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Abstract 

Prioritizing risks originating from different hazards in a region of interest is 

crucial to enable decisions on appropriate and cost-effective mitigation or 

preparedness measures. However, the performing of multi-risk assessment   is a 

difficult task, mostly due to different methodologies and spatial/temporal 

resolutions adopted in the quantification of single risks. Moreover, evidence 

indicates that people in vulnerable situation may be disproportionately affected. 

Poverty and inequality have been officially recognized as risk drivers and the 

interest of governments and local stakeholders in understanding the influence of 

socio-economic factors on vulnerability to hazards notably increased during last 

years. However, conventional risk assessments typically fail to account for social 

vulnerability. 

This study proposes a framework for integrating both socio-economic and 

physical factors in multi-risk analysis for overcoming the above limitations. A 

Risk Index (RI) was developed based on the combination of individual 

standardized indicators for hazard, physical and social vulnerability and exposure 

inputs. As a matter of fact, index-based approaches are the most suitable ones for 

measuring multidimensional concepts which cannot be captured by a single 

indicator. Indicators selected are combined defining suitable weights that may 

explicitly reflect stakeholder priorities in policymaking. This approach allows to 

rank regions exposed to multiple hazards and to identify multi-risk hotspots that 

more needs disaster risk reduction strategies, also accounting for socio-economic 

aspects. Hence, it may be a useful support for prioritizing area at risk in decision-

making process, that is one the main challenges in Disaster Risk Reduction. The 

use of the proposed multi-risk index for earthquake and flood risk is 

demonstrated across the entire country of Italy, selecting the municipality as scale 

of analysis and residential buildings and population as assets at risk. This index-

based approach allows to compare and rank those hazards in the country, leading 

to the identification of the regions where earthquakes/floods impacts are likely to 

be very high, due to high hazard level, poor performance of asset exposed to such 

hazard as well as weak capacity of people to adapt and respond to a natural 
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disaster. Exploiting the aforementioned index, a risk map of the Italian territory 

is obtained and the hotspots that should be prioritized in disaster risk reduction 

policies are identified. The application will also show that the involvement of 

social aspects in risk analysis may play a crucial role in the identification of such 

hotspots, underlying how ignoring social aspects in risk assessment may affect 

the effectiveness of disaster risk reduction plans. Sensitivity analyses are also 

performed in order to understand how multi-risk hotspots can change as a 

function of the relative importance given to a single RI component, i.e., how 

stakeholder priorities can affect the results. 

For a proper quantification of expected economic losses, that are crucial for 

preparedness purposes, a quantitative risk assessment is also performed. The RI 

allows to identify the municipalities with highest risk score in a country. On the 

other hand, a detailed risk analysis is required to compare perils in terms of 

economic losses at municipal and sub-municipal scales. Through such analysis it 

is possible to identify the district with higher risk, both in terms of economic 

losses and social vulnerability, and to disaggregate losses on several social 

groups. For instance, low-income people may tend to experience the largest 

losses. Through detailed risk analysis the effectiveness of some mitigation 

strategies can also be estimated. The quantification of loss reduction associated 

to such strategies allows the definition of the most suitable mitigation options, 

also accounting for different social groups. Thus, for example, some mitigation 

policies may be particularly notable for the lowest income population class. To 

demonstrate the usefulness of such detailed assessment, among Italian 

municipality, the one with highest risk score is selected for performing a 

quantitative risk assessment at sub-municipal scale. The analysis show that low-

income people tend to experience the largest expected annual losses per square 

meter both for earthquake and flood events. For the specific case study, risk 

assessment is repeated twice with some modelling modifications to evaluate the 

effectiveness of reducing expected losses through some disaster risk reduction 

strategies and related policies. The results show that the reduction of the expected 

losses thanks to the adoption such policies is particularly notable for the lowest 

income class. These types of analyses are likely to represent a helpful tool for 
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decision-makers, enabling them to select appropriate, cost-effective mitigation or 

preparedness measures that directly target those most in need.  

Keywords: risk index, multi-risk, social vulnerability, disaster risk management, 

disaster risk reduction 
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Sintesi in lingua italiana 

L’analisi ed il confronto dei rischi derivanti da diversi pericoli naturali che 

possono interessare una medesima area è fondamentale per consentire la 

definizione di adeguate misure di mitigazione e di adattamento e per una efficace 

gestione delle emergenze. Tuttavia, l’analisi multirischio è solitamente 

complessa, soprattutto a causa delle diverse metodologie e risoluzioni 

spazio/temporali adottate nella quantificazione dei singoli rischi. Inoltre, gli 

eventi passati hanno mostrato che coloro che si trovano in situazioni di disagio e 

incertezza sociale ed economica tendono ad essere colpite in modo 

sproporzionato degli impatti di un disastro naturale. La povertà e la 

disuguaglianza sono state ufficialmente riconosciute come fattori di rischio e 

l'interesse dei governi e delle autorità locali nel comprendere come fattori socio-

economici possano influenzare la vulnerabilità ai disastri naturali è notevolmente 

aumentato negli ultimi anni. Tuttavia, le analisi di rischio convenzionali 

generalmente non tengono conto di tali aspetti. 

Questo studio propone un approccio basato su indicatori per integrare fattori di 

vulnerabilità socioeconomica e fisica nell'analisi multi-rischio, con l’obiettivo di 

superare i limiti sopra citati. È definito un indice di rischio (RI) sulla base della 

combinazione di singoli indicatori standardizzati rappresentativi della 

pericolosità di un territorio, in relazione ad uno o più hazard, e della vulnerabilità 

sia fisica che sociale dei beni e della popolazione esposta. Gli approcci basati su 

indici sono infatti i più adatti per misurare concetti multidimensionali che non 

possono essere catturati da un singolo indicatore. Gli indicatori selezionati 

vengono combinati definendo adeguatamente dei pesi che possono 

esplicitamente riflettere le priorità delle parti interessate nella definizione delle 

politiche di adattamento/mitigazione. Questo approccio consente di classificare 

le regioni esposte a molteplici pericoli e di identificare gli hotspots multirischio, 

ossia le aree che maggiormente necessitano di strategie di riduzione del rischio 

catastrofi, in quanto caratterizzate da un’elevata vulnerabilità non solo fisica ma 

anche sociale. Pertanto, lo strumenti proposto può essere un utile supporto per 

prioritizzare le aree maggiormente esposte a rischio, che è una delle principali 

sfide nei processi decisionali di gestione dei disastri naturali. Viene mostrato 

l'utilizzo dell'indice multirischio proposto per il rischio sismico e alluvionale su 
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tutto il territorio italiano, selezionando il comune come scala di analisi e gli 

edifici residenziali e la popolazione come beni esposti a rischio. Questo 

approccio basato su indici consente di confrontare e classificare tali pericoli nel 

paese, portando all'identificazione delle regioni in cui la probabilità di avere 

impatti significativi a seguito di terremoti/alluvioni è particolarmente elevata, a 

causa dell'elevato livello di pericolo, delle scarse prestazioni dei beni esposti 

nonché la ridotta capacità degli abitanti di adattarsi e rispondere a un tale disastro 

naturale. Sfruttando il suddetto indice si ottiene una mappa del rischio del 

territorio italiano e si individuano gli hotspots a cui dare priorità nelle politiche 

di riduzione del rischio disastri. L'applicazione mostrerà che considerare gli 

aspetti socio-economici nelle analisi di rischio può modificare anche in maniera 

significativa l'identificazione di tali hotspot, sottolineando come ignorare gli 

aspetti sociali nella valutazione del rischio possa influenzare l'efficacia dei piani 

di riduzione del rischio di catastrofi. Vengono inoltre eseguite delle analisi di 

sensitività per comprendere come gli hotspot multi-rischio possono cambiare in 

funzione dell'importanza relativa data a un singolo componente RI, ovvero come 

le priorità degli stakeholder possono influenzare i risultati. 

Per una corretta quantificazione delle perdite economiche attese, determinanti ai 

fini della definizione di strategie di adattamento e mitigazione, viene effettuata 

anche una valutazione quantitativa del rischio. Il RI consente di identificare i 

comuni con il punteggio di rischio più elevato in Italia. Per tali comuni, attraverso 

un’analisi dettaglia è possibile identificare il distretto che presenta il rischio più 

elevato, sia in termini di perdite economiche che di vulnerabilità sociale, nonché 

disaggregare le perdite economiche per i diversi gruppi sociali. Ad esempio, 

infatti, le persone a basso reddito tendono a subire le perdite maggiori. Attraverso 

tali analisi è inoltre possibile stimare l'efficacia di alcune strategie di mitigazione. 

La quantificazione della riduzione delle perdite associata a tali strategie consente 

di definire le opzioni di mitigazione più idonee, tenendo conto anche delle 

caratteristiche socio-economiche della popolazione. Così, ad esempio, è possibile 

selezionare delle politiche di mitigazione idonee per la classe di popolazione a 

reddito più basso. Per dimostrare l'utilità di tale valutazione dettagliata, tra i 

comuni italiani, viene selezionato quello con il punteggio di rischio più elevato 

per l'esecuzione di una valutazione quantitativa del rischio a scala sub-comunale. 
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L'analisi mostra che le persone a basso reddito tendono a subire le maggiori 

perdite annuali previste per metro quadrato sia per eventi sismici che alluvionali. 

Per il caso di studio specifico, la valutazione del rischio viene ripetuta due volte 

con alcune modifiche alla modellazione per valutare l'efficacia della riduzione 

delle perdite attese attraverso alcune strategie di riduzione del rischio di catastrofi 

e relative politiche. I risultati mostrano che la riduzione delle perdite attese grazie 

all'adozione di tali polizze è particolarmente rilevante per la classe di reddito più 

bassa. È probabile che questi tipi di analisi rappresentino uno strumento utile per 

i responsabili delle decisioni, consentendo loro di selezionare misure di 

mitigazione o di preparazione appropriate ed economiche che si rivolgono 

direttamente ai più bisognosi. 

Parole chiave: indice di rischio, multirischio, vulnerabilità sociale, gestione 

rischio catastrofi, riduzione del rischio 
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1.Introduction 

1.1. Disaster Risk Management: where we are and where 

we need to be 

A natural hazard is defined as natural process or phenomenon that may cause 

loss of life, injury or other health impacts, property damage, loss of 

livelihoods and services, social and economic disruption, or environmental 

damage (UNISDR, 2009). They may be classified in different ways, for 

instance according to the main origin of the hazard in geophysical, 

meteorological, hydrological, climatological and biological (Guha-Sapir, et 

al., 2016). For example, we refer to geophysical or geological hazards as 

those hazards originating from solid earth, such as earthquakes or volcanic 

eruptions; hydrogeological hazards, such as floods, are caused by the 

occurrence of movement, and distribution of surface and subsurface 

freshwater and saltwater, while events like storms are considered 

meteorological hazards, caused by micro- to meso-scale extreme weather and 

atmospheric conditions.  

1. During past decades, natural hazards have caused devastation to many 

communities throughout the world. One of the most notorious events is the 

2004 Indian Ocean earthquake and tsunami, that involved 15 different 

countries and caused more 220,000 deaths. The 2010 Haiti earthquake was 

included in the list of ten deadliest natural disasters, estimating three million 

people affected and more than 300,000 fatalities. In March 2011 the Tōhoku 

earthquake was the most powerful earthquake ever recorded in Japan and the 

fourth most powerful earthquake in the world. The earthquake caused 

widespread damage on land and triggered a series of large tsunami waves that 

devastated many coastal areas of the country, counting 19,759 deaths, 6,242 

injured, and 2,553 people missing (Fire and Disaster Management, 2022). 

Very heavy natural disasters have been also caused by hazards like flooding, 
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volcanic eruption, landslide, hurricanes. Just to name a few, the Cyclonic 

Storm Nargis (May 2008) was an extremely destructive and deadly tropical 

cyclone that hit the Southeast Asia with a death toll of about 138,000, while 

the 2005 hurricane Katrina, the 2012 hurricane Sandy and 2017 hurricane 

Maria are among the 10 worse hurricanes in the US history. In 2020 a series 

of floods have affected South Asia countries causing $105 billion USD of 

damage and 6,511 fatalities, the highest impacts in a flood since Cyclone Sidr 

in 2007. In July 2021, severe floods also affected several European countries 

including Austria, Belgium, Croatia, Germany, Italy, Luxembourg, the 

Netherlands, and Switzerland, causing deaths and widespread damage. 

Among most recent natural disaster, also the 2019-2020 Australia wildfire 

and the 2022 European heat waves can be mentioned. Figure 1.1 shows the 

recorded number of deaths and the economic damages from natural disasters 

from 1970 (https://ourworldindata.org/natural-disasters). It can be noted that 

concerning deaths earthquakes were the main cause in the last two decades, 

while economic losses are significantly affected also by floods and extreme 

weather. 

2. Disaster risk management (DRM) is the application of disaster risk reduction 

policies and strategies to prevent new disaster risk, reduce existing disaster 

risk and manage residual risk, contributing to the strengthening of resilience 

and reduction of disaster losses (UNDRR, 2009). Risk is defined as the 

potential for adverse consequences or impacts due to the interaction between 

one or more natural or human-induced hazards, exposure of humans, 

infrastructure and ecosystems, and systems’ vulnerabilities (Casajus Valles, 

et al., 2020). Impacts of a hazardous events are usually expressed in terms of 

economic losses and people affected. Total economic impacts consist in 

direct and indirect economic losses: the former represents the monetary value 

of total or partial destruction of physical assets existing in the affected area, 

the latter the decline in economic value owing to business interruption. 

People affected are those who have suffered injury or illness, who were 

evacuated, displaced, relocated or have suffered direct damage to their 

livelihoods, economic, physical, social, cultural and environmental assets.  
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3.  

4. (a) 

5.  

(b) 

Figure 1.1 – Number of deaths (a) and economic losses (b) recorded after natural disasters occurred 

since 1970.Decadal figures are measured as the annual average over the subsequent ten-year period. 

Source: https://ourworldindata.org/natural-disasters.  

Risk is a combination of three components: hazard, vulnerability and 

exposure. Hazard is a process that has the potential to harm people or cause 

property damage, social and economic disruption. Hazards may be natural, if 

they are associated with natural processes and phenomena, or human-induced 

if they are induced predominantly by human activities and choices. Natural 

hazard events can be characterized by their magnitude or intensity, speed of 

onset, duration, and the area they cover. In defining the severity of a hazard, 

its intensity is correlated with its frequency. The latter is expressed in 

https://ourworldindata.org/natural-disasters
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probabilistic terms of recurrence intervals or return period and in general the 

longer the return period (i.e., the less frequent the hazard) the greater the 

intensity of the hazard. The extent of impact area is usually function of its 

severity as well. We can distinguish between intensive risk, referred to a risk 

associated with high-severity, mid to low-frequency disasters and with highly 

localized hazards (e.g., cyclones, earthquakes, tsunamis, severe floods and 

storms), and extensive risk, normally associated with weather-related hazards 

(e.g., fires and water-related drought) and with low-severity, high-frequency 

events that may affect large areas (UNDRR, 2015). Extensive risks are 

associated with persistent hazard conditions of low or moderate intensity, 

often of a highly localized nature, for instance the persistent impact of 

volcanic ash on the island of Montserrat since 1995. Exposure represents the 

assets exposed at risk, i.e. the presence of people, housing, infrastructure, 

production capacities, species or ecosystems, and other tangible human assets 

in places and settings that could be adversely affected by one or multiple 

hazards (IPCC, 2014; UNDRR, 2016). If hazard occurs in area with no 

exposure, then there is no risk (e.g., typhon hitting the Pacific Ocean, such as 

typhon Lekima in 2013). Exposure may vary in space and time: People and 

economic assets become concentrated in areas exposed to hazards through 

processes such as population growth, migration, urbanization and economic 

development. Vulnerability is the propensity or predisposition of an 

individual, a community, infrastructure, assets or systems to be adversely 

affected (UNDRR, 2016). As a matter of fact, disaster risk not only depends 

on the severity of hazard or the number of people or assets exposed, but also 

on the susceptibility of people and economic assets to suffer losses and 

damages. Thus, together with exposure, vulnerability can explain why some 

non-extreme hazards can lead to extreme impacts and disasters, while some 

extreme events do not.  

Disaster risk reduction (DRR) strategies and policies define goals and 

objectives for preventing new and reducing existing disaster risk and 

managing residual risk. Disaster risk management (DRM) can be thought of 

as the implementation of DRR, since it describes the actions that aim to 

achieve the objective of reducing risk. Figure 1.2 shows the different steps of 
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risk management cycle, from risk identification to the implementation of risk 

management measures.  

 

Figure 1.2 – Risk management cycle. 

Before the disaster strikes, the fundamental elements of risk (i.e., hazard, 

exposure and vulnerability) are integrated to quantify potential impacts 

resulting from a hazard event. According to ISO 31000 (ISO, 2009), risk 

assessment process is divided into three different stages: risk identification, 

risk analysis and risk evaluation. The first step is the identification of the asset 

exposed at risk that should be considered in the assessment (e.g., population, 

buildings, infrastructure, environment) and the identification of hazards 

which a country is exposed to. The latter can vary from country to country. 

For example, in Denmark assessing risk derived by floods and extreme 

weather phenomena like hurricanes and storms could be relevant, while 

earthquakes are usually not investigated as they are considered events 

unlikely to happen in or near Denmark (DEMA, 2013). Once the potential 

hazards are identified, human, economic, environmental as well as political 

and social impacts expected for a given scenario (i.e., future disaster event 

defined in terms of its magnitude and probability of occurrence) can be 

investigated through risk analysis. Based on the purpose of the assessment, 

the selected scale of analysis and the availability of data, several approaches 

can be used for the analysis. Qualitative and semi-quantitative risk analysis 

are used for rating or scoring risks based on expert knowledge and using 
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limited quantitative data. Risk matrix is an example of semi-quantitative 

approach: risk is represented by a diagram with classes of hazardous events 

on one axis and the consequences on the other axis. Risk matrices can be used 

for determining if the level of risk is acceptable and to visualize the effects of 

risk reduction measures. The limitation of this kind of approach is their 

subjectivity, as the ranking of risk classes as well as their corresponding limits 

require expert opinion. On the contrary, a quantitative risk assessment allows 

the spatial quantification of impacts for a single hypothetical scenario 

(determinist risk assessment) or considering several events with their own 

likelihood in terms of frequency and severity (probabilistic risk assessment). 

Finally, risk evaluation is the process of comparing the results of risk analysis 

in order to determine whether further action is required. To this aim, the 

outcomes of risk assessment need to be presented to stakeholders in DRM, 

who may not have a technical background. Therefore, preparing the risk 

outcomes in different and suitable ways (e.g., through bar charts, pie charts, 

maps) for an effective communication is a crucial step. The assessment of the 

risk enables decision makers to understand the nature and extent of disaster 

risk, to formulate prevention and mitigation policies and implement 

consequential preparedness or response acts. Disaster prevention indicates 

the set of activities and measures to avoid existing and future risks. As certain 

hazards cannot be eliminated, prevention aims at reducing vulnerability and 

exposure in such contexts in order to reduce the risk of disaster. Mitigation 

measures are actions put in place for lessening the severity and/or the extent 

of the adverse impacts of a hazardous event. They may include engineering 

techniques and hazard-resistant construction as well as improved 

environmental and social policies and public awareness. On the contrary, 

preparedness actions are carried out within the context of disaster risk 

management and aims to build the capacities needed to efficiently manage all 

types of emergencies and achieve orderly transitions from response to 

sustained recovery (UNDRR, 2009). Figure 1.2 shows the different steps of 

risk management cycle, from risk identification to the implementation of risk 

management measures.  
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The severity of the consequences of natural hazard events is largely 

dependent on the level of preparedness and resilience of society for such 

events. However, before 1970 measures adopted by the General Assembly of 

the United Nations (UNGA) regarding severe disasters were mostly focused 

on the emergency assistance in the aftermath of their occurrence, with the 

planning and application of responding and recovering actions. With the 

creation of the United Nations Disaster Relief Office (UNDRO) in 1971 the 

UNGA started to promote the study, prevention, control and prediction of 

natural disasters, highlighting how disaster prevention and pre-disaster 

planning are an integral part of the international development policy of 

governments and international organizations. Designing the 1990s as the 

international decade for Natural disaster reduction (IDNDR), more emphasis 

on disaster risk management as opposed to disaster management began to be 

placed: in 1994 the Guidelines for Natural Disaster Prevention, Preparedness 

and Mitigation and its Plan of Action were presented during the World 

Conference on Disaster Reduction held in Yokohama, Japan, and in 2000 the 

International strategy for disaster reduction (ISDR) was designed to foster 

this need to move from the previous emphasis of protection against hazards 

towards a process involving awareness, assessment and management of risk. 

To ensure the implementation of the ISDR, the United Nations Office for 

Disaster Risk Reduction (UNDRR) was specially created as well. The 

culmination of this process started in 1990 with the declaration of the IDNDR 

and the adoption of the Hyogo Framework for Action (HFA) 2005-2015: 

building the resilience of Nations and communities to disasters by the World 

Conference on Disaster Reduction. The expected outcome of the Framework 

was the substantial reduction of disaster losses in lives and in the social, 

economic and environmental assets of communities and countries, that 

should have been achieved through incorporation of risk reduction 

approaches into the design, monitoring disaster risks and enhancing early 

warning, reducing vulnerability of assets at risk and using knowledge and 

education to build a culture of safety and resilience at all levels.  

Currently, the official global agreement on actions of DRR is the Sendai 

Framework for Disaster Risk Reduction 2015-2030, the successor instrument 
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of the HFA. To achieve the prefixed goal, i.e. prevent and reduce hazard 

exposure and vulnerability to disaster, increase preparedness for response and 

recovery, and thus strengthen resilience, the Sendai Framework outlines 

seven global targets to be achieved by 2030 that can be classified as 

substantial reductions (i.e., reduce global disaster mortality, reduce the 

number of affected people globally, reduce direct economic losses, reduce 

disaster damage to critical infrastructure and disruption of basic services) and 

substantial increases (i.e., increase the number of countries with national and 

local disaster risk reduction strategies, enhance international cooperation in 

developing countries, increase the availability of and access to multi-hazard 

early warning systems). Four priority action field have been identified: 

• Understanding the risk 

• Strengthening disaster risk governance to manage disaster risk 

• Investing in disaster risk reduction for resilience 

• Enhancing disaster preparedness for effective response, and to «Build 

Back Better» in recovery, rehabilitation and reconstruction 

Figure 1.3 shows the timeline of the main achievements in disaster risk 

reduction in the last 50 years.  

 

Figure 1.3 – Timeline with major achievement in disaster risk reduction since 1945. 

In prevention and reducing risk, a primary role is played by single States 

members. The UNDRR encourages the establishment of National Platforms 

for Disaster Risk Reduction, mechanisms for coordination and policy 

guidance on DRR strategies, plans and actions. The National Platform should 
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coordinate all stakeholder engagement at the national level and should also 

have and effective dialogue with Local Platforms in place in order to 

influence, encourage and coordinate local action. This platform may involve 

public actors such as the civil protection departments, national, regional and 

local governments as well as national scientific and academic community, 

insurance companies and volunteer’s organizations active in the field of DRR 

and disaster risk management. As understanding the risk is a critical step to 

select suitable risk reduction strategies and implement response plans to 

address them, Decision No 1313/2013/EU of the European Parliament and of 

the Council calls participant States to periodically assess disaster risk. 

National Risk Assessment (NRA) became a well-known tool to identify the 

main risks that a county could face and to assess their likelihood and severity. 

A wide range of natural, anthropogenic and socio-natural risk can be 

identified and assess in the NRA for a country, such as earthquakes, floods, 

droughts, wildfires, volcano eruption, biological disasters, and chemical and 

nuclear accidents. To facilitate countries on this task, the European 

Commission developed the Guidelines on risk assessment and mapping 

(Poljanšek, et al., 2019). The report describes different disaster risk 

assessment approaches that could be adopted by UCPM participant countries 

for developing their NRAs, also providing tools and methods for specific risk 

assessment related to certain hazard (e.g., earthquakes, floods and drought). 

An overview of NRAs in several countries can be found in OECD (2018). 

Although some progress has been achieved in reducing disaster risk at local, 

national, regional and global levels by countries, the toll of people affected 

by disasters is still high. Moreover, evidence indicates that exposure of person 

and assets in countries increase faster than vulnerability and that people in 

vulnerable situation may be disproportionately affected. Poverty and 

inequality, unplanned and rapid urbanization, poor land management have 

been officially recognized as risk drivers in the Sendai Framework, 

highlighting the importance of capturing the multi-dimensional and dynamic 

nature of risk when assessing it. The need to reduce vulnerabilities and 

enhancing community resilience has increased the interest of governments 

and local stakeholders in understanding the influence of socio-economic 
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factors, such as age, education, employment status, on vulnerability to 

hazards and their contribution to community preparedness, disaster response 

and post-disaster recovery. The integration of socio-economic, cultural, 

political and physical factors in risk assessment process requires the 

definition of a more holistic risk concept (Marin Ferrer, et al., 2017). 

On the other hand, the long-term evolutionary nature of risks should be 

considered instead of relying on past or static observations of society within 

current environmental conditions. Considering the dynamics of hazard, 

exposure, and vulnerabilities allows properly informed decisions on the 

spatial planning and risk-prevention measures/policies that will shape the 

coming decades (Cremen, et al., 2021). Moreover, the quantification of 

tomorrow's natural hazards commonly involves accounting for future 

climatic conditions, so climate change should also be taken into account 

(Cremen, et al., 2021; Dessler, 2021).  

As many countries are exposed to multiple hazards, one of the main 

challenges of DRM is to prioritize the risks originating from these different 

hazards to enable decisions on appropriate and cost-effective mitigation or 

preparedness measures. A joint analysis of all risks that potentially can affect 

a territory is also crucial for a sustainable environment and land use planning. 

However, the performing of multi-risk assessment is a difficult task, mostly 

due to different methodologies and spatial/temporal resolutions adopted in 

the quantification of single risks (WMO 1999, Tyagunov et al., 2005, 

Marzocchi, et al., 2009, Kappes, et al., 2010). Different hazards may differ in 

their nature, return periods, intensity and impacts. Moreover, they often 

require different scale of analysis as extension of area impacted by diverse 

hazards can greatly vary. For instance, while seismic risk can be assessed at 

large scale (e.g., regional, municipal), the scale required for flood analysis is 

generally much smaller as flood hazard may varies spatially much more 

significantly than seismic hazard. Furthermore, floods are usually more 

frequent than earthquakes, that means that the former are characterized by 

very short return periods while the second by long or very long return periods. 

The consequence of such inherent differences is that also the metrics 
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commonly adopted to measure are very different and hardly directly 

comparable. 

1.2. Objectives of the study 

The main objective of this study is to investigate how to overcome the above-

mentioned limitations. A framework for integrating both socio-economic and 

physical factors in multi-risk analysis is proposed. Analysing the state of art 

in multi-hazard and multi-risk modelling it has shown that index-based 

approaches are the most suitable ones for measuring multidimensional 

concepts which cannot be captured by a single indicator, and they are widely 

used for spatial multi-criteria evaluation (UNDP, 2010; De Groeve et al., 

2015). First, a Risk Index (RI) based on the combination of individual 

standardized indicators for hazard, physical and social vulnerability and 

exposure inputs is developed. The major strengths of the proposed index-

based approach are the following: 

- It allows to compare and rank different hazard that potentially affects the 

same area, leading to the identification of the regions more exposed and 

more vulnerable to multiple risks; 

- It may be a useful support for identifying hotspots to prioritise in decision-

making process for risk reduction, that is one the main challenges in 

Disaster Risk Reduction; 

- It is relatively simple and easily applicable approach for effective risk 

decision support across any other national o transnational context of 

interest; 

- It appropriately accounts for uncertainties, relying on probabilistic 

distributions of hazard inputs, physical and social vulnerability indices, 

and population exposure for each individual risk of interest; 

- It is a versatile approach, that fits the adoption of different hazard, 

vulnerability and exposure models; also, it fits both for integrating social 

aspects in single or multi-risk assessment and for use in multiple hazard 

risk assessment focused only on physical aspects (in a multi-layer single 

risk assessment framework); 
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- It can directly integrate relevant subjective perspectives and stakeholder 

priorities through assigning suitable weights for each indicator based on 

the defined aims. 

In order to demonstrate the usefulness of the proposed approach, the RI is 

calculated for earthquake and flood risk across the entire country of Italy, 

selecting the municipality as scale of analysis and residential buildings and 

population as assets at risk. Exploiting the aforementioned index, a risk map 

of the Italian territory is proposed. Despite all prominent advantages 

described before, being a semi-quantitative approach the RI does not allow to 

quantify the expected social and economic losses due to future hazardous 

events, crucial for preparedness purposes. Moreover, if the effectiveness of 

some mitigation strategies would like to be estimated it would be impossible 

to quantify the loss reduction associated to them and to estimate the cost-

benefit ratio. Therefore, an inclusive framework towards disaster risk 

reduction should be integrate two complementary steps: the former that 

allows to prioritise areas based on a multidimensional representation of risk; 

the second that consists in detailed analysis for risk quantification. 

Specifically, the goals of this detailed risk assessment are: 

- Quantify seismic and flood risks in terms of social and economic losses 

at municipal and sub-municipal level; 

- Compare the considered risks through risk curves and identify areas 

across the municipality more affected by negative consequences of such 

hazardous events; 

- Disaggregate losses accounting for the income level of inhabitants and 

investigate if people belonging to different income classes tend to 

experience different grades of losses; 

- Evaluate the effectiveness of risk reduction strategies and related policies 

performing risk analysis for different scenarios (i.e., original - no policies, 

with hard policy and soft policy);  

- Investigate how the reduction of the expected losses thanks to the 

adoption of hard and soft policies impacts on different population income 

classes.  
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Thus, among Italian municipality, the one with highest RI is selected for 

performing such quantitative risk assessment at sub-municipal scale. Steps, 

tools and objectives of the proposed framework are reported in figure 1.4. 

 

Figure 1.4 – Multi-scale framework for integrating physical and social dimension of risk.  

Finally, the approximation in risk estimation due to the use of a semi-

quantitative approach are also evaluated by means of comparison with 

outcomes of quantitative analysis. To this aim, ranking obtained using the 

proposed risk-index approach is compared with some results of multi risk 

analysis available in Italy. The scope is to identify what are the limits of the 

approach and which aspects of it may be improved.  
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Risk assessment performed in this study can be defined as multi-dimensional 

and multi-scale. As a matter of fact, multiple dimensions are appropriately 

integrated through the index-based approach proposed; it also fits easily for 

adding more hazards and dimensions respect to the ones considered herein. 

The proposed framework is multi-scale as two different scale are adopted for 

semi-quantitative and quantitative risk assessment, considered as 

complementary steps: a large scale for the former (e.g., municipal level), a 

detailed scale for the second (e.g., town compartment level). Thus, it allows 

to prioritize areas (at national, regional, municipal or sub-municipal scale) 

potentially more affected by just one or several hazards as well as to identify 

the most suitable mitigation options in a given area. This study demonstrates 

how the types of analyses performed are likely to represent a helpful tool for 

decision-makers, enabling them to select appropriate, cost-effective 

mitigation or preparedness measures that directly target those most in need.  

1.3. Thesis outline 

The work is organized into six parts. After the introduction chapter, Chapter 

2 presents a literature review of multi-hazard risk assessments. The evidence 

of the impacts of social and economic aspects on single and multi-risk 

assessment are also presented. Chapter 3 illustrates the implementation of the 

index-based approach proposed. Chapter 4 presents a methodology for 

improving building inventory and how a better exposure modelling can affect 

the RI calculation. In Chapter 5 the detailed risk assessment is performed. 

Seismic and flood risks at sub-municipal level are estimated in terms of 

economic losses and their disaggregation across different population income 

level classes is investigated. Chapter 6 draws the conclusions, showing the 

main findings and implications of the proposed framework, its limits and 

future improvements.  
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2.Understanding the risk 

Understanding the potential impacts of natural hazard is the foundation for 

effective DRM. Risk assessment consists in determining the nature and extent of 

disaster risk by analysing potential hazards and evaluating existing conditions of 

exposure and vulnerability (UNDRR, 2018). Risk presents the negative impacts 

of an event, in terms of loss of life, property damage, social and economic 

disruption or environmental degradation. The term “impact” indicates both the 

negative and positive consequences of hazardous event, while losses are only 

negative ones (De Groeve, et al., 2013). Thus, we can refer at risk assessment as 

the assessment of potential losses due to a future hazardous event. The 

quantification of disaster risk enables governments, communities and individuals 

to make informed decisions to manage their risk. 

As mentioned before (see section 1.1), risk assessment process is divided into 

three stages: risk identification, risk analysis and risk evaluation. Risk analysis is 

the process of combining the risk components of hazard, exposure and 

vulnerability to determine the level of risk. For every risk, different risk analysis 

approaches can be used, from qualitative to quantitative ones, mostly based on 

the main purpose of the analysis, the time span of the assessment and the 

availability and reliability of information (Poljanšek, et al., 2019). In the 

following sections (section 2.1 and section 2.3) methodologies to carry out 

disaster risk assessment with reference to Floods and Earthquakes, the two major 

causes of losses in Europe in the last 60 years (Ritchie & Roser, 2014), will be 

described. 

2.1. Earthquakes 

2.1.1. Hazard model 

Seismic hazard is defined as strong ground motions produced by earthquakes that 

could affect engineered structures; thus, seismic hazard analysis refers to the 
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estimation of earthquake-induced ground motions. The results of seismic hazard 

analysis are obtained in terms of an intensity measure, such as peak ground 

acceleration, peak ground displacement, spectral acceleration and spectral 

displacement for the fundamental period of the structure. Deterministic seismic 

hazard analysis (DSHA) and Probabilistic seismic hazard analysis (PSHA) are 

the main methods for assessing the level of earthquake-induced ground motion 

at a given site. Deterministic analysis frequently refers to a Scenario as the 

maximum probable or maximum credible earthquake in the area, that is carrying 

out an analysis considering a worst-case scenario in terms of earthquake size and 

location (Wang, et al., 2012). More specifically, given the seismic sources 

surrounding the study area, in DSHA first are calculated a series of ground 

motions related to each source’s maximum motion and shortest source-to-site 

distance, according to the adopted ground motion model. Then, the maximum 

motion among them is selected as Maximum Credible Earthquake, i.e., the 

selected scenario is basically governed by the seismic source that has the highest 

threat to the site with the largest ground motion estimated (Greensfelder, 1974; 

Kramer, 1996). Deterministic earthquake scenarios could also be based on the 

estimation of the worst historical event in a region, deriving its magnitude and its 

guessed location from known geological faults. To this aim, the ShakeMap® 

software (Wald, et al., 2006) is generally used. It was specifically designed to 

obtain maps of the peak ground motion parameters, and of the instrumentally-

derived intensities. Exploiting available data of the observed ground motions and 

available seismological knowledge, this tool can generate maps of the spatial 

distribution of peak ground-motions (acceleration, velocity, and spectral 

response) as well as a map of instrumentally derived seismic intensities at local 

and regional scales. Figure 2.1 shows an example of ShakeMap derived by the 

Italian National Institute of Geophysics and Volcanology (Istituto Nazionale di 

Geofsica e Vulcanologia, INGV) for the August 24th, 2016 Central Italy 

earthquake (http://terremoti.ingv.it/).  

http://terremoti.ingv.it/
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Figure 2.1 –Peak ground acceleration (PGA) Shakemap of 2016 Centra Italy earthquake. Source: 

http://terremoti.ingv.it/ 

PSHA considers the contribution of all known potential sources of earthquake 

shaking. Uncertainties in source’s characterization are threated explicitly in 

PSHA, making this approach more suitable for use in engineering decision-

making for risk reduction. All possible earthquake events and resulting ground 

motions are considered with their associated probability of occurrence. Once all 

earthquake sources are identified, the related distribution of magnitudes (i.e., the 

rates at which earthquakes of various magnitudes are expected to occur) are 

estimated based on a recurrence low, such as the Gutenberg-Richter low 

(Gutenberg & Richter, 1944), while the source-to-site distance distribution can 

be usually estimated using only the geometry of the source as locations are 

considered uniformly distributed, i.e., it is assumed that earthquakes will occur 

with equal probability at any location on the fault. The definition of ground 

motion prediction model (also called attenuation relation) allows to predict the 

http://terremoti.ingv.it/
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probability distribution of ground motion intensity for a given magnitude and 

distance. Next, with the seismic-hazard source model and attenuation 

relationships defined, the probabilistic-hazard calculation is performed 

combining this information using the total probability theorem (Baker, et al., 

2021). The outcomes of a PSHA are a series of seismic hazard curves that show 

the annual rate or probability at which a specific ground motion level will be 

exceeded at the site of interest. Hazard curves typically have “annual probability 

of exceedance” or its reciprocal, “return period”, on the vertical axis on a 

logarithmic scale, and Peak ground acceleration (PGA, usually expressed in 

terms gravity, or “g”), or other relevant intensity measure such as Spectral 

Acceleration (SA), on the horizontal axis on an arithmetic scale. Another usual 

representation of PSHA products at territorial scale is through hazard maps, 

showing the spatial distribution of expected intensity at an assigned return period, 

or having a given probability of exceedance in an assigned interval of time. 

Figure 2.2 shows the European seismic hazard map proposed in (Woessner, et 

al., 2015). 

 

Figure 2.2 – European seismic hazard map displaying the ground motion expected to be reached or 

exceeded with a 10% probability in 50 years (Woessner et al., 2013). 
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2.1.2. Vulnerability modelling 

The seismic vulnerability of a structure expresses its susceptibility to sustain a 

certain damage level due to ground shaking of a given intensity. Thus, the aim of 

vulnerability assessment is to evaluate the probability of getting a damage level 

due to a scenario earthquake for a given structure. Level of vulnerability of a 

structure can be described through vulnerability or fragility functions. Given a 

level of ground shaking, former ones provide the probability of exceeding 

different limit states, represented by physical damages; the latter usually describe 

the probability of attained the mean damage, representing the weighted average 

of a discrete damage distribution (e.g., Lagomarsino & Giovinazzi, 2006) or the 

level of expected losses, such as social or economic losses, usually expressed as 

damage ratio, e.g., ratio of cost of repair to cost of replacement (Pitilakis, et al., 

2014).  

Conventionally, methods for derive fragility functions are classified into four 

categories: empirical, analytical, heuristic and hybrid. Empirical methods are 

based on post-earthquake surveys and observations of actual damage (Rossetto 

& Elnashai, 2003; Yamaguchi & Yamazaki, 2000; Karababa & Pomonis, 2010; 

Del Gaudio, et al., 2020; Rosti, et al., 2021a). These methods have the advantage 

of being based on real observed data, representing the most realistic source of 

damage statistics, and successfully account for various effects which govern the 

failure modes, as soil-structure interaction, site effects, and variability in the 

structural capacity of a group of buildings. However, empirical fragility 

assessment may also provide drawbacks, related to small sample size, the 

conversion of safety evaluations to equivalent damage state fragilities and the 

unavailability of data related to high-magnitude events. A wide presentation of 

empirical assessment’s issues is described in Rossetto & Ioannou (2018). On the 

contrary, analytical methods rely on simulations of structural response subjected 

to seismic action (Singhal & Kiremidjian, 1996; NIBS, 2004; Rossetto & 

Elnashai, 2005; Borzi, et al., 2008; Polese, et al., 2008; Rota, et al., 2010; Donà, 

et al., 2021; Borzi, et al., 2021). Procedures for the analysis of  structures and its 

loading can vary from traditional elastic analysis to non-linear time history 

analyses on 3D models of structures. One of the main disadvantages of these 

methods is that the procedure may be too computationally intensive and time 
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consuming, thus, a compromise must be made between the accuracy of the 

representation of the nonlinear behavior and cost-efficiency of the model. 

Heuristic approaches rely on experts’ opinion on the structural response. The 

experts, who are guided by experience and expertise, are asked to provide an 

estimate of the mean loss or probability of damage of a given element at risk 

under different ground motion intensities. For instance, index-based approaches 

that estimate vulnerability of buildings based on visual diagnostic and expert 

judgement are an example of heuristic methods (Milutinovic & Trendafiloski, 

2003; Lagomarsino & Giovinazzi, 2006). These techniques allow to define a 

vulnerability index (varying between 0 and 1) for a group of buildings as a 

function of their structural features (e.g., material, floor types, building height, 

presence of soft stories, quality of construction, irregularities, non-structural 

elements, age of building, etc.). The main advantage of such methods is that they 

are not affected by the lack of extensive damage data that usually affect empirical 

methods or the reliability of the structural model used in analytical ones. 

However, they have the drawback of being based solely on the individual 

experience of the experts consulted. Therefore, often results of heuristic 

approaches are also verified and/or calibrated using empirical data or the 

resulting fragility functions from the analytical methods (Lagomarsino et al., 

2021). Hybrid methods result from the combination of the other approaches, 

using for instance both analytical and observational data, or integrated using 

expert judgment (Kappos, et al., 1995; 1998; Kappos et al., 2006). A detailed 

comparison among different approaches can be found in da Porto et al. (2021). 

The latter provides critical evaluation of the strengths and weaknesses of the 

different vulnerability models used in the NRA in Italy (Dolce et al., 2021), 

including empirical, analytical and heuristic approaches.  

In order to correlate the ground motion with the damage to the structure, 

parameters representative of the seismic demand as well as the damage scale to 

adopt need to be defined. Traditionally, macroseismic intensity (I), peak ground 

acceleration (PGA) and spectral acceleration over a specific range of periods 

(SA) have been used as hazard parameters. Macroseismic intensity is a 

classification of the severity of ground shaking on the basis of observed effects 

in a limited area. This measure is usually adopted in defining empirical fragility 
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functions. On the contrary, intensity measure related to structural response (e.g., 

spectral acceleration Sa or spectral displacement Sd, for a given value of the 

period of vibration T) are used for analytical fragility functions, whereas intensity 

parameters of the ground motion (PGA, PGV, PGD) are frequently used in both 

empirical and analytical methods. Damages are generally modelled through 

discrete damage scale. In empirical procedure the scales adopted for describing 

damage severity are usually defined based on the observed damage for both 

structural and non-structural components. Examples of such type of damage 

scales are the European Macroseismic Scale (EMS-98) (Grünthal, 1998) and the 

MSK (Medvedev, 1977). In analytical procedures the scale is related to limit state 

mechanical properties that are described by appropriate indices, such as for 

example displacement capacity in the case of buildings.  

The vulnerability can be represented in terms of either Damage Probability 

Matrices (DPM) or Vulnerability/ Fragility Curves. While DPM describe the 

probability of damage occurrence at specified intensity measure level through a 

discrete relationship (Whitman, et al., 1973; Braga, et al., 1982; Di Pasquale, et 

al., 2005; Lagomarsino & Giovinazzi, 2006) fragility curves do it in a continuous 

way (Spence, et al., 1992; Lagomarsino, et al., 2021). Although alternative 

distributions could be adopted, such as the normal, or the exponential 

distributions (Rossetto & Elnashai, 2003; Karababa & Pomonis, 2010), fragility 

curves are usually described by the cumulative lognormal distribution. Hence, 

the probability of reaching or exceeding damage state DS can be expressed as 

follow: 

𝑃(𝑑𝑠 ≤ 𝐷𝑆𝑖 |𝑃𝐺𝐴𝑗) =  𝛷 [
log (𝑃𝐺𝐴𝑗/𝜃𝑖)

𝛽
] (1) 

where Φ[·] is the cumulative standard normal distribution, θi is the median value 

of the fragility function corresponding to damage level DSi and β is the 

logarithmic standard deviation. Figure 2.3 reports an example of empirical 

fragility curves proposed in (Lagomarsino, et al., 2021). 
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Figure 2.3 – Fragility curves for the most vulnerable class of buildings (Lagomarsino et al., 2021). 

2.1.3. Exposure modelling 

Assets at risk that are usually considered are buildings and people, but for more 

comprehensive assessment of risk also other elements such as infrastructures, 

cultural heritage and the environment as well should be considered. In large scale 

vulnerability assessment, the buildings are clustered in relevant building classes 

or vulnerability classes based on the behavior that is expected during a seismic 

event, for which different vulnerability function are defined. For example, a 

common vulnerability classification is given by the European Macroseismic 

Scale EMS-98 (Grünthal, 1998) that categorizes buildings in 6 vulnerability 

classes (from A to F), based on the construction material of vertical structure and 

the code design level. Other vulnerability models identify vulnerability classes 

based on the construction material (masonry, reinforced concrete - RC, steel, 

wood) considering other structural and non-structural elements features, as well 

(Braga, et al., 1982; Rota, et al., 2008; Karababa & Pomonis, 2010; Del Gaudio, 

et al., 2020). In order to develop a uniform and comprehensive classification 

system for buildings, within the Global Earthquake Model (GEM) initiative a 

building taxonomy was proposed (Brzev et al., 2013). The taxonomy 

characterizes buildings according to those attributes that can influence their 

seismic performance (i.e., the seismic vulnerability). For instance, 13 buildings 

attributes were identified in the GEM building taxonomy, among which material 

of the lateral load-resisting system, lateral load-resisting system, building 

position within a block, date of construction or retrofit and the height. 
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Therefore, the exposure is generally expressed by building inventory, that 

provides the number of exposed buildings belonging to classes of structures 

identified by the vulnerability model and their distribution at territorial scale. 

Depending on the scale of the analysis, as well as on the data availability and 

resources, variable level building inventories databases can be developed. 

Building-by-building surveys may provide high quality vulnerability information 

and are generally the most complete source towards vulnerability classification. 

Due to the elevated costs and time required, these kinds of surveys are generally 

only available after post-earthquake usability and damage evaluation campaigns 

or for small scale vulnerability studies conducted for limited areas in a country, 

such as urban districts or small municipalities. To cover larger geographical areas 

at comparatively low costs, satellite remote sensing shows great potential for 

rapid vulnerability assessment capturing some buildings’ features, that are visible 

from the outside, remotely by images. Several studies have explored techniques 

for extracting buildings footprints from high resolution optical satellite imagery 

(e.g. Taubenb¨ock, et al., 2006; Saito, et al., 2004) and on the possibility of 

combining multiple imaging sources (Wieland, et al., 2012; Ploeger, et al., 2016). 

However, this technique based on image processing allow to gather only spatial 

type building features (building shape, position and height) while the features 

that are crucial for vulnerability assessment (e.g. building material or age of 

construction) cannot be easily derived. To overcome this issue, within GEM 

project (Pagani, et al., 2018) remote sensing is combined with local expertise and 

field observations to estimate the distribution of building types for urban areas ( 

(Bevington, et al., 2012). The resulting inventory can be input into the Global 

Exposure Database (GED), a global building inventory focused on people and 

residential buildings with global coverage at national and sub-national (province, 

municipality) level (Gamba, et al., 2012). Another global approach to inventory 

is presented in Jaiswal et al. 2010, within PAGER program. The global inventory 

presented is built combining available data sources (e.g. World Housing 

Encyclopaedia, Census of Housing) and published literature, such as research 

articles and reports, that provide country-specific building-stock data. Yepes-

Estrada et al. (2017) proposed a residential building inventory for South America, 

relying only on public sources of information and adopting a judgment-based 

mapping of the available (census) data to the distribution of building classes. In 
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Europe, a similar effort was conducted within the NERA project by Spence et al. 

(2012), making a first attempt to harmonise the available data in each of the 

European countries (e.g. census data and data collected through building-by-

building field surveys) to create the first single uniform database of the European 

building stock. A more recent European exposure model was developed within 

SERA project and presented in Crowley et al. (2020a). This model describes the 

distribution of the main residential, industrial and commercial building classes 

across all countries in Europe inferred from census data further informed by the 

local experts’ judgment and a number of different public sources of data (e.g. 

World Housing Encyclopedia, PAGER building inventory, TABULA—

Typology Approach for Building Stock Energy Assessment and NERA project). 

When available, census data on buildings and population is the primary source 

for compiling building inventory. Although information on buildings provided 

by census is often limited to basic information on construction material, age of 

construction and number of storeys, this source is particularly suitable for large 

scale applications. As a matter of fact, usually census data are publicly accessible 

and cover the entire national territory. In general, in order to compile building 

inventory starting from census data, the association of building typology inferred 

by census to vulnerability classes through the definition of a suitable exposure 

model is required. The exposure model establishes the class assignment rules for 

associating each building typology to one or more vulnerability classes. This 

procedure may be calibrated on available survey data and/or expert judgment, 

analysing the correlation between the main vulnerability parameters for buildings 

and the census information (Lucantoni, et al., 2001; Di Pasquale, et al., 2005; Del 

Gaudio, et al., 2019; Rosti, et al., 2021a). 

2.1.4. Impact assessment 

Seismic impact may be assessed using deterministic or probabilistic methods. As 

also referred in section 2.1, deterministic methods are based on DSHA, whereas 

probabilistic ones on PSHA. Thus, in a deterministic assessment earthquake 

hazard scenario could be the maximum probable or credible earthquake, i.e., the 

largest earthquake that is reasonable to expect in a region, or a Shakemap of an 

historical earthquake. In a probabilistic scenario, seismic hazard expresses the 
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probability of exceedance of levels of ground motion in a certain interval of time 

at a site, obtained by PSHA. Seismic hazard at a site can be represented through 

hazard curve, that relate the generic intensity measure IM to the mean annual 

frequency of exceedance of such intensity λIM, or through hazard maps that show 

the expected intensity at a site for selected return period, i.e., for selected points 

of the hazard curves. Hazard maps usually provide seismic intensity (PGA or 

spectral acceleration) for each point of a more or less dense grid. For example, 

ESHM20 (European seismic hazard model  - Weatherill et al., 2020) adopt a grid 

of about 10 km per side, while the MPS04 (“Modello di pericolosità sismica” in 

Italian), the official hazard map developed for the Italian territory (Stucchi, et al., 

2004; 2011), a 5 km x 5 km mesh.  

Seismic risk is a convolution of hazard, vulnerability and exposure. In the 

following the procedure for seismic risk analysis is described with reference to 

building as asset at risk. The exposure provides the number of buildings and their 

distribution in the vulnerability classes defined by the selected vulnerability 

model; vulnerability is defined through fragility functions and allows the 

evaluation of expected damages on structures (see also section 2.1.3). Hence, 

damage assessment consists in estimating the number of buildings that are 

expected to reach different damage grades Dk, defined according to the selected 

scale (e.g., EMS-98). In a probabilistic framework, the mean annual rate λk of 

attaining damage state Dk is usually expressed as follow: 

𝜆𝑘 = ∫ 𝑃(𝐷𝑘|𝑖𝑚) ∙ |𝑑𝜆𝐼𝑀(𝑖𝑚)|
∞

0

 (2) 

where P(Dk|im) represents the fragility of the considered building class, i.e. the 

probability that the buildings in such class will attain damage state Dk when 

subjected to an earthquake with ground motion intensity level im, and λIM 

represents the mean annual frequency of exceedance of the ground motion 

intensity im (obtained through the hazard maps for the generic Tr). The 

probability pk of attaining damage state Dk in t years may be calculated assuming 

that the occurrence of earthquakes follows a Poisson process: 

𝑝𝑘 = 1 − 𝑒𝜆𝑘∗𝑡 (3) 
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Where pk represents the unconditional seismic risk in t years referred to damage 

state Dk. 

The estimation of expected damages is the starting point for the impact 

calculation. Commonly used indicators for seismic impacts are the expected 

number of collapsed and unusable buildings or dwellings, the expected numbers 

of those rendered homeless and casualties, and the extent of the direct and indirect 

economic losses (JRC, 2015; FEMA, 2013). For the quantification of economic 

and social losses suitable consequence functions (also called damage-to-loss 

models) are required. Generally, consequence functions are expressed as a 

function of buildings’ damage, meaning that the above-mentioned indicators are 

determined as a function of the expected numbers of buildings (or dwellings) 

affected by the different damage levels, obtained according to the adopted 

damage model. According to HAZUS approach (FEMA, 2015), the number of 

collapsed buildings is defined as a portion of buildings reaching the heaviest 

damage state (DS4, according to the HAZUS damage scale). Collapse fractions 

are based on judgment and limited earthquake data and they are dependent on the 

material of the load-bearing structure and number of storeys of the building. For 

example, considering reinforced concrete moment resisting frame structures, the 

13%, 10% or 5% of the total area of these type of buildings with 1-3 storeys, 4-7 

storeys and more than 7 storeys respectively, that attained complete damage state 

DS4, is expected to be collapsed. The evaluation of the expected number of 

unusable buildings (i.e., buildings considered unsafe due to potential collapse, 

falling debris or unavailability of services) is crucial for the evaluation of the 

expected number of homeless and, in turn, of the indirect costs related to 

temporary shelters and other kinds of temporary arrangements for homeless. In 

Dolce et al. (2021) the consequence functions for estimating the quantity of 

unusable buildings express the percentage of unusable buildings as a function of 

the number of buildings that sustain damage levels on the EMS-98 scale, with a 

specification between the long and the short-term un-usability. The usability 

probability matrices matrix proposed are shown in table 2.1. Other examples of 

models for the evaluation of the unusable buildings can be found in Bertelli et al. 

(2018), Zucconi et al. (2017; 2022) and Rosti et al., (2018). Given the number of 

unusable buildings, the number of homeless can be defined as sum of number of 
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occupants in non-usable buildings, detracting the number of dead persons ( 

(Khazai, et al., 2012; Dolce, et al., 2021).  

Table 2-1 – Percentages of short term and long term unsafe buildings for each damage level of the EMS-

98 scale, adopted in Dolce et al. (2021). 

% Unsafe buildings D1 D2 D3 D4 D5 

ustk 0 40 40 0 0 

ultk 0 0 60 100 0 

The number of injuries or deaths can be computed as a function of the damage 

level of the building, as well. As proposed in Coburn at al. (1992) casualties can 

be estimated as a percentage of the number of collapsed buildings, determined 

by factors that take into account several aspect concerning the occupancy of the 

buildings, such as the number of people effectively accommodated in buildings 

depending on the time of the event, the percentage of population trapped in 

collapsed buildings as well as the outright mortality when collapse occurs and 

the mortality of trapped victims after collapse. Several updates of the above-

mentioned casualty model, that consider studies by various authors based on local 

context and observed data after significant earthquakes worldwide, are presented 

in Spence et al. (2011).  

Economic losses due to earthquakes generally express the losses due to structural 

damages and they are computed as costs for the repair or replacement of damaged 

or collapsed buildings. A damage ratio (i.e., the percentage of the building 

replacement value) is assigned for each damage state as a function of the building 

typologies and/or the type of occupancy as well (FEMA, 2003; Chang, et al., 

2008; Karaman, et al., 2008; Molina Palacios, et al., 2010); the expected losses 

for each damage state is calculated multiplying the built area of the considered 

building type/occupancy type and the relative probability to experience the 

considered damage state for the relative damage ratio and the building 

replacement cost. Indirect seismic economic losses are a systematic 

manifestation of losses in the chain of economic activities, that may be affected 

to by interruptions and general disruption in their normal operations (Boisvert, 

1992; Chang, 2000; An, et al., 2004; FEMA, 2003; Enke, et al., 2008). Contrary 

to the direct losses, indirect economic losses could be affected by various 

disruptions, for example, transportation difficulty due to damaged highway and 
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transportation systems, water pipe damage, and electricity disruption, among 

others. Thus, this kind of losses are more difficult to evaluate as characterized 

with more ambiguous causes and the uncertain amount of losses. These reasons 

make the evaluation of indirect economic losses a complicated task and available 

studies are affected by high uncertainties. 

2.2. Floods 

2.2.1. Hazard model 

Floods are natural phenomena that occur when an overflow of water submerges 

land that is usually dry. Flood events are classified according to the main drivers 

and the water bodies that cause the event itself (Poljanšek, et al., 2019): fluvial 

floods occur when river levels rise and burst or overflow their banks, inundating 

the surrounding land; flash floods can develop when heavy rainfall occurs 

suddenly; pluvial flooding, when heavy rainfall causes surface water flooding 

and the urban drainage systems become overwhelmed; coastal flooding, when 

land areas along the coast are inundated by seawater, due to high tide, storm surge 

and wave conditions.  

Flood hazard is usually represented by maps, that should provide a spatial and 

temporal evaluation of the flood probability of occurrence, the flood extent, the 

water depth and the flow velocity (EU 2007). Figure 2.4 shows an example of 

flood hazard map for the Italy-Slovenia cross border area of Isonzo river (BORIS, 

2022a). The probability of occurrence is usually expressed as return period, i.e., 

the estimated average time between events to occur. For instance, a 100-year 

flood event means that the event is expected to have 1% probability of occurring 

every year. Flood extent, water depth and flow velocity are characterized as 

spatial map, with reference to a given return period. For flood hazard mapping of 

an area of interest, the meteorological and the hydrogeological regime in such 

area are required. The definition of hydrogeological regime is usually carried out 

using physically based models, that simulates hydrological processes leading to 

flooding events using real data input (Bellos, 2012; Rofiat, et al., 2021). 

Modelling of physical process of flood generation for various flood scenarios 

requires topographic data provided by the digital terrain model (DTM) or digital 

elevation mode (DEM), hydrology data capable of providing information about 
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rainfall and river discharge, land use information, and bathymetry data (Anuar, 

2018; Arseni, et al., 2020). These numerical models are based on complex flow 

equations, that require long time and intense processing efforts (Toombes & 

Chanson, 2011). In flood hazard assessment, empirical models that rely of 

historical data can be used as well. These data-driven approach retrieve useful 

flood information from observations, using different acquisition and processing 

techniques, such as remote sensing (Wang, et al., 2019; Marchesini, et al., 2021). 

They are usually adopted to delineate flood hazard/susceptibility regions, but 

they cannot predict flood parameters such as flow depth and velocity (Rofiat, et 

al., 2021).  

 

Figure 2.4 – Flood hazard maps for Isonzo river in Italy-Slovenia cross-border area. Adapted from 

BORIS (2022b). 

2.2.2. Exposure and vulnerability modelling for impact assessment 

Flood risk assessment is based on the combination of hazard, vulnerability and 

exposure. Flood hazard maps provide information on the extent of flood prone 

zones, the probability of occurrence of the corresponding event and its 

magnitude, in terms of water depth and flow velocity. Vulnerability is the 

susceptibility to damage of structures and their contents due to hazard’s impact. 

Fragility and vulnerability functions express the likelihood that assets at risk will 

sustain varying degrees of loss, the former in terms of physical damage, the 

second in terms of direct economic consequences of physical damage. The use 
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of the fragility relationships, that relate the likelihood of attained different levels 

of damage for a given asset type and the range of hazard intensities, usually 

requires the definition of a damage-to-loss model for converting damage 

estimates to loss estimates. Although several studies investigated the influence 

of flood velocity on impacts (Kreibich, et al., 2009; Jonkman, et al., 2008), water 

depth is considered the strongest single predictor of building damage and 

therefore is the most widely used intensity measure in flood vulnerability 

modelling (NR&M, 2002; Seifert, et al., 2010; Schwarz & Maiwald, 2012; 

Scorzini & Frank, 2015; Huizinga, et al., 2017).  

The development of vulnerability/fragility models can be based on empirical or 

analytical approaches. Empirical vulnerability functions are constructed using 

post-flood observations of damages and losses, collected over sites affected by 

different flood intensities, using statistical modelling to estimate a chosen 

functional form’s parameters to fit the data (USACE, 1985; Smith, 1994; 

Nascimento, et al., 2006; Chang, et al., 2008). In analytical approaches numerical 

models are used for flood fragility derivation. The performance of the structure 

or the structural component of interest (e.g., a wall) while floodwater forces are 

applied is analysed. The main type of forces usually considered are the 

hydrostatic and the hydrodynamic forces and the force associated with floating 

debris dragger by water. Examples of analytically derived fragility functions can 

be found in Oliveri & Santoro (2000), Kelman and Spence (2003), De Risi et al. 

(2013) and Dong and Frangopol (2017). The synthetic approaches are also 

largely used for developing flood vulnerability functions (Galasso, et al., 2021).  

These approaches estimate the damage/loss expected under a flood scenario 

based on expert judgment, adopting the so-called what-if analysis (Merz, et al., 

2004; Dottori, et al., 2016; Amadio, et al., 2019). 

Generally, different fragility/vulnerability functions are developed for different 

asset classes, identified based on structure’s features that play a critical role in 

damage resistance to flooding. As structural failure during flooding is rare and 

the major damage in flooding is to structural finishes, contents, and inventory, 

vulnerability models may identify classes not only based on the construction 

material (e.g., wood, masonry, RC, mud), but also accounting for the occupancy 

type (e.g., residential, school, office buildings), the number of storeys and the 
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presence of absence of basement. The European flood model developed by JRC 

(Joint Research Centre), presented in Huizinga (2007), proposes depth–loss 

functions (i.e., vulnerability functions) for five classes of assets at risk, i.e., 

residential, commercial, industrial, roads, and agriculture. These functions are 

derived from the analysis of existing studies in several European countries. 

Available damage functions are normalized scaling the maximum loss values in 

European countries to the gross domestic product (GDP) per capita and a mean 

value of all functions for each class of asset at risk is assumed as representative 

of the ‘average’ continental curve. These JRC curves relate water depth to 

damage ratio, i.e., a proportion of reconstruction cost, and can be used to evaluate 

both losses for structure and contents. Building contents are defined as furniture, 

equipment that is not integral with the structure, computers, and other supplies. 

Usually, non-structural components such as lighting, ceilings, and other fixtures 

are not considered as contents (FEMA, 2022). Contents damage is considered as 

a percentage of building damage and such percentage changes based on the 

occupancy class, e.g., contents damage is the 50% of building damage in case of 

residential buildings, the 100% in case of commercial buildings and 150% in case 

of industrial ones. In Huizinga et al. (2017) further continental-specific depth–

damage functions are presented.  

The HAZUS Flood Model (FEMA, 2009) uses the Federal Insurance 

Administration’s FIA depth-damage curves and selected curves developed by 

various districts of the U.S. Army Corps of Engineers USACE for estimating 

damage to the general building stock. Three inputs are required to estimate 

building damage: the building occupancy type, the number of storeys and the 

presence of basement.  Moreover, for residential buildings a distinction between 

multiple storeys and split-level structures is also taken into account. Mobile 

homes are included as well. Figure 2.5 shows FIA damage functions for 

residential buildings (FEMA, 2022). It is worth noting that the water depths in 

the functions are measured relative to the top of the first finished floor, so it is 

possible for structural damage to occur at a depth of zero (Tate, et al., 2014). For 

the same classes of buildings, damage functions for estimation of contents 

damage are also proposed.  
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Figure 2.5 - FIA flood damage functions for buildings adapted from FEMA (2022). 

In Arrighi et al. (2018) and Silvestro et al. (2016) are proposed modified HAZUS 

building vulnerability functions tailored for the European context by combining 

the curves for specific uses. The original occupancy classes by HAZUS are 

extended considering “Mixed” residential and different commercial services on 

the ground floor. Figure 2.6 shows a comparison between depth-damage curves 

for different content: retail trade (COM1) building, generic one-floor residential 

(RES1) building, mixed retail trade on the first floor and residential on the second 

floor (COM1 + RES1) building, and mixed retail trade on the first floor and 

residential on the second and third floors (COM1 + RES1 + RES1) building. The 

mixed-use curves are derived by combining the single-use ones. For example, the 

light blue curve (COM1 + RES1), corresponding to the flood vulnerability 

function for a two-storey building with mixed commercial and residential use 

(i.e., retail trade on the ground floor and residential on the first floor).  It is 

obtained combining RES1 curve (i.e., one-storey curve for generic residential 

building) with COM1 curve (i.e., one-storey curve for retail trade). The yellow 

section of the graph indicates the average height of the ground floor.  
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Figure 2.6 - An example of mixed-use curve definition adapted from Silvestro et al. (2016). 

In order to evaluate expected losses, it is necessary to characterize the spatial 

exposure of population and relevant assets. Among elements of the built 

environment at flood risk (homes, businesses, industry, and transportation 

infrastructure), residential buildings are the most frequently modelled element. 

To correctly identify the buildings which are most likely to be at risk from 

flooding a detailed buildings-level flood exposure is required. Typically, for 

representing the spatial distribution of the exposed asset G.I.S. (Geographical 

Information Systems) software is used. The latter allows to store spatial features 

through georeferenced vectors at which useful information for the following 

vulnerability assessment can be associated. For example, a shapefile containing 

the buildings geometry polygons and their spatial distribution with the associated 

information related to the material which they are built, the number of storeys or 

the type of occupancy.  

Potential adverse consequences associated with flood scenario may involve not 

only the expected economic losses, both direct (due to damages to buildings and 

contents) and indirect (related to interruption of economic activities), but also the 

expected number of inhabitants potentially affected. The counting of the number 

of persons residing in flooded areas is typically adopted as indicator for affected 

population. Thus, the estimation of expected short-term shelter are not based on 

the degree of damage to structures but on the numbers of displaced people in 

inundated areas. Displaced individuals and household ds are also made up of 

those whose buildings have not been damaged but who were evacuated when a 
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warning was issued, or there is no physical access to the property because of 

flooded roadways. Moreover, according to HAZUS model, the corresponding 

number of individuals may be also modified by factors accounting for income 

and age. Despite the enormous impacts of floods is relatively limited insight into 

the factors that determine the loss of life caused by flood events (Silvestro et al., 

2016). Methods aimed to assess the loss of lives due to flood events usually 

investigate the correlation between specific flood characteristics, such as flow 

velocity, and the mortality in the flooded area (DeKay & McClelland, 1993; 

Jonkman, et al., 2008). 

2.3. From single risk to multi-risk assessment 

As shown in the previous section, recognizing and assessing risk from natural 

hazards are the first steps toward reducing their adverse effects. As many regions 

of the world are not only subject to a single hazard but to multiple hazardous 

processes, all relevant threats related to a specific area should be identified and 

analyzed. Thus, the assessment of risk should enable stakeholders to understand 

the relative importance of a different risks for a given region and how underlying 

disaster risk drivers relate to components of risk to address a range of measures 

to reduce risk. The term “multi-hazard” in a risk reduction context is used to 

indicate assessment approaches that account for “more-than-one-hazard” (WMO, 

1999; Kappes, et al., 2012). Traditionally, the evaluation of risks related to 

different sources is generally done through independent analyses and, in turn, 

disaster risk reduction measures are implemented to decrease the risk of a single 

hazard type despite their potential of having unwanted effects on other hazard 

typologies. These potentially negative effects between measures are defined by 

de Ruiter et al. (2021) as ‘asynergies’. 

Hazardous events may occur simultaneously or cumulatively over time and in 

this case the potential interrelated effects may amplify the overall risk. The case 

of landslides triggered by an earthquake (Chang, et al., 2007; Lee, et al., 2008) 

or a tsunami triggered by an earthquake (Mimura, et al., 2011) are the typical 

examples of one hazard that trigger another one. In other cases, one event may 

cause several different threats which are considered jointly, as in the case of a 

volcanic eruption with ash and lapilli fallout and lava flows (Zuccaro, et al., 2008; 
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Thierry, et al., 2008). We can refer to independent events when there are no 

interactions among events, and they could be analyzed separately. This would be 

for example the case for earthquake hazard and flood hazard. They have different 

triggering mechanisms, which do not directly interact. Even if, for instance, an 

earthquake may trigger landslides that may block a river leading to flooding, 

which makes that the earthquake and flood risk cannot be considered entirely 

independent (Westen & Greiving, 2017). If different hazard types are triggered 

by the same triggering event, we can refer to them as coupled events (Marzocchi, 

et al., 2009). Examples of such types of events are the effect of an earthquake on 

a snow-covered building (Lee & Rosowsky, 2006) and the triggering of 

landslides by earthquakes occurring simultaneously with ground shaking and 

liquefaction (Delmonaco, et al., 2006a; Marzocchi, et al., 2009).  

Table 2-2 - Main hazard types and their interactions. Source: Westen & Greiving 2017. 

 
Earthquake 

Volcanic 

Eruption 
Tsunami 

Storm 

Surge 

River 

Flooding 
Landslides Forest Fires 

Earthquake -  Independent Chain Independent Independent Chain Independent 

Volcanic 

eruption 
Independent -  Chain Independent Disposition Disposition Chain 

Tsunami 
Caused by Caused by -  Independent Independent 

Chain along 

coast 
Independent 

Storm surge Independent Independent Independent -  Chain Chain Independent 

River 

flooding 
Independent Independent Independent Coupled -  Coupled Independent 

Landslides Caused by Independent Independent Coupled Coupled - Disposition 

Forest Fires Independent Coupled Independent Independent Disposition Disposition Independent 

However, modelling these hazards is still very complicated as they occur in the 

same area simultaneously: the consequences of the modelled scenarios cannot be 

simply added up, as the intensity of combined hazards may be higher than the 

sum of both or the same areas might be affected by both hazard types, leading to 

overrepresentation of the losses, and double counting. Interactions defined as 

domino effects (Luino, 2005; Delmonaco, et al., 2006b; Perles Roselló & 

Cantarero Prados, 2010; Van Westen, et al., 2010; European Commission, 2011), 

cascades (Delmonaco, et al., 2006b; Carpignano, et al., 2009; Zuccaro & Leone, 

2011) or concatenated/chains (Shi, et al., 2010) are refereed to events where one 

hazard may trigger the next, e.g., hazards may occur in sequence. Table 2.2 shows 
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the main hazard types and their interactions, according to Westen & Greiving 

(2017). 

Ideally, for a complete multi risk assessment all risks derived from different perils 

potentially hitting the same area should be compared and ranked, taking into 

account possible interactions among the single hazards as well. In Zschau (2017) 

a definition of possible approaches for multi risk assessment is proposed (figure 

2.7). In the following sections the different methodologies will be described. 

 

Figure 2.7 – Approaches for multi-risk assessment, from single hazard to multi-hazard. Adapted from 

Zschau (2017). 

2.3.1. Multi-layer single risk assessment 

A first step towards a full multi risk assessment could be to analyse and compare 

two or more hazard potentially affecting a given region avoiding their possible 

interactions. This approach is known as multi-layer single risk assessment. Even 

if ignoring possible interaction among hazards may lead to underestimate the 

overall risk, in order to assist decision makers in the field of DRM also 

understanding the relative importance of different risks in a given area is still 

crucial. The main problem arising for the application of this approach is the 

comparability of the different risks. As a matter of fact, for different risks may 

be modelled adopting, for example, different intensity measure and different 

return period as well as different scale of analysis. Thus, a multi-layer single 

hazard approach is based on harmonization and standardization of the assessment 

procedures among risks. The main tool adopted for presenting risk results are 
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matrices, indices and curves (Poljanšek, et al., 2019). These tools perform well 

also for multi-risk comparison purposes and therefore they are the main 

standardization schemes used in this context (Zschau, 2017).  

Standardization procedure could be applicable at different risk-levels (i.e., 

hazard, vulnerability and risk). At hazard analysis stage, the main problem 

concerns the intensity measures adopted: their magnitude may be measured using 

different reference units, for example the inundation depth for floods, ground 

motion or macro-seismic intensity for seismic (Carpignano et al. 2009). To 

overcome this issues, two major standardization approaches are usually adopted: 

the classification and the index-based scheme (Kappes et al. 2012). The former 

consists of classifying and ranking single hazard into hazards categories based 

on fixed intensity and frequency thresholds. In the Swiss guidelines for the 

analysis and the evaluation of natural hazards (Loat, 2010) these thresholds are 

defined by a combination of intensity and frequency based on the possible effects 

on buildings and humans. Thus, for example, a rock fall with a kinetic energy 

higher than 300 kJ and a flood higher than 2 m are considered equivalent with 

respect to the consequences in terms of damaged buildings and people affected. 

The intensity and frequency classes are represented by a matrix where a color 

code is used to define the different level of hazard (for instance ‘low’, ‘moderate’ 

and ‘high) and the overall hazard level in a given area is derived overlying the 

classification results of all single hazards (figure 2.8). Similar approaches are 

used in Del Monaco et al. (2006b), Thierry et al. (2008) and Cariam (2006). A 

slightly different classification scheme is adopted in Chiesa et al. (2003), where 

the hazard level in the areas of interest is not determined by the maximum of 

overlapping classes, but by means of a matrix that correlates the hazard classes 

for the two different perils analyzed (i.e., earthquakes and tropical storms). 
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Figure 2.8 - Hazard matrix adapted from (Kunz & Hurni, 2008). 

Unlike matrices, that can be considered a qualitative approach for classifying and 

raking hazards, indices are semi-quantitative approaches that allows the 

quantification of the differences between two hazards level. A first proposal of 

an index for comparing different hazards at community level can be found in 

Odeh Ingineers, Inc (2001), where the Hazard Score is computed as a function 

of other three scores related to the hazard frequencies (i.e., events per year), the 

area potentially affected and its intensity level. Each parameter (i.e., frequency, 

intensity and impact area) is classified according to five levels and then they are 

multiplied to obtain the final score related to a given hazard. Thus, different 

hazards in a given community can be compared in a quantitative way. Other 

examples of indices for multi-hazard analysis can be found in Dilley et al. (2005), 

El Morjani et al. (2007) and Petitta et al. (2016). 

Matrices, indices and curves are largely used for describing hazard-specific 

vulnerability (Braga et al., 1982; Lagomarsino & Giovinazzi, 2006; Zuccaro et 

al.,2020; Papathoma et al., 2003; Balica et al.,2009; Silva & Pereira, 2014; 

Petrone et al., 2016). However, as multi-hazard tool they are used more 

frequently for comparing risks resulting from different hazards in terms of social 

or economic losses. In this context, risk matrices usually relate likelihood (i.e., 

the probability that an event occur) and impacts. Thus, a highly likely event 

associated with catastrophic loss is ranked as having higher risk than an unlikely 

event associated with negligible loss. The color-code of the cells of the matrix 

allows an easier visualization and communication of the level of risk, ranging 

from green (small risk or tolerable) to red (great risk or intolerable risk) colors. 
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Fixing defined levels of risk, this tool allows to compare impacts due to different 

hazards. However, the ranking of impacts and the color code used in risk matrix 

strongly depend on experts’ judgement, making such approaches highly 

subjective.  In figure 2.9 is shown an example of risk matrix used in multi-risk 

field. 

 

Figure 2.9 - Slovenian National Disaster risk matrix (GRS, 2018). 

Risk curves represent a quantitative method for assessing natural hazards in a 

multi-layer single risk approach. The curve relates the mean annual frequency of 

exceedance of a given event to corresponding economic losses. The calculation 

of risk in a given period is a conditional relation of hazard and vulnerability with 

the exposed elements (UNDRO, 1980; Cardona, 1986). Considering all possible 

hazard events, defined by intensity and frequency, a fully probabilistic risk 

estimation can be performed using the following equation (Velásquez, et al., 

2014): 
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𝑣(𝑝) = ∑ Pr (𝑃 > 𝑝|𝐸𝑣𝑒𝑛𝑡𝑖)𝐹𝐴(𝐸𝑣𝑒𝑛𝑡𝑖)

𝐸𝑣𝑒𝑛𝑡𝑠

𝑖=1

 (3) 

where v(p) is the exceedance rate of loss p; FA (Eventi) is the annual frequency 

of occurrence of the Eventi; Pr (P>p | Eventi) is the probability of the loss to be 

greater than or equal to p, conditioned by the occurrence of the Eventi. The 

graphical representation of v(p) is the risk curve, also called “Loss Exceedance 

Curve” (LEC). A commonly used risk metric is the “Average Annual Loss” 

(AAL), i.e., the weighted average of all plausible loss values calculated as area 

under the LEC (equation 4). This value is also called “Expected Annual Losses” 

(EAL). 

𝐴𝐴𝐿 = ∫ 𝑣(𝑝)𝑑𝑝
∞

0

 (4) 

As exceedance probabilities are not expressed in a hazard-specific unit, losses 

among different hazards are directly comparable through risk curves. An example 

of risk curves that compare direct economic losses from earthquake, storm and 

flood, adapted from Grünthal et al. (2006), is reported in figure 2.10. Other 

approaches based on curves for comparing and ranking different risks can be 

found in Fleming et al. (2016) and BORIS (2022b). 

 

Figure 2.10 - Risk curves of the hazards due to windstorms, floods and earthquakes for the city of 

Cologne for losses concerning buildings and contents (Grünthal et al., 2006). 

Concerning risk index approaches, they are based on the combination of 

individual standardized indicators for hazard, vulnerability and exposure inputs 

to obtain a measure of risk scaled between 0 and 1. Risk index approaches are 



57 
 

widely used for spatial multi-dimension evaluation, accounting not only for the 

physical-dependent component of risk but also for socio-economic and 

environmental factors. An overview of these approaches will be presented in 

section 2.2. 

2.3.2. Multi-hazard risk assessment: hazard interactions 

Hazards interactions may be described using several terms: multiple hazard 

(Hewitt & Burton, 1971), domino effect (Zuccaro & Leone, 2011; Choine et al., 

2015), triggering effect (Marzocchi et al., 2009), chains (Shi,2002; Xu et al., 

2014) or coinciding hazards (Tarveinen et al.,2006; European Commisison, 

2011). Although many of them are used to refer to one hazard that triggers 

another one, as follow-on events, the classification of interconnections between 

hazards can be more refined (Gill & Malamud, 2014; 2016). 

The most used methods for accounting hazard interactions in risk assessment 

process are hazard-interaction matrices and event-tree approaches. As hazard and 

risk matrices adopted in single layer multi-risk assessment, the hazard-interaction 

matrices are semi-quantitative approaches that allow to examine and visualize 

interconnections among risks and to evaluate how string these relations are. In 

De Pippo et al. (2008) a matrix-based multi-hazard analysis is carried out for the 

northern shoreline of the Campania region, in Italy. Five natural hazards 

potentially affect the study area are considered in the investigation, i.e., shoreline 

erosion, riverine flooding, storms, landslides, seismicity and volcanism. Cause-

effect interactions among threats are analyzed in a descriptive matrix where the 

leading terms (i.e., the hazards) are posed in diagonals elements. The other 

elements of the matrix are filled according to a clockwise scheme: the element ij, 

where i is the generic row and k the generic column, represent the effect of the 

hazard ii on jj (figure 2.11). These effects indicate the influence of the 

morphological parameters on the system (the cause of the phenomena) or the 

influence of the system on phenomena’s parameters (the effect of the 

phenomena). Thus, for example, a large fetch affected to strong wind and high 

waves (element 3.1) determines a high rate of erosion (influence on the effect), 

whereas it is well known that seismic shakes can induce landslides (element 5.4, 

influence on the cause). A semiquantitative code from 0 to 4 (from none to 
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critical) is assigned to each cause/effect interactions, based on recurrence times 

of the event (the lower is the recurrence time, the higher the code). The overall 

costal hazard is finally obtained as weighted sum of the product of each hazard 

parameter’s code and the relative importance coefficient, defined as the 

percentage of influence of one parameter over the other in the considered 

location.  

 

Figure 2.11 – Hazard interactions matrix. Adapted from De Pippo et al. (2008) 

Other examples of the use of matrices for analysing multi-hazard interactions are 

presented in Tarvainen et al. (2006), Kappes et al. (2010), Mignan et al. (2014) 

and Liu et al. (2015). 

Event-tree approaches are quantitative methods for analysing hazard chains in a 

multi-hazard risk assessment. The tree-based scheme allows the identification of 

all consequences of a system that have a given probability of occurring after an 

initiating event. All the considered events are linked to each other through nodes 

that express all possible states of the system; the branches of the event tree that 

connect nodes define the probability of occurrence of each state. The event-tree 

shown in figure 2.12 was used in Neri et al. (2008) to investigate future scenarios 

at the volcano Vesuvius. The initial pre-eruption stages (i.e., precursor, initiation 

and progression stages) represent the specific Vesuvius situations that may lead 

to an eruption. If an eruption does ensue, all the main possible eruption styles and 

the secondary hazards associated with them are specified in the next set of 

branches on the event-tree. For each different eruptive style (i.e., explosive and  
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Figure 2.12 - Event Tree describing potential eruption scenarios for volcano Vesuvius and possible 

associated hazards that may develop. Adapted from Neri et al. (2008). 

effusive) the main types of eruption activities, such as the so-called Plinian or 

Sub-Plinian for the explosive event and the lava flow type for the effusive class 

of eruption, are described with further branching. All those categories if event 

differ in magnitude and intensity. Moreover, a frequency of occurrence was also 

associated to such events, based on a combination of statistical treatment of 

Vesuvian eruptive records and expert judgment. The relevant Generic Hazards 

that might arise during and after each eruptive event were also identified. For 

example, seven eruptive phenomena associated with explosive events are 

identified: ash and lapilli fallout; pyroclastic density currents; ballistics showers; 
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lahars and floods; landslides, lava flows, and tsunamis. In this study, the possible 

physical processes that might influence the arising of the consequence hazards 

were also analysed and specified as additional branches. Event tree structure for 

describing hazard interactions were also presented in Newhall and Hoblitt (2002), 

Marzocchi et al. (2004; 2008; 2010), Lacasse et al. (2008) and Selva et al. (2012). 

2.3.3. Physical vulnerability for multiple hazards 

Usually, natural-hazard risk assessment focuses on static vulnerability and 

exposure models, associated with current conditions. However, not only the 

exposed population to natural hazard may increase, driven by factors such as 

urbanization, socioeconomic growth and the resulting movement of people from 

rural to urban areas, but also the vulnerability may increase in time. In Zschau 

(2017) a distinction between the time-dependent and the state-dependent fragility 

is proposed. The former refers to a gradual change of vulnerability with time, due 

to degradation processes, lack of maintenance, unplanned or informal 

modifications of the structure. An example is the gradual deterioration of 

buildings and bridges performance against earthquakes due to corrosion (Ghosh 

& Padgett, 2010; Iervolino, et al., 2015a; Zamanian, et al., 2020; Soltani, et al., 

2021). The second refers to the changes in vulnerability caused by the interaction 

between two different hazards that occur close in time. As a matter of fact, when 

two hazards interact, vulnerability of the exposed elements may be altered by the 

first one and, in turn, their capacity to response to the second hazard may 

dramatically change. For instance, the presence of a load on a system such as the 

snow on a roof could determine an increment of the vulnerability during a seismic 

event. An example of load-dependent modified vulnerability due to ash loads is 

presented in Garcia-Aristizabal et al. (2013). Through an application in the 

district of Arenella, in the city of Naples, the authors demonstrated that the 

expected loss from earthquakes are remarkably sensitive to the thickness of the 

ash layer from volcanic activity assumed as additional load on buildings’ roofs. 

Vulnerability may be also modified due to the presence of a pre-damage state, as 

in the case of the accumulation of damage in structures pre-damaged by a seismic 

main shock and threated by aftershocks. Pre-damage-dependent seismic 

vulnerability/fragility for earthquake aftershock risk assessment were analysed in 

Bazurro et al. (2004), Sanchez-Silva et al. (2011), Polese et al. (2012; 2015), 



61 
 

Iervolino et al. (2015a; 2015b), Aljawhari et al. (2020), Gentile and Galasso 

(2020), and Papadopoulos et al. (2020). In Selva (2013) the effect of hazard 

interactions on people exposed was also analysed; this is for example the case of 

a strong local earthquake that leads people to escape from their damages houses 

and go towards the seaside areas, which are the areas exposed to tsunami risk.  

2.3.4. Building taxonomy for multi-hazard risk assessment 

As already mentioned, building taxonomy describes how to characterize 

buildings according to those attributes that can affect their performance during a 

hazardous event. Building taxonomies were mostly developed to describe and 

classify building structures according to their seismic performance. HAZUS 

(FEMA 2003) is the most popular taxonomy developed in the United States, 

which identifies 36 structural categories based on structural parameters affecting 

structural capacity and response, such as basic structural system (e.g., steel 

moment frame, steel brace frame, concrete moment frame, concrete shear walls, 

unreinforced masonry bearing walls), building height (i.e., low-rise, mid-rise, 

high-rise) and occupancy type (e.g., residential, commercial, industrial). In 

Europe, the EMS-98 scale (Grunthal, 1998) is the most widely used taxonomy, 

that classifies buildings into 15 classes based on the construction material 

(masonry, reinforced concrete, steel, wood) and the structural system type (e.g., 

rubble stone, unreinforced masonry with RC floors, RC frame with or without 

earthquake-resistant design). Based on the expected seismic vulnerability, each 

building class is also assigned to a vulnerability class, from A (most vulnerable) 

to F (least vulnerable), as already described in section 2.1.3 as well. Within 

RISK-UE project (Mouroux et al. 2004) a building taxonomy defining 23 

building classes based on the combination of structural type, construction 

material, height class and building design code level was also proposed for seven 

European cities. Examples of building taxonomies focusing on seismic 

performance can be also found in Crowley et al. (2011), EERI (2000), Jaiswal 

and Wald (2008) and Brzev et al. (2013). 

Despite the usefulness of these existing taxonomies, one of their main limitations 

is related to their use in multi-hazard risk modelling applications. As a matter of 

fact, in such cases the assets should be grouped into categories based on attributes 
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relevant to characterize their vulnerability to all hazards of interest. Thus, for 

example, while the construction material and the lateral load-resisting system are 

suitable indicators of the expected seismic vulnerability, the type and material of 

the roof is crucial for the characterization of building performance against 

cyclones as well as building height and the presence of basement are crucial for 

characterizing performance against floods. In Silva et al., 2018 the GEM 

taxonomy (Brzev et al., 2013) was expanded into a classification system suitable 

for multi-hazard assessment, also called GEM4ALL. The GED4ALL taxonomy 

identifies 14 building’s attributes relevant to structural response under multi-

hazard actions. Together with the attributes relevant against earthquakes (already 

mentioned before), other specific ones associated with flood hazard, wind hazard 

and fire hazard were added (i.e., ground floor hydrodynamics, fire protection, 

openings in exterior walls). A detailed description of this taxonomy and its 

comparison with the GEM one can be also found in Silva et al., (2022). Examples 

of exposure model for European and Middle East countries based on GEM4ALL 

building taxonomy can be found in Rodrigues, et al. (2019), Crowley et al. 

(2020a,b) and Dabbeek and Silva (2019).  

2.4. Multi-dimensional nature of risk 

Figures from recent disasters highlighted the influence that socioeconomic and 

cultural factors have on impacts of hazardous event. Almost the 50% of people 

who died in Louisiana because of Hurricane Katrina in 2008 were people older 

than 75 years (Brunkard et al., 2008) and the average age of deaths recorded after 

the wildfires in 2017 and 2018 in California was over 70 (Hamideh et al., 2022; 

Los Angeles Times, 2017, 2018 - www.latimes.com). Hence, older age, which is 

related to issues of mobility, healthy and communication, may increase the 

susceptibility of people to disasters. The study conducted by Ritchie et al. (2022) 

underlines that populations in low-income countries are more vulnerable to 

effects of natural disasters. As a matter of fact, when low-frequency, high-impact 

events occur in countries with low SDI (socio-demographic index), an index 

representing health, social conditions and economic development for a country, 

a dramatic high number of deaths is recorded, whereas highly developed 

countries seem to be much more resilient to disaster events and therefore the 

number of deaths results consistently low. According to past experiences, also 

http://www.latimes.com/
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cultural factors may influence the consequences of a natural hazard, as they affect 

people perception of risk and how they prepare for it (Alexander, 2012; 

Wachinger, et al., 2013). Therefore, characteristics of the asset exposed play a 

crucial role in understanding the risk, explaining why some social groups could 

be more effected than others.  

Understanding the importance of such social factors and their contribution to 

community preparedness, disaster response and post-disaster recovery, is critical 

not only for reducing existing disaster risk but also for enhancing community 

resilience (UNDRR, The TEN Essentials for Making Cities Resilient). Resilience 

is defined as the ability of a community exposed to hazards to resist, absorb, 

accommodate, adapt to, transform and recover from the effects of a hazard in a 

timely and efficient manner (UNISDR, 2009). In other words, the more resilient 

is a system, the greater is its ability to reduce failure probability, reduce 

consequences from failures and reduce time to recovery (Bruneau, et al., 2003). 

While the former two features of the system depend on its vulnerability (both 

physical and social), time to recovery refer to the restoration time required to get 

the normal level of performance, i.e., the pre-event level, and it depends on the 

redundancy of the system and its capacity to react in an efficient timely manner. 

Hence, community resilience depends on multiple components. Although a large 

amount of studies have been conducted for modelling resilience, the selection of 

an appropriate number of resilience components is still a significant challenge 

(Nguyen & Akerkar, 2020). 

According to Bruneau et al. (2003), resilience can be conceptualized through four 

interrelated dimensions: the technical dimension, that refers to the ability of the 

physical system to keep an acceptable level of performance; the organizational 

dimension, that refers to the capacity of managing critical facilities, establishing 

priorities and mobilizing resources in order to bring the system to its normal 

condition; social and economic dimensions involve the community capacity to 

withstand and recover quickly from the disaster, such as the capacity to provide 

emergency shelter and short-term housing for people affected, the ability to 

restore services to residential dwellings or the availability of government 

programs and insurance payouts that facilitate housing reconstruction. In 

PEOPLE Resilience Framework (Renschler, et al., 2010) the previous proposal 
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of Bruneau et al. (2003) was expanded, identifying seven component-dimensions 

in assessing community resilience: population and demographic, that includes 

population’s indicators of age, gender, education attainment and income level; 

environmental/ecosystem, referring to quality of natural resources; organized  

governmental services, related to executive and administrative capacity of local 

authorities; physical infrastructure, that measures the accessibility to 

residential/commercial/cultural facilities as well as lifelines services (e.g., 

internet, postal, tv, phones) and health care; lifestyle and community competence, 

that reflects the quality of life and community self-organization; economic 

development, that reflects the level of financial and employment services, 

transportation and utilities; social/cultural capital, that concerns all services 

specifically designed for population needs (e.g., child and elderly services).  

According to Barkham et al. (2014) all resilience components could be grouped 

into two main dimensions: vulnerability and adaptive capacity. Thus, resilience 

increases when communities have more adaptive capacity and decreases when 

they are more vulnerable. The vulnerability dimension refers to the capacity of a 

country to guarantee an adequate standard of living to its inhabitants reducing the 

physical vulnerability to natural hazards and environmental threats and social 

vulnerabilities due to poverty and inequality, efficiency of transport 

infrastructure and basic utilities. The adaptive capacity refers to institutions 

capacities to communicate within government bodies at all levels and associated 

groups such as non-governmental and community organisations as well as the 

capacity to put in place disaster management plans and emergency procedures.  

In Ferrer et al. (2017), all components of resilience are incorporated into a single 

multi-dimensional risk index. The INFORM (INdex FOr Risk Management) is a 

tool aimed at supporting decision-makers on prioritisation of emergency 

preparedness and resilience activities. The conceptual framework is based on a 

holistic perspective of disaster risk for a community, identifying risk as the 

interaction of hazard, exposure, vulnerability and capacity measures. As already 

underlined in previous studies (Wisner, et al., 2004; Cardona & Carreño, 2011), 

disaster can be interpreted as the interaction between socio-economic pressures 

and physical exposure to the hazardous event. INFORM risk concept identifies 

three dimensions of risk: hazard and exposure, vulnerability and lack of resilience 
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to cope and recover. The hazard and exposure dimensions are merged into a 

single one to reflect the probability of physical exposure associated with specific 

hazards. Indeed, there is no risk if there is no physical exposure, no matter how 

severe the hazardous event is. The physical vulnerability, that is a hazard 

dependent characteristic, is incorporated into the hazard and exposure dimension. 

On the contrary, the vulnerability dimension refers to the fragility of the socio-

economic systems. The lack of coping capacity, instead, measures the ability of 

a country to face up with disasters in terms of DRR activities and governance as 

well access to communication services, physical infrastructures and health 

system, which contribute to the reduction of disaster risk.  

Socio-economic and demographic factors that affect the resilience of 

communities usually characterize the vulnerability dimensions. This means that 

they could increase the susceptibility of a community to the impacts of hazards. 

In general, we refer to this dimension of the vulnerability as social vulnerability. 

An overview of the methodologies adopted for the estimation of social 

vulnerability for a community and the parameters that may affect it are presented 

in the following section. 

2.4.1. Social Vulnerability 

As crucial component of community resilience, social vulnerability has been 

examined by researchers across a multitude of academic disciplines. The concept 

of social vulnerability within the disaster management context was introduced in 

the 1970s when researchers recognized that vulnerability to hazards may be 

influenced by many socio-economic factors, such as age or income (Morrow, 

1999; Juntunen, 2005). Social vulnerability refers to the increased likelihood of 

some social groups to suffer negative consequences of natural hazards, due to 

their lack of capacity to react and manage the effect of hazard related processes 

(Oliver-Smith, 1999; McCarthy, et al., 2001; Cutter, et al., 2003; Wisner, et al., 

2004; Adger, 2006; Barros, et al., 2014). 

In research literature, different socio-economic and demographic factors have 

been identified as social vulnerability components. The main parameters adopted 

to assess social vulnerability are gender, age, education, socioeconomic status, 

public health condition, employment status, and access to resources (Frigerio, et 
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al., 2018). For example, discriminatory atmosphere to women, especially in 

developing countries, causes a limited access to resources and information for 

female population, limitations that may affect their physical and mental health 

during and after disasters (Sohrabizadeh, et al., 2014). Several studies highlight 

that females are usually linked to a higher rate of mortality and poverty in disaster 

contexts compared to males (Wisner, et al., 1994; Fatemi, et al., 2017). Children 

and elderly people living alone are the age groups that mostly affect social 

vulnerability, as they are dependent on others and require protection, financial 

support, transportation, medical care and assistance with ordinary daily activities 

(Schmidtlein & King, 1995; Rosenkoetter, et al., 2007; Ardalan & Mazaheri, 

2010). Hence, children less than 5 and people 65 years and older might have 

many problems in emergency and recovery phases and require special treatment 

by disaster response planners and operational officers. Minority groups such as 

disabled, migrant or social or ethnic community, might be characterized by high 

social vulnerability if they live in more risky areas or has experienced language 

and communication problems (Peacock, et al., 1997; Carnelli & Frigerio, 2016). 

To give an example, real-time evacuation information during emergencies is not 

generally provided to people with limited dominant language proficiency, the 

hearing and visually impaired, and other special needs groups (U.S., 2006). 

Employment and socioeconomic status may influence both exposure to natural 

hazards and the ability to recover from a disaster, as well (Cutter, et al., 2000; 

Wisner, et al., 2004; Carnelli & Frigerio, 2016). For instance, many low-income 

people in New Orleans were stranded in the wake of Hurricane Katrina because 

they had no personal transportation and public authorities did not provide 

emergency mass transit (Flanagan, et al., 2011). Still, population density may 

increase social vulnerability not only due to evacuation difficulties but also 

because of urban sprawl issues that can easily lead to disasters (Kelman, 2017).  

Quantifying and mapping social vulnerability allow the identification of the most 

vulnerable areas for the implementation of prevision and prevention measures for 

risk reduction. To measure social vulnerability, indicator-based approach are the 

most used methods (Yoon, 2012). As a matter of fact, indicators allow to 

aggregate and compare different metrics. Additionally, these indicators are 

relatively easy to interpret also for non-experts, that makes composite indicators 
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particularly suitable for policymaking and public risk communication. Some 

examples are the Human Development Index (United Nations Development 

Programme,2020) the Prevalent Vulnerability Index (Inter American 

Development Bank, 2010), and the Social Vulnerability index (Cutter, 2003). 

The latter, also referred to as SoVI, is still the leading conceptual framework to 

assess social vulnerability. This method was formulated to measure the social 

vulnerability of U.S. counties to natural hazards. Besides age, gender, race, and 

socioeconomic status, other characteristics that identified specific population 

needs or lack of the normal social safety nets necessary in disaster recovery phase 

are also taken into account (e.g., physically or mentally challenged, non-English 

speaking immigrants, rural population, etc.). To examine the social vulnerability, 

originally 42 independent variables were collected, subsequently reduced to 11 

components applying principal component analysis (PCA). The latter is a 

statistical technique for reducing the dimensionality of a dataset, i.e., PCA 

transforms high-dimensions data into lower-dimensions while retaining as much 

information as possible. Through PCA, the observations in the dataset are 

geometrically converted in new variables that are linear functions of the original 

ones. The new set of variables, called principal components (PCs), are such that 

they are uncorrelated with each other and successively maximize variance, i.e., 

the first PCs is the one that minimize the variance. The importance of each 

component decreases when going to 1 to n, it means the 1 PC has the most 

importance, and n PC will have the least importance.  

Personal health, age, density of the built environment, race and ethnicity are some 

of the considered components.  

A limitation in using SoVI proposed in Cutter (2003) is that such index should 

be specific for the context of analysis, i.e., to assess social vulnerability in 

different places, it needs to be modified to account for context-specific local 

dimensions. Thus, for example, in Frigerio et al. (2018) SoVI index was suitably 

fitted in order to apply the same methodology to the Italian context. The number 

of components turn from 11 to 16 and more emphasis was given to the 

educational level, the employment and the socio-economic status. In Mesta et al. 

(2022) an application of SoVI for Nepal was presented. Eleven variables contain 

demographic and socio-economic attributes of Kathmandu Valley’s population 
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that may affect their social vulnerability to natural hazards were considered. All 

variables are associated with one of five indicators (i.e., Population, Education, 

Economy, Habitat, Infrastructure). As developing country, not surprising that, for 

example, the percentage of households with no toilet facility or the percentage of 

households with no mobile phone or telephone service is considered as a variable 

for SoVI calculation. Other applications of SoVI for specific local context can be 

found in Chen et al. (2013), Guillard-Goncalves et al. (2014), Solangaarachchi et 

al. (2012) and Wood et al. (2010).  

2.5. Current gaps and open issues 

In the previous sections it has been shown that multi-hazard risk analysis is not 

the simple sum of single hazard risk estimation. Despite the large availability of 

consolidated approaches for single hazard evaluation, only few studies analyzed 

multiple hazards and standard approaches for multi-risk assessment are not still 

available (Kappes et al., 2012).  

The rigorous implementation of multi-hazard analysis that account for hazard 

coincidence and interactions are still scant. Historical catalogues that take 

properly into account the simultaneous occurrence of different hazards are rarely 

available, as well. Moreover, multi-hazard processes are often specifically 

developed for a given context and therefore they can be applied only in specific 

cases. Exposure modelling to multiple hazards should account for hazard-specific 

vulnerability of structures but only few studies on multi-hazard taxonomies are 

available. Also ignoring hazard interactions, the comparability of risks derived 

from multiple hazards requires to use at least the same output metrics and scale 

of analysis. Still, the temporal resolution of analysis needs to be comparable and 

suitable for the purpose of the analysis, for instance, several days for planning 

emergency activities, years, decades or centuries for land-use planning activities 

(Marzocchi et al., 2012). For instance, potential impacts of an earthquake are 

often estimated to plan mitigation and adaptation strategies, while assessment of 

volcanic or landslides risk are primarily aimed at evacuation and prevention 

(Foerster et al. 2009). 

Another open issue on multi-risk analysis concerns the integration of socio-

economic aspects in the analysis. Although consolidated approaches for 
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evaluation and measure of social vulnerability to natural hazards are available 

(see section 2.4.1), such socioeconomic and demographic risk drivers are usually 

ignored in conventional risk assessment procedures. Some studies investigated 

the spatial interactions between natural hazards and social vulnerability. In 

Fekete (2010) a Social and Infrastructure Flood Vulnerability Index for Germany 

is proposed. Demographic statistics of Federal Statistical Office are used to 

evaluate a Social Susceptibility Index (SSI) for German counties. As indicator, 

the SSI is demonstrated to be integrable with hazard information, derived from 

inundation maps of rivers. The exposure is calculated using a Geographic 

Information System (GIS) software, considering the percentage of settlement 

area inundated for the considered event scenario. Additional information on the 

location of critical infrastructures, such as power plants, electricity facilities, 

heating and water supply, and their ratio per country (i.e., the number of all 

critical infrastructure items per county) is used for calculating an Infrastructure 

Density Index (IDI). Then, the flood vulnerability index for each country is 

calculated as the product of the SSI, the IDI and the exposure area. In 2016 

Frigerio et al. proposed a GIS based methodology for integrating social 

vulnerability into the seismic risk analysis in Italy. The approach proposed in 

Cutter et al. (2003) for assessing the SoVI was adopted. A multivariate statistical 

analysis was conducted in order to identify suitable socio-economic indicator to 

use. The map of the seismic classification of the Italian territory proposed in the 

Ordinance of President of the Council of Ministers of 28 April 2006 (OPCM 

3519/06) is considered representative of the seismic hazard. Thus, using a GIS, 

the spatial variability of social vulnerability to seismic hazard was identified. 

Through the use of a risk matrix, the classes of a social vulnerability index map 

were combined with those of a seismic hazard map. A qualitative social 

vulnerability exposure map to earthquakes was produced, highlighting areas with 

high seismic and social vulnerability levels. Interaction between flood hazard, 

urban growth and social vulnerability in Kathmandu Valley, Nepal, was 

investigated in Mesta et al. (2022). The flood hazard model used is the one 

proposed by Sampson et al. (2015), while the cellular automata SLEUTH model 

(Chaudhuri & Clarke, 2013) is applied to simulate Kathmandu Valley’s urban 

growth in 2050. The SoVI index was adapted to account for Nepal’s specific 

context and used to quantify social vulnerability. The spatially overlapping of 
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those factors (hazards, urban growth, social vulnerability) allows the 

identification of critical location where disaster risk is likely to increase 

drastically in the future. 

However, all cited studies focus on single risk, e.g., flood or seismic, without any 

consideration of possible combination of several hazards. One of the best 

examples of tools that allow a holistic assessment of risk is the INFORM index, 

as also shown in section 2.4.1. The latter is a global index-based multi-hazard 

approach that allows to combine three different dimensions of risk at country 

level: hazard and exposure, that involves several hazards such as earthquakes, 

tsunamis, floods, tropical cyclones and drought and the exposure/vulnerability of 

the built environmental to such perils; vulnerability, that represents economic, 

political and social characteristics of the community; lack of coping capacity, that 

measures the ability of a country to cope with disasters in terms of organised 

activities of the country’s government as well as the efficiency of the existing 

infrastructure, which contribute to the reduction of disaster risk. The INFORM 

index assign a score between 0.0 and 10.0 to each country. The low values of the 

index represent a positive performance, and the high values of the index represent 

a negative performance in terms of managing risk. Thus, the index allows the 

ranking of countries, i.e., the identification of countries with higher or lower than 

the others. The countries may be also grouped in classes based on the level of 

risk of humanitarian crises (e.g., very low, low, medium, high and very high risk). 

Another possible use of the index is to follow trends in time series. However, the 

main limitation of this approach is that requires many inputs information, that 

may lead data collection phase time consuming. Also, some data may be not 

available in all countries and hypothesis made on missing data may distort the 

real value of the composite indicator in such countries (Marin Ferrer et al., 2017). 
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3.A framework for integrating social 

vulnerability in multi-risk assessment 

Modelling and quantifying natural-hazard risk enables decision-makers to 

understand the potential types and the extent of future disaster impacts. For 

facilitating development and implementation of appropriate preparedness and 

mitigation strategies, risk quantification approaches should capture the effects of 

multiple hazards. The simple listing of all hazards potentially affecting an area 

gives no indication about their relevance. Thus, comparing and ranking different 

hazards as well as accounting for their possible interactions is crucial for 

supporting authorities in defining risk reduction measures. However, performing 

multi-risk assessments can be challenging, particularly at large geographic scales, 

because of the requirements in terms of input data and computational resources 

involved. Furthermore, past disasters underlined that impacts of hazards are not 

equally distributed within society (UNDRR, 2015). Socio-economic factors such 

as age, gender, health, origin, educational level, employment and income level, 

may affect susceptibility of various social groups to harm and their response 

capacities to hazards. Given its complex multidimensional nature, risk 

assessment for effective disaster-risk management and decision-making should 

consider both physical and social vulnerability factors.  

This study addresses the challenge of integrating crucial physical and social 

vulnerability factors in multi-risk analysis, aiming to overcome the 

aforementioned limitations. As also shown previously, index-based approaches 

are particularly suitable for measuring multidimensional realities too complex to 

be summarized by a single indicator. For this reason, a straightforward multi-risk 

index that combines multiple hazards and both physical and social exposure and 

vulnerability is proposed herein. More specifically, a multi risk index for the 

entire country of Italy, using municipality-level scale of analysis, is obtained 

combining earthquake and flood risk with social vulnerability. The procedure 
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adopted for constructing the index, the single indicators selected for each 

dimension (i.e., hazard, social and physical vulnerability and exposure) as well 

as the variables used for their calculation are described in the following sections. 

The proposed metric is used to identify hotspots across the Italian territory that 

should be prioritised for actions that promote disaster risk reduction. Moreover, 

sensitivity analyses of methodologies and metric weights used to combine single 

indicators is also performed in order to evaluate how these hotspots can change 

as a function of stakeholder priorities and single risk considerations. 

3.1. Building a composite indicator 

A composite indicator is a mathematical combination of a set of individual sub-

indicators that represent different dimensions of a concept and have no common 

unit of measurement (Nardo, et al., 2005). The main stages involved in the 

construction of a composite indicator are the selection of the sub-indicators, their 

normalization, the choice of aggregation model and the weights of the sub-

indicators. The starting point in constructing composite indicators is the 

definition of a theoretical framework, i.e., the definition of the phenomenon to be 

measured through the composite indicator. As a matter of fact, the choice of 

which sub-indicators to use, which weighting method has to be used and as well 

as how aggregate information, are subjective choices that can be used to 

manipulate the results. Thus, the theoretical framework provides the criteria for 

the selection and combination of variables based on the defined purposes.  

First, the factors that significantly affect the phenomenon are chosen. Multi-

dimensional concepts are divided into several sub-groups (i.e., sets of sub-

indicators), guiding by the theoretical framework. Such a nested structure 

improves the user’s understanding of the driving forces behind the composite 

indicator. Indicators should be selected based on their relevance to the 

phenomenon being measured and relationship to each other as well as their 

accessibility and their country coverage. The selection of a group of individual 

indicators can be based on expert opinion or using analytical approaches, such as 

principal component analysis, that allows to investigate the relationship among 

potential indicators in order to retain and use only the most representative ones. 
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Individual indicators selected are then normalized to make them comparable. 

Normalization of data is a required step prior to any data aggregation as the 

indicators often have different measurement units. After normalization, 

indicators are transformed into pure, dimensionless, numbers. Several 

normalization techniques can be used. One of the simplest and most common 

normalization procedure is the maximum-minimum method. It consists in a linear 

rescaling of each indicator value by subtracting the minimum value and dividing 

by the range of the indicator values, so that the minimum value of that factor 

among all units of analysis is mapped to 0, while the maximum value to 1. 

Distance to a reference measure is a method that provides the relative position of 

a given indicator with respect a reference point. The latter could be a target to be 

reached in a given time frame (e.g., the reduction target for CO2 emissions) or a 

value assumes in a benchmark country. An extensive overview of normalization 

methods can be found in Nardo et al. (2008).  

The definition of the weights to assign and the aggregation procedure to use for 

combining different dimensions is central in the construction of a composite 

indicator. The different weights assigned to single indicators should reflect their 

importance in expressing the considered phenomenon. Thus, for example, if the 

factors are considered of the same importance, equal weights can be assigned. If 

a high degree of correlation exists between two or more variables, statistical 

models such as principal component analysis or factor analysis should be used to 

overcome the double counting problem of indicators that partially measure the 

same behaviour (Nardo et al., 2005). Alternatively, participatory methods that 

incorporate various stakeholders’ opinions can be used to assign weights. 

Subjective weights may be set by a group of experts such as technicians and 

policy makers or even by citizens through social surveys that allow to get how 

important are individual indicators for people. In the budget allocation approach, 

for example, weights are quantified by providing experts a “budget” of N points 

to distribute over a number of individual indicators; the expert “pays” more for 

those indicators whose importance they want to place more emphasis on.  

Aggregation rules to combine all the components to get the final composite 

indicator can vary as well. The composite indicator can be obtained by the 

weighted sum of the sub-indicators (e.g., linear aggregation), their product (e.g., 
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geometric aggregation) or aggregating them using non-linear techniques such as 

multi-criteria analysis. There is no obvious way of aggregating sub-indicators. 

The suitable aggregation method should be selected based on the aim of the work 

and the characteristics of the sub-indicators adopted. Linear aggregation is a 

compensatory approach that allows full compensability among dimensions, i.e., 

poor performance in one dimension can be compensated by sufficiently high 

performance of another (Greco et al., 2018). The geometric aggregation also 

implies a certain degree of compensability between individual dimensions. 

However, while in a linear aggregation the compensability is full and constant, 

in the geometric aggregation compensability is lower for sub-indicators with 

lower value (Nardo et al., 2008). Hence, it could be considered as a less 

compensatory approach. In case of compensability among dimensions is not 

allowed, non-compensatory method such as the multi-criteria analysis should be 

used. Some general guidelines for the selection of the most suitable methods for 

the construction of a composite indicator can be found in Mazziotta & Pareto 

(2013).  

In the next sections, the indicators selected for describing physical and social 

dimensions involved in the calculation of the proposed multi-risk index are 

presented. The normalizing, weighting and aggregation methods adopted are 

briefly described following as well (section 3.3).  

3.2. Indicators for physical and social dimensions 

3.2.1. Seismic risk 

The assessment of seismic risk implies the combination of seismic hazard, 

vulnerability and exposure. Thus, sub-indicators for each of these components 

have to be defined.  

The seismic hazard indicator is derived from a measure of earthquake-induced 

ground shaking at the municipal centroid, which is quantified according to a 

selected hazard map. In Italy the official reference is the MPS04 model proposed 

by Stucchi et al. (2004; 2011). Seismic hazard is obtained by the PSHA. The 

results of the PSHA were elaborated by INGV (Istituto Nazionale di Geofisca e 

Vulcanologia) and presented in terms of maps showing the value of peak ground 

acceleration (PGA) and spectral acceleration at reference elastic periods (Sa(T)) 
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corresponding to an exceedance probability in a given period of time or, equally, 

to an assigned return period. Nine different hazard maps of Italy were realized by 

INGV for nine different return periods (2500, 1000, 475, 200, 140, 100, 72, 50 

and 30 years) or probabilities of exceedance in 50 years (2%, 5%,10%, 22%, 

30%, 39%, 50%, 63% and 81%). The PGA value for 475-year return period (or 

10% probability of exceedance in 50 years) is selected as measure of ground 

shaking in this application as it is the most common standard used in the industry 

for assessing seismic risk, and it is also the basis for most building codes for 

seismic design. The model provides the seismic actions for each point of a 5x5 

km mesh covering all the Italian territory. The PGA value at municipal centroid 

is obtained as weighted average on distance, considering the closer grid points. 

Figure 3.1 shows the hazard map of Italy representing hazard input value at 

municipal level.  

 

Figure 3.1 – Seismic hazard map of Italy with PGA values for a return period of 475 years. PGA values is 

expressed in units of g. 

The physical vulnerability indicator expresses the susceptibility of buildings to 

be damaged by an earthquake of a given intensity. As also shown in section 2.1.2, 

in performing vulnerability assessment buildings are usually clustered in relevant 

classes representing their expected performance during a seismic event and for 

each class different vulnerability functions (i.e., a function relating seismic 

intensity with the expected level of damage for the structure) are defined. Herein, 

we adopt the Risk-UE index-based approach (Lagomarsino & Giovinazzi, 2006) 
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to derive seismic vulnerability indicator. This model clusters buildings into 

vulnerability classes based on values of a Vulnerability Index (VI) and for each 

class a different DPM, expressing the expected damages as a function of the 

macroseismic intensity level, is defined. The six vulnerability classes of the 

EMS-98 (Grunthal, 1998) approach are considered (i.e., A, B, C, D, E, F). The 

VI for buildings is derived from basic information on construction material (e.g., 

masonry, RC), structural system (e.g., simple stone, massive stone, adobe, for 

masonry structures; frame or walls for RC) and additional information on 

vulnerability factors, such as the height of the structure, the type of horizontal 

structures for masonry buildings and the level of earthquake resistant design in 

the case of RC. An initial value of the VI is defined as a function of the sole 

construction material/structural system, which can then be modified based on 

further information, if available. For example, a value of 0.87 is assigned to 

masonry buildings with irregular layout, and this value could increase if vaults 

(+0.08) or flexible slabs (+0.02) characterise the lateral structural system. 

Specifically, the VI ranges between 0 and 1, with values close to 1 indicating the 

most vulnerable buildings and close to 0 indicating buildings with superior 

seismic performance. Intervals of VI values for the vulnerability classes are 

defined so that, given the VI value for a building or a building typology, the 

vulnerability class of belonging can be assigned.  

For the purpose of this application, seismic vulnerability indicators can be simply 

expressed by the VI calculated at municipal level. The information on buildings 

can be derived by the latest census database (ISTAT, 2011). In Italy, ISTAT 

(Italian national institute of statistics) provides the number of buildings and 

information on building characteristics such as the construction material 

(masonry, reinforced concrete, other), the number of storeys (1,2,3, 4 or more 

storeys) and construction age (< 1919, 1919-1945, 1946-1961, 1962-1971, 1972-

1981, 1982-1991, 1991-2001, 2001-2005, > 2005) at census tract level. However, 

for privacy reason, such data are available in aggregated form, e.g., it is not 

possible to know how many masonry buildings with two storeys are built before 

1919. On the contrary, disaggregated data are available at the municipality level 

or larger scales. For RC buildings three information are taken into account for 

the calculation of the VI: the structural system type, the design level and the 



77 
 

number of stories. For the former one, moment resistant frame structure type is 

assumed, considering their huge diffusion on the Italian territory. The second one 

is defined comparing the age of construction of the building (given by census) 

and the year of entry in force of the main seismic code (i.e., the seismic 

classification year of the considered municipality). This means that to all 

buildings having the same age of construction is assigned the same VI. Then, the 

VI value could be modified based on the class of height of belonging.  

As census data provides only typological information on buildings, the other 

information on masonry buildings required for VI calculation are derived by 

adopting a suitable exposure/vulnerability model that defines rules to assign 

census building typologies (e.g., defined based on construction material and age 

of construction) to building classes (see also section 2.1.1). More specifically, the 

exposure model proposed by Del Gaudio et al. (2019) is adopted. The authors 

identified four vertical structural types (i.e., regular layout or good quality, 

irregular layout or poor-quality structure with or without tie rods/beams), and 

five horizontal structural types (i.e., vaults with or without tie rods, beams with 

flexible, semi-rigid or rigid slabs). Based on the combination of vertical and 

horizontal structure types (e.g., irregular layout structure without tie rods or tie 

beams and flexible slabs), 14 building classes are defined. Using data derived 

from a sample of 22,618 residential masonry buildings surveyed after L’Aquila 

earthquake, the authors inferred the percentage of occurrence of each of the 14 

classes within 8 times intervals (< 1919, 1919-1945, 1946-1961, 1962-1971, 

1972-1981, 1982-1991, 1991-2001, > 2001) defined by ISTAT (2001). Thus, 

given the number of masonry buildings in each period (information provided by 

ISTAT at municipal level), adopting such percentages it is possible to derive the 

number of buildings belonging to different classes. As the building classes 

identified in the model do not account for the height of buildings, those 

percentage are considered as constant across all height classes, i.e., for buildings 

with 1, 2, 3, 4 or more stories belonging to the same age of construction period 

the same percentages of occurrence in each of the 14 classes are adopted. The 

corresponding VI value for each class is assigned as a function of the relative 

features (e.g., vertical and horizontal structure type, class of height). Thus, the 

physical vulnerability indicator is first evaluated at the building class level, i.e., 
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for each class of buildings with the same structural features. Then, the final 

municipal-level indicator is obtained as a weighted average based on building 

class presence in the municipality. In this way, also physical exposure is 

accounted for in the definition of the physical vulnerability indicator. It is worth 

noting that buildings categorized as “other” material are not included, as in Italy 

these kinds of structures are not very widespread. A confirmation of such 

statement is that no vulnerability model for this typology is officially included in 

NRA for Italy (Dolce et al., 2021). 

This approach has been selected to be consistent with the structure of the other 

terms of the risk indicator, in particular with the social vulnerability term (see 

section3.2.3). As a matter of fact, the use of score-based approaches for 

measuring both physical and social vulnerabilities make them easily aggregable 

and comparable. Moreover, Risk-UE approach allows to automatically rank 

municipalities based on their physical exposure and vulnerability by VI values, 

without the need for defining an arbitrary score to each vulnerability/building 

class or other criteria necessary to define physical vulnerability scores of 

municipalities.  

3.2.2. Flood risk 

Directive No 2007/60/EC, also known as the Flood Directive (FD), is the 

reference for the assessment and management of flood risks in Europe. The FD 

requires Member States to assess their territory for significant risk from flooding, 

to map the flood extent, identify the potential adverse consequences of future 

floods for human health, the environment, cultural heritage and economic activity 

in these areas, and to take adequate and coordinated measures to reduce this flood 

risk. The procedure to reduce the risk of floods comprises three stages: a 

preliminary flood risk assessments for the identification of river basins and 

coastal areas at risk of flooding; the preparation of flood hazard maps, describing 

the flood extent and the water level (i.e., water depth), and flood risk maps, 

showing the potential adverse consequences associated, for three different 

scenarios corresponding to events with low, medium and high probability of 

occurrence; establishment of flood risk management plans defining appropriate 

objectives for the reduction of potential adverse consequences of flooding for 

human health, the environment, and economic activity, and, if considered 



79 
 

appropriate, on non-structural flood prevention initiatives. In Italy, the FD was 

implemented with the with Legislative Decree 49/2010. The implementation of 

FD requires the preliminary identification of the management units (Unit of 

Management - UoM) and the related competent authorities (Competent Authority 

- CA). The FD defines a management cycle, which is renewed through an 

iterative process with a periodicity of 6 years. During each management cycle, 

the three stages to assess and manage flood risk (i.e., preliminary flood risk 

assessment, flood hazard and risk maps, flood risk management plans) should be 

implemented in succession at the river basin district or UoM level. The entire 

Italian territory is divided into 8 Districts, having jurisdiction over the 47 UoM 

identified. Legislative decree 49/2010 establishing that the District Basin 

Authorities must provide for the fulfilments of the FD, transmitting the 

information to ISPRA (Istituto Superiore per la Protezione e la Ricerca 

Ambientale), an institute acting under the vigilance and policy guidance of the 

Italian Ministry for the Environment and the Protection of Land and Sea.  

According to FD, flood hazard maps should be developed considering three 

probability scenarios: low (extreme events), medium (events with return period 

of 100 years or greater) and high (frequent events). In Italy, the Legislative 

Decree 49/2010 characterizes events corresponding to medium probability as 

infrequent events with a return period between 100 and 200 years and events 

corresponding to a high probability as frequent events with a return period 

between 20 and 50 years. Extreme events correspond to events with a return 

period of 300 years or greater. ISPRA carried out maps for containing the 

perimeter of the geographical areas that could be affected by floods, bounded by 

the District Basin Authorities, according to three aforementioned scenarios 

(www.isprambiente.gov.it). Such maps are shown in figure 3.2. However, further 

information required to characterize flood hazard, i.e., water depth, are not 

reported in the above maps, as such data is not included in all District hazard 

maps.  

http://www.isprambiente.gov.it/
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Figure 3.2 – Map of flood inundated areas expected to low probability or extreme events (P1), medium 

probability events (P2) and high probability or frrquent events (P3).  

Although approaches for calculating water depth by flood extension maps are 

available (Cohen, et al., 2018; Peter, et al., 2022), their application for the entire 

country may be time consuming. Moreover, a detailed flood assessment is 

beyond the scope of this study. Flood hazard indicator should measure the greater 

or lower probability for assets at risk in the considered unit of analysis 

(municipality) to be affected by a flood event. Therefore, the sole information of 

the area potentially inundated can be considered an acceptable and satisfactory 

information. Similarly, a detailed exposure assessment would require the use of 

a GIS software for detecting exposure at building level as building footprint. 

Therefore, to combine the need to estimate the flood hazard at municipality scale 

for the whole national territory with the one to have a rapid exposure assessment 

the hazard indicator at municipal level is estimated as the percentage of municipal 

area potentially inundated by a flood event. The inundated area is considered 

representative of the exposure as well. That means that, as potentially flooded 

buildings cannot be exactly estimated, the spatial distribution of buildings within 

a municipality is assumed uniform; therefore, the percentage of inundated area in 

the municipality is considered proportional to percentage of exposed buildings. 
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In other words, greater the inundated surface, greater the number of buildings 

potentially flooded. Specifically, the map of inundated areas by an event with 

medium probability of occurrence i.e., with a return period between 100 and 200 

years, is considered for calculating hazard indicator. As a matter of fact, too 

frequent events with a return period between 20 and 50 years are not suitable for 

the comparison with the seismic term. Events with a return period greater than 

300 years are excluded as well, as flood events too rare and unlikely. 

Flood vulnerability for buildings is often expressed as a function of the 

occupancy type, the construction material and building’s height. As this study 

focuses on residential buildings, only fragility model referred to such occupancy 

type are analysed. Several studies propose different fragility functions based on 

the main construction material of the building. The European depth–loss 

functions for residential buildings proposed in Huizinga (2007) do not account 

for different construction materials but only for different type of use. Maximum 

damage values are calculated for buildings made of generally resistant material 

such as concrete or masonry. Correspondingly, this relates to western countries 

or urban areas in more rural countries. However, if less resilient building 

materials are assumed to be used, for instance mud dwelling with straw roof 

mostly used in rural areas of developing countries (Maiti, 2007), total loss 

damage (i.e., damage ratio = 1) is reached much sooner than compared to 

concrete or masonry buildings. Therefore, the authors suggest defining a suitable 

“undamageable” part (reducing the maximum damage value) for buildings based 

on their resistant material. It is suggested to set the “undamageable” part to zero 

for materials with worse performance (e.g., mud), while the “undamageable” part 

is round 40% for RC and masonry buildings. These values are in line with the 

damage function from the CAPRA database (Central American Probabilistic 

Risk Assessment), reported in figure 3.3 (Cardona, et al., 2012).  
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Figure 3.3 – CAPRA depth-loss functions (Cardona et al., 2012). 

As this application is proposed for the Italian territory, where almost all 

residential buildings are in RC or masonry, there are not significant differences 

between those typologies in terms of vulnerability. Thus, the only buildings 

feature expected to significantly affect their flood performance is the height. 

Analysing HAZUS depth-loss curves (figure 3.4) it can be noted that the 

buildings with 1 story tend to be more vulnerable with respect to the ones with 2 

or 3 storeys. Therefore, the fraction of residential buildings with 1 story within 

the municipality is considered as flood vulnerability indicator. The greater the 

number of low buildings with 1 story in the municipality, the greater its 

susceptibility to be affected by negative consequences by a flood event. Although 

it is a simplifying approach, the adopted criteria allow to represent the physical 

flood vulnerability through a simple indicator, calculated using only public 

accessible data (i.e., census). It is worth mentioning that despite the presence of 

basement is a crucial information in flood vulnerability assessment, this data is 

not available by census, therefore it is not considered herein.  

 

Figure 3.4 – HAZUS depth-loss functions for single family home with no basement.  
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3.2.3. Model for social vulnerability 

For the evaluation of social vulnerability, the modified SoVI index proposed by 

Frigerio et al. (2018) is adopted, as specifically developed for the Italian territory. 

Based on a literature review and taking into account also the data availability, the 

authors selected 16 variables for quantifying social vulnerability in Italy. These 

variables are representative of 7 demographic and socio-economic indicators 

relevant to the specific context, that can increase or decrease social vulnerability, 

i.e., family structure, education, socioeconomic status, employment, age, 

population growth, race/ethnicity, as also shown in table 3.1.  

Age indicator involves variable such as rate of children (i.e., population under 

14), rate of elderly (i.e., population over 65), aging index and dependency ratio. 

The aging index refers to the number of elders compared to persons younger than 

15 years old in a specific population (Preedy & Watson, 2010). The dependency 

ratio is the ratio of persons of nonworking age to persons of working age, usually 

the 20–65-year-olds (Simon, et al., 2012). Information on population is provided 

by latest census (i.e., ISTAT 2011) at census tract level. In ISTAT database 

population is classified by age (<5, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-

39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, >74) and gender (male, 

female). Therefore, the above-mentioned variables at municipal level (that is the 

scale of analysis of this study) can be calculated considering all census tract data 

belonging to the same municipality.  

Education indicator is expressed through two variables: low educational index 

and high educational index. About education, ISTAT provides the following 

information: number of people with a degree, number of people with high school 

diploma, number of people with secondary school diploma, number of people 

with primary school diploma, illiterate people. Moreover, in the BES (“benessere 

equo e sostenibile”) report by ISTAT (ISTAT, 2016) people with at least high 

school diploma, people with a degree and people early exit from the education 

system are considered the main educational indicators. People with at least high 

school diploma indicator is expressed by the percentage of 25-64 aged persons 

with a high school diploma, people with a degree indicator by the percentage of 

30-34 aged persons with a degree and people early exit from the education system 
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indicator is described as the percentage of 18-24 aged persons who only obtained 

a secondary school license and are not included in a program of education or 

training. Therefore, in this study high educational index is calculated comparing 

the total number of people with a degree (estimated by ISTAT 2011 database) to 

over 30 aged population. Low educational index is calculated comparing the 

number of people who only obtained a secondary school diploma to over 15 aged 

population. The latter (over 15 aged) is selected as threshold because of the 

population age ranges considering in census database, described above.  

As representative of socio-economic status, the commuting rate and the quality 

of buildings are the variables taken into account. The commuting rate is 

calculated as ratio of commuters and people in working age, defined as over 15 

aged (ISTAT, 2011). In census databased the quality of buildings is expressed 

classifying buildings by their state of preservation: very good, good, bad or very 

bad. In this application the number of buildings with a bad or very bad state of 

preservation at municipal level is considered as variable representative of the 

quality of buildings. The unemployment rate, employed and female employed 

are calculated as ratio of unemployed, employed, female employed and people in 

working age respectively. Figure 3.5 shows the maps of Italian municipalities 

ranked by unemployment rate and the rate of female employed. 

 

(a)        (b) 

Figure 3.5 – Unemployment rate (a) and female employed rate (b) for Italian municipalities. 
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Concerning family structure, in Frigerio et al. (2018) the number of family with 

more than 6 members is considered as variable. However, families with more 

than 6 members represent only the 0.05% of families in Italy, so it may be not 

relevant data for SoVI calculation. Also, ISTAT provides the value of the average 

annual income of family in Italy, classifying families based on their number of 

components as families with 1, 2, 3, 4, 5 or more components 

(www.istat.it/it/dati-analisi-e-prodotti/banche-dati/statbase). Figure 3.6 shows 

that the income is not proportional to the number of components per family, but 

the larger the family the lower the income. Therefore, families with more than 5 

components are considered as indicator for social vulnerability.  

 

Figure 3.6 – Average annual income (euro) per family based on the number of components of the family. 

Source: ISTAT.  

As indicator of race/ethnicity, the percentage of foreign resident in the considered 

municipality is selected. The population density is calculated using a GIS 

software and relating the residential population with the surface area (km2) of the 

municipality. Together with the population density, also the crowding index is 

considered as variable for population growth indicator. This index usually 

indicates the number of co-residents per room. As such detailed information is 

not available, the number of co-residents per flat is considered, calculated as 

number of dwellings compared to residential population.  

It is worth noting that Built-up area, variable included in the study of Frigerio et 

al. (2018), is not considered herein as it is an information not detectable only on 

census data but would require the covered area of buildings determined by 

building footprints. Furthermore, such variable could be considered 

representative of population density, factor already included in the SoVI 

calculation. 

http://www.istat.it/it/dati-analisi-e-prodotti/banche-dati/statbase


86 
 

Table 3-1 – Indicators and variables derived from ISTAT and their impact on social vulnerability. 

Variables Indicators Impact on social vulnerability 

Under 14 aged 

Age 

+ 

Over 65 aged + 

Aging index + 

Dependency ratio + 

Families with more than 6 components Family structure + 

High educational index 
Education 

- 

Low educational index + 

Buildings wih very bad or bad state of 

preservation 
Socio-economic 

status 
+ 

Commuting rate + 

Unemployed 

Employment 

+ 

Employed - 

Female employed - 

Population density 
Population growth 

+ 

Crowding index + 

Foreign resident Race/Ethnicity + 

Normalization process is required in order to make variables comparable and 

aggregable. In Frigerio et al. (2018) a spatiotemporal analysis of SoVI, evaluating 

its value across three periods is performed (1991, 2001 and 2011, corresponding 

to years of ISTAT census campaigns). Thus, the Mazziotta–Pareto index method 

(Mazziotta & Pareto, 2015) is adopted in normalizing variables, that accounts for 

their absolute change over time.  This temporal evaluation is beyond the aim of 

this study. Therefore, the min-max transformation is adopted as normalization 

method. Each variable value is converted to a normalized value by subtracting 

the minimum value and dividing by the range of the indicator values, according 

to following equation: 

𝑁𝑉𝑚 =
𝑉𝑚 − 𝑚𝑖𝑛𝑚

𝑚𝑎𝑥𝑚 − 𝑚𝑖𝑛𝑚
 (5) 

Where Vm is the value of the variable for the municipality m, minm and maxm are 

the correspondent minimum and maximum values over all Italian municipality, 

respectively and NVm the normalized value of the variable. In this way, each 

variable is expressed in a standard scale, where 0 indicates the lowest value 

within the whole sample and 1 the highest one.  
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Finally, SoVI value at municipal level is calculated using the follow 

mathematical expression: 

𝑆𝑉𝐼 = ∑ ±𝑁𝐼𝑖

𝑛

𝑖

 (6) 

Where NI is the normalized value of the considered variable i, and the ± symbol 

shows the direction of each NI. The latter is determined according to the influence 

of the variable i on social vulnerability: positive (+) direction is assigned to 

variables that increase vulnerability and negative (-) direction to variables that 

decrease it. Therefore, SoVI indicator assumes values less than 0 (for low social 

vulnerability) and greater than 1 (for high social vulnerability), as it is obtained 

as the sum of normalised variables, each one with either a positive (increasing) 

or negative (decreasing) effect on social vulnerability. Figure 3.7 shows the map 

of the social vulnerability, calculated at municipal level, for the Italian territory. 

It can be noted that the regions in the south of Italy together with Sardinia are the 

most affected by social vulnerability. In the north part of the country SoVI tends 

to be higher in small towns.  

 

Figure 3.7 – SoVI map for Italy.  
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3.3. Multi-risk index  

In previous sections five individual indicators involved in the calculation of the 

multi risk index are presented: seismic hazard (s) and seismic physical 

vulnerability indicators (sv); flood hazard (f) and flood physical vulnerability 

indicators (fv); social vulnerability indicator (SoVI). Seismic and flood physical 

exposure are included in the vulnerability indicator and in the hazard one, 

respectively. The exposed population is considered as part of the risk index, as 

well. This indicator quantifies the residential population at the municipal level 

derived from the most recent census.  

The selected indicators have to be normalized before aggregating them, in line 

with the procedure presented in Nardo et al. (2008). Normalization is performed 

through their empirical cumulative distribution functions (ECDFs). ECDF 

expresses the probability that a random variable X will take a value less than or 

equal to a given value x, i.e., P(X≤x), based on sample observations. For example, 

considering hazard indicator, X is the value of PGA for the selected return period 

at the municipal centroid for all Italian municipalities. In this way, all indicators 

assume a value between 0 and 1. Figure 3.8 shows the ECDF for seismic and 

flood hazard, social vulnerability and exposure population. 

 

(a)                  (b) 

 

                           (c)                             (d) 

Figure 3.8 – ECDF for seismic hazard (a), flood hazard (b), social vulnerability (c) and residential 

population (d) indicators.  
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The multi-risk index is finally obtained combining the normalized indicators 

according to the following equation: 

𝑅𝐼 = [𝐹ℎ
𝑠(ℎ𝑗) ∙ 𝐹𝑃𝑣

𝑠 (𝑣𝑗)]𝑤𝑠 ∙ [𝐹ℎ
𝑓

(ℎ𝑗) ∙ 𝐹𝑃𝑣
𝑓

(𝑣𝑗)]𝑤𝑓 ∙ 𝐹𝑆𝑣(𝑠𝑣𝑗)𝑤𝑠𝑣 ∙ 𝐹𝑝(𝑝𝑗)
𝑤𝑝

 (7) 

where Fhs(hj), FPvs(vj), Fhf(hj), FPvf(vj), Fsv(svj) and Fp(pj) are the ECDF values of 

the seismic hazard, seismic physical vulnerability, flood hazard, flood physical 

vulnerability, social vulnerability and residential population indicators, 

respectively, evaluated at municipality j. ws, wf, wsv, and wp are the weights 

adopted for each indicator, representing the relative importance of individual 

indicators to relevant stakeholders.  

 

Figure 3.9 – Seismic hazard and physical vulnerability combination to get seismic risk score map.  

It is worth noting that hazard and physical vulnerability indicators, both for 

seismic and flood hazards, are first combined to get a unique indicator 

representative of the hazard related risk, i.e., the expected level of negative 

consequences due to specific hazard of a given intensity (e.g., figure 3.9 

represents a risk score map). Next, the resulting risk score (still assuming value 

between 0 and 1) is weighted and aggregated with the other terms.  

The weights can be defined using various techniques. For example, a weighting 

method that allows to involve stakeholders and decision-makers is the BAP 

(Budget Allocation Process), also described in section 3.1. This method 
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quantifies weights by providing users with a “budget” of N points to distribute 

over a number of individual indicators; the user “pays” more for those indicators 

whose importance they want to place more emphasis on. The weights take values 

between 0 and 1 and sum to 1. A first attempt of multi-risk index calculation is 

performed considering equal weights (ws = wf = wsv = wp = 0.25). A sensitivity 

analysis assuming that one variable (e.g., social vulnerability) is weighted three 

times more than the other two (e.g., wsv = 0.5, ws = wf = wp = 0.166) is also 

performed and described in the next section.  

 

(a)        (b) 

Figure 3.10 – Multi-risk index map obtained using the geometric aggregation (a) and its comparison with 

the values obtained by linear aggregation (b). In the comparison map (b) red values indicate an increase in 

the multi-risk index got through the linear aggregation, while the blue ones a reduction in the index.  

The aggregation is geometric, where, compared to a linear aggregation, a high 

value of the ECDF for one indicator does not compensate as much as for a low 

value of the ECDF for another type of indicator (Nardo et al., 2008). Figure 3.10 

shows the risk scores for Italy adopting the geometric aggregation and the 

differences of index values estimated using the linear aggregation and the 

geometric one (i.e., the difference at municipal level between value of risk index 

obtained through linear aggregation and through geometric one). It can be noted 

that mostly in every municipality multi-risk index calculated through equation 

(7) is lower than the correspondent index calculated using a linear combination 

of the indicators (blue values in the figure 3.10b), except for those municipality 

where all indicators assume low and similar values (e.g., Valverde in Lombardy 
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region). This means that the geometric aggregation significantly de-empathize 

areas where only one hazard dominates. Therefore, it is more suitable for 

expressing multi hazard risk.  

Table 3.2 gives an example of how a compensatory approach (i.e., linear 

aggregation) works. Using the linear aggregation, the absence of seismic hazard 

(ag) in some municipalities (i.e., all municipalities in Sardinia) is totally 

compensated by a high value of flood hazard, flood vulnerability or social 

vulnerability. This means that the risk index (RI) will be still high regardless of 

the seismic hazard component. Similarly, the absence of flood hazard (F) in the 

city of Francofonte, in Sicily region, is compensated with a high value of the 

seismic hazard and the social vulnerability. On the contrary, adopting the 

geometric aggregation, a null or very low value of a component requires a much 

higher value of the other components for compensating.  

Table 3-2 – Italian municipalities with highest differences between risk index (RI) obtained through linear 

aggregation and geometric aggregation. The residential population (Pop), the PGA value for a return 

period of 475 years (ag), the seismic physical vulnerability indicator (Sv), the percentage of flooded area 

(F), the flood vulnerability index and the SoVI index for each municipality are also reported. 

Municipality Region Pop ag [g] Sv F [%] Fv SoVI 
RI 

linear 

RI 

geom 
Delta 

Terralba Sardinia 10328 0.00 0.61 0.59 0.29 1.35 0.63 0.06 0.56 

Uta 
Sardinia 

7696 0.00 0.59 0.12 0.44 1.49 0.59 0.05 0.54 

Cabras 
Sardinia 

8950 0.00 0.63 0.28 0.43 1.25 0.61 0.07 0.54 

Monserrato 
Sardinia 

20335 0.00 0.56 0.18 0.38 0.99 0.57 0.04 0.52 
San Giovanni 

Suergiu 

Sardinia 

5983 0.00 0.60 0.13 0.47 1.46 0.57 0.05 0.52 

Decimoputzu 
Sardinia 

4256 0.00 0.60 0.21 0.38 1.39 0.56 0.05 0.50 

Sorso 
Sardinia 

14163 0.00 0.60 0.06 0.36 1.26 0.55 0.05 0.50 

Francofonte Sicily 12791 0.27 0.65 0.00 0.14 1.91 0.57 0.08 0.49 

Serramanna 
Sardinia 

9128 0.00 0.63 0.13 0.20 1.32 0.55 0.06 0.49 

Villasor 
Sardinia 

6767 0.00 0.59 0.18 0.28 1.16 0.54 0.05 0.49 

 

3.4. Sensitivity analysis 

One of the limitations of the proposed approach may be that the risk score is 

calculated with reference to a specific level of the hazard. Specifically, PGA 

values corresponding to 10% probability of exceedance in 50 years, or equally to 

a return period of 475 years, were used as seismic hazard inputs at municipal 

level, while the map with flooded areas characterizing an event with medium 

probability of occurrence (return period between 100 and 200 years) was used as 

flood hazard input. Therefore, further analysis considering also other hazard level 
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are performed, in order to evaluate how the choice of the hazard input can affect 

the results.  

 

(a)          (b) 

Figure 3.11 – Comparison between multi-risk scores obtained adopting the medium probability with (a) 

the high probability flood map and (b) the low probability flood map. Red values indicate an increase in 

the score values due to the selection of a different map (high probability or low probability). 

Figure 3.11 shows the differences in risk indices obtained using the medium 

probability flood hazard map, the high probability (return period between 20-50 

years) and low probability (return period greater than 300 years) maps. The 

comparisons are carried out adopting the seismic hazard map for a return period 

of 475 years and equal weighting of the variables. It can be noted that using the 

low probability map (highest hazard) only for few municipalities the risk index 

value significantly increases, due to the notable increase of the inundated area at 

municipal level. Although this scenario would represent a more sever event, a 

reduction of the index in several municipalities can be observed as well. This 

variation can be explained by the ECDF changing. For example, in the town of 

Cagliari, in Sardinia, the inundated area represents the 40% of the municipal 

surface area according to the medium probability scenario, with a ECDF value 

equal to 0.94 (i.e., the 94% of the municipalities show a lower percentage of area 

inundated). Despite the inundated area increases considering the low probability 

scenario (49%), the probability got through the ECDF is 0.90, that means that 

such increment is less significative than the increment observed in other 

municipalities. Hence, the flood risk scores for medium probability scenario 
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results greater than the score for low probability scenario. Adopting high 

probability scenario (lowest hazard), almost constant increment of risk index is 

observed across all municipalities, between 0.01 and 0.05. This increment can be 

explained through ECDF values as well.  

 

(a)              (b) 

Figure 3.12 - – Comparison between multi-risk scores obtained adopting seismic hazard map for 475 

years return period and (a) 100 years return period map and (b) 2500 years return period map. Red values 

indicate an increase in the score values due to the selection of a different map. 

Figure 3.12 shows the comparison of the index calculated using the seismic 

hazard map for a return period of 475 years and the index obtained using two 

different seismic scenarios: seismic input values corresponding to a probability 

of occurrence of 39% in 50 years (i.e., return period of 100 years) and of 2% in 

50 years (i.e., return period of 2500 years). Flood hazard map used is the one 

representing medium probability floods. In both cases the variation of the index 

is between the -0.17 and +0.17, with a mean value over all municipalities equal 

to -0.03 using the 100 years return period map and to +0.05 for the 2500 years 

one. As observed for flood, also in this case the increase of hazard values may 

not lead to an increase of the final risk index, because the variables normalization 

allows to account for the relative changes of the hazard variables and not the 

absolute ones.  

Sensitivity analysis changing the weights assigned to each indicator is performed 

as well. Three different scenarios are analysed. In each scenario is assumed that 
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one variable (i.e., seismic risk, flood risk, social vulnerability, population) is 

weighted three times more than the others (e.g., wsv = 0.5, ws = wf = wp = 0.166). 

As not significant variations were observed changing the hazard inputs, in this 

analysis the medium probability flood hazard map and the seismic hazard map 

for 475 years return period are used.  

 

(a)            (b) 

 

(b)           (d) 

Figure 3.13 - Variation of multi-risk index when seismic risk (a), flood risk (b), social vulnerability (c) or 

population factor (d) is weighted more than the others. Red values indicate an increase in the index value. 

Figure 3.13 shows the variation in the risk index due to the different weights’ 

combinations. Generally, a higher value of the index is obtained where the 

variable to which the greatest weight is assigned is predominant. For example, it 
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can be noted that if higher weight is assigned to seismic risk indicator, the 

increment of overall risk index basically follows the seismic hazard map trend 

(figure 3.1), varying accounting for the different physical vulnerability as well. 

If social vulnerability indicator is weighted more than others, greater values of 

the risk index can be observed mostly in the south of Italy and in small cities in 

the north part, consistently with map shown in figure 3.7. On the contrary, if the 

highest weight is assigned to population indicator, big cities (more densely 

populated) tend to get a higher overall risk score.  
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4.Regional based exposure models to 

account for local building typologies 

The development of building inventory at the territorial scale is a fundamental 

step in the framework of earthquake risk analysis. Indeed, the knowledge of the 

geographical distribution of building vulnerability classes, that is building 

inventory, is a pre-requisite to perform realistic risk estimations in a region of 

interest. For compiling building inventory, the key structural characteristics of 

exposed buildings are required. As shown before (section 3.2.1), when this 

information is not available throughout the territory, exposure model should 

define how to account vulnerability classes’ distribution at urban, regional or 

national scale.  

Census database is often the primary employed source, thanks to their easy 

availability and diffusion on whole national territory. However, information 

provided on buildings by Census are often limited to the construction age, 

building material and number of storeys (Crowley, et al., 2014). Thus, a tool to 

associate building typology inferred by ISTAT to vulnerability classes defined 

by the model is required. The exposure model establishes the class assignment 

rules for associating each building typology to one or more vulnerability classes. 

For instance, the exposure model proposed by Del Gaudio et al. (2019) for 

masonry buildings is the one used previously for the RI calculation (section 

3.2.1). The model proposes an exposure matrix that reports the percentages of 

occurrence of each of the vulnerability classes identified within times intervals 

defined by Italian census (ISTAT, 2001). Such percentages were inferred on the 

data from the sample of 22,618 residential masonry buildings surveyed after 

L’Aquila earthquake. Other examples of exposure models can be found in 

Lucantoni et al. (2001), Di Pasquale et al. (2005), Bernardini et al. (2010) and 

Cacace et al. (2018). Acknowledging its usefulness to compile building 
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inventory, in the methodology adopted in the last NRA for Italy, the role of the 

exposure modelling is formally recognized as well (Dolce et al., 2021). 

Generally, exposure models are calibrated on available survey data and/or expert 

judgment, analysing the correlation between the main vulnerability parameters 

for buildings and the census information. This approach has the advantage of 

allowing an implicitly validated association of typology to vulnerability classes. 

However, it has the drawback of being based on data from specific geographic 

areas, namely the ones that have been hit by damaging earthquakes, despite the 

buildings’ characteristics can vary greatly for different areas of a country. For 

example, Del Gaudio et al. (2019) and in several other vulnerability models for 

unreinforced masonry buildings (Braga at al. 1982, Di Pasquale et al. 2005, Rota 

et al. 2008, Rosti et al. 2020), the type of vertical structure (e.g. regular, irregular, 

round stone, regular stone etc.) or of horizontal structure (flexible, rigid, 

semirigid and vaults) has a clear influence on seismic vulnerability. However, the 

distribution of building typologies in a country may vary significantly depending 

on the availability of construction material in the area, the evolution of 

construction techniques, the seismic history and the codes in force at the time of 

construction, also depending on the seismic classification. The type of available 

stones to be employed in the construction of masonry buildings is influenced by 

the geography of the territory, by the presence of quarries, waterways and 

volcanic areas. Construction techniques are closely related to the type of stone, 

as well: for example, tuff and travertine, commonly used in Italy, can be cut into 

square blocks, while limestone is used for irregular blocks. Similarly, the 

presence of cobblestones, that can be found in historical centre built near rivers, 

can determine the presence of irregular masonry structures. In Italy, limestone 

can be found mainly in the internal Apennine areas, tuff is typical of volcanic 

areas and bricks are typical of the Adriatic coast and many northern towns, due 

to the large presence of alluvial deposits (Salmoiraghi, 1982; Rodolico, 1965; 

Zuccaro, et al., 1999). Thus, for example, the city of L’Aquila, in Abruzzi region, 

in which limestone is widespread, is characterized by the presence of irregular 

masonry buildings; in Naples, Campania region, masonry buildings are mostly 

regular masonry, due to the large diffusion of tuff, but in Benevento, an inland 

city of the same region, cobblestones are widespread instead, due to the nearness 
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to rivers (Sabato and Calore), that lead the presence of irregular masonry 

buildings. 

Acknowledging the variability of building typological distribution at the 

territorial scale, recently the Italian Civil Protection Department financed the 

“Territorial Themes” ReLUIS project, where a specific survey form “Cartis” was 

developed. The interview-based Cartis form (Zuccaro, et al., 2015) aims at the 

survey of ordinary building typologies in sub-areas of the town denominated 

Town Compartments TC, characterized by homogeneity of the building stock in 

terms of construction age and construction techniques and/or structural types. 

Thanks to the speediness of the form compilation for relatively large areas, the 

Cartis approach represents an alternative source towards the assemblage of large-

scale inventories, allowing to rapidly collect information on relevant buildings 

features at urban level. Nowadays, more than 380 Italian municipalities were 

investigated with Cartis (http://cartis.plinivs.it/). The Italian regions with the 

highest completeness rate (number of surveyed municipalities versus the total 

number of municipalities in the region) are Tuscany (20%), Basilicata (16%) and 

Campania (13%). At the current state, the whole database covers about the 5% 

of national territory. 

The study presented herein investigates the effects of an improved exposure 

modelling, adopting a building inventory based on Cartis data, on the 

vulnerability characterization at the territorial scale. Based on the Cartis survey 

available for several municipalities in three regions in Italy, an improved building 

inventory for such areas is built, allowing to take into account local typological 

features that are variable in different parts of the country. Such inventories can 

be used for updating the exposure/vulnerability models. The methodology is 

described herein using the vulnerability/exposure models for masonry buildings 

proposed by Del Gaudio et al. (2019), referred as to DG below. It will be shown 

that the variation in vulnerability can vary depending on the analysed region.  

Then, the effects of such region-specific exposure/vulnerability models on 

previous presented risk index are estimated. 

The methodology adopted herein is also used in Polese et al. (2021) and Tocchi 

et al. (2022a), where the influence of a better knowledge level of the building 
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environment on detailed seismic risk assessment at regional scale is evaluated, 

showing that an improved characterization of regional vulnerability may strongly 

influence the impacts. 

4.1. A Cartis-based approach for exposure modelling 

As briefly mentioned in section 3.2.1, the vulnerability classes for masonry 

buildings adopted in DG model are identified by the combination of bearing 

structure types (irregular layout structure with or without tie rods/beams – classes 

B and C, regular layout structure with or without tie rods/beams – classes D and 

E) and horizontal structure ones (vaults, flexible, semi-rigid or rigid slabs, classes 

23, 4, 5 and 6 respectively). Therefore, each class is identified by alphanumeric 

code, e.g., Class 23BC represents irregular layout masonry buildings 

with/without tie roads/beams with vaults, and class 5D regular layout masonry 

buildings with tie rods/beams and semi-rigid slabs (table 4.1). For these building 

classes, lognormal fragility curves were developed based on the statistical 

treatment of typological and damage data of masonry buildings damaged after 

the 2009 L’Aquila earthquake. To allow building classification based on poor 

level data, the authors also proposed to build fragility curves directly referred to 

construction age intervals, the same as identified by census returns. To this end, 

based on the data derived from the sample of 22,618 residential masonry 

buildings surveyed after L’Aquila earthquake, the authors inferred the percentage 

of occurrence of each of the 14 classes within the 8 times intervals (< 1919, 1919-

1945, 1946-1961, 1962-1971, 1972-1981, 1982-1991, 1991-2001, > 2001), 

defined by ISTAT (2001), as reported in table 4.1. Looking at the distribution of 

buildings belonging to different age ranges, it can be noted that the older 

buildings (<1919) are mainly poor quality masonry buildings with vaults (Class 

23BC) or beams with flexible (4B or 4C) or semi-rigid slabs (5B or 5C). This 

percentage gradually decreases over the years in favour of good quality masonry 

buildings with rigid slabs (6D or 6E). The percentages of occurrence of table 4.1 

were used to build age-dependent fragility curves, i.e. fragility defined for 

census-compatible age intervals. Such curves were derived as weighted averages 

of the 14 sets of typological fragility curves with the percentage of occurrence of 

each class, as reported in table 4.1. 
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Table 4-1 - Occurrence percentages of vulnerability classes into 8 time intervals, defined by DG model. 
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With 

tie 

rods 
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23BC 23DE 4B 4C 4D 4E 5B 5C 5D 5E 6B 6C 6D 6E 

<19 22% 3% 25% 5% 2% 1% 21% 6% 4% 2% 3% 2% 1% 2% 

19-45 8% 2% 23% 3% 4% 1% 23% 6% 9% 4% 4% 3% 3% 7% 

46-61 2% 1% 9% 1% 4% 1% 17% 6% 13% 8% 5% 7% 7% 20% 

62-71 1% 0% 3% 1% 6% 1% 4% 3% 9% 9% 3% 5% 12% 43% 

72-81 0% 0% 2% 0% 4% 1% 2% 1% 6% 8% 1% 2% 11% 62% 

82-91 0% 0% 2% 0% 6% 2% 2% 1% 5% 6% 2% 2% 11% 62% 

92-2001 2% 1% 4% 1% 7% 4% 3% 2% 5% 5% 2% 2% 10% 53% 

>2001 3% 0% 3% 1% 5% 5% 4% 3% 3% 9% 3% 2% 6% 52% 

In this study, the information collected through the Cartis form are used to re-

calibrate the exposure model in different Italian regions. The Cartis approach 

allows to detect many of the distinctive masonry buildings elements that have 

significant influence on seismic behaviour and are strongly incisive for 

vulnerability classification for buildings. For example, the type of masonry (e.g. 

irregular layout masonry or regular layout with square stones or bricks), 

horizontal slab type (e.g. flexible, rigid or semi-rigid slabs), type of vaults (if 

present) and the presence of tie rods or tie beams are some of the vulnerability 

factors considered. Figure 4.1 synthetizes some of the main steps for application 

of the methodology proposed for the calibration of the Cartis-based exposure 

model in combination with census data in large scale risk analysis. The first step 

(step 1) consists in the extrapolation of Cartis relevant data for each TC of a town 

and the compiling of building inventory at urban scale in terms of building 

typologies and/or vulnerability classes, according to classification of the selected 

vulnerability model. Next, as the percentage distribution of each building 

typology within a TC is also provided, given the total number of buildings in 

each TC, the number of buildings characterized by certain vulnerability features   
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(i.e., the type of vertical and horizontal structures, the age of construction and the 

number of storeys) can be estimated (step 2); thus, considering the vulnerability 

classes used in the adopted vulnerability model, the building inventory at 

municipal level can be obtained. Finally, considering all municipalities belonging 

to the same region and for which the Cartis was compiled, the analysis of 

statistical distribution of vulnerability classes into ISTAT building typologies 

allows the calibration of the Cartis-based exposure model (step 3). An example 

of procedure for compiling building inventory starting from Cartis database is 

reported in Tocchi et al. (2022).  

 

Figure 4.1 – The main steps of the Cartis-based approach for regional exposure modelling. 

4.2. Application for Italian regions 

The procedure introduced above is applied to evaluate the Cartis-based inventory 

at municipality scale, for the towns where Cartis form is available. Starting from 

the inventory in these towns, new statistics concerning the occurrence percentage 

of building typologies at regional scale are derived and employed to re-calibrate 

regional based exposure models. The application is proposed for six Italian 

regions: Abruzzi, Campania, Emilia-Romagna, Tuscany, Veneto and Marche. 

The percentage of towns surveyed by Cartis varies regions by regions, from the 

20% of municipalities surveyed in Tuscany and only the 6% in Veneto. For all 

the towns where Cartis information is available, the Cartis-based inventory is 

compiled, according to the procedure previously described. These inventories are 

used to derive the statistical distribution of building typologies at regional level. 
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Although the database does not cover the whole regional territory, the 

municipalities surveyed by Cartis are considered as representative of the entire 

region. This simplifying hypothesis that may lead to inaccurate estimations at the 

regional scale. However, the main scope of this study is to evaluate how much 

the vulnerability characterization at regional level may change using more 

refined database, being aware that the results should be updated as more data 

become available. Considering ISTAT 2001 age ranges, the occurrence 

percentages of the building typologies, derived based on Cartis data, into seven 

time-intervals (< 1919, 1919-1945, 1946-1961, 1962-1971, 1972-1981, 1982-

1991, 1991-2001) are used to re-calibrate the DG exposure model. 

The analysis of the regional inventories shows very different distribution of 

masonry building typologies. For instance, in Abruzzi region irregular layout 

structures are widespread, while in Campania only the 12% of masonry buildings 

have irregular layout vertical structure, mostly typical of the inland towns, and in 

Emilia-Romagna this typology is almost absent (figure 4.4). In Tuscany it can be 

noted that a large diffusion of irregular layout vertical structures, that 

representing about 76% of masonry buildings. In Veneto this typology (i.e., 

irregular layout) characterizes just the 16% of the total, and in Marche region 

only the 9%. The incidence percentages of the horizontal structures for the two 

types of vertical structure, regular and irregular layout, in each region are also 

analysed. Specifically, flexible and semi-rigid slab types are widespread in 

Tuscany and Abruzzi region, semi-rigid and rigid slab types in Campania and 

Marche while the Veneto and Emilia-Romagna rigid slabs are predominant. 

Vaults represent a significant percentage of slab types only in Abruzzo (20%) 

and Campania (13%). Considering Cartis inventories at regional scale, the 

statistical analysis of the data allows the derivation of an alternative exposure 

matrix, more suitable for grasping the specific vulnerability characterization of 

different regions of Italian territory. Table 4.2 shows the percentage distribution 

of typologies into relevant ISTAT age ranges for Tuscany region. The matrices 

with the percentage distribution derived for the other regions can be found in 

Polese et al. (2021) and Tocchi et al. (2022). 
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Figure 4.2 – Diffusion of the vertical (irregular or regular layout) types on masonry building stock at 

regional scale, derived by Cartis-based inventory. 

Figure 4.5 shows the occurrence percentages of the most ancient buildings 

(<1919) within the vulnerability classes of the DG model identified thanks to the 

Cartis data available for different Italian regions; the percentage evaluated with 

the original DG model is also shown for comparison. In Campania and Marche 

the regular structures are the most frequent ones (classes D and E); on the 

contrary, a high percentage of irregular layout masonry structures can be 

observed for Tuscany (classes 4B and 5B). It is worth noting that in Marche 

region older buildings (<1919) are mostly with regular layout and rigid floors 

(6D an 6E); the high concentration of this particular typology is probably due to 

the massive structural intervention carried out in this region after past 

earthquakes (Saretta, et al., 2021).  
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Table 4-2 – DG exposure matrix derived by Cartis-based inventory, for Tuscany region. 
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23BC 23DE 4B 4C 4D 4E 5B 5C 5D 5E 6B 6C 6D 6E 

<19 8% 1% 43% 11% 5% 0% 23% 6% 0% 0% 1% 0% 1% 0% 

19-45 3% 1% 21% 5% 7% 1% 41% 9% 1% 0% 7% 2% 3% 0% 

46-61 0% 1% 12% 5% 8% 3% 31% 13% 7% 3% 7% 3% 5% 2% 

62-71 0% 0% 1% 1% 1% 1% 1% 2% 1% 2% 12% 16% 22% 40% 

72-81 0% 0% 1% 1% 1% 2% 1% 1% 1% 3% 10% 18% 16% 46% 

82-91 0% 0% 0% 0% 1% 3% 0% 0% 1% 2% 12% 6% 14% 61% 

92-2001 0% 0% 0% 0% 68% 1% 0% 0% 1% 0% 23% 0% 7% 0% 

>2001 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 9% 0% 77% 15% 

 

Figure 4.3 – Occurrence percentages of masonry buildings built before 1919 in the vulnerability classes 

identified by DG model for different Italian regions. 

4.3. Effects on Risk Index 

The effects of the use of Cartis-based exposure model on the RI are estimated. 

This study is carried out for Tuscany region, one of the Italian municipalities 

most investigated by Cartis. To this aim, the exposure matrix obtained applying 

the procedure described before and reported in table 4.2 is used. It can be noted 

that the main differences with the original DG model (table 4.1) concern the 

strong presence of irregular masonry structures in Tuscany. In the first time 

interval (< 1919) the percentage of poor quality masonry structures without tie 

rods or tie beams and with flexible slabs (4B) are considerable higher in Tuscany 

than in Abruzzi (according to DG model), with a percental variation of +71%. In 
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the second time interval (1919-1945), irregular masonry structures without tie 

rods and semi-rigid slabs (5B) are more widespread than in DG model (+77%). 

Still, this type of structures represents a not negligible percentage of more recent 

built buildings (6B and 6C). The large diffusion of irregular structures also in last 

decades is probably because buildings built in such periods (although few) are 

mostly built in suburban or rural areas, as it can be observed for the municipality 

of Piazza al Serchio.  

The matrix obtained through Cartis database is used to get the vulnerability 

indicator needed for the RI calculation. As described before (section 3.2.2), given 

the number of masonry buildings in each time interval, the number of buildings 

belonging to each of the 14 building classes is derived and the corresponding VI 

value is assigned as a function of the relative features (e.g., vertical and horizontal 

structure type, class of height). The final municipal-level indicator is obtained as 

a weighted average based on building class presence in the municipality. It is 

worth pointing out that, as the VI value assigned to each building class does not 

change, the only element updated in the calculation of the physical vulnerability 

indicator is the number of buildings that belong to each class. Figure 4.9 shows 

the comparison between vulnerability indicator at municipal level obtained using 

the original DG exposure model and the one calibrated using Cartis-based 

approach. It can be noted that almost in all municipalities the indicator value 

increase, with an increment between 0.1 and 0.2.  

           

(a)         (b) 

Figure 4.4 – Seismic physical vulnerability indicator obtained using the original DG exposure model (a) 

and the one derived through the Cartis-based approach for exposure modelling (b). 
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The vulnerability indicator obtained is first normalized, through ECDF, and then 

aggregated with the other terms of equation (1), which remain unchanged. Figure 

4.10 shows the variation of multi-risk index in Tuscany region when the Cartis-

based approach is used to estimate seismic physical vulnerability. It also appears 

clear that such variation is even higher if seismic risk is weighted more than other 

indicators, with an increment between 0.07 and 0.2 in 12% of municipalities in 

the region. It is worth mentioning that, although this application demonstrated 

that the Cartis-based approach may be a useful tool for improving building 

inventory at regional scale, the RI maps shown in previous chapter are not 

updated using the procedure proposed herein. As a matter of fact, the calculation 

of RI has been performed for the whole Italian territory, but the exposure model 

calibrated on Cartis were built only in few regions, the ones most investigated by 

the form.  

          

(a)         (b) 

Figure 4.5 – Variation of RI index for municipalities in Tuscany region due to the adoption of Cartis-

based approach, in case of equal weighting of indicators (a) and in case of seismic risk is weighted three 

times more than the others (b). 
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5.Quantifying multi-risk: an application 

in Italy 

Index-based approach presented in Chapter 3 is a useful tool for prioritizing areas 

at risk. It allows to compare and aggregate multi-hazard, physical and social 

dimensions at municipal level and to rank all municipalities in Italy based on 

resulting risk scores. Although the application was proposed for Italian territory, 

the approach is suitable also for application in other countries. Despite all the 

above-mentioned advantages, this approach is a semi-quantitative tool for multi-

risk estimation. Thus, once identified municipalities more exposed at multiple 

risks, a more detailed and quantitative analysis should be performed for 

supporting decision-makers in selecting suitable preparedness and mitigation 

actions for risk reduction.  

A detailed multi-risk analysis considering both seismic and flood risk is presented 

in this chapter. Exploiting multi-risk index at municipal level obtained 

previously, the case study municipality for this application is selected. For the 

selection also the availability of Cartis information is taken into account. 

Available Cartis data for municipalities is assumed as filter in selection phase 

because further information provided by such database may allow a better 

estimation of seismic vulnerability and therefore of seismic risk (Polese et al., 

2021; Tocchi et al., 2022). To account for socio-economic aspects as well, sub-

municipal areas homogeneous in socio-economic conditions of residential 

population are chosen as unit of analysis. For each area of analysis, seismic and 

flood risk assessments are performed and SoVI is calculated as well. In this way, 

it is possible to evaluate expected losses (due to future earthquakes and floods) 

for specific social groups, e.g., low-income people or high socially vulnerable 

population.  



108 
 

 

Figure 5.1 – Framework for detailed multi-risk assessment. 

Risk assessment associated with the implementation of some mitigation 

measures is also performed. More specifically, different scenarios for different 

sets of so-called hard and soft policies are defined. Hard policies are directly 

referred to physical aspects of building environment and they may include 

retrofitting actions or urban planning. Soft policies are represented by social 

safety nets and post-disaster financing or insurance. General scheme of the 

proposed procedure is shown in figure 5.1. In detailed risk assessment, it is 

possible to identify three different modules of analysis (Cremen, et al., 2022 ): 

the hazard module, involving the calculation of hazard inputs both for seismic 

and flood risk; engineering impact module, that consists in defining exposure and 

physical vulnerability modelling for buildings and population; social and 

economic impact module, through which the expected physical (i.e., damages), 

economic and social losses are estimated. The social and economic impact 

module also allows to get the distribution of expected losses across different 

social groups. The final step is the comparison and raking of considered risks 

through risk curves. This process can be repeated adopting different input 

hypotheses to account for mitigation policies. Specifically, hard policies affect 

the engineering impact module, as they involve modifications of buildings 

behavior against hazards or modification of exposure through spatial planning; 
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soft policies mostly vary how such losses impact on population and different 

social groups, namely the social and economic impact module.  

5.1. Case study selection 

The application of the proposed index-based methodology allows to rank all 

Italian municipalities based on multi-risk score. The map with scores is shown in 

figure 3.10 of chapter 3. Table 5-1 reports the 10 municipalities with highest risk 

index, adopting equal weighting of indicators (i.e., seismic risk, flood risk, social 

vulnerability and population). 

Table 5-1 – List of the 10 of municipalities with highest risk index in Italy. The index is calculated in the 

hypothesis of equal weighting of indicators. 

Position Municipality Italian Region Risk Index 

1 Barletta Puglia 0.736 

2 Canosa di Puglia Puglia 0.732 

3 Platì Calabria 0.723 

4 Lentini Sicilia 0.708 

5 Villa San Giovanni Calabria 0.701 

6 Palmi Calabria 0.687 

7 Catania Sicilia 0.680 

8 San Marco in Lamis Puglia 0.651 

9 Somma Vesuviana Campania 0.646 

10 Grotteria Calabria 0.644 

This list may vary changing the weighs used to combine individual indicators. 

Thus, for example, city of Barletta, the one with highest score using equal weights 

combination, still has the highest score in Italy if SoVI factor is weighted more 

than the other indicators, while become the 13th highest if seismic risk is weighted 

more the others. Similarly, Somma Vesuviana, move from the 9th position 

according to table 5-1, to 16th if flood risk assumes the highest weight and to the 

7th if SoVI is assumed to be weighted more than the other indicators. Table 5-2 

lists the municipalities included in the top 100 with highest risk scores for to at 

least 3 different weighting combinations, e.g., equal weights (1° combination), 

seismic risk weighted more than others (2° combination) and SoVI weighted 

more than others (3° combination).  
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Table 5-2 – Municipalities included in the list of the first 100 Italian municipalities with highest score for 

three different weighting combination of indicators. Risk score refers to the case of equal weighting. 

Municipality Italian Region Risk score 

Somma Vesuviana Campania 0.677 

San Marco in Lamis Puglia 0.676 

Trinitapoli Puglia 0.668 

Ercolano Campania 0.654 

Salgareda Veneto 0.645 

Cinquefrondi Calabria 0.645 

Polistena Calabria 0.645 

Vicopisano Toscana 0.643 

Sant'Anastasia Campania 0.635 

Ginosa Puglia 0.634 

Fossalta di Portogruaro Veneto 0.632 

Boscotrecase Campania 0.631 

San Giorgio Morgeto Calabria 0.629 

Morano Calabro Calabria 0.629 

Trani Puglia 0.624 

Torre Annunziata Campania 0.623 

Trecase Campania 0.621 

Palagonia Sicilia 0.618 

Paladina Lombardia 0.618 

Guardavalle Calabria 0.612 

San Paolo di Civitate Puglia 0.611 

Massafra Puglia 0.611 

Tiriolo Calabria 0.610 

Gussola Lombardia 0.610 

Verbicaro Calabria 0.609 

Montebello Jonico Calabria 0.608 

Luzzi Calabria 0.607 

Mileto Calabria 0.606 

Laureana di Borrello Calabria 0.604 

Calcinato Lombardia 0.604 

Bisceglie Puglia 0.602 

Orta Nova Puglia 0.602 

Tufino Campania 0.598 

Luco dei Marsi Abruzzo 0.595 

Carpino Puglia 0.593 

San Giorgio a Cremano Campania 0.593 

Ponte Buggianese Toscana 0.592 

Fossato di Vico Umbria 0.592 

Stilo Calabria 0.590 

Laino Borgo Calabria 0.586 

Rocca di Neto Calabria 0.584 

San Ferdinando di Puglia Puglia 0.583 

Anoia Calabria 0.576 

Firmo Calabria 0.571 

Candela Puglia 0.540 

As mentioned before, in selecting case study for this application also availability 

of Cartis data is used as filter. In table 5-3 the list of the municipalities with 

highest scores (equal weighting of indicators) and for which Cartis form is 

compiled is reported. Although the equal weight combination was chosen to build 
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such list, it can be noted that Somma Vesuviana, Sant’Anastasia, Polistena and 

San Giorgio Morgeto are also in the list of the first 30 municipalities with highest 

score for different combination of indicators (table 5-2). Based on the results 

above described, Somma Vesuviana is selected as case study. Somma Vesuviana 

is a municipality in the province of Naples, in the south of Italy. It is located on 

the slope of the Vesuvius volcano (figure 5.2). Therefore, it is potentially exposed 

to volcanic risk as well, even if such risk is not considered herein.  

Table 5-3 – Municipality with highest risk score, assuming equal weights for indicators, included in Cartis 

database. 

Municipality Region Risk score Cartis Inundated area ag [g] SoVI Population 

Somma Vesuviana Campania 0.646 YES 0.1349 0.1730 1.5709 34502 

Serra San Bruno Calabria 0.626 YES 0.1374 0.2294 1.3040 6766 

Polistena Calabria 0.603 YES 0.1808 0.2662 1.3182 10597 

Sant'Anastasia Campania 0.592 YES 0.1003 0.1722 1.6281 27065 

Andria Puglia 0.580 YES 0.0284 0.1873 1.5848 99722 

Minervino Murge Puglia 0.571 YES 0.0284 0.1913 1.1474 9266 
San Giorgio 

Morgeto Calabria 0.568 YES 0.1426 0.2535 2.0875 3077 

 

Figure 5.2 – Municipality of Somma Vesuviana. 

5.2. Multi Risk assessment 

For multi-risk analysis, a multi-layer single risk assessment is performed herein. 

This approach consists in evaluating risks through independent analysis, ignoring 

any possible hazard and vulnerability interactions (see also chapter 2). However, 

to ensure the comparability of risks, it is necessary to standardize risk assessment 

procedures, harmonizing the type of analysis (deterministic or probabilistic), risk 

metric adopted as well as the territorial scale of analysis. Probabilistic time-based 

risk assessment is performed for both seismic and flood hazards. Thus, hazard 
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maps for the study area covering all possible intensities (i.e., available maps for 

all possible return periods) are used as hazard inputs for losses evaluation, that 

are performed separately for each hazard. Buildings and population are 

considered as asset at risk, and direct economic losses caused by buildings 

structural damage are selected as indicators of negative impacts. The risks 

(seismic and flood) are finally compared through risk curves (i.e., LEC), which 

points relate the value of expected losses of an event with its mean annual 

frequency of exceedance (i.e., the reverse of its return period). Hence, for 

building the LEC, first losses have to be calculated for different levels of hazard 

intensity (i.e., return periods), separately for each risk. Then, the EAL, 

representing the selected impact indicator, is calculated as area under the hazard-

specific risk curve.  

The municipal territory is divided into sub-areas representing broad 

socioeconomic statuses of the residential population. The real estate observatory 

(Osservatorio del Mercato Immobiliare – OMI – in Italian) identifies 

homogeneous municipal areas based on maximum/minimum market and lease 

real estate values, expressed in euro per surface unit (square meters), type of 

property and state of conservation. Those areas are selected as the unit of analysis 

for this application. Figure 5.3 shows the OMI zones for Somma Vesuviana and 

the corresponding market and lease real estate values are reported in table 5.4. 

 

Figure 5.3 – Delimitation of OMI zones in Somma Vesuviana. Each zone is identified by an alphanumeric 

code that categorises the zone as Central (B), Semi-central (C), Suburb (D) and rural (R). 
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Table 5-4 – Real estate market value and lease value of residential buildings in each OMI zone. The 

values are referred to the municipality of Somma Vesuviana. 

OMI zone - denomination 
Market value (euro/mq) 

Lease value (euro/mq per 

month) 

min max min max 

B2 – Central (Historical centre) 1050 1600 3.2 4.9 

B3 – Central (First belt of historical centre) 1050 1600 3.2 4.9 

C3 –Semi central (RIONE TRIESTE - VIA 

POMINTELLA) 
900 1350 2.8 4.2 

D3 – North Suburban (STRADA STATALE DEL 
VESUVIO / SS. 268) 

840 1300 2.6 4 

D4 – Suburban, slope of mountain Somma (VIA S. 

MARIA DELLE GRAZIE) 
760 1150 2.3 3.5 

R1 – Suburban (mountain Somma) - - - - 

For each OMI zone, SoVI is also calculated. As already mentioned, socio-

economic and demographic data on population are provided by ISTAT at census 

tract level. ISTAT data are associate to OMI zones based on geographically 

belonging of census tract to each zone, determined through a GIS software. Thus, 

for example, residential population in an OMI zone is derived summing 

residential population in all census tracts belong to such zone. The most populous 

zone is the D3 with 14322 inhabitants, about the 42% of the total population of 

the municipality. Zone B3 includes the 28% of the population, zones B2 and C3 

the14% each while zone D4 is sparsely inhabited with only the 2% of the 

population. Indicators and variable used for SoVI calculation are the ones 

reported in table 3.1 of chapter 3. Figure 5.4 reports the SoVI values obtained. It 

can be noted that for all zones the index assumes values greater than 0, underling 

a high social vulnerability for the considered municipality. D3 zone shows the 

highest value (5.61), while D4 the lower (2.26). In both zones, the high number 

of people under 14 in the area against the low number of people over 65 leads to 

very small values both for the aging index and the dependency ratio. However, 

in D3 zones the high percentage of families with more than 5 components, the 

high value of the low educational index as well as the low value of high 

educational index, contribute to increase the SoVI value. On the contrary, the 

moderate value of the low educational index, the low population density as well 

as the very low percentage of foreigner inhabitants in D4 area lead to a small 

SoVI. It is also worth mentioning that such area (D4) includes only the 2% of the 

residential population and all variables that determine low SoVI value may be 

affected by demographic size.  
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(a)           (b) 

 

(c)            (d) 

 

(e) 

Figure 5.4 – SoVI values (a) and normalized sub-indicator for population age (b), low educational index 

(c), number of families with more than 5 components (d) and earners of income (e) for each OMI zone. 

In figure 5.4 standardized value of earners of income is also reported. Although 

this variable is not included in SoVI calculation, it may be representative of the 

economic status and the income level of inhabitants within each zone. The 

highest percentage of people earner of income is observed in B2 zone and B3 

zones, that are also the areas with the highest real estate market and lease value.  

5.2.1. Seismic risk 

At OMI zones, selected as unit of analysis, are associated only information 

related to market and lease values of residential buildings. Thus, census data are 

integrated with Cartis information for compiling building inventory for seismic 
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risk assessment. The latest census (ISTAT, 2011) only provides information on 

the number of masonry buildings, RC buildings and buildings classified as other 

construction material (e.g., steel) at census tract (CT) level. Disaggregated 

information of buildings features (i.e., age of construction, number of storeys) 

are not available at such scale. Thus, they can be detected from Cartis database. 

According to Cartis form, eight different Town Compartments (TC) are identified 

in Somma Vesuviana (figure 5.5).  

 

Figure 5.5 – Town compartments identified in Somma Vesuviana by Cartis form.  

The first three TCs (TC01, TC02, TC03) include the historical center of the town, 

where masonry buildings with flexible slabs and oldest RC buildings are 

widespread. TC04 and TC05 represents semi central and first expansion areas, 

while TC06 and TC07 more recent expansion areas and TC08 suburban area.  

The procedure adopted for compiling building inventory integrating census with 

Cartis data is shown in figure 5.6. First, percentages occurrence of prevailing 

building typologies (e.g., masonry structures without tie rods and flexible slabs) 

derived through Cartis are used to build inventory at CT level. Specifically, Cartis 

buildings’ features are assigned to all buildings included in a CT based on the TC 

which it belongs to. For example, according to Cartis database, in TC07 masonry 

buildings are mostly built between 1946 and 1971, they are 1 or 2 storyes high, 

have regular layout vertical structure, tie rods (100%) and flexible slabs (100%). 

RC buildings in the same TC are predominantly built between 1972 and 1991 
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and are 3 or 4 storyes high. Census tract n°39 contains 24 masonry buildings and 

108 RC ones. As the latter belongs to TC07 (figure 5.7), corresponding Cartis 

features are associated, i.e., the 22 masonry buildings are supposed to be with 

regular layout, tie rods and flexible slabs, half with 1 storey (11 buildings) and 

half with 2 storeys (11 buildings), of which 6 built between 1946-1961 and 6 

between 1962-1971 (according to ISTAT period of construction ranges) for each 

height class (1 or 2 storeys). Similarly, 54 RC buildings are supposed built 

between 1972 and 1981 and the other 54 between 1982 and 1991, of which 50% 

with 3 storeys and 50% with 4 storyes (i.e., 27 buildings in every age class). 

Buildings of other construction materials represent only a negligible percentage 

of residential buildings, so they are not included in the analysis. 

 

Figure 5.6 – Procedure for compiling building inventory at OMI level integrating census and Cartis data. 

If a CT is divided by two different TCs, fraction of area belongs to each TC is 

considered representative of the percentage of buildings belong to one or the 

other TC, as already proposed in Polese et al. (2019). Finally, building inventory 

at OMI level is compiled grouping all CTs that geographically belong to the same 

zone.  

From figure 5.5 it can be noted that not all built areas are included in Cartis form. 

As a matter of fact, lack of information for a part of the municipality may be due 

to the lack of knowledge of the interviewed technicians on the area or the 

assumption that such area is not expected to be for residential use. However, 

residential population in this area amounts to 8373 inhabitants, the 24% of the 
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entire population of the municipality, and residential buildings to 1426 (the 23% 

of the total). For this reason, also the municipal area missing Cartis data is 

considered in this study.  

 

Figure 5.7 – Example of building inventory at census tract (CT) level.  

In order to compile building inventory for this area, Cartis information are 

assigned on CTs based on the prevailing age of construction of their buildings 

and the associated population density. In Tocchi et al. (2022b), a study aimed to 

find a trend between available census data at CT level and the TCs identified 

withing Cartis form is presented. Exploits available Cartis data, a machine-

learning based approach that correlates CTs’ features to the TC of belonging is 

proposed. For example, it was found that CTs with high population density have 

high probability to belong to the historical center of the town, while lower the 

population density of the CT, greater the percentage of oldest buildings (built 

before 1945) required so that such CT belongs to the center. The procedure 

adopted herein is based on the outcomes of this study and can be described 

through the following steps: first, trends in terms of population density and period 

of construction of buildings in each not-assigned CT are identified; then, they are 

grouped in the TC that shows similar trends in terms of population density and 

prevailing period of construction of its buildings. Finally, building inventory at 
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CT level is compiled assuming that building features are the same of the TC 

which it is associated to. For instance, CTs with a percentage of buildings built 

before 1945 greater than 51% are associated with TC03; if this percentage is 

lower than 51% but greater than 27%, the CT is associated to TC05; else if such 

percentage is lower than 27% but the percentage of buildings built before 1980 

is very high (more than 80%), the CT is associated with TC04. For TC06, TC07 

and TC08 this association is based on population density values. Figure 5.8 

shows the CTs not included in Cartis and the TC associated according to the 

above mentioned procedure. Once building inventory at CT level is built, the 

inventory for OMI zones is compiled considering all CTs belonging to the same 

zone with the aid of a GIS software (figure 5.8). 

 

Figure 5.8 – Assignment of census tracts not included in original Cartis form. 

Building inventory provides the spatial distribution of buildings in the 

vulnerability classes identified by the vulnerability model. The Risk-UE model 

was leveraged as part of the multi risk index calculation. This model proposes 

Damage Probability Matrices for each vulnerability class and adopts 

macroseismic intensity as the ground-shaking intensity measure. As hazard maps 

are expressed in terms of PGA and for a more refined quantification of expected 

damages and losses, for this application the vulnerability models proposed by 
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Rosti et al. (2021a) and Rosti et al. (2021b) for masonry and RC buildings, 

respectively. Moreover, these models are also officially adopted for the NRA in 

Italy (Dolce et al., 2021).  

In Rosti et al. (2021a) empirical based fragility curves for masonry buildings 

were derived from post-earthquake data relative to 1980 Irpinia and the 2009 

L’Aquila events. Eight building typologies representative of the Italian built 

environment were identified, according to the typological classification proposed 

by Rota et al. (2008). The attribute considered for the classification are quality of 

the masonry fabric (i.e., irregular layout or poor-quality masonry, regular layout 

and good-quality masonry), in-plane flexibility of diaphragms (i.e. flexible, 

rigid), presence (or absence) of connecting devices, such as tie-rods and tie-

beams. These buildings typologies were merged into three vulnerability classes 

of decreasing vulnerability (i.e. A: high vulnerability, B: medium vulnerability, 

C1: low vulnerability), based on the similarity of the observed seismic fragility, 

using a hierarchical agglomerative clustering technique. Table 5.5 reports the 

classification rules proposed by Rota et al. (2008) to assign the vulnerability 

classes based on combination of vertical (poor or good quality masonry) and 

horizontal structures (rigid or flexible) and presence of connection device. These 

vulnerability classes are further specified based on the building height, Low L: 

1–2 storeys and Medium High MH: > 2 storeys. Six vulnerability classes are 

finally defined (A-L, A-MH, B-L, B-MH, C1-L, C1-MH) to which a specific set 

of fragility curves for the 5 damage grades of the EMS-98 scale is assigned.  

Table 5-5 - Definition of vulnerability classes based on type of vertical and horizontal structures and 

presence of connection devices, according to Rota at al. 2008. 

Horizontal structure  Irregular texture or poor quality 

masonry 

Regular texture and good quality 

masonry  
  w/o connecting 

device 

with connecting 

device 

w/o connecting 

device 

with connecting 

device  
Flexible A A B C1 

Semi-rigid A A B C1 

Rigid A B C1 C1 

Vaults A B C1 C1 

 

The same post-earthquake databases were used in Rosti et al. (2021b) for deriving 

fragility curves for RC buildings. As for masonry buildings, the five damage 

grades of the EMS-98 scale are adopted for developing fragility curves. Two 

vulnerability classes of decreasing vulnerability (i.e., C2 and D) were defined 
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considering the main seismic codes issued in Italy. Thus, vulnerability class C2 

includes RC buildings built before 1981, designed for both gravity and seismic 

loads, while D2 class refers to RC constructions with seismic design post-1981. 

Vulnerability classification is further specified based on the building height, 

distinguishing between low (L), medium (M) and high (H) buildings, 

corresponding respectively to 1-2 storeys, 3-4 storeys, more than 4 storeys 

building (C2 -L, C2-MH, D-L, D-MH). Figure 5.9 shows building inventory 

obtained by the described procedure at OMI zone level. As may be noted, the 

highest percentage of most vulnerable buildings (class B) is associate with D3 

zone, which highest SoVI is associated as well.  

 

(a) 

 

(b) 

Figure 5.9 – Building inventory for masonry (a) and RC buildings (b) according to Rosti et al.(2021a) and 

Rosti et al.(2021b) models. 

At census tract level also disaggregated information about buildings’ living area 

and residential population, required for losses estimation, are missing. Thus, the 

values of living surface per building and residential population per building are 

derived from statistics available at municipal level.  

As hazard input, INGV hazard maps providing PGA values for nine different 

return periods (2500, 1000, 475, 200, 140, 100, 72, 50 and 30 years) or 



121 
 

probabilities of exceedance in 50 years (2%, 5%,10%, 22%, 30%, 39%, 50%, 

63% and 81%) are used. Seismic action is provided for each point of a 5x5 km 

mesh covering all the Italian territory. This grid is not so tight to allows the 

definition of a ground shaking measure at OMI zone level, set as unit of analysis. 

Hence, PGA value at municipal centroid (obtained as weighted average on 

distance of the closer grid points, as reported in section 3.2.1) is assumed as input 

of risk analysis for all zones. On the contrary, some micro zonation studies are 

available in Italy and are used here to refined seismic input for accounting soil 

effects. An amplification map containing Vs30 values with a spatial resolution of 

50 × 50 m is proposed in Mori et al. (2020) and adopted herein. Criteria for soil 

category identification adopted are the ones reported in the new Italian building 

code (NTC18). Five soil categories are identified (A, B, C, D, E), based on 

topographic characterization and corresponding Vs30 values and for each 

category soil amplification factors of the spectral acceleration are defined. For 

each are of analysis (i.e., OMI zone) the percentage occurrence of soil types can 

be obtained as weighted average of all grid points (Vs30 map) included in the 

area. Then, the soil factor to apply can be defined as weighted average of soil 

type factors based on the percentage of soil types in the area. In figure 5.10 is 

shown the map with Vs30 values for Somma Vesuviana. Based on this map, the 

soil type B represents the entire municipality. Thus, the soil factors corresponding 

to such type is applied to amplify the hazard input (PGA) in each zone.  

In figure 5.10 the slope map is also shown. The latter is used to define to define 

topographic amplification factors. The code (NTC18) defines four topographic 

categories based on the slope (expressed in degrees). A specific topographic 

amplification factor should be applied if the slope exceeds the 15°. It can be noted 

that only in few areas of the town the slope is greater than 15°. In such areas 

amplification factors are considered in the definition of hazard input. 

Specifically, amplification values to adopt are obtained considering the weighted 

average of all points that have a given slope and the associated factors, as also 

describe before for soil factors.    
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(a)           (b) 

Figure 5.10 – Vs30 map (a) proposed by Mori et al. (2020) and slope map (b) for the municipality of 

Somma Vesuviana (bounded with red poyline). 

5.2.2. Flood risk 

The hydrogeographic network for the town of Somma Veuviana is shown in 

figure 5.11. The area is part of the Lagni Vesuviani basin. The Regi Lagni are a 

network of rectilinear canals, mostly artificial, whose basin extends over an area 

of 1095 km² in 99 municipalities of the metropolitan city of Naples and the 

provinces of Caserta, Avellino and Benevento. The Regi Lagni are the result of 

a work of canalization and hydraulic reclamation carried out during the Spanish 

domination in Italy between 1610 and 1616, under the direction of the architect 

Domenico Fontana. These canals were created to overcome the frequent flooding 

of the Clanio river, a river that flows between the provinces of Naples, Caserta 

and Avellino. The canals are called “lagni” as this is an ancient name with which 

the watercourse that crossed the Nolan to get to the Campania plain, and “Regi” 

because their history is linked to the Bourbon administration, that completed and 

perfected the layout of the network sketched out in the 1600s. The canals have 

the peculiarity that the width of the riverbed decreases continuing from upstream 

towards valley, due to the permeability of the land which progressively reduces 

its flow. Moreover, they are in bad state of repair, in particular they are filled with 

filling materials with a high percentage of waste, and they are inadequate for 

dimensions and anthropic works that decrease the flow rate. Indeed, such areas 

have historically been affected by the problem of flooding in the downstream 
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portion in conjunction with particularly intense rainfall events. In figure 5.11 the 

ISPRA map with the extension of inundated areas is also reported. It is worth 

noting that area expected to be inundated by low probability (P1) and medium 

probability events (P2) is the same, whereas it is only lightly different considering 

frequent events (P3).  

       

(a)          (b) 

Figure 5.11 - Hydrogeographic network (a) and flood hazard maps provided by ISPRA (b) for Somma 

Vesuviana. 

As mentioned in section 3.2.2, flood maps provided by ISPRA do not contain any 

information about flood water depth. Hence, Floodwater Depth Estimation Tool 

(FwDET) proposed by Cohen et al. (2018) is adopted herein. This tool allows to 

estimate floodwater depth based solely on an inundation map and a digital 

elevation model (DEM). Figure 5.12 shows a theoretical illustration of the 

FwDET for the case of flooding in an alluvial plain. Given the local elevation of 

hypothetical floodwater level (brown line in the figure), the water depth can be 

estimated at any point as the difference between flood water elevation and 

inundated land elevation. Using a GIS software, first DEM values are associated 

with the flooded domain boundary cells (i.e., cells of the polyline representing 

the flood extension boundaries). Then, local water elevation values are calculated 

for each point within the flooded domain from its closest boundary grid cell 

(Focal Statistic Tool - ESRI, 2017). Finally, calculation of the floodwater depth 
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is obtained subtracting the topographical elevation from the local water elevation 

in point. 

 

Figure 5.12 – Representation of FwDET. The blue line represents “within banks” water level, and the 

brown line represents hypothetical floodwater level. Adapted from Cohen et al. (2018). 

In 2022, Peter et al. presented a FwDET implementation in Google Earth Engine 

(FwDET-GEE). It is an open access and easy to use tool that allows to mapping 

flood depths across large areas. The use of cloud-sourced geospatial data and 

analysis functionalities of Google Earth Engine (GEE) greatly reduces FwDET’s 

most time-consuming pre-processing step. The only input information required 

are a shapefile with the flooded extent boundaries, water body data and DEM in 

raster format that cover the area under study. Floodwater depth map in figure 

5.13 is obtained through FwDET-GEE using the low probability flood extent 

map.  

 

Figure 5.13 – Flood hazard map with flood extension and expected water depth (m), obtained through 

FwDET-GEE. 
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It is worth mensioning that the high value of water depth (> 6 m) in several areas 

is due to the specific terrain morphology in such areas, with large portions of land 

lowered even by 30 m compared to the surrounding areas (figure 5.14). 

 

Figure 5.14 – Aerial view of Somma Vesuviana from Google Earth. 

The maximum value of water depth in the figure (6 m) is defined as the flood 

vulnerability curves adopted in this study, the JRC depth-loss curves for 

European residential buildings (Huizinga, 2007), associate such depth value with 

the maximum possible losses. The curves are reported in figure 5.15. 

Overlapping building footprints to floodwater depth map, the water level in meter 

associated with each building can be defined. The corresponding damage factor 

can be obtained by the curves. Figure 5.15 also reports buildings included in the 

inundated area and the related water depth reached.  According to Huizinga et al. 

(2017), the maximum structural damage for Italian buildings corresponds to a 

loss of 473 euro/m2. Buildings’ surface could be derived from footprint layer. 

However, as it is not possible to get the type of use for the buildings (residential, 

offices, industrial) just from building footprint, according to statistics based on 

ISTAT data it is assumed that the 90% of buildings within the municipality is 

residential. Accordingly, an average living surface per buildings is assumed (100 

m2 per building). More specifically, average living surface area is assigned to 

each building in the inundated area. Such surface is multiplied by the damage 
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factor calculated based on the water depth reached by building and the structural 

damage loss (473 euro/m2). The value of losses obtained from all damaged 

buildings is then multiplied by the fraction representative of residential buildings 

(90%). 

 

Figure 5.15 – Flood hazard maps with flood extension, expected water depth (m) and expected flooded 

buildings with the corresponding inundation level (m). The depth-loss curves adopted for residential 

buildings are also reported. 

5.2.3. Risk curves 

Seismic risk is assessed using hazard maps related to the 9 different return 

periods, i.e., considering as inputs different PGA values corresponding to 9 

different probabilities of exceedance in 50 years. Given intensity measure, 

fragility curves of Rosti et al. (2021a, b) are used together with building inventory 

to estimate the number of buildings reaching each damage level (i.e., the five 

damage grades of the EMS-98 scale). To estimate economic losses damage-to-

loss functions are required. As mentioned before (see section 2.1.3), those 

functions estimate the amount of losses as function of the number of buildings 

that sustain damage levels on the selected damage scale. Direct economic losses, 

associated to physical damages of structures, are usually calculated defining a 

cost ratio, i.e., a ratio of the reconstruction cost, for each damage grade. 

Specifically, the consequence functions proposed in Dolce et al. (2021) are 

adopted herein and direct economic losses are calculated as follows: 
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𝐿 = 𝐶𝑈 (∑ ∑ 𝐴𝑗 ∙ 𝑝𝑗,𝑘 ∙ 𝑐𝑘

5

𝑘=1

𝑛𝑡

𝑗=1

) (8) 

Where nt is the number of building classes considered by the vulnerability model, 

CU is the Unit cost (Euro/m2) of a building (i.e. the reconstruction cost, estimated 

taking into account the demolition and the reconstruction cost, including 

technical expenses and VAT), Aj is the built area of the jth building class; pj,k is 

the probability for the jth building class to experience structural damage state Dk 

(EMS-98 scale) ck is the percentage cost of repair or replacement (with respect 

to CU) for each structural damage state Dk, assumed equal to 0.02, 0.1, 0.3, 0.6 

and 1 from damage level from D1 to D5. The reconstruction cost (i.e., CU) is 

assumed equal to 1350 euro/m2. 

For flood the procedure describe in section 5.2.2 is used to calculate expected 

economic losses for the three flood maps available (low, medium, high 

probability). High probability map is associated with events having a return 

period of 20 years, the medium probability with events with a return period of100 

years and the high probability one with 300 years return period events. Flood risk 

is assessed using each of those maps as input.  

The results in terms of economic losses of both seismic and flood assessment are 

then reported on a graphic where the MAFE (mean annual frequency of 

exceedance) of the considered event are shown in ordinate and the corresponding 

economic losses in abscissa. Risk curves comparing seismic and flood risks in 

terms of economic losses are shown in figure 5.16. Those curves are obtained for 

the entire municipality, i.e., sum the losses obtained in each OMI zone.  

 

Figure 5.16 – Risk curves for seismic and flood risk for the entire municipality. 
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It can be noted that curve for flood is almost linear because of inundated area 

remains nearly constant in all flood scenarios (low, medium, high probability). 

The area under the loss curve represents the EAL (expected annual losses). 

Seismic EAL for the entire municipality amount to about 465.000 euros, while 

EAL due to floods to about 492.000 euros, with a ratio between the two risks 

about 1. In table 5.6 EAL values obtained from seismic and flood risk analysis 

for each OMI zone are reported. From values of losses per square meter 

(EAL/m2) it can be noted that expected losses for earthquakes are quite high in 

every zone (> 0.40 euro/m2) but they are particularly high for D3 zone (0.59 euro/ 

m2). On the contrary, economic losses due to floods assume high values only in 

the area directly affected, that are C3 and D4 zone. The extremely high value of 

EAL/m2 observed in D4 is due to the population distribution within such area. 

As a matter of fact, despite only the 2% of total population resides in the area, 

residential buildings are mostly located in inundated area, explaining a such high 

value of losses per m2. In table 5.6 also SoVI values associated with each OMI 

zone are reported. It is noteworthy that the two zones with highest value of losses 

(EAL/ m2) are also the ones for which the SoVI is higher (C3 and D4), excluding 

zone D4 which residential population is negligible. 

Table 5-6 – Expected losses due to seismic and flood hazards. Ratio (F/S) refers to ratio between flood 

and seismic losses. The values of SoVI and residential population of each OMI zone are also reported. 

OMI 

Zone EAL seismic EAL/m2 EAL flood EAL/m2 RATIO (F/S) SoVI POP 

B2 56466.103 0.42 4896.2295 0.04 0.09 3.85 0.14 

B3 78920.7121 0.52 37321.826 0.25 0.47 4.19 0.28 

C3 55601.0816 0.46 250670.48 2.06 4.51 4.64 0.14 

D3 265506.232 0.59 107766.97 0.24 0.41 5.61 0.41 

D4 9166.19719 0.47 91545.293 4.67 9.99 2.26 0.02 

Consequence functions for the estimation of people affected by earthquakes are 

also available. Functions proposed in Dolce et al. (2021) allows the calculation 

of the expected number of deaths, injured people and homeless. Injured people 

and deaths can be estimated as a percentage of occupants in buildings 

experiencing damage grade D4 and D5 (of the EMS-98 scale): the 1% and 10% 

of occupants in buildings reaching respectively grade D4 and D5 are considered 

as deaths, the 5% and 30% as injures. The number of homeless can be estimated 

as the number of inhabitants in unusable buildings, in the short and long term, 

subtracting the estimated number of deaths. Unusable buildings are buildings that 
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may be unsafe for occupancy or entry due to potential collapse, falling debris, the 

unavailability of services or unsanitary conditions. More specifically, it is 

possible distinguish between long term unusable and short term unusable 

buildings. This classification is directly derived from the AeDES usability form, 

the official form used for post-earthquake damage and usability assessments in 

Italy (Baggio, et al., 2007), that defines different building usability classes. 

Buildings are considered as long term unusable if the building cannot be used in 

any of its parts, even after short-term counter-measures, while they are short-term 

unusable is the dangerous state may be reduced to an acceptable level for 

inhabitants applying short-term counter-measures. In Dolce et al. (2021) a model 

for estimating the number of unusable buildings based on damage attained is also 

proposed. People affected by flood risk are usually estimated counting of the 

number of persons residing in flooded areas. As a matter of fact, despite the 

enormous impacts of floods, there is relatively limited insight into the factors that 

determine the loss of life caused by flood events, as also underlined in Silvestro 

et al. (2016). Therefore, the loss function for population adopted is just a binary 

function that indicates affected or not affected populations, without distinction 

among deaths, major injuries or displaced. For this reason, the number of 

expected people affected by earthquakes and floods is not directly comparable.  

5.3. Mitigation policies for risk reduction 

Information provided by risk assessment facilitates the understanding of potential 

damages and losses arising from future disasters, enabling decision makers to 

implement risk reduction policies and preparedness activities aimed to anticipate 

and mitigate risk and manage residual risk. Disaster preparedness consists of a 

set of measures undertaken in advance by governments, organisations, 

communities, or individuals to better respond and cope with the immediate 

aftermath of a disaster. Providing a measure of the impact of different hazard 

events makes it possible to establish detailed and realistic plans for better 

response to disasters. For instance, installing early warning systems, identifying 

evacuation routes and preparing emergency supplies. On the contrary, prevention 

activities and measures aimed at avoiding existing and new disaster risks, for 

example, relocating exposed people and assets away from a hazard area. 

Mitigation measures focus specifically on actions that eliminate or reduce 
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damages and/or casualties in future disaster events. They consist in physical 

interventions aimed at reducing facilities vulnerability through construction and 

reconstruction projects or retrofitting actions. For instance, structural measures 

for improving performance of building elements to resist lateral forces from 

winds and earthquakes. Non-structural mitigation measures to improve the 

seismic resistance of non-structural building components such as parapets, 

chimneys, or to anchor building contents, especially tall and/or heavy items that 

pose life safety risks if they fall, such as bookcases, file cabinets, storage shelves, 

computers, monitors, televisions and others. Elevation of existing buildings or 

construction of flood barriers such as flood walls or berms are very common 

flood mitigation measure for buildings. Anyhow, replacement of an existing 

building with a new building well outside of the flood hazard area remains the 

only flood mitigation measure which is 100% effective in avoiding future 

damages. National and local governments can also take steps to reduce the 

negative financial effects of disasters in a way that protects both people and 

assets. Financial protection strategies help to address residual risk, which is either 

not feasible or not cost effective to mitigate. The main beneficiary groups of 

financial protection include not only national and local governments but also 

homeowners and small and medium-sized enterprise.  

To evaluate the effectiveness of some mitigation actions, further risk scenarios 

accounting for the implementation of such measures are also considered herein. 

A set of hard and soft policies, for reducing both seismic and flood risk, are 

defined and their effects on expected damages and losses are evaluated. Hard 

policies refer to physical interventions on structures, such as local strengthening 

and retrofitting, while soft policies indicate financial strategies for insurance 

coverage of a certain level of post-event damage. The comparison between EAL 

associated to original scenario (without policies) and the EAL obtained 

considering the adoption of such mitigation actions (hard and soft policies) 

allows to quantify the effectiveness of such strategies. Each unit of analysis (i.e., 

OMI zone) is investigated separately, in order to identify those locations where 

mitigation actions might lead to a greater risk reduction and if a strategy is more 

adequate than another for reducing risk in a given area.   
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5.3.1. Hard policies 

5.3.1.1. Seismic retrofitting  

Earthquake resistant design of buildings provides them adequate strength, 

stiffness and inelastic deformation capacity to withstand a given level of 

earthquake-generated force. This is generally accomplished through the selection 

of an appropriate structural configuration and the careful detailing of structural 

members. However, many existing buildings in earthquake prone regions are not 

conform to modern seismic design codes. This has led to significant economic 

and life losses during past earthquakes (Mazzoni, et al., 2018; Stewart, et al., 

2018; Di Ludovico, et al., 2021). Seismic retrofitting is then an essential tool for 

mitigating the consequences of earthquakes on such buildings and improve their 

seismic performance. Last seismic events occurred in Italy have highlighted the 

main structural deficiencies of residential buildings, such as the lack of 

connection between walls and/or slabs and walls in masonry buildings and the 

non-ductile local failure mechanism, (e.g., joint failure) in RC buildings (Reluis, 

2011). The most used retrofit strategies in the post-earthquake reconstruction 

process were RC jacketing or FRP (fiber reinforced polymer) jacketing, adding 

RC shear walls or bracing in RC buildings; reinforced plaster and tie rods and tie 

beams insertions were mostly used in masonry buildings to prevent in plane and 

out of plane failure mechanism (Reluis, 2015,2022).  

For considering the above-mentioned retrofit actions in seismic risk analysis it is 

necessary to modify the vulnerability of buildings, in terms of exposure or 

fragility. The first approach consists in changing the belonging vulnerability class 

of building based on building’s features modified by retrofitting. This strategy is 

adopted herein for masonry buildings. According to the vulnerability model 

adopted, the insertion of tie rods in buildings with regular layout vertical structure 

leads to a change of the vulnerability class of the buildings (table 5.5), 

specifically from class B (more vulnerable) to class C1 (less vulnerable).  

Supposing to retrofit all buildings belong to class B, such buildings move in C1 

class. This means that, for representing their vulnerability, fragility functions 

developed for vulnerability class C1 are used in risk analysis (instead of fragility 

for class B).  
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For RC buildings only two vulnerability classes are defined by the model: class 

C2 representing not seismically design buildings or buildings seismically 

designed using old codes (pre-1981); class D that represents buildings designed 

according to the actual seismic regulations. Changing building class from C2 to 

D would require to totally adequate the buildings belong to the former class (C2) 

according to new seismic design codes. Retrofitting techniques required to this 

aim (changing of vulnerability class) may be too wasteful in terms of time and 

money for being applicable at large scale. Thus, only local strengthening 

techniques are considered herein as retrofit measures. These retrofit actions do 

not allow a complete adjustment of buildings to more recent design codes (and 

therefore the total changing of vulnerability class), but still lead to an 

improvement of the seismic performance of buildings. This improvement can be 

taken into account through fragility functions modification, namely the fragility 

curves of vulnerability class C2 are modified for considering the better seismic 

behavior (or lower vulnerability) obtained after retrofit interventions. To this aim, 

the study proposed by Aljawhari et al. (2022) is taken as reference. The study 

proposes an approach for mapping the increase of CDRLS (the global 

displacement-based ratio of capacity to life-safety demand) due to retrofitting to 

the building-level fragility reduction. An archetype of RC structure, not 

conformed to modern seismic design requirements, is considered retrofitted using 

three different techniques: FRP wrapping of columns and joint, RC jacketing and 

steel jacketing. For each technique several retrofit configurations were defined, 

based on number and location of retrofitted elements. Push over analysis was 

performed to find the CDRLS correspondent to different retrofitting solutions, 

including as built (i.e., without retrofit) configuration. Nonlinear models both for 

as-built and retrofitted case studies were developed and nonlinear time-history 

analyses for a large set of ground-motion records were performed for deriving 

fragility relationships for structure-specific damage states. Assuming that the 

relationship between CDRLS and the median of the fragility relationship for a 

given damage state (μDS) is pseudo-linear (Aljawhari, et al., 2021), the variation 

of μDS with respect to the original configuration due to retrofit intervention is then 

defined.  
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The μDS variation estimated in Aljawhari et al. (2022) are applied to fragility 

curves adopted in this study (Rosti et al., 2021b) to account for the reduction in 

fragility due to seismic retrofitting. To this aim, it is assumed that the same 

retrofit solution is adopted for all buildings belong to vulnerability class C2 (i.e., 

not seismically design). More specifically, the configuration adopted is the so-

defined “basic performance” one, which basically corresponds to retrofitting of 

external joints and columns of first floors of the archetype structure. Assuming 

such configuration would correspond to assume that the percentage of retrofitted 

elements is constant for every height class of buildings (e.g., the 2/3 of columns 

are retrofitted both in 1 storyes and in 4 storyes buildings). 

 

Figure 5.17 – Modified fragility curves for RC buildings classified in C2 vulnerability class, with medium 

height. The dashed curves are the original fragility curves of Rosti et al. (2021b). 

The μDS variation is also dependent on the damage state considered. Therefore, it 

is necessary to establish a correspondence between the structure-specific damage 

state adopted in Aljawhari et al. (2022) and the EMS-98 damage grades adopted 

herein. As criteria adopted for mapping of damage state (Aljawhari, et al., 2020) 

can be considered similar to the ones adopted in HAZUS (FEMA, 2015), the 

conversion rules proposed in Lagomarsino and Giovinazzi (2006) to convert the 

HAZUS damage levels into the EMS-98 grades are adopted. Thus, considering 

the average variation among the three solutions proposed (FRP, RC and steel 

jacketing), the median of C2 class fragility curves increases of the 13%, 64% and 

52% for damage grade D1, D2 and D3 respectively (figure 5.17). Figure 5.18 

shows the reduction in losses due to retrofit actions in each unit of analysis. It 

can be noted that the absolute reduction is particularly high in compartment D3. 

Also, the decrease in losses/m2 in this zone is higher than other zones (-0.55%).  
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(a) 

 

(b) 

Figure 5.18 – Expected losses expressed in euro(a) and euro/m2 (b) calculated considering the 

implementation of hard policies (in yellow) and the difference with the corresponding losses calculated for 

the original scenario without any policies. 

5.3.1.2. Flood management measures 

Mitigation measures for reducing flood damages can be aimed to reduce the 

intensity of the hazard or to reduce structure vulnerability and exposure. The 

rising of levees, bridge gates or temporary dikes are examples of mitigation 

actions for hazard reduction, usually carried out by civil protection. On the 

contrary, measures of flood proofing constructions are an example of measures 

aimed to minimize damages limiting the exposure and reducing the vulnerability. 

As a large percentage of total damages caused by floods usually concern furniture 

and supply facilities (e.g., heating, electrical equipment), appropriate use and 

equipment of buildings allows to limit damages by refraining from vulnerable 

uses of rooms located below flood depth. Sealing measures are an example of dry 

flood proofing that consist in making waterproof the shell of the buildings and 

the cellar. However, in existing construction the permanent sealing of buildings 

and cellar may require considerable expenditure and effort. Another possible dry 

flood proofing solution is the shielding, aimed to keep water away from the 
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building. For instance, the construction of an embankment or a wall is a 

permanent shielding measure. Still, mobile flood walls may also be raised during 

flooding events. Land use control and zoning ordinance are measures for limit 

the exposure. They are specifically used for reducing the increase of damage 

potential in built areas, without any reduction of potential damages for existing 

constructions. As a matter of fact, on the long term, building codes and zoning 

ordinances entail a reduction of damage compared to unaffected growth.  

Mitigation actions on hazard reduction lead to a decrease in water depth in the 

flooded areas, that can be estimated through hydraulic analysis. On the contrary, 

mitigating exposure/vulnerability leads to a reduction of expected damages for a 

certain water depth. This means that the effects of flood mitigation measures can 

be represented by a changing in the curves describing damage, as reported in 

figure 5.19 (Molinari, et al., 2013 ).  

 

Figure 5.19 – Changing in flood damage curves due to mitigation actions for hazard reduction (HM) and 

mitigation actions for exposure/ vulnerability reduction (VEM). 

As this study focuses on residential buildings and only structural damages/losses 

are considered, shielding and sealing are taken into account as flood mitigation 

measures. The effects of such measures are considered through a fixed drift in 

the depth-loss curves so that reduction in losses can be considered as a fixed 

percentage of potential losses, for every water depth value. Reference values for 

damage reduction corresponding to several mitigation actions proposed in the 

International Commission of the Protection of the Rhine (ICPR, 2002) are 

adopted herein. It is assumed that to a given percentage of damage reduction 

corresponds the same percentage of loss reduction. Expected reduction of 
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potential damage (and losses) between 50% and 100% are estimated in case of 

sealing and shielding flood measures. It is also mentioned that the suggested 

effects of preventive construction measures are related to moderate water surface 

elevation (< 2 m). Therefore, a reduction in losses of 75% is considered only for 

buildings located in flooded areas with a predicted water depth lower than 2 m. 

Thus, in other cases (buildings in flooded area with water depth > 2 m) those 

measures are considered ineffective.   

 

(a) 

 

(b) 

Figure 5.20 - Expected losses expressed in euro(a) and euro/m2 (b) calculated considering the 

implementation of hard policies (in blue) and the difference with the corresponding losses calculated for 

the original scenario without any policies. 

From figure 5.20 it can be noted that mitigation measures against flood risk are 

less effective than the ones adopted for seismic risk reduction, with a reduction 

in losses/m2 of 21% and 13% for C3 and D4 zones respectively. This is mostly 

due to the assumption that the selected measures allow to protect only buildings 

situated in a low-depth flooded area. It represents a limitation of the low intrusive 

flood management measures. Although the 60% of buildings in flooded areas are 

expected to be inundated with a low-depth flood (< 2m) and therefore affected 

by the considered protection measures, the 15% of the remaining buildings reach 
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the maximum possible structural damage. In such cases the most effective actions 

for risk reduction remain planning and land use control. 

5.3.2. Soft Policies 

Insurance indemnity payments after a hazardous event can provide quick 

compensation to households to repair or reconstruct damaged buildings and 

replace possessions. In case of business activities, insurance coverage may also 

compensate for losses due to disrupted production - thereby reducing the 

economic disruption caused by the event. The level of insurance coverage for 

natural catastrophe perils provided by private and public insurers varies across 

countries, with various levels of deductibles and limits offered to policyholders. 

Earthquake insurance carries a deductible, generally in the form of a percentage 

rather than a dollar amount. In Canada and the United States deductibles can 

range anywhere from 2 % to 20 % of the replacement value of the structure. This 

means that if it cost $100,000 to rebuild a home and there was 2 percent 

deductible, the consumer would be responsible for the first $2,000 dollars. 

Considering the cost parameters used for earthquake losses calculation (see 

section 5.2.3), a deductible percentage between 2% and 10% of reconstruction 

cost (or unit cost) would correspond to losses caused by D1 and D2 level 

damages. Therefore, in order to account for the application of such policies, the 

contribution of only these two damage grades is considered in EAL calculation, 

while losses related to heaviest damages (D3, D4 and D5 grades) are considered 

covered by insurance. Similarly, flood insurance is supposed to cover damages 

with a deductible up to 20% of unit cost. According to the adopted vulnerability 

model (Huizinga, 2007), the maximum structural damage for Italian buildings 

due to flooding is 473 euro/m2. The authors defined an “undamageable” part for 

buildings based on their construction material, that leads to a reduction in 

maximum damage value (see also section 3.2.2). Such “undamageable” part is 

set equal to 40% for masonry and RC buildings. In other words, for Italian 

masonry and RC buildings, the maximum damage value of 473 euro/m2 does not 

correspond to losses caused by destruction, as can also be observed in CAPRA 

model, where the maximum percentage of damage corresponding to those 

typologies is the 60% (figure 3.3 in Chapter 3). Therefore, a deductible between 

10% and 20% of the reconstruction cost (set at the value of 1350 euro/m2) would 
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correspond to a value between 30% and 60% of the maximum possible structural 

damage for buildings (set at the value of 473 euro/m2). Hence, in this application 

losses exceeding the 40% of maximum structural damage are considered covered 

by insurance, while under this threshold the losses should be suffered by 

households. Figures 5.21 and 5.22 show the expected losses obtained considering 

the implementation of soft policies, both for seismic and flood risk, and their 

differences between losses resulting from the original scenario without policies 

application.  

 

(a) 

 

(b) 

Figure 5.21 - Expected losses expressed in euro(a) and euro/m2 (b) calculated considering the 

implementation of soft policies (in yellow) and the difference with the corresponding losses calculated for 

the original scenario without any policies. 
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(a) 

 

(b) 

Figure 5.22 - Expected losses expressed in euro(a) and euro/m2 (b) calculated considering the 

implementation of soft policies (in blue) and the difference with the corresponding losses calculated for 

the original scenario without any policies. 

5.3.3. Discussion 

Losses values obtained for all scenarios considered (i.e., original with no policies, 

hard policy and soft policy) and for each risk analysed are disaggregated across 

three different income groups. The proportion of people in different income 

levels is obtained from OMI zone market values (table 5.4). High-income zones 

are designated as those where the minimum market value is greater than 1,000 

euro per square meter (euro/ m2), middle-income zones are designated as those 

where the market value is greater than 900 euro/m2, and low-income zones are 

those where the market value is lower than 900 euro/ m2. This criterion leads to 

considered OMI zone B2 and B2 (that have the same market values) as high-

income level zones, C3 as medium level and to group D3 and D4 zones into low-

income level zone. Figures 5.23 and 5.24 show the comparison of expected losses 

(EAL and EAL/m2) with and without policies implementation for the three 

income groups. The reduction in seismic EAL and EAL/m2 from adopting the 

hard policy quite high for all three income classes but it is particularly notable 

for those of the lowest income. Indeed, EAL/m2 reduction ranges from -40% for 

high income group to -55% for low-income group. Such result highlights that for 

in areas populated by low-income people not only social vulnerability is high but 

also physical vulnerability tends to be higher than other zones (also considering 

that hazard input does not change much within municipal areas). The different 

income classes also benefit from adopting the proposed soft policy, that leads to 

an average reduction in losses of -63%. The slightly difference in the 
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effectiveness of the policies may be because hard policies directly affect 

buildings’ physical vulnerability, reducing probability of attaining damages 

mostly from light to moderate. In contrast, the considered soft policy allows to 

cover not only losses due to moderate damages but also losses associated with 

heaviest.  

 

(a) 

 
(b) 

Figure 5.23 - Expected losses expressed in euro(a) and euro/m2 (b) disaggregated across the three 

different income level classes. 

From figure 5.24 it can be noted that absolute losses due to floods are quite high 

for both medium and low-income groups. However, EAL/m2 are tremendously 

high for medium-income group. As a matter of fact, it is known that flood events, 

for their nature, usually affect specific areas, that may be small with respect to 

the administrative boundaries. Hard policy does not affect expected losses much, 

due to the above-mentioned limit of protection measures adopted (i.e., they are 

considered effective only if inundated depth is less than 2 m). Thus, the most 

effective hard policy against floods remains the urban planning, reducing or fully 

eliminating buildings exposed to such events. On the contrary, soft policies could 
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be a very useful tool for supporting population towards existing flood risk that 

cannot be eliminated. Soft policies lead to a reduction of expected losses of the 

81%, as they can cover heavy damages that cannot be avoided using the hard 

policies considered.  

 

(a) 

 
(b) 

Figure 5.24 - Expected losses expressed in euro(a) and euro/m2 (b) disaggregated across the three 

different income level classes. 

It is worth mentioning that results obtained through this application also depends 

on the assumptions made. First, simplified approach used to develop flood water 

depth may lead to inaccurate results as it is based only on flood extension map 

and a ground topographic model (i.e., DTM). That means that a more accurate 

flood depth estimation may also lead hard policies more effective. Furthermore, 

deductible considered in soft policies may vary. For instance, a higher deductible 

may lead seismic hard policies more convenient than seismic soft policies. 

Moreover, the lower the deductible the higher the insurance premium. For this 

reason, a cost-benefit analysis would be also needed to establish which is the 

most beneficial option.  
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6.Strengths, limits and future needs 

Index-based approach shown in Chapter 3 is a versatile tool that can be easily 

modified to account for more hazards and dimensions. Similarly, it could be 

adopted for measuring risk considering fewer dimensions. For instance, for 

estimating the influence of socio-economic aspects on one hazard. Still, it could 

be use as tool for multi-layer single risk assessment, harmonizing different 

hazards and allowing their comparison and ranking. Despite all those prominent 

advantages, it is a semi-quantitative approach; in other words, it is useful for 

ranking areas of interest based on defined risk score, but it does not allow a proper 

estimation of expected social and economic losses due to a given scenario. For 

this reason, detailed analysis is also required for quantifying losses and estimate 

the effectiveness of any mitigation actions (chapter 5).  

In this chapter both strengths and weaknesses of the proposed framework are 

pointed out. First, an application aiming to demonstrate further possible uses of 

RI is performed. A RI integrating seismic risk with social vulnerability is defined. 

The application is proposed for Campania region, in the south of Italy. All the 

municipalities in this region are classified based on such RI value. The 

municipality with highest score is then selected for a detailed risk assessment. 

The implementation of some risk mitigation policies is considered in risk 

assessment and the outcomes, in terms of economic losses, are disaggregated 

classifying population based on income level. The procedure adopted is the one 

shown in chapter 5. Besides demonstrate the adaptability of the RI for different 

purposes, this application also allows to make comparisons with results obtained 

for Somma Vesuviana, highlighting how more appropriate mitigation actions 

may vary from town to town.  

Later, a comparison between results obtained through the proposed semi-

quantitative approach, in term of risk score, and the outcomes of a detailed risk 

assessment, in terms of EAL, is performed. To this aim, risk results obtained 
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within BORIS project are used. The BORIS project (Cross BOrder RISk 

assessment for increased prevention and preparedness in Europe) is a European 

project focused on the assessment of seismic risk and flood risk in transboundary 

areas among Italy, Austria and Slovenia. Within the project, a shared 

methodology to perform harmonized cross-border single risk (seismic risk and 

flood risk) as well as multi-risk analyses is proposed and applied in two pilot 

transboundary regions at the Italy-Slovenia and Slovenia-Austria borders. Risk 

curve comparing seismic and flood risk are developed for each municipality in 

the pilot areas and the correspondent EAL is calculated. Specifically, EAL values 

related to municipalities in Italian side of the pilot are used herein. The latter are 

compared with results in terms of risk score, derived by the application of the 

procedure presented in chapter 3. As in BORIS social vulnerability aspects are 

not accounted, for allowing the comparison the RI is slightly modified in order 

to involve only the two hazards (i.e., seismic and flood). Thank to such 

application, it is possible to verify whether RI is able to adequately express a 

measure of expected losses in a given area. Moreover, location where a high risk 

in terms of losses does not correspond to a high RI are analysed in order to define 

which issues may arise in the utilization of the proposed index. In this way, the 

limits and the future needs of the tool are also defined.  

6.1. Risk Index for multi-dimensional single-risk assessment 

In this application, RI integrates individual indicators for seismic hazard and both 

physical and social exposure and vulnerability. According to the proposed 

procedure, the RI is calculated by normalising, weighting and aggregating such 

individual indicators. The considered indicators are defined analogously to 

previous application. Thus, seismic hazard indicator is the PGA value with a 10% 

probability of exceedance in 50 years (i.e., corresponding to a mean return period 

of 475 years), defined at the municipal centroid and derived from the official 

hazard model in the country (Stucchi et al., 2004; 2011). As social vulnerability 

indicator SoVI is adopted, calculated according to approach proposed by Frigerio 

et al. (2018) and presented in section 3.2.3. The indicators and variables used to 

estimate the SoVI are reported in table 3.1 and derived from ISTAT database 

(ISTAT, 2011). Physical vulnerability indicator is derived using the Risk-UE 

index-based approach (Lagomarsino & Giovinazzi, 2006). The procedure to 
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estimate the Risk-UE indicator at municipal level is reported in section 3.2.1. 

Indicator representing exposed population quantifies the residential population at 

the municipal level, and it is derived from the most recent census (ISTAT, 2011). 

Each indicator is first normalized through their empirical cumulative distribution 

functions (ECDFs) and then aggregated. The RI is computed by aggregating each 

indicator as follows:  

𝑅𝐼 = [𝐹ℎ
𝑠(ℎ𝑗) ∙ 𝐹𝑃𝑣

𝑠 (𝑣𝑗)]𝑤𝑠 ∙ 𝐹𝑆𝑣(𝑠𝑣𝑗)𝑤𝑠𝑣 ∙ 𝐹𝑝(𝑝𝑗)
𝑤𝑝

 (9) 

where Fhs(hj), FPvs(vj), Fsv(svj) and Fp(pj) are the ECDF values of the seismic 

hazard, physical vulnerability, social vulnerability and residential population 

indicators, respectively, evaluated at municipality j. Note that physical exposure 

is accounted for in the definition of the physical vulnerability indicator, in line 

with the approach presented in chapter 3). The weights adopted for each indicator 

(ws, wsv, and wp) represent their relative importance to relevant stakeholders.  

 

Figure 6.1 - Map of the Risk Index values in the Campania region. 

The RI presented in Eq (9) is demonstrated for the Campania region of Italy using 

a municipality-level scale of analysis. Its calculation is carried out for the case of 

equal weights (ws = wsv = wp = 0.333). The values obtained for each municipality 

in the Campania region are shown in figure 6.1. In table 6-1 the list of the 10 

municipalities with highest scores is reported. It can be noted that also Somma 
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Vesuviana is included in such list. However, whereas it is the one with highest 

score in Campania if also flood risk is involved, considering only seismic risk 

and social vulnerability this municipality still has very high risk score but not the 

highest one. Moreover, comparing these results with the ones reported in table 

5.1 of chapter 5, it may be point out that risk indices tend to be lower than the 

scores obtained considering multiple hazards. For instance, Somma Vesuviana 

has a score equal to 0.795. Despite the latter is not the highest value, it is still 

higher than the one reported in table 5.1, obtained integrating seismic, flood risk 

and social vulnerability. In other words, the more indicators, the lower the final 

risk index. This is due to normalization process.  

Table 6-1 – List of the 10 municipalities with highest risk score in Campania region, adopting the equal 

weighting of indicators. 

MUNICIPALITY RISK INDEX 

Portici 0.876 

San Giorgio a Cremano 0.868 

Ercolano 0.838 

Frattamaggiore 0.836 

San Giuseppe Vesuviano 0.828 

Ottaviano 0.823 

Napoli 0.814 

Poggiomarino 0.812 

Boscotrecase 0.797 

Somma Vesuviana 0.795 

The town of Portici produces the highest RI score in Campania. For a deeper 

investigation of spatial interactions between overall seismic risk and social 

vulnerability, detail risk assessment for Portici is performed.  

According to the latest census information, Portici has a residential population of 

about 55,400. It belongs to a medium-to-high seismicity class according to the 

Italian code classification of seismic zones (OPCM 3274, 2003), with a PGA 

value equal to 0,167 g for a mean return period of 475 years. The municipal 

territory is divided into sub-areas representing broad socioeconomic statuses of 

the residential population. To this aim, data provided by real estate observatory 

(i.e., OMI) are used. The OMI zone identified for the town of Portici, the 

alphanumeric code associated, and the related market and lease real estate values 

are reported in table 6-2 and figure 6-2.  
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Figure 6.2 – Delimitation of OMI zone for the city of Portici. Each zone is identified by an alphanumeric 

code that categorises the zone as Central (B), Semi-central (C) or Suburb (D). 

Table 6-2 – OMI zone identified in Portici.  

OMI zone 
Market value 

(euro/m2) 

Lease values 

(euro/m2 per 

month) 

min max min max 

B4 - Centra/ VIA DIAZ, VIA LIBERTA', VIA L. DA VINCI 1900 2900 5.9 8.9 

B5 - Central/Historical centre 1650 2500 5.1 7.7 

C4 - Semi-central/VIA PICENNA, VIA MARTIRI DI VIA FANI, CORSO 

GARIBALDI DA SAN GIORGIO A INCROCIO VIA DIAZ 1600 2450 4.9 7.6 

C5 -Semi-central/BELLAVISTA 1800 2700 5.6 8.30 

C6 - Semi-central/CENTRO STORICO DEGRADATO 1350 2050 4.2 6.30 

C7 -Semi-central/PARCHI RESIDENZIALI LITORANEI 1950 3000 6 9.30 

D4 -Suburban 1500 2250 4.6 6.90 

D5 - Suburban/GRANATELLO - REGGIA E PARCO - SVINCOLO 
AUTOSTRADA PORTICI / ERCOLANO 1450 2200 4.5 6.80 

The SoVI is calculated for each subdivided unit (i.e., OMI zone) of the 

municipality, adopting the same approach used in application for Somma 

Vesuviana, presented in chapter 5 (figure 6.3). The necessary information for the 

SoVI estimation is derived from the most recent census data at the census tract 

level. All census tracts belonging to the same OMI zone are grouped through GIS 

software. Vulnerability models proposed by Rosti et al. (2021a) and Rosti et al. 

(2021b) for masonry and RC buildings, respectively, are adopted. The building 

inventory is compiled integrating census data with Cartis data, as also explained 

in section 5.2.1. The consequence model proposed by Dolce et al. (2021) to 

estimate economic losses are used. A probabilistic seismic risk assessment is 

performed and the EAL are calculated (figure 6.4). The resulting losses are quite 
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high for all OMI areas, with a value greater than 0.20 EAL/m2 everywhere. The 

area with the highest value is B5 (0.73 EAL/ m2), followed by the C6 zone (0.40 

EAL/ m2) and C4 zone (0.36 EAL/ m2); for all these areas, the SoVI is very high 

as well (see figure 6.3).   

 

Figure 6.3 - OMI homogeneous areas and their classification based on SoVI value. 

 

Figure 6.4 – EAL/m2 for OMI zones. 

The assessment is repeated twice for evaluating the effectiveness of loss 

reduction through the implementation of some mitigation strategies, i.e., building 

retrofit (a hard policy) and post-disaster assistance through insurance coverage (a 

soft policy). Such strategies are accounted in the calculation using the 

assumptions already adopted in section 5.3.1.1 (hard policies) and in section 5.3.2 

(soft policies).  Figure 6.5 compares the EAL/m2 values obtained for all scenarios 

considered (i.e., original - no policies, hard policy and soft policy) across three 
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defined income groups. The proportion of people in different income levels is 

obtained from OMI zone market values. High-income zones are designated as 

those where the minimum market value is greater than 1,900 euro per square 

meter (euro/ m2), middle-income zones are designated as those where the market 

value lies between 1,650 euro/m2 and 1,900 euro/ m2, and low-income zones are 

those where the market value is lower than 1,650 euro/m2. EAL/m2 is consistently 

highest for the most vulnerable population class (i.e., low-income). The reduction 

in EAL/m2 from adopting the hard policy is highest for all three income classes 

(approximately 73% on average) and is particularly notable for those of the 

lowest income. The different income classes benefit to a lesser extent from 

adopting the proposed soft policy, which again leads to the largest reduction in 

EAL/m2 for the low-income class (of 65%).  

 

Figure 6.5 - Expected annual losses per square meter disaggregated across the three different income level 

classes. 

Unlike Somma Vesuviana, in this case hard policy seems to be more effective 

than soft one. This is probably due to the higher number of buildings achieving 

minor and moderate damages with respect to the heavily damaged ones. The 

considered retrofitted actions are mostly effective for such type of damages 

(minor/moderate), leading to a significant reduction of EAL as well. In contrast, 

the considered soft policy only covers losses associated with heaviest damages.  

6.2. Evaluating the representativeness of risk index: comparison 

with detailed risk assessment 

Within BORIS project multi-layer single assessment was performed to compare 

and rank seismic and flood hazard. As the project is focused on harmonizing 

cross-border risk assessments, risk analysis involved only few Italian 
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municipalities in the cross-border area between Italy and Slovenia. The map of 

the 27 Italian municipalities involved in the pilot application of the BORIS 

project with the correspondent EAL values (as sum of seismic and flood EAL) is 

reported in figure 6.1. In the figure, also an example of risk both for seismic and 

flood risk for the city of Gorizia is shown.  

 

Figure 6.6 – Map of the 27 Italian municipalities involved in the pilot application of BORIS project. The 

map shows the values of EAL/m2 at municipal level. An example of LEC for seismic and flood risk is also 

reported. 

Using the approach described in chapter 3, RI for all those municipalities is 

estimated as well. However, to be coherent with analysis performed in BORIS, 

RI should be slightly modified. More specifically, as in BORIS socio-economic 

aspects are not considered at all, the RI should not include such indicator. 

Moreover, as in EAL calculation physical exposure is accounted only in terms of 

buildings and not in terms of population, also the corresponding indicator (i.e., 

population) has not to be considered in evaluating RI. Therefore, Eq (7) is 

modified as follows: 

𝑅𝐼 = [𝐹ℎ
𝑠(ℎ𝑗) ∙ 𝐹𝑃𝑣

𝑠 (𝑣𝑗)]𝑤𝑠 ∙ [𝐹ℎ
𝑓

(ℎ𝑗) ∙ 𝐹𝑃𝑣
𝑓

(𝑣𝑗)]𝑤𝑓 (10) 

where Fhs(hj), FPvs(vj), Fhf(hj) and Fpv
f(vj) are the ECDF values of the seismic 

hazard, physical vulnerability, flood hazard and flood (physical) vulnerability 

indicators, respectively, at municipality j; ws and wf are the weights associated 

with seismic and flood risk, assumed to be equals. Models used for hazards and 

vulnerabilities are the same adopted in chapter 3. 
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Table 6.3 shows the values of EAL obtained in BORIS and RI values calculated 

using Eq (10) for each municipality. It can be noted that for several municipalities 

high value of EAL/m2 corresponds to high value of RI (e.g., Farra d’Isonzo, 

Gradisca d’Isonzo, San Leonardo).  

Table 6-3 – Economic losses and RI values for the Italian municipalities involved in BORIS project. The 

ratio between EAL due to flood and EAL due to earthquake is also reported (Ratio). 

Municipality  EAL (euro) EAL/m2 Normalized EAL/m2 Ratio (F/S) RI 

Buttrio 307685 1.58 0.290 0.82 0.18 

Capriva del Friuli 134831 1.61 0.299 1.87 0.38 

Cividale del Friuli 637062 1.17 0.186 0.50 0.32 

Cormons 306874 0.88 0.112 0.24 0.43 

Corno di Rosazzo 157250 0.95 0.130 0.69 0.30 

Doberdò del Lago 29620 0.44 0.000 0.00 0.03 

Dolegna del Collio 35859 1.71 0.324 0.95 0.11 

Drenchia 17104 2.32 0.480 1.95 0.05 

Farra d'Isonzo 238524 2.66 0.567 3.81 0.57 

Gorizia 1982808 1.27 0.213 1.35 0.30 

Gradisca d'Isonzo 1351157 4.36 1.000 6.18 0.42 

Grimacco 37132 2.11 0.427 1.03 0.07 

Manzano 343023 1.06 0.159 0.43 0.38 

Mariano del Friuli 78933 0.99 0.142 0.45 0.32 

Moraro 32911 0.85 0.104 0.61 0.25 

Mossa 66706 0.87 0.110 0.80 0.17 

Premariacco 222243 1.07 0.160 0.27 0.24 

Prepotto 50016 1.22 0.199 0.51 0.24 

Sagrado 253021 2.47 0.518 5.73 0.24 

San Floriano del Collio 26330 0.70 0.068 0.05 0.21 

San Giovanni al Natisone 310758 1.07 0.161 0.63 0.30 

San Leonardo 143749 2.41 0.504 2.34 0.32 

San Lorenzo Isontino 55004 0.73 0.075 0.22 0.17 

San Pietro al Natisone 140472 1.30 0.220 1.41 0.16 

Savogna 50533 1.99 0.397 0.80 0.09 

Savogna d'Isonzo 192003 2.18 0.443 4.74 0.31 

Stregna 19187 0.92 0.124 0.66 0.11 

Values of EAL/m2 are standardized with maximum-minimum technique (see 

section 3.1), in order to obtain values between 0 and 1, compatible with RI ones. 

In figure 6.7 normalized values of EAL/ m2 are related to RI values. The trendline 

in the figure shows a positive correlation between data. Despite such correlation 

is not strongly significant, generally larger the losses, higher the RI. As a matter 

of fact, municipalities with greatest value of EAL/ m2 also have highest risk score 

(e.g., Gradisca di Isonzo). However, some municipalities do not show the same 

trend. For instance, in Drenchia expected losses are very high (2.3 euro/m2 or 
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0.48 as normalize value) but estimated RI is very low (0.05). Similarly, for the 

city of Grimacco a value of losses of 2.11 euro/ m2 corresponds to a RI of 0.07.  

 

Figure 6.7 – Analysis of correlation between RI and expected losses per square meters. 

More detailed analysis of the dataset highlights that a possible cause of such 

discrepancy may be the value of the flood risk indicator adopted in RI calculation. 

Indeed, for the above-mentioned municipalities (i.e., Grimacco and Drenchia) 

value assumed for this indicator is very low. In Grimacco, flood hazard indicator 

assumes a value of 0.04. As the latter is representative of the inundated area 

within the municipality, this means that only the 4% of municipal surface is 

expected to be inundated by an event with a return period of 100 years (according 

to the model adopted for flood hazard). This indicator is considered 

representative of the exposure as well. Results obtained point out the main issue 

of such assumption, namely that the real distribution of buildings within the 

municipality is not taken into account in the definition of flood risk indicator. In 

fact, whether most of residential buildings are located nearby the river, they are 

supposed to be all inundated (leading to very high value of losses) even if the 

flood extent is relatively small with respect to the whole municipal surface. 

Figure 6.8 shows an example for two towns in the dataset: Gradisca d’Isonzo, 

where very high extent of flooded area (40%) leads to a high RI as well, and 

Grimacco where very low inundated surface (about 1%) causes a low RI.  
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(a) 

 

(b) 

Figure 6.8 – Flood hazard maps for the cities of Gradisca d’Isonzo (a) and Premariacco (b), considering a 

flood event with a return period of 100 years. Source: BORIS. 

To check the causes of observed discrepancies, the correlation between EAL 

caused only by earthquakes and the seismic risk score is analysed. It is reported 

in figure 6.9. A positive and significant correlation is observed between the 

seismic risk indicator and quantitative estimation of such risk (i.e., EAL) at 

municipal level. This result confirms that the lack of accuracy in some 

municipalities is probably due to simplified assumptions made for flood risk 

evaluation.  
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Figure 6.9 - Analysis of correlation between seismic risk score and expected losses per square meters. 

6.3. The need of defining the relative importance of indicators 

The definition of the weighting methods to use to define the relative importance 

of individual indicators of the proposed approach is still an open issue. As already 

mentioned, several weighting techniques can be used, including both statistical 

models and participatory methods. Factor analysis and data envelopment analysis 

are examples of statistical approaches that could be used. Like principal 

component analysis, in factor analysis each factor reveals the set of indicators 

having the highest association with it (see also section 2.4.1). However, through 

such approach’s weights cannot be estimated if no correlation exists between 

indicators (Nardo et al., 2008). Data Envelopment Analysis is a non-parametric 

methodology usually employed for frontier estimations in assessments of 

productivity and efficiency applied to all fields of economic activities. An ideal 

efficiency frontier is used as benchmark to measure the performance of a given 

set of countries. Countries are ranked according to the score of single indicators 

and the measurement of the distance of each country with respect to the 

benchmark is a measure of its performance: the countries nearest to the frontier 

are classified as the best performing, while more distant countries have lower 

performance. The set of weights derives from this comparison. Through an 

optimization process, the best combination of weights for a given country is 

obtained as the one that allows to get the best performance.  

On the contrary, participatory approaches involve public or expert judgement. As 

already mentioned, in the BAP experts are given a budget of N points, to be 
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distributed over a number of indicators, paying more for those indicators whose 

importance they want to stress. An alternative are public opinion polls, consisting 

in asking people to express “much” or “little concern” about certain problems 

measured by the indicators. It is preferred to use in public polls instead of BAP, 

as it could be more difficult to ask the public to allocate a hundred points to 

several indicators than to express a degree of concern about the problems that the 

indicators represent. The Analytic Hierarchy Process is a multi-criteria decision-

making tool. It consists in decomposing a problem into a hierarchy of more easily 

comprehended sub-problems, each of which can be analysed independently. The 

different levels of the problems are constituted by goal, criteria, sub-criteria and 

alternatives. Once the hierarchy is built, stakeholders compare the importance of 

various elements by comparing them to each other two at a time, with respect to 

their impact on an element above them in the hierarchy. For instance, by firstly 

posing the question “which of the two element is more important?” and secondly 

“by how much?”. These evaluations are then converted into numerical values, 

namely the numerical weight or priority derived for each element of the 

hierarchy.  

As already highlighted in the Hyogo Framework for Action 2005-2015 and 

further underlined in the Sendai Framework for Disaster Risk Reduction 2015-

2030, community-based and people-centred approaches are strongly 

recommended in DRM as they allow to incorporate local and indigenous 

knowledge into management plans. Public participation may act as a useful tool 

towards empowering individuals and communities threatened by hazards to act 

in a timely and appropriate manner. They enable people to explain their 

vulnerabilities and priorities, allowing local authorities to correctly define 

problems in order to design and implement suitable responsive measures. Several 

authors demonstrated the usefulness of such approaches in different context 

(Bustillos Ardaya et al., 2019; Stec & Jendrośka, 2019; Marchenzini et al. 2017; 

Ashu & Van Niekerk, 2019; Roopnarine et al., 2021). Therefore, one of the 

participatory approaches above presented should be adopted to assigne suitable 

weighs in the proposed index-based approach as well.  
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6.4. Conclusion 

The applications shown in chapter 4, 5 and 6 highlighted the prominent 

advantages of the framework proposed herein. The calculation of RI at municipal 

level allows to rank all municipalities in a given region based on their propension 

to suffer losses due to earthquakes and floods and the potential capacity of 

inhabitants to react to such losses. Hence, it may be a useful support for 

identifying hotspots in decision-making process, without the need of complex 

and time-consuming analysis. Data collection and preparation is very easy as 

well, as only publicly available data and models are adopted. Such characteristics 

make the index-based approach particularly suitable for large scale (national or 

regional) investigations. In this chapter was also underlined as this tool can be 

easily used and modified based on stakeholders’ needs. Further hazards can be 

included in the estimation simply adding a parameter to the RI equation. On the 

other hand, the RI can be also used to assess the interaction of a specific hazard 

with social vulnerability. Application proposed in chapter 4 also shown the 

versatility of this approach, that it is able to account for more refined regional 

exposure and vulnerability models.  

Municipalities can be classified based on RI value and detailed multi-risk 

assessment is suggested for those with highest score. As a matter of fact, one of 

the limit of index is being a semi-quantitative approach. In other words, it does 

not allow a quantitative estimation of expected losses, crucial for preparedness 

and response actions planning. A simplified methodology for modelling the 

implementation of hard and soft mitigation actions in multi-risk assessment was 

proposed. The results of the analysis shown that a significant reduction in losses 

may be obtained adopting the proposed risk reduction strategies, although the 

convenience of one policy with respect to another one may vary from town to 

town as well as for different areas of a same municipality. 

A measure of representativeness of the RI proposed is also evaluated through the 

comparison with outcomes of detailed risk assessment in terms of EAL. To this 

aim, results of multi-layer single risk assessment performed in BORIS project is 

considered. The EAL/m2 obtained for 27 Italian municipalities, calculated 

accounted both seismic and flood risk, is compared with a suitable modified RI. 
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A positive correlation is observed, i.e., larger the EAL higher the RI. However, 

discrepancies observed for some municipalities pointed out the main limitation 

of the approach.  The latter concerns the assessment of buildings potentially 

exposed to flood. A large-scale analysis like the one proposed herein does not 

allow a proper estimation of the flooding exposure, that should require 

information at building level (i.e., building footprint). This inaccurate evaluation 

may significantly change results in terms of RI. Therefore, further analysis and 

modifications would be needed to get to a refined and more reliable version of 

the multi-dimensional risk index proposed.  

Despite the mentioned limits, it was demonstrated that the proposed framework 

is likely to represent a helpful tool for decision-makers, enabling them to select 

appropriate, cost-effective mitigation or preparedness measures that directly 

target those most in need. Last but not the least, the framework can directly 

integrate relevant subjective perspectives, through the weights used as part of the 

RI calculation, e.g., adopting participatory methods as the Budget Allocation 

Process to account for expert and decision-makers’ opinions and assign suitable 

weights for each indicator based on the defined aims. Similarly, decision makers’ 

and other stakeholders’ priorities can be taken into account in in the detailed 

analysis stage, through the selection and the choice of mitigation strategies.  
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