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1 I N T R O D U C T I O N

Countries in Southern Europe, such as Italy, Greece, and Turkey have
probably the most significant number of cultural heritage sites world-
wide. Unfortunately, such countries are also known for their intensive
seismic activity. According to Parisi and Augenti [92], the frequency of
natural disasters and the magnitude of earthquakes increased from 1975

to 2005. Consequently, in recent years, damages caused by earthquakes
have been estimated by a total of 3.14 trillion USD.

Earthquake losses have shed light on the vulnerability of existing
structures and infrastructures, above all those belonging to cultural
heritage constructions. However, when a building shakes due to an
earthquake, all elements, including the building contents, will be sub-
jected to the earthquake’s inertia forces. This means that the earthquake
threatens not only the cultural heritage construction but also its con-
tents. By this last term we mean all non-structural elements, such as
machinery, storage units, display furniture and, in the case of mu-
seum buildings, collections and artworks. Usually, similarly to most
non-structural elements, museum contents are not designed to resist
earthquakes accelerations.

Commonly, conservators in charge of protecting collections focus
their attention on other important issues, such as fires, flooding due to
rain, thefts, vandalism, etc. As a consequence, they are not prepared
to prevent or mitigate the damage caused by earthquakes. Moreover,
several museum artefacts are freestanding, that is they have little or
no restraint, such as sculptures, statues, amphorae, etc. Accordingly,
these objects are the most vulnerable ones to seismic excitations since,
due to rocking and sliding, they can overturn or fall from the support.
As a matter of fact even art objects anchored to larger masses such
as pedestals could be severely damaged during an earthquake if their
stability is not guaranteed.

Generally, museum buildings belonging to the cultural heritage are
rather stiff masonry structures. Although these buildings are able to
resist the effects of expected earthquakes, they are not necessarily ad-
equate to host freestanding art objects. As a result, this could be the
leading cause of collapse and damage to museum artefacts. Indeed,
typical monumental buildings can filter the base seismic motion mod-
ifying its frequency and magnitude. The accelerations on the upper
floors can be two to four times higher than the ones on the ground
floor, as shown by Baggio et al. [12]. Consequently, a simple change

1



2 introduction

(a) Madonna in trono (b) Sant’Antonio Abate

Figure 1.1: Collapse of sculptures located in the Spanish Fortress of
L’Aquila [92].

of the art object’s place, e.g. from the ground floor to the second one,
will also require a preliminary study on the feasibility of relocation.
In the worst case, it will be necessary to implement a seismic damage
mitigation technique, as in the example of the two Riace’s Bronzes [22,
98].

Hence, art objects contained in museums are at significant risk of
earthquakes, and their collapse and damage are potentially associated
with significant human and economic losses. This is especially the case
when the collection’s value is greater than that of the museum building
itself.

The earthquakes of L’Aquila (2009) and Emilia Romagna (2012)
caused enormous damage the cultural heritage, as shown in Figure 1.1.

Significant damages due to earthquakes were also experienced from
the cultural heritage in Greece; for instance, the Athens earthquake in
1999 is probably the worst natural disaster of modern Greek history,
creating economic losses of 3 billion USD [125].

The Kos earthquake in July 2017 caused widespread damage to
several archaeological sites and monuments, including the medieval
Nerantzia Castle, sections of the ancient agora, and the recently refur-
bished Archaeological Museum. Notably, of the 43 ancient sculptures
on display, five fell from their pedestals, suffering severe damages
(see Figure 1.2).
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(a) Kos Archeological site, ref: Archaeology News Network.

(b) Kos Archaeological Museum, ref: Greece-is.

Figure 1.2: Earthquake damages in Kos Island, 2017.

To highlight the topic’s actuality, Figure 1.3 shows some damages
suffered by the Archaeological Museum in Zagreb due to the recent
earthquake (occurred on the 22nd of March 2020).

The use of mitigation techniques towards seismic excitation regarding
the safety of museum art objects is still scarce. In fact, the larger majority
of seismic protection attention is currently given to the monumental
buildings rather than to collections, even though some interest and
awareness about protection of art objects is beginning to spread by
means of workshops and conferences [80].

The first publication on the protection of museum objects from
earthquake damage is that associated with a 1987 visit to the Getty
Museum by Mihran Agbabian, professor of civil engineering at the
University of Southern California.

The research team coordinated by prof. Agbabian proposed to classify
art objects and their supports according to their shape and seismic
behaviour [1, 2].

Augusti et al. [7] suggested a few rules for the safeguard of art objects,
such as allowing the sliding motion between the object and its support

https://archaeologynewsnetwork.blogspot.com/2017/07/earthquake-damaged-kos-sites-and.html
https://www.greece-is.com/news/restored-statues-at-kos-museum/
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(a) ref: Bestin Heritage (b) ref: Culture Tourist

Figure 1.3: Several collections of the Zagreb Archaeological Museum were
severely damaged during the earthquake in 2020.

in order to reduce the inertial forces, lowering the object’s centre of
mass to increase its stability, and providing the object with a base
isolation system.

Jerry Podany was probably the first cultural heritage conservator to
worry about the seismic events and to work on mitigation measures
for artefacts. His books and papers from workshops and symposiums
represent an essential prerequisite to this study [101–103].

The study of the dynamic response of rigid bodies simply supported
on horizontal planes has effectively made possible to address the pro-
tection of museum art objects. The first research to establish and solve
the equations of motion of a rocking rigid body is due to Housner [60].
His study was applied to understand the rocking behaviour of tall,
slender structures, such as water tanks, subjected to horizontal ground
motion. Housner discovered that there is a scale effect that makes this
kind of structure more stable against overturning than might have been
expected.

Housner theory has also been recently applied to freestanding objects
in multi-story buildings such as hospital equipment and computer
servers [39, 99], as well as, even more notably, to art objects in museums.

Several further analyses have been carried out in the past decades
on the rocking response of rigid bodies [6, 63, 126, 148–150]. Although
this is a well-known topic in the scientific literature, there have been
many recent and significant developments, such as the derivation of
closed-form solutions [72], the investigation on the role of the friction
coefficient [49, 50, 52], the influence of heavy masses on the rocking
behaviour [51], the assessment of the existing protocols for shake table

https://twitter.com/bestinheritage/status/1242418367824154630?lang=hi
https://culturetourist.com/museums/museum-reviews/zagreb-museums-are-severely-damaged-in-the-recent-earthquake/
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testing of freestanding objects [31, 32], and the study of the seismic
response of storage racks.

From the experimental point of view, recent researches aim at de-
termining the friction coefficients between the rigid body and the
base [89] as well as the minimum horizontal acceleration needed to
activate rocking [17].

From the mathematical point of view, one can obtain a general
estimation of an object’s response to an earthquake-induced motion
on the basis of Housner theory. The rocking response of freestanding
art objects in a museum provides an essential guide to the design of
damage mitigation measures, such as restraints and supports, known as
mounts, since it allows one to classify the objects in generalised stability
categories. The restraints and mounts have not only the function to
securely hold an object in an unnatural pose, imposed for the sake of
aesthetics or access, but also to prevent damage during an earthquake.

In this dissertation, the performance of the base isolation for the
protection of freestanding rigid bodies is studied in depth. Particular
emphasis is dedicated to protecting art objects, notably statues, that
need many stringent requirements for their safeguard. The dissertation
examines the rocking behaviour when the base isolation is supported
on the main types of elastomeric isolators, i.e. the Lead Rubber Bear-
ings and High Damping Rubber Bearings, and special device named
Wire Rope Isolators. The hysteretic response of the isolation system is
modelled by means of an accurate uniaxial phenomenological model
belonging to a class formulated by Vaiana et al. [133], thus greatly
improving the dynamic response accuracy of this highly nonlinear
coupled system. The parameters of the proposed hysteretic model have
a mechanical meaning that is clearer than those characterising the dif-
ferential model used in some papers [82, 108, 138, 140]. In addition,
we propose a new design process using an energy-based approach
regarding the above-mentioned hysteretic model. Notably, we exploit
the hysteretic model’s algebraic nature to derive a formula that com-
putes the energy dissipated per cycle by a closed-form expression. This
can be particularly useful from a technical point of view. The design
procedure consists of evaluating the small number of model’s param-
eters by a constrained optimisation problem, equating the energies
dissipated by a linear viscous system and the isolator. In this way, the
model parameters have been established on the basis of specific and
clear criteria, in contrast to the majority of alternative hysteretic models,
mostly the Bouc-Wen one, in which they are directly provided without
justifying their values and the procedure used to obtain them.

The dissertation is organised as follows

in the second chapter, mathematical models generally used to de-
scribe rocking rigid bodies’ behaviour, with and without base
isolation are described.
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in the third chapter, classical and modern seismic protection tech-
niques of unanchored museum contents are examined.

in the fourth chapter, the most common hysteretic model, i.e. the
Bouc-Wen one, and its most significant variants are discussed. In
addition, the proposed hysteretic model and the energy-based
design process are described.

in the fifth chapter, the results of some numerical analyses per-
formed on seismically isolated rigid bodies are displayed and
discussed.

in the sixth chapter, conclusions and some perspectives of the re-
search are drawn.



2 M AT H E M AT I C A L M O D E L L I N G
O F R O C K I N G R I G I D B O D I E S

In this Chapter, the mathematical models generally used to describe
rocking rigid bodies’ behaviour, with and without base isolation are
presented. In addition, an extensive literature overview is reported
herein for the reader’s convenience and to shed light on the key aspects
of the rocking mechanism.

2.1 literature overview

2.1.1 Rocking rigid body

The study of the dynamic response of unanchored symmetric rigid
bodies on horizontal planes was initially addressed by Housner (1963)
[60]. His study was applied to understand the rocking behaviour of tall,
slender structures, such as water tanks, subjected to horizontal ground
motion. Housner was the first to establish the differential equation
of motion of a thin rigid body simply supported on a rigid base by
applying the Newton’s second law of angular motion. In that study,
the rigid body can only rock around one of the two bottom corners and
subjected to two types of excitation, namely a rectangular and a half-
sine pulse. He also provided closed-form solutions of the differential
equation of motion for slender rigid bodies and small rotations. In
particular, Housner concluded that there is a scale effect that explains
the reason why the larger of two similar bodies are more stable than
the smaller ones.

Aslam et al. (1978) [6] carried out experimental tests and numerical
analyses in which the rigid body was subjected to earthquake motion
as well as to single pulse excitations. They concluded that the rocking
problem is highly nonlinear and very sensitive to small changes, i.e.
the rocking behaviour is very dependent on the boundary condition.

Yim et al. (1980) [148] studied the rocking response of rigid bod-
ies subjected to earthquakes by means of a probabilistic approach.
In particular, they numerically evaluated the rocking response by us-
ing artificially generated ground motions and also produced fragility
curves.

Ishiyama (1982) [63] defined six types of motion, namely rest, slide,
rotation, slide rotation, translation jump, and rotation jump. Overturn-
ing criteria were studied by considering frequency sweep tests with

7
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a variable amplitude as input. Ishiyama concluded that overturning
criteria strictly depend on the peak ground velocity.

The first one to consider the interaction between the freestanding
rigid body with an elastic soil was Psycharis and Jennings (1983) [104].

Spanos and Koh (1984) [123] studied a rigid rectangular body on a
Winkler’s foundation under non-stationary motion, and they developed
analytical methods able to determine the fundamental modes of the
system.

The first one to introduce the concept of the Poincaré section in this
field of research was Hogan (1989) [58]. He intensively studied the
mathematical structure of the problem, examining the stability as well
as the evolution of motion in presence of different boundary conditions.

Shenton and Jones (1991) [115, 116] demonstrated that the stability of
a freestanding rigid body depends not only on base acceleration, aspect
ratio, weight, and the distribution of the body’s mass but also on the
properties of the contact surfaces, i.e. on the coefficient of friction. The
importance of friction was also explained by Sinopoli (1997) [118]. In
addition, Shenton (1996) [114] derived criteria governing the initiation
of the slide, rock, and slide-rock motions.

The study of the rocking behaviour of a freestanding rigid body
under trigonometric pulses and near field ground motions was inves-
tigated in depth by Makris and Roussos (2000) [83]. They discovered
that, as a matter of fact, a rigid body under sine-pulse can overturn dur-
ing its free-vibration regime and not at the instant in which the pulse
finishes, as assumed by Housner. Moreover, they found that smaller
masses are more sensitive to the peak ground acceleration while larger
blocks are prone to overturn because of the peak ground velocity.

Zhang and Makris (2001) [149] established that a rigid body under
cycloidal pulse can overturn by exhibiting either one or more collisions
or without any collision. The former was called the first mode, whereas
the latter the second mode. From the Overturning Acceleration Spectra,
the authors deduced that the smaller is the frequency of the pulse
to the rigid body’s natural rocking frequency ratio, the bigger is the
probability of the block to overturn by means of the first mode. On
the contrary, a rigid body will overturn by way of the second mode.
They concluded that the shape of this region strictly depends on the
coefficient of restitution of the collisions and that the nonlinear nature
of the problem complicates the development of a practical methodology
to establish if a rigid body subjected to an earthquake survives or not.

An in-depth study of the rocking response of rectangular rigid bodies
under horizontal and vertical base acceleration was done by Taniguchi
(2002) [126]. He considered four types of motion, namely rest, sliding,
rocking, and slide-rocking, defining, for each type of motion, the initial
and final conditions. In conclusion, Taniguchi realised that the vertical
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component of the ground motion adds irregularities to the response
and consequently it cannot be neglected.

Peña et al. (2007) [100] have carried out a total of 275 experimen-
tal tests on a shaking table in order to study the rocking response of
four granite stones with different geometrical properties under free
vibrations as well as harmonic and random motion. The main aim of
their study was to compare the experimental results with two types
of analyses, namely the method of complex coupled rocking rotations,
and the discrete element method. Both models are extremely sensi-
tive to the variation of the boundary conditions, mostly for the angle
that measures the slenderness of the body, usually denoted as α. In
fact, a small variation of this parameter produces huge differences in
the responses. After a calibration of the experimental data with the
theoretical parameters, the two kind of results agreed with each other.

An extensive numerical investigation was done by Purvance et al.
(2008) [105]. They analysed 34 symmetrical and 24 asymmetrical blocks
subjected to 1440 excitations. The overturning fragility curves were
compared with experimental tests using blocks having different aspect
ratios and characterised by both simple and complex basal contact
conditions. The results have shown that blocks with a complex basal
contact condition are more fragile than the blocks with a simple basal
contact. However, the nondestructive tests showed that blocks with
complex basal overturn as well as the more slender blocks with simple
contact conditions.

Konstantinidis and Makris (2010) [71] thoroughly investigated the
rocking behaviour of full-scale and quarter-scale freestanding labo-
ratory equipment, subjected to trigonometric pulses and near field
earthquakes, by means of an experimental campaign. The principal
response observed was sliding with an order of magnitude slide dis-
placement equal to 60-70 cm.

DeJong (2012) [33] confirmed a key aspect: the rocking response of
rigid bodies subjected to earthquake acceleration is a time-dependent
problem. Consequently, elastic analyses with response spectrum would
not be helpful. Moreover, his work showed that the impulses can have
an amplifying or minimising effect, depending on the amplitude, the
spacing, and the duration of the impulses. In particular, in the case of
multiple impulses, the effect of amplifying can be relevant.

Dimitrakopoulos and DeJong (2012) [41] derived, by means of an
original procedure, a closed-form solution able to define the overturn-
ing areas for a slender rocking rigid body in which the equations of
motion have been linearized.

The problem of sizing the width of tall freestanding columns having
a given height and prone to rock due to earthquakes was investi-
gated by Makris and Vassiliou (2013) [84]. The authors derived the
overturning spectra for different pulses able to reproduce the effects
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of near-field earthquakes. In addition, by deriving an analytical ex-
pression, they have evaluated a minimum design slenderness for a
freestanding column having a given size to resist a pulse motion with
known acceleration amplitude and duration.

Voyagaki et al. (2013) [142] exploited an analytical approach to study
the rocking problem of a slender rectangular block subjected to ide-
alised ground acceleration pulses defined by a generalised function. To
linearise the problem, the authors considered small rotations as well as
no sliding phase. Such a linearised response was analytically compared
to the fully nonlinear one. It was shown that the linearized equations
of motion predict a more unstable response than their nonlinear coun-
terparts.

Monaco et al. (2014) [89] worked on determining the coefficients
of friction via experimental tests. The experimental campaign was
carried out on prismatic blocks with different dimensions and materials,
and utilising a unidirectional shaking table and different supporting
surfaces in order to establish the influence of different coefficients of
friction. In particular, the experimental campaign was developed in
order to reproduce the same conditions of freestanding art objects in
museums. The results of the experimental campaign have shown that
the rocking motion is the only kind of motion that can occur with
increasing frequency when the coefficient of friction assumes high
values in regards to the slender rigid block.

Kounadis (2015) [72] derived a closed-form solution for a slender
rigid body able to rock and slide. He concluded that the sliding motion
is beneficial for the stability of the rigid body subjected to pulses acting
in a long period. On the contrary, pulses with small values of the period,
tend to destabilise the rigid body.

The stability characterisation of a rigid body under a family of multi-
lobe pulse ground motions was thoroughly discussed by Dimitrakopou-
los and Fung (2016) [42]. They proposed both exact and approximate
solutions for the determination of the collision’s times. From the analy-
ses conducted, they revealed that, in most cases, overturn after one or
more collisions is attained when the pulse expired.

Gesualdo et al. (2016) [49] compared the experimental results in [89]
with some numerical analyses. The numerical results when the rigid
body undergoes both rest and sliding motion were in agreement with
the experimental ones.

Wittich et al. (2016) [147] studied the dynamic response of 24 marble
statues located in Florence, Italy, in which mass distribution and geom-
etry were obtained by using advanced imaging and processing tools.
They considered two geometric data acquisition methods, namely (1)
light detection and ranging (LiDAR) and (2) the structure from motion
(SfM) methods. Although both methods are useful to support the geo-
metric characterisation, the structure from motion method is a simpler
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alternative to the other one. The differences were in the order of 40%
for the evaluation of the aspect ratio as well as of the radial distance of
the centre of mass. On the other hand, differences greater than 100%
may arise for the mass moment of inertia. The analyses have shown
variations up to the 50% in terms of the maximum rotational response.

Gesualdo et al. (2018) [50] examined the real situation of marble
statues freestanding on a flat pedestal subjected to harmonic excita-
tion. In particular, they considered two bodies having different aspect
ratios. One was placed on a flat pedestal while the second one was
freestanding on a moving base. The former was only able to slide due
to its geometry, while the latter could only rock due to the high friction
coefficient with the base. In particular, it was showed that the presence
of a pedestal modelled as a rigid surface could avoid overturning of a
slender rigid body especially in the case of increasing slenderness and
increasing mass of the rigid body.

Ther and Kollár (2018) [127] proposed a new design approach able
to predict the safety of a rigid body able to rock. In particular, this
approach was based on the new Overturning Acceleration Spectra
characterised by the replacement impulse duration. In this way, it was
possible to verify whether a body is safe from overturning provided
that the replacement impulse duration for a specific site is known.

In conclusion, rocking behaviour of rigid bodies is a well-known topic
in the scientific literature. However, there have been many recent and
significant developments, such as the study of the seismic response of
storage racks (Malhotra (2009) [85]), and the assessment of the existing
protocols for shake table testing of freestanding objects (D’Angela et
al. (2021) [32]). From an experimental point of view, recent researches
aim at determining the minimum horizontal acceleration required to
activate rocking (Berto et al. (2021) [17]).

2.1.2 Base-isolated rocking rigid body

The minimisation of the seismic risk of art objects by base isolation
was studied by Vestroni and Di Cinto (2000) [140]. In this respect, high
damping laminated rubber bearings were used as isolation devices.
The responses of the isolation system were studied in the frequencies
and time domains, using recorded accelerograms as input. Aim of the
work was the design of the isolation system. The study by Vestroni and
Di Cinto was conducted in a parametric way, by varying the numbers of
isolators and shear module of the rubber. The response of the isolation
system was modelled considering both a linearized system through an
equivalent viscous damping and the authors’ hysteretic model. In par-
ticular, in order to determine the dynamical properties of the isolation
system, a linear equivalent force-displacement relationship was used
for each isolation device with a stiffness equal to the secant stiffness
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at 100% of strain, and viscous damping calibrated in order to equate
the dissipated energy on one cycle, with a strain magnitude at 100%,
and a frequency equal to the fundamental frequency of the system.
The response of the isolated system, modelled as a simple harmonic
oscillators characterised by a hysteretic behaviour, was studied. Regard-
ing the nonlinear model for the force-displacement relationship of the
isolators, the calibration of the hysteretic parameters was done by way
of the experimental force-displacement laws of the rubber bearings.
A comparison in terms of shear strain results between the linear and
non-linear systems has also been shown. The authors concluded that
the differences between the nonlinear analysis results and the linear
one depended on the shape of the accelerogram. Moreover, Vestroni
and Di Cinto realised that the maximum displacement is acceptable
for the limits of the isolators, and stresses acting on the statue are
practically negligible.

Caliò and Marletta (2003) [20] studied the vibration passive control
of art objects, modelled as rigid bodies freestanding on an isolated-base
connected with a visco-elastic device, and subjected to a base accelera-
tion. By using an energy approach, the authors provided a condition
able to understand if the rigid body can re-uplift after a collision. They
studied the response of the system under pulse excitations, evaluating
for both undamped and damped systems the maximum acceleration
value that activate the rocking phase. In addition, the authors provided
the minimum value of pulse able to causes overturn of a not isolated
rigid body with zero polar inertia. Regarding the isolated system, such
value was evaluated numerically. The analyses showed that the dif-
ference between the minimum pulse start the rocking phase and the
pulse causing the overturn, decreases with an increasing period of the
isolated system. On the contrary, the minimum pulse that starts the
rocking phase increases with increasing the non-isolated system’s pe-
riod. Finally, the response of the base-isolated rigid body under seismic
excitations was computed. The results have shown that the unsafe area
on the behaviour map of the isolated system is less than the unsafe
area of the same not isolated system. Only the isolated system with a
very high aspect ratio are able to overturn. Caliò and Marletta (2004)
[21], focused their attention on some typical examples of Greek vessel
and stone statues representing human figures.

Roussis et al. (2008) [109] investigated the dynamic response of a
seismically isolated slender statue subjected to a horizontal acceleration.
The statue was modelled as a rigid body just able to rock. Both the
sliding phase and the vertical component of base acceleration were not
considered. The authors concluded by saying that the behaviour of the
isolated system strictly depends on the collisions that can change the
degrees of freedom of the system as well as modify the kinetic energy.
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The influence of the seismic isolation on non-symmetric art objects
modelled as rigid bodies was studied by Contento and Di Egidio
(2009) [29]. Seismic isolation was modelled as a visco-elastic system.
The authors conducted extensive analyses aiming to highlight the
performance of the isolation system by varying the eccentricity of the
centre of mass and the slenderness of the rigid body. A closed-form
solution was obtained for an approximated damped system subjected
to a pulse excitation. On the other hand, numerical integration was
used when a seismic excitation was used as input. The results have
shown a worse performance of the system when the slenderness and
the eccentricity of the centre of mass of the body increase.

Di Egidio and Contento (2009) [36] extended their previous study
[29] in order to consider the sliding phase and focusing on rigid bodies
representing art objects. The frictional forces were expressed by the
Coulomb model. The behaviour of the system was studied under
the action of two kinds of forces, namely the pulse and the seismic
excitation. Finally, they considered two kinds of collapse mechanisms,
that is to say, overturning of the rigid body and falling of the body
from the isolated base. The analyses were focused on the effect of the
coefficient of friction and the eccentricity of the centre of mass. The
results have shown that the behaviour of the system is characterised
by full-contact and rocking motions when the coefficient of friction is
greater than a limit value that depends on the slenderness of the body.
Moreover, to establish the benefits of the isolation system, a comparison
between the results obtained from both isolated and not isolated rigid
body was done. Such comparison showed that the base isolation can
be beneficial for art objects.

Vassiliou and Makris (2012) [138] studied the stability of rigid rectan-
gular blocks on an isolated base supported on visco-elastic systems and
sliding bearings with both single and double curvature. The authors
did not consider sliding motion. First of all, the authors computed
six overturning spectra dived into two groups, depending on the slen-
derness value of the rigid body. For each group, three systems were
considered, namely a non-isolated rigid body, a rigid body with a
visco-elastic isolation system characterised by a seismic isolation period
to a pulse period ratio equal to 2, and a rigid body with a visco-elastic
isolation system characterised by a seismic isolation period to a pulse
period ratio equal to 3. The viscous damping ratio of the visco-elastic
system was assumed equal to 5%, and the mass of the isolated-base
was considered equal to 99 times the mass of the body. Finally, the
authors considered that all systems were subjected to a symmetric
Ricker wavelet excitation. Overturning spectra showed that the base
isolation increases the static value of the base acceleration able to start
the rocking phase of the non-isolated rigid body. The authors pointed
out that this aspect is fundamental for the safeguard of art objects in



14 mathematical modelling of rocking rigid bodies

which any kind of damage due to impact should be avoided. The same
analyses were done considering an antisymmetric Ricker wavelet exci-
tation and the results were compared to the previous ones. From this
comparison, the authors declared that the base isolation is beneficial
for the small-size rigid bodies; on the contrary, it could be harmful
to the large-size rigid bodies. Vassiliou and Makris also studied the
influence of the rigid body mass on the base isolation mass ratio. The
results of these analyses have shown that for small-size rigid bodied,
the rigid body mass to the base isolation mass ratio has no influence
on the rocking response. Regarding the single concave sliding bearings,
the authors have modelled such isolation system by a bilinear hys-
teretic model. Overturning spectra of such system were computed and
then compared with the overturning spectra of the rigid body with a
visco-elastic isolation system. The authors concluded that the response
between the two isolation systems was very similar. On the other hand,
the double concave sliding bearings were modelled by a trilinear hys-
teretic model. The computed results with such isolation systems were
compared to the results obtained when the isolation system consists
of a single concave sliding bearing. Such a comparison led the authors
to conclude that the minimum rocking acceleration for the above two-
mentioned systems was identical. Finally, the authors have carried out
some analyses in order to understand the effect of the isolation system
on ancient classical columns. They concluded that the isolation system
is beneficial in terms of stability only if the freestanding rigid body has
a small size. Consequently, the isolation system impair the beneficial
property according to which stability increases when increasing the
size of the rigid body and decreasing the pulse’s period.

Berto, Favaretto, and Saetta (2013) [15] investigated the possibility
to apply the double concave sliding bearings for the protection of art
objects. Thanks to the support of a company leader in the produc-
tion of anti-seismic devices the authors performed a redesign phase,
since they realised that a simple rescaling of the isolation techniques
utilized from civil structures to art objects is inappropriate. Then, an
experimental campaign was carried out with the goal to characterise
the prototypes and to investigate their interaction with four concrete
blocks able to simulate the behaviour of the Michelangelo’s marble
sculptures exhibited in the Galleria dell’Accademia. Finally, some nu-
merical simulations were carried out and, after a calibration phase, the
comparison between numerical and experimental results have shown a
good agreement in terms of the global response. The authors concluded
that from the experimental and numerical results, the isolation system
is efficient in terms of limiting transferred inertial force. The influence
of the base isolation on the rocking response of the rigid bodies was
not investigated.
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Ceravolo et al. (2016) [24] investigated the semi-active on-off control
strategy for the protection of monolithic art objects. To understand
the benefits of the semi-active to passive control strategy, the authors
evaluated the overturning spectra. The numerical experiments were
done by taking into account bodies with different size and slenderness
subjected to one-sine pulse. The paper showed that a semi-active control
strategy sensibly reduces the overturning area associated with the first
mode, that is to say overturn with one or more collisions.

A study on the use of the base isolation for the protection of rigid
bodies placed on a multi-floor frame subjected to seismic excitation
was carried out by Contento and Di Egidio (2014) [30]. Goal of this
work was to understand if base isolation could be beneficial or not for
the protection of a rigid body. The authors considered a non-symmetric
rigid body able to slide and rock, whereas the frame was considered
to work in the elastic regime. In particular, the authors examined the
role of the friction coefficient, of the eccentricity of the centre of mass
of the rigid body, the role of the period of the base isolation system, of
the response on the floor where the object is placed, and finally, the
efficiency of the base isolation. The authors concluded that the base
isolation for a rigid body placed on a multi-floor frame may not be
advantageous in comparison to the same body placed on a fixed base.

A freestanding symmetric seismically base-isolated rigid body able
to slide and rock and subjected to a horizontal ground excitation was
studied by Roussis and Odysseos (2014) [107]. The isolation system
was modelled as a linear visco-elastic system. The nonlinear response
of the isolated and non-isolated rigid body under earthquake motion
was compared. The authors concluded that base isolation increases the
safe area in which the rigid body does not rock. In addition, the failure
of the falling rigid body on the pedestal is associated with a larger
value of the ground acceleration when the rigid body is isolated.

The dynamic response of a seismically isolated rigid body subjected
to a pulse excitation was studied by Roussis and Odysseos (2017) [108].
The authors assumed that the friction coefficient was enough high to
prevent sliding. Two isolation systems were considered, namely the
linear visco-elastic and the bilinear hysteretic model. The latter was
used to reproduce the hysteretic behaviour of a friction pendulum
system. They conducted extensive numerical applications in which
simple pulses and earthquake excitations of various magnitude and
frequency content were used as input. Overturning spectra for both
isolated and non-isolated systems were obtained by considering various
geometric characteristics in order to understand the advantage of the
isolated system with respect to the rocking initiation. They concluded
that the isolation system increases the minimum rocking acceleration,
an advantage that increases with increasing of the isolation period.
This aspect is true regardless of the size of the body and of the pulse
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period. However, the use of isolation is better for a body having a small
size, for both short and long excitation periods. On the contrary, the
isolation system would not be beneficial, for excitation periods greater
than one second, for what concerns the stability of the rigid body.

A freestanding ancient classical column on a seismically isolated
rigid base was studied numerically by Kavvadias et al. (2017) [66]. Fric-
tion pendulum sliding bearings were considered as an isolation system.
In particular, the authors considered both double and triple friction pen-
dulum bearings. The rocking behaviour of the column, as well as the
behaviour of the friction pendulum, were simulated by using the finite
element method. The authors investigated the influence of the friction
pendulum radius when the column is subjected to earthquake excita-
tion. The results have shown that the triple friction pendulum reduces
the acceleration amplitudes of the earthquake excitations characterised
by high-frequency content. Moreover, the triple friction pendulum
shows better performance than the double friction pendulum when the
column is subjected to excitation having a longer main period. However,
using both devices, the column will never overturn.

An investigation on the use of active control devices for the protection
of art objects was done by Venanzi et al. (2018) [139]. The authors
provided the suitable equations of the system able to slide and rock
but unable to slide-rock simultaneously. Active control was simulated
as an actuator connected to the base of the art object and placed in
parallel with a spring-dashpot system simulating a passive control
system. Numerical analyses were carried out with the aim to show the
performance of the active control with respect to the passive control.
The results have shown that passive control reduces slide displacements
much more than the active one, and it ensures excellent performance
from the point of view of rocking response. The authors concluded by
saying that passive control could not be efficient when the art object is
subjected to intensive earthquakes, whereas active control will be still
efficient.

Di Egidio et al. (2018) [38] proposed two active control methods able
to protect a wide class of rigid bodies. The first method was based
on the well-known Linear Quadratic Regulator approach, whereas
the second was based on the pole placement method. The former
depends only on the state variables of the system, whereas the latter
depends also on the external excitation. The optimal control force is
obtained for both methods by adopting a linearised system, i.e., a
system characterised by a slender rigid body in which the angles of
rotation are very small. Both methods are suitable for a wide large class
of rigid bodies since they exhibit a very low sensitivity to the variation
of the geometrical characteristics of the system. The authors computed
the overturning spectra when the rigid body is subjected to a pulse
excitation in order to evaluate the effectiveness of the methods. The
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overturning spectra have shown that the active control method reduces
the overturning area of the block regardless of its slenderness. The
authors affirmed that the pole placement method works better than
the Linear Quadratic Regulator control method. Moreover, the authors
have done several numerical tests using earthquake ground motion as
input with the aim to evaluate the performances of the two methods
both from the point of view of overturning protection and reducing of
rocking angle. The results have shown that the controlled systems are
able to avoid overturning of the body. In particular, also in this case,
the pole placement method works better than the Linear Quadratic
Regulator control method.

Simoneschi et al. (2018) [117] focused on the study of the pole place-
ment method to control the rocking motion of rigid blocks.

Kavvadias et al. (2019) [67] carried out some seismic fragility analyses
of a freestanding marble statue modelled as a rigid body able only to
rock. The authors assumed that the statue was placed on the second
floor of a two-story reinforced concrete frame building. Moreover, the
authors considered two cases of base isolation, both having friction
pendulum sliding bearings as isolation devices. In the first case, the
building was considered isolated, in the second case, the statue was
considered isolated. From the results, the authors have concluded that
the base isolation of the statue is more efficient than the base isolation
of the building, from what concerns the peak floor acceleration to the
peak ground acceleration ratio. The rocking response was also reduced
when the base isolation was installed under the statue, reather than
under the building.

Thiers-Moggia and Málaga-Chuquitaype (2019) [128] proposed to
add supplemental rotation inertia as a seismic control device, in order
to reduce the effects of earthquakes on a rigid body able to rock. In
particular, this mechanical device was the inerter in which the gen-
erated strength is proportional to the relative acceleration between
its terminals. The authors developed the equations able to take into
account the interaction between the rocking response of the rigid body
and the response of the device. The effects of the inerter on the over-
turning behaviour of rocking bodies subjected to trigonometric pulse
excitations were studied by computing the overturning spectra. The
authors concluded that the presence of the inerter reduces the areas of
overturning and translates them to the lower frequency region. How-
ever, the effect of the inerter system on the overturning response is less
significant for smaller objects.

The prevention from the overturning response of a rigid body by
means of a mass-damper dynamic absorber was investigated by Di
Egidio et al. (2019) [35]. The mass-damper was modelled as a pendulum
hinged at the top of the body. The authors derived the equations of
rocking motion as well as the collision conditions. Numerical analyses
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were carried out with the aim to understand the performances of the
mass-damper on the rocking response of the rigid body subjected
to one-sine pulse excitation. Overturning spectra were computed by
considering three different values of the pendulum damper’s mass.
The results have shown that for both values of the pendulum damper’s
mass, the overturning area is reduced. Moreover, the area related to the
first mode, i.e. the overturning area in which the rigid body overturns
by exhibiting one or more collisions, will be reduced by increasing
the mass of the pendulum damper. Other spectra were computed
varying the length of the pendulum damper and it was shown that
the behaviour of the system improves when increasing the length of
the pendulum damper. However, after a limit value of this quantity,
the performances not longer modify. The authors also performed some
experimental tests that validated the analytical model as well as the
effectiveness of the pendulum mass damper.

Makris and Aghagholizadeh (2019) [82] studied the rocking response
of freestanding columns equipped with vertical energy dissipation
devices able to dissipate energy by means of hysteretic or viscous (linear
or nonlinear) phenomena. The study was focused on a bridge pier. The
authors used the constitutive model proposed by Constantinou et al.
(1998) [28] to simulate energy dissipation by viscous phenomena. On
the other hand, to reproduce a hysteretic phenomenon, they used
the Bouc-Wen model (Bouc (1971) [19]; Wen (1976) [145]). From the
rocking response diagram, the authors concluded that as the size of the
column increases, the freestanding column becomes remarkably stable.
The benefits of the hysteretic supplemental damping in suppressing
the rocking response of the column strictly depends on the kinematic
characteristics of the ground motion. In addition, the difference between
the damped and undamped response was marginal and, in most cases,
the damped response was lower than the undamped one.

Di Egidio et al. (2020) [37] focused on the study of the linear quadratic
regulator control method for the protection of rigid blocks from over-
turning.

2.2 modelling of rocking rigid body
The rocking rigid body is presented in this Section, outlining its ge-
ometrical properties, kinematics, the equations of motion, and the
formulation of collisions.

The system here studied is composed by a rigid body simply sup-
ported on non-deformable plane. The following assumptions are made:
the rigid body is symmetric with respect to the vertical axis and has
uniform density; accordingly, the centre of mass is on the vertical axis
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of symmetry. Furthermore, as usual in the specialised literature, a 2D
model is assumed.

Figure 2.1: Geometrical properties of the rocking rigid body.

In Figure 2.1, the fundamental properties of the body are shown.
The horizontal and vertical distances between the centre of mass and
one of the two centres of rotation, are denoted as b and h, respectively.
Accordingly, the radial distance between the centre of rotation and the
centre of mass, is equal to R =

√
b2 + h2. The slenderness of the body

is measured by the angle α = tan−1(b/h) that represents the tilt of
the radial distance R relative to the vertical. Denoting as m and Jcm
the mass and the polar inertia about centre of mass of the rigid body,
respectively, the polar inertia about rotation axis through one of the
two centres of rotation can be computed, applying the Parallel-Axis
Theorem, as JO = Jcm + m R2.

2.2.1 Kinematics
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Figure 2.2: Instances of the motion that can occur: (a) Full-Contact; (b) Sliding;
(c) Rocking; (d) Slide-Rocking.
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We assume that the rigid body can slide over the ground and can
rock around one of the two bottom corners. Consequently, the overall
degrees of freedom that describe the possible kinematic configurations
of the rigid body are two: one relative to the sliding motion, and the
other corresponding to the rocking motion. However, these degrees of
freedom can be activated both or just one, depending on the behaviour
of the rigid body.

Hence, as shown in Figure 2.2, there are overall four phases that the
rigid body can undergo: Full-Contact motion (see Figure 2.2a) where
the body does not move; Sliding motion (see Figure 2.2b) where the
body slides on the surface; Rocking motion (see Figure 2.2c) where
the body rocks around one of the two bottom corners; Slide-Rocking
motion (see Figure 2.2d) that represents a combination of the sliding
and rocking motions.

In Figure 2.2, the Lagrangian parameters used to describe the above-
mentioned phases are also shown. However, the dependence of these
Lagrangian parameters on time is omitted for writing convenience.
The Lagrangian parameter x describes the horizontal displacement
between the body and the ground, see Figure 2.2b, whereas the angle θ,
to measure the tilting of the rigid body, see Figure 2.2c. To describe the
first and the second derivatives of such Lagrangian parameters respect
to the time, that is to say the velocity and acceleration respectively, the
Newton’s notation is used:

dx(t)
dt

= ẋ,
dθ(t)

dt
= θ̇ and

d2x(t)
dt2 = ẍ,

d2θ(t)
dt2 = θ̈

The horizontal and vertical components of the base acceleration
acting at the ground are denoted as ẍg and ÿg, respectively.

The equations of motion are different for each phase that the rigid
body can undergo. In the next subsections, we will describe the equa-
tions of motion as well as the starting and ending conditions for each
phase. To derive the equations of motion, a coordinate system xy is
defined, in order to establish the positive directions of displacements,
velocities, and accelerations, both linear and angular. The positive di-
rection of x due east and that of y is upward; finally, we assume that
clockwise rotations around the reference frame’s origin turn have a
positive magnitude.

2.2.2 Full-Contact

A Full-Contact phase occurs when no one starting conditions of the
other phases occur and when the following initial conditions are null

ẋ0 = 0, θ0 = 0, and θ̇0 = 0 (2.1)
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Accordingly, the rigid body does not move in the Full-Contact phase
until one of the starting conditions of the other phases occurs or when
one of the initial conditions (2.1) is not null.

2.2.3 Sliding
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Figure 2.3: Forces acting during the Sliding phase.

In the Sliding phase, the rigid body has one degree of freedom
described by the Lagrangian parameter x. The Sliding phase occurs
when both initial conditions in terms of angular displacement and
velocity are null (θ0 = 0 and θ̇0 = 0) as well as when one of the
following conditions is satisfied

|ẍg| ≥ µk (g + ÿg) (2.2)a

x0 ̸= 0 and/or ẋ0 ̸= 0 (2.2)b

where µk is the coefficient of kinetic friction and g is the gravity acceler-
ation. The Equation (2.2)a describes the condition that the inertial force
due to the horizontal component of the base acceleration is greater than
the frictional force.

The equation of motion that describes the Sliding phase can be ob-
tained by applying Newton’s second law to linear motion and balancing
all forces acting on the body in the horizontal direction, see Figure 2.3

m (ẍg + ẍ) + fk = 0 (2.3)
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where fk is the kinetic friction force parallel to the surface and directed
so as to contrast the sliding. Such force can be evaluated applying the
Coulomb friction law

fk = µk sgn(ẋ) FN (2.4)

in which sgn(ẋ) is the signum function of the sliding velocity and FN
is the normal force that in this phase is given by

FN = m (g + ÿg)

The Sliding phases will end when the sliding velocity approaches
zero, i.e. |ẋ| → 0.

2.2.4 Rocking
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Figure 2.4: Forces and moments acting during the Rocking phase.

The Lagrangian parameter θ is the only degree of freedom activated
when the Rocking phase occurs. Since the rigid body is symmetric, the
radial distance R as well as the polar inertia JO are the same for both
centres of rotation. Moreover, the change of the sign in θ - when the
body switches the centre of rotation - can be taken into account through
the signum function sgn(•). Accordingly, the starting conditions as
well as the equation of motion can be written in the same way when
the rigid body rocks either around the left or around the right corner.
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The Rocking phase can arise when the initial condition in terms of
sliding velocity is null (ẋ0 = 0) and when one of the following starting
conditions is satisfied

|ẍg| ≥
b
h
(g + ÿg) (2.5)a

θ0 ̸= 0 and/or θ̇0 ̸= 0 (2.5)b

The Equation (2.5)a describes the condition that the overturning mo-
ment due to the horizontal acceleration ẍg is greater than the resisting
moment due to the inertial forces regarding the vertical acceleration ÿg
and the gravity acceleration g.

The equation of motion that describes the Rocking phase can be
obtained by applying Newton’s second law to circular motion and
balancing all moments acting on the body, see Figure 2.4

JO θ̈ + m ẍg R cos(A) + m (g + ÿg) R sin(A) = 0 (2.6)

where A = sgn(θ) α − θ.
We assume the Rocking phase ends when the angular velocity van-

ishes after a collision, i.e. |θ̇| → 0.

2.2.5 Slide-Rocking
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Figure 2.5: Forces and moments acting during the Slide-Rocking phase.

In the Slide-Rocking phase, both degrees of freedom x and θ are
activated. The starting conditions depend on from which phase the
Slide-Rocking phase arises. From the Full-Contact phase, the Slide-
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Rocking phase can take place when the starting conditions of Sliding
(2.2) and Rocking (2.5) are simultaneously satisfied, i.e.

|ẍg| ≥ µk (g + ÿg) and |ẍg| ≥
b
h
(g + ÿg) (2.7)a

or

(x0 ̸= 0 and/or ẋ0 ̸= 0) and (θ0 ̸= 0 and/or θ̇0 ̸= 0)
(2.7)b

The Slide-Rocking phase will start from the Sliding phase if the
overturning moment due to the inertial forces regarding the horizontal
acceleration ẍg and the sliding acceleration ẍ is greater than the resisting
moment due to the inertial forces regarding the vertical acceleration ÿg
and the gravity acceleration g

|ẍg + ẍ| ≥ b
h
(g + ÿg)

On the other hand, the Slide-Rocking phase can arise from Rocking
phase if the inertial forces are greater than the frictional forces

|ẍg + ẍθ | ≥ µk (g + ÿg + ÿθ)

where the accelerations ẍθ and ÿθ are the second derivative with respect
to the time of the horizontal and vertical displacement, respectively, of
the centre of mass relative to the ground, see Figure 2.5.

There are two equations of motion that describe the Slide-Rocking
phase. These equations can be obtained by applying Newton’s second
law to both linear and angular motion and balancing all horizontal
forces and moments acting on the body, see Figure 2.5

m (ẍg + ẍ + ẍθ) + fk = 0

JO θ̈ + m (ẍg + ẍ) R cos(A) + m (g + ÿg) R sin(A) = 0
(2.8)

where the frictional force fk can be obtained by using the Equation (2.4).
However, the normal force FN in this phase is computed as follows

FN = m (g + ÿg + ÿθ) (2.9)

Hence, the Equation (2.8) can be rewritten as

m (ẍg + ẍ + ẍθ) + µk sgn(ẋ)m (g + ÿg + ÿθ) = 0 (2.10)a

JO θ̈ + m (ẍg + ẍ) R cos(A) + m (g + ÿg) R sin(A) = 0 (2.10)b
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The following displacements, strictly related to θ, can be computed
as

xθ = sgn(θ) R sin(α)− R sin(A) (2.11)a

yθ = R cos(A)− R sin(α) (2.11)b

Consequently, the first and second derivatives with respect to the
time are

ẋθ = R cos(A) θ̇ (2.12)a

ẏθ = R sin(A) θ̇ (2.12)b

and

ẍθ = R cos(A) θ̈ + R sin(A) θ̇2 (2.13)a

ÿθ = R sin(A) θ̈ − R cos(A) θ̇2 (2.13)b

The Slide-Rocking phase will end if the ending conditions of the
Sliding and Rocking phase are simultaneously satisfied.

2.2.6 Collisions

When the angular displacement θ approaches zero, the rigid body
will collides with the non-deformable plane changing the centre of
rotation from a corner to the other. Consequently, the rigid body will
collide on the ground, changing the dynamic of the motion. Indeed,
the kinetic energy of the body after the collision will be less than the
kinetic energy before the collision. Hence, the evaluation of the initial
condition immediately after the collision is very important for the
purpose of the study of a rigid block’s behaviour.

The collision condition will be made on the basis of some hypotheses.
First of all, we assume that the collision has no effect on the sliding
motion. The same hypothesis was assumed by Taniguchi 2002 [126].
Additionally, we assume that after the collision, the body can only be
re-uplifted by changing the centre of rotation, i.e. the body does not
bounce during the collision. This assumption is motivated by the fact
that after each collision a slender body is prone to behave following
this assumption [20].

To compare the motion before and after the collision, the law of
conservation of angular momentum is used. In fact, although the
kinetic energy decreases, the angular momentum remains unchanged.
The subscript (•)i will denote the pre-collision quantities, whereas the
subscript (•) f will identify the post-collision quantities. When the rigid
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body rocks around the bottom right corner, the conservation of angular
momentum of the bottom left corner gives

JO θ̇i − 2 m b R sin(α) θ̇i = JO θ̇ f

Hence, the post-collision to pre-collision angular velocity ratio is
given by

eθ =
θ̇ f

θ̇i
= 1 − 2 m b R sin(α)

JO

where the scalar parameter eθ is called coefficient of restitution.
For a rectangular block, JO = 4

3 m R2, consequently the above equa-
tion can be written as

eθ = 1 − 3
2

sin2(α)

2.3 model extension to rocking rigid bod-
ies supported on base isolation

In this Section, the base-isolated rocking rigid body is described, il-
lustrating its kinematics, the equations of motion, and the collisions
problem.

Other than the hypothesis of the symmetric rigid body described
in the previous Section, we assume that Sliding motion is prevented
[43, 75, 99] either assuming that the kinetic friction between the rigid
body and the base isolation is sufficiently high or supposing that
there are some clip constraints able to prevent the relative horizontal
displacement between the rigid body and the base isolation.

The geometrical properties of the rocking rigid body have already
been described in the previous Section. The model herein presented is
also composed of the base isolation with mass mb that is connected to
the non-deformable plane by means of seismic isolators, see Figure 2.6.
Moreover, we assume that the isolators’ vertical stiffness was consid-
ered far greater than the horizontal one. Consequently, rotation and
curvilinear translation of the base are neglected.

2.3.1 Kinematics

Based on the previous assumptions, the system has two degrees of
freedom: one relative to the rocking motion of the rigid body, and
the other corresponds to the relative translation motion of the base
isolation. Nevertheless, depending on the behaviour of the system, the
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Figure 2.6: Geometrical properties of the seismically base-isolated rigid body.
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Figure 2.7: Instances of the motion that can occur: (a) Full-Contact; (b) Rocking.

two degrees of freedom are not both activated. Notably, there are two
phases of motion: (a) Full-Contact in which the rigid body is in contact
with the base isolation, see Figure 2.7a; (b) Rocking in which the rigid
body rocks around one of the two centres of rotation while the base
isolation moves horizontally as shown in Figure 2.7b.

The Lagrangian parameters that describe the two above-mentioned
kinds of motions are the relative displacement between the base isola-
tion and the ground x(t), and tilting of the rigid body θ(t). According
to the Newton’s notation, their first and second derivatives with respect
to the time are denoted as ẋ(t), θ̇(t) and ẍ(t), θ̈(t), respectively.

Horizontal and vertical components of the base acceleration acting
on the fixed support are denoted as ẍg(t) and ÿg(t), respectively. Unless
otherwise specified, the dependence on time will be omitted hereafter.
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An xy coordinate system has been defined to establish the positive
directions of displacements, velocities, and accelerations (see Fig. 2.6).
The positive direction of x-axis due right and that of y-axis is upward;
finally, we assume that clockwise rotations around the reference frame’s
origin turn have a positive magnitude.

The equations of motion change according to the kind of motion
that the base-isolated rocking rigid body undergoes. Consequently, in
the next Subsections, we outline the starting condition as well as the
equations of motion for each phase.

2.3.2 Full-Contact
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Figure 2.8: Forces and moments acting during the Full-Contact phase.

In the Full-Contact phase, the rigid body has one degree of freedom
described by the Lagrangian parameter x. This phase occurs when both
initial conditions in terms of angular displacement and velocity are null
(θ0 = 0 and θ̇0 = 0), and when the starting condition of the Rocking
phase is unsatisfied. The latter will be detailed in the next Subsection.

The equation of motion that describes the Full-Contact phase can
be obtained by applying Newton’s second law of linear motion and
balancing all forces acting on the body in the horizontal direction (see
Fig. 2.8)

(m + mb) (ẍg + ẍ) + nd f = 0, (2.14)

where nd denotes the number of isolators and f represents the isolator
restoring force.
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The Full-Contact phase stops when the Rocking phase starts.

2.3.3 Rocking
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JO θ̈
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Figure 2.9: Forces and moments acting during the Rocking phase.

Both Lagrangian parameters, namely x and θ, are activated in the
Rocking phase. Since the rigid body is symmetric, it is possible to
take into account the change of the sign in θ, that is when the body
changes the centre of rotation, by means of the signum function sgn(•).
Accordingly, the starting condition as well as the equations of motion
are valid when rigid body rocks either around the left or around the
right corner.

The Rocking phase can start when the overturning moment due
to the inertial forces is greater than the resisting moment due to the
gravity acceleration g, namely |ẍg + ẍ| ≥ (g + ÿg) b/h, or for θ0 ̸= 0
and/or θ̇0 ̸= 0.

The equations of motion can be obtained by applying Newton’s sec-
ond law of both linear and angular motion and balancing all horizontal
forces and moments acting on the body (see Figure 2.9)

m (ẍg + ẍ + ẍθ) + mb (ẍg + ẍ) + nd f = 0, (2.15)a

JO θ̈ + m (ẍg + ÿg + ẍ) R cos(sgn(θ) α − θ) =

− m g R sin(sgn(θ) α − θ), (2.15)b
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where ẍθ is the second derivative with respect to the time of the hor-
izontal displacement xθ of the centre of mass of the rigid body with
respect to the base isolation, see Equation (2.11)a and Equation (2.13)a.

The rocking phase ends when the angular velocity vanishes after a
collision, i.e. |θ̇| → 0.

2.3.4 Collisions

When the angular displacement θ approaches zero, the rigid body
collides with the base isolation, with a sudden change in its motion.
For inelastic collisions, the kinetic energy of the system and the body
velocity decrease.

Being the statue a slender body, we assume that after the collision,
the body can only re-uplift by changing the centre of rotation, i.e. there
is no bouncing of the body on the corner in contact [20].

To obtain the initial condition immediately after the collision, the law
of conservation of linear [angular] momentum is used. In fact, although
the kinetic energy decreases, the linear [angular] momentum remains
unchanged. The subscript (•)i will denote the pre-collision quantities,
whereas the subscript (•) f will identify the post-collision quantities.

Conservation of angular momentum on bottom corner O′ gives

JO θ̇i − 2 m b R sin(α) θ̇i + m R cos(α) ẋi =

JO θ̇ f + m R cos(α) ẋ f ,
(2.16)

and the conservation of linear momentum of the entire system along
the horizontal direction gives:

(m + mb) ẋi + m ẋθi
= (m + mb) ẋ f + m ẋθ f

. (2.17)

Replacing Equation (2.12)a in the Equation (2.17), we obtain

(m + mb) u̇i + m R cos(α) θ̇i = (m + mb) u̇ f + m R cos(α) θ̇ f . (2.18)

In conclusion, the angular and linear velocities after the collision
can be obtained by solving Equation (2.16) and Equation (2.18) for the
variables θ̇ f and ẋ f . Accordingly

θ̇ f =

(
1 +

2 b2 m
h2 m m̃ − JO

)
θ̇i , (2.19)

and

ẋ f = ẋi −
2 b2 h m m̃

h2 m m̃ − JO
θ̇i , (2.20)
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where m̃ = m/(m + mb).
Provided that the Rocking phase ceases after a collision, Equa-

tion (2.19) and Equation (2.20) are written in the following way

θ̇ f = 0, (2.21)a

ẋ f = ẋi + m̃ R cos(α) θ̇i , (2.21)b

in which the Equation (2.21)b trivially follows from the Equation (2.18)
with θ̇ f = 0.





3 S E I S M I C P R OT E C T I O N
T E C H N I Q U E S F O R
F R E E S TA N D I N G A R T
O B J E C T S

This Chapter aims to illustrate classical and modern seismic protection
techniques of unanchored museum contents such as statues, amphorae,
busts, etc. This topic has received significant interest over the last
decade, given that the majority of contents contained in museums are
still now not equipped to resist oscillations induced by earthquakes.
Although such protection techniques are similar to the ones used to
protect laboratory/hospital equipment and electrical transformers, they
need to be customised for each artefact to properly account for the
museum aesthetic demand.

3.1 restraint mechanisms and mounts
Assuming that rigid body’s kinematics can generally describe the
response of the building content, three basic response modes are expe-
rienced during an earthquake: moving with the support plane (known
as full-contact), sliding and rocking. Obviously, a combination of these
responses may also occur.

A large number of art objects belonging to collections can be consid-
ered as rigid bodies due to their limited height and deformability. The
rocking response should be considered a failure mode because of the
possible damages that collisions can cause to the art objects with the
support. In addition, the rocking response can attain the limit state of
overturning, what can lead to the collapse of the museum content. The
sliding motion can also provide damage due to collisions with close
objects, even if it is far easier to mitigate than rocking.

Since the building’s response can often be controlled only to a limited
extent, the best way to mitigate the seismic damage of the collection is to
reduce the ground and building oscillations by means of strengthening,
supporting, restraining or isolating the collection object. The response
limitation of a freestanding object to earthquake motion is a well-
known topic in protecting hospital equipment, electrical transformers,
commercial store displays, etc.

33
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Similar techniques in protecting museum artefacts by restraints and
mounts are utilised. However, each artefact presents unique character-
istics so that each technique must be customised to meet the aesthetic
demands of exhibition environments.

Restraint mechanisms avoid sliding, rocking, and overturning of the
freestanding museum object. However, in this way, the earthquake
forces will be directly transferred to the object, and this could cause
damage, depending on its degree of fragility. In some cases, if the
object is too fragile, allowing it to slide without rocking or overturning,
or introducing some form of base isolation, may be the preferred
approach [95, 96]. Sliding is achieved by lowering the coefficient of
friction between the object and the support plane.

Restraining an object may also involve its connection to a larger
and/or heavier mass so that the object assembly will have a more
stable geometry and a favourably low centre of mass. An example is a
large pedestal or a platform able to increase the footprint of a sculpture
and hence increase the aspect ratio and lower the centre of mass of
a small object. However, the vertical dynamic forces’ magnitude will
increase with the increasing object mass until it exceeds the compressive
strength of the material or the object’s structural integrity. Certainly,
the restraint mechanisms need to be sufficiently strong to resist the
dynamic forces of the earthquake event. In addition, they should be
easily reversible whenever possible. In this Section, we summarise some
of the seismic mounts already described in Podany [103]. Consequently,
the reader is asked to refer to the above-mentioned papers for a more
comprehensive description and further details.

3.1.1 Stops and Clips

Stop restraints represent an easier way to avoid sliding of a small object
having stable geometry, i.e. not prone to rocking and overturning. There
must be at least three/four stop restraints with a sufficient height to
restrict any tilt of the object as shown in Figure 3.1a in which a vase
restrained by three acrylic tabs is depicted. The use of acrylic may
not be the best choice due to the stress concentration in the corner.
Consequently, during earthquake motion, the restraints could be come
loose, leaving the object unrestrained. For this reason, metal stop clips,
padded at the object interface, would be preferable (see Figure 3.1b).

Clips are tabs in which the shape is adapted to some part of the object
to anchor, e.g. the foot rim of a vase or a statue support base, in order
to restrain lateral and vertical movements. Placement, as well as the
size and surface area of the clips, need to be designed to distribute the
potential stresses to withstand the force imposed by the object during
the dynamic motion of the earthquake. In fact, failure of the object
at the points where clips are located is the most significant potential
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(a) Stop (b) Clip

Figure 3.1: Physical restrains: stop and clips [103].

damage. Medium-to large-scale sculpture can also be anchored using
clips if the material’s strength at the points where clips are located is
esteemed to be sufficient, see e.g. Figure 3.2.

3.1.2 Contour mounts

Contour mounts would be preferable when the stresses concentrated in
the clips are too high due to the limited geometry. A contour mount is
generally vertical, shaped to match the object’s profile and has a padded
surface to prevent abrasion. The line’s path should avoid sharp edges
that could break during movements, and it should be in contact with an
area of the object that is sufficiently strong. The mount’s height should
equal the centre of mass’ height or a suitable point where the object
can anchor with sufficient stability (see Figure 3.3a). Clearly, the line
needs to be sufficiently stiff to avoid any plastic deformation during the
dynamic load. Two horizontal segments shaped to the circumference of
the objects, named arms, can be used to limit the rotational movement
around the vertical axis (see Figure 3.3b).

3.1.3 Internal mounts

Mounts are designed to constrain the earthquake movement from
the interior when the objects are hollow and there is sufficient space.
Figure 3.4 shows a complex stainless steel internal mount to support
the cast bronze sculpture, distributing the gravity loads by the surfaces
of the shoulders and, at the same time, constraining the sculpture’s
movement in all directions.
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Figure 3.2: Sculpture anchored by clips [103].

3.2 seismic isolation bearings
The use of restraint mechanisms and mounts seen so far can avoid slid-
ing, rocking motion or a combination of both. However, in the majority
of cases, this technique can not wholly eliminate the movements in
all directions. A mount able to prevent movements in all directions
would be so large and intrusive that it would compromise the aesthetic
demand. In addition, the price to pay for the use of restraint mecha-
nisms and mounts is that earthquake forces from the ground would
be directly transferred to the object through the museum building
structure. Hence, the art object needs to be sufficiently strong to resist
seismic excitations. The base isolation technique can overcome this
limit, protecting unstable or fragile art objects from earthquakes in all
directions.

Base isolation is widely used in seismic engineering to protect civil
structures and infrastructures from earthquakes. It limits the seismic
energy transmitted to the building by eliminating the rigid connection
between the ground and the building. Notably, some devices (named
isolators) characterised by a reduced stiffness are added. In this way,
the fundamental period of the isolated building will shift so as to
unmatch the estimated dominant frequency content of the ground
motion. The use of base isolation in museums in protecting freestanding
art objects is currently unsatisfactory due to their costs and a lack of
familiarity with the concept of isolation for small masses. However, the
complete reversibility of base isolation and its lower dependence on
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(a) Contour mount applied to a bust (b) Contour mount with arms

Figure 3.3: Contour mounts [103].

direct intervention on the object is of particular importance in the light
of modern preservation ethics and guidelines.

3.2.1 Elastomeric Bearings

Elastomeric isolators are one of the most popular types of isolation
devices used for seismic protection. They have a circular or square
cross section and are made of alternating layers of rubber and thin steel
plates that are bonded together by a specific manufacturing process.
The reinforcing elements prevent the lateral expansion of the elastomer
due to the axial compressive load, whereas the elastomer material
provides energy dissipation and flexibility.

The main categories of elastomeric bearings for seismic isolation
applications are the Low Damping Rubber Bearings, High Damping
Rubber Bearings, and Lead Rubber Bearings [76, 78, 79, 90]. The formers
are typically used in coupling with other kinds of isolators (e.g. flat
sliders, steel yielding devices, and viscous dampers), due to their
limited damping capacity. Consequently, in this Section we analyse the
differences only between High Damping Rubber Bearings and Lead
Rubber Bearings, with a particular emphasis on the force-transverse
displacement ( f -x) relationship.
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Figure 3.4: A cast bronze sculpture protected by the internal mount [103].

3.2.1.1 Lead Rubber Bearings

The Lead Rubber Bearings (LRBs) are generally characterised by one
lead cylinder inserted in a vertical hole into the rubber bearings. The
lead cylinder increases the horizontal stiffness in order to limit the
horizontal displacements produced by the non-seismic horizontal loads,
as well as the energy dissipation capacity. Therefore, the initial tangent
stiffness of these devices is approximately 10 times the post-elastic
tangent stiffness, and the equivalent viscous damping factor can reach
a value up to ξ = 15 ÷ 35% [90]. Several dynamic tests conducted on
these kinds of devices show that at strains approaching 200% there is
no stiffening behaviour, so that the force-displacement hysteretic loop
is bounded between two parallel straight lines [130], see Figure 3.5a.

3.2.1.2 High Damping Rubber Bearings

The High Damping Rubber Bearings (HDRBs) allow one to reach an
equivalent viscous damping factor of ξ = 10 ÷ 20% at a shear strain of
γ = 100%. The shape of the HDRB’s force-displacement relationship
depends on the value of the applied shear strain. Notably, the shear
modulus at low levels of shear strain (γ < 10%) can be 5 times greater
than the one at shear strain levels of γ ≈ 100÷ 150% [27]. For relatively
small values of shear strain, namely γ ≤ 100 ÷ 150%, the hysteretic
loop is bounded between two parallel straight lines. As the shear strain
increases (γ > 100 ÷ 150%), a stiffening behaviour is shown [48] and
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Figure 3.5: Typical hysteretic loops displayed by the main categories of elas-
tomeric bearings for seismic isolation applications: (a) Lead Rubber
Bearings; (b) High Damping Rubber Bearings.

consequently, the HDBR’s hysteretic loop is bounded between two
parallel curves, see Figure 3.5b.

3.3 wire rope isolators
Wire Rope Isolators (WRIs) are metal devices that exploit their geo-
metrical and mechanical characteristics in controlling both vibration
and shock to isolate sensitive equipment in the areas of aerospace and
mechanical engineering [129] as well as for the seismic protection of
equipment in buildings [34]. Indeed, reducing the inertia forces ap-
plied on lightweight structures by introducing flexible elements, such
as elastomeric bearings, could lead to achievement of incompatible
displacements with their size. WRIs having different shapes, such as he-
lical, circular, or arch, can absorb a lot of energy input by their damping
characteristics that depend, for instance, on the size, number of strands,
and wire rope’s diameter allowing relatively small displacements. In
addition, the WRIs’ behaviour also depends on the directions in which
they are loaded, namely Shear, Roll, and Tension-Compression.

Base isolation with WRIs has been investigated by Alessandri et
al. [3, 4] in protecting high voltage ceramic circuit breakers towards
seismic events, demonstrating their effectiveness. A shaking table ex-
perimental investigation on a scaled structure seismically isolated by
both friction pendulum isolators and WRIs has been studied by Spiz-
zuoco et al. [124]. The authors have shown that WRIs can be helpful to
complete recentering of base-isolated structures as well as for limiting
displacements.

Experimental frequency responses curves have been employed to
study the dynamic behaviour in Tension-Compression direction of a
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mass isolated by means of a WRI by Barbieri et al. [14]. Vaiana et
al. [136] have carried out several experimental tests, both static and
dynamic, on four different WRIs along Shear and Roll directions by
using sinusoidal displacements as input having different magnitudes
as well as frequencies and under different values of vertical preload.
The dynamic performance of WRIs under Tension-Compression di-
rection by using experimental frequency responses curves of both
isolated and non-isolated structures has also been investigated by
Salvatore et al. [110]. Notably, the isolated (non-isolated) system is
experimentally and numerically investigated. In the former case, the
system is represented by two symmetric cantilever steel beams with
a tip mass and coupled (uncoupled) by a WRI. In the latter, a two-
degree-of-freedom system has been considered to model the isolated
(non-isolated) structure. The comparisons between experimental fre-
quency responses curves of the isolated and non-isolated structures
have shown a severe reduction of transmissibility coefficient in a wide
frequency range. In addition, the numerical response of the tested WRI
has been modelled by a new phenomenological model of differential
nature.

They have also been used to protect the two Riace’s bronzes [98], since
this isolation system would be particularly suitable when a rocking
effect prolongs the fundamental period of the rigid body [3]. Notably,
the Archeological Museum of Reggio Calabria has replaced the elas-
tomeric isolators originally installed to protect the two Riace bronzes,
known as “Bronze A the young” and “Bronze B the old”, with a com-
plex anti-seismic marble basement [22]. The need to replace the base
isolation system is due to moving the two statues from the ground floor
to the museum’s first floor because of the floor amplification of the
earthquake accelerations. The new anti-seismic basement is made of
marble from Carrara, composed of four spheres also made by marble
and WRIs, for horizontal displacement limitation. A vertical isolation
system in the upper block of the basement is added since the system
does not provide any isolation along the vertical direction, which is
typical of most sliding-type designs, see Figure 3.6.

In this Section, a new experimental campaign focused on the dy-
namic behaviour of four different WRIs loaded along the Tension-
Compression direction is proposed. Notably, the experimental cam-
paign is exploited to study the influence of the displacement magnitude
and frequency as well as the vertical preload and the wire rope’s di-
ameter on the dynamic behaviour of WRIs in both small and large
displacements fields. Indeed, the first motivation of such an experi-
mental campaign is that the experimental studies described in [14, 110]
are focused on investigating displacement frequency in the field of
small displacements. These experimental activities have been carried
out in the laboratory of the Department of Structures for Engineering
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Figure 3.6: Marble anti-seismic basement. BI= marble lower block, S= marble
spheres, DO= Horizontal displacement limitation and recentering
device, BS= marble upper block, DV=vertical isolation device in-
serted in the BS upper block [22].

and Architecture of the University of Naples Federico II (Italy) with
the collaboration of Prof. G. Serino and Eng. M. Spizzuoco as well as
supported by the inter-university consortium ReLUIS.

The tested WRIs are characterised by a wire rope with a helix shape
bounded into two aluminium alloy bars, see Figure 3.7a. The wire
rope’s cross-section is represented by seven strands, six of which are
wound around a strand that is the inner core. Each strand has twenty-
five wires, except the inner core which is composed of forty-nine wires,
see Figure 3.7b. All seven wires are made of stainless steel type 316.
The sliding friction is developed between strands and wires, providing
good damping properties to the WRI, which will attenuate shocks and
absorb vibrations.

(a) ref: POWERFLEX. (b)

Figure 3.7: (a) Helical WRIS, (b) wire rope cross-section.

The experimental campaign is carried out on four different typolo-
gies of WRIs, manufactured by Powerflex S.r.l. (Limatola, Italy). Such
devices are characterised by different geometrical characteristics listed

https://www.powerflex.cloud/wire-rope-isolators/
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Figure 3.8: Geometrical characteristics and load direction (a) WRI lateral view,
(b) WRI cross-section.

in Table 3.1, i.e. the width w, the height h, and the wire rope diameter
dr, whereas the length l is the same, see Figure 3.8.

In the following Subsections, the experimental set-up, and dynamic
tests are described.

3.3.1 Experimental set-up

In this experimental campaign, only WRIs’ dynamic responses in the
Tension-Compression direction is achieved (see Figure 3.8) since those
in the two principal horizontal directions, i.e. Roll and Shear directions,
have already been investigated by Vaiana et al. [136]. These dynamic
tests are performed employing the servohydraulic testing machine 810

Material Test System (MTS) model 318.50 (see Figure 3.9a). The load
cell for force measurement and control is mounted in the crosshead.
Instead, the hydraulic actuator is integrally mounted in the base plate
and can reach a maximum force capacity of 500 kN. In addition, the
hydraulic actuator includes a displacement transducer for displacement
control and measurement. Consequently, both force and displacement

Table 3.1: Geometrical characteristics of tested WRIs, see Figure 3.8 for refer-
ence.

WRI l [mm] w [mm] h [mm] dr [mm]

PWHS16010 267 100 110 16
PWHS16040 267 125 150 16
PWHS16040s 267 125 150 19
PWHS16060 267 145 185 16



3.3 wire rope isolators 43

(a) (b)

Figure 3.9: Laboratory of the Department of Structures for Engineering and
Architecture of the University of Naples Federico II. (a) Servohy-
draulic testing machine and the tested devices, (b) The grip between
a tested WRI and the machine.

controlled procedures are allowed. The grip between the testing ma-
chine and WRIs is ensured by two steel bars fixed to each device’s
upper and lower aluminium alloy bar, see Figure 3.9b.

A total of seventy-one tests in Tension-Compression direction are car-
ried out on the selected devices. Ten cycles of fully-reversed sinusoidal
displacement having different magnitudes Ad and frequencies fr are
imposed as input for each test. In addition, different values of the verti-
cal pre-load PN are considered. Notably, the testing protocol consisted
of applying three displacements ranges, that is, small, relatively large,
and large. Both maximum displacement and vertical pre-load values
reached during the tests are chosen to avoid devices damages. The
frequency influence is studied on the PWHS16040 device by varying it
from 0.15 to 1.00 Hz, whereas in all other devices, the frequency was
0.10 Hz. In Table 3.2, a more comprehensive description of dynamic
tests carried out is listed.
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3.3.2 Analysis of results

In this Subsection,the results of the dynamic experimental campaign
are presented and discussed. The experimental campaign deals with
studying the influence of the displacement magnitude Ad, the vertical
pre-load PN , the frequency fr, and the wire rope diameter dr, on dy-
namic behaviour of WRIs tested in the Tension-Compression direction.

For each of the seventy-one tests, ten force-displacement ( f − x) hys-
teresis loops are obtained. The hysteretic behaviour of devices exhibited
asymmetry when they are subjected to the Tension-Compression di-
rection. From a mathematical point of view, an asymmetric loop is not
described by odd functions with respect to the origin of the reference
frame like the symmetric loop. From a mechanical point of view, this is
due to the different secant stiffnesses in Tension and Compression. If
one of the above-mentioned parameters is modified, WRIs’ hysteresis
loops will change accordingly. Hence, the four control parameters used
to study the dynamic behaviour of tested WRIs in Tension-Compression
direction are the following average values: (1) the energy dissipated
Ed, (2) the equivalent viscous damping factor νe, and (3) the secant
stiffness of the peak-to-peak values in the hysteresis loop ks. These
average values are computed on six of ten experimental hysteresis
loops because the first three loops are removed due to device settling,
while the last loop was not wholly closed.

Two values of the effective secant stiffness are computed due to the
asymmetry of the experimental hysteresis loop

k+s =
max( f )
max(x)

=
fmax

xmax
, and k−s =

min( f )
min(x)

=
fmin

xmin
(3.1)

i.e. the two secant stiffnesses of the peak-to-peak values in the first (state
of Tension) and third (state of Compression) quadrant, respectively, of
the force-displacement plane.

The equivalent viscous damping factor νe is generally computed by
equating the energy dissipated in one cycle of the existing system and
an equivalent viscous system [25], i.e.

νe =
1

4 π

Ed
Eev

(3.2)

where

Eev =
1
2

ks ∆x2 (3.3)

is the potential elastic energy. However, if the experimental hysteresis
loop is not symmetric, Equation (3.3) needs to be changed accordingly.
In fact, the secant stiffness in the state of Tension is different from
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the Compression one, as explained before. In addition, there is no
reason to pick up the maximum relative displacement rather than the
minimum one [56]. Consequently, Kumar et al. [73] proposed a new
approach able to provide a reasonable estimation of the equivalent
viscous damping factor when the hysteresis loop is asymmetric. In
particular, they modified the term 4 Eev in Equation (3.2) in order to
take into account the different values of secant stiffnesses in the states
of Tension e Compression, yield

νe =
1
π

Ed
EI

ev + EI I
ev + EI I I

ev
(3.4)

where the energies EI
ev, EI I

ev, and EI I I
ev are evaluated in the following way

EI
ev =

1
2

k+s x2
max, EI I

ev = fmin xmax, EI I I
ev =

1
2

k−s x2
min (3.5)

The energy dissipated for each hysteresis loop Ed,j with j = 1, . . . , 6,
is evaluated by the formula (23) in [86], i.e.

Ed,j =
1
2

n

∑
i=1

ri · r⊥i+1 (3.6)

where n is the number of samples that defines the j-th experimental
hysteresis loop, ri and ri+1 are vectors that identified the i-th and
(i + 1)-st loop’s sample compared to the origin of a Cartesian reference
frame. The superscript ⊥ establishes a rotation of π/2 of the vector
ri+1 in an anti-clockwise or clockwise direction, depending on how the
boundary of each loop is parametrised.

3.3.3 Influence of displacement magnitude

Figure 3.10 depicts the relationships of the four control parameters,
namely the average energy dissipated, the average equivalent viscous
damping factor, and the average secants stiffnesses in the state of
Tension and Compression vs the displacement magnitude. Values of
the four control parameters obtained from displacement inputs having
frequencies equal to 0.1 Hz and without the vertical preload are listed
in Table 3.3. From Figure 3.10a and Figure 3.10b, the excellent damping
properties of the tested devices are shown. Due to the sliding friction of
the stranded cable developed during the deformation of the helix wire
rope, a significant proportion of the average energy stored is dissipated
with the increase of the displacement magnitude (see Figure 3.10a).
The tested WRIs show high values of the equivalent viscous damping
factor starting from the range of small displacement. In fact, the biggest
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(a) Average energy dissipated (b) Average equivalent viscous damping factor

(c) Average secant stiffness in the state of
Tension

(d) Average secant stiffness in the state of
Compression

Figure 3.10: The influence of displacement magnitude against the four control
parameters.

device, i.e. the PWHS16060, reaches an equivalent viscous damping
factor between 25 and 30% in the same range. The equivalent viscous
damping factor decreases with increasing displacement magnitude
reaching a value of close to 10%, as shown in Figure 3.10b.

As the displacement magnitude increases, stiffening and softening
behaviour are displayed in the state of Tension e Compression, respec-
tively (see Figure 3.10c and Figure 3.10d). Notably, Figure 3.10c depicts
that the average stiffness in the state of Tension changes its trend show-
ing a convex shape. Consequently, it starts with a high value in the
range of small displacements, the it decreases in the relatively large one
and finally it increases in the large displacements field. On the contrary,
the average secant stiffness in the state of Compression decreases when
the displacement magnitude rises, as shown in Figure 3.10d.

Hysteresis loops of each device obtained for four different displace-
ment magnitudes are shown in Figure 3.11. The high asymmetry of
tested devices’ behaviour is clear, and it varies with changing of the
displacement range. Notably, in the field of small displacements, soften-
ing in Compression and a moderately hardening behaviour in Tension
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(a) PWHS16010 (b) PWHS16040

(c) PWHS16040s (d) PWHS16060

Figure 3.11: Influence of displacement magnitude - hysteresis loops.

are shown, whereas at large displacements, experimental loops show a
pronounced hardening behaviour in the state of Tension.

3.3.4 Influence of vertical preload

The vertical preload effect on the dynamic behaviour of PWHS16040

device is shown in Figure 3.12. The four control parameters are obtained
from dynamic tests with displacement inputs having frequencies equal
to 0.1 Hz and magnitude varying from 5 to 30 mm. From Figure 3.12a
and Figure 3.12b, one can observe that the vertical preloads effect
does not significantly change the energy dissipated and the equivalent
viscous damping factor than those without the preload. However, a
slight increase (decrease) is shown in the energy dissipated (equivalent
viscous damping factor) at large displacements.

The most interesting result is in the variation of the two secant stiff-
nesses shown in Fig. Figure 3.12c and Figure 3.12d. The average secant
stiffnesses in the state of Tension and Compression at small displace-
ments decrease with the increase of the vertical preload. On the other
hand, only the average secant stiffness in the state of Tension increases
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(a) Average energy dissipated (b) Average equivalent viscous damping factor

(c) Average secant stiffness in the state of Ten-
sion

(d) Average secant stiffness in the state of Com-
pression

Figure 3.12: Influence of pre-axial load magnitude on the dynamic behaviour
of the PWHS16040 device.

at large displacements while the one in the state of Compression does
not change.

Figure 3.13 depicts the PWHS16040 device’s two hysteresis loops ob-
tained by applying sinusoidal displacements having a magnitude equal
to 10 mm (Figure 3.13a) and 30 mm (Figure 3.13b). The hysteresis loop
exhibits a clockwise rotation in the range of small displacements when
a vertical preload is applied without changing its area (see Figure 3.13a).
On the other hand, in the range of large displacements (Figure 3.13b),
with increasing of the vertical preload, stiffening behaviour in the state
of Tension is displayed, while the secant stiffness variation in the state
of Compression is negligible.

For readers reference, the PWHS16040 device’s values of the four
control parameters show in Figure 3.13 are listed in Table 3.4.

3.3.5 Influence of frequency

In Figure 3.14, the PWHS16040 device’s four control parameters versus
displacement frequencies is depicted. These tests regard sinusoidal
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(a) (b)

Figure 3.13: PWHS1604 hysteresis loops: influence of vertical preload. (a) dis-
placement magnitude equal to 10 mm; (b) displacement magni-
tude equal to 30 mm.

displacements having different magnitude’s values and without the
effect of the vertical preload.

In the small displacements range, that is when the displacement
magnitude in absolute value varies between 5 and 10 mm, WRIs show
an independent rate behaviour. Notably, in this range the variation of
the average energy dissipated, average viscous damping factor, and
average secant stiffness in the state of Tension are negligible (see from
Figure 3.14a to Figure 3.14c). In comparison, the variation of the average
secant stiffness in the state of Compression is small (see Figure 3.14d).
However, the PWHS16040 device shows a rate dependent behaviour at
large displacements since an increase in the input frequency determines
a decrease in the average equivalent viscous damping factor. Simulta-
neously, average energy dissipated and the average secant stiffness in
the state of Tension increase. On the other hand, the average secant
stiffness in the state of Compression remains negligible with increasing
of input frequency.

It must be pointed out that, assuming the frequency of the applied
sinusoidal displacement, as control parameter for different amplitudes
of the hysteresis cycle, presents some limitations since the displacement
rate along the cycle depends on the amplitude. Comparisons between
cyclic ramps and homeomorphisms applied to the ramp histories would
have been more appropriate, as shown in [5].

Figure 3.15 shows PWHS16040 device’s hysteresis loops obtained
in ranges of small and large displacements, see Figure 3.15a and Fig-
ure 3.15a, respectively. By increasing the input frequency, a pronounced
hardening behaviour in the state of Tension in large displacements
range is shown (see Figure 3.15b). In contrast, the frequency effect on
the tested WRI is much less at small displacements (Figure 3.15a).
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(a) Average energy dissipated (b) Average equivalent viscous damping
factor

(c) Average secant stiffness in the state of
Tension

(d) Average secant stiffness in the state of
Compression

Figure 3.14: Influence of frequency input on the dynamic behaviour of the
PWHS16040 device.

In Table 3.5, the four control parameters variations by varying the
input frequency are listed.

3.3.6 Influence of wire rope diameter

To study the influence of the helix cable diameter on the dynamic
behaviour of the tested device, a special WRI named PWHS16040s is
manufactured by Powerflex S.r.l. Geometrical characteristics of this
device are the same as the PWHS16040, but its wire rope has a bigger
diameter of 19 mm.

The four control parameters variations of PWHS16040 and PWHS16040s
devices by varying the displacement magnitude are shown in Fig-
ure 3.10 and listed in Table 3.3. In terms of energy dissipated, the
PWHS01640s provides more dissipation than the PWHS16040 one,
mainly in large displacements range, see Figure 3.10a. However, Fig-
ure 3.10b shows that PWHS01640s and PWHS16040 devices’ equivalent
viscous damping factors are very close to each other. The use of a
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(a) (b)

Figure 3.15: PWHS16040 hysteresis loops: influence of frequency. (a) displace-
ment magnitude equal to 10 mm; (b) displacement magnitude
equal to 30 mm.

WRI with a bigger wire rope diameter provides a stiffer behaviour (see
Figure 3.10c to Figure 3.10d).

(a) (b)

Figure 3.16: PWHS16040 and PWHS16040s hysteresis loops: influence of wire
diameter. (a) displacement magnitude equal to 10 mm; (b) dis-
placement magnitude equal to 30 mm.

Figure 3.16 depicts a comparison between PWHS16040 and PWHS16040s
devices’ hysteresis loops by applying sinusoidal displacements having
a frequency equal to 0.1 Hz as well as a magnitude equal to 10 mm
(Figure 3.16a) and 30 mm (Figure 3.16b). One can observe that using a
bigger wire rope diameter provides a clockwise rotation of hysteresis
loops in both displacements ranges. Notably, a stronger (slight) hard-
ening behaviour in the state of Tension (Compression) is reached in the
large displacements range.
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Table 3.3: Values of the four control parameters to vary the displacement
magnitude.

WRI |Ad| [mm] Ed [J] νe [%] k+s [N m−1] k−s [N m−1]

PWHS16010

2.50 20.99 0.21 3 585 123.75 2 191 470.63

5.00 49.16 0.17 3 119 743.41 1 469 256.41

7.50 82.65 0.14 3 106 036.44 1 180 324.04

10.00 121.93 0.12 3 232 201.89 1 023 735.77

12.50 169.94 0.11 3 508 399.43 921 542.40

15.00 230.12 0.10 3 927 754.13 858 068.72

PWHS16040

5.00 34.00 0.23 1 239 833.07 862 817.39

10.00 76.17 0.18 1 039 863.34 577 751.89

15.00 125.77 0.15 1 002 063.50 454 971.34

20.00 185.69 0.14 1 026 558.77 386 783.21

25.00 261.52 0.12 1 118 603.30 341 938.16

30.00 364.39 0.11 1 349 757.42 306 696.66

PWHS16040s

5.00 40.05 0.21 1 562 512.45 1 116 002.93

10.00 102.66 0.17 1 476 127.11 784 690.12

15.00 179.37 0.15 1 516 863.12 636 422.67

20.00 274.30 0.13 1 649 963.54 549 682.27

25.00 392.14 0.12 1 872 386.91 497 321.13

30.00 540.99 0.10 2 323 543.62 456 398.68

PWHS16060

5.00 20.29 0.27 552 790.57 456 122.39

10.00 44.20 0.21 431 444.16 314 430.14

15.00 69.88 0.17 396 795.24 260 682.53

20.00 98.51 0.15 392 316.32 226 005.83

25.00 131.09 0.13 401 782.82 204 175.00

30.00 169.56 0.12 423 994.22 187 658.19

35.00 216.21 0.11 461 753.37 175 001.52

40.00 276.58 0.11 529 453.11 164 190.40
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Table 3.4: Values of the four control parameters by varying the vertical preload.

PN [kN] |Ad| [mm] Ed [J] νe [%] k+s [N m−1] k−s [N m−1]

0.00

5.00 25.02 0.22 878 458.80 662 183.15

10.0 60.57 0.17 803 034.94 480 625.14

15.0 107.23 0.15 864 219.38 407 361.23

20.0 172.41 0.13 1 022 774.83 364 902.84

25.0 269.20 0.12 1 355 712.32 336 789.36

30.0 394.49 0.11 1 700 831.74 306 114.64

2.00

5.0 27.14 0.23 954 460.56 703 519.08

10.0 64.80 0.18 840 853.36 493 520.20

15.0 111.86 0.15 877 688.71 412 189.37

20.0 173.01 0.13 994 516.88 363 799.73

25.0 258.96 0.12 1 223 163.55 331 753.31

30.0 389.19 0.10 1 740 710.29 305 507.54

3.00

5.0 26.65 0.22 950 129.21 701 728.60

10.0 63.73 0.17 843 190.25 495 738.51

15.0 110.88 0.15 894 082.83 413 929.99

20.0 174.41 0.13 1 046 871.92 367 988.08

25.0 267.05 0.11 1 363 805.01 337 428.69

30.0 406.07 0.10 1 949 439.62 307 438.71

Table 3.5: Values of the four control parameters by varying the input frequency.

|Ad| [mm] fr [Hz] Ed [J] νe [%] k+s [N m−1] k−s [N m−1]

5.00

5.00 34.00 0.23 1 239 833.07 862 817.39

10.00 28.83 0.22 1 105 776.33 768 727.03

15.00 30.00 0.21 1 173 739.18 802 021.09

20.00 31.59 0.21 1 224 042.42 810 869.43

10.00
5.00 67.93 0.18 912 482.22 522 995.96

10.00 70.83 0.17 1 002 573.43 541 049.84

30.00
5.00 460.01 0.10 2 482 322.51 309 912.89

10.00 454.40 0.09 2 627 236.24 310 046.85



4 M AT H E M AT I C A L M O D E L L I N G
F O R S I M U L AT I N G
M E C H A N I C A L H Y S T E R E S I S
P H E N O M E N A

Hysteresis is a complex phenomenon that can be experienced in many
fields of science and technology; undoubtedly it represents the predom-
inant typology of nonlinear constitutive behaviour. The importance
of properly reproducing hysteretic responses in engineering has been
highlighted by several contributions available in the literature. The
main research field include civil applications, magnetism and mechan-
ics [141]. Beyond basic applications such as the modelling of seismic
devices, dampers and concrete, hysteresis plays a significant role also
for the analysis of more complex mechanical systems including appli-
cations concerning framed and shell structures, structural identification
and random vibrations [8, 145].

The output of hysteresis systems and materials typically depends
on present and past histories of the input variable and can exhibit
different peculiar features: in particular, when the first time derivative
of the input variable does not influence the output, this hysteresis
phenomenon is denominated rate-independent.

The development of mathematical models able to describe such
nonlinear phenomena is very complicated. In particular, in the last few
years many researchers have proposed different models whose common
objective was not to explain the physical origin of the hysteresis but to
try to reproduce the overall experimental behaviour [87]. These models
are called phenomenological models.

It is possible to classify the phenomenological models according to
the nature of the equation to solve for the evaluation of the output
variable, namely the generalised force or the generalised displacement.
In particular one has:

– algebraic models, such as the ones developed by Ramberg and
Osgood [106], Menegotto and Pinto [88], and Vaiana et al. [134,
135];

– trascendental models, as the ones introduced by Kikuchi and
Aiken [68], and Vaiana et al. [133];

55
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– differential models, such as those formulated by Bouc [18, 19],
Özdemir [151], and Wen [145, 146];

– damage-based models, as the one proposed by Valoroso and
Fedele [137].

Among existing models, the differential ones are currently the most
used models to reproduce the behaviour of mechanical systems and
materials. These models are typically based on the Duhem hysteresis
operator [45] whose formulation is defined by a Cauchy problem of
the form:ż(t) = g1(x, z) ẋ(t)+ + g2(x, z) ẋ(t)−,

z(0) = z0,

in which z(t) and x(t) denote the hysteretic functions and the gener-
alised displacement, respectively, and the superimposed dot denotes
the derivative with respect to time t; g1 and g2 are continuous func-
tions whereas ẋ(t)+ = max(0, ẋ(t)) and ẋ(t)− = min(0, ẋ(t)); finally
z0 represents the value of the function z(t) at the time t = 0. All models
based on Duhem’s class are characterised by a peculiar property: the
output value can be evaluated if the current values of the input and
output variables (x, z) as well as the sign of the first derivative with
respect to time of the input variable (sgn(ẋ)) are known [40]. Examples
of differential models based on Duhem hysteresis operator are the ones
proposed by Jiles-Atherton [65], Coleman-Hodgdon [57], Bouc-Wen [19,
145, 146], and Özdemir [151].

4.1 the class of bouc-wen differential
models

This Section aims to illustrate the evolution of the Bouc-Wen model in
the area of mechanics. In particular such an evolution is described with
reference to the modelling of symmetric and asymmetric hysteresis
loops, hysteresis loops with pinching and hysteresis loops with strength
and/or stiffness degradation typically displayed by rate-independent me-
chanical systems and materials. The influence of the input parameters
on the dimension and/or shape of the hysteresis loops is shown and
discussed for each hysteretic model.



4.1 the class of bouc-wen differential models 57

Figure 4.1: The symmetric hysteresis loop of a bearing - H. A. Hadad et al. [55].

4.1.1 Modelling of symmetric hysteresis loops

From a mathematical point of view, symmetric hysteresis loops are char-
acterised by odd functions with respect to the origin of the reference
frame, i.e. hysteretic functions z fulfilling the condition

z(x) = −z(−x).

Among several mechanical systems and materials that exhibit a
nonlinear behaviour characterised by symmetric hysteresis loops, we
recall, as an example, the typical cross section of steel and concrete filled
steel elements, metal devices, such as wire rope isolators deforming
along their transverse directions [136], seismic protection devices, such
as isolators [54, 77, 79, 131, 134] and dampers [91]. In Figure 4.1 an
example of symmetric hysteresis loop obtained in experimental tests is
shown.

The restoring force of the above described mechanical systems and
materials is typically computed as follows:

f (x) = fe(x) + fh(x),

where fe(x) is the elastic component whereas fh(x) is the hysteretic
one. In turn the restoring force can be described in the following way:

f (x) = χ k x + (1 − χ) k z,

in which χ is ratio between the post-yield and pre-yield stiffness
whereas k is defined as the stiffness at yield, i.e. the ratio between
the yield force and the generalised yield displacement.
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4.1.1.1 Bouc model and its modified versions

The full class of Bouc models is described by the following general
nonlinear first-order ordinary differential equation:

ż = B ẋ (4.1)

in which ż denotes the time derivative of the hysteretic variable, re-
quired to evaluate the rate-independent hysteretic component fh(x) =
(1− χ) k z(x), whereas ẋ is the generalised velocity. The hysteretic func-
tion z basically depends on the system behaviour, material properties
and response amplitude.

The nonlinear function B has been assumed of different form over
the years [18, 19]:

Bouc model 1 (1967): B = A − z β sgn(ẋ), (4.2)

Bouc model 2 (1967): B = A − |z|
(

γ + β sgn(ẋ z)
)

, (4.3)

Wen model (1976): B = A − |zn|
(

γ + β sgn(ẋ z)
)

(4.4)

where A, n, and γ are material parameters that tune the size and/or
the shape of the hysteresis loops.

Equation (4.2), that defines the original Bouc model, is characterised
by two model parameters, namely A and β. Subsequently, Bouc has
modified such an equation by adding a new parameter, that is γ, as
shown in Equation (4.3). Finally, Wen has extended the class of the
Bouc differential models by adding the parameter n in order to smooth
the hysteretic curve predicted by the original Bouc model. Note that
equation f (x) = χ k x + (1 − χ) k z, and Equation (4.4) define the so
called Bouc-Wen model.

The smooth nature of the Bouc model modified by Wen makes it
particularly convenient for addressing several engineering problems es-
pecially when several dynamic analyses are required. This includes the
case of flutter analysis [23] and random vibration analysis of structures.

The Bouc-Wen model is capable of reproducing several behaviours
depending on the parameters A, β, γ, and n, whose influence on the
hysteretic variable z is illustrated in Section 4.1.1.2.

4.1.1.2 Sensitivity analysis

A parameter sensitivity analysis was carried out to evaluate the effect
of each parameter on the hysteretic variable z(x) obtained by adopting
Equation (4.1) and Equation (4.4).

The relationship between the hysteretic variable z and the generalised
displacement x, is shown in Figure 4.2 for different combination of the
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(a) β = 0.5 γ = 0.5 n = 1 (b) A = 1 γ = 0.5 n = 1

(c) A = 1 β = 0.5 n = 1 (d) A = 1 β = 0.5 γ = 0.5

Figure 4.2: Sensitivity analysis of the Bouc-Wen model with respect to the
material parameters.

constitutive parameters. All hysteretic loops are obtained by applying
a generalised displacement described by the following sine wave:

x(t) = 2 sin(t) (4.5)

and integrating the differential Equation (4.1) by MATLAB ® using the
solver ode45.

The Figure 4.2a shows that the tangent stiffness at the origin of the
hysteresis loop increases when the parameter A is increased and its
sign is the same as that of A; for negative values of parameter A, the
tangent stiffness at the origin becomes negative.

The Figure 4.2b shows that the hysteretic energy dissipation increases
as β increases. In particular, an elastic nonlinear constitutive law can
be obtained by setting β = 0.

The Figure 4.2c shows that the hysteresis loop is bounded between
two parallel straight lines and it rotates clockwise when the parame-
ters γ is increased. On the other hand, by decreasing the value of γ,
the hysteresis loop is bounded by two parallel curves such that, for
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Figure 4.3: The asymmetric hysteresis behaviour of a wire rope isolator along
their axial direction - G. F. Demetriades et al. [34].

high values of the displacement x, the hysteresis loop exhibits a work
hardening behaviour.

Finally, the Figure 4.2d shows that the hysteresis loop gets smoother
with decreasing n so that such a parameter can be related to the smooth-
ness of the hysteresis loop. In the limit case n → ∞, the constitutive
law becomes elastic-perfectly plastic.

4.1.2 Modelling of asymmetric hysteresis loops

There exist several mechanical systems and materials displaying a non-
linear response characterised by asymmetric hysteresis loops; typical
examples are some materials, such as metals [44], polymers [59] and
shape memory alloys [53], as well as some devices, such as wire rope
isolators deforming along their axial direction [34]. Asymmetric hys-
teresis loops obtained in experimental tests and retrieved from the
literature are shown in Figure 4.3.

4.1.2.1 Asymmetric Bouc-Wen models

The differential models described in Section 4.1.1 are not able to repro-
duce rate-independent asymmetric hysteresis phenomena. Hence, to
simulate the typical asymmetric hysteresis loops, some researchers [119,
122, 144] have proposed the following generalised expression for the
function:

B = A − |zn|Ψ, (4.6)
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where Ψ assumes different forms according to the specific improved
model that is adopted. In particular, one has:

Wang and Wen (1998): Ψ =

{
γ + β sgn(ẋ z)

+ ϕ sgn(ẋ + ż)
(4.7)

Song and Der Kiureghian (2006): Ψ =


β1 sgn(ẋ z) + β2 sgn(x ẋ)

+ β3 sgn(x z) + β4 sgn(ẋ)

+ β5 sgn(z) + β6 sgn(x)
(4.8)

Sireteanu et al. (2012): Ψ =


β1 sgn(ẋ z) + β2 sgn(x ẋ)

− β2 sgn(x z) + β4 sgn(ẋ)

+ β5 sgn(z)
(4.9)

where β1, . . . , β6 and ϕ are material parameters.
Equation (4.7), introduced by Wang and Wen, includes an additional

parameter ϕ that takes into account the asymmetric behaviour; being
independent from the sign of the generalised displacement x, Equa-
tion (4.7) cannot describe the asymmetric hysteresis due to cyclic phe-
nomena since, during them, the sign of the generalised displacement x
changes.

For this reason, Song and Der Kiureghian have developed Equa-
tion (4.8); basically, the function Ψ defined by this equation can assume
different values in six phases depending on the signs of x, ẋ, and z and
on the values of six fixed parameters, namely β1, . . . , β6. Consequently,
this model has six degrees of freedom that affect the complexity of the
parameter identification.

Subsequently, Sireteanu et al. have modified the Song and Der Ki-
ureghian model by imposing the following conditions:

β3 = −β2 and β6 = 0, (4.10)

that represent a continuity condition of the hysteresis loop at the points
of intersections with the axis of ordinates. Equation (4.9) describes four
different behaviours depending on the signs of x, ẋ, and z and on the
values of only four fixed parameters, namely β1, β2, β4, and β5.

Figure 4.4 shows the four different curves of the Ψ function defined
by Sireteanu et al. The continuity condition in Equation (4.10) involves
that the hysteretic loop is characterised by the conditions:

Ψ3 = Ψ4 and Ψ6 = Ψ1.

Table 4.1 lists the sign combinations of x, ẋ, and z for the different
curves showed in Figure 4.4.
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z

x

Ψ1

Ψ2

Ψ4

Ψ5

Figure 4.4: Values of the Ψ function in the model by Sireteanu et al.

4.1.2.2 Sensitivity analysis

A parameter sensitivity analysis was carried out to evaluate the effect
of each parameter of the Ψ function on the hysteretic variable z(x)
evaluated by adopting Equation (4.1), Equation (4.6), and Equation (4.9).

Figure 4.5 shows the relationship between the hysteretic variable
z and the generalised displacement x. All hysteretic loops have been
obtained by applying a generalised displacement described by the sine
wave in Equation (4.5).

The Figure 4.5a shows the influence of the first value of the Ψ func-
tion, namely Ψ1, on the hysteretic loop. Such a value modifies the shape
of the hysteretic loop in the first and second quadrant when ẋ > 0 and
z > 0: the hysteretic variable z is prone to decrease with an increasing
value of Ψ1; the hysteretic loop exhibits work hardening (softening)
when the Ψ1 value is negative (positive).

The influence of the Ψ2 value on the hysteretic loop is shown in
Figure 4.5b. The value Ψ2 modifies the trend of the hysteretic loop in
the second quadrant when x > 0, ẋ < 0, and z > 0: the hysteretic
variable z is prone to decrease with an increasing value of Ψ2; the
hysteretic loop is concave (convex) when the Ψ2 value is negative
(positive).

The Ψ4 value modifies the shape of the hysteretic loop in the third
and fourth quadrant when ẋ < 0 and z < 0; the influence of such

Phase x ẋ z ψ(x, ẋ, z)

1 [-] + + ψ1 = β1 + β4 + β5

2 + − + ψ2 = −β1 − 2 β2 − β4 + β5

3 [-] − − ψ4 = β1 − β4 − β5

4 − + − ψ5 = −β1 − 2 β2 + β4 − β5

Table 4.1: Sign combinations of the Ψ function in the model by Sireteanu et al.
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(a) Ψ1 (b) Ψ2

(c) Ψ4 (d) Ψ5

Figure 4.5: Sensitivity analysis of the Bouc-Wen model with respect to the
material parameters.

a value is shown in Figure 4.5c: the hysteretic variable z is prone to
increase with an increasing value of Ψ4; the hysteretic loop shows work
hardening (softening) when the Ψ4 value is negative (positive).

Finally, Figure 4.5d shows the influence of the Ψ5 value on the
hysteretic loop. This value modifies the shape of the hysteretic loop
in the third quadrant when x < 0, ẋ > 0, and z < 0: the hysteretic
function z is prone to increase with an increasing value of Ψ5 ; namely,
the hysteretic loop is concave (convex) when the Ψ5 value is positive
(negative).

4.1.3 Modelling of pinched hysteresis loops

The pinching effect is a physical phenomenon, observed in many ex-
perimental results, in which a very low incremental stiffness near the
origin followed by a stiffening under grater generalised displacements.
In particular we can observe the pinching effect in reinforced concrete
structures due to the high shear loads, the slippage of longitudinal
reinforcement [13], the opening and closing of cracks in the compres-
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Figure 4.6: The hysteresis behaviour of a concrete column section - R. Park et
al. [93].

sion zones [93], Y-braced steel frames and confined walls of masonry
structures. A hysteresis loop with the pinching effect, obtained in
experimental tests, is shown in Figure 4.6.

4.1.3.1 Pinching Bouc-Wen models

To account for the above-described pinching effects, some researchers [8,
9, 46, 120] have modified the expression of the function employed by the
symmetric differential models, described in Section 4.1.1, to evaluate
the hysteretic variable z. In particular, some modified expressions of
such a function are

Baber and Noori (1985) =



B =
Bh Bp

Bh + Bp

Bh = A − |zn|
(

γ + β sgn(ẋ z)
)

Bp =

(
1√

2 π Zσ

∆x exp
(
− z2

2 Z2
σ

))

(4.11)

Baber and Noori (1986) =


B = h

(
A − |zn|

(
γ + β sgn(ẋ z)

))
h = 1 − ζ1 exp

(
− z2

2 ζ2
2

) (4.12)
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Foliente (1995) =


B = h

(
A − |zn|

(
γ + β sgn(ẋ z)

))
h = 1 − ζ1 exp

(
− (z − z̄ sgn(ẋ))2

ζ2
2

)
(4.13)

Sivaselvan et al. (2000) =



B =
Bh Bp

Bh + Bp

Bh = A −
∣∣∣∣ z
zy

∣∣∣∣n (γ + β sgn(ẋ z)
)

Bp =
( 1√

2 π Zσ

∆x exp
(− (z − z̄ sgn(ẋ))2

2 Z2
σ

))−1

∆x = Rs (x+max − x−max)

Zσ = σ zy

z̄ = λ zy
(4.14)

where Bh, Bp, γ, β, etc. are material parameters.
Baber and Noori (1985) take into account the pinching effect in their

model through a pinching spring with stiffness Bp in series with the
hysteretic element associated with z, see Equation (4.11). The parameter
∆x represents the length at which the variable z of the pinching spring
tends to +∞(−∞), namely:

lim
x→+∆x−

z(x) = +∞, lim
x→−∆x+

z(x) = −∞,

and is associated with the energy dissipation ε. Zσ is related to the
sharpness of pinching; in particular a higher Zσ implies a more uniform
pinching effect.

In 1986, Baber and Noori proposed a different strategy to account
for the pinching effect (see Equation (4.12)); in particular it amount to
multiplying the A parameter by a pinching function h that depends on
the energy dissipation ε, the hysteretic function z, and two parameters,
namely ζ1 and ζ2: the first one controls the severity of pinching, whereas
the second controls the spread of the pinching region.

Foliente followed the same strategy proposed by Baber and Noori
(1986) but proposed a pinching function h that depends on ε, z, ζ1 and
ζ2, as well as the pinching function h in Equation (4.12); in addition,
the function h also depends on the parameter z̄ that corresponds to a
fraction of z at dz/dx = 0.

Finally, Sivaselvan and Reinhorn proposed a model similar to the one
by Baber and Noori (1985), the main difference lying in the fact that in
the former model the pinching parameter ∆x depends on the maximum
generalised displacement reached on the positive and negative sides
during the response, weighed through the parameter of the model Rs,
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(a) Rs = 0.2 λ = 0.1 zy = 0.5 (b) σ = 0.5 λ = 0.1 zy = 0.5

(c) Rs = 0.2 σ = 0.5 zy = 0.5 (d) Rs = 0.2 σ = 0.5 λ = 0.1

Figure 4.7: Sensitivity analysis of the Bouc-Wen model with respect to the
material parameters.

and no longer on the energy dissipation ε. Zσ and z̄ are two variables
that depend on the yield value of the hysteretic variable, i.e. zy through
two parameters of the model, namely σ and λ (see Equation (4.14)).

4.1.3.2 Sensitivity analysis

A sensitivity analysis was carried out to evaluate the effect of each
parameter on the hysteretic variable z(t) evaluated by adopting Equa-
tion (4.1), and Equation (4.14). The effects of the parameters Rs, σ,
λ, and zy on the hysteretic function z are shown in Figure 4.7. All
hysteretic loops have been obtained by applying a generalised displace-
ment described by the sine wave in Equation (4.5).

Figure 4.7a shows the variation of the σ parameter: this parameter
controls the pinching region and increasing σ causes the pinching re-
gion to spread. Figure 4.7b shows the variation of the Rs parameter:
the intensity of the pinching effect is prone to decrease with a decreas-
ing Rs ; specifically, when Rs approaches 0 the pinching effect is null.
Figure 4.7c depicts the variations of the λ parameter: the hysteresis
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Figure 4.8: The hysteresis behaviour of a unreinforced masonry panels - D.
Liberatore et al. [74].

loop tends to become more asymmetric when λ increases. Finally, Fig-
ure 4.7d shows the variation of the zy parameter: the tangent stiffness
at the origin of the hysteresis loop increases with an increasing value
of zy.

4.1.4 Modelling of degrading hysteresis loops

It is well known from the scientific literature that many mechanical sys-
tems can exhibit strength and stiffness degradation. In general we can
see a hysteretic degrading behaviour when the systems are subjected to
cyclic loads like earthquake, winds and so on. For instance, in concrete
and masonry [74] structures it is possible to observe a progressive loss
of stiffness due to the opening and closing of cracks when the applied
loads change direction. Wooden structures also exhibit hysteretic de-
grading behaviour. In Figure 4.8 hysteresis loop exhibiting strength
and stiffness degradation is shown.

4.1.4.1 Degrading Bouc-Wen models

Similarly to the asymmetric and pinched hysteresis phenomena, several
researchers [8, 10, 46] have modified the differential models described
in Section 4.1.1 to allow for the simulation of the stiffness and strength
degradation effects. Specifically, they have modified the expression
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employed for evaluating the hysteresis function, required to compute
the model output, as follows:

Baber and Wen (1981) =



B =
A
η
− ν |zn|

(
γ + β sgn(ẋ z)

)
A = A[ε(t)] = A0 − δA ε(t)

η = η[ε(t)] = η0 + δη ε(t)

ν = ν[ε(t)] = ν0 + δν ε(t)

(4.15)

Baber and Noori (1985) =



B =
A
η
− ν |zn|

(
γ + β sgn(ẋ z)

)
A = A[ε(t)] = A0 − δA ε(t)

η = η[ε(t)] = 1 + δη ε(t)

ν = ν[ε(t)] = 1 + δν ε(t)

(4.16)

Foliente (1995) =


B =

A
η
− ν |zn|

(
γ + β sgn(ẋ z)

)
η = η[ε(t)] = 1 + δη ε(t)

ν = ν[ε(t)] = 1 + δν ε(t)

(4.17)

where A, η, ν, etc. are material parameters.
All models consider strength, stiffness, or combined degradation,

from the initial time t = 0 to the present one, as a function of the
dissipated energy associated with the hysteretic displacement z; its
expression is given by

ε(t) =
∫ t

0
z ẋ d t (4.18)

In particular, a convenient measure of degradation is the cumulative
hysteretic dissipated energy ε(t) since degradation depends on the
intensity and duration of the phenomenon under investigation

Baber and Wen defined two new parameters: η and ν controlling in
turn the stiffness and the strength degradation. Moreover, the ampli-
tude of the hysteresis loop, controlled by the A parameter, can change.
In the Baber and Noori (1985) model the η0 and ν0 parameters, which
represent the initial values of the degradation functions, are set to 1.
Finally, in the Foliente model the degradation law related to the A
parameter is null. All models assume that both parameters η and ν
depend linearly on the hysteretic energy ε(t).

It is worth being emphasised that the energy dissipated by the mate-
rial coincides with ε(t) in Equation (4.18) only for peculiar values of
the parameters. In general, ε(t) does not necessarily fulfil the thermo-
dynamic compatibility. For this reason, the use of degrading Bouc-Wen
formulations should carefully account for such an issue.
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(a) δη = 0 (b) δν = 0

(c) (d)

Figure 4.9: Sensitivity analysis of the Bouc-Wen model with respect to the
material parameters.

4.1.4.2 Sensitivity analysis

Sensitivity analysis has been carried out on the Foliente model [46] and
the results are shown in Figure 4.9. The top left and the top right plots
show the hysteresis loops that exhibit a strength and stiffness degra-
dation, respectively. For both top plots, there are two black coloured
hysteresis loops without any kind of degradation, obtained by setting
to zero the values of δη and δν. Conversely, when the latter parameters
are greater than zero, a degrading hysteretic behaviour is obtained;
in particular the rate of the strength and stiffness degradation gets
stronger when the δη and δν parameters, respectively, increase. All
hysteretic loops have been obtained by applying a generalised displace-
ment described by the sine wave in Equation (4.5).

The two bottom plots show the relationship between the number of
hysteresis loops and the value of the hysteretic function z associated
with the maximum positive displacement x. In these plots the effect of
δη and δν parameters on the hysteresis behaviour are more evident.
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(a)

(b)

Figure 4.10: Hysteresis loop bounded by two straight parallel lines (a) or
curves (b).

4.2 proposed class of uniaxial phenomeno-
logical models

The Bouc-Wen model [19, 145] is the most popular hysteretic model
and is used to simulate several types of hysteretic phenomena [62, 64].
This model is of differential nature, that is the equation that allows one
to evaluate the output state variable is a nonlinear ordinary differential
equation. Unfortunately, this differential equation could need some
iterative techniques for each time step of the nonlinear time history
analysis by increasing the computational costs. To overcome the limits
of the differential models, we use a computationally efficient model
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belonging to a class developed by Vaiana et al. [133]. This model is of
algebraic nature so that it is possible to evaluate the output variable in
closed form. Consequently, the computation time for geometrically and
mechanically-nonlinear dynamics analyses can be reduced. Moreover,
this model can be used in a design procedure using an energy-based
approach (described in Section 4.3), since it is possible to evaluate the
dissipated energy analytically.

4.2.1 Assumptions of the class of hysteretic models

First of all, the class of hysteretic models is able to reproduce a sym-
metric loop bounded between two parallel straight lines (Figure 4.10a)
or curves (Figure 4.10b). Additionally, it assumes that the general loop
is defined by four separate curves:

• the upper and the lower limiting curves, denoted as cu and cl ,
respectively, and represented by the blue colour in the Figure 4.10;

• the loading and unloading limiting curves, denoted as c+ and c−,
respectively, and represented in red in the Figure 4.10.

As shown in Figure 4.10, the model assumes that the distance be-
tween the upper and the lower limiting curves is constant and equal to
2 f0, in which f0 [− f0] represents the point of intersection between the
upper [lower] limiting curve with the axis of ordinate. This assumption
implies that the distance between the starting and the ending point
on the upper [lower] limiting curves cu [cl ], denoted as xi and xj, re-
spectively, is assumed to be constant and equal to 2 x0 (see Figure 4.10).
Accordingly, utilising the superscript + [−] to denote the generic load-
ing [unloading] curve, one obtains x+i = x+j − 2 x0 [x−i = x−j + 2 x0].
Please, notice that, if the restoring force is equal for positive and neg-
ative excitations, the displacements x+j [x+i ] and x−j [x−i ] can be the
same in absolute value.

Consequently, in the generic loading case, that is to say when the hor-
izontal velocity is positive (ẋ > 0), the generalised force f is computed
as

f (x, x+j ) =

c+(x, x+j ) if x ∈ [x+j − 2 x0, x+j ],

cu(x) if x ∈ [x+j , ∞).

Conversely, for a generic unloading case (ẋ < 0), the generalised
force f can be computed in the following way

f (x, x−j ) =

c−(x, x−j ) if x ∈ [x−j , x−j + 2 x0],

cl(x) if x ∈ (−∞, x−j ].
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4.2.2 General expressions of the four curves

A uniaxial hysteretic spring parallel to a nonlinear elastic one is used
to model the hysteretic behaviour. Such modelling is generally used
in scientific literature. Consequently, the general form of the tangent
stiffness kt is computed in the following way

kt(x, x+j ) = ke(x) + kh(x, x+j ) if ẋ > 0 (4.19)a

kt(x, x−j ) = ke(x) + kh(x, x−j ) if ẋ < 0 (4.19)b

where kh(x, xj) and ke(x) are the tangent stiffnesses of the hysteretic
spring and the nonlinear elastic one. Hysteresis loops bounded between
two parallel straight lines can be reproduced by the former spring with
tangent stiffness kh. The latter, having tangent stiffness ke, modifies the
two parallel straight lines in two parallel curves. We suppose that the
tangent stiffness kh(x, xj) is a nonlinearly decreasing function, from
ka to kb on [x+j − 2 x0, x+j ] when ẋ > 0, or on [x−j , x−j + 2 x0] when

ẋ < 0, remains constant and equal to kb on [x+j , ∞) when ẋ > 0, or on

(−∞, x−j ] if ẋ < 0.
The generic expressions of the upper and lower limiting curves are

obtained by integrating the Equation (4.19), that is

cu(x) = fe(x) + kb x + Cu for x > x+j (4.20)a

cl(x) = fe(x) + kb x + Cl for x < x−j (4.20)b

where fe(x) =
∫

ke(x)dx. The integral
∫

kh(x, x+j )dx [
∫

kh(x, x−j )dx]

is constant for x > x+j [x < x−j ] and equal to kb x. The two integration
constants Cu and Cl can be computed by imposing that the curves cu
and cl intersect the ordinate axis at f = f0 and f = − f0, respectively,
and supposing that fe(0) = 0. Consequently, Equation (4.20) can be
rewritten in the following way

cu(x) = fe(x) + kb x + f0 (4.21)a

cl(x) = fe(x) + kb x − f0 (4.21)b

By integrating the Equation (4.19) for x+j − 2 x0 < x < x+j [x−j <

x < x−j + 2 x0], one can obtain the general expression of the loading
[unloading] curve

c+(x, x+j ) = fe(x) + fh(x, x+j ) + C+ for x+j − 2 x0 < x < x+j
(4.22)a

c−(x, x−j ) = fe(x) + fh(x, x−j ) + C− for x−j < x < x−j + 2 x0

(4.22)b
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Figure 4.11: Evaluation of the history variable x+j (x−j ) for a generic loading
(unloading) case.

where fh(x, x+j ) =
∫

kh(x, x+j )dx and fh(x, x−j ) =
∫

kh(x, x−j )dx. The
two integration constants C+ and C− can be computed by imposing
that the curves c+ and c− intersect the upper and the lower limiting
curve at x = x+j and x = x−j , respectively. Consequently, Equation (4.22)
can be expressed in the following form

c+(x, x+j ) = fe(x) + fh(x, x+j ) + kb x+j + f0 − fh(x+j , x+j ) (4.23)a

c−(x, x−j ) = fe(x) + fh(x, x−j ) + kb x−j − f0 − fh(x−j , x−j ) (4.23)b

The internal model parameters x0 and f0 can be computed solving an
expression in closed-form or numerically, depending on the complexity
of the function kh. Such an expression is

fh(x+j − 2 x0, x+j ) + 2 kb x0 + 2 f0 − fh(x+j , x+j ) = 0 (4.24)

obtained by imposing that c+ = cl at x = x+i . An analogous expression
can be obtained imposing that c− = cu at x = x−i .

To evaluate the generalised force, it is necessary to derive the ex-
pression of x+j [x−j ]. Such an expression can be derived from a generic

starting point ξ of coordinate (xξ , fξ), where x+j − 2 x0 < xξ < x+j
[x−j < xξ < x−j + 2 x0]. Notably, the expression of the history variable

x+j is obtained by imposing that the generic loading curve c+ passes
through the point ξ, as shown in Figure 4.11

fe(xξ) + fh(xξ , x+j ) + kb x+j + f0 − fh(x+j , x+j ) = fξ (4.25)
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In a similar way, one can obtain the expression of the history variable
x−j by imposing that the generic unloading curve c− passes through
the point ξ, see Figure 4.11.

fe(xξ) + fh(xξ , x−j ) + kb x−j − f0 − fh(x−j , x−j ) = fξ (4.26)

In conclusion, the history variables can be obtained by solving Equa-
tion (4.25) and Equation (4.26) for the variables x+j and x−j . This system
of equations can be solved numerically or in closed-form, depending
on the complexity of the tangent stiffness kh.

4.2.3 Bilinear model formulation

The bilinear model, able to reproduce hysteresis loops bounded be-
tween two parallel straight lines, is one of the easiest hysteretic models
that can be formulated from the proposed class.

We select the following tangent stiffness functions

ke(x) = 0 on (−∞, ∞) (4.27)a

kh(x, x+j ) =

{
ka if x ∈ [x+j − 2 x0, x+j [

kb if x ∈ ]x+j , ∞)
(4.27)b

kh(x, x−j ) =

{
ka if x ∈ ]x−j , x−j + 2 x0]

kb if x ∈ (−∞, x−j [
(4.27)c

Consequently, the expressions of the upper and lower limiting curves,
obtained by using Equation (4.21), are

cu = kb x + f0 (4.28)a

cl = kb x − f0 (4.28)b

Similarly, Equation (4.23) yields the expressions of the loading and
unloading limiting curves, i.e.

c+ = ka (x − x+j ) + kb x+j + f0 (4.29)a

c− = ka (x − x−j ) + kb x−j − f0 (4.29)b

By solving Equation (4.24) for the internal parameters f0, one can
obtain

f0 = (ka − kb) x0 (4.30)
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The history variable x+j can be obtained by involving Equation (4.25)

x+j =
ka xξ + f0 − fξ

ka − kb
(4.31)

Similarly, the history variable x−j follows from Equation (4.26), i.e.

x−j =
ka xξ − f0 − fξ

ka − kb
(4.32)

The influence of the constitutive hysteretic parameters ka, kb and x0
on the hysteresis loop shape is shown in [133].

4.2.4 Algebraic model formulation

In this Section, we describe the algebraic hysteretic model able to
simulate the behaviour of the LRBs and HDRBs [134]. Such a hysteretic
model is also able to reproduce the behaviour of WRIs along the Shear
and Roll directions [132].

The tangent stiffness functions of the algebraic model are

ke(x) = 3 β1 x2 + 5 β2 x4 on (−∞, ∞) (4.33)a

kh(x, x+j ) =


kb +

ka − kb

(1 + x − x+j + 2 x0)λ
if x ∈ [x+j − 2 x0, x+j [

kb if x ∈ ]x+j , ∞)

(4.33)b

kh(x, x−j ) =


kb +

ka − kb

(1 − x − x−j + 2 x0)λ
if x ∈ ]x−j , x−j + 2 x0]

kb if x ∈ (−∞, x−j [
(4.33)c

where x represents the longitudinal displacement and ka, kb, λ, β1, and
β2 are the model parameters. Notably, ka is the tangent stiffness of
curve c+ [c−] at x = x+i [x = x−i ], kb is the tangent stiffness of curve c+

[c−] at x = x+j [x = x−j ], and the dimensionless parameter λ defines
the rate of change of the tangent stiffness from ka to kb for both curves
c+ and c−. Finally, the parameters β1 and β2 define the curvatures of
the upper and lower limiting curves.

Consequently, the expressions of the upper (lower) and the loading
(unloading) limiting curves can be computed by integrating Equa-
tion (4.33) to get

cu = β1 x3 + β2 x5 + kb x + f0, (4.34)a
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cl = β1 x3 + β2 x5 + kb x − f0, (4.34)b

and

c+ = β1 x3 + β2 x5 + kb x + f0

+ (ka − kb)

( (1 + x − x+j + 2 x0)
(1−λ)

1 − λ
− (1 + 2 x0)

(1−λ)

1 − λ

)
,

(4.35)a

c− = β1 x3 + β2 x5 + kb x − f0

+ (ka − kb)

( (1 − x + x−j + 2 x0)
(1−λ)

λ − 1
− (1 + 2 x0)

(1−λ)

λ − 1

)
,

(4.35)b

From a mathematical point of view, ka > kb, ka > 0, λ > 0, λ ̸= 1,
x0 > 0, and β1, β2 ∈ R. The influence of these parameters on the
hysteresis loop shape is shown in [134].

The internal model parameters x0 and f0 can be evaluated as follows

x0 =
1
2

[(
ka − kb

δk

) 1
λ

− 1
]

, (4.36)

f0 =
ka − kb

2

(
(1 + 2 x0)

(1−λ) − 1
1 − λ

)
, (4.37)

in which δk is the difference between the two values assumed by
the tangent stiffness at x+j [x−j ] and it may be set equal to 10−20, as
explained in [134].

Similarly, as shown in the previous Section, the history variable x+j
can be computed using Equation (4.25), i.e.

x+j = 1 + xξ + 2 x0 −
{

1 − λ

ka − kb

[
fξ − β1 x3

ξ − β2 x5
ξ − kb xξ

− f0 + (ka − kb)
(1 + 2 x0)

(1−λ)

1 − λ

]}( 1
1−λ ) (4.38)

On the other hand, the history variable x−j can be obtained in the
following way

x−j = −1 + xξ − 2 x0 +

{
λ − 1

ka − kb

[
fξ − β1 x3

ξ − β2 x5
ξ − kb xξ

+ f0 + (ka − kb)
(1 + 2 x0)

(1−λ)

λ − 1

]}( 1
1−λ ) (4.39)
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that trivially follows from Equation (4.26).

4.3 the energy-based design process for
the definition of the hysteretic model
parameters

The constitutive models’ parameters, namely ka, kb, x0 for the bilinear
model, and ka, kb, λ, β1, β2 for the algebraic one, can be calibrated from
experimental testing by an inverse identification strategy as shown
in [113]. However, this approach could be a hard task for the designer
since the experimental data of elastomeric isolators and WRIs are
not available on the manufacturers’ catalogues. Hence, the choice of
the mechanical characteristics of the above-mentioned isolators, and
consequently the isolator’s type and size, could require some iterations
in the design process.

This Section provides a design procedure able to predict the parame-
ters of bilinear and algebraic hysteretic models described in Section 4.2,
that are strictly related to mechanical characteristics of isolators. This
procedure is based on equating the area of the hysteresis loop with the
shape of an ellipse, which represents the energy dissipated through
the equivalent linear rate-dependent hysteretic model, and the area
of the hysteresis loop displayed by the generic isolator. In this way,
the hysteretic model parameters can be evaluated from data easily
available to the designer, namely the isolated system’s mass and period,
the admissible displacement of the elastomeric device and the viscous
damping factor.

4.3.1 Evaluation of the energy dissipated per cycle

The force-displacement relationship is an ellipse when the damping is
strictly viscous. The area of the ellipse represents the energy dissipated
and it is computed as follows

Ev = 2 π keff x2
max ξ , (4.40)

where keff is the effective secant stiffness of the peak-to-peak values in
the hysteresis loop, xmax is the maximum displacement, and ξ is the
viscous damping factor.
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Figure 4.12: The full area (a), the area below the top (b) and the bottom (c)
curve of the algebraic hysteretic model.

4.3.1.1 Energy dissipated by the bilinear model

The energy dissipated by the hysteresis loop in one cycle, simulated
through the bilinear model, can be trivially computed in closed form
by the following formula

Ea = 4 f0 (xmax − x0) . (4.41)

4.3.1.2 Energy dissipated by the algebraic model

The energy dissipated by the hysteresis loop in one cycle, simulated
through the algebraic model, can be evaluated in closed form, owing to
the fact that each curve of the hysteresis loop is defined by analytical
expressions. Indeed, the energy dissipated on the interval [−xmax, xmax]
is the difference between the area below the top and the bottom curve
of the loop, see e.g. Figure 4.12, by giving:

Eh = Et
h − Eb

h =

(∫ −xmax+2 x0

−xmax
c+ dx +

∫ xmax

−xmax+2 x0

cu dx

)

−
(∫ xmax−2 x0

−xmax
cl dx +

∫ xmax

xmax−2 x0

c− dx

)
,

(4.42)
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so that replacing Equation (4.34) and Equation (4.35) in the previous
equation, one obtains

Eh =
(1 + 2 x0)

−λ

(λ − 2) (λ − 1)

[
2 (ka − kb) (1 + 2 x0) (1 + 2 x0 (λ − 1))

− 2 (1 + 2 x0)
λ
(
ka − kb − 2 f0 xmax (λ − 2) (λ − 1)

)]
.

(4.43)

We infer from Equation (4.43), that the dissipated energy Eh does not
depend on the model parameters β1 and β2. In fact, the hysteresis loop
is symmetric, i.e. it is characterised by an odd function with respect
to the origin of the reference frame; consequently, the variation of
curvature of the limiting curves cu and cl does not affect the area of the
hysteresis loop.

The initial tangent stiffness ka can be expressed as a multiple of the
post yield tangent stiffness kb

ka = η kb, (4.44)

where η is the initial-to-post yield tangent stiffness ratio [90, 121]. For
instance, [90] recommended η ≈ 3 ÷ 6 for the HDBRs and η ≈ 10 ÷ 21
for the LRBs.

Replacing Equation (4.36), Equation (4.37) and Equation (4.44) in
Equation (4.43), we get

Eh =
2

(λ − 2)(λ − 1)

{
kb (η − 1)

(
xmax (λ − 2)− 1

)
+ λ

(
kb (η − 1)

λ

) 1
λ

[
(λ − 1)

(
kb (η − 1)

λ

) 1
λ

− (λ − 2) (xmax + 1)

]}
.

(4.45)

4.3.2 Evaluation of the bilinear model parameters

Exploiting Equation (4.44), the bilinear model’s constitutive parameters
to evaluate are only ka and x0. These parameters can be computed
by equating the energy dissipated by the bilinear hysteresis loop Ea
and the equivalent viscous one Ev, obtaining the following system of
equations

f0 =
Ev

4 (xmax − x0)
(4.46)a

kb = keff −
f0

xmax
(4.46)b
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ka = η kb (4.46)c

x0 =
f0

ka − kb
(4.46)d

i.e. a nonlinear system of equations given the dependence of f0 on the
unknowns ka and x0.

The effective secant stiffness keff in Equation (4.40) can be evaluated
from the properties of the seismically base-isolated rigid body, i.e.

keff =

(
2 π

Tbi

)2

(m + mb), (4.47)

in which Tbi and m + mb are the isolation period and the total mass,
respectively.

Such a system (4.46) can be solved in a closed form to get

f0 =
xmax keff

4 η
(η − 1)

(
2 + π ξ ∓ ∆√

η − 1

)
(4.48)a

kb = ± keff
4 η

(
2 + 2 η + ξ (π − π η) + ∆

√
η − 1

)
(4.48)b

ka = η kb (4.48)c

x0 =
xmax

4

(
2 − π ξ ∓ ∆√

η − 1

)
(4.48)d

where

∆ =
√

4 (η − 1) + π ξ (π ξ (η − 1)− 4 (η + 1)). (4.49)

4.3.3 Evaluation of the algebraic model parameters

The algebraic hysteretic model’s area depends on just two parameters,
namely kb and λ, once the initial-to-post yield tangent stiffness ratio η
and the admissible displacement of the elastomeric isolator xmax have
been established. These mechanical characteristics can be estimated
by means of a constrained optimisation problem obtained by equating
the energy dissipated by the hysteresis loop simulated through the
algebraic hysteretic model Eh and the equivalent viscous one Ev.

Let us define the objective function to be optimised ϵ as the relative
error between the energy dissipated by the equivalent viscous model
and the algebraic hysteretic model

ϵ =
|Ev − Eh|

|Ev|
. (4.50)
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The constrained optimisation problem consists of minimising the
function ϵ with respect to the variables kb and λ and in the presence
of constraints on those variables. Accordingly, the problem can be
expressed in the following form

min
kb ∈ R+ \ { 0 }

λ ∈ R+ \ { 0, 1 }

ϵ(kb, λ) subject to: kb = keff −
f0

xmax
, (4.51)

wherein the constraint kb = keff − f0/xmax is nonlinear given the de-
pendence of f0 on the unknowns kb and λ, see Equation (4.37).

The problem in Equation (4.51) has to be solved numerically. In this
study, we used the Interior Point technique, see e.g. [143] for a more
extensive description.

In order to provide the best estimate of the optimal solution, it is
necessary to define the initial points k0

b and λ0. A general criterion for
a correct choice of k0

b and λ0 does not exist. However, the extensive
numerical tests that have been carried out by the authors, starting with
randomly generated initial points, have proved that the values

k0
b = keff and λ0 =

log
(

keff (η − 1)
δk

)
log(1 + 2 xmax)

(4.52)

provide a good lower local minimum objective function value. The
order of magnitude of the relevant value at solution is equal to 10−10.

The expression of λ0 has been obtained by inverting Equation (4.36)
and setting k0

b = keff and x0 = xmax.





5 C O M P U TAT I O N A L A N A LY S I S

This section shows the results of some numerical analyses performed
on seismically isolated rigid bodies by means of the two kinds of elas-
tomeric isolators, i.e. LRBs and HDRBs, and WRIs. The strongly nonlin-
ear force-displacement relationship displayed by elastomeric isolators
and WRIs is simulated by the algebraic hysteretic model described in
Section 4.2. The constitutive model parameters of the hysteretic model
able to reproduce the behaviour of the elastomeric isolators is computed
by the energy-based design procedure described in Section 4.3. On the
other hand, the constitutive model parameters of WRIs are identified
in Shear and Roll directions from experimental hysteresis loops using
a user-friendly program named Parameter Identificator (ParIde) based
on the algorithm described by Sessa et al. [113]. This software identifies
the parameters of the uniaxial constitutive model by minimising the
mean-square error with respect to an experimental target response, see
[112].

The following analyses consider two collapse conditions that could
occur, namely overturning of the rigid body when tilt angle reaches
ninety degrees |θ| = π/2 [36, 63], and the failure of isolation devices
when the horizontal displacement reaches the admissible displacement
of the isolator |x| = xmax.

5.1 overturning spectra generated by
impulsive excitation

In this Section, we establish the performance of the two kinds of elas-
tomeric isolators and WRIs in the protection of a rigid body subjected
to an impulsive excitation by overturning spectra [35, 138, 149]. These
spectra are obtained for rigid bodies having the geometrical and dy-
namical properties presented in Table 5.1, where α, m, and mb are

Table 5.1: Properties of the rigid body used for generating the overturning
spectra.

α [deg] m [kg] mb [kg] ωr [rad s−1]

15 5 000 286.20 var.

83
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detailed in Section 2.3, whereas ωr =
√

m g R/JO is the fundamental
angular rocking frequency of the rigid body.

The system is subjected to an impulsive signal with a shape of a full
sine cycle ẍg = Aẍg sin(ωẍg t), where Aẍg is the magnitude, supposed
to be variable, and ωẍg is the angular frequency, supposed to be equal
to 2 π/0.5 rad s−1.

5.1.1 Elastomeric isolators

The evaluation of the algebraic model parameters for simulating the
elastomeric isolators’ hysteresis loops by means of the design proce-
dure defined in Section 4.3, requires the definition of the following
properties: the number of the elastomeric isolators, the isolation period,
the elastomeric device’s admissible displacement, the equivalent vis-
cous damping factor, and the initial-to-post yield stiffness ratio. The
selected values of properties for generating the overturning spectra are
given in Table 5.2.

The algebraic model parameters for three types of elastomeric iso-
lators, one LRB and two HDRBs, have been obtained by the design
procedure and are reported in Table 5.3. Since the parameters β1 and
β2 cannot be obtained from the design process, we assigned a value
that provides stiffening behaviour at a relatively large value of shear
strain.

The overturning spectra in Figure 5.1 are shown by reporting on
the abscissa the impulse-to-rigid body angular frequency ratio ωẍg /ωr,
whereas there is the impulse magnitude normalised with the static
value of the minimum overturning acceleration Aẍg /(g tan(α)) on
the ordinate axis. Consequently, the filled contour maps are obtained
by varying the impulse magnitude Aẍg and the fundamental angular
rocking frequency ωr of the rigid body supported on: (a) no isolation
system, (b) LRB, (c) HDRB1, and (d) HDRB2 isolation systems.

Colour maps depict the maximum absolute value of the tilt angle
|θmax|, showing:

• the safe area - represented by the dark blue colour - i.e. the area
in which the rigid body does not rock;

Table 5.2: Properties of the elastomeric isolators.

nd [-] Tbi [s] xmax [m] ξ [%] η [-]

LRB HDRB LRB HDRB
4 2 0.30 15 15 10 5
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• the overturning area - represented by the red colour - namely the
area where the rigid body overturns;

• the rocking area - represented by the colours between the dark
blue and red colour - i.e. the area in which the rigid body rocks
without overturning.

In addition, the spectra also consider the failure condition of the
elastomeric isolators, represented by the 45 degree parallel lines hatch
pattern, i.e. the area in which the elastomeric isolators fail due to the
fact that the maximum horizontal displacement of the system exceeds
the device’s admissible displacement.

The comparison of the above-mentioned spectra highlights the per-
formance of the elastomeric isolators. In fact, we can see that both
kinds of base isolation increase the safe area, increasing as well the
static value of the minimum overturning acceleration, in comparison to
the spectrum of the non-isolated rigid bodies. However, we can also
see that if the value of the impulse-to-rigid body angular frequency
ratio ωẍg /ωr is conveniently high, what typically happens for big-size
bodies or high frequencies pulses, the collapse condition of the device
will reduce the base-isolated rigid body’s safe area in comparison to
the non-isolated rigid body one.

The comparison between the spectra of the LRB and the HDRBs
isolation systems shows significant differences. The safe area of the LRB
isolation system’s spectrum is wider than the ones related to the two
HDRBs isolation system. The increases of the minimum overturning
acceleration of the two HDRBs isolation systems’ spectra are less than
those characterising the LRB isolation system. Furthermore, the rocking
area is prone to increase as the ratio ωẍg /ωr increases when the rigid
body is isolated by the HDRB1 as well as HDRB2 isolation systems.

From Figure 5.1c and Figure 5.1d we can compare the two HDRBs
isolation systems. Figure 5.1c refers to an algebraic model in which
the parameters β1 and β2 are equal to β1 = 50 × 103 N m−3 and
β2 = 50 × 103 N m−5, whereas in Figure 5.1d the parameters β1 and
β2 have been doubled, i.e. β1 = 100 × 103 N m−3 and β2 = 100 × 103

N m−5. This means that in the latter case, the stiffening behaviour

Table 5.3: The algebraic model parameters obtained by the energy-based de-
sign procedure.

kb [N m−1] λ [-] β1 [N m−3] β2 [N m−5]

LRB 1.15 × 104 109.37 0 0
HDRB1 1.14 × 104 46.70 50 × 103 50 × 103

HDRB2 1.14 × 104 46.70 100 × 103 100 × 103
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(a) No isolation system (b) LRB isolation system

(c) HDRB1 isolation system (d) HDRB2 isolation system

Figure 5.1: Overturning spectra for rigid bodies: without base isolation (a),
isolated by the LRB (b), HDRB1 (c), HDRB2 (d) isolation systems
defined in Table 5.3 and subjected to the full sine cycle. Dark
blue colour = safe area; red colour = overturning area; further
colours indicate rocking area; 45 degree parallel lines hatch pattern
indicates collapse area for elastomeric bearing.

provides a restoring force of the device greater (in absolute value) than
the former case, under the same displacement. Figure 5.1d shows that
raising of the parameters β1 and β2 has the effect to reduce the safe
area, given that the minimum overturning acceleration decreases and in
addition, the rocking area for high values of the ratio ωẍg /ωr increases.

As regards the failure of the devices, it can be seen that for small
values of the ratio ωẍg /ωr the HDRBs devices reach displacements
smaller than the LRB one. In addition, such displacements are prone
to decrease with increasing values of β1 and β2. In order to estab-
lish a numerical quantification of the device failure condition, we
denote with ALRB, AHDRB1 , and AHDRB2 the areas in which the LRB,
HDRB1, and HDRB2 devices fail, respectively. Therefore, the ratios
between the above-mentioned quantities are: ALRB/AHDRB1 ≈ 1.05,
ALRB/AHDRB2 ≈ 1.12, and AHDRB1 /AHDRB2 ≈ 1.06. Consequently,
the HDRB’s collapse area tends decrease as the stiffening behaviour
increases, what happens if the β parameters are increased. Notably,
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the HDRB1’s collapse area decreases by approximately the six per cent
when doubling the β parameters.

The extensive numerical applications carried out show that the elas-
tomeric bearings-base isolation increase the safe area in the overturning
spectrum, i.e. the area where the rigid body never rocks. The compari-
son between the LRB’s overturning spectrum and the HDRB one shows
that the former provides a safe area greater than the latter. Moreover,
if the value of the impulse-to-rigid body angular frequency ratio is
conveniently high, what typically happens for big-size bodies or high
frequencies pulses, the collapse condition of the device reduces the
base-isolated rigid body’s safe area in comparison to the non-isolated
rigid body one. Consequently, if we decide to isolate a rocking object,
it could collapse for the failure of the isolation device.

5.1.2 Wire Rope Isolators

Overturning spectra regarding the rigid bodies having the same geo-
metrical and dynamical properties listed in Table 5.1 and isolated by
four WRIs are discussed in this Section. The helical WRI chosen is the
PWHS16040 manufactured by Powerflex S.r.l (Limatola, Italy).

The dynamic behaviour of the tested WRI along the two principal
horizontal directions, namely Roll and Shear directions (see Figure 3.8),
is obtained during an experimental campaign performed at the Depart-
ment of Structures for Engineering and Architecture of the University
of Naples Federico II (Italy) by Vaiana et al. [136].

Hysteretic parameters able to reproduce the behaviour of the heli-
cal PWHS16040, namely ka, kb, λ, β1, and β2, are calibrated from the
experimental hysteresis loops by the in-house software ParIde [111]
that identifies the parameters of a uniaxial constitutive model by min-
imising the mean-square error with respect to an experimental target
response [112]. This user-friendly software is based on the algorithm
described by Sessa et al. [113].

The algebraic model’s hysteretic parameters used to reproduce the
behaviour in both directions, namely Shear and Roll, of the helical WRI
PWHS16040, are listed in Table 5.4.

Figure 5.2 shows overturning spectra for rigid bodies isolated by four
WRIs loaded in (a) Shear and (b) Roll directions and subjected to the

Table 5.4: Identified model parameters relevant to the experimental hysteresis
loops of WRI PWHS16040 tested in Shear and Roll directions.

Direction ka [N/m] kb [N/m] λ [-] β1 [N m−3] β2 [N m−5]

Shear 518 970.68 29 107.70 434.19 −1 167 052.18 34 053 603 138.58

Roll 427 786.00 29 995.10 313.45 923 367.84 16 872 030 903.28
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(a) Shear direction (b) Roll direction

Figure 5.2: The overturning spectra for rigid bodies isolated by four WRIs
loaded in (a) Shear and (b) Roll directions and subjected to the full
sine cycle. Dark blue colour = safe area; red colour = overturning
area; further colours indicate rocking area; 45 degree parallel lines
hatch pattern indicates collapse area for WRIs.

full sine cycle. The 45 degree parallel lines hatch pattern represents
the area in which the failure condition of the WRI PWHS16040 due to
exceeding the device’s admissible displacement equal to xmax = 0.07
m.

The comparison between Figure 5.2a and Figure 5.2b highlights that
the seismically base-isolated rigid body by means of WRI PWHS16040

in both directions, namely Shear and Roll directions, displays a quite
similar rocking behaviour. In both directions, one can see that the
minimum overturning acceleration is less than the static one regarding
the gravity acceleration if the ratio ωẍg /ωr is very small.

The failure area of the WRI loaded in the Shear direction is practically
negligible in comparison to the one regarding the Roll direction, as
shown in Figure 5.2. From a mathematical point of view, denoting with
AShear and ARoll the areas in which WRIs loaded in Shear and Roll
directions fail, respectively, ARoll is approximately 100 times greater
than AShear.

5.2 application of sculptures subjected
to seismic excitation

In this Section, the results obtained from some numerical analysis
applied to a Caryatid from the Erechtheion, the six of Michelangelo’s
sculptures, and finally, the Emperor Caracalla’s bust of the Farnese
collection are discussed. Each of them is subjected to a different earth-
quake. The effective performances of the proposed isolation systems
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α

(a) Initial configuration (b) Full-contact phase (c) Rocking phase

Figure 5.3: The Caryatid from the Erechtheion.

are investigated by comparing the isolated and non-isolated behaviour
of each above-mentioned sculpture providing the effectiveness of the
isolation systems.

5.2.1 Application of a Caryatid from the Erechtheion

In this Section, the results obtained from some nonlinear time history
analyses on the Caryatid from the Erechtheion (see Figure 5.3) modelled
as a symmetric rigid body supported on four LRBs are shown. The
friction between the statue and the isolated base is supposed to be high
enough to avoid the sliding.

The geometrical parameters of the model are the distance R between
the centre of gravity and the centre of rotation, and the slenderness α
measured as the tilt angle relative to the vertical axis when the body
is at rest. Their values are taken from the paper by Constantinides et
al. [26] who studied the seismic response of six statues belonging to a
collection shown at the University of California, Berkeley.

The Caryatid’s mass m, equal to 3 172.05 kg, is obtained supposing
that the density of Caryatid’s material is equal to 2 650 kg m−3. Hence,
the Caryatid’s fundamental angular rocking frequency is given by

ωr =

√
m g R

JO
≈ 2.60 rad s−1,

Finally, the mass of the isolated base mb is supposed to equal to 212
kg.
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(a) (b)

Figure 5.4: The East-West component of the Düzce earthquake acceleration
recorded on the 12

th of November 1999 (a); Non-isolated Caryatid’s
rocking response (b).

The East-West component of ground acceleration recorded at the
AI_011_DZC station during the Düzce earthquake (Turkey), that oc-
curred on the 12

th of November 1999, is used as seismic input. Such
an acceleration, displayed in Figure 5.4a, is taken from the Engineer-
ing Strong Motion (ESM) database [81]. The rocking response of the
non-isolated Caryatid subjected to the above-mentioned acceleration is
shown in Figure 5.4b. As a result, the Caryatid needs to be protected
since, due to the assumed excitation, it overturns after approximately
thirty-five seconds.

Firstly, the Caryatid’s rocking spectrum regarding the Düzce earth-
quake acceleration, see Figure 5.5a, is built. Tr refers to the rocking
period. We observe that the Caryatid is vulnerable to such an excitation
when its rocking period is less than four seconds. Hence, the base
isolation will be efficient if it increases the Caryatid rocking period
above four seconds.

Figure 5.5b shows the horizontal displacement spectrum referred
to the isolated Caryatid with LRBs devices by increasing the viscous
damping factor, where Tbi is the isolation period. This spectrum allows
one to infer the isolation period and the equivalent viscous damp-
ing factor providing a displacement less than the device’s maximum
allowed displacement, xmax.

The time histories of the rocking angle normalised with respect to
the Caryatid’s angle α and displacement of the base-isolated Caryatid
characterised by the properties shown in Table 5.5 are illustrated in
Figure 5.6a and Figure 5.6b, respectively. The adopted constitutive
parameters of the model shown in Table 5.5 are obtained from the
design procedure described in Section 4.3.
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(a) Caryatid’s Rocking spectrum (b) Horizontal displacement spectrum for the
isolated Caryatid with LRBs devices

Figure 5.5: Response spectra obtained from the Düzce earthquake acceleration.

(a) (b)

Figure 5.6: The rocking (a) and horizontal displacement (b) responses of the
seismically base-isolated Caryatid.

The results are very satisfactory, given that the base-isolated Cary-
atid does not rock, removing the possibility of damage due to colli-
sions. Moreover, the attained displacements are much smaller than the
device’s maximum assumed displacement whose value is shown in
Table 5.5.

5.2.2 Application of the six of Michelangelo’s sculptures

The results obtained from the analyses applied to the six of Michelan-
gelo’s sculptures located in the Galleria dei Prigioni at the Accademia
Gallery of Florence subjected to six different earthquakes are shown
and discussed in this Section.

The geometrical properties of such statues, listed in Table 5.6, have
been taken from [16] who performed the study of seismic assessment of
art objects in museums supposing that the statues were equivalent to a
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prismatic block, named equivalent block. Although the symmetric model
was quite reasonable for most of the statues, the above-mentioned
authors concluded that the equivalent block model overestimates the
stability capacity of the artefacts compared to a more realistic model
accounting for the eccentricities of the centre of mass with respect to
the centres of rotations (asymmetric model).

The masses listed in Table 5.6 are obtained supposing that the density
of each statue was 2 650 kg m−3.

Nonlinear time history analyses have been conducted supposing that
the mass of the isolated base mb is the one showed in Table 5.1 and
assuming the following seismic inputs:

• the Strike Parallel direction of the horizontal ground acceleration
recorded at the Jensen Filter Plant station during the Northridge
earthquake of January 17, 1994;

• the 000 component of the horizontal ground acceleration recorded
at the Gilroy Array #1 station during the Loma Prieta earthquake
of October 18, 1989;

• the 180 component of the horizontal ground acceleration recorded
at the Geotech. Investig. Center station during the San Salvador
earthquake of October 10, 1986;

• the East-West component of the horizontal ground acceleration
recorded at the Gemona station during the Friuli earthquake of
Semptember 15, 1976;

• the North-South component of the horizontal ground acceleration
recorded at the Mire station during the Emila earthquake of May
5, 2012;

• the North-South component of the horizontal ground acceleration
recorded at the Domo station during the Central Italy earthquake
of October 6, 2016.

First of all, we investigated the rocking behaviour of the statues
without the base isolation. Figure 5.7 displays the rocking angle θ
normalised with respect to the angle α versus the time of each statue
subjected to the Northridge earthquake. All statues rock and two of
these, namely San Matteo and Prigione che si Sveglia, overturn. The same
conclusions are derived from the Central Italy earthquake. All statues

Table 5.5: LRBs’ properties and the model constitutive parameters of the model

nd [-] Tbi [s] xmax [m] ξ [%] ka [N m−1] kb [N m−1] λ [-]

4 2 0.30 30 6.22 × 104 6.22 × 103 44.69
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rock without overturning when they are subjected to the Loma Prieta
as well as the San Salvador earthquakes. Only San Matteo overturns
due to Friuli earthquake, while the remaining sculptures rock. The
Emilia earthquake does not cause overturning of the sculptures, even
though the San Matteo and Prigione che si Sveglia statues rock. For
completeness we show in Figure 5.8 the results obtained for the San
Matteo statue subjected to the above-mentioned seismic inputs. In any
case, in addition to overturning, rocking is an unsatisfactory behaviour
because of the possible damages that the collisions cause with the
pedestal [39, 47, 70]. Consequently, all the statues need to be protected
from seismic excitations.

Figure 5.9 shows the Full-Contact spectra regarding the seismically
base-isolated rigid body with four LRBs, whose properties are listed in
Table 5.7, and subjected to the six seismic excitations. The spectra are
referred to one value of the viscous damping factor ξ, namely 15% and
depicts the evolution of |xmax| with respect to the isolation period Tbi.
The other properties of the LRBs, i.e. the admissible displacement, and
the initial-to-post yield stiffness ratio are reported in Table 5.2.

We can see that lower values of the horizontal displacement are
reached by choosing a value of the isolation period ranging from
approximately 2.5 to 5.3 seconds. We chose Tbi = 3.7 seconds for
further analyses (see Table 5.7).

The hysteretic model parameters have been obtained for each statue
according to the above detailed design procedure and are reported in
Table 5.8 where the parameters β1 and β2 have been omitted since they
are null for the LRBs isolation system. The numerical results show that
both collapse conditions, namely overturning of the statues and failure
of the devices, are never attained. Moreover, all statues never rock
and this avoids the possibility of damage due to impacts. For brevity,
in Figure 5.10 we reported just the time-displacement relationships

Table 5.6: The geometrical properties (see Figure 2.6) of the equivalent blocks
of the six of Michelangelo’s sculptures located in the Galleria dei
Prigioni at the Accademia Gallery of Florence [16].

b [m] h [m] m [kg]

San Matteo 0.30 1.36 3 287
Pietà da Palestrina 0.39 1.26 7 084
Prigione che si Sveglia 0.32 1.41 5 644
Prigione il Giovane 0.36 1.28 4 005
Prigione Barbuto 0.37 1.29 4 655
Prigione Atlante 0.45 1.39 7 691



94 computational analysis

(a) San Matteo (b) Pietà da Palestrina (c) Prigione che si Sveglia

(d) Prigione il Giovane (e) Prigione Barbuto (f ) Prigione Atlante

Figure 5.7: Rocking response of the Michelangelo’s sculptures located in the
Galleria dei Prigioni at the Accademia Gallery of Florence sub-
jected to the horizontal ground acceleration recordered during
the Northridge earthquake (1994).

concerning the six seismic excitations considered since the time-rocking
angle relationships are always null for every statue.

The same analyses have been carried out considering the HDRBs
devices as an isolation system. Table 5.9 presents the devices’ properties
providing the same results, in terms of time-rocking angle relationship,
of the LRB isolation. The related hysteretic model parameters obtained
by the design procedure are listed in Table 5.10. For the sake of simplic-
ity, we chose the same β1 and β2 parameters for all statues, although
an ad hoc calibration for each statue would be needed in order to have
stiffening behaviour at a relative large values of shear strain.

Both the LRB and the HDRB satisfied the assumed ultimate limit
states, i.e. no overturning, no breaking of the devices, and no rocking.
Especially, the HDRB device adopted to isolate the statues turned out
to be less damped and more deformable than the LRB.

Table 5.7: The properties considered to evaluate the algebraic model parame-
ters for the isolation of the Michelangelo’s sculptures with the LRBs.

nd [-] Tbi [s] xmax [m] ξ [%] η [-]

4 3.7 0.30 15 10
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(a) Northridge (b) Loma Prieta (c) San Salvador

(d) Friuli (e) Emilia (f ) Central Italy

Figure 5.8: Rocking response of the San Matteo statue located in the Galleria dei
Prigioni at the Accademia Gallery of Florence subjected to the: (a)
Northridge, (b) Loma Prieta, (c) San Salvador, (d) Friuli, (e) Emilia,
and (f) Central Italy seismic excitations.

5.2.3 Application of the Emperor Caracalla’s bust

This Section illustrates the advantages of seismic isolation by means
of helical Wire Rope Isolators (WRIs) when adopted to protect the
Emperor Caracalla’s bust of the Farnese collection (Naples, Italy).

The fundamental rigid body properties are the mass m = 241.15 kg,
the distance R ≈ 0.69 m, and the angle α ≈ 0.22 rad, see Figure 5.11.
These properties has been computed by a three-dimensional computer
graphic model taken from the platform Scan The World. Subsequently,
the fundamental angular rocking frequency of Emperor Caracalla’s
bust is

ωr =

√
m g R

JO
≈ 3.26 rad s−1

We assumed the following hypotheses: the sliding motion between
the bust and the isolated base is negligible, while the rotation as well
as vertical movement of the pedestal is avoided. The former hypothesis
can be verified supposing either that the friction between the statue
and the isolated base is very high or the existence of a clip constraining
block translation movements. Instead, combining the helical WRIs with
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Figure 5.9: Full-Contact spectra referring to the seismically base-isolated rigid
body with four LRBs whose admissible displacement, viscous
damping factor and initial-to-post yield stiffness ratio are listed in
Table 5.7.

slider constraints, the rotation and vertical movements of the pedestal
are avoided, see Figure 5.11.

The typology of WRI chosen to protect Emperor Caracalla’s bust
is the PWHS16040, the same shown in Section 5.1.2. We selected the
PWHS16040 because of its high energy dissipation properties, as shown
during the experimental campaign, allowing one to use the minimum
number of isolators to protect the art object.

The algebraic model’s hysteretic parameters used to reproduce the
behaviour in both directions, namely Shear and Roll, of the helical WRI
PWHS16040, are listed in Table 5.4.

The East-West and the vertical components of ground accelerations
recorded at the Sturno station during the Irpinia earthquake (Italy),
that occurred on the 23

rd of November 1980, are used as seismic inputs.

Table 5.8: The algebraic model parameters obtained from the LRBs’ properties
listed in Table 5.7 by means of the energy-based design procedure.

kb [N m−1] λ [-]

San Matteo 2.26 × 103 109.37
Pietà da Palestrina 4.67 × 103 109.37
Prigione che si Sveglia 3.76 × 103 109.37
Prigione il Giovane 2.72 × 103 109.37
Prigione Barbuto 3.13 × 103 109.37
Prigione Atlante 5.05 × 103 109.37
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(a) Northridge (b) Loma Prieta (c) San Salvador

(d) Friuli (e) Emilia (f ) Central Italy

Figure 5.10: The displacement time histories of the seismically base-isolated
rigid body with the LRBs isolation system, whose properties are
listed in Table 5.7, subjected to the: (a) Northridge, (b) Loma Prieta,
(c) San Salvador, (d) Friuli, (e) Emilia, and (f) Central Italy seismic
excitations.

These accelerations, displayed in Figure 5.12a and Figure 5.12b, have
been taken from the Engineering Strong Motion (ESM) database.

Figure 5.12c depicts the rocking response of the non-isolated Emperor
Caracalla’s bust subjected to the above-mentioned accelerations. As
a consequence, the Emperor Caracalla’s bust needs to be protected,
since due to the assumed excitations, it overturns after approximately
twenty-two seconds.

Figure 5.13 and Figure 5.14 illustrate the time histories of the rocking
angle (a) and displacement (b) of Emperor Caracalla’s bust isolated by
three helical WRIs disposed along the Shear and Roll directions, respec-
tively. The results in both directions are satisfactory, since the rocking
angle and the attained displacement are very small. However, the WRIs
located in the Shear direction provide the best behaviour because of

Table 5.9: The properties considered to evaluate the algebraic model param-
eters for the isolation of the Michelangelo’s sculptures with the
HDRBs.

nd [-] Tbi [s] xmax [m] ξ [%] η [-]

4 3.7 0.35 15 5
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α

(a) Initial configuration (b) Full-contact phase (c) Rocking phase

Figure 5.11: Emperor Caracalla’s bust of the Farnese collection (Naples, Italy).

significant energy dissipation due to the device’s deformability in that
direction.

We performed further analyses selecting seven ground accelerations
compatible with the design spectra defined by the Italian Building
Code. The seven records, listed in Tab. 5.11, have been obtained by
using the REXEL software (Iervolino et al. [61]) regarding the site’s
National Archaeological Museum of Naples, in which there is the
Farnese collection, and the limit state of the Italian code-based spectrum.
The records have been found in specific ranges of moment magnitude
Mw, i.e. [5, 7], and epicentral distance R, that is [0 km, 30 km]. In
particular, we have chosen the period range [0.15 s, 4.0 s] in which the
seven records are made compatible, to the average, with the design
spectrum.

Table 5.10: The algebraic model parameters obtained from the HDRBs’ prop-
erties listed in Table 5.9 by means of the energy-based design
procedure.

kb [N m−1] λ [-] β1 [N m−3] β2 [N m−5]

San Matteo 2250 40.16 1 × 104 1 × 104

Pietà da Palestrina 4640 40.16 1 × 104 1 × 104

Prigione che si Sveglia 3730 40.16 1 × 104 1 × 104

Prigione il Giovane 2700 40.16 1 × 104 1 × 104

Prigione Barbuto 3110 40.16 1 × 104 1 × 104

Prigione Atlante 5020 40.16 1 × 104 1 × 104
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(a) The East-West component of
the Irpinia earthquake (Italy)

(b) The vertical component of the
Irpinia earthquake (Italy)

(c) Rocking response of non-
isolated Emperor Cara-
calla’s bust

Figure 5.12: Numerical results of non-isolated Emperor Caracalla’s bust by
using the horizontal and vertical components of the Irpinia earth-
quake (Italy).

(a) (b)

Figure 5.13: The rocking (a) and horizontal displacement (b) responses of the
seismically base-isolated Emperor Caracalla’s bust endowed with
WRIs loaded in the in Shear direction.

For completeness, we have also carried out a one-dimensional analy-
sis of the local seismic response. In this way, we can take into account
the change of magnitude and frequency content due to the propagation
of waves from bedrock to surface. Firstly, we used the SeismoSignal
software (see References) to filter and baseline-correct the seven records
provided by REXEL. The Butterworth filter with a bandpass between
0.10 and 25 Hz was chosen accordingly.

Soil properties such as unit weight, thickness and velocity of the sec-
ondary waves of each ground layer, have been taken from a geological
survey regarding the requalification of the ex Civil Registry located in
Dante Square (Naples). Soil type, soil profile and acceleration records
regarding bedrock have been used as input to STRATA (see References),
the software adopted to evaluate the local seismic response.

Fig. 5.15 shows the horizontal displacement response of the isolated
Emperor Caracalla’s bust by three helical WRIs disposed along the
Shear (see Fig. 5.15(a)) and Roll (see Fig. 5.15(b)) directions, respectively.
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(a) (b)

Figure 5.14: The rocking (a) and horizontal displacement (b) responses of
the seismically base-isolated Emperor Caracalla’s bust by WRIs
loaded in the Roll direction.

The rocking responses have been omitted because they are negligible.
The results show that the lowest displacements are attained when the
WRIs are loaded along the Shear direction, as shown in the previous
result.

In conclusion, the efficiency of the proposed isolation system can be
assessed independently of the frequency contents of the earthquake due
to the rate-independent nature of the WRIs in the small displacements
range, a property thoroughly proved by the experimental studies con-
ducted by Demetriades et al. [34] and Alessandri et al. [4]. In addition,
the proposed isolation system works satisfactorily even if the magni-
tude and the frequency content of the ground acceleration change due
to seismic site effects.
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(a) Shear direction

(b) Roll direction

Figure 5.15: The horizontal displacements responses of the seismically base-
isolated Emperor Caracalla’s bust by WRIs loaded in the Shear (a)
and Roll (b) directions.



6 C O N C L U S I O N S A N D
P E R S P E C T I V E S

The present dissertation has addressed the rocking behaviour of rigid
bodies, the seismic protection of statues standing on base isolation
made by elastomeric isolators such as Lead Rubber Bearings and High
Damping Rubber Bearings, and special devices named Wire Rope
Isolators.

The complex hysteretic behaviour displayed by such devices has
been modelled by a uniaxial phenomenological model that offers many
advantages.

First, the model is based on a small set of parameters, directly associ-
ated with the mechanical properties of the device’s hysteretic behaviour
to be simulated.

Second, the model’s algebraic nature and the straight forward me-
chanical interpretation of the model parameters make it possible to
define a new design procedure that allows one to obtain the hysteretic
model parameters starting from easily available properties, i.e. the mass
and the period of the system to isolate, the number, admissible dis-
placement, viscous damping factor, and the initial-to-post yield tangent
stiffness ratio of the isolator. This design process exploits an energetic
approach based on an equivalent viscous system.

Last, but not least, the model’s validation and its accuracy have been
successfully experienced in several papers [133–135].

The extensive numerical applications carried out show that the elas-
tomeric bearings-base isolation increase the safe area in the overturning
spectrum, i.e. the area where the rigid body never rocks. The compari-
son between the LRB’s overturning spectrum and the HDRB one shows
that the former provides a safe area greater than the one associated
with the latter. Moreover, if the value of the impulse-to-rigid body an-
gular frequency ratio is conveniently high, what typically happens for
big-size bodies or high frequencies pulses, the collapse condition of the
device reduces the base-isolated rigid body’s safe area in comparison to
the non-isolated rigid body one. Consequently, if one decides to isolate
a rocking object, it could collapse for the failure of the isolation device.
In addition, the collapse area for both the LRB and the two HDRBs
isolators have been compared.

Numerical assessments have been carried out on a Caryatid from the
Erechtheion subjected to the 1999 Düzce earthquake (Turkey), with and
without isolation. After approximately thirty-five seconds the statue
without isolation overturns. Consequently, a base isolation supported

103
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on four Lead Rubber Bearings as seismic protection system has been
considered. Firstly, the rocking and horizontal displacement response
spectra of the statue subjected to seismic excitation has been computed
in order to establish the isolation period and the device’s maximum
displacement to exploit. The results have shown that the Lead Rubber
Bearings isolation system not only avoids overturning of the Caryatid,
but it completely removes the rocking motion; hence, any kind of dam-
age due to collision is avoided. Moreover, the horizontal displacements
attained by the base-isolated Caryatid are less than the maximum
displacement allowed for the adopted device.

The dissertation also includes the results referred to six of Michelan-
gelo’s sculptures located in the Galleria dei Prigioni at the Accademia
Gallery of Florence subjected to six earthquakes with pulse-like be-
haviour. The Full-Contact spectrum of the isolated system under seismic
excitations was computed to choose the isolation period, admissible
displacement and equivalent viscous damping of the devices. In this
way, it has been possible to apply the design procedure in order to
obtain the mechanical properties of the devices for each statue. Both
the LRB and the HDRB satisfied the assumed ultimate limit states,
i.e. absence of overturning, breaking of the devices, and of rocking.
Especially, the HDRB device adopted to isolate the statues turned out
to be less damped and more deformable than the LRB.

Finally, the rocking behaviour of the Emperor Caracalla’s bust of the
Farnese collection (Naples, Italy) subjected to the 1980 Irpinia earth-
quake (Italy) has been investigated. Base isolation allowed by three
helical wire rope isolators acting as seismic protection system has been
considered since the stability of the bust is unable to resist the oscilla-
tions induced by the considered earthquake. The constitutive model
parameters of the adopted device, namely the PWHS 16040, have been
identified in both directions (Shear and Roll) from experimental hystere-
sis loops by means of the in-house software Parameter Identification
(ParIde). Numerical results have shown that the base isolation with
three helical wire ropes in Shear and Roll directions avoids overturning
and provides small rocking angle and displacement.

Future developments of the research will address the adoption of a
statistical approach to design these sensitive objects correctly. Actually,
several studies have highlighted the significant record-to-record vari-
ability associated with rocking response (see e.g. Klaboe et al. [69] and
Bachmann et al. [11]).

In addition, considering earthquakes with pulse-like behaviour, that
represent the most dangerous actions for freestanding objects, a per-
spective of this study will be the use of overturning spectra to under-
stand the effective equilibrium state of the rocking art object. Specially,
each set of records compatible, in the average, with the design spectra
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according to design codes can be transformed in a wavelet that is a
rapidly decaying, wave-like oscillation that has zero mean.

Unlike sinusoids, which extend to infinity, a wavelet exists for a
finite duration. Consequently, the wavelets transform decomposes the
seismic signal as the sum of wavelets that are well localised in time and
frequency. In this way, an overturning spectrum can be computed for
each wavelet in order to establish the equilibrium state of the rocking
art object.

This can alleviate the shortcomings of the classical Fourier transform
that using sine waves to represent functions is not able to suitably
represent those functions that are not localised in time or space.





B I B L I O G R A P H Y

[1] M. Agbabian, W. Ginell, S. Masri, and R. Nigbor, “Evaluation of
earthquake damage mitigation methods for museum contents,”
Studies in Conservation, vol. 36, pp. 111–120, 1991. doi: https:
//doi.org/10.2307/1506335.

[2] M. Agbabian, S. Masri, R. Nigbor, and G. C. Institute, Evaluation
of Seismic Mitigation Measures for Art Objects Getty Seismic Adobe
Project, ser. GCI scientific program reports. J. Paul Getty Trust,
1990, isbn: 9780892365876.

[3] S. Alessandri, R. Giannini, F. Paolacci, M. Amoretti, and A.
Freddo, “Seismic retrofitting of an hv circuit breaker using base
isolation with wire ropes. part 2: Shaking-table test validation,”
Engineering Structures, vol. 98, pp. 263–274, 2015. doi: https:
//doi.org/10.1016/j.engstruct.2015.03.031.

[4] S. Alessandri, R. Giannini, F. Paolacci, and M. Malena, “Seismic
retrofitting of an hv circuit breaker using base isolation with
wire ropes. part 1: Preliminary tests and analyses,” Engineering
Structures, vol. 98, pp. 251–262, 2015. doi: https://doi.org/10.
1016/j.engstruct.2015.03.032.

[5] M. Antonelli, B. Carboni, W. Lacarbonara, D. Bernardini, and
T. Kalmàr-Nagy, “Quantifying rate-dependence of a nonlinear
hysteretic device,” in Nonlinear Dynamics of Structures, Systems
and Devices. 2020, pp. 347–355. doi: https://doi.org/10.1007/
978-3-030-34713-0_35.

[6] M. Aslam, W. G. Godden, and D. T. Scalise, “Earthquake rock-
ing response of rigid bodies,” Prepared for the Department of
Energy under Contract W-7405-ENG-48, EERC 2003-07, 1978.

[7] G. Augusti, M. Ciampoli, and L. Airoldi, “Mitigation of seismic
risk for museum contents an introductory investigation,” in
Proceedings of 10th World Conference on Earthquake Engineering
(10WCEE), Madrid, Spain, Jul. 1992, pp. 5995–6000.

[8] T. T. Baber and M. N. Noori, “Random vibration of degrading,
pinching systems,” Journal of Engineering Mechanics, vol. 111,
no. 8, pp. 1010–1026, 1985. doi: https://doi.org/10.1061/
(ASCE)0733-9399(1985)111:8(1010).

107

https://doi.org/https://doi.org/10.2307/1506335
https://doi.org/https://doi.org/10.2307/1506335
https://doi.org/https://doi.org/10.1016/j.engstruct.2015.03.031
https://doi.org/https://doi.org/10.1016/j.engstruct.2015.03.031
https://doi.org/https://doi.org/10.1016/j.engstruct.2015.03.032
https://doi.org/https://doi.org/10.1016/j.engstruct.2015.03.032
https://doi.org/https://doi.org/10.1007/978-3-030-34713-0_35
https://doi.org/https://doi.org/10.1007/978-3-030-34713-0_35
https://doi.org/https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1010)
https://doi.org/https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1010)


108 bibliography

[9] T. T. Baber and M. N. Noori, “Modeling general hysteresis
behavior and random vibration application,” Journal of Vibration,
Acoustics, Stress, and Reliability in Design, vol. 108, no. 4, pp. 411–
420, 1986. doi: https://doi.org/10.1115/1.3269364.

[10] T. T. Baber and Y.-K. Wen, “Random vibration of hysteretic,
degrading systems,” Journal of the Engineering Mechanics Division,
vol. 107, no. 6, pp. 1069–1087, 1981. doi: https://doi.org/10.
1061/JMCEA3.0002768.

[11] J. A. Bachmann, M. Strand, M. F. Vassiliou, M. Broccardo, and
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