan for Experimental Tests 

Specimens were tested using the Universal Machine Instron 8850 Axial-Torsion System, 
which is located in the NTNU Fatigue Lab under the supervision of the Mechanical 
Engineering Department (MTP).  
Instron 8850 features a servo-hydraulic dynamic test system and a combined 
axial/torsional actuator having a maximum capacity of ±100 kN/ ±1000 Nm (Figure 4.2).  
Compatibly with the characteristics of the base material, a constant test frequency ftest = 
30 Hz was assumed for all fatigue tests. 
The plan for the experimental campaign was defined in order to provide results as robust 
and distributed as possible in the ranges of cycles at failure N* of interest for engineering 
applications (that is, N* ≤ 100’000 cycles, 100’000 cycles < N* ≤ 1’000’000 cycles, N 
> 1’000’000 cycles – Schijve, 2009).  
As mentioned, one of the key aims of this experimental campaign was to investigate the 
effect of very high stress ratios R on the fatigue performance of mild steels. For this 
purpose, three different values of R = 0.7, 0.8, 0.9 were therefore selected for the tests. 
Compatibly with base material UTS, identical stress ranges Δσ were assumed (whenever 
possible) for varying values of R, in order to properly isolate the influence of mean-
stress effect. 
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a) c) 

 

Figure 4.2 Experimental tests on mild steel blunt V-notched cylinders: a) Servo-hydraulic Universal 
Machine Instron 8850, b) specimen with d = 5 mm and c) specimen with d = 10 mm. 

A large number of specimens (18 + 17) was tested with the aim to (at least) double results 
for given values of R and Δσ, so as to allow a robust estimation of results scatter and 
thus to minimize statistical errors (Schijve, 2009).  
The stress ranges Δσ of concern were determined based on a preliminary characterization 
of the static properties of the specimens. Accordingly, subsequent fatigue tests were 
performed assuming aliquots of the ultimate load compliant with the desired number of 
cycles at failure N*.  
It is worth remarking that the choice of stress ranges Δσ was characterized by a certain 
degree of iteration, insofar as the preliminary results related to a small number of 
specimens were used to predict the outcomes of subsequent tests, thus optimizing the 
entire experimental campaign. 
An appropriate labelling was also defined for all the performed tests, i.e., univocally 
summarizing the main test parameters for each specimen, namely: 
 
Fatigue Tests 
Labelling “FAABBCC” with: 
F = Fatigue test (i.e., load-controlled, composed by an initial ramp up to the mean stress 
σm and by a superimposed constant-amplitude, sinusoidal wave with range Δσ); 
AA = 50 or 75 in reference to the minimum diameter d of the notched section; 
BB = 07, 08 or 09 with reference to the assumed stress ratio R; 
CC = 01, 02, etc... with reference to order of performed tests, i.e., increasing for multiple 
tests having the same minimum diameter d and stress ratio R. 
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Static Tests 
Labelling “TAACC” with: 
T = Monotonic tensile test (i.e., displacement-controlled, with a constant displacement 
rate equal to 2 mm/min in order to avoid strain-rate related effects – ASTM E8, 2010); 
AA = 50 or 75 in reference to the minimum diameter d of the notched section; 
CC = 01, 02, etc... with reference to order of performed tests, i.e., increasing for multiple 
tests having the same minimum diameter d. 
 
For the sake of clarity, the above nomenclature is hence always used within the present 
work to identify tested mild steel notched specimens. 
Table 4.3 summarizes the tests carried out according to the above indications. For the 
sake of simplicity, the load protocols are hence expressed in terms of test settings 
required by the Instron 8850 Universal Machine, that is,  the maximum and minimum 
applied forces (Fmax and Fmin, respectively) and force amplitudes A = (Fmax - Fmin)/2. 
 
Table 4.3 Summary of performed static and fatigue tests on C45 steel grade blunt notched cylinders. 

Label Test # d R Fmax Fmin A N* (expected) 

[-] [-] [mm] [-] [kN] [kN] [kN] [-] 

T5001 1 5 Tensile Test 

T5002 2 5 Tensile Test 

F500701 1 5 0.7 20.0 14.0 3.0 < 100'000 

F500702 2 5 0.7 13.3 9.3 2.0 1'000'000 ÷ 100'000 

F500703 3 5 0.7 6.6 4.6 1.0 > 1'000'000 

F500704 4 5 0.7 9.2 6.4 1.4 > 1'000'000 

F500705 5 5 0.7 10.8 7.6 1.6 1'000'000 ÷ 100'000 

F500706 6 5 0.7 13.3 9.3 2.0 1'000'000 ÷ 100'000 

F500707 7 5 0.7 9.2 6.4 1.4 > 1'000'000 

F500708 8 5 0.7 10.8 7.6 1.6 1'000'000 ÷ 100'000 

F500801 1 5 0.8 20.0 16.0 2.0 1'000'000 ÷ 100'000 

F500802 2 5 0.8 22.5 18.0 2.3 < 100'000 

F500803 3 5 0.8 11.0 8.8 1.1 > 1'000'000 

F500804 4 5 0.8 15.1 12.0 1.5 1'000'000 ÷ 100'000 

F500901 1 5 0.9 21.1 19.0 1.1 > 1'000'000 

F500902 2 5 0.9 23.0 20.7 1.2 1'000'000 ÷ 100'000 

F500903 3 5 0.9 24.0 21.6 1.2 1'000'000 ÷ 100'000 

F500904 4 5 0.9 18.8 16.9 0.9 > 1'000'000 

T7501 1 7.5 Tensile Test 

T7502 2 7.5 Tensile Test 

F750701 1 7.5 0.7 40.0 28.0 6.0 < 100'000 

F750702 2 7.5 0.7 32.8 23.0 4.9 1'000'000 ÷ 100'000 

F750703 3 7.5 0.7 22.0 15.4 3.3 1'000'000 ÷ 100'000 

F750704 4 7.5 0.7 40.0 28.0 6.0 < 100'000 

F750705 5 7.5 0.7 32.8 23.0 4.9 1'000'000 ÷ 100'000 
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F750801 1 7.5 0.8 38.8 31.0 3.9 1'000'000 ÷ 100'000 

F750802 2 7.5 0.8 40.0 32.0 4.0 1'000'000 ÷ 100'000 

F750803 3 7.5 0.8 21.3 17.0 2.1 > 1'000'000 

F750804 4 7.5 0.8 40.0 32.0 4.0 1'000'000 ÷ 100'000 

F750805 5 7.5 0.8 38.8 31.0 3.9 1'000'000 ÷ 100'000 

F750806 6 7.5 0.8 30.6 24.5 3.1 > 1'000'000 

F750901 1 7.5 0.9 44.0 39.6 2.2 > 1'000'000 

F750902 2 7.5 0.9 36.8 33.1 1.8 > 1'000'000 

F750903 3 7.5 0.9 46.0 41.4 2.3 1'000'000 ÷ 100'000 

F750904 4 7.5 0.9 45.0 40.5 2.3 1'000'000 ÷ 100'000 

 
According to the above tests plan, 18 specimens with a minimum cross-section d = 5 
mm were tested (2 static tests “T” + 16 fatigue tests “F”), while 17 specimens with a 
minimum cross-section d = 7.5 mm were tested instead (2 T + 15 F, Table 4.4).  
It is worth remarking that the present campaign figures as part of a wider experimental 
investigations aiming at characterizing the fatigue performance of mild steel notched 
cylinders, namely with the aim to assess the influence of circumferential stresses (“hoop 
stresses” – Irgens, 2008) on fatigue life. Therefore, 12 F50BBCC specimens and 13 
F75BBCC specimens are still being tested at present time as a complement for such 
investigation. To this end, preliminary numerical findings related to hoop stresses in 
blunt notched cylinders are reported in Chapter 6. 
 
Table 4.4 Summary of tested and available blunt notched cylindrical specimens made of C45 steel. 

Minimum  
diameter d [mm] 

Tested  
specimens 

Available 
specimens 

5 
T 

F 
12 R = 0.7 R = 0.8 R = 0.9 

2 8 4 4 
Total 18 30 

7.5 
T 

F 
13 R = 0.7 R = 0.8 R = 0.9 

2 5 6 4 
Total 17 30 

 

35. 4.1.2 Experimental Tests Results 

As stated earlier, a total of 2 + 2 = 4 static tests were preliminarily performed on both 
configurations of notched specimens in order to provide an upper boundary to fatigue 
load protocols. Static tests results are summarized in Table 4.5 and Figure 4.3, 
respectively.  
 
Table 4.5 Summary of static tests on notched specimens. 

Minimum  
diameter d [mm] 

Ultimate Load 
Fu [kN] 

Ultimate Eng. Stress 
σu [N/mm2] 

5 
T1 T2 Avg. T1 T2 Avg. 

24.9 26.1 25.5 1265.7 1330.5 1298.1 

7.5 
T1 T2 Avg. T1 T2 Avg. 

47.7 48.8 48.1 1070.2 1105.6 1087.9 
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a) b) 

  
c) d) 

 

Figure 4.3 Static tests results: a) T50CC and b) T75CC. 

For the sake of clarity, the monotonic response of specimens in expressed both in terms 
of Force-Displacement (F-Δ, Figure 4.3a-c) and Engineering stress-strain (σ-ε, Figure 
4.3b-d) curves, with the latter parameter being normalized as respect to the engineering 
fracture strain εmax. 
It is worth noting that the ultimate engineering stresses σu are intended as nominal 
quantities referred to the minimum cross-section of the notched specimens (that is, 
Amin,T50CC =  19.6 mm2 and Amin,T750CC = 44.2 mm2, respectively). Accordingly, σu values 
were estimated as follows (Equation 4.1): 

σu = 
4 Fu

π d2 (4.1) 

As expected, both specimens show a significant notch effect (Anderson, 2017), which is 
stronger in the case of a smaller minimum cross-section. Namely, the maximum nominal 
stresses on the notched cross-section are equal, on average, to 1.66 (T500CC) and 1.40 
(T750CC) times the ultimate tensile strength fu for smooth specimens (779 N/mm2). 
Additionally, a fictious “embrittlement” of specimens is observed owing to stress 
concentrations at the notch tip. Both effects are less pronounced in T750CC specimens 
as the notch depth (D – d)/2 is smaller (Anderson, 2017). 
Nevertheless, an amount of ductility was preserved by both specimens, as noticeable 
both from engineering σ-ε curves and fracture surfaces, on which some traces of necking 
can be appreciated, i.e., mostly for specimens with d = 7.5 mm (Figure 4.4).  
As for high stress ratio fatigue tests, relevant results are summarized in Table 4.6 and 
Figure 4.4a-b (Wohler diagrams), respectively. 
For instance, nominal stress ranges Δσ referred to the net cross-section (that is, estimated 
according to Equation 4.1 by replacing Fu with ΔF) are reported against the experimental 
number of cycles at failure N*. In this preliminary phase, no correction is applied to 
stress ranges to account for mean-stress effect. 
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a) b) 

Figure 4.4 Macroscopical fracture surfaces for statically tested specimens: a) T5001 and b) T7501. 

Therefore, mean Wohler curves for different values of d and R are separately depicted 
(d = 5 mm: Figure 4.5a, d = 7.5 mm: Figure 4.5b; R = 0.7: black points and dotted curves, 
R = 0.8, grey points and dotted curves, R = 0.9: red points and dotted curves). 
Each nominal, mean S-N curve was derived adopting a logarithmic regression model 
corrected by means of Liebermann’s beta coefficients βL (see Section 4.4.4 for further 
details – Liebermann, 1957). 
In order to avoid overly time-consuming tests for specimens loaded below the CAFL 
(unknown), a runout value for the number of loading cycles Nmax = 2 · 106 was initially 
set. Nevertheless, in some cases specimens were tested for a number of cycles beyond 
Nmax to attempt at identifying the CAFL within the experimental campaign. For the sake 
of clarity, specimens resulting in a runout are highlighted in grey in Table 4.6. 
 
Table 4.6 Summary of fatigue tests on notched specimens. 

Label R Fmax Fmin A Δσ σm σmax N* Remarks 

[-] [-] [kN] [kN] [kN] [N/mm2] [N/mm2] [N/mm2] [-] [-] 

F500701 0.7 20.0 14.0 3.0 305.6 865.8 1018.6 39311  

F500702 0.7 13.3 9.3 2.0 203.2 575.8 677.4 149099  

F500703 0.7 6.6 4.6 1.0 100.8 285.7 336.1 2174000 Runout 

F500704 0.7 9.2 6.4 1.4 140.0 396.5 466.5 2467119  

F500705 0.7 10.8 7.6 1.6 165.0 467.4 549.9 724228  

F500706 0.7 13.3 9.3 2.0 203.2 575.8 677.4 139981  

F500707 0.7 9.2 6.4 1.4 140.0 396.5 466.5 1475944  

F500708 0.7 10.8 7.6 1.6 165.0 467.5 550.0 385254   

F500801 0.8 20.0 16.0 2.0 203.7 916.7 1018.6 157354  

F500802 0.8 22.5 18.0 2.3 229.2 1031.3 1145.9 96466  

F500803 0.8 11.0 8.8 1.1 112.0 504.2 560.2 1.4E+07  

F500804 0.8 15.1 12.0 1.5 153.3 689.8 766.5 546636   

F500901 0.9 21.1 19.0 1.1 107.5 1020.9 1074.6 2761807  

F500902 0.9 23.0 20.7 1.2 117.1 1112.8 1171.4 632017  

F500903 0.9 24.0 21.6 1.2 122.2 1161.2 1222.3 248212  

F500904 0.9 18.8 16.9 0.9 95.6 908.6 956.5 2358780 Runout 

F750701 0.7 40.0 28.0 6.0 271.6 769.6 905.4 61511  

F750702 0.7 32.8 23.0 4.9 223.0 631.8 743.3 120135  

F750703 0.7 22.0 15.4 3.3 149.4 423.3 498.0 492223  

F750704 0.7 40.0 28.0 6.0 271.6 769.6 905.4 40583  

F750705 0.7 32.8 23.0 4.9 223.0 631.8 743.3 120185   
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F750801 0.8 38.8 31.0 3.9 175.7 790.4 878.3 234940  

F750802 0.8 40.0 32.0 4.0 181.1 814.9 905.4 175440  

F750803 0.8 21.3 17.0 2.1 96.4 433.9 482.1 2600000 Runout 

F750804 0.8 40.0 32.0 4.0 181.1 814.9 905.4 146227  

F750805 0.8 38.8 31.0 3.9 175.7 790.4 878.3 185495  

F750806 0.8 30.6 24.5 3.1 138.5 623.4 692.6 514254  

F750901 0.9 44.0 39.6 2.2 99.6 946.2 996.0 1053000  

F750902 0.9 36.8 33.1 1.8 83.3 791.3 833.0 7470000 Runout 

F750903 0.9 46.0 41.4 2.3 104.1 989.2 1041.2 632581  

F750904 0.9 45.0 40.5 2.3 101.9 967.7 1018.6 744442   

 

 
a) 

 
b) 

Figure 4.5 Mean nominal S-N curves for tested blunt notched components: a) F50BBCC and b) 
F75BBCC specimens. Stress ranges are nominally referred to the minimum cross-section, while runouts 
are labelled with an arrow. 
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On one hand, it can be clearly observed that the specimens failing for different stress 
ratio R are arranged on narrow, yet separate bands, namely characterized by decreasing 
slope mR with increasing R. This result is consistent with observations reported in Schijve 
(2009) for mild steels. On the other hand, with R being the same, the behavior of the 
specimens having different geometry is rather similar. 

36. 4.1.3 Experimental Tests Issues 

The performed experimental campaign revealed some critical issues when carrying out 
constant-amplitude fatigue tests. 
On one hand, with reference to FAA09CC tests, the adoption of such high value of R = 
0.9 leads to a premature achievement of the specimens tensile strength for rather low 
nominal stress ranges (Δσmax,F5009CC = 129.8 N/mm2  and Δσmax,F7509CC = 108.7 N/mm2

, 
respectively).  
This outcome, together with the observed significant flattening of the S-N curves for 
increasing R values (Figure 4.5a-b, red points and dotted curves), has determined in fact 
i) the impossibility of testing such specimens in the range of cycles N < 100’000 and ii) 
a poor governability of the results, as minimal variations of Δσ have been accompanied 
by important variations in the observed number of cycles at failure N*. 
On the other hand, in the preliminary design of the experimental campaign plan, the 
recommended value of clamping action for preloaded bolts according to EN1993:1-8 
provisions (e.g., 0.7 times their tensile resistance FT,Rd – CEN, 2005b) was initially 
thought of as a reference value. 
Indeed, the threaded shank of a preloaded bolt can be suitably assimilated to a blunt V-
notched cylinder, and it will be subjected to a mean force close to 0.7 FT,Rd when 
subjected to cyclic axial loads (e.g. if it is part of a T-stub joint – Tartaglia et al., 2020). 
Therefore, a suitable load protocol for tested specimens could have involved the 
reference value Fref = 0.7 Fu as Fmin, Fmax or Fmean = (Fmax + Fmin)/2, respectively. 
However, some of the obtained protocols (e.g., in case of R = 0.7) proved to be 
incompatible with the static resistance of notched specimens. As a matter of fact, this 
issue remains unsolved if R ≤ 0.7 and Fref = Fmin are assumed as test parameters. 
As reported in Section 3.3.2¸fixing one of the above load parameters and the stress ratio 
R is sufficient to fully define a constant-amplitude fatigue protocol (Equation 3.23). 
Obtained protocols are reported in Table 4.7, with statically incompatible ones 
highlighted in red. 

 
Table 4.7 Constant-amplitude fatigue protocols derived assuming Fref as the minimum, mean or maximum 
applied force on notched specimens. Statically incompatible protocols are highlighted in red. 

Minimum 
diameter d [mm] 

Stress Ratio 
R [-] 

Fref 
[kN] 

Fmin 
[kN] 

Fmean 
[kN] 

Fmax 
[kN] 

5 

0.7 

17.9 

= Fmin 17.9 21.8 25.6 
= Fmean 14.7 17.9 21.1 
= Fmax 12.5 15.2 17.9 

0.8 
= Fmin 17.9 20.2 22.4 
= Fmean 15.9 17.9 19.9 
= Fmax 14.3 16.1 17.9 

0.9 
= Fmin 17.9 18.9 19.9 
= Fmean 17.0 17.9 18.8 
= Fmax 16.1 17.0 17.9 

7.5 0.7 33.7 
= Fmin 33.7 41.0 48.2 
= Fmean 27.7 33.7 39.7 
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= Fmax 23.5 28.6 33.7 

0.8 
= Fmin 33.7 38.0 42.2 
= Fmean 29.9 33.7 37.5 
= Fmax 26.9 30.3 33.7 

0.7 
= Fmin 33.7 35.6 37.5 
= Fmean 32.0 33.7 35.4 
= Fmax 30.3 32.0 33.7 

 

37. 4.1.4 Statistical Assessment and Preliminary Interpretation of Results 

Table 4.8 summarizes the statistical characterization of fatigue tests results in terms of: 
 Equivalent detail classes ΔσC,PS associated with a number of cycles at failure N 

= NC = 2 ∙ 106 for extreme and mean values of the considered confidence interval 
(that is, exceeding probability PS = 10% – 50% – 90%); 

 Inverse slopes m of logarithmic curves, assumed independent of the value of PS, 
compliantly with remarks reported in Section 3.3.9; 

 Coefficient of determination R2 for the mean curve; 

 Scatter ratio Tσ =  ΔσC,10/ΔσC,90. 
 
Table 4.8 Statistical characterization of experimental fatigue results. 

Minimum 
diameter  
d [mm] 

Stress  
ratio  
R [-] 

Upper v.  
ΔσC,10 

[N/mm2] 

Mean v. 
ΔσC,50 

[N/mm2] 

Lower v. 
ΔσC,10 

[N/mm2] 

Inv.  
Slope m 

[-] 

Coeff. 
of Det. 
R2 [-] 

Scatter 
Ratio 
Tσ [-] 

5 
0.7 161.9 123.3 93.8 4.64 0.92 1.73 
0.8 172.1 140.5 114.7 6.83 0.99 1.52 
0.9 112.6 109.5 106.5 18.71 0.95 1.06 

7.5 
0.7 128.5 104.9 85.6 3.83 0.95 1.50 
0.8 150.6 135.5 121.9 8.70 0.96 1.24 
0.9 97.1 93.8 90.7 11.50 0.61 1.07 

 
As it can be noticed, fatigue data show a relatively low scatter within a given series of 
specimens sharing the same values of d and R (that is, Tσ,max = 1.73 for F5007CC 
specimens), but they are arranged on significantly different bands when these parameters 
are varied.  
The statistical interpretation confirms the flattening of the curves as R increases, with a 
more pronounced effect for specimens with a smaller minimum section. Flattening effect 
detrimentally influences the coefficients of determination R2 for R = 0.9, as explained in 
Section 3.3.9. Indeed, while R2 is still favorable for F5009CC specimens, it drops down 
to 0.61 for F7509CC ones, also in light of the few tests performed (4, with one of them 
resulting in a runout, see Table 4.6).  
As for the performance for fixed stress ratios R, it can be noticed how the values of ΔσC,50 
are slightly higher in case for d = 5 mm. This outcome is plausibly an apparent effect 
descending from the increased notch sensitivity of F50BBCC specimens. 

4.2. Experimental static tests on hot-driven riveted 
connections 

38. 4.3.1 Generalities 

The present Section briefly summarizes the earlier experimental activities carried out by 
the Candidate Research Group to characterize the static behaviour of hot-driven riveted 
connections. Experimental tests were performed within the framework of European 
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PROHITECH Research Project – “Earthquake Protection of Historical Buildings by 
Reversible Mixed Technologies” (Mazzolani, 2009). 
Relevant experimental results can be found in D’Aniello et al. (2011). Nevertheless, as 
they serve as a crucial background for refined FEAs described in Chapter 5, most 
relevant outcomes are summarized in this Section. 
Specimens configurations and geometrical features were designed with the aid of the 
Steel Structure Division of Italian Railway Network RFI), i.e., in order to resemble 
connections typically used for railway riveted bridges (D’Aniello et al., 2011) 

39. 4.3.2 Experimental Tests on Base Materials 

In order to preliminarily investigate the base material properties for undriven rivets and 
plates, D’Aniello et al. (2011) performed physical and mechanical tests on pristine 
components. Namely, tensile coupon tests, Brinell hardness (BH) tests, Charpy-V notch 
(CVN) tests and chemical analyses were carried out on multiple specimens. 
Tensile tests were performed using the Universal Machine MTS 500 with electro-
mechanical system, with both plates and rivets being equipped with strain gauges and 
LVDTs (Figure 4.6).  
In particular, the rivet material was tested by means of cylindrical dog-bone coupons 
drawn from shanks of undriven rivets (Coupons “C16”). 
An impact CVN tester (Zwick 5113) was adopted to determine Charpy V-Notch 
toughness for both rivets and plates, while BH was assessed by means of the ELBO TH-
3000-OB Universal Hardness Testing Machine.  
 

  
                          a)                                   b) 

Figure 4.6 Experimental tests on base material for a) plates and b) rivets adopted in hot-driven riveted 
connections (D’Aniello et al., 2011). 

 
As for the chemical composition of plates and rivets, a glow discharge atomic emission 
spectrometer (LECO GDS850A) was employed (D’Aniello et al., 2011). 
Average material parameters for both rivets and plates are reported in Table 4.9. 
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Table 4.9 Experimental physical and mechanical parameters of plates and rivets adopted for hot-driven ri 
(average values – D’Aniello et al., 2011). 

Steel Mechanical parameters (Avg.) 

Historical, 
Mild, 

Adopted for 
Plates 

BH CVN Es fy fu εeng,u 

[-] [J] [N/mm2] [N/mm2] [N/mm2] [-] 

121 31 206480 291 433 0.28 

Chemical composition 

C Si Mn P S Cu 

[%] [%] [%] [%] [%] [%] 

0.08 0.17 0.54 0.01 0.06 0.37 

Cr Ni V Mo N Ceq 

[%] [%] [%] [%] [%] [%] 

0.07 0.11 0.00 0.02 0.01 0.22 

Steel Mechanical parameters (Avg.) 

Historical, 
Mild, 

Adopted for 
Rivets 

BH CVN Es fy fu εeng,u 

[-] [J] [N/mm2] [N/mm2] [N/mm2] [-] 

137 - 209412 315 412 0.16 

Chemical composition 

C Si Mn P S Cu 

[%] [%] [%] [%] [%] [%] 

0.39 0.02 0.22 0.05 0.07 0.07 

Cr Ni V Mo N Ceq 

[%] [%] [%] [%] [%] [%] 

0.09 0.22 - - 0.02 0.47 
BH: Brinell Hardness, 500 kgf load, 10 mm ball 

CNV: Charpy V-Notch impact test energy 
Es: Young Modulus 
fy: Engineering yield stress 
fu: Engineering UTS 

εeng,u: Engineering ultimate strain 
 
An average yield stress of fy = 291 N/mm2 (COV = 0.02) was measured for plates 
(Coupons “S10”), while fu = 433 (COV = 0.01) in correspondence of an average ultimate 
engineering strain εeng,u = 0.28 (COV = 0.04). According to D’Aniello et al. (2011), plates 
material could be assimilated to a modern European S275 steel grade. 
As for the undriven rivets, fy = 315 N/mm2 (COV = 0.08), fu = 433 (COV = 0.04) and 
εeng,u = 0.16 (COV = 0.36) were measured.  
The scatter shown by rivets material properties reflected the lack of quality control in 
steel manufacturing process  during the XXth century (D’Aniello et al., 2011). Also in 
light of its chemical composition (Sustainable Bridge, 2006), rivet material was deemed 
as produced with a Martin-Siemens process. Mean engineering stress-strain curves for 
both plates and undriven rivets are depicted in Figure 4.7 (D’Aniello et al., 2011). 
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a) b) 

Figure 4.7 Mean engineering stress-strain curves for plates and undriven rivets (D’Aniello et al., 2011). 

40. 4.3.3 Experimental Tests on Hot-Driven Riveted Connections 

Experimental tests on hot-driven riveted connections were performed by D’Aniello et al. 
(2011) by means of an Universal Machine Zwick/Roell with electro-mechanical system 
(Figure 4.8a). Specimens were equipped with two LVDTs, one on each side, assuming 
as reference measure points the cross-sections of plates being 30 mm away from the 
connected zone (Figure 4.8b). For the sake of clarity, ultimate displacement values Δu 
for all specimens were estimated accordingly. The displacement rate was fixed at 6 
mm/min and an acquisition frequency of 10 Hz was assumed (D’Aniello et al., 2011). 
An appropriate labelling was also defined for all the performed tests, i.e., univocally 
summarizing the main test parameters for each specimen, namely: 
 

Labelling “C-D-T-N_S” with: 
C = S or U with reference to the specimen configuration, i.e., symmetric or unsymmetric; 
D = 16, 19 or 22 with reference to the rivet(s) diameter d; 
T = 10 or 12 with reference to the plies thickness t; 
N = 1 or 2 with reference to the number of rivets nr; 
S = A, B, C with reference to the specimen ID, i.e. increasing for multiple tests related 
to specimens with identical geometrical features. 
 

Relevant geometrical features for tested hot-driven assemblies are reported in Table 
4.10, namely adopting the symbology depicted in Figure 4.9 (D’Aniello et al., 2011). 
 

  
a) b) 

Figure 4.8 Static tests on hot-driven riveted connections: a) Zwick/Roell testing machine and b) example of 
specimen being instrumented with LVDTs (D’Aniello et al., 2011). 

 

SPECIMEN

LVDT
ALUMINIUM HOLLOW SECTIONS

Zwick/Roell
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Figure 4.9 Main geometrical features of tested hot-driven riveted connections (D’Aniello et al., 2011). 

 
Table 4.10 Main geometrical features of tested hot-driven riveted connections (D’Aniello et al., 2011). 

Label             
[-] 

Config. 
[-] 

Rivet 
Diameter 
d [mm] 

Plate 
Thickness 

t [mm] 

Plate 
Width 

w [mm] 

Edge 
Distance 
e1 [mm]  

Number 
of Rivets 

nr [-] 

Rivets 
Pitch  

p1 [mm] 

S-16-10-1 S 16 10 70 35 1 

- 

S-19-10-1 S 19 10 90 45 1 

S-19-12-1 S 19 12 90 45 1 
S-22-10-1 S 22 10 70 35 1 

S-22-12-1 S 22 12 70 35 1 

U-16-10-1 U 16 10 70 35 1 
U-19-10-1 U 19 10 90 45 1 

U-19-12-1 U 19 12 90 45 1 

U-22-10-1 U 22 10 70 35 1 
U-22-12-1 U 22 12 70 35 1 

S-19-10-2 S 19 10 90 45 2 118 

S-22-12-2 S 22 12 70 35 2 118 
U-16-10-2 U 16 10 70 35 2 140 

U-19-10-2 U 19 10 90 45 2 118 

U-22-12-2 U 22 12 70 35 2 90 
S: Symmetric lap-shear specimen, three plies, two shear planes 
U: Unsymmetric lap-shear specimen, two plies, one shear plane 

 
The plate width to rivet diameter w/d ratios was appropriately set to investigate the “net-
area efficiency” effect that could have influenced the tearing resistance of the connected 
plates (Schenker et al., 1954). Namely, the w/d ratio ranged among 3.16 ÷ 4.74. All 
investigated connections had edge-to-hole distance e1 (measured along the direction of 
applied loads) equal to half of the relevant width of connected plates (i.e., e1 = 0.5 w). 
The pitch-to-diameter ratio p/d in the lap shear connections equipped with two rivets 
ranged among 4.09 ÷ 8.75. Notable, geometric limits for each considered configuration 
are compliant with EN1993:1-8 (CEN, 2005b). 
Three tests were performed for each specimen with nominally identical geometry. 
However, owing to some issues encountered with LVDTs, only two valid test results 
were retrieved for S-22-12-1_A/B and U-22-10-1_A/B specimens. 
Experimental tests results are summarized in Tables 4.11-4.14 for all configurations. 
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Table 4.11 Static test results: ultimate resistance of single rivet specimens (i-th and mean values, COV, 
collapse mechanism)  and comparisons with EN1993:1-8 provisions (D’Aniello et al., 2011). 

Label Fu,exp,i Fu,exp,mean COV Fv,Rd Ft,Rd Fb,Rd Fu,mean/FEC3 Collapse 
Mechanism 
EC3/ Exp [-] [kN] [kN] [-] [kN] [kN] [kN] [-] 

S-16-10-1_A 146.1 
141.8 0.06 99.3 233.6 126.2 1.43 

V/V 

S-16-10-1_B 148.0 V/V 
S-16-10-1_C 131.4 V/V 

U-16-10-1_A 80.0 

80.2 0.05 49.7 233.6 126.2 1.62 

V/V 

U-16-10-1_B 83.9 V/V 
U-16-10-1_C 76.7 V/V 

S-19-10-1_A 180.5 
206.6 0.13 140.0 307.2 162.3 1.48 

V/V 

S-19-10-1_B 232.4 V/V 

S-19-10-1_C 207.1 V/B + V 

U-19-10-1_A 87.0 
101.5 0.12 70.0 307.2 162.3 1.45 

V/V 

U-19-10-1_B 108.9 V/V 

U-19-10-1_C 108.5 V/V 

S-19-12-1_A 225.2 
216.5 0.04 140.0 368.6 194.7 1.55 

V/B + V 

S-19-12-1_B 207.2 V/B + V 
S-19-12-1_C 217.2 V/B + V 

U-19-12-1_A 100.6 
117.6 0.21 70.0 368.6 194.7 1.68 

V/V 

U-19-12-1_B 145.3 V/V 

U-19-12-1_C 106.8 V/V 

S-22-10-1_A 173.6 
183.0 0.05 187.8 207.7 126.2 1.45 

B/B 

S-22-10-1_B 184.6 B/B 
S-22-10-1_C 190.9 B/B 

U-22-10-1_A 143.1 
144.8 0.02 93.9 207.7 126.2 1.54 

V/V 

U-22-10-1_B 146.4 V/V 

S-22-12-1_A 236.2 
237.2 0.01 187.8 249.2 151.4 1.57 

B/B 

S-22-12-1_B 238.2 B/B 

U-22-12-1_A 143.4 
140.2 0.07 93.9 249.2 151.4 1.49 

V/V 

U-22-12-1_B 128.7 V/V 
U-22-12-1_C 148.6 V 

V: Rivet Shearing Failure 
B: Plate Bearing Failure 
T: Plate Net-Area Failure 

 
 
Table 4.12 Static test results: ultimate resistance of double rivet specimens (i-th and mean values, COV, 
collapse mechanism) and comparisons with EN1993:1-8 provisions (D’Aniello et al., 2011). 

Label Fu,exp,i Fu,exp,mean COV Fv,Rd Ft,Rd Fb,Rd Fu,mean/FEC3 Collapse 
Mechanism 
EC3/Exp [-] [kN] [kN] [-] [kN] [kN] [kN] [-] 

U-16-10-2_A 141.9 
155.2 0.07 99.3 233.6 252.4 1.56 

V/V 

U-16-10-2_B 162.2 V/V 
U-16-10-2_C 161.4 V/V 

S-19-10-2_A 336.6 

338.4 0.02 280.1 307.2 324.5 1.21 

V/T 

S-19-10-2_B 346.0 V/T 
S-19-10-2_C 332.6 V/T 
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U-19-10-2_A 201.6 

210.0 0.09 140.0 307.2 324.5 1.50 

V/V 

U-19-10-2_B 196.2 V/V 
U-19-10-2_C 232.4 V/V 

S-22-12-2_A 278.9 
291.4 0.04 357.5 249.2 302.9 1.17 

V/T 

S-22-12-2_B 298.4 V/T 

S-22-12-2_C 296.9 V/T 

U-22-12-2_A 279.1 
271.7 0.05 187.8 249.2 302.9 1.45 

V/V 

U-22-12-2_B 255.2 V/V 
U-22-12-2_C 280.8 V/V 

V: Rivet Shearing Failure 
B: Plate Bearing Failure 
T: Plate Net-Area Failure 

 

Table 4.13 Static test results: ultimate displacement of single rivet specimens (maximum, minimum, mean 
values, SD and COV – D’Aniello et al., 2011). 

Label Δu,exp,i Δu,exp,max Δu,exp,min Δu,exp,mean SD COV 

[-] [mm] [mm] [mm] [mm] [mm] [-] 

S-16-10-1_A 7.4 
8.0 6.0 7.1 1.0 0.14 S-16-10-1_B 8.0 

S-16-10-1_C 6.0 

U-16-10-1_A 3.8 
4.6 3.8 4.2 0.4 0.10 U-16-10-1_B 4.6 

U-16-10-1_C 4.3 

S-19-10-1_A 11.9 
20.8 11.9 14.9 5.1 0.34 S-19-10-1_B 20.8 

S-19-10-1_C 12.0 

U-19-10-1_A 4.4 
6.4 4.3 5.0 1.2 0.24 U-19-10-1_B 4.3 

U-19-10-1_C 6.4 

S-19-12-1_A 8.2 
8.6 7.6 8.1 0.5 0.06 S-19-12-1_B 8.6 

S-19-12-1_C 7.6 

U-19-12-1_A 4.4 

6.8 4.4 5.5 1.2 0.22 U-19-12-1_B 6.8 
U-19-12-1_C 5.2 

S-22-10-1_A 10.2 
11.0 9.4 10.2 0.8 0.08 S-22-10-1_B 11.0 

S-22-10-1_C 9.4 

U-22-10-1_A 10.5 
11.5 10.5 11.0 0.7 0.06 

U-22-10-1_B 11.5 

S-22-12-1_A 8.2 
11.7 8.2 10.0 2.5 0.25 

S-22-12-1_B 11.7 

U-22-12-1_A 4.8 

11.5 4.8 7.0 3.9 0.55 U-22-12-1_B 11.5 
U-22-12-1_C 4.8 
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Table 4.14 Static test results: ultimate displacement of single rivet specimens (maximum, minimum, mean 
values, SD and COV – D’Aniello et al., 2011). 

Label Δu,exp,i Δu,exp,max Δu,exp,min Δu,exp,mean SD COV 

[-] [mm] [mm] [mm] [mm] [mm] [-] 

U-16-10-2_A 4.5 
4.9 3.9 4.4 0.5 0.11 U-16-10-2_B 4.9 

U-16-10-2_C 3.9 

S-19-10-2_A 16.9 
20.5 14.0 17.1 3.3 0.19 S-19-10-2_B 20.5 

S-19-10-2_C 14.0 

U-19-10-2_A 5.9 

6.7 5.8 6.1 0.5 0.08 U-19-10-2_B 5.8 
U-19-10-2_C 6.7 

S-22-12-2_A 5.5 
10.7 5.5 8.7 2.8 0.32 S-22-12-2_B 10.0 

S-22-12-2_C 10.7 

U-22-12-2_A 12.2 
12.2 4.0 9.2 4.5 0.49 U-22-12-2_B 4.0 

U-22-12-2_C 11.5 

 
It can be easily noticed how experimental resistances Fu,exp,mean were strongly 
underestimated when adopting EN1993:1-8 (CEN, 2005b) provisions. For consistency, 
normative calculations for Fu,EC3 were performed adopting mean values of material 
parameters and γM2 = 1.00 (D’Aniello et al., 2011). 
The average value of Fu,exp,mean/Fu,EC3 ratios resulted to be equal to 1.48 (COV = 0.09). 
Discrepancies could be ascribed to hot-driving effects being neglected (D’Aniello et al., 
2011). Notably, this issue lead to mistaken EN1993:1-8 predictions for two specimen 
configurations in terms of occurring collapse mechanism, namely:  

 Specimens S-19-12-1-A/B/C → EC3: rivet shearing "V” against EXP: mixed 
shearing + plate bearing “B + V”); 

 Specimens S-22-12-2-A/B/C → EC3: rivet shearing "V” against EXP: plate net 
area failure “T”); 

For thoroughness, mean force-displacement curves and experimental collapse 
mechanisms are reported in Figures 4.10-4.11 with reference to single rivet and double 
rivet specimens, respectively. 
 
 

Mean Force-Displacement Curves Experimental Collapse Mechanisms 
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Figure 4.10 Static tests results for hot-driven riveted connections in terms of mean force-displacement 
curves and experimental collapse mechanisms: single rivet specimens (D’Aniello et al., 2011). 
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Mean Force-Displacement Curves Experimental Collapse Mechanisms 

U
-1

6-
10

-2
_A

/B
/C

 [
V

] 

  
 a) b) 

S
-1

9-
10

-2
_A

/B
/C

 [
T

] 

  
 c) d) 

U
-1

9-
10

-2
_A

/B
/C

 [
V

] 

  
 e) f) 

S
-2

2-
12

-2
_A

/B
/C

 [
T

] 

  
 g) h) 

U
-2

2-
12

-2
_A

/B
/C

 [
V

] 

  
 i) j) 

Figure 4.11 Static tests results for hot-driven riveted connections in terms of mean force-displacement 
curves and experimental collapse mechanisms: double rivet specimens (D’Aniello et al., 2011). 
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It is worth remarking that such curves and related damage patterns at failure have been 
used in the present Thesis work to calibrate plasticity and damage models for refined 
FEAs on hot-driven riveted connections.  
Indeed, numerical models for refined FEAs are compliant with all the reported 
configurations of hot-driven assemblies experimentally tested by D’Aniello et al. (2011). 
Further details are reported in Chapter 5. 
 

4.3. Experimental fatigue tests on hot-driven riveted 
connections  

41. 4.4.1 Generality 

The present Section summarizes the experimental activities carried out on the 
characterization of the fatigue behavior of hot-driven riveted connections. Experimental 
tests were performed in collaboration with University of Salerno (UNISA), namely at 
the Structural Engineering Test Hall (StrEngTH) located in the UNISA university 
campus. 
The present experimental campaign aimed at i) investigating the fatigue performance of 
hot-driven riveted connections accounting for their peculiarities and ii) compare the 
fatigue performance of hot-driven riveted and high-strength bolted connections having 
the same nominal geometry. 
Within the framework of the present Thesis work, only results related to hot-driven 
riveted connections are considered, namely to provide a reliable experimental 
background for the advanced fatigue analysis of hot-driven assemblies through the SED 
method (Lazzarin & Zambardi, 2001; Berto & Lazzarin, 2014). 
For consistency, the same geometries adopted for static trials performed by D’Aniello et 
al. (2011) were adopted for the fatigue tests described in this Section, i.e., compatibly 
with resources available at RFI warehouse. Accordingly, same base material properties 
derived by the Authors for undriven rivets and plates have been assumed within the 
present fatigue tests campaign. 
In particular, six different configurations (S or U, nr = 1, 2, for a total of 7 specimens) 
were tested at the UNISA StrEngTH Lab.   
In the next Sections, the following key aspects related to performed experimental 
activities are addressed, namely: 

 Experimental test plan; 

 Summary of the results of the tests conducted; 
 Issues encountered during experimental tests; 

 Statistical characterization and preliminary interpretation of results. 
 

42. 4.4.2 Experimental Test Plan 

Specimens were tested using the Universal Machine MTS 250 with servo-hydraulic 
system located at StrEngTh lab (UNISA), which features an axial actuator having 
maximum capacity equal to ± 250 kN. 
Compatibly with the characteristics of the base material, a constant test frequency ftest = 
5 Hz was assumed for all fatigue tests. 
The plan for the experimental campaign was defined in order to provide results as robust 
and distributed as possible in the ranges of LCF and HCF (that is, N* ≤ 100’000 cycles 
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and 100’000 cycles < N* ≤ 1’000’000 cycles – Schijve, 2009). For all considered tests, 
zero-to-tension load protocols were adopted (R = 0). 
The stress ranges Δσ of concern were determined based on their static properties 
assessed by D’Aniello et al. (2011). Accordingly, subsequent fatigue tests were 
performed assuming aliquots of the ultimate load compliant with the desired number of 
cycles at failure N*.  
It is worth remarking that the choice of stress ranges Δσ was characterized by a certain 
degree of iteration, insofar as the preliminary results related to a small number of 
specimens were used to predict the outcomes of subsequent tests, thus optimizing the 
entire experimental campaign. 
In order to univocally identify each specimen, a proper labelling was introduced, i.e. 
consistent with static tests performed by D’Aniello et al. (2011) and summarizing 
geometrical features and load protocols as follows: 
 

Labelling “C-D-T-N-F-FR” with: 
C = S or U with reference to the specimen configuration, i.e., symmetric or unsymmetric; 
D = 16, 19 or 22 with reference to the rivet(s) diameter d; 
T = 10 or 12 with reference to the plies thickness t; 
N = 1 or 2 with reference to the number of rivets nr; 
SR = var. with reference to the applied force range ΔF on connected plies. 
 

Geometrical features for investigated specimens are summarized in Table 4.15 and 
Figure 4.12, respectively.  
 

 
Figure 4.12 Main geometrical features for hot-driven riveted connections tested in fatigue conditions. 

Table 4.15 Main geometrical features for hot-driven riveted connections tested in fatigue conditions. 
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t [mm] 

Plate 
Width 

w [mm] 

Edge 
Distance 
e1 [mm]  

N. of 
Rivets 
nr [-] 

Riv. 
Pitch  

p1 [mm] 

UNISA S-19-12-1-115 S 19 12 90 45 1 

- UNISA S-22-10-1-130 S 22 10 90 45 1 

UNISA S-22-12-1-60 S 22 12 70 35 1 

UNISA S-22-12-2-160 S 22 12 70 35 2 118 

UNISA U-19-10-2-100 U 19 10 60 30 2 175 
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UNISA U-22-12-2-160 U 22 12 70 35 2 90 

UNISA U-22-12-2-144 U 22 12 70 35 2 90 

S: Symmetric lap-shear specimen, three plies, two shear planes 

U: Unsymmetric lap-shear specimen, two plies, one shear plane 

 

Test parameters designed according to the above indications are summarized in Table 
4.16. Load protocols are conveniently expressed both in terms of test settings required 
by the MTS Universal Machine (that is, the lone maximum applied forces Fmax in case 
of zero-to-tension load protocols) and relevant stress ranges. It is worth remarking that 
Δσ are nominally referred to the gross cross-section of plates Aplate,gross = t × w. 
 
Table 4.16 Summary of performed fatigue tests on hot-driven riveted connections. 

Label Fmax Aplate,gross Δσ N* (expected) 

[-] [kN] [mm2] [N/mm2] [-] 

S-19-12-1-115 115 1080 106.5 1'000'000 ÷ 100'000 
S-22-10-1-130 130 900 144.4 < 100’000 
S-22-12-1-60 60 840 71.4 1'000'000 ÷ 100'000 

S-22-12-2-160 160 840 190.5 1'000'000 ÷ 100'000 
U-19-10-2-100 100 900 111.1 < 100'000 

U-22-12-2-160 160 840 190.5 < 100'000 
U-22-12-2-144 144 840 171.4 < 100'000 

 

43. 4.4.3 Experimental Tests Results 

Fatigue tests results are summarized in Table 4.17. Fatigue failure points are hence 
transposed into the Wohler diagram reported in Figure 4.13, in which experimental 
collapse mechanisms are depicted as well.  
It is worth remarking that results for specimen S-22-10-1-130 were not deemed as valid 
due to unexpected and premature rivet shear failure (see Section 4.4.4 for further details)  
It can be immediately noticed how results are affected by a relevant degree of scatter. 
Moreover, the reciprocal slope determined according to a logarithmic regression model 
is significantly higher that the reference value suggested by EN1993:1-9 (that is, mexp = 
1/0.09 = 11.2 ≫ mEC3 = 5 – CEN, 2005a). Nevertheless, all specimens failed due to cyclic 
net-area failure of plates as expected (Kulak et al., 1987). 
 
Table 4.17 Summary of fatigue tests results for hot-driven riveted connections. 

Label Fmax Aplate.gross Δσ N* 

[-] [kN] [mm2] [N/mm2] [-] 

S-19-12-1-115 115 1080 106.5 602270 
S-22-10-1-130 130 900 144.4 1706* 
S-22-12-1-60 60 840 71.4 774056 

S-22-12-2-160 160 840 190.5 497964 

U-19-10-2-100 100 900 111.1 17436 

U-22-12-2-160 160 840 190.5 26357 
U-22-12-2-144 144 840 171.4 43963 

*unexpected rivet shear collapse. 
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a) 

  
b)  S-19-12-1-115 N* = 602270 c) S-22-12-1-60 N* = 774056 

  
d) S-22-12-2-160 N* = 497964 e) U-19-10-2-100 N* = 17436 

  
f) U-22-12-2-160 N* = 26357 g) U-22-12-2-2-144 

Figure 4.13 Summary of fatigue tests results for hot-driven riveted connections: a) Wohler diagram 
and b-g) experimental collapse mechanisms [Courtesy of University of Salerno]. 

44.  
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It is worth emphasizing that all unsymmetric specimens, although being subjected to 
similar stress ranges, showed a significantly worse fatigue performance as respect to 
symmetric connections (that is, N*U ≈ 104 is on average, one order of magnitude smaller 
than N*S ≈ 105). This outcome plausibly descends from the detrimental effect of 
secondary bending moments (Kulak et al., 1987).  

45. 4.4.4 Experimental Tests Issues 

The performed experimental campaign revealed some issues when carrying out constant-
amplitude fatigue tests. 
Indeed, an initial test on a symmetric specimen featuring a single 22 mm rivet and 10 
mm plies was carried out, i.e. considering a zero-to-tension protocol (R = 0) with force 
range ΔF = 130 kN (S-22-10-1-130).  
For such specimen, an average shear strength equal to 183.0 kN (out of three specimens) 
was derived from static tests (see Table 4.11, Fu,exp,min = 173.6 kN), namely 
corresponding to plate bearing (“B”) collapse. Moreover, according to experimental 
force-displacement curves, an average proportionality limit for S-22-10-1 of  ≈ 145 kN 
was estimated. Therefore, the adopted load protocol was designed to achieve a failure 
collapse associated with N* ≈ 80’000, as confirmed by provisions of earlier drafts of 
EN1993:1-9 (e.g., assuming ΔσC = 71 N/mm2, m = 5 – CEN, 2005a). 
Nevertheless, the specimen exhibited a premature fatigue failure for N* = 1706 cycles 
and, notably, due to rivet fatigue shear failure (Figure 4.14).  
An a-posteriori analysis of cyclic tangential stresses in the rivet shank did not result in 
any significant expectation of fatigue collapse of the rivet (N*r ≫ 100’000, also in light 
of the presence of two shear planes). 
This outcome was plausibly caused by constructional imperfections inherent to the tested 
connection, e.g., an overlooked camming defect and/or rivet indentation due to 
inadequate surface finishing of rivet holes (Twelvetrees, 1900; Kulak et al., 1987). 
Therefore, S-22-10-1-130 were not assumed as valid in subsequent fatigue analyses. 
 

  
a) b) 

S-22-10-1-130 N* = 1706 
Figure 4.14 Unexpected rivet shear fatigue failure for specimen S-22-10-1-130: a) rivet shear failure 
and b) particular of the fractured rivet shank [Courtesy of University of Salerno]. 

46. 4.1.4 Statistical Assessment and Preliminary Interpretation of Results 

Table 4.18 summarizes the statistical characterization of fatigue tests results in terms of: 
 Equivalent detail class ΔσC,PS associated with a number of cycles at failure N = 

NC = 2 ∙ 106 for the mean value of the considered confidence interval (that is, 
exceeding probability PS = 10% – 50% – 90%); namely, ΔσC,PS is provided for 
symmetric specimens, unsymmetric ones and for the entire set of tests; 
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 Inverse slope m of logarithmic curves, assumed independent of the value of PS, 
compliantly with remarks reported in Section 3.3.9; namely, m is provided for 
symmetric specimens, unsymmetric ones and for the entire set of tests; 

 Coefficient of determination R2 for the mean curves; 

 Scatter ratios Tσ. 
 
Table 4.18 Statistical characterization of experimental fatigue results. 

Upper v.  
ΔσC,10 

[N/mm2] 

Mean v. 
ΔσC,50 

[N/mm2] 

Lower v. 
ΔσC,10 

[N/mm2] 

Inv.  
Slope m 

[-] 

Coeff. 
of Det. 
R2 [-] 

Scatter 
Ratio 
Tσ [-] 

> 291.0 103.2 22.3 11.14 0.11 > 10.0 
 
As it can be noticed, fatigue data show a strong scatter. The regression curve is very 
flattened (m > 10), resulting in a significant drop of R2 = 0.11, also in light of the few 
tests performed (7, with one of them deemed as invalid, see Table 4.17).  
As for the the values of ΔσC,PS, it is worth remarking that, while ΔσC,50 = 103.2 N/mm2 
is compliant with earlier EN1993:1-9 provisions (CEN, 2005a), upper and lower bound 
of the scatter-band are rather distant (Tσ > 10). 

This outcome recommends the application of more advanced fatigue analyses for the 
considered hot-driven riveted connections. This task is properly addressed in Chapter 7, 
where further details are reported. 
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5. Static Performance of Hot-Driven 
Riveted Connections 

The present Chapter deals with the static performance of hot-driven riveted connections, 
which is assessed by means of refined finite element analyses performed with ABAQUS 
6.14 software (Dassault, 2014).  
In particular, the results of a wide numerical study based on hot-driven riveted 
connections experimentally tested by D’Aniello et al. (2011) is presented in the 
following sections in order to i) parametrically investigate the influence of the main 
geometrical features on the response of shear connections, ii) examine the influence of 
the hot-driven process on the ultimate behaviour and iii) preliminarily investigate the 
influence of a common constructional imperfection on the ultimate response of the 
connections. The investigated FE models are representative of actual technological 
details adopted in existing railway riveted bridges located in Italy (Landolfo et al., 2011). 
The following aspects are addressed in detail in the following Sections, namely: i) the 
modelling assumptions adopted for FEAs, with a peculiar focus on the implementation 
of plasticity and damage models for ductile materials described in an earlier Chapter 
(Section 5.1), ii) the calibration of damage and plasticity parameters for base plate and 
rivet material based on coupon tests (Section 5.2), iii) a preliminary numerical 
investigation on the effect of clamping actions on the static performance of hot-driven 
riveted connections, in light of their significant randomness (Section 5.3), iv) a thorough 
description of the effects of hot-driving on material properties of rivets and plates 
(Section 5.4), v) an investigation on the effect of a common constructional imperfection 
(e.g. shank camming defect) on the performance of hot-driven assemblies, which is 
preliminarily addressed as respect to the sole static response of connections (Section 5.5), 
vi) a predictive model for the static resistance of connections accounting for the effects 
of hot-driving and camming defects (Section 5.6), the reliability of which is hence 
statistically assessed against EN1990 (CEN, 2002) recommendations (Section 5.7) and 
vi) a conclusive comparison against EN1993:1-8 (CEN, 2005b) recommendations in 
force for hot-driven riveted connections (Section 5.8). 

5.1. Modelling Assumptions for Refined Static FEAs of 
hot-driven riveted connections 

47. 5.1.1 Coupon Tests on Base Materials 

Finite Element models (FEMs) resembling coupon tests on plates (flat specimens) and 
rivets (dog-bone round specimens) were developed using ABAQUS 6.14 software 
(Dassault, 2014). The ultimate response of coupons was investigated by applying 
monotonic displacement histories at one end of the grip segment, with the other one 
being fixed, in order to mimic the test conditions reported in D’Aniello et al. (2011). 
Adopted FEMs geometry and boundary conditions (BCs) are depicted in Figure 5.1a-b.  
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All elements were discretized using solid C3D8 elements (i.e., 8-node linear bricks). 
Preliminary sensitivity analyses were carried out with reference to the lone PDS to select 
the appropriate mesh density, which led to a mesh size equal to 1 mm for gauge lengths 
of both plate and rivet coupons, while a mesh size of 5 mm was kept for grip zones 
remaining in their elastic range (Figure 5.1c). 
 

 
a) 

 
b) 

 
c) 

Figure 5.1 Refined FEAs on coupon tests for pristine plates and rivets: a) geometrical features, b) 
boundary conditions and c) adopted meshes. 

Steel yielding was modelled using the Hencky-Von Mises criterion. The monotonic 
stress-strain curves of the materials of both rivets and plates were assumed as those 
experimentally derived in D’Aniello et al. (2011) up to the onset of necking. In 
particular, the yield and ultimate engineering stress of the steel plates were 291 MPa and 
433 MPa, respectively, and the engineering strain corresponding to necking was 0.28. 
The yield and ultimate engineering stress of unheated rivets were 315 MPa and 412 MPa, 
respectively, and the engineering strain corresponding to necking was 0.16. Both 
kinematic and isotropic hardening were assumed according to Dutta et al. (2010).  
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The “Ductile damage” module featured in ABAQUS 6.14 (Dassault, 2014) was used to 
simulate the material degradation for base material (Stage I, see Section 3.2). Namely, a 
GDDC was adopted, considering the influence of the sole stress triaxiality on the critical 
PEEQ ε*pl,eq as suggested by Kanvinde et al. (2007) for mild steels.  
As for the definition of triaxiality curves, the analytical expression proposed by Yang et 
al. (2019) was adopted, namely considering a monotonically decreasing T- ε*pl,eq trend 
(see Equation 3.22 and relevant Sections 3.1-3.2). Moreover, a linear, displacement 
based DEC (see Equation 3.21 and relevant Section 3.1) was adopted as suitable for mild 
steels (Ammar et al., 2022). 
Accordingly, the true strain at fracture εtrue,fail, the critical PEEQ for uniaxial tensile 
conditions ε*pl,eq,uniax and the ultimate plastic displacement u*pl were properly calibrated 
for both plates and rivets, namely with the aid of the inverse method (Tu et al., 2019). 

48. 5.1.2 Static Tests on Hot-Driven Riveted Connections 

FEMs resembling static tests performed by D’Aniello et al. (2011) on hot-driven riveted 
specimens were developed using ABAQUS 6.14 software (Dassault, 2014). In order to 
balance the accuracy and computational effort, the investigated riveted connections were 
modelled accounting for their geometrical and mechanical symmetry. The static 
response of connections was investigated by applying monotonic displacement histories 
at one end of the lap-shear riveted connections, with the other one(s) being fixed, in order 
to mimic the test conditions reported in D’Aniello et al. (2011). Relevant BCs accounting 
for both symmetry and test conditions are depicted in Figure 5.2a-b. 
 

 
a) 

 
b) 

Figure 5.2 Refined static FEAs on hot-driven riveted connections: adopted boundary conditions for 
connections with a) two planes and b) one plane of symmetry. 
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Additionally, in order to preliminary investigate the influence of shank camming 
defect(s) on the static performance of connections, a parametric set of FEMs featuring 
such constructional imperfections was developed. 
The camming imperfections were varied on the basis of the ratio among the shank 
eccentricity e and the rivet diameter d (Figure 5.3) in the range 0 ÷ 0.20 (with increments 
of 0.05). This range of variation for e/d was assumed in accordance with the Sustainable 
Bridges report (Sustainable Bridge, 2006), where it is specified that camming defects 
can be considered tolerable for an existing riveted connection (i.e., connection 
repairment is not required) if the ratio among the shank eccentricity e (i.e., the distance 
between the centroids of the rivet heads measured along the longitudinal axis of the 
connection, as shown in Figure 5.3a) and the rivet diameter d does not exceed a threshold 
value equal to 0.15.  
Nevertheless, in order to account for practical difficulties in on-field surveys that may 
result in inaccurate eccentricity measures (Kulak et al., 1987), a maximum value of e/d 
equal to 0.20 was also investigated. In addition, the influence of the orientation of the 
shank misalignment with respect to the applied shear force was numerically investigated 
by considering two separate sets of FE models, namely the first with camming defects 
directed as the applied loads (“direct” shank eccentricity, see Figure 5.3a), the second 
with the opposite configuration (“reverse” shank eccentricity, see Figure 5.3b).  
 

 
a) 

 
b) 

 
c) 

Figure 5.3 Main features for the investigated connections: a) single rivet specimens, b) double rivet 
specimens, c) modification of BCs for distorted symmetric specimens. 
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Indeed, the orientation of the camming may affect the secondary bending effects, 
especially for unsymmetric connections.  
Accordingly, BCs for lap-shear specimens with three plates were modified to account 
for the loss of longitudinal symmetry (Figure 5.3c). 
With the aim to univocally identify each FEM, either corresponding to an undistorted or 
distorted connection, the labelling adopted in Section 4.4 was modified as follows 
accounting for e/d, namely: 
 
Labelling “C-D-T-N-E-O” with: 
C = S or U with reference to the specimen configuration, i.e., symmetric or unsymmetric; 
D = 16, 19 or 22 with reference to the rivet(s) diameter d; 
T = 10 or 12 with reference to the plies thickness t; 
N = 1 or 2 with reference to the number of rivets nr; 
E = 0.00 ÷ 0.20 with reference to the relative shank eccentricity e/d, with 0.00 being 
adopted for undistorted specimens; 
O = D or R with reference to the camming orientation as respect to applied loads, i.e. 
direct or reverse eccentricity (when relevant). 
 
A total of 15 × (1 + 4 + 4) = 135 refined FEAs were performed in accordance with model 
parameters summarized in Table 5.1. 
All elements were discretized using solid C3D8 elements. Steel yielding was modelled 
using the Hencky-Von Mises criterion. The plasticity and damage parameters calibrated 
against coupon tests on plates and rivets were assumed as initial reference values with 
the aim to investigate the effect of hot-driving. Both kinematic and isotropic hardening 
were simulated as shown by Dutta et al., (2010).  
The “Ductile damage” module featured in ABAQUS 6.14 (Dassault, 2014) was used to 
simulate the material degradation (Stage II, see Section 3.2). Namely, the same damage 
formulations adopted for tensile coupon tests were employed for refined FEAs on 
connections. 
Accordingly, the critical PEEQ for uniaxial tensile conditions ε*pl,eq,uniax and the ultimate 
plastic displacement u*pl were properly recalibrated for rivets and, to a local extent, for 
plates, namely with the aid of the inverse method (see Section 3.2). 
120 Preliminary sensitivity analyses were carried out with reference to the sole PDS to 
select the appropriate mesh density. Indeed, the influence of mesh size on the accuracy 
of FEAs is even more pronounced in case of connections as respect to coupon tests, 
mainly due to highly non-linear factors such as contacts and friction (Milone et al., 
2022a). Therefore, a preliminary sensitivity analysis was carried out varying the mesh 
size from 5 mm to 0.5 mm (Figure 5.4) and comparing the experimental force-
displacement curves against results from FEAs.  
For the sake of brevity, solely the results of four undistorted connections (namely S-16-
10-1, S-19-10-2, U-16-10-1 and U-19-10-2) are reported in Figure 5.4 in order to 
highlight possible variations owing to different configurations (i.e., symmetric or 
unsymmetric) or the number of rivets (1 or 2). 
In these preliminary FEAs material damage was neglected, focusing only on plasticity, 
since the latter mainly governs the capacity of the connections, while material damage 
mainly influences the ultimate ductility. Moreover, the adopted linear DEC is almost 
mesh-insensitive due to the characteristic length parameter Lchar, i.e., a function of finite 
element size (Hillerborg et al., 1976; Dassault, 2014). 
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Table 5.1 Main features for FEMs of hot-driven riveted connections. 
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In order to preliminarily account for the effects of the hot-driven process (HDP), in 
sensitivity analyses the yield strength of rivets was set 1.2 times greater than the value 
of the base material in accordance with D’Aniello et al. (2011). 
The results of sensitivity analyses are shown in Figure 5.4b-c-d-e, where it can be 
observed that using a coarse mesh leads to overestimating the resistance of the 
connections, while the elastic stiffness is less influenced. Nevertheless, for a mesh size 
equal to or smaller than 1 mm the differences between experimental and numerical force-
displacement curves are negligible (≤ 4% at the onset of the degrading branch). 
Moreover, the mesh size of the outermost parts of the plates does not modify the 
simulated response of the connections, since those portions behave in the elastic range. 
Therefore, a mesh size of 1 mm and 20 mm was selected for the connected zone and the 
ends of the plates, respectively. 
 

 
a) 

  
b) c) 

  
d) e) 

Figure 5.4 a) Details of different meshes adopted for the connections and results of mesh sensitivity 
analyses: b) S-16-10-1, c) U-16-10-1, d) S-19-10-2 and e) U-19-10-2. 
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5.2. Refined FEAs results for coupon tests 

Results of refined FEAs for coupon tests on rivets (flat specimens “S10”) and plates 
(dog-bone round specimens “C16”) are depicted in Figure 5.5 in terms of calibrated 
engineering stress-strain curves and distribution of PEEQ and scalar damage (SDEG) at 
failure. For the sake of comparison, σ-ε curves derived by neglecting DDS (that is, by 
assuming a post-necking plasticity plateau and no damage) are also reported. 
 

Plates (Flat Coupons S10) Rivets (Dog-bone Round Coupons C16) 

  
a) b) 

  
c) d) 

  
e) f) 

Figure 5.5 Refined FEAs on plates and rivets coupons: a-b) experimental, no DDS and calibrated 
engineering stress-strain curves, c-d) PEEQ distributions at failure and e-f) SDEG distributions at failure. 

It can be easily noticed that both FEAs featuring no DDS formulation are still able to 
capture the post-necking degradation of coupons (Figure 5.5a-b, black dashed curves). 
Indeed, as shown by Considére, (1885), necking instability occurs as soon as the coupons 
cross-sections start to decrease of a larger amount than material hardening. Therefore, if 
geometric non-linearities are properly accounted for, necking will still occur even in 
absence of DDS modelling (Yang et al., 2019). 
Calibrated FEAs (Figure 5.5a-b, red solid curves) are in very good agreement with 
experimental results, with negligible errors (< 1%) for fy,  fu and εeng,u. Moreover, collapse 
mechanisms are properly captured. Indeed, while S10 features an inclined yield line due 
to plain strain conditions (Kõrgesaar, 2019), C16 shows diffuse necking. 
Calibrated plasticity and damage parameters for both pristine plates and rivets are 
summarized in Table 5.2. Moreover, calibrated true stress-plastic strain curves, 
triaxiality curves and damage evolution curves are reported in Figure 5.6. 
 

Table 5.2 Calibrated plasticity and damage parameters for pristine plates and rivets. 

Coupon fy fu fu,true εy εu εu,true ε*pl,eq,uniax u*pl 

[-] [N/mm2] [N/mm2] [N/mm2] [-] [-] [-] [-] [mm] 

Plates 291.0 433.0 620.0 0.00139 0.28 1.2840 1.04 0.4 
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Rivets 315.0 412.0 1240.0 0.00150 0.16 1.8755 1.02 1.1 

 

 
a) 

  
b) c) 

Figure 5.6 Calibrated damage and plasticity parameters for pristine rivets and plates: a) true stress-plastic 
strain curves, b) triaxiality curves, c) damage evolution curves. 

It can be observed that undriven rivet steel is characterized by i) a stronger post-necking 
hardening and ii) a quicker damage development as respect to plate coupons. As 
suggested by D’Aniello et al. (2011), this outcome complies with its chemical 
composition (i.e., having a higher carbon content) and with the adopted Martin-Siemens 
productive process. 

5.3. Magnitude and effect of clamping force on the 
performance of connections   

Sensitivity analyses were carried out to highlight the influence of rivet pre-loading on 
the response of riveted connections. Indeed, as shown by Leonetti et al., (2020), 
clamping stress in hot-driven rivets is highly variable, especially in case of short shanks 
(hs/d ≤ 2, see Section 2.3.2 and Figure 2.25). 
For this purpose, each connection was monotonically tested varying the preload stress in 
the range 0.1 ÷ 0.8 fyr0, as shown in Figure 5.7. It is worth remarking that the clamping 
study was preliminarily performed accounting for no damage formulations, as DDS only 
affects the degrading branch of force-displacement curves, and it is thus only relevant as 
respect to connections ultimate ductility  (Milone et al., 2022a). 
For the sake of clarity, as no DDS FEAs cannot display a force drop, comparisons in 
terms of ultimate shear force for different values of σclamp were conventionally carried 
out at the onset of degrading branch of the experimental curves (Figure 5.7b-c-d-e, red 
solid lines). 
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a) 

  
b) c) 

  
d) e) 

Figure 5.7 a) Details of different meshes adopted for the connections and results of mesh sensitivity 
analyses: b) S-16-10-1, c) U-16-10-1, d) S-19-10-2 and e) U-19-10-2. 

For the sake of brevity, solely the results related to four connections (i.e., S-16-10-1, U-
16-10-1, S-19-10-2 and U-19-10-2) are reported in Figure 5.7b-c-d-e. In all cases 
clamping stress does not appreciably influence the overall and local response of the 
connections (e.g., the maximum variation in terms of shear resistance is about 1%).  
This outcome implies that constructional imperfections only affecting the clamping 
stresses distribution (e.g., head distortion) may be neglected when assessing the static 
performance of connections, consistently with observations reported in Twelvetrees, 
1900; Vermes, 2007; Collette, 2014. 
In light of the obtained results, a mean value of preload stress equal to 0.5 fyr0 was used 
for all static FEAs, that is, the mean value for hot-driven rivets with hs/d ≤ 2 as suggested 
by D’Aniello et al. (2011) and Leonetti et al. (2020). 
Nevertheless, in light of its potential influence on the fatigue performance of connections 
(Vermes, 2007; Kafie-Martinez et al., 2017) a detailed parametric study concerning 
stresses transferred to connected plies and relative ASED values has been performed. 
Further details are reported in Chapter 7.  

5.4. Effect of hot-driving on base material properties 
of rivets and plates 

The hammering process deeply influences the behaviour of riveted connections, due to 
the combined effect of hammer pressure and abrupt change of temperature (Hrennikof, 
1934; Hetchman, 1948; Munse & Cox, 1956, D’Aniello et al, 2011). 
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As highlighted by the above Authors, this phenomenon primarily induces a significant 
hardening of the rivet base material, resulting in a yield strength of the heat-treated rivet 
material fyr which can be up to 1.5 times higher with respect to fyr0. Moreover, this 
strength increase is accompanied by a significant reduction of material ductility.  
Tests performed by Hetchman (1948) showed that fyr increases with increasing 
temperature. This effect can be recognized up to a threshold of ~900 °C. Contrariwise, 
no appreciable variations were found by varying the temperature within the range 900 ÷ 
1200 °C.  
As deeply described in Section 3.2, in the present work effects of hot-driven process on 
the rivet material were accounted by means of three non-dimensional coefficients, 
namely:  
i) the rivet strength ratio fyr/fyr0 = Ω ≥ 1; 
ii) the damage threshold ratio ε*pl,eq,uniax/ε*pl,eq,uniax,0 = Δ ≤ 1; 
iii) the plastic displacement ratio Π = u*pl/u*pl0 ≤ 1. 
In particular, HDP was simulated scaling the constitutive true stress-true strain 
relationship of rivet base material by a constant factor equal to Ω, while triaxiality curves 
were downscaled by reducing ε*pl,eq,uniax,0 preserving their shape according to the 
formulation proposed by Yang et al., 2019. 
Values of Ω, Δ and Π calibrated against the experimental tests reported in Chapter 4, as 
well as their mean values and their corresponding coefficients of variation (COV) are 
summarized in Table 5.3 for all connections exhibiting rivet shearing.  
For the sake of clarity, since u*pl is a mesh-size dependant parameter (Hillerborg et al., 
1976), reported values are referred to a mesh size equal to 1 mm (i.e., the size adopted 
for parts which were expected to damage). 
For the sake of comparison, the results of FEAs performed neglecting the effects of HDP 
are reported in Figure 5.8 for S-16-10-1-0.00 and U-16-10-1-0.00 in terms of PEEQ 
distribution and force-displacement curves.  
 

 

 
a) b) 

 
 

c) d) 
Figure 5.8 Results of FEAs performed neglecting the effects of the hot-driven process: PEEQ 
distribution and force-displacement curve for S-16-10-1-0.00 (a-b) and U-16-10-1-0.00 (c-d). 
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Table 5.3 Calibrated material parameters for connections exhibiting rivet shear failure. 

Label [-] 
fyr 

[N/mm2] 

Ω = 
fyr/fyr0 

[-] 

ε*pl,eq,uniax  
[-] 

Δ = 
ε*pl,eq,uniax/ε*pl,eq,uniax,0 

[-] 

u*pl 
[mm] 

Π = 
u*pl/u*pl,0 

[mm] 

Coupon C16 315 - 1.02 - 1.1 - 

S-16-10-1-0.00 365.4 1.16 0.54 0.53 1 0.91 

S-19-10-1-0.00 368.6 1.17 0.98 0.96 1 1.00 

S-19-12-1-0.00 393.8 1.25 0.6 0.59 1 1.00 

U-16-10-1-0.00 447.3 1.42 0.28 0.27 0.7 0.70 

U-19-10-1-0.00 378 1.2 0.32 0.31 0.5 0.71 

U-19-12-1-0.00 447.3 1.42 0.48 0.47 0.7 1.40 

U-22-10-1-0.00 378 1.20 0.88 0.86 0.6 0.86 

U-22-12-1-0.00 444.2 1.41 0.24 0.24 0.7 1.17 

S-19-10-2-0.00 318.1 1.01 1.65 1.61 0.4 0.57 

U-16-10-2-0.00 441 1.40 0.23 0.23 0.8 2.00 

U-19-10-2-0.00 390.6 1.24 0.46 0.45 0.6 0.75 

U-22-12-2-0.00 393.8 1.25 0.21 0.21 0.6 1.00 

Mean values 397.6 1.26 0.58 0.57 0.73 1.01 

COV 0.10 0.10 0.74 0.73 0.28 0.38 

 
It can be observed that, although the failure mechanism is correctly predicted in both 
cases (i.e., rivet shearing, see Figure 5.8a-c), the connection resistance is significantly 
underestimated (-11% and -24%, respectively). 
Moreover, as remarked in Section 3.2, also connected plates are influenced by the 
hammering process. Indeed, the plates show a reduction of ductility nearby the holes, 
with an ultimate true strain εtrue,fail,p which can be up to 0.4 times the ultimate true strain 
of the unaltered material εtrue,fail,p0. Contrariwise, no significant variation can be usually 
appreciated in terms of tensile strength. (Hrennikof, 1934; Hetchman, 1948; Munse & 
Cox, 1956, D’Aniello et al, 2011). 
The localized alteration of the mechanical behaviour of plate base material was suitably 
simulated by assigning modified material properties only to the portion of plates 
included beneath the projection of rivet heads (Figure 5.9).  
 

 
Figure 5.9 Assumed extension of the HDP affected zone for connected plates. 
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The effects of HDP on the response of connected plates in terms of ductility drop were 
accounted for by means of the ultimate strain ratio εtrue,fail,p/εtrue,fail,p0 = Φ ≤ 1. 
Material damage was also thoroughly accounted for by defining non-dimensional 
coefficient Δ ≤ 1, Π ≤ 1 also for plates. Calibrated values of Φ, Δ and Π for connections 
exhibiting the failure of the plates are summarized in Table 5.4.  
 
Table 5.4 Calibrated material parameters for connections exhibiting plate failure. 

Label  
[-] 

εtrue,fail,p 
[-] 

Φ = 
εtrue,fail,p/εtrue,fail,p0 

[-] 

ε*pl,eq,uniax  
[-] 

Δ = 
ε*pl,eq,uniax/ε*pl,eq,uniax,0 

[-] 

u*pl 
[mm] 

Π = 
u*pl/u*pl,0 

[mm] 
Coupon S10 1.28 - 1.04 - 0.4 - 

S-22-10-1-0.00 0.92 0.72 0.2 0.19 0.4 1.00 

S-22-12-1-0.00 0.35 0.27 0.13 0.13 0.2 0.50 
S-22-12-2-0.00 0.82 0.64 0.33 0.32 0.2 1.00 

Mean values 0.70 0.54 0.22 0.21 0.26 0.83 
COV 0.36 0.36 0.38 0.37 0.36 0.35 

 
As it can be observed, all damage parameters are significantly lower than unity (Φmean = 
0.54, Δmean = 0.21, Πmean = 0.65). It is worth remarking that, while plasticity and damage 
parameters for S-22-10-1-0.00 and S-22-12-1-0.00 were calibrated based on an observed 
plate bearing failure (B), relevant Φ, Δ and Π values for S-22-12-2-0.00 were derived 
interpretating the experimental net area tensile failure (T). 
Further details about observed collapse mechanisms are reported in the next Section. 

49. 5.4.1 Observed Collapse Mechanisms 

The failure modes of undistorted riveted connections are depicted in Figure 5.10 in terms 
of PEEQ at failure, scalar damage at failure and force-displacement curves.  
For the sake of comparison, both calibrated (black dashed lines) and mean values (red 
solid lines) of plasticity and damage parameters were considered. Results of FEAs are 
also compared with collapse mechanisms observed experimentally. 
For the sake of brevity, only results relative to six (out of fifteen) connections are 
reported (namely S-16-10-1-0.00, U-16-10-1-0.00, S-22-10-1-0.00, S-22-12-1-0.00, U-
19-10-2-0.00 and S-22-12-2-0.00). Since most of the connections exhibited shear failure 
of the rivets (hence also referred to as “V”), only the three most representative 
configurations are shown hereinafter. Contrariwise, all results of specimens exhibiting 
the failure of the plates (both in bearing, also referred to as “B”, or tearing of the net 
area, also referred to as “T”) are reported in the following. 
Rivet shear failure can be easily recognized for S-16-10-1-0.00 observing the PEEQ and 
the scalar damage distributions at failure (see Figure 5.10a). Moreover, a slight run-out 
of the middle hole can be noticed due to a secondary bearing mechanism (owing to the 
reduced thickness of the plates). This outcome is confirmed by the results of the 
experimental tests (see Figure 5.10b). A very good agreement between numerical and 
experimental results can be also noticed in terms of the force-displacement curve (see 
Figure 5.10c). S-16-10-1-0.00 exhibits a moderate overstrength due to the hot-driven 
process, with a calibrated value of Ω = 1.16. On the contrary, the material ductility 
reduction is more significant (Δ = 0.54). 
Similar remarks can be drawn for the U-16-10-1-0.00. However, owing to the presence 
of a single shear plane, in this case the rivet shear resistance is significantly lower than 
the bearing resistance of connected plates (-38%).  Therefore, no appreciable distortion 
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of the holes is present, as confirmed both by numerical and experimental results reported 
in Figure 5.10d-e-f. Notably, U-16-10-1-0.00 shows the highest HDP-induced 
overstrength (Ω = 1.42). Consistently with considerations reported in Section 4.1, the 
capacity increase is associated with a sharp reduction of ultimate ductility (Δ = 0.28). 
 
 

PEEQ and Damage at Failure Experimental Test Force vs. Displacement Curves 

 

 

a) b) c) 
S-16-10-1-0.00 [V + B (sec.)] Rivets: Ω = 1.16, Δ = 0.54 

 

 

d) e) f) 
U-16-10-1-0.00 [V] Rivets: Ω = 1.42, Δ = 0.28 

 

 

 

g) h) i) 
S-22-10-1-0.00 [B] Plates: Φ = 0.72, Δ = 0.20 

 

 

j) k) l) 
S-22-12-1-0.00 [B] Plates: Φ = 0.64, Δ = 0.33 
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m) n) o) 
S-22-12-2-0.00 [T] Plates: Φ = 0.27, Δ = 0.13 

 

 

 

p) q) r) 
U-19-10-2-0.00 [V] Rivets: Ω = 1.24, Δ = 0.46 

Figure 5.10: Comparison against experimental and numerical results for the investigated specimens in the 
undistorted configuration (C-T-D-N-0.00). 

 
S-22-10-1-0.00 and S-22-12-1-0.00 are characterized by bearing failure (see Figure 
5.10g-j). Notably, in the case of thicker plates (t = 12 mm) the simultaneous 
plasticization of rivets and plates can be observed. Nevertheless, as shown by scalar 
damage distributions reported in Figure 5.10g-j, plate bearing failure always governs the 
ultimate behaviour of both connections. FEAs are in good agreement with experimental 
results (see Figure 5.10i-l), confirming the occurrence of the predicted mechanism, as it 
can be observed in Figure 5.10h-k. Calibrated values of Φ highlight that the local 
ductility reduction of plates is significant (e.g., Φ = 0.27 for S-22-12-1-0.00).  
S-22-12-2-0.00 is the unique specimen that exhibited net-area tensile failure of the 
plates. This outcome, which is confirmed by the experimental evidence (see Figure 
5.10n), is highlighted by the distribution of PEEQ at failure, which are spread in the 
transverse direction, departing from the hole centre with an angle of ~30° (see Figure 
5.10m – Irgens, 2008).  
The ultimate behaviour of U-19-10-2-0.00 is governed by the shear failure of the rivet, 
as shown by the distribution of PEEQ and scalar damage at failure (see Figure 5.10p). A 
very good agreement can be noticed between numerical and experimental responses, see 
Figure 5.10r. Notably, a significant in-plane rotation can be observed owing to the arise 
of secondary bending moments. 
As it can be observed, the force-displacement response curves of the FE models with the 
mean values of plasticity and damage parameters differ from those obtained using the 
calibrated values due to the variability of these mechanical properties. In fact, the 
damage parameters are characterised by a scatter (e.g., COVΔ = 0.73, COVΦ = 0.36, 
COVu*pl = 0.36 in worst cases, see Tables 5.3-5.4) larger than the rivet strength ratio 
(e.g., COVΩ = 0.10, see Table 5.3). 
In light of these results, all FE models can be considered properly calibrated.  
In the following, the behaviour of undistorted specimens is used as a benchmark to 
investigate the influence of constructional imperfections on the ultimate behaviour of 
hot-driven riveted connections. Further details are reported in the next Section 5.5. 
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5.5. Preliminary investigation on the effect of 
constructional imperfections on the static resistance of 
connections 

The presence of constructional imperfections may detrimentally affect the ultimate 
behaviour of hot-driven riveted connections, both in terms of resistance and ductility. 
The influence of imperfections on the mechanical response strictly depends on the 
geometrical features of the connections, the type of failure mode and the shape and 
magnitude of the imperfections (Twelvetrees, 1900; Sustainable Bridge, 2006; Vermes, 
2007; Collette et al., 2011, 2015; Collette, 2014). 
In the present Section, an investigation on the effect of one of the most common 
constructional imperfections, i.e., shank camming defect, is preliminarily addressed with 
reference to the lone static performance of assemblies. Further developments concerning 
the influence of camming on the fatigue performance and, generally speaking, the effect 
of other constructional imperfections are planned and are beyond the scope of the present 
Thesis work. 
In the case of camming defects, the degradation of the connections’ performance is 
mainly due to: 

 the reduction of the cross-section of the rivet shank, which is caused by local 
discontinuities on the shear plane(s), see Figure 5.11a); 

 the secondary internal actions caused by distorted configurations, which modify 
i) the distribution of tensile principal stresses at the onset of plasticity and ii) the 
damage pattern failure, thus causing a reduction of the ultimate ductility (see 
Figure 5.11b). This phenomenon is particularly pronounced for unsymmetric 
connections, where the effects of imperfections magnify the secondary stresses 
already caused by the bending of the connected plates. 

It should be remarked that shank distortion also modifies the distribution of the clamping 
stresses (see Figure 5.11c) although this effect is of minor importance in static 
conditions, since pre-loading does not have a significant influence on the ultimate 
performance of the connections, as highlighted in Section 5.3.  
 

 
a) 
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b) 

 
c) 

Figure 5.11 Effects of shank distortion on the connections response: a) reduction of the shear resisting 
cross-section, b) alteration of damage pattern at failure and c) alteration of clamping stress distribution. 

50. 5.5.1 Ultimate Behaviour of Distorted Symmetric Connections 

The ultimate behaviour of symmetric riveted connections with camming is shown in 
Figures 5.12-5.13 in terms of force-displacement curves and distribution of PEEQ and 
scalar damage at failure. For the sake of clarity, distorted connections with three plates 
are still referred as “symmetric” in order to preserve a consistent labelling through this 
Chapter, although longitudinal symmetry is clearly lost due to imperfections. Moreover, 
it is worth noting that values of plasticity and damage parameters representative of each 
connection (see Tables 5.3-5.4) have been used to perform refined FEAs. 
For the sake of brevity, only deformed configurations for the upper value of e/d = 0.20 
are depicted. Ultimate values of resistance and displacement for symmetric distorted 
connections are also reported in Table 5.5. 
In all cases, the shank misalignment does not appreciably influence the capacity of 
symmetric connections. For instance, the maximum resistance degradation is exhibited 
by S-19-10-1-0.20-D/R, i.e., about 4% with respect to the corresponding undistorted 
connection (see Figure 5.12f). 
Nevertheless, the effects of shank distortion can be clearly observed for connections 
exhibiting shear failure of the rivets, which show a damage concentration into a single 
shear plane, which is the closest to the applied loads (i.e., the upper shear plane in case 
of “direct” eccentricity and the lower shear plane for “reverse” eccentricity).  
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PEEQ Distrib. at Failure Scalar Damage Distr. at Failure Force-Displacement Curve 

 
S-16-10-1-E-D [V] 

a) b) c) 

 
S-19-10-1-E-D [V] 

d) e) f) 

 

 
S-19-12-1-E-D [V] 

g) h) i) 

  

 
S-22-10-1-E-D [B] 

j) k) l) 

 
 

S-22-12-1-E-D [V+B] 

m) n) o) 
Figure 5.12 Ultimate behaviour of single rivet symmetric distorted connections in terms of PEEQ and scalar 
damage distributions at failure (for e/d = 0.20) and force-displacement curves. 
 
Moreover, the camming defect also induces asymmetric transverse displacements 
between the connected plates (i.e., “plate opening”), although this effect has minor 
importance for the investigated values of e/d. 
The ultimate displacement is significantly affected by the shank imperfections. 
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S-19-10-2-E-D 

a) PEEQ Distribution at Failure 

 
b) Scalar Damage Distribution at Failure c) Force-Displacement Curve 

  

 
 

 
S-22-12-2-E-D 

d) PEEQ Distribution at Failure 

 
e) Scalar Damage Distribution at Failure f) Force-Displacement Curve 

Figure 5.13 Ultimate behaviour of double rivet symmetric distorted connections in terms of PEEQ and scalar 
damage distributions at failure (for e/d = 0.20) and force-displacement curves. 
 
For instance, the maximum reduction in terms of ultimate displacement, which is 
exhibited by S-19-12-1-0.20-D/R, is about 10% with respect to the relative undistorted 
connection (see Figure 5.12i). For the sake of clarity, in the present work ultimate 
displacements Δu were measured in correspondence with a reaction force equal to 0.80 
Fu on the degrading branch of the force-displacement curves, being Fu the peak resistance 
of the connection. 
This outcome may be important for the assessment of riveted structures under 
exceptional events, in which the ductility of the connections is a fundamental 
requirement to prevent the overall collapse. It is worth remarking that similar criticalities 
were already highlighted for bolted connections (Tartaglia et al., 2017). Nevertheless, 
the reduction of both ultimate capacity and ultimate displacement of symmetric 
connections is the most severe for the higher values of e/d.  
This result is consistent with the Sustainable Bridge report (Sustainable Bridge, 2006) 
that recommends the repair of riveted connections with e/d > 0.15.  
It should be also remarked that distorted symmetric connections do not exhibit any 
sensitivity to distortion orientation, e.g., for the same magnitude of e/d both ultimate 
resistance and ductility are identical in the case of “direct” and “reverse” eccentricity. 
Indeed, owing to their peculiar geometrical features, symmetric “direct” connections can 
be transformed in their equivalent “reverse” configurations by means of a rigid reflection 
along the longitudinal plane. Therefore, in the present Section only results for 
connections with “direct” eccentricity are presented.  
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Table 5.5 Behaviour of distorted symmetric connections in terms of ultimate resistance and ultimate 
displacement for increasing values of e/d. 

Ultimate Resistance Fu [kN] 

Label [-] 
E (e/d) 

0.00 0.05 0.1 0.15 0.2 

S-16-10-1-E-D/R 143.9 143.9 144 143.3 141.2 

S-19-10-1-E-D/R 203.8 202.7 201.1 197.8 194.5 

S-19-12-1-E-D/R 215.8 215.4 215.9 213.9 210.9 

S-22-10-1-E-D/R 186.8 188 186.2 188.2 187.1 

S-22-12-1-E-D/R 248.7 246.1 241.8 244.5 242.3 

S-19-10-2-E-D/R 346 342.9 337.9 333.2 335.5 

S-22-12-2-E-D/R 303.3 303.7 303.4 303.5 304 

Ultimate Displacement Δu [mm] 

Label [-] 
E (e/d) 

0 0.05 0.1 0.15 0.2 

S-16-10-1-E-D/R 6.4 6.5 6.4 6.4 6.3 

S-19-10-1-E-D/R 11.6 11 10.8 10.7 10.5 

S-19-12-1-E-D/R 7.9 7.9 7.8 7.5 7.1 

S-22-10-1-E-D/R 10.3 10.2 10.2 10.2 10.2 

S-22-12-1-E-D/R 5.4 5.3 5.2 5 5 

S-19-10-2-E-D/R 17.1 16.9 16.9 16.8 16.7 

S-22-12-2-E-D/R 7.7 7.7 7.6 7.6 7.6 

 
On the other hand, symmetric connections exhibiting plate bearing (“B”, i.e. S-22-10-1-
[0.05÷0.20]-[D/R] and S-22-12-1-[0.05÷0.20]-[D/R], see Figure 5.12j-o) or tearing in 
the net-area (“T” i.e. S-22-12-2-[0.05÷0.20]-[D/R], see Figure 5.13d-f) are almost 
insensitive to the effects of shank distortion, since no appreciable variations of ultimate 
resistance and/or ultimate ductility can be observed (-3% and -0%, respectively). 
Moreover, the presence of camming defects within the tolerability ranges provided by 
the Sustainable Bridge report (Sustainable Bridge, 2006)  does not modify the type of 
failure mode, as confirmed by the distribution of scalar damage at failure for the 
aforementioned connections (see Figures 5.12k, 13n and 14e). 

51. 5.5.2 Ultimate Behaviour of Distorted Unsymmetric Connections 

The ultimate behaviour of unsymmetric riveted connections with shank distortion is 
shown in Figures 5.14-5.17 in terms of force-displacement curves and distribution of 
PEEQ and scalar damage at failure. Calibrated values of plasticity and damage 
parameters (see Tables 5.3-5.4) have been used to perform refined FEAs. For the sake 
of brevity, only the results for the cases with e/d = 0.20 are reported.   
Differently from the symmetric connections, in the case of unsymmetric connections two 
different models were analysed to investigate both “direct” and “reverse” eccentricity 
due to the absence of longitudinal symmetry that also causes a significant sensitivity to 
distortion orientation.  
The ultimate response of unsymmetric connections with “direct” eccentricity is basically 
comparable to the behaviour of symmetric ones. Indeed, it can be noticed that no 
significant reduction in terms of ultimate capacity (≤ 4%) is shown by any of the 
investigated connections (see Figures 5.14-5.15 and Table 5.6), which exhibited the 
shear failure of rivets.  
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PEEQ Distr. at Failure Scalar Damage Distr. at Failure Force-Displacement Curve 

 
U-16-10-1-E-D [V] 

a) b) c) 

 
U-19-10-1-E-D [V] 

d) e) f) 

 
U-19-12-1-E-D [V] 

g) h) i) 

 
U-22-10-1-E-D [V] 

j) k) l) 

 
U-22-12-1-E-D [V] 

m) n) o) 
 

Figure 5.14 Ultimate behaviour of single rivet unsymmetric distorted connections with “direct 
eccentricity” in terms of PEEQ and damage at failure (for e/d = 0.20) and force-displacements curves. 
 

Nevertheless, some small differences in terms of elastic stiffness (10 ÷ 16%) can be 
observed due to the influence of shank distortion on the joint rotation caused by secondary 
bending. This effect is more pronounced in the case of highly deformable connections 
(i.e., U-16-10-1-[0.05÷0.20]-D, see Figure 5.14c). 
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U-16-10-2-E-D [V] 

a) PEEQ Distribution at Failure 

b) Scalar Damage Distribution at Failure c) Force-Displacement Curve 

 
 

U-19-10-2-E-D [V] 

d) PEEQ Distribution at Failure 

e) Scalar Damage Distribution at Failure f) Force-Displacement Curve 

 

 
 

U-22-12-2-E-D [V] 

g) PEEQ Distribution at Failure 

 
h) Scalar Damage Distribution at Failure i) Force-Displacement Curve 

 

Figure 5.15 Ultimate behaviour of double rivet unsymmetric distorted connections with “direct 
eccentricity” in terms of PEEQ and scalar damage distributions at failure (for e/d = 0.20) and of 
force-displacements curves. 

 

Table 5.6 Behaviour of distorted unsymmetric “direct” connections in terms of ultimate resistance 
and ultimate displacement for increasing values of e/d. 

Ultimate Resistance Fu [kN] 

Label [-] 
E (e/d) 

0 0.05 0.1 0.15 0.2 

U-16-10-1-E-D 83.1 88.5 88.5 88.5 85.6 

U-19-10-1-E-D 100.5 105.4 106 103 97.3 

U-19-12-1-E-D 118.2 126 128.8 126.2 121.3 

U-22-10-1-E-D 139.5 147.3 148.1 144.7 139.8 

U-22-12-1-E-D 149.2 159.8 159.6 154 145.4 

U-16-10-2-E-D 161.2 172.2 172.5 171.4 165.5 

U-19-10-2-E-D 205.7 219 225.1 220.9 213.2 

U-22-12-2-E-D 262.8 279.8 279.6 269 252.7 
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Ultimate Displacement Δu [mm] 

Label [-] 
E (e/d) 

0 0.05 0.1 0.15 0.2 

U-16-10-1-E-D 3.8 4.4 4.3 4.1 3.8 

U-19-10-1-E-D 4.5 4.7 4.5 4.1 3.7 

U-19-12-1-E-D 5.2 5.7 6 5.6 5.3 

U-22-10-1-E-D 10.3 11.4 11.8 10.9 9.8 

U-22-12-1-E-D 6.6 7.8 7.5 6.3 4.9 

U-16-10-2-E-D 4 4.5 4.3 4.1 3.9 

U-19-10-2-E-D 5.4 5.7 5.8 5.6 4.9 

U-22-12-2-E-D 8.7 11.1 10.7 8.7 6.6 

 
Moreover, the ultimate displacement of unsymmetric connections with “direct” 
eccentricity displays a recurring and peculiar trend, with connections with small 
eccentricity (i.e., e/d ≤ 0.10) having higher ultimate displacement than one of the 
corresponding undistorted ones (up to +18%).  
Contrariwise, the connections with greater values of e/d show a reduction of ultimate 
ductility. This effect is considerable in the connections with the bigger rivets (i.e., d = 
22mm). For instance, U-22-12-0.20-1-D and U-22-12-2-0.20-D exhibit a reduction in 
terms of Δu equal to -31% and -24% with respect to the corresponding undistorted 
connections, respectively (see Figures 5.14o-5.15i). 
This effect depends on the alteration of the damage pattern at failure, which is highly 
influenced by the presence of the camming defect. In fact, the shank misalignment 
modifies the stress distribution induced both by clamping and secondary bending, thus 
resulting in an alteration of stress triaxiality T which in turns influences the critical PEEQ 
at the onset of damage (Kanvinde et al., 2006; Yang et al., 2019). 
Interestingly, the ultimate behaviour of unsymmetric connections with “reverse” 
eccentricity is systematically affected by a significant reduction of both ultimate capacity 
and ductility with increasing values of e/d (see Figures 5.16-5.17 and Table 5.7). 
 

PEEQ Distr. at Failure Scalar Damage Dist. at Failure Force-Displacement Curve 

U-16-10-1-E-R [V] 
a) b) c) 

 
U-19-10-1-0-E-R [V] 

d) e) f) 
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U-19-12-1-E-R [V] 
g) h) i) 

U-22-10-1-E-R [V] 
j) k) l) 

U-22-12-1-E-R [V] 
m) n) o) 

 

Figure 5.16 Ultimate behaviour of single rivet unsymmetric distorted connections with “reverse 
eccentricity” in terms of PEEQ and scalar damage distributions at failure (for e/d = 0.20) and of force-
displacements curves. 
 
 

 

 

a) PEEQ Distribution at Failure 

 
b) Scalar Damage Distribution at Failure c) Force-Displacement Curve 

 
d) PEEQ Distribution at Failure 
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e) Scalar Damage Distribution at Failure f) Force-Displacement Curve 

 

 

g) PEEQ Distribution at Failure 

 
h) Scalar Damage Distribution at Failure i) Force-Displacement Curve 

 

Figure 5.17 Ultimate behaviour of double rivet unsymmetric distorted connections with “reverse 
eccentricity” in terms of PEEQ and scalar damage distributions at failure (for e/d = 0.20) and of force-
displacements curves. 
 
Table 5.7 Behaviour of distorted unsymmetric “reverse” connections in terms of ultimate resistance and 
ultimate displacement for increasing values of e/d. 

Ultimate Resistance Fu [kN] 

Label [-] 
E (e/d) 

0 0.05 0.1 0.15 0.2 

U-16-10-1-E-R 83.1 77.9 73.1 68.2 63.4 
U-19-10-1-E-R 100.5 92.2 86.4 80.7 74.9 
U-19-12-1-E-R 118.2 111.6 104.7 98 90.8 
U-22-10-1-E-R 139.5 132.9 125.3 117.5 109.3 
U-22-12-1-E-R 149.2 140.3 131.4 122.6 113.7 
U-16-10-2-E-R 161.2 151.4 142.3 132.1 122.6 
U-19-10-2-E-R 205.7 193.8 182.2 170.2 158.9 
U-22-12-2-E-R 262.8 246.3 229.7 213 196.3 

Ultimate Displacement Δu [mm] 

Label [-] 
E (e/d) 

0 0.05 0.1 0.15 0.2 

U-16-10-1-E-R 3.8 3.5 3.3 3.1 3 
U-19-10-1-E-R 4.5 3.8 3.6 3.3 3.2 
U-19-12-1-E-R 5.2 4.9 4.7 4.5 4.3 
U-22-10-1-E-R 10.3 9.6 8.8 8 7.3 
U-22-12-1-E-R 6.6 5.7 4.9 4 3.4 
U-16-10-2-E-R 4 3.8 3.6 3.4 3.3 
U-19-10-2-E-R 5.4 4.9 4.6 4.3 4.2 
U-22-12-2-E-R 8.7 7.1 5.6 4.7 4.1 

Results for each unsymmetric “reverse” connection are reported in Table 5.7. Notably, 
the shear resistance decreases almost linearly for all investigated configurations. 
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The maximum degradation is exhibited by U-19-10-1-0.20-R, with a loss of shear 
resistance of about 26% with respect to the corresponding undistorted connection (see 
Figure 5.16d-e-f). It is worth noting that such resistance reduction exceeds the safety 
limit provided by the adoption of the partial factor γM2 for the calculation of rivet shear 
capacity according to EN1993-1-8 (that is, 0.74 < 0.80 = 1/γM2 – CEN, 2005b). 
The maximum ductility reduction is experienced by U-22-12-2-0.20-R (see Figure 
5.17g-h-i), with Δu being about half time the value exhibited by U-22-12-2-0.00. 
Based on these results, it can be clearly recognized that the ultimate behaviour of 
distorted unsymmetric riveted connection also depends on the distortion orientation. In 
the next Section, motivations behind observed discrepancies as respect to the influence 
of shank camming are widely investigated. 

52. 5.5.3 Influence of Camming Defect Orientation 

As shown in previous Sections, while symmetric distorted and unsymmetric “direct” 
connections exhibit a negligible reduction of ultimate resistance due to shank camming, 
unsymmetric “reverse” connections display an almost linear trend in terms of shear 
capacity reduction against increasing values of e/d 
Nevertheless, as noticeable from Figure 5.17, the post-yield branches of F-Δ curves are 
almost parallel to each other. Therefore, reasons behind the observed behaviour are to 
be found in correspondence of the proportionality limit Δel of connections.  
Namely, observed phenomena are mainly caused by the distribution of stresses at the 
onset of plasticity due to the evolution of axial force and bending moments (see Figure 
5.18, where axial force N and bending moment M are normalized against the preload 
force Nclamp and the yielding moment Mel,b  of the shank) through the shear plane(s) of 
the rivet shanks. For the sake of brevity, the evolution of axial force and bending moment 
in the shank is shown solely for U-16-10-1-0.20-D, U-16-10-1-0.20-R and S-16-10-1-
0.20-D/R. 
Figure 5.18 clearly highlights that the axial force drop is maximum for unsymmetric 
“reverse” configurations. Moreover, its corresponding secondary bending moment has 
the opposite sign with respect to the other cases and it is still noticeable under large 
displacements (i.e., in correspondence of the peak shear resistance), while other 
configurations exhibit negligible secondary bending for large deformations.  
These findings descend from the resisting mechanism of distorted connections. Indeed, 
for the unsymmetric connections without camming defects the secondary moments due 
to the offset of the lapped plates are mainly balanced by the bending of both plates and 
rivets. However, in the connections with distorted rivet shank the flexural equilibrium is 
also contributed by axial forces developing in the misaligned portions of the shank. 
Therefore, additional tensile axial forces develop in the shank to balance secondary 
moments in the case of “direct” eccentricity, while compressive axial forces arise in the 
case of “reverse” eccentricity (Figure 5.19a-b). 
In the case of symmetric connections, the resistance does not decrease because the 
resulting response of distorted shank is given by the composition of the effects of one 
coupleof segments with “reverse” local eccentricity (middle and upper segment) and 
another pair of segments with “direct” eccentricity (middle and lower segment), thus 
counterbalancing each other (see Figure 5.19c).  
As reported in Section 5.5.1, this condition does not depend on the direction of the 
applied load, since a symmetric “direct” connection becomes its corresponding “reverse” 
configuration by mirroring it against the longitudinal plane. In addition, negligible 
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secondary moments arise in such connections that are simply due to shank distortion 
(i.e., they are null for e/d = 0), therefore the counterbalancing variation of axial forces in 
the shank are also negligible. 
As a consequence of the secondary effects (i.e., axial force and bending moment) in the 
portions of the distorted shank, the distribution of tensile principal stresses (whose 
projections of the shear plane are the ones resisting the applied loads – Irgens, 2008) is 
rather different in the cases of “direct” and “reverse” eccentricity. 
 

  
a) b) 

Figure 5.18 Evolution of a) axial force and b) bending moments through the shear plane(s) of the rivet 
shanks for investigated distorted configurations. 

 

 

 

a) 

 
b) c) 

Figure 5.19 Secondary resisting mechanisms in distorted connections: a) unsymmetric “direct” 
connections, b) unsymmetric “reverse” connections, c) symmetric “direct”/”reverse” connections.. 

The maximum principal stresses σI,MAX at the onset of plasticity for S-16-10-1-0.20-D/R, 
U-16-10-1-0.20-D and U-16-10-1-0.20-R are depicted in Figure 5.20a-c-e. 
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Moreover, the positive values of the third invariant J3 of the stress tensor are also reported 
(see Figure 5.20b-d-f) to further identify the portions of the shank subjected to principal 
tensile stresses (Irgens, 2008). 
It can be easily noticed that tensile principal stresses are distributed through the entire 
shear plane in the case of both symmetric and unsymmetric “direct” connections, in spite 
of the shank discontinuity.  
Contrariwise, tensile principal stresses in “reverse” unsymmetric connections are 
localized into the superposition of misaligned shank segments, i.e., within a smaller 
resisting zone as the camming defect e/d increases, thus resulting in the observed 
reduction of the yield force of the connections. 
 

  
a) b) 

  
c) d) 

  
e) f) 

Figure 5.20 Distribution of tensile principal stresses and positive J3 values for distorted connections at 
the onset of plasticity: a-b) S-16-10-1-0.20-D/R, c-d) U-16-10-1-0.20-D and e-f) U-16-10-1-0.20-R. 

In light of all the above findings related to effects of hot-driving and constructional 
imperfections, in the next Sections a predictive model for the static resistance of hot-
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driven riveted connections is proposed and statistically assessed within the framework 
of EN1990 (CEN, 2002) recommendations. 

5.6. Predictive model for the static resistance of hot-
driven riveted connections 

On the basis of the results obtained from FEAs, a formula to evaluate the resistance of 
riveted connections in presence of constructional imperfections has been derived for 
unsymmetric connections with “reverse” eccentricity, since all other configurations (see 
Section 5.5.1 for symmetric and Section 5.5.2 for unsymmetric connections with “direct” 
eccentricity, respectively) are not appreciably affected by camming imperfections. 
As shown in Section 5.5.3, this outcome derives from the different distributions of tensile 
principal stresses through the shear planes. However, consistently with the ease-of-use 
philosophy of the next generation of Eurocodes, resistance predictions are carried out by 
assuming an equivalent material strength, while the shear-resisting area depends on the 
superimposition of distorted shank segments. 
The proposed formula has been derived by updating the equation given by D’Aniello et 
al. (2011), which was originally formulated for undistorted connections (Equation 5.1): 

FV,RdE = 
Ω1 Ω2 ns nr π d2fur0

4 γM2

ቀ1 - k
e

d
ቁ (5.1) 

where: 
 fur0 is the ultimate strength of the unheated rivet base material; 

 Ω1 is a statistically significant rivet strength ratio, which accounts for HDP 
effects variability in a synthetical, yet reliable manner; 

 Ω2 is the shear strength to tensile strength ratio for the rivet material. According 
to Schenker et al. (1954), and in compliance with D’Aniello et al. (2011), Ω2 can 
be set equal to 0.75; 

 ns is the number of shear planes per rivet; 

 nr is the number of rivets adopted for the considered connection; 

 k is a non-dimensional parameter reducing the “effective” shear area of the 
distorted rivet shank, i.e. accounting for redistribution of principal tensile 
stresses in an equivalent manner (“camming sensitivity factor”); 

 γM2 is an appropriate partial safety factor for the proposed resistance model (see 
Section 5.7 for further details). 

 

For the sake of clarity, while in D’Aniello et al., (2011) the selected value for Ω1 (= 1.20) 
derived from the comparison of experimental results and the resistance given by 
EN1993-1-8 (CEN, 2005b), in this study the reference value of Ω1 for Equation 5.1 is 
selected by statistically assessing the distribution of rivet strength ratios yielded by 
refined FEAs results. 
Namely, the representative value of Ω1 is hence estimated on the basis of a statistical 
characterization, i.e., addressed by assuming proper probability distributions for the 
random variable Ω. In particular, two alternative probability distributions can be 
assumed for Ω, namely a normal distribution (hence also referred as “N”) and a 
lognormal distribution (hence also referred as “LN”) according to EN1990, Annex D 
(CEN, 2002) provisions for new test-based resistance models. On one hand, LN 
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represents a suitable option due to Ω being a non-negative quantity by strict definition, 
while on the other hand N is expected to yield more conservative results on average. 
The statistical characterization of rivet overstrength ratio Ω is reported in Figure 5.21 in 
terms of both probability density function (PDFΩ) and cumulative distribution function 
(CDFΩ). For the sake of comparison, empirical distribution function (EDFΩ) of rivet 
strength ratios is reported as well.  
It can be noticed that the two assumed distributions for Ω yield similar statistical indexes 
of interest (i.e. characteristic value Ωk and expected value Ωμ).  
Indeed, while Ωk,N = 1.06 and Ωk,LN = 1.07 are basically coincident, only a small 
difference of ≈ 4% is observed among Ωμ,N = 1.25 and Ωμ,LN = 1.31, with N being slightly 
more conservative as expected. 
Nevertheless, while expected values for Ω appear consistent with evidences reported by 
Kulak et al. (1987) and D’Aniello et al. (2011), characteristic values are deemed to be 
overly conservative, as the beneficial effect of HDP on rivets strength would be almost 
neglected when adopting Ωk,N or Ωk,LN for Equation 5.1. 
Moreover, it is worth recalling that EN1993:1-8 (CEN, 2005a) recommends the use of 
the characteristic value of rivets UTS for the estimation of their shear resistance. 
Therefore, using the characteristic value of rivet strength ratio in Equation 5.1 would 
result in an exceedance probability PS ≠ 0.95, i.e., the target PS associated to 
characteristic values (CEN, 2002); that is, the characteristic value of the product of two 
variables is different from the product of the characteristic values of the variables 
themselves. 
In light of the above, the mean N value is assumed for Ω1 = Ωμ,N = 1.25 in Equation 5.1. 
Regarding k, it is worth remarking the geometrical meaning of the “effective” shear 
resisting area AV,eff (Figure 5.22), which is obtained by the superposition of the cross 
areas of the discontinuous shank segments as follows (Equation 5.2a-b): 

AV,eff = 
d2

4
ቄ2 arccos ቀ

e

d
ቁ - sin ቂ2 arccos ቀ

e

d
ቁቃቅ (5.2a) 

→ AV,eff = AV,0 ൜
2

π
arccos ቀ

e

d
ቁ - 

1

π
sin ቂ2 arccos ቀ

e

d
ቁቃൠ (5.2b) 

 

  
a) b) 

Figure 5.21 Statistical characterization of rivet strength ratio in terms of a) observed values & PDF, and 
b) EDF normalized to CDF, all derived assuming N and LN distributions for Ω. 
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Figure 5.22 Geometry of the assumed “effective” shear resisting area for distorted connections. 

with AV,0 = π d2/4 being the area of the entire cross-section of the shank. 
In compliance with the investigated values of e/d, the assumption of small relative 
eccentricity (i.e., e/d → 0) can be introduced. Therefore, the term into curly brackets 
from Equation 5.2 can be substituted with the relative McLaurin expansion arrested to 
the first order, thus yielding the following (Equation 5.3): 

e

d
→ 0 

.
⇒ AV,eff ≈ AV,0 (1 - k 

e

d
) (5.3) 

The parameter k has been derived by minimizing the prediction errors (i.e., via the least 
squares method, Figure 5.23) on the whole set of unsymmetric connections exhibiting 
rivet shear failure. For instance, Equations 5.2-5.3 yield the exact value of k = 4/π ≈ 1.27 
when e/d → 0.  
However, assuming small eccentricity for highly distorted shank becomes less 
appropriate, hence the selected value of k requires a further optimization. Accordingly, 
a slightly more conservative value of k = 1.40 was finally selected. It is also worth noting 
that Equation 5.3 complies with the linear trend observed for the decrease of shear 
resistance (see Section 5.5.2). 
Predicted resistances (Equation 5.1) against FEAs results are summarized in Table 5.8 
with reference to selected values Ω1 = 1.25, k = 1.40. 
The very good agreement among predicted and numerical results is confirmed by the 
mean ratio of Fv,Rd,E/Fu = 1.00 and by the rather small COV = 0.07. For the sake of 
comparison, it is worth reporting that  the adoption of k = 4/π in Equation 5.1 results in 
(Fv,Rd,E/Fu)mean = 1.02, COV = 0.09.  
 

  
a) b) 

Figure 5.23 Optimization technique for the camming sensitivity factor k: a) least squares method and b) 
comparison of FEAs vs. resistance model results for k = 4/π (theoretical value) k = 1.40. 
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Table 5.8 Comparison against FEAs and predicted resistances according to Equation 5.1 for unsymmetric 
“reverse” connections failing due to rivet shearing. 

Label [-] 
Shear Resistance - FEAs [kN] 

E (e/d) 
0.00 0.05 0.10 0.15 0.20 

U-16-10-1 83.1 77.9 73.1 68.2 63.4 
U-19-10-1 100.5 92.2 86.4 80.7 74.9 
U-19-12-1 118.2 111.6 104.7 98.0 90.8 
U-22-10-1 139.5 132.9 125.3 117.5 109.3 
U-22-12-1 149.2 140.3 131.4 122.6 113.7 
U-16-10-2 161.2 151.4 142.3 132.1 122.6 
U-19-10-2 205.7 193.8 182.2 170.2 158.9 
U-22-12-2 262.8 246.3 229.7 213.0 196.3 

Label [-] 
Shear Resistance - Equation 5.1 [kN] 

E (e/d) 
0.00 0.05 0.10 0.15 0.20 

U-16-10-1 78.3 72.9 67.5 62.1 56.7 
U-19-10-1 110.4 102.8 95.2 87.5 79.9 
U-19-12-1 110.4 102.8 95.2 87.5 79.9 
U-22-10-1 148.0 137.8 127.6 117.4 107.2 
U-22-12-1 148.0 137.8 127.6 117.4 107.2 
U-16-10-2 156.6 145.8 135.0 124.2 113.4 
U-19-10-2 220.8 205.5 190.3 175.1 159.8 
U-22-12-2 296.0 275.6 255.2 234.7 214.3 

Label [-] 
Eq. 5.1/FEAs [-] 

E (e/d) 
0 0.05 0.1 0.15 0.2 

U-16-10-1 0.94 0.94 0.92 0.91 0.89 
U-19-10-1 1.10 1.11 1.10 1.09 1.07 
U-19-12-1 0.93 0.92 0.91 0.89 0.88 
U-22-10-1 1.06 1.04 1.02 1.00 0.98 
U-22-12-1 0.99 0.98 0.97 0.96 0.94 
U-16-10-2 0.97 0.96 0.95 0.94 0.92 
U-19-10-2 1.07 1.06 1.04 1.03 1.01 
U-22-12-2 1.13 1.12 1.11 1.10 1.09 

Mean 1.00 
COV 0.07 

5.7. Statistical assessment of proposed formulations 
according to EN1990 recommendations 

The reliability of Equation 5.1 was finally tested by means of the procedure reported in 
EN1990, Annex D (CEN, 2002). The appropriate value of the partial safety factor γM for 
the assumed resistance model was derived as well. According to EN1990, γM is defined 
as the ratio between the design Rd and the characteristic value Rk of the investigated 
parameter, e.g. the shear resistance of connections.  
The method recommended by EN1990, Annex D is based on the following assumptions 
(CEN, 2002): 

 The resistance is expressed as a function of a finite number of variables Xi; 

 There is no correlation among the variables concurring to the resistance function 
(i.e., statistical independence holds for all Xi); 

 All variables Xi follow either a normal or log-normal distribution; 

 The investigated sample is statistically valid (i.e., a sufficient number of 
specimens is considered, and all the relevant geometrical and mechanical 
parameters have been properly measured). 
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The statistical validity of the proposed equation was ensured by the size of the considered 
sample. Indeed, 40 specimens were considered, namely 8 unsymmetric configurations × 
5 degrees of eccentricity, with e/d ranging between 0.00 ÷ 0.20. The procedure was 
articulated as follows: 

 Theoretical evaluation of the resistance for all the specimens by means of the 
proposed resistance function, using the measured relevant parameters as input 
data; 

 Comparison between theoretical and numerically derived values of the shear 
resistance; 

 Estimation of the mean value of the correction factor b; 

 Estimation of the coefficient of variation Vδi related to the errors δi; 

 Estimation of the coefficient of variation VXi related to the basic geometrical and 
mechanical variables Xi; 

 Determination of the characteristic and design value of resistance; 

 Evaluation of the required partial safety factor γM for the assumed resistance 
model. 

Figure 5.24 depicts the comparison between the mean predictive accuracy (black dashed 
line, i.e. based on linear regression) and the theoretical ideal fit (red solid curve, i.e. 
Fu/Fv,Rd,E bisector), namely showing the good agreement between the results of FEAs 
and predictions made with the proposed resistance model. Nevertheless, moderate 
overestimations are obtained for the connections with higher shear resistance. This 
outcome is mainly due to the scatter of the rivet strength ratio Ω, which is intrinsically 
characterized by a large variability (COVΩ = 0.10, see Section 5.4). 
From the comparison of numerical and theoretical predictions, the mean value of the so-
called correction factor b can be derived by means of the least squares method as follows 
(Equation 5.4 – CEN, 2002): 

b = 
∑ Rni Rti

N
i=1

∑ Rti
2N

i=1

 (5.4) 

where N is the total number of specimens in the sample, Rni is the resistance of the i-th 
connection derived from the results of FEAs and Rni is the resistance of the same 
connection obtained by means of the proposed theoretical model. It is also worth noting 
that, for the relevant case, the estimation of b through the least squares method reduces 
to the estimation of the average value of Rni/Rti ratios. 
Hence, the estimated error δi for each couple of results (numerical/theoretical) can be 
derived as follows (Equation 5.5 – CEN, 2002): 

δi = 
Rni

b Rti
 (5.5) 

Thus, assuming a log-normal distribution of errors as suggested by EN1990, the related 
coefficient of variation Vδ can be estimated as follows (Equation 5.6 – CEN, 2002): 

Vδ = ටexp (s∆
2 ) - 1 (5.6) 

where sΔ
2 is the sample variance of the errors expressed in a logarithmic scale, which 

can be derived from the sample mean Δmean according to Equations 5.7-5.9 (CEN, 2002): 
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Figure 5.24  Comparison among results of FEAs and predictions from the proposed resistance model in 
terms of ultimate shear resistance for all considered unsymmetric “reverse” specimens. 

Δi = ln (δi)  (5.7) 

Δmean = 
1

N
 ∆i

N

i=1
 (5.8) 

s∆
2  = 

1

N - 1
 (∆i - ∆mean)2

N

i=1
 (5.9) 

In addition to the scatter associated to the proposed resistance model, the coefficient of 
variation Vxi related to the basic variables Xi in the resistance function, i.e., the base 
material ultimate strength fur, the rivet diameter d and the shank eccentricity e, needs to 
be considered. 
In absence of experimental data, EN1990 allows assuming proper values for Vxi on the 
basis of prior knowledge but penalizing the design value of resistance (CEN, 2002). 
Adopted values of basic coefficients of variation, which were assumed according to 
Sneijder et al. (1988), are reported in Table 5.9. 
It should be remarked that the same uncertainty has been assumed for both diameter and 
eccentricity measures since these two parameters are usually evaluated by means of the 
same on-field techniques (Sustainable Bridge, 2006). 
Therefore, the total coefficient of variation of shear resistance Vr can be obtained with a 
simplified expression, since both Vδ, VXi ≪ 1 (Equation 5.10 – CEN, 2002): 

Vr
2 = Vδ

2 +  VXi
2

M

i=1
 (5.10) 

with M = 3 being the total number of basic variables in the proposed resistance function. 
Once coefficients of variation have been determined, standard deviations (Qδ, Qrt, Qr) 
and non-dimensional coefficients (αδ, αrt) can be derived as follows (Equations 5.11-5.12 
– CEN, 2002):  

Qδ = ටln൫Vδ
2 + 1൯ (5.11a) 

Qrt = ඨln ቆ VXi
2

M

i=1
 + 1ቇ (5.11b) 

Qr =  ටln (Vr
2 + 1) (5.11c) 
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αδ = 
Qδ

Qr

 (5.12a) 

αrt = 
Qrt

Qr

 (5.12b) 

Finally, the required partial safety factor γM for the proposed model has been derived as 
the ratio among the characteristic and design values of resistance according to the 
following Equation 5.13 (CEN, 2002): 

γM = 
Rk

Rd
 = 

exp (- kn αδ Qδ - k∞ αrt Qrt - 0.5 Qr
2)

exp (- kd,n αδ Qδ - kd,∞ αrt Qrt - 0.5Qr
2)

 (5.13) 

with (kn, k∞) and (kd,n, kd,∞) being the fractiles associated to the characteristic and design 
values of resistance, respectively. Results of the statistical validation for the proposed 
resistance function are summarized in Table 5.9.  
 
Table 5.9 Relevant parameters for the statistical validation of the proposed resistance model in 
compliance with EN1990 (CEN, 2002). 

b Vδ Vfr Vd Ve Vr kn k∞ kd,n kd,∞ γM 

[-] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] 

0.973 0.079 0.079 0.005 0.005 0.079 1.730 1.640 3.440 3.040 1.248 

 
It can be recognized that the proposed model can satisfactorily predict the shear 
resistance of hot-driven riveted connections with camming imperfections. In fact, the 
correction factor b, which is the slope of the regression line interpolating all couples of 
numerical/predicted values (see the black dashed line in Figure 5.24), is rather close to 
1 and a relatively small scatter is observed, although a little overestimation is still 
obtained for connections with the higher shear resistance.  
Nevertheless, when the required partial safety factor γM is used, the predicted shear 
resistance is conservative, as outlined by the relevant regression line which envelopes 
FEAs results (see the black dotted line in Figure 5.24). Moreover, it is worth remarking 
that the derived value of γM basically coincides with the partial factor adopted in 
EN1993:1-8 (CEN, 2005b) for the capacity of connections in the case of fracture 
mechanisms (that is, γM2 = 1.25). 
Besides, it is worth highlighting that the eccentricity orientation is not a geometrical 
feature of the connections per se, but it rather depends on the direction of the applied 
loads. The same unsymmetric connection may be regarded as “direct” or “reverse” for 
different load combinations (e.g., as it may occur to the connections of bridges). 
Therefore, when assessing the static performance of existing unsymmetric lap-shear 
connections, the shear resistance should be conservatively estimated by always 
accounting for the reduction of the “effective” shear resisting area (Equation 5.1). 

5.8. Comparison among proposed formulation and 
current EN1993-1-8 recommendations 

Finally, it is worth comparing the accuracy of the proposed resistance model against 
current EN1993:1-8 provisions (CEN, 2005b) for hot-driven riveted connections failing 
due to rivet shearing. To this end, the following assumptions are considered, namely: 
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i) the comparison is carried out with reference to the sole undistorted connections, as 
EN1993:1-8 does not address the influence of shank camming. Therefore, e/d is 
identically set equal to 0 in Equation 5.1; 
ii) as tensile coupon tests on rivets are available (see Section 4.3), mean values of 
material parameters (fur0,mean = 412 N/mm2 – D’Aniello et al., 2011) are used in place of 
characteristic ones for both Eurocode-compliant and proposed resistance estimations; 
iii) as static tests on connections are available (see Section 4.3), actual shear resistances 
of investigated assemblies are known. Therefore, following calculations are performed 
by assuming an unitary partial safety factor γM2 = 1.00. 
Accordingly, the following expressions are used to calculate rivet shearing resistance 
(Equation 5.14): 

EN1993:1-8:   FV,Rd,EC3 = 0.6 
π d2

4

 fur0,mean

1.00
 (5.14a) 

Proposed formulation:   FV,Rd,Eq5.1 = 0.75 
π d2

4

 1.25 fur0,mean

1.00
 (5.14b) 

 
Comparisons among current normative provisions and the proposed formulation are 
reported in Figure 5.25 and Table 5.10. 
It can be easily noticed how EN1993:1-8 predictions are exceedingly conservative, with 
a mean ratio Fu,exp,mean/FV,Rd,EC3 equal to 1.46. This overestimation is one-sided and basically 
constant, as the relative coefficient of variation is rather small instead (COVExp/EC3 = 0.08).  
Contrariwise, the proposed resistance model estimates more reliably the rivet shearing resistance 
of connections, as (Fu,exp,mean/FV,Rd,EC3)mean = 1.08.  
As both EN1993:1-8 and proposed formulations share the same form, with the only exception of 
non-dimensional and constant quantities (αv = 0.6 against Ω1 = 1.25 × Ω2 = 0.75, respectively), 
the same COV = 0.08 is obtained with reference to Equation 5.14b calculations. 
Equation 5.14b effectively captures shear resistance of connections, with prediction errors always 
lower than 10%, i.e., with the only notable exceptions of S-19-10-1 and U-19-10-1, for which an 
error higher than 20% is obtained. Nevertheless, it is worth remarking that, for such connections, 
Equation 5.14b predictions are still on the safe side (Fu,exp,mean > FV,Rd,Eq5.1). 
 
Table 5.10  Hot-driven riveted connections failing due to rivet shearing: comparison among experimental 
results, EN1993:1-8 predictions (CEN, 2005b) and predictions according to Equation 5.14b. 

Label Fu,exp,mean FV,Rd,EC3 FV,Rd,Eq5.1 Fu,exp,mean/FV,Rd,EC3 Fu,exp,mean/FV,Rd,Eq5.1 

[-] [kN] [kN] [kN] [-] [-] 

S-16-10-1 146.1 99.4 155.3 1.47 1.06 

U-16-10-1 80.0 49.7 77.7 1.61 0.97 

S-19-10-1 180.5 140.2 219.0 1.29 1.21 

U-19-10-1 87.0 70.1 109.5 1.24 1.26 

S-19-12-1 225.2 140.2 219.0 1.61 0.97 

U-19-12-1 100.6 70.1 109.5 1.44 1.09 

U-22-10-1 143.1 94.0 146.8 1.52 1.03 

U-22-12-1 143.4 94.0 146.8 1.53 1.02 

U-16-10-2 141.9 99.4 155.3 1.43 1.09 

U-19-10-2 201.6 140.2 219.0 1.44 1.09 

U-22-12-2 279.1 187.9 293.7 1.48 1.05 

Mean 1.46 1.08 

COV 0.08 0.08 
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Figure 5.25  Hot-driven riveted connections failing due to rivet shearing: comparison among 
experimental results (black bars), EN1993:1-8 predictions (grey bars – CEN, 2005b) and predictions 
according to Equation 5.14b (red bars). 
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6. Fatigue Performance of Mild Steel 
Components 

In the present Chapter, the fatigue performance of notched mild steel components  is 
assessed by means of standard and advanced techniques for fatigue analysis. To this end, 
parametrical FEAs are performed with the aim to: 

 Investigate the stress and strain fields nearby potential fracture spots in 
components, thus retrieving useful insights on parameters influencing their 
fatigue performance. Namely, a peculiar focus is given to the distribution of 
circumferential stresses in round notched coupons, as they can affect the fatigue 
performance (Filippi & Lazzarin, 2004; Lazzarin & Filippi, 2006); 

 Numerically estimate the average strain energy density in the relevant control 
volume, thus enabling the assessment of the fatigue performance of notched and 
smooth components. 

Therefore, in the present Chapter, the following key topics are addressed, namely: i) 
refined numerical analyses of mild steel blunt V-notched cylinders (Section 6.1), ii) 
interpretation of results through standard fatigue analysis techniques for structural 
components (Section 6.2) and iii) interpretation of results through advanced fatigue 
analysis techniques, namely with the SED method (Section 6.3). 

6.1. Refined numerical analyses of mild steel blunt V-
notched specimens  

53. 6.1.1 Generality 

This Section summarizes the parametric numerical study carried out against 
experimental tests on mild steel blunt-V notched cylinder described in Section 4.1. 
Namely, the performed wide FEA study was aimed at i) estimating stress fields at notch 
tip (either axial, radial and circumferential) to derive insights on the fatigue performance 
of specimens and ii) estimating relevant material parameters for the fatigue analyses 
through the SED method. 
On one hand, with reference to local notch stresses,  a peculiar focus was given to the 
magnitude of circumferential stresses in the bisector plane of the notch (hoop stresses), 
in order to: 

 Preliminarily investigate if these stresses can have an influence on the fatigue 
response of axisymmetric components, that is, if they could configure a 
multiaxial fatigue condition for round notched specimens; 

 Investigate whether these stresses are significantly different from those 
derivable with the usual formulations from elasticity theory (Irgens, 2008).  
Namely, notched cylinders are usually addressed under the simplifying 
assumption of plain strain conditions (Filippi & Lazzarin, 2004; Lazzarin & 
Filippi, 2006), that is, a condition ideally achieved at any given diametral plane 
across the cylindrical specimen.  



clxxxv 
 

This hypothesis, which derives from the axi-symmetry constraints of the 
specimens, is indeed usually adopted for the study of axisymmetric components 
in order to reduce computational effort (Cook, 1995); 

 Preliminarily understand, which are the geometric parameters most affecting the 
distribution of hoop stresses and their discrepancy with respect to plain strains 
conditions. 

One the other hand, with reference to the application of the SED method, a numerical 
iterative procedure was performed to properly identify the control volume radius based 
on achieved experimental results. 
Estimated value of R0 was hence compared against theoretical models and suitably used 
to interpretate experimental fatigue results with a reliable and unified approach. 

54.  6.1.2 Modelling Assumptions 

Parametrical finite element models (PFEMs) were developed using ABAQUS v. 6.14 
software (Dassault, 2014). The parametric definition of numerical models was achieved 
by means of the Python/ABAQUS Scripting language (Dassault, 2014; Python Software 
Foundation, 2022). Namely, ABAQUS v. 6.14 fully supports Python 2.8 language, 
enabling the use of all built-in object-oriented Python features (e.g., tuples, lists, 
functions, etc…) and further including dedicated modules for each phase of FE 
modelling (e.g., model definition, attribution of material properties and BCs, meshing, 
analysis performance and interpretation/manipulation of results – Dassault, 2014). 
To this end, both investigated geometries of blunt V-notched specimens were redefined 
in a unique, purely parametric way (Figure 6.1). The developed Python/ABAQUS Script 
is reported in the Appendix. 
Specimens were discretized using dedicated axisymmetric quad elements (CAX8, i.e. 8-
node quad axisymmetric element, quadratic geometry, standard integration). CAX8 
elements enabled accounting for axisymmetric BCs while defining only a half diametral 
cross-section of the specimen. Quadratic elements were adopted for meshing as 
suggested by Foti et al. (2020) to ensure the accuracy of the free mesh SED method (see 
Section 3.5). 
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ρ

sin β
 

D: Outer cylinder diameter at grip; 
d: Minimum inner diameter at notch bisector; 
Lg: Grip length; 
ρ: Notch radius; 
β = (π - 2α)/2: Notch slope, with 2α being the notch opening angle. 
 

 

Figure 6.1  Geometrical features of parametrical FEMs. 
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Specimens were modelled as purely isotropic elastic elements, in compliance with SED 
method assumptions (Lazzarin & Zambardi, 2001; Lazzarin et al., 2010, Berto & 
Lazzarin, 2014). Accordingly, typical values of Young Modulus Es = 210000 N/mm2 
and Poisson’s coefficient ν = 0.3 were assumed for all FEAs. 
Fatigue behaviour of notched cylinders was investigated by applying an unitary tensile 
pressure at the end of the grip, i.e., in order to mimic the test conditions reported in 
Section 4.1. This simplified assumption was allowed by the FEM linearity deriving from 
assumed material properties. Accordingly, actual fatigue protocols were investigated by 
scaling results derived as respect to the “reference” model having σ = 1 (see Section 6.3 
for further details). 
In order to further balance predictions accuracy with computational effort deriving from 
the large number of parametric FEAs performed, specimens symmetry with respect to 
the notch bisector plane was also explicitly accounted for. Resulting BCs related to test 
conditions and inherent model symmetries are depicted in Figure 6.2. 
Preliminary sensitivity analyses were carried out to select the appropriate mesh density, 
with element size defined in function of the blunt V-notch radius ρ as suggested by 
Lazzarin et al., 2010 and Foti et al., 2020. (see Section 6.1.4 for further details). 
Accordingly, at least 40 elements where adopted for the (half) notch radius, while a 
maximum mesh size equal to D/8 was adopted for portions away from the notch. In order 
to avoid significant border effects, Lg = 2 D was adopted for all parametric FEAs. 
 

 
Figure 6.2 Adopted geometry and BCs for the parametric FEAs. 
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55. 6.1.3 Range of Variability for Relevant Parameters 

The performed parametric numerical study accounted for a wide variability of 
geometrical features defined in Figures 6.1-6.2. Assumed ranges of variability for 
relevant quantities are summarized in Table 6.1. 
In order to investigate the potential influence of size effects, outer diameter D was varied 
up to 2 times its value for experimental specimens with the ratio d/D being kept constant. 
Extreme values were assumed on the basis of geometric plausibility of FEMs (that is, in 
order to avoid notches discontinuity deriving from incompatible values of ρ and d). 
 
Table 6.1 Assumed ranges of variation for parametric FEAs on blunt V-notched cylinders. 
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Investigated parameters 

Diameter ratio 
d/D [-] 

Outer diameter 
D [mm] 

Notch opening angle 
2α [mm] 

Notch radius 
ρ [mm] 

0.5 10 15 0.1 

0.55 12 30 0.2 

0.6 14 45 0.3 

0.65 16 60 0.4 

0.7 18 75 0.5 

0.75 20 90 0.6 
  105 0.7 
  120 0.8 
   0.9 
   1 

 
Reference values of geometrical parameters for experimentally tested specimens are 
highlighted in red in Table 6.1 for the sake of clarity. 
In order to uniquely identify each of the analyzed FEMs, an appropriate labelling 
summarizing mechanical and geometrical features of interest was introduced, namely: 
 
Labelling “C45-D-N-A-R” with: 
C45 with reference to the specimens steel grade; 
D = 10 ÷ 20 with reference to the outer cylinder diameter D; 
N = 5 ÷ 15 with reference to minimum diameter at notch d; 
A = 15 ÷ 120 with reference to the notch opening angle 2α; 
R = 0.1 ÷ 1.0 with reference to the notch radius ρ; 
 
A large total of 6 × 6 × 8 × 10 = 2880 FEAs were carried out accordingly. 
In compliance with the above nomenclature, experimental tests reported in Section 4.1 
are hence relabelled as follows: 
T50CC, F50BBCC → C45-10-5-60-0.1 
T75CC, F75BBCC → C45-10-7.5-60-0.1 
Examples of parametric FEMs developed with reference to extreme values of assumed 
ranges of variability are depicted in Figure 6.3, in conjunction with FEMs resembling 
experimental tests (Figure 6.3i-j). 
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a) C45-10-5-15-0.1 b) C45-10-5-15-1 c) C45-10-5-120-0.1 d) C45-10-5-120-1 

e) C45-10-7.5-15-0.1 f) C45-10-7.5-15-1 g) C45-10-7.5-120-0.1 h) C45-10-7.5-120-1 
 

  
i) C-45-10-5-60-0.1 j) C45-10-7.5-60-1 

Figure 6.3 Examples of PFEMs: a-h) “extreme” models, i) C45-10-5-60-0.1, j) C45-10-7.5-0.1. 

56. 6.1.4 Mesh Sensitivity Analyses 

As stated in Section 3.5, FEAs accuracy in terms of stresses and strains is strongly related 
to mesh size, especially in presence of stress raising sources such as sharp or blunt 
notches. Contrariwise, ASED calculations require a less refined mesh to yield reliable 
results (Lazzarin et al., 2010). 
Nevertheless, it is worth remarking that, when average strain energy density is estimated 
through free mesh FEMs, some degree of mesh refinement is still required in order to 
properly define the control volume, thus avoiding jagged borders for ΩSED that would 
result in inaccurate SED calculations (Foti et al., 2020) 
Therefore, preliminary sensitivity analyses concerning (Figure 6.4) both stresses and 
SED calculations were carried out for C45-10-5-60-0.1 and C45-10-7.5-60-0.1. 
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Namely, mesh density was defined based on a single parameter kR, that is, the number 
of elements adopted for meshing the (half) notch radius. 
Accordingly, the mesh size was kept constant and equal to the minimum value smin = π 
ρ/2 kR in a neighbourhood of the notch radius having size 2ρ × 2ρ, i.e., the zone in which 
significant stress amplifications were expected, while mesh was gradually enlarged 
towards the notch end up to a maximum value smax = 10 smin. As for the grip segment, a 
maximum mesh size sgrip = D/8 to balance accuracy and computational effort. 
 

 
a) 

 
b) 

 
c) 

Figure 6.4 Results of preliminary mesh sensitivity analyses: a) adopted meshes for C45-10-5-60-0.1, b) 
stresses at notch tip, c) average strain energy density over the control volume. 

Figure 6.4 depicts results of mesh sensitivity analyses in terms of S22 (normal stress 
perpendicular to the notch bisector), S33 (hoop stress), SMISES (equivalent Hencky-
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Von Mises stress), with each one being estimated at the notch tip, and ASED over the 
control volume. Values in the range 5 ÷ 60 were assumed for the mesh governing 
parameter kR. 
With regard to SED related sensitivity analyses, a conventional value of R0 = 0.3 mm 
was initially adopted on the basis of what reported in Radaj & Vormwald (2013). 
As it can be noticed, S22, S33 and SMISES are only moderately sensitive to variations 
of kR (± 1%), mainly in light of the absence of a stress singularity for ρ ≠ 0 (Berto & 
Lazzarin, 2014). Nevertheless, a final value of kR = 40 was selected because i) no 
significant increase in computational times was observed and ii) to avoid severe errors 
in the definition of ΩSED on a free mesh PFEM. 
Indeed, as shown by Figure 6.4c, estimated ASED values decrease for increasing values 
of kR. At first glance, this result may appear counterintuitive in light of remarks reported 
by Lazzarin et al. (2010). However, it should be remarked that the Authors referred to a 
control volume-based FEM application of SED method, and hence ΩSED was always 
defined accurately by means of a dedicated partition. 
For the relevant case of a free mesh application, the use of a lower value of kR resulted, 
on one hand, in a strong underestimation of ΩSED, as many elements were not picked, 
i.e., since them were not fully enclosed in the selection cylinder with radius R1 = r + R0. 
On the other hand, the strain energy integrated over the picked volume (see Equation 
3.65) did not significantly decrease in case of jagged selections, as maximum values of 
W(x) were all contained in a small neighbourhood of the notch tip (Berto &  Lazzarin, 
2014). This inconsistency resulted in the observed, improper increase of ASED for 
overly coarse free meshes and led to the adoption of the final value of kR = 40 for all 
subsequent analyses. 

57. 6.1.5 Estimation of the Control Volume Radius in Cyclic Conditions 

As reported in Radaj & Vormwald (2013), the control volume radius R0 for the 
application of the SED method in cyclic conditions can be conveniently estimated based 
on a numerical interpretation of experimental results (Figure 6.5).  
 

 
Figure 6.5 Numerical technique for the estimation of the control volume radius for SED calculations. 

The main idea behind this technique is related to the independence of R0 from the actual 
specimen geometry, as it is rather intended as a base material parameter (Berto &  
Lazzarin, 2014). 
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Therefore, by considering at least two different specimen configurations (e.g., blunt 
notches with two different d/D ratios, although a single series of tests on smooth 
specimens could be also used), a suitable value of R0 can be estimated through 
parametrical FEAs (Radaj & Vormwald, 2013). 
Namely, if the endurance limit ΔσE is estimated for different geometries, yet for the same 
number of cycles at failure N* (e.g., 106 or 2 · 106), R0 can be estimated by imposing the 
occurrence of failure for all geometries for the same value of ASED range (Livieri & 
Lazzarin, 2005; Radaj & Vormwald, 2013). 

Indeed, while for smooth specimens ∆Wഥ  = cw ∆σ2 2E⁄  independently from R0, for 
notched specimens ∆Wഥ  decreases as R0 increases (Berto &  Lazzarin, 2014). 
Hence, the actual value of R0 can be estimated at the intersection of ∆Wഥ  – R0 curves for 
the investigated geometries (Radaj & Vormwald, 2013). Reliability of derived values 
can be hence conveniently assessed by comparing them with analytical expressions 
reported in Section 3.4 (Equation 3.56a-b – Yoshibash, 2004). 
Accordingly, a first value of R0 for investigated C45 steel was derived based on material 
properties provided by the specimen manufacturer (that is,  fu = 779.1 N/mm2 for smooth 
round coupons and KIC = 1932.4 N/mm3/2). The approximation of plain strain conditions, 
i.e., commonly adopted for axisymmetric specimens, yielded the following upper bound 
for R0 (Equation 6.1 – Yoshibash, 2004): 

R0 ≈ 
(1 + 0.3) (5 - 8 0.3)

4π
 ൬

1932.4

779.1
൰

2

≈ 1.66 mm (6.1) 

It is worth remarking that such value is quite elevated for mild steels, as for them usually 
R0 < 1 mm (Radaj & Vormwald, 2013). Therefore, the numerical technique aimed at 
suitably find a lower and more reliable value for the control volume radius. 
As for the selection of the endurance limit, a number of cycles N* = NC = 2 · 106 was 
selected in accordance with the runout threshold assumed in experimental activities (see 
Section 4.1). Accordingly, ΔσE,5 = 97.0 N/mm2 and ΔσE,7.5 = 206.6 N/mm2 for specimens 
T50BBCC (i.e., C45-10-5-60-0.1) and T75BBCC (i.e., C45-10-7.5-60-0.1) were 
assumed respectively. 
For the sake of clarity i) endurance limits were referred to gross cross-sections of 
cylinders π D2/4 in both cases and ii) nominal stress ranges were corrected through the 
square root of the prestress coefficient cw

1/2 to account for different values of R = 0.7 ÷ 
0.9 adopted in experimental tests. 
For instance, cw

1/2 was assumed as an equivalent, SED-based SMF, as the following 
expression holds (Equation 6.2 – Berto & Lazzarin, 2014): 

∆Wഥ  ∝ cw ∆σ2 =൫cw
1 2⁄ ∆σ൯

2
 (6.2) 

In other words, adopting cw
1/2 as a stress magnification factor ensured that the correct 

value of ASED range could be estimated through refined FEAs. This operation is 
allowed as cw clearly does not depend on R0 (see Equation 3.60). 
Results of the numerical technique are depicted in Figure 6.6. 
It can be easily noticed how the most plausible value of R0 = 0.20 mm is sensibly lower 
than its first approximation yielded by Equation 6.1.  
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Figure 6.6 Numerical estimation of R0 for C45 notched specimens in cyclic conditions. 

Remarkably, such value complies with typical values of R0 for mild steels reported in 
Radaj & Vormwald (2013). It is worth remarking that this value is deemed as “most 
plausible” rather than “exact” as the two ∆Wഥ  – R0 curves do not intersect, but rather the 
relative error in terms of ∆Wഥ  minimizes for R0 = 0.20 mm. This outcome is in fact quite 
common when numerically assessing the performance of notched specimens (Radaj & 
Vormwald, 2013). 
The obtained value of R0 was hence adopted to interpretate experimental results for blunt 
V-notched cylinders with the aid of the SED method. Further details are reported in 
Section 6.3. 

58. 6.1.6 Preliminary Investigation on Circumferential Stresses in 
Notched Cylinders 

Results of parametrical FEAs for specimens having an experimental counterpart (i.e., 
C45-10-5-60-0.1 and C45-10-7.5-60-0.1) are reported in Figures 6.7-6.9 in terms of i) 
distribution of Von Mises equivalent stresses, ii) evolution of stress components of 
concern (S22, S33HOOP, S33PS, SMISES) along the notch bisector and iii) percentage 
differences ε% between the circumferential stresses estimated under the assumption of 
axisymmetric (S33HOOP) and plain strain (S33PS) conditions.  
For instance, while S33HOOP = S33 were directly derived from FEAs, S33PS were 
estimated based on notch radial stresses S11 and normal notch stresses S22 according to 
the well-known formula from elasticity theory (Equation 6.3 – Irgens, 2008): 

S33PS = ν (S11 + S22) (6.3) 

As for percentage deviations among S33HOOP and S33PS, ε% is assessed by means of 
Equation 6.4: 

ε% = 
S33HOOP - S33PS

avg (S33HOOP; S33PS)
 [%] (6.3) 

Accordingly, ε% > 0 for larger hoop stresses than theoretical plain strain calculations. 
For the sake of comparability, numerical results for the two depicted geometries are 
represented against the normalized notch abscissa 2x/d, i.e., the ratio among the 
coordinate of a given point x on the notch bisector and the minimum cross-section radius 
d/2, e.g., 2x/d = 0 in correspondence of the polar axis and 2x/d = 1 at the notch tip.  
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a) 

 
b) 

Figure 6.7 Results of numerical analyses: Von Mises stress distributions for a) C45-10.0-5.0-60-0.1 and 
b) C45-10.0-7.5-60-0.1. 

Notably, the adoption of unitary stresses on the grip ends implies that maximum stresses 
on the model actually represent the stress magnification factor referred to the gross cross-
section (Kt,gross) associated to the considered geometry.  
 

 
a) 
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b) 

Figure 6.8 Results of numerical analyses: distribution of S22, SMISES, S33HOOP and S33PS along the 
notch bisector for specimens C45-10.0-5.0-60-0.1 and C45-10.0-7.5-60-0.1. 

 

 
Figure 6.9 Results of numerical analyses: percentage gap among S33HOOP and S33PS along the notch 
bisector for specimens C45-10.0-5.0-60-0.1 and C45-10.0-7.5-60-0.1. 

As expected, the value of Kt,gross expressed in terms of equivalent Von Mises stresses 
(Figure 6.7), is significantly higher for the deeper notch (Kt,gross,5mm = 18.90 and 
Kt,gross,7.5mm = 9.30 for C45-10-5-60-0.1 and C45-10-7.5-60-0.1, respectively, relative 
difference ΔKt,gross = +103%). 
As it can be noticed from Figure 6.8, trends of circumferential stresses S33HOOP (black 
solid curves) and ideal plain strain stresses S33PS (black dashed curves) differ throughout 
the entire notch bisector. The percentage deviation, represented in Figure 6.9 for 
specimens C45-10-5-60-0.1 (red curve) and C45-10-7.5-60-0.1 (black curve) also shows 
that the maximum deviation occurs towards the polar axis, while the two formulations 
tend to the same value at the notch tip.  
It is also very interesting to note that, in the case of a deeper notch (d/D = 0.5) S33HOOP 
are always greater than the corresponding S33PS values, while the opposite condition 
(S33HOOP < S33PS ∀ 2x d⁄  = 0 ÷ 1) occurs for d/D = 0.75. 
This outcome suggests that discrepancy between hoop stresses and ideal circumferential 
stresses derived for plain strain conditions is a nonlinear function of the geometric 
parameters describing of notched specimens.  



cxcv 
 

This deviation was therefore determined for all the investigated PFEMs. In order to 
synthetically represent the magnitude of such difference, results were referred both to 
the notch tip (Figure 6.10, ε%,notch) and averaged over the entire notch bisector (Figure 
6.11, ε%,avg) as follows (Equation 6.4): 

ε%,avg = 

1
d/2 ∫ S33HOOP dx

d/2

0
- 

1
d/2 ∫ S33PS dx

d/2

0

avg ൬
1

d 2⁄ ∫ S33HOOP dx
d 2⁄

0
;

1
d 2⁄ ∫ S33PS dx

d 2⁄

0
൰

 [%] (6.4) 

Accordingly, ε%,avg > 0 if S33HOOP are averagely higher than corresponding S33PS along 
the entire notch bisector. 
For the sake of clarity, numerical results are summarized  in two 6 × 6 matrices of graphs 
arranged as follows:   

 on the abscissas of matrices: diameter ratio d/D ↑ increases; 

 on the ordinates of matrices: outer diameter D ↑ increases; 

 on the abscissas of each graph: the notch radius ρ ↑ increases;  

 Individual curves in each graph are defined for ranging values of 2α. 
For the sake of brevity, only results for D = 10 mm are reported in Figures 6.10-6.11. 
The full version of the two graphs matrices is reported in the Appendix.  
Accordingly, results of parametrical FEAs can be summarized as follows: 

 The difference between the hoop stresses in axisymmetric regime S33HOOP and 
simplified plain strain calculations S33PS is often significant, with deviations at 
the notch radius among -25% ÷ +10%, while averaged deviation on the entire 
bisector are in the range -40% ÷ +25%; 

 The maximum deviation is observed nearby the polar axis (x/2d → 0), while the 
relative gap minimizes at the notch tip (that is, ε%,avg > ε%,notch for each 
investigated configuration); 

 A moderate size effect is observed. Indeed, for increasing values of outer 
diameter D, the deviation curves tend to flatten for the same value of d/D ratio; 

 As the opening angle of 2α increases, a relative reduction in S33HOOP stresses is 
always observed compared to the corresponding S33PS stresses. 
Although further studies are needed, this outcome suggests that the magnitude 
of S33HOOP could depend on the generalized N-SIF in case of blunt notches, and 
possibly on the degree of stress singularity in case of sharp V-notches. 

 As the notch radius ρ increases, a relative reduction in terms of S33HOOP is 
always observed as respect the corresponding values of S33PS, although 
generally speaking, this effect appears less significant as respect to the 
sensitivity to the notch opening angle 2α; 

 In case of “deep” notches (i.e., for lower values of d/D ≤ 0.6) there are 
configurations for which S33HOOP stresses are higher than the corresponding 
values of S33PS. Notably, these configurations are all characterized by rather 
small opening angles (2α ≤ 60°); 

 In all other cases, the S33HOOP stresses are always lower than the corresponding 
S33PS stresses; the deviation increases significantly with increasing d/D ratio, 
although at the same time the influence of 2α on ε%,notch and ε%,avg reduces when 
d/D is high. 

It is worth remarking that hoop stresses are always present in case of round elements, as 
they intrinsically descend from the peculiar specimens geometry (Irgens, 2008).  
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a) b) 

  

c) d) 

  

e) f) 
Figure 6.10 Deviation curves estimated at the notch tip (ε%,notch) for all developed PFEMs with D = 10 
mm. 
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a) b) 

  

c) d) 

  

e) f) 
Figure 6.11 Deviation curves averaged over the notch bisector (ε%,avg) for all developed PFEMs with D 
= 10 mm. 
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Therefore, with regard to cyclic condition, S33HOOP can be regarded as a superimposed 
stress field which is always in phase with applied tensile loads (Filippi & Lazzarin, 2004; 
Lazzarin & Filippi, 2006). 
Considering that:  
i) on principle, for both flat and round specimens S33 detrimentally affect fatigue 
performance, as they are tensile stresses which locally increase stress triaxiality T 
(Kanvinde et al., 2007); 
ii) both ε%,notch > 0 and ε%,avg > 0 in most cases, hence hoop stresses are lower than 
corresponding S33 stresses in plain strain conditions 
it can be inferred that fatigue performance of round components is plausibly superior as 
respect to flat components subjected to nominally identical stress ranges. This outcome 
can be significant for the case of both riveted and bolted connections, namely for 
assemblies subjected to nominal tensile loads such as T-stub joints. 
Nevertheless, it is worth remarking that the above parametrical investigation reported in 
the present Thesis work has only a preliminary nature. Thus, further numerical and 
experimental studies are certainly needed to support the observations that were pointed 
out. 

6.2. Interpretation of results through traditional fatigue 
verification techniques 

As shown in Section 4.1, experimental outcomes for blunt V-notches arranged on 
multiple scatter bands depending on the relevant stress ratio R = 0.7 ÷ 0.9. Moreover, 
inverse (log-)slopes of curves increase as R increases.  
A first attempt to infer these results in a unified way was hence made considering two 
mean-stress effect corrections for stress-life methods, namely the Goodman (1899) and 
the SWT (Smith, Watson & Topper, 1970) formulations (Equation 6.5): 

Goodman:   ∆σEq,G= ∆σ
1

1 - 
σm
fu

 = ∆σ
1

1 - 
(1 + R)
2 (1 - R)  

∆σ
fu

 
(6.5a) 

SWT:   ∆σEq,SWT = ∆σ ඨ
2

1 - R
 (6.5b) 

with σm being conventionally referred to the minimum section π d2/4. 
Consistently, the UTS values for Goodman’s formulation have been assumed equal to 
the average of nominal fu test values referred to the minimum cross-section, hence 
accounting for the notch effect on a flat-rate basis (fu,5 = 1298.1 N/mm2  and fu,7.5 1087.9 
N/mm2

, respectively). Results of Goodman and SWT methods are reported in Figures 
6.12-6.13 and Tables 6.2-6.3. 
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Figure 6.12 Application of the Goodman method to account for mean-stress effect for blunt V-notched 
specimens. 

 

 
Figure 6.13 Application of the SWT method to account for mean-stress effect for blunt V-notched 
specimens. 

Table 6.2 Mean-stress corrected fatigue results. 

Label R Δσ σm Δσeq,G Δσeq,SWT N Remarks 

[-] [-] [N/mm2] [N/mm2] [N/mm2] [N/mm2] [-] [-] 

F500701 0.7 305.6 865.8 917.6 789.1 39311  

F500702 0.7 203.2 575.8 365.2 524.7 149099  

F500703 0.7 100.8 285.7 129.3 260.3 2174000 Runout 

F500704 0.7 140 396.5 201.5 361.5 2467119  

F500705 0.7 165 467.4 257.8 426.0 724228  

F500706 0.7 203.2 575.8 365.2 524.7 139981  

F500707 0.7 140 396.5 201.5 361.5 1475944  

F500708 0.7 165 467.5 257.9 426.0 385254  
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F500801 0.8 203.7 916.7 693.4 644.2 157354  

F500802 0.8 229.2 1031.3 1115.2 724.8 96466  

F500803 0.8 112 504.2 183.2 354.2 1.40E+07  

F500804 0.8 153.3 689.8 327.2 484.8 546636  

F500901 0.9 107.5 1020.9 503.2 480.8 2761807  

F500902 0.9 117.1 1112.8 820.6 523.7 632017  

F500903 0.9 122.2 1161.2 1159 546.5 248212  

F500904 0.9 95.6 908.6 318.8 427.5 2358780 Runout 

F750701 0.7 271.6 769.6 928.4 701.3 61511  

F750702 0.7 223 631.8 531.9 575.8 120135  

F750703 0.7 149.4 423.3 244.5 385.7 492223  

F750704 0.7 271.6 769.6 928.4 701.3 40583  

F750705 0.7 223 631.8 531.9 575.8 120185  

F750801 0.8 175.7 790.4 642.4 555.6 234940  

F750802 0.8 181.1 814.9 721.5 572.7 175440  

F750803 0.8 96.4 433.9 160.4 304.8 2600000 Runout 

F750804 0.8 181.1 814.9 721.5 572.7 146227  

F750805 0.8 175.7 790.4 642.4 555.6 185495  

F750806 0.8 138.5 623.4 324.4 438.0 514254  

F750901 0.9 99.6 946.2 764.4 445.4 1053000  

F750902 0.9 83.3 791.3 305.6 372.5 7470000 Runout 

F750903 0.9 104.1 989.2 1147.3 465.6 632581  

F750904 0.9 101.9 967.7 921.6 455.7 744442  

 
Table 6.3 Statistical characterization of mean-stress corrected fatigue results. 

Criterion 
[-] 

Upper v.  
ΔσC,10 

[N/mm2] 

Mean v. 
ΔσC,50 

[N/mm2] 

Lower v. 
ΔσC,10 

[N/mm2] 

Inv.  
Slope m 

[-] 

Coeff. 
of Det. 
R2 [-] 

Scatter 
Ratio 
Tσ [-] 

Goodman 655.0 135.7 28.1 4.07 0.23 > 20 
SWT 465.5 369.9 293.8 7.19 0.74 1.58 

 
It can be immediately noticed how Goodman's method is not able to infer the results in 
a univocal way, as a significant scatter of corrected experimental points is observed (see 
Figure 6.12, R2 = 0.23, Tσ > 20). This result descends from the assumed high values of 
stress ratios R, which invalidate the applicability of Goodman’s method as observed by 
Dowling (2004). Contrariwise, the application of SWT correction yields more condensed 
results (see Figure 6.12, R2 = 0.74, Tσ = 1.58). 
In the next Section, an attempt to further improve the interpretation of results is carried 
out by means of the SED method, the theoretical background of which has been 
introduced in Section 3.4. Starting from results of refined parametrical FEAs, average 
strain energy densities are estimated for the two specimens geometries and results are 
hence assessed within the framework of an energetic approach. Further details are 
reported in the following. 
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6.3. Validation of energetic approaches for the fatigue 
assessment of blunt notched components 

As observed in the previous Section, the application of traditional fatigue analysis 
techniques did not provide a definitive, univocal interpretation of results related to blunt 
notched specimens. Namely, while the SWT criterion (Smith, Watson & Topper, 1970) 
yielded more condensed results, the Goodman (1899) criterion did not suitably capture 
all experimental results. 
Therefore, in the present Section, an attempt to investigate results within the framework 
of an energetic approach such as the SED method (Lazzarin & Zambardi, 2001; Berto 
& Lazzarin, 2014) is carried out. 
The relevant numerical part for a SED-based fatigue assessment of cylindrical blunt V-
notched specimens has been widely described in Section 6.1. Accordingly, a plausible 
value of the control volume radius R0 = 0.2 mm is assumed for energetic calculations. 
Notably, this value complies with usual ranges of variation for R0 in mild steels reported 
in Radaj & Vormwald (2013).  
Owing to the linearity of both PFEMs describing experimental specimens, results from 
FEAs can be simply scaled in compliance with i) the quadratic dependence of ∆Wഥ  from 
applied stress range Δσ and ii) the direct proportionality between ∆Wഥ (R ≠ 0) and ∆Wഥ (R 
= 0) expressed by means of the prestress coefficient cw (Lazzarin et al., 2004). 
Accordingly, the following expression is used to estimate ASED for each experimental 
test based on numerical results (Equation 6.6): 

∆Wഥ (d, ∆σ, R) = Wഥ 1,FEA(d) cw (∆σ)2 (6.6) 

with Wഥ 1,FEA(d) being the “unitary” ASED [L2 / F] according to FEAs, i.e. the average 

strain energy density over the control volume for reference conditions σ = 1 N/mm2 and 
R = 0, which only depends on the specimen geometry. 
For the relevant case of C45-10-5-60-0.1 and C45-10-7.5-60-0.1, the only difference is 
ascribable to the notch depth, hence Wഥ 1,FEA only depends on the minimum diameter d. 

Unitary ASED values for the two different geometries are reported in Table 6.4, in 
conjunction with prestress coefficient values for R = 0.7 ÷ 0.9. 
 
Table 6.4 Numerical values of unitary ASEDs for the two configurations of notched cylinders. 

Label 
[-] 

d 
[mm] 

Wഥ 1,FEA 
[mm2/N] 

R 
[-] 

cw 
[-] 

cw Wഥ 1,FEA 
[mm2/N] 

C45-10-5-60-0.1 5 1.151 · 10-4 

0.7 5.7 6.561  · 10-4  

0.8 9.0 1.036  · 10-3  

0.9 19.0 2.187  · 10-3  

C45-10-7.5-60-0.1 7.5 2.674 · 10-5 

0.7 5.7 1.524  · 10-4  

0.8 9.0 2.407  · 10-4  

0.9 19.0 5.810  · 10-4  

 
As expected, values of unitary ASED are smaller for the shallower notch (C45-10-7.5-
60-0.1, d = 7.5 mm, Wഥ 1,FEA = 2.674 · 10-5 mm2/N, while Wഥ 1,FEA = 1.151 · 10-4 mm2/N 

for C-45-10-5-60-0.1) as stress raising effects are less pronounced. 
It is also worth noting that the increase of unitary ASED as respect to the notch depth (D 
- d)/2 is more than linear (i.e., an almost quadratic dependence is observed). 
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As for the prestress coefficient cw, it can be noticed that the higher stress ratios R may 
severely penalize fatigue performance of notched components, as the ASED for a 
specimen enduring cycles with R = 0.9 is almost 19 times higher as respect to a zero-to-
tension cycle having same range Δσ, and almost 38 times higher as respect to a fully-
reversal load protocol, as cw (R = -1) = 0.5 (Lazzarin et al., 2004). 
Interpretation of fatigue results through the SED method is reported in Figure 6.14 and 
Table 6.5. 
 

 
Figure 6.14 Interpretation of fatigue results through the SED method. 

 

Table 6.5 Interpretation of fatigue results through the SED method. 

Label R Δσ cw ΔWഥ  N Remarks 

[-] [-] [N/mm2] [-] [mJ/mm3] [-]  [-] 

F500701 0.7 305.6 5.7 3.81 39311  

F500702 0.7 203.2 5.7 1.68 149099  

F500703 0.7 100.8 5.7 0.41 2174000 Runout 

F500704 0.7 140.0 5.7 0.80 2467119  

F500705 0.7 165.0 5.7 1.11 724228  

F500706 0.7 203.2 5.7 1.68 139981  

F500707 0.7 140.0 5.7 0.80 1475944  

F500708 0.7 165.0 5.7 1.11 385254  

F500801 0.8 203.7 9.0 2.69 157354  

F500802 0.8 229.2 9.0 3.40 96466  

F500803 0.8 112.0 9.0 0.81 1.4E+07  

F500804 0.8 153.3 9.0 1.52 546636  

F500901 0.9 107.5 19.0 1.58 2761807  

F500902 0.9 117.1 19.0 1.88 632017  

F500903 0.9 122.2 19.0 2.04 248212  

F500904 0.9 95.6 19.0 1.25 2358780 Runout 
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F750701 0.7 271.6 5.7 3.54 61511  

F750702 0.7 223.0 5.7 2.38 120135  

F750703 0.7 149.4 5.7 1.07 492223  

F750704 0.7 271.6 5.7 3.54 40583  

F750705 0.7 223.0 5.7 2.38 120185  

F750801 0.8 175.7 9.0 2.35 234940  

F750802 0.8 181.1 9.0 2.50 175440  

F750803 0.8 96.4 9.0 0.71 2600000 Runout 

F750804 0.8 181.1 9.0 2.50 146227  

F750805 0.8 175.7 9.0 2.35 185495  

F750806 0.8 138.5 9.0 1.46 514254  

F750901 0.9 99.6 19.0 1.59 1053000  

F750902 0.9 83.3 19.0 1.12 7470000 Runout 

F750903 0.9 104.1 19.0 1.74 632581  

F750904 0.9 101.9 19.0 1.67 744442  

 
It can be clearly observed that fatigue results interpretated through the SED method are 
definitely less scattered as respect to the Goodman model (Goodman, 1899), namely 
with a very good fit of the experimental results (R2 =  0.80, Tw = 2.95). Likewise, a 
slightly better fit is obtained also as respect to the SWT model (Smith, Watson & Topper, 
1970) 
It is worth noting that the value of Tw = 2.95 is intrinsically higher as respect to a standard 
fatigue analysis in terms of stress ranges, i.e. by virtue of the quadratic dependence of 
∆Wഥ  on Δσ (Equation 6.6). 
For the sake of comparison, recalling properties of the loglinear regression model 
(Wakefield, 2013) and considering the dependence of the scatter ratio Ti on the data 
standard deviation s, an equivalent value of Tσ,eq = 2.951/2 = 1.70 is obtained by 
equivalently expressing results in terms of stress ranges (Figure 6.15).  
 

 
Figure 6.15 Interpretation of fatigue results through SED equivalent stress ranges. 
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Notably, the same conclusion could be derived by inverting Equation 6.6 and reassessing 
the reliability of the regression model.  
It is worth remarking that under no circumstances SED equivalent stresses Δσeq for each 
specimens coincide with stresses applied at the notch tip, as it can be noticed from the 
small values depicted in Figure 6.15. More properly, they should be rather intended as 
an equivalent quantities governing the fatigue performance of notched components 
having the physical dimensions of a stress.    
It is therefore possible to define an ASED detail class Twc associated with a number of 
cycles at failure N* = NC = 2 · 10 6 as suggested by EN1993:1-9 (CEN, 2005a). 
Moreover, assuming a confidence interval CI bounded by usual exceeding probabilities 
PS = 10% – 50% – 90%, the same statistical characterization usually performed for 
stress-life methods (see Section 3.3.9) can be conveniently extended to a SED fatigue 
analysis (Radaj & Vormwald, 2013). 
The statistical characterization of the results obtained by the SED method is given in 
Table 6.6. Moreover, for the sake of thoroughness, scatter bands for ∆Wഥ  – N* results are 
reported in Figure 6.16. 
In light of the above, the application of the SED method to blunt notched components 
made of mild steel can be considered preliminarily validated. 
It is worth remarking that similar results were obtained by Livieri & Lazzarin (2005) as 
respect to steel cruciform welded joints. Nevertheless, for such details failing at the weld 
toe, a brittle fracture was observed in almost all cases, as expected. Moreover, relatively 
low values of stress ratios R (≈ 0) were investigated. 
 
Table 6.6 Statistical characterization of fatigue results assessed through the SED method. 

Upper v.  
ΔWഥ C,10 

[mJ/mm3] 

Mean v. 
ΔWഥ C,50 

[mJ/mm3] 

Lower v. 
ΔWഥ C,90 

[mJ/mm3] 

Inv.  
Slope m 

[-] 

Coeff. 
of Det. 
R2 [-] 

Scatter 
Ratio 
TW [-] 

1.55 0.90 0.53 3.52 0.80 2.95 

 

 
Figure 6.16 Scatter bands for fatigue results assessed through the SED method. 
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Contrariwise, in the present experimental study, several specimens were tested beyond 
their proportionality limit, mainly due to stringent conditions imposed by stress ratios, 
i.e., way higher that the ones inspected for welded joints (see Section 4.1.3). 
From this perspective, the reported experimental and numerical study can represent a 
slight extension of the range of validity for the SED method in fatigue conditions for 
mild steel structural components, although further studies are certainly needed. 
Therefore, in the next Chapter, the application of SED method to historical hot-driven 
connections is addressed based on experimental results reported in Section 4.3 and 
refined, dedicated numerical analyses. 
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7. Fatigue Performance of Hot-
Driven Riveted Connections 

In the present Chapter, the fatigue performance of hot-driven riveted connections  is 
preliminarily assessed by means of standard and advanced techniques for fatigue 
analysis. To this end, parametrical FEAs are performed with the aim to: 

 Investigate stress fields nearby plate holes, both induced by applied loads and 
by clamping actions. In particular, the influence of pre-loading in terms of 
stresses transferred to the plies and relevant strain energy is parametrically 
assessed in detail owing to the well-known clamping variability (Leonetti et al., 
2020); 

 Numerically estimate the average strain energy density in the relevant control 
volume, thus enabling the energetic assessment of the fatigue performance of 
hot-driven riveted connections. 

The interpretation of results is hence transposed in a easy-of-use form compliant with 
the philosophy of the next generation of Eurocodes, in order to preliminarily provide 
some reliable design tools for the fatigue assessment of existing hot-driven riveted 
connections. 
Therefore, in the present Chapter, the following key topics are addressed, namely: i) 
refined numerical analyses of hot-driven riveted connections in fatigue conditions 
(Section 7.1), ii) derivation of a predictive model for the fatigue performance of hot-
driven riveted connections, namely based on results from the SED method (Section 7.2) 
and iii) comparison with literature and EN1993:1-9 (CEN, 2005a) recommendations, i.e. 
both as respect to the current 2005 version and to the prEN1993:1-9-2020 draft (CEN, 
2020) under revision (Section 7.3). 

7.1. Refined numerical analyses of hot-driven riveted 
connections in fatigue conditions  

59. 7.1.1 Modelling Assumptions 

FEMs resembling fatigue tests performed at the StrEngTH lab (UNISA) on hot-driven 
riveted specimens were developed using ABAQUS 6.14 software (Dassault, 2014). 
In order to balance the accuracy and computational effort, the investigated riveted 
connections were modelled accounting for their geometrical and mechanical symmetry. 
Accordingly, a quarter of specimens having symmetric configuration (S19-12-1-115, 
S22-12-1-60, S22-12-2-160) was modelled, while a half was modelled in case of 
unsymmetric configurations (U-19-10-2-100, U-22-12-2-160, U-22-12-2-144). 
The fatigue response of connections was investigated by applying relevant pressures at 
one end of the lap-shear riveted connections, with the other one(s) being fixed, in order  
to mimic experimental test conditions. 
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Relevant boundary conditions accounting for both symmetry and test conditions are 
depicted in Figure 7.1a-b. 
All elements were discretized using solid C3D20 elements (i.e., 20-node quadratic 
bricks) as suggested by Foti et al. (2020) with reference to free mesh SED fatigue 
analysis of structural components. Consistently with method assumptions (Lazzarin et 
al., 2010), materials were modelled as purely elastic. Therefore, Es = 210000 N/mm2 and 
ν = 0.3 were assumed for all the elements.  
Clamping was simulated by means of the “Bolt Load” command. After a dedicated study 
on the influence of rivet preloading on stresses around the rivet hole (see Section 7.1.3 
for further details), a mean value of σclamp = 0.5 fyr0 was adopted for all the specimens in 
compliance with D’Aniello et al. (2011) and Leonetti et al. (2020). 
 

 
a) 

 
b) 

Figure 7.1 Refined fatigue FEAs on hot-driven riveted connections: adopted boundary conditions for 
connections with a) two planes and b) one plane of symmetry. 

60. 7.1.2 Definition of the Control Volume for SED Analyses 

In compliance with advanced fatigue analyses of blunt V-notched cylinders, energetic 
fatigue assessment of hot-driven riveted connections was performed by means of a free 
mesh application of the SED method (Berto & Lazzarin, 2014; Foti et al., 2020). 
Accordingly, a proper mesh density was selected in order to avoid jagged borders for the 
control volume. In order to balance computational effort with analyses accuracy, the 
following constraints on the mesh size were accounted for, namely: 
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i) results from static FEAs, which yielded a maximum mesh size of 1 mm for rivets and 
connection zones of plies; 
ii) results on blunt V-notched cylinders, which highlighted the necessity of at least 40 × 
2 elements on the notch radius, i.e., half the circumference of the rivet hole in case of 
perforated plates treated as U-notches; 
iii) recommendations reported by Foti et al. (2020), in which a minimum mesh size equal 
to R0/4 is recommended nearby the notch tip for a free mesh numerical application of 
SED method. 
In light of the above, a first estimation of R0 was determined as suggested by Yoshibash 
(2004) in plain strain conditions. For instance, the calibrated true UTS for plates is equal 
to fu,true = 620 N/mm2 (see Section 5.1), while an approximate value of fracture toughness 
for undriven historical mild steel can be retrieved in Da Silva (2015), i.e., KIC = 1434 
N/mm3/2. 
Accordingly, the following approximate value of R0 is obtained (Equation 7.1): 

R0 ≈ 
(1+0.3) (5-8 0.3)

4 π
൬
1434

620
൰

2

≈ 1.42 mm (7.1) 

In analogy with observations related to blunt V-notched cylinders, an overly high value 
of R0 is obtained by using the plain strain approximation for undriven plates. 
Nevertheless, it is worth recalling that, as reported in D’Aniello et al. (2011), connected 
plates undergo a significant reduction of ductility without a corresponding appreciable 
reduction of UTS. This condition occurs in the immediate proximity of the rivet hole, 
that is, where ΩSED should be located (see Section 3.5). 
Therefore, an approximate, yet more reliable value of R0 can be recalculated by reducing 
the fracture toughness for driven plates without modifying UTS. 
As reported in Table 5.4, for connections experiencing plate fracture the linear DEC 
should penalized, on average, by assuming a non-dimensional coefficient Π = 0.83. 
By approximately applying such penalization to the fracture toughness of undriven 
plates, the following approximation for R0 is derived (Equation 7.2): 

R0 ≈ 
(1+0.3) (5-8 0.3)

4 π
൬
0.83 1434

620
൰

2

≈ 1.00 mm (7.2) 

In compliance with results for notched coupons, this value was conveniently assumed as 
an upper bound for R0 for HPD affected plates.  
Nevertheless, as usual values of R0 for mild steels can reduce up to 0.2 mm (Radaj and 
Vormwald, 2013), as also noticed in case of C45 steel grade, in the present Thesis work 
R0 was assumed to parametrically vary in the range 0.2 ÷ 1.0 mm (with increments of 
0.05 mm, for a total of 17 different values). A total of 6 × 17 = 102 free mesh SED 
calculations were hence performed.  
Control volumes for ASED calculations were selected by means of the 
Python/ABAQUS script reported in the Appendix.  
To uniquely identify each performed FEAs, a nomenclature compliant with experimental 
fatigue activities was adopted, namely: 
 

Labelling “C-D-T-N-FR” with: 
 
C = S or U with reference to the specimen configuration, i.e., symmetric or unsymmetric; 
D = 16, 19 or 22 with reference to the rivet(s) diameter d; 
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T = 10 or 12 with reference to the plies thickness t; 
N = 1 or 2 with reference to the number of rivets nr; 
SR = var. with reference to the applied force range ΔF on connected plies. 
 
The adoption of a parametrically varying control volume radius also aimed at providing 
further insights for different historical mild steels adopted for other railway steel bridges, 
i.e., for which rather different values of R0 could be derived. 
Accordingly, a minimum mesh size smin = R0,min/4 = 0.05 mm (Figure 7.2) was adopted 
  

 
Figure 7.2 Adopted mesh for refined fatigue FEAs and examples of free mesh control volumes for 
different values of R0. 
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for plates in proximity of the rivet hole, while a maximum mesh size of 1 mm was 
adopted for the rest of the connection zone and for rivets. 
In compliance with static analyses, a coarser mesh having size equal to 20 mm was 
adopted for plates ends. 

61. 7.1.3 Influence of Clamping Actions on the Fatigue Performance of 
Hot-Driven Riveted Connections 

As highlighted by Al-Bahkali (2011), Kafie-Martinez et al. (2017) and Leonetti et al. 
(2020), the magnitude of clamping actions in hot-driven rivets is rather variable, with 
potential values up to the undriven rivet yield strength for short rivets as the ones 
inspected (hs/d ≤ 2). Moreover, the actual value of clamping stress can have a significant 
effect on the fatigue performance of connections, as preloading induces a compressive 
prestress in plates that can retard fatigue cracking. 
Therefore, a parametrical study on the effect of clamping in terms of i) transferred 
stresses to connected plies and ii) corresponding average SED over the control volume 
has been priorly carried out with reference to all possible combinations of: 
i) connections configuration (i.e., symmetric or unsymmetric): 
ii) rivets diameter (i.e., d = 16, 19 or 22 mm); 
iii) connected plates thickness (i.e., t = 10 or 12 mm). 
iv) magnitude of clamping action (i.e. in the range 0.0 ÷ 0.8 fyr0 according to D’Aniello 
et al., 2011). 
In light of the highly localized nature of clamping stresses, only configuration with a 
single rivet were parametrically investigated for the sake of brevity. Indeed, all 
specimens with two rivets are all characterized by a pitch p1 ≥ 90 mm, with p1/t ratio 
always larger or equal than 7.5. Therefore, null interference among clamping-induced 
stresses for each rivet hole could be assumed. 
A peculiar focus was given to circumferential stresses S11 at the hole quadrant, as they 
govern the ASED for an ideal U-notch under Mode I loading (Equation 3.61 – Berto & 
Lazzarin, 2014). 
 Results of clamping sensitivity analyses are reported in Figures 7.3-7.6 and Tables 7.1-
7.3 in terms of i) distribution of normal and circumferential stresses nearby the rivet hole, 
ii) trends of normal and circumferential stresses in plates for increasing values of σclamp 
and for each considered configuration and iii) trend of ASED (over ΩSED) against σclamp 
each considered configuration. 
For the sake of brevity, only results for S-16-10 and U-16-10 are reported in Figure 7.3, 
namely for a clamping stress σclamp = 0.8 fyr.  
 

 

 
a) 

Symmetric – d = 16 mm, t = 10 mm, d/t = 1.60 
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b) 

Unsymmetric – d = 16 mm, t = 10 mm, d/t = 1.60 

Figure 7.3 Distribution of normal (S22) and circumferential (S11) stresses nearby rivet holes through 
thickness for a) symmetric (S-16-10) and b) unsymmetric (U-16-10) specimens. 

It is worth remarking that stress distributions are referred to plates being pulled by 
external loads, that is, the middle plate for the symmetric connection and the upper one 
for the unsymmetric connection. 
It can be immediately noticed how, while stresses in symmetric specimens are almost 
constant through the thickness, with only small variations with reference to 
circumferential stresses, in case of unsymmetric specimens a significant through-
thickness gradient is observed for both normal and circumferential stresses. 
Indeed, while in symmetrical specimens clamping action is transferred to the middle 
plate through contact and friction against external plates, in unsymmetrical specimens 
both plies are directly in contact with rivets heads, thus resulting in quite different trends 
of S11 and S22 trough the thickness. 
Nevertheless, along the bisector plane of both symmetric and unsymmetric connections 
the distributions of normal and circumferential stresses are very similar (maximum 
difference of ≈ 5% and ≈ 7% for S11 and S22, respectively). This outcome plausibly 
descends from the achieved condition of plain strains in both cases, as plates are thick 
(d/t = 1.33 ÷ 2.20) and laterally restrained by rivet heads and/or adjacent plates.  
Therefore, in Figure 7.4, where normal and circumferential stresses for all possible 
combinations of d and t are reported, only results referred to the bisector plane of 
symmetric specimens are reported for the sake of brevity (namely, for σclamp = 0.8 fyr). 
It can be noticed how normal stresses are systematically higher than corresponding 
circumferential stresses, compliantly with the direction of clamping forces. 
Namely, the ratio S11/S22 ranges among 0.13 ÷ 0.18, with specimens with thinner plates 
(t = 10 mm) showing the higher values of circumferential stresses normalized as respect 
to relevant S22. 
 
 

Normal stresses (S22) Circumferential stresses (S11) 

  

a) b) 

d = 16 mm, t = 10 mm, d/t = 1.60 



ccxii 
 

  

c) d) 

d = 19 mm, t = 10 mm, d/t = 1.90 

  

d) e) 

d = 22 mm, t = 10 mm, d/t = 2.20 

  

e) f) 

d = 16 mm, t = 12 mm, d/t = 1.33 

  
g) h) 

d = 19 mm, t = 12 mm, d/t = 1.58 

  

i) j) 

d = 22 mm, t = 12 mm, d/t = 1.83 

Figure 7.4 Distribution of normal (S22) and circumferential (S11) stresses nearby rivet holes for all 
considered geometries (longitudinal bisector planes of the plates, σclamp = 0.8 fyr0). 

This outcome is confirmed by Figure 7.5, which depicts the trend of circumferential 
stress at the hole quadrant (that is, at the tip of the equivalent U notch) for increasing 
values of rivets prestress σclamp.  
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It can be noticed that i) for both symmetric and unsymmetric specimens, thicker plates 
are characterized by smaller values of S11 for any given value of σclamp and that ii) for 
all configurations inspected the functional link between σclamp and S11 is less than linear. 
These outcome suggests that increasing values of clamping stress in rivets may induce a 
less than proportional enhancement of fatigue performance, with specimens featuring 
thicker plies being further penalized. 
For instance, the maximum deviation in terms of S11 for varying d and t values are 
obtained for the highest values of σclamp = 0.8 fyr0 (that is, 31% and 27% for symmetric 
and unsymmetric specimens, respectively). Moreover, in both cases, lowest 
circumferential stresses are achieved for d = 16 mm and t = 12 mm, while highest values 
are attained for d = 19 mm and t = 12 mm. 
The relative values of ASED over the control volume due to clamping stresses (Wഥ clamp) 

are reported in Figure 7.6. For the sake of brevity, only results related to R0 = 0.2 mm 
and 1 mm are depicted. Interestingly, results for extreme values within the range of 
variation for R0 are almost identical, with only negligible differences (≤ 3% in case of 
unsymmetric specimens). 
This outcome descends from the peculiar stress field induced by clamping actions.  
 

 
a) 

 
b) 

Figure 7.5 Distribution of circumferential stresses at the hole quadrant (U-notch tip) for increasing 
values of the applied clamping stress: a) symmetric specimens, b) unsymmetric specimens (values 
referred to the longitudinal bisector plane of plates). 
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a) b) 

  
c) d) 

Figure 7.6 Average strain energy density values over the control volume for increasing values of applied 
clamping stresses: a) symmetric connections, R0 = 0.2 mm, b) symmetric connections, R0 = 1 mm, c) 
unsymmetric connections, R0 = 0.2 mm and d) unsymmetric connections, R0 = 1 mm. 

Indeed, as rivet preloading acts perpendicularly to the plates, the resulting distribution 
of strain energy density W(x) in plates is almost constant within the projection of the 
rivet heads. Therefore, calculations of Wഥ clamp according to Equation 3.65 result in 
substantial independence from the assumed value of R0. 
 
Table 7.1 Circumferential stresses measured at the hole quadrant (onto the longitudinal bisector plane of 
plates) for all considered configurations and for increasing value of rivets clamping stresses. 

 S11clamp (Hole Quadrant – Longitudinal [N/mm2] 

Label [-] 
S-16-10 S-19-10 S-22-10 S-16-12 S-19-12 S-22-12 AVG 

σclamp [N/mm2] 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
10 1.7 2.1 2.2 1.5 1.8 1.9 1.9 
20 3.2 3.9 4.0 2.8 3.4 3.6 3.5 
50 7.0 8.3 8.3 6.0 7.2 7.3 7.4 

100 11.4 13.0 12.8 9.8 11.3 11.1 11.6 
150 14.0 15.8 15.2 12.0 13.6 13.0 13.9 
200 16.2 18.1 17.0 13.8 15.4 14.2 15.8 
Label [-] 

U-16-10 U-19-10 U-22-10 U-16-12 U-19-12 U-22-12 AVG 
σclamp [N/mm2] 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
10 1.8 2.1 2.2 1.5 1.8 2.0 1.9 
20 3.4 4.0 4.1 2.9 3.5 3.7 3.6 
50 7.3 8.4 8.5 6.3 7.3 7.5 7.6 

100 11.8 13.3 13.0 10.3 11.5 11.3 11.9 
150 14.6 16.1 15.5 12.6 13.9 13.2 14.3 
200 16.8 18.5 17.3 14.5 15.7 14.4 16.2 
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Table 7.2 Average strain energy density values Wഥ clamp over the control volume (R0 = 0.2 mm) for increasing 
values of applied clamping stresses. 

 R0 = 0.2 mm 

 Wഥ clamp [mJ/mm3] 

Label [-] 
S-16-10 S-19-10 S-22-10 S-16-12 S-19-12 S-22-12 AVG 

σclamp [N/mm2] 
0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
1 4.85E-06 7.36E-06 7.97E-06 3.53E-06 5.53E-06 6.29E-06 5.92E-06 
10 4.41E-04 6.57E-04 7.05E-04 3.23E-04 4.94E-04 5.61E-04 5.30E-04 
20 1.59E-03 2.32E-03 2.45E-03 1.17E-03 1.75E-03 1.94E-03 1.87E-03 
50 7.43E-03 1.03E-02 1.05E-02 5.47E-03 7.80E-03 8.13E-03 8.27E-03 

100 1.95E-02 2.56E-02 2.46E-02 1.44E-02 1.92E-02 1.85E-02 2.03E-02 
150 2.96E-02 3.75E-02 3.48E-02 2.17E-02 2.79E-02 2.54E-02 2.95E-02 
200 3.95E-02 4.95E-02 4.35E-02 2.87E-02 3.57E-02 3.02E-02 3.79E-02 

Label [-] 
U-16-10 U-19-10 U-22-10 U-16-12 U-19-12 U-22-12 AVG 

σclamp [N/mm2] 
0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
1 2.62E-05 3.83E-05 4.14E-05 1.94E-05 2.88E-05 3.27E-05 3.12E-05 
10 2.39E-03 3.42E-03 3.67E-03 1.78E-03 2.57E-03 2.92E-03 2.79E-03 
20 8.60E-03 1.21E-02 1.27E-02 6.42E-03 9.09E-03 1.01E-02 9.83E-03 
50 4.02E-02 5.37E-02 5.44E-02 3.02E-02 4.06E-02 4.23E-02 4.36E-02 

100 1.06E-01 1.33E-01 1.28E-01 7.94E-02 1.00E-01 9.65E-02 1.07E-01 
150 1.60E-01 1.95E-01 1.81E-01 1.20E-01 1.45E-01 1.32E-01 1.56E-01 
200 2.14E-01 2.57E-01 2.26E-01 1.58E-01 1.86E-01 1.57E-01 2.00E-01 

 
Table 7.3 Average strain energy density values Wഥ clamp over the control volume (R0 = 1 mm) for increasing 
values of applied clamping stresses. 

 R0 = 1 mm 

 Wഥ clamp [mJ/mm3] 

Label [-] 
S-16-10 S-19-10 S-22-10 S-16-12 S-19-12 S-22-12 AVG 

σclamp [N/mm2] 
0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

1 4.77E-06 7.25E-06 7.84E-06 3.47E-06 5.44E-06 6.19E-06 5.83E-06 

10 4.34E-04 6.46E-04 6.93E-04 3.17E-04 4.86E-04 5.52E-04 5.21E-04 

20 1.56E-03 2.28E-03 2.41E-03 1.15E-03 1.72E-03 1.90E-03 1.84E-03 

50 7.31E-03 1.02E-02 1.03E-02 5.38E-03 7.68E-03 7.99E-03 8.14E-03 

100 1.92E-02 2.51E-02 2.42E-02 1.42E-02 1.89E-02 1.82E-02 2.00E-02 

150 2.91E-02 3.69E-02 3.42E-02 2.14E-02 2.74E-02 2.49E-02 2.90E-02 

200 3.89E-02 4.87E-02 4.28E-02 2.83E-02 3.51E-02 2.97E-02 3.73E-02 

Label [-] 
U-16-10 U-19-10 U-22-10 U-16-12 U-19-12 U-22-12 AVG 

σclamp [N/mm2] 
0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

1 2.58E-05 3.77E-05 4.08E-05 1.91E-05 2.83E-05 3.22E-05 3.06E-05 

10 2.35E-03 3.36E-03 3.61E-03 1.75E-03 2.53E-03 2.87E-03 2.74E-03 

20 8.46E-03 1.19E-02 1.25E-02 6.32E-03 8.94E-03 9.91E-03 9.67E-03 

50 3.95E-02 5.29E-02 5.36E-02 2.97E-02 3.99E-02 4.16E-02 4.29E-02 

100 1.04E-01 1.31E-01 1.26E-01 7.81E-02 9.85E-02 9.49E-02 1.05E-01 

150 1.58E-01 1.92E-01 1.78E-01 1.18E-01 1.43E-01 1.30E-01 1.53E-01 

200 2.10E-01 2.53E-01 2.23E-01 1.56E-01 1.83E-01 1.55E-01 1.97E-01 

 
It is worth remarking that this outcome is clearly not expected for ASED induced by 
applied loads, that is, for shear forces on connections, perforated plates are subjected to 
Mode I loading (Berto & Lazzarin, 2014).  
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Contrariwise, a significant difference in terms of Wഥ clamp is achieved among symmetric 

and unsymmetric specimens. For instance, average SED values due to clamping stresses 
in connections with two plates is ≈ 5 times higher as respect to connections with three 
plies (on average). This outcome clearly descends from the different distribution of 
normal and circumferential stresses through the thickness in case of symmetric and 
unsymmetric specimens (see Figure 7.3).  
Derived values of  Wഥ clamp provide a preliminary insight about the fatigue performance 

enhancement of connected plates, as they counterbalance the ASED deriving from 
applied loads.  
According to the above results, the following preliminary remarks on the influence of 
clamping action on the fatigue performance of hot-driven riveted connections can be 
pointed out: 

 For the same given value of applied clamping stress, the beneficial effect of 
preloading is less pronounced in symmetric connections as respect to 
unsymmetric ones, namely because of the distribution of stresses through the 
thickness is less favourable; 

 Nevertheless, the more beneficial effect of clamping in unsymmetric 
connections is limited to rather small stress ranges, as Wഥ clamp will quickly 

become negligible for higher values of Δσ due to additional stresses induced by 
secondary bending; 

 For increasing values of applied clamping stresses, specimens with thicker 
plates are less affected by the beneficial effect of preloading, as smaller 
compressive stresses are transferred to connected plies; 

 Apparently, increases in clamping stresses do not result in proportional 
enhancements of fatigue performance for the investigated hot-driven 
connections, as both S11 and Wഥ clamp trends against σclamp are less than linear. 

62. 7.1.4 Strain Energy Density Calculations for Hot-Driven Riveted 
Connections 

ASED calculations for FEMs resembling experimental tests on hot-driven riveted 
connections (Section 4.3) are summarized in Figure 7.7 and Tables 7.4-7.9 in terms of i) 
magnitude of the control volume ΩSED for increasing values of R0 and ii) ASED trends 
against R0 due to clamping (blue curves), external loads (red curves) and corresponding 
ASED ranges (black curves). For thoroughness, distributions of equivalent Von Mises 
stresses (SMISES) under the combined action of clamping and maximum stresses are 
depicted as well. 
 

Equivalent Von-Mises stresses ASED calculations 

 
 

a) b) 
S-19-12-1-115, N* = 602770 
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c) d) 

S-22-12-1-60, N* = 774056 

 

 

e) f) 

S-22-12-2-160, N* = 497964 

 

 

g) h) 

d) U-19-10-2-100, N* = 42963 

 

 

i) j) 

e) U-22-12-2-160, N* = 17436 
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k) l) 

e) U-22-12-2-144, N* = 26357 

Figure 7.7 FEAs developed for ASED calculations in hot-driven riveted connections: a-b) S-19-12-1-
115, c-d) S-22-12-1-60, e-f) S-22-12-2-160, g-h) U-19-10-2-100, i-j) U-22-12-2-160, k-l) U-22-12-2-
144. 

For the sake of clarity, ΩSED values and integrated strain energies for symmetric 
specimens (i.e., S-19-12-1-115, S-22-12-1-60 and S-22-12-2-160) are referred to an half 
of the control volume, that is, due to longitudinal symmetry of such connections. 
Nevertheless, ASED values are clearly insensitive to this simplifying assumption.  
Indeed, in the spirit of a numerical, free mesh application of the SED method, Wഥ clamp, 

Wഥ load and ∆Wഥ  were estimated as the ratio among the total elastic strain energy ETOT,Ω in 
the picked (half-)control volume and the (half-)control volume itself (that is, the 
numerical outputs returned by FEAs). 
As expected, ASED values monotonically decrease with increasing values of R0, with a 
maximum decrease of -29% among ∆Wഥ 0.2 mm  and ∆Wഥ 1 mm for U-19-10-2-100 (see Figure 
7.7h). 
Moreover, in all cases Wഥ clamp has a negligible influence on the final value of ASED range. 
This outcome descends from the rather high values of applied stress range as respect to 
clamping stresses in rivets. 
Most notably, ASED ranges for unsymmetric specimens are sensibly higher as respect 
to the ones calculated for symmetric connections. For instance, ASED ranges equal to 
∆Wഥ max,S = 1.186 mJ/mm3 and ∆Wഥ max,U = 3.094 mJ/mm3 are obtained for S-22-12-2-160 
and U-22-12-2-160, respectively (+161%), i.e., by assuming a control volume radius R0 
= 0.2 mm. Conversely, a difference of +138% is obtained in case of R0 = 1 mm for the 
same two connections (Tables 7.6-7.8). 
This evidence becomes even more significant if one considers that both specimens are 
subjected to the same nominal stress range Δσ = 190.1 N/mm2. 
As expected, the lowest ASED range is achieved for S-22-12-1-60 (see Figure 7.7d, ∆Wഥ  
= 0.262 ÷ 0.308 mJ/mm3 for R0 = 1 ÷ 0.2 mm), namely due to the rather low stress range 
Δσ = 71.4 N/mm2 and in light of its symmetric configuration. 
The distributions of SMISES for all investigated connections (see Figure 7.7, left 
column) highlight the strong stress concentrations nearby the rivet holes, i.e. identifying 
plates’ net sections as most likely fracture spots for all the specimens. 
Moreover, in case of double rivets specimens (i.e., S-22-12-2-160, U-19-10-2-100, U-
22-12-2-160 and U-22-12-2-144), the most stressed portion of the plate is always 
represented by a neighbourhood of the rivet hole closest to the applied tensile loads. 
To this end, it is worth remarking that, according to the SED method assumptions, 
indefinite elastic behaviour were assumed in FEAs for both plates and rivets (Berto & 
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Lazzarin, 2014; Foti et al., 2020), hence equivalent stresses in connected elements are 
higher than base materials yield strength. 
In the next Section, estimated values of ASED ranges for all considered connections are 
used to interpretate the fatigue performance of specimens. 
 

Table 7.4 ASED calculations for specimen S-19-12-1-115. 

S-19-12-1-115 

Δσ = 106.5 N/mm2, R = 0, N* = 602770 

R0 ΩSED Ee,clamp Ee,load Wclamp Wload ΔW 

[mm] [mm3] [mJ] [mJ] [mJ/mm3] [mJ/mm3] [mJ/mm3] 

0.20 2.55 0.02 1.99 0.006 0.781 0.775 

0.25 3.80 0.02 2.93 0.006 0.771 0.765 

0.30 5.12 0.03 3.90 0.006 0.761 0.755 

0.35 6.65 0.04 5.00 0.006 0.751 0.745 

0.40 8.02 0.05 5.98 0.006 0.745 0.739 

0.45 9.89 0.06 7.25 0.006 0.734 0.728 

0.50 11.80 0.07 8.54 0.006 0.724 0.718 

0.55 13.65 0.08 9.76 0.006 0.715 0.709 

0.60 15.76 0.10 11.12 0.006 0.706 0.700 

0.65 17.99 0.11 12.52 0.006 0.696 0.690 

0.70 20.06 0.12 13.81 0.006 0.688 0.682 

0.75 22.65 0.14 15.36 0.006 0.678 0.672 

0.80 25.10 0.15 16.80 0.006 0.669 0.663 

0.85 27.69 0.17 18.29 0.006 0.661 0.655 

0.90 30.48 0.18 19.85 0.006 0.651 0.645 

0.95 33.15 0.20 21.36 0.006 0.644 0.638 

1.00 36.12 0.22 22.97 0.006 0.636 0.630 
 

Table 7.5 ASED calculations for specimen S-22-12-1-60. 

S-22-12-1-60 

Δσ = 71.4 N/mm2, R = 0, N* = 774056 

R0 ΩSED Ee,clamp Ee,load Wclamp Wload ΔW 

[mm] [mm3] [mJ] [mJ] [mJ/mm3] [mJ/mm3] [mJ/mm3] 
0.20 2.75 0.02 0.54 0.007 0.315 0.308 

0.25 4.07 0.03 0.79 0.007 0.314 0.307 

0.30 5.56 0.04 1.05 0.007 0.306 0.298 

0.35 7.21 0.05 1.35 0.007 0.303 0.296 

0.40 8.84 0.06 1.61 0.007 0.294 0.287 

0.45 10.61 0.08 1.97 0.007 0.299 0.292 

0.50 12.68 0.09 2.32 0.007 0.295 0.288 

0.55 14.88 0.10 2.66 0.007 0.288 0.281 

0.60 16.72 0.12 3.04 0.007 0.293 0.286 

0.65 19.30 0.14 3.43 0.007 0.286 0.279 

0.70 21.85 0.15 3.78 0.007 0.279 0.272 

0.75 24.05 0.17 4.23 0.007 0.284 0.276 

0.80 27.02 0.19 4.63 0.007 0.276 0.269 

0.85 29.76 0.21 5.05 0.007 0.274 0.267 

0.90 32.52 0.23 5.50 0.007 0.273 0.266 
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0.95 35.60 0.25 5.92 0.007 0.268 0.261 

1.00 38.29 0.27 6.39 0.007 0.269 0.262 
 

Table 7.6 ASED calculations for specimen S-22-12-2-160. 

S-22-12-1-160 

Δσ = 190.1 N/mm2, R = 0, N* = 497964 

R0 ΩSED Ee,clamp Ee,load Wclamp Wload ΔW 

[mm] [mm3] [mJ] [mJ] [mJ/mm3] [mJ/mm3] [mJ/mm3] 
0.20 2.75 0.02 3.28 0.008 1.194 1.186 

0.25 4.07 0.03 4.79 0.008 1.178 1.170 

0.30 5.56 0.05 6.46 0.008 1.162 1.153 

0.35 7.21 0.06 8.25 0.008 1.145 1.137 

0.40 8.84 0.07 10.00 0.008 1.130 1.122 

0.45 10.61 0.09 11.83 0.008 1.115 1.107 

0.50 12.68 0.11 13.92 0.008 1.097 1.089 

0.55 14.88 0.12 16.07 0.008 1.080 1.072 

0.60 16.72 0.14 17.85 0.008 1.068 1.059 

0.65 19.30 0.16 20.26 0.008 1.050 1.041 

0.70 21.85 0.18 22.58 0.008 1.033 1.025 

0.75 24.05 0.20 24.56 0.008 1.021 1.013 

0.80 27.02 0.22 27.12 0.008 1.004 0.995 

0.85 29.76 0.24 29.44 0.008 0.990 0.981 

0.90 32.52 0.27 31.72 0.008 0.975 0.967 

0.95 35.60 0.29 34.19 0.008 0.961 0.952 

1.00 38.29 0.31 36.32 0.008 0.948 0.940 
 

Table 7.7 ASED calculations for specimen U-19-10-2-100. 

U-19-10-2-100 

Δσ = 166.7 N/mm2, R = 0, N* = 42963 

R0 ΩSED Ee,clamp Ee,load Wclamp Wload ΔW 

[mm] [mm3] [mJ] [mJ] [mJ/mm3] [mJ/mm3] [mJ/mm3] 
0.20 5.11 0.19 12.09 0.037 2.367 2.330 

0.25 7.59 0.27 17.42 0.036 2.293 2.257 

0.30 10.25 0.37 23.02 0.036 2.247 2.210 

0.35 13.31 0.48 28.91 0.036 2.173 2.137 

0.40 16.04 0.58 34.60 0.036 2.158 2.121 

0.45 19.77 0.69 40.50 0.035 2.048 2.014 

0.50 23.59 0.81 48.42 0.034 2.052 2.018 

0.55 27.30 0.94 56.09 0.035 2.055 2.021 

0.60 31.51 1.05 61.79 0.033 1.961 1.927 

0.65 35.98 1.20 69.77 0.033 1.939 1.905 

0.70 40.13 1.34 77.32 0.034 1.927 1.893 

0.75 45.30 1.47 83.58 0.032 1.845 1.812 

0.80 50.20 1.63 91.85 0.032 1.830 1.797 

0.85 55.37 1.78 99.27 0.032 1.793 1.761 

0.90 60.96 1.93 106.48 0.032 1.747 1.715 

0.95 35.60 0.29 34.19 0.008 0.961 0.952 

1.00 38.29 0.31 36.32 0.008 0.948 0.940 
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Table 7.8 ASED calculations for specimen U-22-12-2-160. 

U-22-12-2-160 

Δσ = 190.1 N/mm2, R = 0, N* = 17436 

R0 ΩSED Ee,clamp Ee,load Wclamp Wload ΔW 

[mm] [mm3] [mJ] [mJ] [mJ/mm3] [mJ/mm3] [mJ/mm3] 
0.20 5.49 0.19 17.19 0.034 3.128 3.094 

0.25 8.13 0.27 24.76 0.034 3.044 3.010 

0.30 11.13 0.37 32.73 0.033 2.941 2.908 

0.35 14.42 0.48 41.11 0.033 2.852 2.819 

0.40 17.69 0.58 49.19 0.033 2.781 2.748 

0.45 21.23 0.69 57.58 0.032 2.713 2.680 

0.50 25.37 0.81 68.84 0.032 2.714 2.682 

0.55 29.75 0.94 79.75 0.032 2.680 2.649 

0.60 33.44 1.05 87.85 0.031 2.627 2.596 

0.65 38.60 1.20 99.19 0.031 2.570 2.539 

0.70 43.70 1.34 109.92 0.031 2.515 2.484 

0.75 48.11 1.47 118.82 0.031 2.470 2.439 

0.80 54.04 1.63 130.58 0.030 2.416 2.386 

0.85 59.51 1.78 141.13 0.030 2.371 2.342 

0.90 65.03 1.93 151.39 0.030 2.328 2.298 

0.95 71.19 2.09 162.68 0.029 2.285 2.256 

1.00 76.59 2.23 173.32 0.029 2.263 2.234 
 

Table 7.9 ASED calculations for specimen U-22-12-2-144. 

U-22-12-2-144 

Δσ = 171.4 N/mm2, R = 0, N* = 17436 

R0 ΩSED Ee,clamp Ee,load Wclamp Wload ΔW 

[mm] [mm3] [mJ] [mJ] [mJ/mm3] [mJ/mm3] [mJ/mm3] 
0.20 5.49 0.19 14.18 0.034 2.581 2.546 

0.25 8.13 0.27 20.43 0.034 2.511 2.477 

0.30 11.13 0.37 27.00 0.033 2.427 2.393 

0.35 14.42 0.48 33.91 0.033 2.353 2.320 

0.40 17.69 0.58 40.58 0.033 2.294 2.261 

0.45 21.23 0.69 47.51 0.032 2.238 2.206 

0.50 25.37 0.81 56.79 0.032 2.239 2.207 

0.55 29.75 0.94 65.79 0.032 2.211 2.180 

0.60 33.44 1.05 72.48 0.031 2.168 2.136 

0.65 38.60 1.20 81.83 0.031 2.120 2.089 

0.70 43.70 1.34 90.68 0.031 2.075 2.044 

0.75 48.11 1.47 98.03 0.031 2.038 2.007 

0.80 54.04 1.63 107.73 0.030 1.993 1.963 

0.85 59.51 1.78 116.43 0.030 1.956 1.927 

0.90 65.03 1.93 124.90 0.030 1.921 1.891 

0.95 71.19 2.09 134.21 0.029 1.885 1.856 

1.00 76.59 2.23 142.99 0.029 1.867 1.838 
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7.2. Predictive model for the fatigue resistance of hot-
driven riveted connections 

Based on performed ASED calculations, a predictive model for the fatigue resistance of 
hot-driven riveted connections is hence derived. Namely, the SED-based form of 
Basquin’s formula is initially adopted to interpretate experimental results (Equation 7.1 
– Lazzarin & Zambardi, 2001; Livieri & Lazzarin, 2005): 

N*= NC ቆ
∆Wഥ C

∆Wഥ
* ቇ

- m

 (7.1) 

Therefore, calibrated values of the ASED detail class ∆𝑊ഥ and of the reciprocal 
logarithmic slope m can be suitably derived by using a logarithmic regression model 
(Wakefield, 2013). 
Interpretation of experimental fatigues failure through Equation 7.1 is summarized in 
Figure 7.8 and Table 7.10. 
 

 
Figure 7.8 Interpretation of fatigue results through the SED-based form of Basquin’s formula. 

Table 7.10 Interpretation of fatigue results through the SED-based form of Basquin’s formula. 

Label N* Δσ ΔWmax ΔWmin ΔWmean 

[-] [-] [N/mm2] [mJ/mm3] [mJ/mm3] [mJ/mm3] 

S-19-12-1-115 602270 106.5 0.775 0.630 0.702 

S-22-12-1-60 774056 71.4 0.308 0.261 0.285 
S-22-12-2-160 497964 190.1 1.186 0.940 1.063 
U-19-10-2-100 42963 166.7 2.330 1.657 1.993 
U-22-12-2-160 17436 190.1 3.094 2.234 2.664 

U-22-12-2-144 26357 170.1 2.546 1.838 2.192 

 
As proved by the obtained coefficient of determination R2 = 0.65, the adoption of a SED-
based form of Basquin’s formula allows a more consistent interpretation of experimental 
outcomes. As a comparison, a rather low value of R2 = 0.11 was obtained by adopting 
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the stress range-based Basquin’s formula (see Section 4.3), e.g., also owing to a 
significant flattening of the mean regression Δσ – N* curve. 
Based on mean regression coefficients (C = 44.41, b = -1/m = -0.3236), the following 
values of ∆𝑊ഥ = 1.02 mJ/mm3 and m = 3.09 are derived for the investigated hot-driven 
riveted connections. 
In compliance with observations reported in Radaj & Vormwald (2013), it can be noticed 
how changes in terms of R0 within the assumed range of variability have only a minor 
influence on the interpretation of results. This outcome plausibly descends from the 
absence of any stress singularity for the perforated plates, which leads to a less strain 
energy density gradient as respect to sharp notches. 
An equivalent, stress-based formulation for fatigue assessment of hot-driven riveted 
connections can be derived by manipulating the expression for average SED in case of 
U-notches (Equation 7.2 – Berto & Lazzarin, 2014): 

ΔWഥ  = cw H ൬
R0

ρ
,ν൰

൫Δσtip൯
2

2E
 (7.2) 

with cw being the prestress coefficient accounting for the mean-stress effect, H being a 
non dimensional coefficient depending on both geometrical and mechanical parameters 
and Δσtip being the local stress range achieved at the notch tip. 
Recalling the well-known result from elasticity theory, for an isolated hole in a large 
plate σtip = 3 σ0, and hence Δσtip = 3 Δσ (Anderson, 2017). Therefore, a SED-equivalent 
stress range for investigated connections can be derived by inverting Equation 7.2 as 
follows (Equation 7.3): 

ΔWഥ  = cw H ൬
R0

ρ
,ν൰

(3 Δσ)2

2E
≝ 

9

2

cw

E
(SMFSED Δσ)2  

 

(7.3) 

with SMFSED being a SED-equivalent stress magnification factor that synthetically 
accounts for i) geometrical features, ii) material properties and iii) stress raising sources 
for hot-driven riveted connections. 
Vales of SMFSED for each connection can be immediately derived based on results of 
refined FEAs according to Equation 7.4: 

SMFSED = ቆ
2E ΔWഥ

9 cw
ቇ

1/2
1

∆σ
  (7.4) 

Trends of SMFSED against R0 for each investigated connection, e.g., based on refined 
FEAs described in Section 7.1.4, are summarized in Figure 7.9 and Tables 7.11-7.12. 
 
Table 7.11 SED-based SMFs for symmetric specimens. 

 Label 
 [-] 
 S-19-12-1-115 S-22-12-1-60 S-22-12-2-160 

Δσ [N/mm2] 106.5 71.4 109.1 
cw [-] 1.0 1.0 1.0 

R0 ΔW SMFSED ΔW SMFSED ΔW SMFSED 
[mm] [mJ/mm3] [-] [mJ/mm3] [-] [mJ/mm3] [-] 
0.20 0.775 1.26 0.308 1.19 1.186 0.87 
0.25 0.765 1.25 0.307 1.19 1.170 0.87 
0.30 0.755 1.25 0.298 1.18 1.153 0.86 
0.35 0.745 1.24 0.296 1.17 1.137 0.86 
0.40 0.739 1.23 0.287 1.15 1.122 0.85 
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0.45 0.728 1.22 0.292 1.16 1.107 0.85 
0.50 0.718 1.22 0.288 1.15 1.089 0.84 
0.55 0.709 1.21 0.281 1.14 1.072 0.83 
0.60 0.700 1.20 0.286 1.15 1.059 0.83 
0.65 0.690 1.19 0.279 1.14 1.041 0.82 
0.70 0.682 1.18 0.272 1.12 1.025 0.81 
0.75 0.672 1.18 0.276 1.13 1.013 0.81 
0.80 0.663 1.17 0.269 1.12 0.995 0.80 
0.85 0.655 1.16 0.267 1.11 0.981 0.80 
0.90 0.645 1.15 0.266 1.11 0.967 0.79 
0.95 0.638 1.15 0.261 1.10 0.952 0.78 
1.00 0.630 1.14 0.262 1.10 0.940 0.78 

SMFSED,S  Mean: 1.03 
COV: 0.16 

 
Table 7.12 SED-based SMFs for unsymmetric specimens. 

 Label 
 [-] 
 U-19-10-2-100 U-22-12-2-160 U-22-12-2-144 

Δσ [N/mm2] 166.7 190.1 171.4 
cw [-] 1.0 1.0 1.0 

R0 ΔW SMFSED ΔW SMFSED ΔW SMFSED 
[mm] [mJ/mm3] [-] [mJ/mm3] [-] [mJ/mm3] [-] 
0.20 2.330 1.40 3.094 1.42 2.546 1.42 
0.25 2.257 1.38 3.010 1.39 2.477 1.40 
0.30 2.210 1.36 2.908 1.37 2.393 1.38 
0.35 2.137 1.34 2.819 1.35 2.320 1.36 
0.40 2.121 1.33 2.748 1.33 2.261 1.34 
0.45 2.014 1.30 2.680 1.32 2.206 1.32 
0.50 2.018 1.30 2.682 1.32 2.207 1.32 
0.55 2.021 1.30 2.649 1.31 2.180 1.32 
0.60 1.927 1.27 2.596 1.29 2.136 1.30 
0.65 1.905 1.26 2.539 1.28 2.089 1.29 
0.70 1.893 1.26 2.484 1.27 2.044 1.27 
0.75 1.812 1.23 2.439 1.25 2.007 1.26 
0.80 1.797 1.23 2.386 1.24 1.963 1.25 
0.85 1.761 1.22 2.342 1.23 1.927 1.24 
0.90 1.715 1.20 2.298 1.22 1.891 1.23 
0.95 1.695 1.19 2.256 1.21 1.856 1.21 
1.00 1.657 1.18 2.234 1.21 1.838 1.21 

SMFSED,U  Mean: 1.29 
COV: 0.05 

 

 
Figure 7.9 Trends of SED-equivalent stress magnification factor against increasing values of R0 for each 
considered hot-driven riveted connection. 
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Consistently, it can be noticed how, for all investigated configuration, values of SMFSED 
are decreasing for increasing values of R0. Namely, the highest values are achieved for 
U-22-12-2-144/160 (i.e., SMFSED = 1.21 ÷ 1.42 for R0 = 0.2 ÷ 1 mm, see Table 7.12). 
Contrariwise, SMFSED is actually smaller than unity for S-22-12-2-160 (i.e., SMFSED = 
0.87 ÷ 0.78 for R0 = 0.2 ÷ 1 mm, see Table 7.11). As stated previously, S-22-12-2-160 
and U-22-12-2-160 are nominally identical in terms of plates geometry and applied stress 
range, with the only difference being represented by connections configurations (e.g., 
symmetric or unsymmetric, respectively). 
Therefore, for such relevant case, the detrimental effect of secondary bending moments 
can be regarded as an equivalent penalization of ≈ 1.6 times in terms of nominal stress 
range (that is, 1.21/0.78 = 1.55 ÷ 1.63 =1.42/0.87). 
Moreover, it is interesting to note that the equivalent stress magnification factor for S-
22-12-2-160 is slightly lower as respect to other symmetric connections, for which in 
fact SMFSED ranges among 1.10 ÷ 1.26. 
This outcome potentially derives from the presence of two rivet holes. Indeed, as 
reported in Peterson & Pilkey (1997), for a plate in tension featuring two holes with 
“finite” pitch (p1/d ≤ 10, see Figure 3.22), the corresponding SMF at the first hole 
quadrant is smaller than 3. Therefore, in case of double rivet specimens, smaller values 
of equivalent SMF are yielded by Equation 7.4 (e.g., where Δσtip = 3 Δσ is always 
conventionally assumed).  
This condition possibly suggests that fatigue performance of hot-driven riveted 
connections with multiple rivets is enhanced as respect to single rivet specimens 
subjected to the same stress range, although further investigations are needed to this end 
owing to the small sample of experimental results.  
Therefore, a predictive expression for fatigue performance of hot-driven riveted 
connections can be preliminarily derived by assuming two separate SMFs, e.g. for the 
cases of symmetric and unsymmetric connections. 
As only 3 × 2 outcomes are available, mean values of SMFSED for each connection 
configuration are hence assumed to correct nominal stress ranges, that is, in absence of 
a more significant bulk of data (Equation 7.5): 

N*= NC ቆ
∆σC,eq 

keq ∆σ
ቇ

- m

   ቊ
keq = 1.00 "S" connections
keq = 1.30 "U" connections

  (7.5) 

with keq = mean(SMFSED) being the equivalent stress magnification factor accounting for 
the connection configuration.  
It is worth remarking that, as a constant nominal stress ratio R = 0 was adopted for all 
tests, no insights are currently provided by Equation 7.5 about the mean-stress effect. 
Nevertheless, consistently with the theoretical background of the SED method (Berto & 
Lazzarin, 2014), and in line with results for blunt V-notched cylinders (see Chapter 6), 
an equivalent stress magnification factor equal to cw

1/2 may be used to account for the 
mean-stress effect. 
For the sake of simplicity, mean values reported in Tables 7.11-7.12 have been 
conveniently approximated as keq = 1.00 and keq = 1.30, e.g., for symmetric and 
unsymmetric connections, respectively. 
According to Equation 7.5, a logarithmic regression model can be suitably used to derive 
∆σC,eq and m (Wakefield, 2013). 
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Interpretation of experimental fatigue failures through Equation 7.5 is summarized in 
Figure 7.10a and Table 7.13. 
It can be noticed how the mean regression line is in good agreement with experimental 
results, as proved by the acceptable coefficient of determination R2 = 0.74. 
Based on mean regression coefficients C = 2528.4 and b = -1/m = -0.234, an equivalent 
detail class ∆σC,eq = 84 N/mm2 is obtained, with a reciprocal logarithmic slope equal to 

m = 4.27. 
Finally, it is worth remarking that a certain degree of accuracy is lost in Equation 7.5 
owing to the necessity of selecting a reference value for keq, namely in line with the ease-
of use philosophy of the next generation of Eurocodes. 
 

 

a) N*= NC ൬
∆σC,eq 

keq ∆σ
൰

- m

    

 

b) N*= NC ൬
∆σC,eq 

SMFSED,mean ∆σ
൰

- m

    

Figure 7.10 Interpretation of fatigue results according to Equations 7.4-7.5. 



ccxxvii 
 

 
Table 7.13 Interpretation of fatigue results according to Equation 7.5. 

Label N* Δσ keq Δσeq,E7.5 SMFSED,mean Δσeq,E7.4 

[-] [-] [N/mm2] [-] [N/mm2] [-] [N/mm2] 

S-19-12-1-115 602270 106.5 1.00 106.5 1.20 127.8 

S-22-12-1-60 774056 71.4 1.00 71.4 1.14 81.5 

S-22-12-2-160 497964 190.1 1.00 190.1 0.83 157.1 

U-19-10-2-100 42963 166.7 1.30 216.3 1.29 214.5 

U-22-12-2-160 17436 190.1 1.30 246.7 1.30 247.0 

U-22-12-2-144 26357 170.1 1.30 220.7 1.31 222.4 

 
Indeed, if relevant mean values of SMFSED are used for each connection (Equation 7.4), 
a further improved accuracy is achieved (Figure 7.10b and Table 7.13, R2 = 0.89). 

7.3. Comparison among proposed formulations and 
current literature and EN1993:1-9 recommendations 

In this Section, the proposed formulation is finally compared against current literature 
and normative fatigue provisions. For instance, the same two mean-stress effect 
corrections adopted for notched cylinders, namely the Goodman (1899) and the SWT 
(Smith, Watson & Topper, 1970) formulations, are used (Equation 7.6): 

Goodman:   ∆σEq,G= ∆σ
1

1 - 
σm
fu

 = ∆σ
1

1 - 
(1 + R)
2 (1 - R)  

∆σ
fu

 
(7.6a) 

SWT:   ∆σEq,SWT = ∆σ ඨ
2

1-R
 (7.6b) 

with σm being conventionally referred to the gross cross-section of plates. 
Interpretation of fatigue results through Goodman and SWT models are summarized in 
Figures 7.11-7.12 and Table 7.14. 
 

 
Figure 7.11 Application of the Goodman model for investigated hot-driven riveted connections. 
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Figure 7.12 Application of the SWT model for investigated hot-driven riveted connections. 

Table 7.14 Corrected fatigue results according to Goodman and SWT models. 

Label N* Δσ R σm Δσeq,G Δσeq,SWT 

[-] [-] [N/mm2] [-] [-] [N/mm2] [N/mm2] 

S-19-12-1-115 602270 106.5 0 53.3 121.4 150.6 
S-22-12-1-60 774056 71.4 0 35.7 77.8 101.0 

S-22-12-2-160 497964 190.1 0 95.1 243.6 268.8 
U-19-10-2-100 42963 166.7 0 83.4 206.4 235.7 
U-22-12-2-160 17436 190.1 0 95.1 243.6 268.8 

U-22-12-2-144 26357 170.1 0 85.1 211.7 240.6 

 
The plates UTS value for Goodman’s formulation was assumed according to 
experimental outcomes reported in D’Aniello et al. (2011), that is, fu = 433 N/mm2. 
It can be immediately noticed how Goodman's method is not able to infer the results in 
a univocal way, as a significant scatter of corrected experimental points is observed (see 
Figure 7.11, R2 = 0.42). Likewise, the application of SWT correction yields equally 
scattered results (see Figure 7.12, R2 = 0.43).  
Indeed, neither of the above formulations is able to capture the different stress 
distribution induced by connections configuration. 
As for relevant normative fatigue provisions, it is worth recalling that neither the present 
nor the future version of EN1993:1-9 (CEN, 2005a, 2020) provide a dedicated detail 
category for hot-driven riveted connections. 
Nevertheless, as reported in Section 2.4.3, earlier drafts of EN1993:1-9 featured two 
detail categories for riveted joints, namely ΔσC = 71 N/mm2 for unsymmetric lap-shear 
joints and ΔσC = 90 N/mm2 for any type of symmetric joints. In both cases, a constant 
slope of S-N curves (m = 5) is assumed (Equation 7.7 – CEN, 2005a). 
Fatigue life estimations according to the above detail classes are compared with the 
proposed formulation in Figure 7.13 and Table 7.15. 
It can be noticed that both formulations yield similar results, although the proposed 
Equation 7.5 is slightly more accurate (e.g., COV = 0.06 for experimental outcomes over 
prediction ratios, while COV = 0.12 for the EN1993:1-9 formula). 
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Table 7.15 Fatigue in hot-driven riveted connections: comparison among experimental results, EN1993:1-
9 predictions (CEN, 2005a) and predictions according to Equation 7.5 (red bars). 

Label Δσ 
log 

N*Exp 
log 

N*EC3 
log 

N*E7.5 
log N*Exp/ 
log N*EC3 

log N*Exp/ 
log N*E7.5 

[-] [N/mm2] [-] [-] [-] [-] [-] 
S-19-12-1-115 106.5 5.78 5.94* 5.61+ 0.97 0.97 

S-22-12-1-60 71.4 5.89 6.80* 6.50+ 0.87 1.10 
S-22-12-2-160 190.1 5.70 4.68* 5.19+ 1.22 0.91 
U-19-10-2-100 166.7 4.63 4.66** 4.57++ 0.99 0.99 
U-22-12-2-160 190.1 4.24 4.16** 4.29++ 1.02 1.01 
U-22-12-2-144 170.1 4.42 4.60** 4.50++ 0.96 1.02 

Mean 1.01 1.00 

COV 0.12 0.06 

*Detail category 90 N/mm2 
** Detail category 71 N/mm2 

+Detail category 84 N/mm2, keq = 1.00 
++Detail category 84 N/mm2, keq = 1.30 

 

 
Figure 7.13  Fatigue in hot-driven riveted connections: comparison among experimental results (black 
bars), EN1993:1-9 predictions (grey bars – CEN, 2005a) and predictions according to Equation 7.5 (red 
bars). 

Interestingly, earlier EN1993:1-9 recommendations accounted in a similar way for 
connections configurations as respect to the proposed formulation. Indeed, if the ratio 
among detail categories for symmetric and unsymmetric specimens is extracted, a value 
of 90/71 = 1.26 is obtained, i.e. rather similar to the proposed value of keq for 
unsymmetric connections. 
To this end, the two formulations appear equivalent to some extent, although the 
proposed formulation is slightly more accurate. 
Finally, it is interesting to compare the proposed formulation against the stress range 
correction proposed by Maljaars & Euler (2021). Indeed, as earlier stated in Section 3.5, 
this formulation will be featured in the next version of EN1993:1-9, which is currently 
under review (prEN1993:1-9-2020 – CEN, 2020).  
According to the Authors, Δσmod should be estimated as follows (Equation 7.7): 
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Δσmod = kmod ∆σnet = kmod
w

w - d0
∆σ (7.7a) 

kmod = a + ൬b - c
d0

w
൰

3

 (7.7b) 

 

with a, b, c depending on the number of fasters rows (Table 7.16). 
 
Table 7.16 Suggested values of a, b, c for fatigue assessment of non-preloaded fitted bolted connections 
(CEN, 2020; Maljiars & Euler, 2021). 

Number of rivet rows a [-] b [-] c [-] 

1 1.0 1.6 2.7 
2 1.0 1.3 2.2 

≥ 3 1.0 1.1 1.8 
 

As stated in Section 3.5, Equation 7.7 was not intended by Maljaars & Euler (2021) for 
hot-driven riveted connections. 
Indeed, the above formulation is related to non-preloaded fitted bolts, namely with a 
detail class ΔσC = 71 N/mm2. Nevertheless, due to geometrical and mechanical 
similarities highlighted in Section 3.5 (e.g., low or negligible clamping stresses and 
absence of fastener-hole gaps), Equation 7.7 appears a suitable choice for hot-driven lap-
shear specimens.  
Estimation of fatigue life according to the above formulation is summarized in Figure 
7.14 and Table 7.17, where comparisons with Equation 7.5 are also reported. 
It can be noticed that prEN1993:1-9-2020 recommendations always yield conservative 
results, with a mean ratio log N*exp/log N*M&E = 1.13 (COV = 0.13). 
Nevertheless, it interesting to notice that Maljaars & Euler (2021) propose less 
penalizing coefficients for specimens with multiple rivet rows (Table 7.16). 
This outcome complies with preliminary findings for symmetric riveted specimens 
remarked in Section 7.2. 
 

 
Figure 7.14 Fatigue in hot-driven riveted connections: comparison among experimental results (black 
bars), prEN1993:1-9-2020 predictions (blue bars – CEN, 2020; Maljaars & Euler, 2021) and predictions 
according to Equation 7.5 (red bars). 
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Table 7.17 Fatigue in hot-driven riveted connections: comparison among experimental results, prEN1993:1-
9-2020 predictions (CEN, 2020; Maljaars & Euler, 2021 and predictions according to Equation 7.5 (red 
bars). 

Label Δσ 
log  

N*Exp 
kmod 

log  
N*M&E 

log  
N*E7.5 

log N*Exp/ 
log N*M&E 

log N*Exp/ 
log N*E7.5 

[-] [N/mm2] [-] [-] [-] [-] [-] [-] 

S-19-12-1-115 106.5 5.78 2.09 4.50 5.61 1.28 0.97 
S-22-12-1-60 71.4 5.89 1.42 5.34 6.50 1.10 1.10 

S-22-12-2-160 190.1 5.70 1.23 4.26 5.19 1.34 0.91 
U-19-10-2-100 166.7 4.63 1.58 4.28 4.57 1.08 0.99 
U-22-12-2-160 190.1 4.24 1.23 4.26 4.29 1.00 1.01 
U-22-12-2-144 170.1 4.42 1.23 4.41 4.50 1.00 1.02 

Mean 1.13 1.00 
COV 0.13 0.06 
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8. Conclusions and Further 
Developments 
8.1. Main conclusions of the work 

In the present Thesis work, the influence of relevant geometrical and mechanical 
parameters on the static and fatigue performance of lap-shear riveted connections was 
deeply investigated. 
For this purpose, three different sets of experimental activities were accounted for.  
The first experimental campaign, which was previously carried out by the Candidate’s 
Research group, aimed at investigating the static performance of hot-driven riveted 
connections accounting for their geometrical and mechanical peculiarities (D’Aniello et 
al., 2011). 
A second set of experimental tests was performed with the aid of the Candidate during 
his visiting period at the Norwegian University of Science and Technology (NTNU, 
Trondheim, Norway). Namely, notched coupons made of mild steel were cyclically 
tested under high stress ratios, thus simulating potential service conditions for fasteners 
adopted in structural joints. 
A successful interpretation of results was hence carried out by means of advanced 
energetic approaches (SED method – Lazzarin & Zambardi, 2001; Berto & Lazzarin, 
2014) in spite of the problem complexity (e.g., due to strong mean-stress effect and/or 
some amount of plasticity).  
Therefore, such fatigue analysis techniques were extended to the relevant case of cyclic 
behaviour of hot-driven riveted connections, namely based on an ongoing experimental 
campaign performed in collaboration with University of Salerno (UNISA). 
 
In light of i) the illustrated theoretical background, ii) the assessment of experimental 
results and iii) the proposed formulations, the following concluding remarks can be 
pointed out: 
 

 In Chapter 2, a comprehensive state-of-the-art review about hot-driven riveted 
connections was presented. The relevance of such structural detail for historical 
constructions such as bridges, domes or monumental structures was highlighted 
by means of significative examples.  
Peculiar issues of hot-driven connections were also emphasized, namely with 
reference to i) alteration of base material properties due to hot-driving, ii) 
variability of clamping actions due to shank cooling and iii) constructional 
imperfections such as the camming defect (Vermes, 2007). 

 

 In Chapter 3, damage and fatigue modelling of hot-driven riveted connections 
was extensively addressed based on a careful literature review. 
On one hand, formulations for post-necking plasticity, damage initiation and 
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evolution were introduced for mild steels (Hillerborg et al., 1976, Tu et al., 
2019, Yang et al., 2019). Hence, a two-stage procedure was proposed to 
quantitatively estimate the effects of hot-driving in investigated connections, 
e.g., based on comparison of material properties for both undriven and driven 
components. 
 
On the other hand, most suitable standard and advanced fatigue analysis 
techniques for hot-driven assemblies were explored. In particular, stress- and 
strain-life methods were addressed, with a peculiar focus on the influence of 
mean-stress effect, e.g., relevant for riveted bridge structures (Dowling, 2004).  
Moreover, starting from basic findings from fracture mechanics (Anderson, 
2017), the theoretical background of the SED method was introduced (Lazzarin 
& Zambardi, 2001; Berto & Lazzarin, 2014). 
Hot-driven riveted connections proved to be a suitable field of application for 
such energetic approach due to strong analogies with blunt notched components 
(U-notches). Namely, free-mesh numerical approaches were deemed suitable for 
SED calculations (Foti et al., 2020) required for fatigue analyses. 
 

 In Chapter 4, a detailed description of the three aforementioned test campaigns 
on mild steel components and aged hot-driven riveted connections was 
presented. Several key aspects were addressed within the framework of 
experimental activities, namely: i) the influence of geometrical features, ii) the 
impact of hot-driving process (HDP) and iii) the effect of stress raisers and 
elevated stress ratios. 
With regard to static performance of hot-driven riveted connections, a sensible 
increase of shear resistance was observed in connections failing due to rivet 
shearing (up to 50% increase as respect to EN1993:1-8 provisions – 
CEN,2005b), while no significant increment was noticed in case of plate failure.  
 Contrariwise, a detrimental decrease of ultimate displacements as respect to 
expected material properties was noticed for all the specimens.  
This outcome suggested that HDP may alter the performance of both rivets and 
connected plies, although to a different extent (D’Aniello et al., 2011). 
 
As for the cyclic fatigue performance of blunt notched mild steel components, a 
significant influence of the mean-stress effect was noticed. Namely, a significant 
flattening of mean S-N curves was observed while ranging from R = 0.7 ÷ 0.9. 
Simultaneously, two parallel, yet separate scatter bands were observed for 
specimens with different geometry.  
This outcome suggested that a univocal and reliable fatigue analysis for such 
specimens would have required a careful addressment of both mean-stress and 
notch effects (Berto & Lazzarin, 2014).  
 
Finally, with respect to the fatigue performance of hot-driven riveted assemblies, 
a strong sensitivity to connections configuration (i.e., symmetric or 
unsymmetric) was noticed. For instance, with applied nominal stress ranges 
being equal, unsymmetric connections exhibited a fatigue life of about one order 
of magnitude smaller as respect to symmetric ones. 
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This outcome was plausibly ascribed to the effects of secondary bending 
moments (Kulak et al., 1987). 
 

 In Chapter 5, the static performance of hot-driven riveted connections was 
carefully addressed by means of refined Finite Element Analyses developed in 
ABAQUS v. 6.14 software (Dassault, 2014). 
Numerical analyses enabled to quantify the impact of HDP in terms of alteration 
of base material properties and the influence of clamping action and geometrical 
features on the static performance of connections. 
FEAs showed that the ratio between the yield strength of base and hot-driven 
material ranges between 1.00 ÷ 1.42, with a mean value of 1.26 and a significant 
scatter. Additionally, HDP also induces a significant reduction of the base 
material ductility. Indeed, the damage initiation strain (Yang et al., 2019) of the 
altered material is 0.56 times lower on average with respect to the base material. 
 
Based on calibrated FEMs, the effect of one of the most common constructional 
imperfections found in existing hot-driven riveted constructions (“camming” 
defects) was also preliminarily discussed with reference to the sole static 
performance of connections. 
 
As for the case of symmetric connections, which failed due to different 
mechanisms (i.e., rivet shearing, plate bearing or tearing in the net-area of the 
plates), no appreciable reduction of the ultimate capacity due to shank distortion 
was observed (e.g., the maximum resistance loss was equal to 4%). 
Contrariwise, significant reductions of ultimate ductility were detected (e.g., the 
maximum observed reduction was about 10%), namely proportional to the 
relative shank eccentricity e/d. 
 
Interestingly, the response of unsymmetric connections was found to be 
sensitive to the orientation of shank distortion. Indeed, connections with “direct” 
eccentricity (i.e., those having all camming defects in the direction of the applied 
external force) behaved similarly to symmetric connections, while those with 
“reverse” eccentricity (i.e., those having all camming defects in the opposite 
direction of the applied force) exhibited a significant reduction of resistance. 
The results of FEAs showed that loss of shear resistance was mainly caused by 
an alteration of principal stresses distribution at the onset of plasticity, while 
post yielding branches of force-displacement curves appeared as almost parallel 
to each other. 
In line with the ease-of-use philosophy of next generation of Eurocodes, a simple 
equation was proposed to predict the shear resistance of rivets of connections 
with camming imperfections. Accordingly, shear resistance linearly decreases 
with relative shank eccentricity e/d. 
The predicted values were in good agreement with numerical results, as testified 
by a statistic assessment of the proposed formula within the framework of 
EN1990 (CEN, 2002). 
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 In Chapter 6, the fatigue performance of mild steel notched components was 
investigated based on a numerical interpretation of experimental results.  
For this purpose, a second set of refined FEMs was properly developed within 
ABAQUS v. 6.14 software (Dassault, 2014). 
Fatigue assessment of notched cylinders made of C45 steel grade was 
preliminarily assessed by means of standard fatigue analysis techniques, namely 
with the aid of Goodman (1899) and Smith, Watson & Topper (1970) models. 
However, both methods did not provide an univocal interpretation of 
experimental results. Therefore, based on numerical results, an application of 
energetic fatigue techniques was developed for such specimens. 
Namely, the use of the aforementioned SED method (Lazzarin & Zambardi, 
2001; Berto & Lazzarin, 2014) resulted in a successful interpretation of 
experimental results, namely accounting for both mean-stress and notch effects. 
As a result, energetic fatigue approaches has been deemed validated for mild 
steels, allowing the following extension of such methods to hot-driven riveted 
splices. 
 
In order to further investigate the reasons behind the observed fatigue behaviour 
of notched specimen, a total of 6 × 6 × 8 × 10 = 2880 parametrical FEAs was 
performed to investigate the influence of circumferential stresses, which are an 
intrinsic feature distinguishing round notched specimens from flat ones (Filippi 
& Lazzarin, 2004; Lazzarin & Filippi, 2006). 
Accordingly, the difference between axisymmetric circumferential stresses and 
equivalent plain strain calculations, which are usually adopted for polarly 
symmetric specimens, was deeply investigated. 
Deviations found were often significant, with differences at the notch radius 
among -25% ÷ +10% depending on geometrical features (inner to outer diameter 
ratio d/D, notch opening angle 2α, notch radius ρ).  
Interestingly, averaged deviations on the entire bisector were in the range -40% 
÷ +25%, suggesting that highest discrepancies are observed nearby the polar 
axis. A moderate size effect was also observed.  
For lower values of d/D and 2α (i.e., ≤ 0.6 and ≤ 60°, respectively) some 
configurations exhibited higher hoop stresses as respect to simplified plain strain 
calculations according to elasticity theory. 
In all other cases, hoop stresses are always lower than the corresponding plain 
strain stresses. This outcome preliminarily suggests an enhanced fatigue 
performance for round specimens with respect to flat ones and may have useful 
implications while assessing the fatigue performance of cylindrical fasteners 
such as rivets or bolts. 
 

 In Chapter 7, the fatigue performance of full-scale hot-driven riveted 
connections was finally investigated by extending the same approaches adopted 
for mild steel components. 
Namely, the SED method was employed to derive a fatigue design formulation 
for hot-driven splices accounting for geometrical and mechanical peculiarities.  
To this end, a preliminary numerical study on the influence of clamping actions 
in terms of stresses and strain energies nearby rivet holes was carried out. 
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Accordingly, unsymmetric specimen may benefit more significantly from the 
influence of clamping action, mainly because of the different through thickness 
distribution of principal stresses induced by preloading.  
For instance, strain energy density values at the hole quadrant due to clamping 
are of one order of magnitude higher as respect to symmetric connections with 
same preloading. 
Nevertheless, this effect was deemed to be of minor importance owing to i) the 
randomness and low entity of clamping in hot-driven rivets (Leonetti et al., 
2020) and ii) the detrimental effect of secondary bending moments. 
 
ASED calculations for hot-driven connections resembling experimental trials 
provided a good interpretation of tests results, in spite of the small size of the 
sample (3 × 2 specimens). 
Accordingly, a first SED-based fatigue curve was derived for considered 
specimens. Nevertheless, in line with the ease-of-use philosophy of next 
generation of Eurocodes, a preliminary stress-based correction was developed 
for hot-driven assemblies. 
Namely, on the basis of theoretical background for U-notches (Berto & 
Lazzarin, 2014), equivalent stress magnification factors (SMFs) were derived 
for each configuration. Remarkably, such SMFs proved to be higher for 
unsymmetric specimens (1.18 ÷ 1.42) as respect to symmetric ones (0.78 ÷1.26), 
e.g., suggesting that the detrimental influence of secondary bending overcome 
the beneficial effect of clamping for such configurations. 
Accordingly, a stress based S-N curve was provided, i.e., having equivalent 
detail class ΔσC,eq = 84 N/mm2 and (log-)slope m = 4.3.  
The mean value of the above SMFs was assumed as non-dimensional parameter 
accounting for the influence of connections configurations. Accordingly, keq = 
1.00 and keq = 1.30 were assumed to correct nominal stress ranges referred the 
gross plates cross-sections. 
The validity of the proposed formulation was assessed against literature and 
normative provisions, highlighting similar remarks as respect to earlier drafts of 
EN1993:1-9 (i.e., ≈ 1.3 ÷ 1.0 ratio in terms of fatigue strength for symmetric and 
unsymmetric details – CEN, 2005a). 
Moreover, similarities were also found as respect to the prEN1993:1-9-2020 
draft recommendations for non-preloaded fitted bolts (CEN, 2020), which can 
be approximately assimilated to hot-driven rivets owing to i) small magnitude 
of clamping stress and ii) absence of rivet-hole gaps. 
Accordingly, a more favorable performance for specimens with multiple bolts 
is assumed. This outcome complied with SMFs values for symmetric specimens 
with two rivets, as they are lower than corresponding factors for single rivet 
connections (-26% on average). 
Nevertheless, in light of the small size of the experimental sample, no definitive 
conclusions can be drawn to this end, and hence further investigations are 
needed.   
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8.2. Possible further research developments 

63. 8.2.1 Fatigue tests on historical mild steel coupons 

As stated in Section 3.4, a more accurate approach to the stress- or strain-life fatigue 
assessment of hot-driven riveted connections can be addressed by properly calibrating 
Baquins’ (1910) and BMC (Manson, 1953; Coffin, 1954) parameters for base plates and 
rivets material. 
To this end, a further extension of the experimental campaign on hot-driven connections 
has been designed and it is currently ongoing. 
In the present Section, experimental activities being carried out for the characterization 
of the fatigue behaviour of historic mild steels are summarized. 
Experimental tests are being performed at SOLOGEA LAB test laboratory (Caserta, 
Italy) under the supervision of the Candidate. 
In particular, the extension of the present experimental campaign aims at i) investigating 
the stress- and strain-life behaviour of historical mild steel, that is, calibrating Basquin 
and BMC parameters and ii) estimating the actual value of control volume radius R0 in 
cyclic conditions for a more rational application of the SED method. 
Namely, smooth and pierced specimens have been designed and were derived from the 
same pristine plates adopted for hot-driven riveted assemblies (Section 4.3)  
2 × 2 different configurations of flat specimens are being used for the fatigue 
characterization of historical mild steel, for a total of 22 (15 + 7) specimens. 
In particular, the four geometries differ in terms of plate thickness t and presence or 
absence of a 4 mm drilled hole (Table 8.1).  
Geometrical features for specimens being tested are depicted in Figure 8.1.  
  

 
Figure 8.1 Geometrical features of flat smooth/pierced specimens of historical mild steel. 

 
Table 8.1 Geometrical features of flat smooth/pierced specimens of historical mild steel. 

 Configurations I/II Configurations III/IV 
Grip width w [mm] 40 50 

Grip length Lgr [mm] 100 120 
Transition radius r [mm] 30 38 

Transition angle α [°] 30 30 

Gauge width wg [mm] 10 12 
Gauge length Lg [mm] 35 42 

Thickness t [mm] 10 12 

Total length Ltot [mm] 287 348 
Hole diameter Ø [mm] Not present (I) – 4 (II) Not present (III) – 4 (IV) 

 
Adopted smooth configurations are compliant with ASTM E606 (2012) 
recommendations. All relevant geometrical features have been designed in function of 

R30r

α
w

Lg

Lgr
Ltot

t

Ø
[If present]wg
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the specimen thickness t, which was consistently set equal to the thickness of plates 
adopted for hot-driven riveted connections (i.e., t = 10 or 12 mm, respectively). 
Moreover, 4 mm holes were drilled in pierced specimens to introduce a stress raising 
source, which can be regarded as an equivalent U-notch (Radaj & Vormwald, 2013). 
The specimens characterized by the same geometry are all nominally identical and made 
of the same historical mild steel adopted for plates.  
In the next Sections, the following key aspects related to performed experimental 
activities are addressed, namely: 
Compatibly with the characteristics of the base material, a constant test frequency ftest = 
5 Hz is assumed for all fatigue tests. 
The plan for the experimental campaign was defined in order to provide a sufficient 
number of stress/strain range levels to calibrate Basquin and BMC model parameters. 
In order to avoid cyclic buckling of specimens during fatigue tests, zero-to-tension load 
cycles (R = 0) were adopted as allowed by ASTM E606 (2012). 
The stress/strain ranges Δσ/Δε of concern were determined based on the characterization 
of the static properties reported in D’Aniello et al. (2011) as respect to the same historical 
mild steel. Accordingly, subsequent fatigue tests are being performed assuming aliquots 
of the ultimate load compliant with the desired number of points in Wohler and strain-
life diagrams.  
An appropriate labelling was also defined for each of the ongoing experimental tests. As 
all specimens are compliant with ASTM E606 (2012) provisions, plate thickness and hole 
diameter (if present) can be used to univocally describe their geometry. Moreover, 
encoding relevant load parameters the following nomenclature was adopted, namely: 
 
Labelling “FAABCCDD” with: 
F = Fatigue test (i.e., load-controlled, composed by an initial ramp up to the mean stress 
σm and by a superimposed constant-amplitude, sinusoidal wave with range Δσ); 
AA = 10 or 12 in reference to the plate thickness t; 
B = S or P with reference to smooth or pierced specimens, respectively; 
CC = 01, 02, …, 05 with reference to the selected stress/strain range, i.e., increasing with 
increasing values of Δσ/Δε; 
DD = 01, 02, etc... with reference to order of performed tests, i.e., increasing for multiple 
tests having the same stress/strain range. 
 
Table 8.2 summarizes the tests carried out according to the above indications. Load 
protocols are expressed in terms of forces, stress and strain ranges. 
It is worth noting that stress and strain ranges are intended as nominal quantities referred 
to the gauge segment. In case of pierced specimens, Δσ were conventionally calculated 
for the minimum notched cross section. 
 
Table 8.2 Summary of fatigue tests on historic mild steel flat specimens. 

Label Test # t Hole Fmax = ΔF Δσ Δε 

[-] [-] [mm] [mm] [kN] [N/mm2] [-] 

F10S0101 1 10.0 NO 20.0 200.0 0.0011 

F10S0102 2 10.0 NO 20.0 200.0 0.0011 

F10S0103 3 10.0 NO 20.0 200.0 0.0011 

F10S0201 1 10.0 NO 25.0 250.0 0.0023 
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F10S0202 2 10.0 NO 25.0 250.0 0.0023 

F10S0203 3 10.0 NO 25.0 250.0 0.0023 

F10S0301 1 10.0 NO 30.0 300.0 0.0060 

F10S0302 2 10.0 NO 30.0 300.0 0.0060 

F10S0303 3 10.0 NO 30.0 300.0 0.0060 

F10S0401 1 10.0 NO 35.0 350.0 0.0168 

F10S0402 2 10.0 NO 35.0 350.0 0.0168 

F10S0403 3 10.0 NO 35.0 350.0 0.0168 

F10S0501 1 10.0 NO 40.0 400.0 0.0449 

F10S0502 2 10.0 NO 40.0 400.0 0.0449 

F10S0503 3 10.0 NO 40.0 400.0 0.0449 

F10P0101 1 10.0 4.0 12.0 200.0 - 

F10P0102 2 10.0 4.0 12.0 200.0 - 

F12P0101 1 12.0 4.0 14.0 210.0 - 

F12P0202 2 12.0 4.0 17.0 255.0 - 

F12P0301 1 12.0 4.0 17.0 255.0 - 

F12P0302 2 12.0 4.0 20.0 300.0 - 

F12P0303 3 12.0 4.0 20.0 300.0 - 

64.  

65. 8.2.2 Influence of constructional imperfections on the fatigue 
performance of hot-driven riveted connections 

In Section 5.5, the influence of constructional imperfections on the static performance 
of hot-driven riveted connections was thoroughly investigated by means of refined 
FEAs. As highlighted by numerical results, stress distributions in connected elements 
are strongly influenced by distortions such as camming defects. 
Therefore, a further extension concerning the influence of constructional imperfection 
on the fatigue performance of hot-driven riveted connections has been planned. 
For instance, preliminary studies on the cyclic performance of hot-driven riveted 
connections belonging to an existing riveted bridge located in Italy (Milone, 2022a) 
highlighted how camming defect can create new potential fracture spots nearby shank 
discontinuities (Figure 8.2). 
 

 
a) 
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b) 

Figure 8.2 Preliminary study on the influence of camming defect on the fatigue behaviour of hot-driven 
splices: damage initiation due to cyclic loads in a) pristine specimen (S-16-10-1-0.00) and b) distorted 
specimen (S-16-10-1-0.20-D) (Milone, 2022a). 

 
Namely, the following preliminary remarks were pointed out: 

 The fatigue behaviour of hot-driven riveted joints is significantly influenced from 
shank eccentricity in terms of stress alteration in connected elements;  

 Higher values of e/d lead to higher damages and potential development of new 
fracture locations nearby shank discontinuities; 

 A low rivet slenderness t/d may play a role in penalizing fatigue performance of 
specimens. 

 
Therefore, further numerical studies will be carried out, plausibly within the framework 
of the SED method. 
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9. Appendix 
Python/ABAQUS Scripts 

66. Parametrical FEAs on blunt V-notched components 
 
# Importing ABAQUS Programming language 
# -*- coding: utf-8 -*- 
 
from part import * 
from material import * 
from section import * 
from assembly import * 
from step import * 
from interaction import * 
from load import * 
from mesh import * 
from optimization import * 
from job import * 
from sketch import * 
from visualization import * 
from connectorBehavior import * 
from odbAccess import * 
#import os 
#import sys 
 
# Defining Function for Parametrical Analysis (Mesh Sensitivity) 
 
def Create_Model_Run_Analysis(D,d,Two_alfa,r,k_R): 
     
    L = D # L Length of the Grip 
    # D Outer Diameter 
    # d Inner Diameter 
    # Two_alfa Opening Angle   
    # r Notch radius 
    # k_R Mesh Size Parameter 
    # Importing Abaqus Modules in Python 
 
    # Defining Parameters for Analysis 
    # Lenghts in mm, Angles in deg, Forces in N 
     
    import numpy as np # Importing Numpy Library 
 
    E_s=210000.0 # Young Modulus 
    ni=0.3 # Poisson's constant 
 
    alfa=np.radians(90.0-Two_alfa/2) 
 
    # Name of the Model/Instance/Job... 
     
    import math 
     
    # Splitting D for Labelling 
     
    if int(D) == D: 
        mant_D = 0 
    else: 
        digit_D = int(math.log10(D))+1 
        tot_D = len(str(D)) 
        m_D = 10**(tot_D-digit_D-1) 
        n_D = str(int(D*m_D)) 
        end_D = len(n_D) 
        mant_D = n_D[digit_D:end_D]  
         
    # Splitting d for Labelling 
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    if int(d) == d: 
        mant_d = 0 
    else: 
        digit_d = int(math.log10(d))+1 
        tot_d = len(str(d)) 
        m_d = 10**(tot_d-digit_d-1) 
        n_d = str(int(d*m_d)) 
        end_d = len(n_d) 
        mant_d = n_d[digit_d:end_d]  
 
    # Splitting r for Labelling 
     
    n_r = str(r) 
    end_r = len(n_r) 
    mant_r = n_r[2:end_r] 
         
    MyName = 'C45-'+str(int(D))+','+str(mant_D)+'-'+str(int(d))+','+str(mant_d)+'-'+str(int(Two_alfa))+'-
'+str(int(r))+','+str(mant_r)+'-'+str(int(k_R)) 
    MyNameMod = 'Model-'+MyName 
    MyNameSkt = 'Sketch-'+MyName 
    MyNamePar = 'Part-'+MyName 
    MyNameIns = MyName 
    MyNameJob = MyName 
    MyNamePrt = 'P'+MyName 
 
    # Sketching Part -> First Parametric Input 
     
    x_a = 0.0 
    y_a = 0.0 
     
    x_b = D/2 
    y_b = y_a 
     
    x_c = x_b 
    y_c = L 
     
    x_d = d/2+r*(1-np.cos(alfa)) 
    y_d = (D-d-2*r)/(2*np.tan(alfa))+L+r*np.cos(alfa)/np.tan(alfa) 
     
    x_e = d/2 
    y_e = (D-d-2*r)/(2*np.tan(alfa))+L+r/np.sin(alfa) 
     
    x_d2 = x_e + r*(1-np.cos(alfa/2)) 
    y_d2 = y_e - r*np.sin(alfa/2) 
     
    x_f = x_a 
    y_f = y_e 
     
 
    mdb.Model(modelType=STANDARD_EXPLICIT, name=MyNameMod) 
    mdb.models[MyNameMod].ConstrainedSketch(name=MyNameSkt, sheetSize=200.0) 
    mdb.models[MyNameMod].sketches[MyNameSkt].sketchOptions.setValues(viewStyle=AXISYM) #Visualization 
Option for Axisymmetric Models 
    mdb.models[MyNameMod].sketches[MyNameSkt].ConstructionLine(point1=(0.0,-100.0), point2=(0.0,100.0)) # 
Axis of Symmetry 
    mdb.models[MyNameMod].sketches[MyNameSkt].Line(point1=(x_a, y_a), point2=(x_b,y_b)) # First H Segment 
(Outer Diameter) 
    mdb.models[MyNameMod].sketches[MyNameSkt].Line(point1=(x_b,y_b), point2=(x_c,y_c)) # First V Segment 
(Outer Grip) 
    mdb.models[MyNameMod].sketches[MyNameSkt].Line(point1=(x_c,y_c), point2=(x_d,y_d)) # Sloped Segment 
    mdb.models[MyNameMod].sketches[MyNameSkt].Arc3Points(point1=(x_d,y_d), point2=(x_e, y_e), 
point3=(x_d2,y_d2)) # Circle for Blunt Notch 
    mdb.models[MyNameMod].sketches[MyNameSkt].Line(point1=(x_e, y_e), point2=(x_f, y_f)) # Last H Segment 
(Inner Diameter) 
    mdb.models[MyNameMod].sketches[MyNameSkt].Line(point1=(x_f, y_f), point2=(x_a, y_a)) # Closing the Sketch 
 
    # Part Creation 
    mdb.models[MyNameMod].Part(dimensionality=AXISYMMETRIC, name=MyNamePar, type= 
        DEFORMABLE_BODY) 
    mdb.models[MyNameMod].parts[MyNamePar].BaseShell(sketch= 
        mdb.models[MyNameMod].sketches[MyNameSkt]) 
    del mdb.models[MyNameMod].sketches[MyNameSkt] 
 
    # Materials Definition and Section 
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    mdb.models[MyNameMod].Material(name='Elastic Steel') 
    mdb.models[MyNameMod].materials['Elastic Steel'].Elastic(table=((E_s, ni), )) 
 
    #mdb.models[MyNameMod].materials['Material-1'].Plastic(hardening=COMBINED,     -> 
ISOTROPIC/KINEMATIC...  
        #table=((sigma_true, eps_plastic_true), (..., ...), (..., ...)))    # Plasticity (if Needed) 
         
    mdb.models[MyNameMod].HomogeneousSolidSection(material='Elastic Steel', name='C45', thickness=None) 
    mdb.models[MyNameMod].parts[MyNamePar].SectionAssignment(offset=0.0, offsetField='', 
offsetType=MIDDLE_SURFACE, 
region=Region(faces=mdb.models[MyNameMod].parts[MyNamePar].faces.getByBoundingBox(-0.1,-0.1,-
0.1,D/2+0.1,(D-d-2*r)/(2*np.tan(alfa))+L+r/np.sin(alfa)+0.1,0.1)), sectionName='C45', 
thicknessAssignment=FROM_SECTION) 
    # Assigning Section Properties # Selection was made by 
getByBoundingBox(x_min,y_min,z_min,x_max,y_max,z_max) command 
 
    # Instance Creation 
    mdb.models[MyNameMod].rootAssembly.DatumCsysByThreePoints(coordSysType= 
        CYLINDRICAL, origin=(0.0, 0.0, 0.0), point1=(1.0, 0.0, 0.0), point2=(0.0,  
        0.0, -1.0)) 
    mdb.models[MyNameMod].rootAssembly.Instance(dependent=OFF, name=MyNameIns,  
        part=mdb.models[MyNameMod].parts[MyNamePar]) 
 
    # Creating Sets for Boundary Conditions 
 
    mdb.models[MyNameMod].rootAssembly.Set(edges= 
        mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((0.0,L/2,0),)), name='Left') # 
Left Edge # Selection was made by findAt(((x,y,z),)) 
    mdb.models[MyNameMod].rootAssembly.Set(edges= 
        mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((D/4,0,0),)), name='Bottom') # 
Bottom Edge # "" 
    mdb.models[MyNameMod].rootAssembly.Set(edges= 
        mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((d/4,(D-d-
2*r)/(2*np.tan(alfa))+L+r/np.sin(alfa),0),)), name='Up') # Upper Edge # "" 
    mdb.models[MyNameMod].rootAssembly.Set(edges= 
        mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((D/2,L/2,0),)), name='Right') # 
Right Edge # "" 
    mdb.models[MyNameMod].rootAssembly.Set(edges= 
        mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt((((x_c+x_d)/2,(y_c+y_d)/2,0),)), 
name='Sloped') # Sloped Edge # "" 
    mdb.models[MyNameMod].rootAssembly.Set(edges= 
        mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((x_d2,y_d2,0),)), name='Round') 
# Round Edge # "" 
 
    # Creating Surfaces for Boundary Conditions 
 
    mdb.models[MyNameMod].rootAssembly.Surface(name='LowSurf', side1Edges= 
        mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((D/4,0,0),))) # Lower Surface for 
Applied Loads # Detected using findAt(((x,y,z),)) 
 
    # Assigning FE Type 
 
mdb.models[MyNameMod].rootAssembly.setElementType(elemTypes=(ElemType(elemCode=CAX8, 
elemLibrary=STANDARD),),  
        regions=(mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].faces.getByBoundingBox(-0.1,-0.1,-
0.1,x_b+0.1,y_e+0.1,0.1), )) # Detected using getByBoundingBox 
        # CAX8: ABQ Standard Library, Axisymmetric Quad Element, Quadratic Geometry, Standard Integration 
         
    # Assigning Global & Local Seeds 
     
    L_R = r*alfa # Length of the Half-Notch for Proportion 
     
    L_up = L_R - r*(1-np.cos(alfa)) # Length of Upper Square Side 
    L_down = L_R # Length of Lower Square Side 
    L_sx = y_e - y_d # Length of Left Square Side 
    L_H = x_e - L_R # Length of the Upper H Segment 
    L_grip = D # Lenght of the H Grip Zone 
     
    rat_SV = 15 # Ratio for Bias Seeding of Edges (20 -> /7; 15 -> /5; 10 -> /4) 
     
    k_S = max(min(int(k_R*L_H/L_R/5),10000),100-k_R) # Number of Elements for Other Segments 
    k_up = int(k_R*L_up/L_R) # Number of Elements for USS 
    k_sx = int(k_R*L_sx/L_R) # Number of Elements for LSS 
    k_grip = int(k_R*L_grip/L_R) # NUmber of Elements for HGZ 
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    #L_S = ((x_c-x_d)**2+(y_c-y_d)**2)**(0.5) # Length of Sloped Segments 
    #L_V = y_f - y_d # Length of the Vertical Segment 
     
    # Central Point Abscissa 
     
    x_p = x_d - L_R 
 
    # Seeding Global Instance 
 
    mdb.models[MyNameMod].rootAssembly.seedPartInstance(deviationFactor=0.1,  
        minSizeFactor=0.1, regions=( 
        mdb.models[MyNameMod].rootAssembly.instances[MyNameIns], ), size=L_grip/k_grip*8) 
     
    # Sketching Partition for Mesh 
     
    mdb.models[MyNameMod].ConstrainedSketch(name=MyNamePrt, sheetSize=200.0) 
    mdb.models[MyNameMod].sketches[MyNamePrt].Line(point1=(d/2+r*(1-np.cos(alfa)),(D-d-
2*r)/(2*np.tan(alfa))+L+r*np.cos(alfa)/np.tan(alfa)),  
    point2=(d/2-L_R+r*(1-np.cos(alfa)),(D-d-2*r)/(2*np.tan(alfa))+L+r*np.cos(alfa)/np.tan(alfa))) # Sketch: First H 
Segment from Notch End 
    mdb.models[MyNameMod].sketches[MyNamePrt].Line(point1=(d/2-L_R+r*(1-np.cos(alfa)),(D-d-
2*r)/(2*np.tan(alfa))+L+r*np.cos(alfa)/np.tan(alfa)),  
    point2=(d/2-L_R+r*(1-np.cos(alfa)),(D-d-2*r)/(2*np.tan(alfa))+L+r/np.sin(alfa))) # Sketch: First V Segment from 
Middle 
    mdb.models[MyNameMod].sketches[MyNamePrt].Line(point1=(d/2-L_R+r*(1-np.cos(alfa)),(D-d-
2*r)/(2*np.tan(alfa))+L+r*np.cos(alfa)/np.tan(alfa)),  
    point2=(0.0,L)) # Sketch: Connecting Segment 
    mdb.models[MyNameMod].sketches[MyNamePrt].Line(point1=(0.0,L), 
    point2=(D/2,L)) # Sketch: Last H Segment from Grip to Axis 
 
    # Partitioning From Sketch 
 
    mdb.models[MyNameMod].rootAssembly.PartitionFaceBySketch(faces= 
    mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].faces.getByBoundingBox(-0.1,-0.1,-
0.1,x_b+0.1,y_e+0.1,0.1),  
    sketch=mdb.models[MyNameMod].sketches[MyNamePrt]) 
     
    # Seeding Edges 
    # If the V/H ratio of the second region exceeds 77, seeds on H and I segments should be released 
     
    V_H_ratio = (y_d-y_c)/(x_d-x_p) 
    V_H_limit = 77.0 
     
    if V_H_ratio < V_H_limit: 
        k_grip_corr = k_grip/8 
    else: 
        k_grip_corr = k_grip/20 
         
    mdb.models[MyNameMod].rootAssembly.seedEdgeByBias(biasMethod=SINGLE,  
        constraint=FINER, 
end1Edges=mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((x_p/2,y_e,0),)), 
number=k_S, ratio=rat_SV)  # Segment A 
    mdb.models[MyNameMod].rootAssembly.seedEdgeByNumber(constraint=FINER, 
        edges=mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt((((x_e+x_p)/2,y_e,0),)), 
number=k_up)  # Segment B         
    mdb.models[MyNameMod].rootAssembly.seedEdgeByNumber(constraint=FINER,  
        edges=mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((x_p,(y_d+y_e)/2,0),)), 
number=k_sx)  # Segment C 
    mdb.models[MyNameMod].rootAssembly.seedEdgeByNumber(constraint=FINER,  
        edges=mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((x_d2, y_d2,0),)), 
number=k_R)  # Segment D 
    mdb.models[MyNameMod].rootAssembly.seedEdgeByNumber(constraint=FINER,  
        edges=mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((x_d-L_down/2,y_d,0),)), 
number=k_R)  # Segment E 
    mdb.models[MyNameMod].rootAssembly.seedEdgeByBias(biasMethod=SINGLE,  
        constraint=FINER, 
end1Edges=mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt(((x_p/2,(y_c+y_d)/2, 0),)), 
number=k_S, ratio=rat_SV)  # Segment F 
    mdb.models[MyNameMod].rootAssembly.seedEdgeByBias(biasMethod=SINGLE,  
        constraint=FINER, 
end2Edges=mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt((((x_c+x_d)/2,(y_c+y_d)/2
,0),)), number=k_S, ratio=rat_SV)  # Segment G 
    mdb.models[MyNameMod].rootAssembly.seedEdgeByNumber(constraint=FREE, 
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        edges=mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt((((x_c)/2,y_c,0),)), 
number=k_grip_corr)  # Segment H (Grip Up)  
    mdb.models[MyNameMod].rootAssembly.seedEdgeByNumber(constraint=FREE, 
        edges=mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].edges.findAt((((x_a+x_b)/2,y_a,0),)), 
number=k_grip_corr/4)  # Segment I (Grip Down)  
         
    # Assigning Structured Mesh to All Elements 
     
    mdb.models[MyNameMod].rootAssembly.setMeshControls(regions= 
        mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].faces.getByBoundingBox(-0.1,-0.1,-
0.1,x_b+0.1,y_e+0.1,0.1), technique=STRUCTURED) 
     
    # Introducing Sweep Method where needed 
    # If one of the i-th angles is below 10.44 degrees, the i-th Region should be meshed with FREE - MEDIAL AXIS 
algorithm 
 
    beta2 = np.arctan((y_d-y_c)/x_p) # Left H Angle 
    beta1 = np.pi/2 - beta2 # Left V Angle 
    beta3 = np.pi/2 - alfa # Right H Angle 
     
    beta_lim = np.deg2rad(10.44) # Limit (Empirical...) 
     
    if beta1 < beta_lim: 
        mdb.models[MyNameMod].rootAssembly.setMeshControls(regions= 
            mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].faces.findAt(((x_p/2,y_d,0),)), 
technique=FREE, algorithm=MEDIAL_AXIS) # STRUCTURED is selected if SWEEP is unavailable  
    else: 
        mdb.models[MyNameMod].rootAssembly.setMeshControls(regions= 
            mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].faces.findAt(((x_p/2,y_d,0),)), 
technique=SWEEP) # First Region (CEF) 
 
    if beta2 < beta_lim or beta3 < beta_lim: 
        mdb.models[MyNameMod].rootAssembly.setMeshControls(regions= 
            mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].faces.findAt(((x_p,(y_c+y_d)/2,0),)), 
technique=FREE, algorithm=MEDIAL_AXIS) # STRUCTURED is selected if SWEEP is unavailable        
    else: 
        mdb.models[MyNameMod].rootAssembly.setMeshControls(regions= 
            mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].faces.findAt(((x_p,(y_c+y_d)/2,0),)), 
technique=SWEEP) # Second Region (EFC) 
     
    mdb.models[MyNameMod].rootAssembly.setMeshControls(regions= 
 
 mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].faces.findAt((((x_p+x_e)/2,(y_d+y_e)/2,0
),)), technique=SWEEP) # Third Region (Square) 
     
    # Generating Mesh 
     
    mdb.models[MyNameMod].rootAssembly.generateMesh(regions=( 
        mdb.models[MyNameMod].rootAssembly.instances[MyNameIns], )) 
         
    # Creating a Step 
     
    mdb.models[MyNameMod].StaticStep(maxNumInc=1000000, name='Load', nlgeom=OFF,  
        previous='Initial') # Static Step: Load # Geometric Non-Linearity: OFF # Maximum Number of Increments = 10^6 
 
    # Assigning Boundary Conditions 
 
    mdb.models[MyNameMod].DisplacementBC(amplitude=UNSET, createStepName='Initial',  
        distributionType=UNIFORM, fieldName='', fixed=OFF, localCsys=None, name= 
        'Up', region=mdb.models[MyNameMod].rootAssembly.sets['Up'], u1=UNSET, u2= 
        0.0, ur3=UNSET) # Upper Edge: U2 = 0 (Symmetry Condition) 
    mdb.models[MyNameMod].DisplacementBC(amplitude=UNSET, createStepName='Initial',  
        distributionType=UNIFORM, fieldName='', fixed=OFF, localCsys=None, name= 
        'Left', region=mdb.models[MyNameMod].rootAssembly.sets['Left'], u1=0.0,  
        u2=UNSET, ur3=UNSET) # Left Edge: U1 = 0 (Symmetry Condition) 
    mdb.models[MyNameMod].Pressure(amplitude=UNSET, createStepName='Load',  
        distributionType=UNIFORM, field='', magnitude=-1.0, name='LowLoad', region= 
        mdb.models[MyNameMod].rootAssembly.surfaces['LowSurf']) # Lower Edge: Tensile Pressure 
         
    # Applying SED Method for Blunt V Notch 
 
    R_0 = 0.39 # Radius of the Control Volume for Sharp Notch, L in mm 
    r_0 = r*(np.pi - np.radians(Two_alfa))/(2*np.pi - np.radians(Two_alfa)) # Distance from the Notch Tip 
    R_1 = R_0 + r_0 # Radius of Cylinder 
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    mdb.models[MyNameMod].rootAssembly.Set(elements= 
        
mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].elements.getByBoundingCylinder(center1=(x_e + 
r_0, y_e, -0.1),center2=(x_e + r_0, y_e, +0.1),radius=R_1), name='SED') # Creating SET for Strain Energy Density 
Measure 
    mdb.models[MyNameMod].HistoryOutputRequest(createStepName='Load', name='SED', rebar=EXCLUDE, 
region= 
        mdb.models[MyNameMod].rootAssembly.sets['SED'], sectionPoints=DEFAULT,  
        variables=('ALLSE', 'VOL')) # Tracking Strain Energy (Non Averaged) and Volume for SED 
 
    # Defining the Job and Submitting 
 
    mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  
        explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,  
        memory=80, memoryUnits=PERCENTAGE, model=MyNameMod, modelPrint=OFF,  
        multiprocessingMode=DEFAULT, name=MyNameJob, nodalOutputPrecision=SINGLE,  
        numCpus=4, numDomains=4, numGPUs=0, queue=None, resultsFormat=ODB, scratch= 
        '', type=ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0) 
    mdb.jobs[MyNameJob].submit(consistencyChecking=OFF) 
    mdb.jobs[MyNameJob].waitForCompletion() 
 
def Open_ODB_and_Write_To_Text(D,d,Two_alfa,r,k_R): 
     
    import math 
    import numpy as np 
     
    E_s=210000.0 # Young Modulus 
    ni=0.3 # Poisson's constant 
     
    L = D # Setting L as a f(D) 
     
    # Splitting D for Labelling 
     
    if int(D) == D: 
        mant_D = 0 
    else: 
        digit_D = int(math.log10(D))+1 
        tot_D = len(str(D)) 
        m_D = 10**(tot_D-digit_D-1) 
        n_D = str(int(D*m_D)) 
        end_D = len(n_D) 
        mant_D = n_D[digit_D:end_D]  
         
    # Splitting d for Labelling 
     
    if int(d) == d: 
        mant_d = 0 
    else: 
        digit_d = int(math.log10(d))+1 
        tot_d = len(str(d)) 
        m_d = 10**(tot_d-digit_d-1) 
        n_d = str(int(d*m_d)) 
        end_d = len(n_d) 
        mant_d = n_d[digit_d:end_d]  
 
    # Splitting r for Labelling 
     
    n_r = str(r) 
    end_r = len(n_r) 
    mant_r = n_r[2:end_r] 
     
    # Labelling Job and Defining Notch Ordinate 
         
    MyNameJob = 'C45-'+str(int(D))+','+str(mant_D)+'-'+str(int(d))+','+str(mant_d)+'-'+str(int(Two_alfa))+'-
'+str(int(r))+','+str(mant_r)+'-'+str(int(k_R)) 
    alfa=np.radians(90.0-Two_alfa/2) 
    y_e = (D-d-2*r)/(2*np.tan(alfa))+L+r/np.sin(alfa) 
 
    # Opening ODB file and Viewport 
     
    odb1 = session.openOdb(str(MyNameJob)+'.odb') 
    session.Viewport(name='Viewport: 1', origin=(0.0, 0.0), width=300.0, 
    height=150.0)  
    session.viewports['Viewport: 1'].makeCurrent() 
    session.viewports['Viewport: 1'].maximize() 
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    session.viewports['Viewport: 1'].setValues(displayedObject=odb1) 
     
    # Introducing Path along Notch Bisector 
     
    MyPath = 'Path-'+MyNameJob 
    #n_points = 99 
     
    #b = [(0,y_e,0)] 
 
    #for i in range(1,n_points+1): 
        #b.append((i/n_points*d/2, y_e, 0)) 
 
    #MyExpression = tuple(b) 
    MyExpression = ((0,y_e,0),(d/2,y_e,0)) 
    session.Path(name=MyPath, type=POINT_LIST, expression=MyExpression) 
     
    lastStep = odb1.steps['Load'] 
    last_fr = len(lastStep.frames)-1 
    lastFrame = lastStep.frames[last_fr]    
    pth = session.paths[MyPath] 
 
     
    session.XYDataFromPath(name='S_22', path=pth, includeIntersections=False,  
        projectOntoMesh=False, pathStyle=UNIFORM_SPACING, numIntervals=100,  
        projectionTolerance=0, shape=UNDEFORMED, labelType=TRUE_DISTANCE_X, step=0, frame = last_fr, 
        variable= ('S',INTEGRATION_POINT, ( 
        (COMPONENT, 'S22' ), ), )) # Getting S22 from Notch Bisector (100 intervals, evenly spaced)  
         
    session.XYDataFromPath(name='S_MISES', path=pth, includeIntersections=False,  
        projectOntoMesh=False, pathStyle=UNIFORM_SPACING, numIntervals=100,  
        projectionTolerance=0, shape=UNDEFORMED, labelType=TRUE_DISTANCE_X, step=0, frame = last_fr, 
        variable= ('S',INTEGRATION_POINT, ( 
        (INVARIANT, 'Mises' ), ), )) # Getting Mises from Notch Bisector "" 
 
    session.XYDataFromPath(name='S_33_Hoop', path=pth, includeIntersections=False,  
        projectOntoMesh=False, pathStyle=UNIFORM_SPACING, numIntervals=100,  
        projectionTolerance=0, shape=UNDEFORMED, labelType=TRUE_DISTANCE_X, step=0, frame = last_fr, 
        variable= ('S',INTEGRATION_POINT, ( 
        (COMPONENT, 'S33' ), ), )) # Getting S33 from Notch Bisector "" 
 
    session.XYDataFromPath(name='S_11', path=pth, includeIntersections=False,  
        projectOntoMesh=False, pathStyle=UNIFORM_SPACING, numIntervals=100,  
        projectionTolerance=0, shape=UNDEFORMED, labelType=TRUE_DISTANCE_X, step=0, frame = last_fr, 
        variable= ('S',INTEGRATION_POINT, ( 
        (COMPONENT, 'S11' ), ), )) # Getting S11 from Notch Bisector "" 
        
    session.XYDataFromHistory(name='SE', odb=odb1,  
    outputVariableName='Strain energy: ALLSE in ELSET SED', steps=('Load', ), ) # Getting Strain Energy from 
Control Volume    
 
    session.XYDataFromHistory(name='VOLUME', odb=odb1,  
    outputVariableName='Current volume of an element set or entire model: VOL in ELSET SED', steps=('Load', ), ) # 
Getting Strain Energy from Control Volume  
     
    S_11_Path = list(session.xyDataObjects['S_11']) # Obtaining S11 Data as a LIST 
    S_22_Path = list(session.xyDataObjects['S_22']) # Obtaining S22 Data as a LIST 
    S_33_Path = list(session.xyDataObjects['S_33_Hoop']) # Obtaining S33 Data as a LIST 
    S_Mises_Path = list(session.xyDataObjects['S_MISES']) # Obtaining Mises Data as a LIST 
    SED_Time = list(session.xyDataObjects['SE']/session.xyDataObjects['VOLUME'])  # Obtaining SED vs Time Data 
as a LoL 
    SED_Data = SED_Time[1]  # Obtaining SED Data as a LIST 
    SED = SED_Data[1]*10**9 # Extracting SED (IN N/MQ!!) 
    Data = (S_22_Path,S_33_Path,S_Mises_Path) # Collecting Data 
    txt_file = str(MyNameJob)+'.txt' 
 
    row_x = [q[0] for q in S_22_Path] # Abscissas 
    row_S_11 = [u[1] for u in S_11_Path] #S_11 
    row_S_22 = [w[1] for w in S_22_Path] #S_22 
    row_S_33 = [z[1] for z in S_33_Path] #S_33 
    row_Mises = [t[1] for t in S_Mises_Path] #Mises 
     
    row_S_33_len = int(min(len(row_S_11),len(row_S_22))) # Setting the length of list for Elasticity Theory 
    row_S_33_el = [0]*row_S_33_len 
    for n in range(row_S_33_len): 
        row_S_33_el[n] = ni*(row_S_11[n]+row_S_22[n]) 
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    model_data = list(zip(row_x,row_S_11,row_S_22,row_S_33,row_S_33_el,row_Mises)) # Ordering Rows -> Path 
Data 
    header_model = ['D [mm]'+'\t','d [mm]'+'\t','2 Alfa [deg]'+'\t','r [mm]'+'\t','k_R [-]'+'\t','SED [N/mq]'+'\n'] # Header for 
Model Label 
    model_name = [str(D)+'\t',str(d)+'\t',str(Two_alfa)+'\t',str(r)+'\t',str(k_R)+'\t',str(SED)+'\n'] # Model Parameters and 
SED Value 
    header_data =['x [mm]'+'\t','S11 [MPa]'+'\t','S22 [MPa]'+'\t','S33_Hoop [MPa]'+'\t','S33_Plane [MPa]'+'\t','Mises 
[MPa]'+'\n'] #Header for Path Data 
     
    writing = open(str(MyNameJob)+'.txt','a') # Opening New File in Append Mode 
    np.savetxt(writing, header_model, newline='', delimiter='\t', fmt='%s') # Writing Model Header 
    np.savetxt(writing, model_name, newline='', delimiter='\t',fmt='%s') # Writing Model Parameters and SED 
    np.savetxt(writing, header_data, newline='', delimiter='\t',fmt='%s') # Writing Data Header 
    np.savetxt(writing, model_data, newline='\n', delimiter='\t', fmt='%.6f') # Writing Data 
    writing.close() # Closing .txt file 
     
    session.odbs[str(MyNameJob)+'.odb'].close() # Closing .odb file 
     
def Delete_Stuff(D,d,Two_alfa,r,k_R): 
     
    # Name of the Model & Job... 
     
    import math 
     
    # Splitting D for Labelling 
     
    if int(D) == D: 
        mant_D = 0 
    else: 
        digit_D = int(math.log10(D))+1 
        tot_D = len(str(D)) 
        m_D = 10**(tot_D-digit_D-1) 
        n_D = str(int(D*m_D)) 
        end_D = len(n_D) 
        mant_D = n_D[digit_D:end_D]  
         
    # Splitting d for Labelling 
     
    if int(d) == d: 
        mant_d = 0 
    else: 
        digit_d = int(math.log10(d))+1 
        tot_d = len(str(d)) 
        m_d = 10**(tot_d-digit_d-1) 
        n_d = str(int(d*m_d)) 
        end_d = len(n_d) 
        mant_d = n_d[digit_d:end_d]  
 
    # Splitting r for Labelling 
     
    n_r = str(r) 
    end_r = len(n_r) 
    mant_r = n_r[2:end_r] 
         
    MyName = 'C45-'+str(int(D))+','+str(mant_D)+'-'+str(int(d))+','+str(mant_d)+'-'+str(int(Two_alfa))+'-
'+str(int(r))+','+str(mant_r)+'-'+str(int(k_R)) 
    MyNameMod = 'Model-'+MyName 
    MyNameJob = MyName 
    MyPath = 'Path-'+MyNameJob 
    com = MyName+'.com' 
    dat = MyName+'.dat' 
    inp = MyName+'.inp' 
    ipm = MyName+'.ipm' 
    log = MyName+'.log' 
    msg = MyName+'.msg' 
    odb = MyName+'.odb' 
    prt = MyName+'.prt' 
    sim = MyName+'.sim' 
    sta = MyName+'.sta' 
    lck = MyName+'.lck' 
    gen_files = [com,dat,inp,ipm,log,msg,odb,prt,sim,sta,lck] 
 
    del mdb.models[MyNameMod] # Deleting Model 
    del mdb.jobs[MyNameJob] # Deleting Job 
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    del session.paths[MyPath] 
    del session.xyDataObjects['SE'] 
    del session.xyDataObjects['S_11'] 
    del session.xyDataObjects['S_22'] 
    del session.xyDataObjects['S_33_Hoop'] 
    del session.xyDataObjects['S_MISES'] 
    del session.xyDataObjects['VOLUME'] 
    del session.xyDataObjects['_temp_1'] 
     
    import os 
    for i in gen_files: 
        if os.path.exists(i): 
            os.remove(i) 
             
def Run_Analysis(D,d,Two_alfa,r,k_R): 
     
    L = D # L Length of the Grip 
    # D Outer Diameter 
    # d Inner Diameter 
    # Two_alfa Opening Angle   
    # r Notch radius 
    # k_R Mesh Size Parameter 
    # Importing Abaqus Modules in Python 
 
 
    # Defining Parameters for Analysis 
    # Lenghts in mm, Angles in deg, Forces in N 
     
    import numpy as np # Importing Numpy Library 
 
    E_s=210000.0 # Young Modulus 
    ni=0.3 # Poisson's constant 
 
    alfa=np.radians(90.0-Two_alfa/2) 
 
    # Name of the Model/Instance/Job... 
     
    import math 
     
    # Splitting D for Labelling 
     
    if int(D) == D: 
        mant_D = 0 
    else: 
        digit_D = int(math.log10(D))+1 
        tot_D = len(str(D)) 
        m_D = 10**(tot_D-digit_D-1) 
        n_D = str(int(D*m_D)) 
        end_D = len(n_D) 
        mant_D = n_D[digit_D:end_D]  
         
    # Splitting d for Labelling 
     
    if int(d) == d: 
        mant_d = 0 
    else: 
        digit_d = int(math.log10(d))+1 
        tot_d = len(str(d)) 
        m_d = 10**(tot_d-digit_d-1) 
        n_d = str(int(d*m_d)) 
        end_d = len(n_d) 
        mant_d = n_d[digit_d:end_d]  
 
    # Splitting r for Labelling 
     
    n_r = str(r) 
    end_r = len(n_r) 
    mant_r = n_r[2:end_r] 
         
    MyName = 'C45-'+str(int(D))+','+str(mant_D)+'-'+str(int(d))+','+str(mant_d)+'-'+str(int(Two_alfa))+'-
'+str(int(r))+','+str(mant_r)+'-'+str(int(k_R)) 
    MyNameJob = MyName 
     
    mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  
        explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,  
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        memory=80, memoryUnits=PERCENTAGE, model=MyNameMod, modelPrint=OFF,  
        multiprocessingMode=DEFAULT, name=MyNameJob, nodalOutputPrecision=SINGLE,  
        numCpus=4, numDomains=4, numGPUs=0, queue=None, resultsFormat=ODB, scratch= 
        '', type=ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0) 
    mdb.jobs[MyNameJob].submit(consistencyChecking=OFF) 
    mdb.jobs[MyNameJob].waitForCompletion() 
     
def Parametrical(Parameters): 
    D = Parameters[0] # Extracting Outer Diameter 
    d = Parameters[1]*Parameters[0] # Extracting d/D and calculating Inner Diameter 
    Two_alfa = Parameters[2] # Extracting Opening Angle 
    r = Parameters[3] # Extracting Notch Radius 
    k_R = 40 # Shape Parameter, fixed 
    Create_Model_Run_Analysis(D,d,Two_alfa,r,k_R) # Model + Analysis 
    #Run_Analysis(D,d,Two_alfa,r,k_R) # Only Analysis 
    Open_ODB_and_Write_To_Text(D,d,Two_alfa,r,k_R) # Post-Processing 
    Delete_Stuff(D,d,Two_alfa,r,k_R) # Deleting 
 
 
# Parametrical Analyses 
 
D_range = [10.0, 12.0, 14.0, 16.0, 18.0, 20.0] # Range of possible Outer Diameters 
d_D_range = [0.50,0.55,0.60,0.65,0.70,0.75] # Range of possible d/D ratios 
Two_Alfa_range = [15.0,30.0,45.0,60.0,75.0,90.0,105.0,120.0] # Range of possible Opening Angles 
r_range = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0] # Range of possible Notch Radiuses 
 
Cartesian_Product = [[p1,p2,p3,p4] for p1 in D_range for p2 in d_D_range for p3 in Two_Alfa_range for p4 in r_range] 
# Defining Cartesian Product 
for i in range(2810,len(Cartesian_Product)): 
     Combo = Cartesian_Product[i] 
     Parametrical(Cartesian_Product[i]) 
         

67. Definition of Control Volume for SED calculations in Hot-Driven 
Riveted Connections 

# Importing ABAQUS programming language 
# -*- coding: utf-8 -*- 
 
from part import * 
from material import * 
from section import * 
from assembly import * 
from step import * 
from interaction import * 
from load import * 
from mesh import * 
from optimization import * 
from job import * 
from sketch import * 
from visualization import * 
from connectorBehavior import * 
from odbAccess import * 
import numpy as np 
 
def SED_Connections(Geom,R0_min,R0_max,Step): 
 
    # geometrical features 
    D = Geom[0] 
    w = Geom[1] 
    t = Geom[2] 
    L = Geom[3] 
    e1 = Geom[4] 
    Config = Geom[5] 
    n_r = Geom[6] 
    label = Geom[7] 
         
    x_p = L - e1 
    y_pa = 0.1 
    y_pb = -3*t - 0.1 
    z_p = w/4 - D/2 
    r = D/2 
     
    MyNameMod = str(Config)+'-'+str(int(D))+'-'+str(int(t))+'-'+str(int(n_r))+str(label) 
    MyNameIns = 'Lower plate' 
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    Num = int((R0_max-R0_min)/Step)+1 
    R_0_range = np.linspace(R0_min,R0_max, num=Num) 
     
    for i in R_0_range: 
             
        R_0 = i # Radius of the Control Volume for Sharp Notch, L in mm 
        r_0 = r*(np.pi - np.radians(0.0))/(2*np.pi - np.radians(0.0)) # Distance from the Notch Tip 
        R_1 = R_0 + r_0 # Radius of Cylinder 
        R_0_str = 'SED_'+str(R_0) 
        R_0_str = R_0_str.replace('.',',') 
         
        mdb.models[MyNameMod].rootAssembly.Set(elements= 
            
mdb.models[MyNameMod].rootAssembly.instances[MyNameIns].elements.getByBoundingCylinder(center1=(x_p, 
y_pa, z_p+r_0),center2=(x_p, y_pb, z_p+r_0),radius=R_1*1.001), name=R_0_str) # Creating SET for Strain Energy 
Density Measure 
        mdb.models[MyNameMod].HistoryOutputRequest(createStepName='Loading', name=R_0_str, frequency=1, 
rebar=EXCLUDE, region= 
            mdb.models[MyNameMod].rootAssembly.sets[R_0_str], sectionPoints=DEFAULT,  
            variables=('ALLSE', 'VOL')) # Tracking Strain Energy (Non Averaged) and Volume for SED 
 
Models = [[16.0,70.0,10.0,245.0,35.0,'S',1,''],[19.0,90.0,10.0,255.0,45.0,'S',1,''],[19.0,90.0,10.0,345.0,45.0,'S',2,''], 
          [19.0,90.0,12.0,195.0,45.0,'S',1,'-A'],[19.0,90.0,12.0,195.0,45.0,'S',1,'-B'],[22.0,70.0,10.0,245.0,35.0,'S',1,'-A'], 
          [22.0,70.0,10.0,245.0,35.0,'S',1,'-B'],[22.0,70.0,12.0,185.0,35.0,'S',1,'-A'],[22.0,70.0,12.0,185.0,35.0,'S',1,'-B'], 
          [22.0,70.0,12.0,185.0,35.0,'S',1,'-B'],[22.0,70.0,12.0,280.0,35.0,'S',2,'-A'],[22.0,70.0,12.0,280.0,35.0,'S',2,'-B'],         
[19.0,90.0,10.0,255.0,45.0,'U',1,''],[19.0,60.0,10.0,345.0,45.0,'U',2,''],[19.0,60.0,10.0,355.0,30.0,'U',2,'G'], 
          [19.0,90.0,12.0,195.0,45.0,'U',1,''],[22.0,70.0,12.0,280.0,35.0,'U',2,'-A'],[22.0,70.0,12.0,280.0,35.0,'U',2,'-B']] 
 
for i in Models: 
    Geometry = i 
    R0_min = 0.20 
    R0_max = 1.00 
    Step = 0.05     
    SED_Connections(Geometry,R0_min,R0_max,Step) 
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Stress analysis of blunt V-notched cylinders of mild 
steel 

68. Deviation among hoop stresses and equivalent plain strain 
conditions at the notch tip 

 

 



ccliii 
 

 

 

 

 



ccliv 
 

 

 

 

 



cclv 
 

69. Average deviation among hoop stresses and equivalent plain strain 
conditions over the notch bisector 
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