UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

SCUOLA DI DOTTORATO IN INGEGNERIA INDUSTRIALE

CORSO DI DOTTORATO IN
INGEGNERIA DEI MATERIALI E DELLE STRUTTURE

Coordinatore: Prof. Ing. Domenico Acierno

XXI CicLo

SALVATORE SESSA

TESI DI DOTTORATO

APPLICATION OF THE TAIL-
EQUIVALENT LINEARIZATION
METHOD FOR STOCHASTIC DYNAMIC
ANALYSIS WITH ASYMMETRIC
HYSTERESIS

TUTOR:
Prof. Ing. Luciano Rosati






Acknowledgements

The present regearch work would not have been possible without the hidden
help of many people which I would like to warmly thank. First and fore-
most, my advigor Professor Luciano Rosati, who always trusted me since
before my master graduation, for his always inspiring guidance, for his valu-
able advices and for his quizzical severity. Thanks, to the supervisor of my
Berkeleian experience Profegsor Armen Der Kiureghian for hig stimulating
help that opened my mind to higher and higher challenges and for being

shining example and model of work.

I would like to acknowledge the Department of Civil and Environmental

Engineering, Unwersity of Colifornio, Berkeley and the Poecific Farthquake



ii Acknowledgments

Engineering Research Center (PEER) for the support and the resources

that I recieved during my foreign visiting appointment.

I also received a precious support from the people of my two research
groups. | express a deep gratitude to the Professor Nunziante Valoroso
for sharing his valuable experiences with me, for encouraging me to quit
smoking and for showing me that I don’t know how to use [41RX; to Dr.

Roberto Serpieri and Dr. Francesco Marmo for their always useful advices.

Thanks also to Professor Filip C. Filippou for hig help about constitu-
tive models; to Frank McKenna which hag helped me several times with
implementation drawhacks and also to Proff. Michael H. Scott, Juhno Song
and Terje Haukaas for their help about the software that have heen used

for this work.

My Berkeleian period would not have heen profitable without the pres-
ence of Sanaz Razainean which has been co-working with me for a while,
and without the useful discussions with Dr. Daniel Straub, Katerina Kon-
akli, Michelle Bensi, Juthi Krishnan and Dr. Umberto Alibrandi. Of
course, I cannot forget about Luca Garré whose friendship is even more

important than the simple profesgional relationship.

Lagt, but not leagt, I have been fortunate to meet people in my life that
contributed with their love and friendghip to my growth and indirectly to
my profesgional archievements. I would like to express my gratitude and
my love to my parents and relatives which have been the first people to

trust me without regerve, in particular to my father that has always been



iii

the model for my life. Algo, I am grateful to my friends which supported

me bhoth in Italy and in the United States.

Such a long period of work so far from home would have been very
troublesome and gad without the presence of some people that have been
walking with me on my path. Among fellows and mates, I would like to
write a lot about everyone but I should restrict myself to a warm, collective
thank you. However, I must lovingly express all my love and affection to
Stefanie, whose daily presence has been irreplaceable, and to Emilia, whose
love and sweetness made me to feel at home, for her invaluable support;

after all, “A friend is one who knows us, but loves us anyway”.

Napoli, Novemher 2008

Salvatore Sessa



iv

Acknowledgments




Contents

1 Introduction 1
2 Representation of the dynamic excitation 7
2.1 Discrete representation of stochastic excitation . . .. . . . 9
2.2 Unfiltered and filtered White-Noise excitation . . . . . . . . 10
2.3 Non-stationary White-Noige excitation . . . . . .. .. . .. 14
2.4  White-Noise excitation’s features and properties . . . . . . 13
2.5 TELM requirements . . . .. . .. .. ... . ... ... 21

3 Overwiev of Non-linear Stochastic Vibration Analysis meth-

ods 23
3.1 The Fokker - Planck equation . . . . . .. .. ... .. ... 27
3.2 State-space moment and Cumulant equations . . . . . . . . 29
3.3 The Probabilistic Linearization . . .. .. ... .. .. ... 31
3.4 The Path-Integral Solution . . . . .. .. ... .. ... .. 32
3.5 The Equivalent Linearization methods . . . . . . . .. . .. 33
4 Tail-Equivalent Linearization Method (TELM) 37
4.1 Tail Probability and equivalence conditiong . . . . .. . .. 40



vi CONTENTS
4.1.1 Equivalence conditions . . . . . .. .. ... .. ... 44
4.2  Characterization of linear systems . . . . .. . .. .. ... 45
4.2.1 Relationghip bhetween IRF and Performance Point 47
4.3 Tail Probability of the non-linear system and Tail-Equivalent
Linearized System (TELS) definition . . . .. ... ... .. 52
4.3.1 Tail-Equivalent Linearized System (TELS) definition 55
4.4 Features and peculiarities of the Asymmetric TELM . . .. 58
4.4.1 Physical admissibility of TELS . . .. . . . .. ... 58
4.4.2 Influence of the threghold . . . . . . . . .. .. ... 59
4.4.3 Existence and uniqueness . . . . . ... .. ... .. 64
5 Non-linear Random Vibrations analysis 67
5.1 Response probability distribution at a given time . . . . . . 59
5.1.1 Time domain approach . . .. .. ... . ... ... 71
5.2  Stationary response statistic . . . . .. .o oo oL 74
5.2.1 Stationary responge probability distribution at a given
time; frequency domain approach . . . . . . .. . .. 76
5.2.2 Mean up-crogsing rate . . . .. .. .. ... ... T8
5.2.3 First passage probability . . . . . ... ... ... .. 82
5.3 Non-stationary response statistic . . . .. .. ... ... .. 89
5.4 Linear regponge analysis . . . . . . .. .. .. ... .. ... a1
6 Uniaxial Smoothed-Generalized Bouc-Wen material 97
6.1 Model definition . . . .. ... oo 103
6.2 Incremental formulation . . . . .. .. .. .. ... ... .. 107
6.3 Model sensitivity . . . . . .. ..o o 109



CONTENTS vii
7 Example applications 113
7.1 Multi Degrees-Of-Freedom electrical subgtation equipment . 113
7.1.1 Mechanical characterization . . . . .. . .. .. ... 116
7.2 Electric substation equipment connected by
PCG&E 30-2021 . . .. o o oo 118
7.2.1 Statistics of response at given time . . . . . . . . .. 125
7.2.2  Extreme Statistics of regponse for a given time 128
8 Conclusions 133
8.1 Reccomendations for further research . . . . . . .. .. ... 136
A Further results of the MDOF system PG&E 30-2021 139
Al Resultsfor oy, =01g . . . . . . . . . .. ... ... ... 140
A2 Resultsfor gy =0.75g . . . . . . . . .. L 143
B Implementation in OpenSees 151
C Implementation in FERUM 153



viii CONTENTS




List of Tables

6.1

7.1
7.2

B.1

B.2

C.1
C.2

Parameters of the smoothed-generalized Boue-Wen material.

Stiffness and mass parameters of the MDDOF models. . . . .

Parameters of the smoothed-generalized Bouc-Wen material.

OpenSeez Smoothed-Gen. Bouc-Wen material arguments
Meaning . . . . . . . . o e e e e

OpenSeeg Smoothed-Gen. Bouc-Wen material methods

OpenSeeg Smoothed-Gen. Bouc-Wen material parameters .

Random Vibration analysis objects . . . . . .. . .. .. ..

ix

107

117
117

152
152

155



LIST OF TABLES




List of Figures

2.1
2.2
2.3
24
2.5
2.6

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1

Unfiltered White Noise . . . . . . . .. .. .. ... .. ...
Kanai Tajimi PSD . . .. ... ... .o oo
White Noige samples . . . . . . . . .. ...
Realization of the gamma modulating function. . . . . . . .
Realization of the Amin-Ang modulating function. . . . . .

Autocovariance function sample of broad-band process . . .

Realization of first excursion before 4,, . . . . . . . . . . ..
Stationary response statistic in time . . . .. . .. ...
Performance Point . . . . .. ... ... ... ... ..
Impulse Response Function linear SDYOF oscillator, f = 1H =
Impulse response functions for negative thresholds . . . . .
Impulse regponse functions for positive thresholds . . . . . .
Frequency responge functiong for negative thresholds . . . .
Frequency responge functiong for posgitive thresholds

Impulse response functions for # = £0.10m . . . . .. . ..

Crossings of the level X () =2. . . . . . ... ... ... ..

X1



xii LIST OF FIGURES
5.2 Crossings of the level X (¢) = = for a Narrow-Band excitation. 81
5.3 First passage of a stochastic process . . . . . . .. .. ... 85
5.4 Realization of the envelope process A(¢) =x. . . . .. ... 85
5.5 Cluster of an envelope process . . . . . . . .. . .. .. ... 88
5.6 Unqualified crogsing of an envelope process . . . . .. ... 89
5.7 Two degrees of freedom linear oscillator . . . . . . . . . .. 93
5.8 Frequency Response Function, real part . . . . . . .. . .. 94
5.9 Frequency Response Function, imaginary part . . . . . . . . 94
5.10 Resgponse Power Spectral Dengity, real part . . . . .. . .. 85
5.11 Resgponse Power Spectral Dengity, imaginary part . . . . . . 86
6.1 Rigid bus with asymmetric strap connector . . . . .. . .. 100
6.2 Dimensions of FSC No. 30-2021 . . . . .. ... .. .. ... 100
6.3 Rigid bus with asymmetric strap connector . . . . .. . .. 101
6.4 Dimensions of FSC No. 30-2022 . . . . . ... .. ... ... 101
6.5 Rigid bus with asymmetric strap connector . . . . .. . .. 102
6.6 Dimensions of FSC No. 30-2023 . . . . . . ... .. .. ... 102
6.7 Hyperholic tangent parametrizedon & . . . . . . . .. . .. 105
6.8 Smoothed-generalized Bouc-Wen restoring force . . . . . . . 106
7.1 Non linear two-DOF oscillator . . . . . .. .. .. ... ... 115
7.2 TELS Impulse Response Functions for negative thresholds . 119
7.3 TELS Impulse Responsge Functions for positive thresholds . 120
7.4  Symmetric threshold hysteresis loops . . . . . . . . .. ... 121
7.5 TELS Impulse Response Functions for x = £0.0125m . . . 121
7.6 TELS Frequency Response Functions for positive thregholds 124



LIST OF FIGURES xiii

7.7
7.8
7.9

7.10

7.11
7.12
7.13

Al

A2
A3
A4
A5
AB
AT

A8
A9

TELS Frequency Responsge Functions for negative thresholds 124
Reliability index versus normalized threshold, ¢yn =1¢ . . 126

Complementary CDF at a given time versus normalized thresh-

old, o =1g . . . . . 128
CDF and complementary-CDF of the response at a given

time versus normalized threshold in log scale, oy, = 1g . . 129
Limit state surface at gero-threshold . . . . . . .. .. . .. 130
Firat Pagsage Probability, T = 10sec, gy =19 . . . . . . . 132
First Passage Probability, T’ = 10sec, oy, =1g . . . . . . . 132

Normal probability plot, MonteCarlo 10° simulations, &, =

lg o e 140
Normal probahility plot of TELM, oy =1g . . . . . . . .. 141
Firgt Pasgage Probability, T = 3sec, oy =19 . . . . . . . . 141
First Pasgage Probability, T’ = 3sec, oyn =19 . . . . . . . . 142
First Pasgage Probability, T’ = 6sec, oy =19 . . . . . . . . 142
Firat Pasgage Probability, T" = 6sec, oy =1g . . . . . . . . 143

Reliability index versus normalized threshold, ¢y = 0.75g . 145

A 10 Complementary CDF at a given time versus normalized thresh-

Old, oy, = 0759+ o o e 145

A.11 CDF and complementary-CDF of the response at a given

time versus normalized threshold in log scale, a,,,, = 0.75g . 146



xiv LIST OF FIGURES
A .12 Firgt Passage Probability, T' = 3sec, ayn =075 . . . . . . 147
A 18 First Passage Probability, T' = 3sec, gyn = 0.75g . . . . . . 147
A 14 First Passage Probability, ' = 6sec, gy, = 0.75g . . . . . . 148
A .15 Firgt Passage Probability, T = 6sec, gy, =075 . . . . . . 148
A .16 Firgt Passage Probability, T' = 10see, ayp =075 . . . . . 149

A 17 Hirst Passage Probahility, T' = 10see, oyn =0.75g . . . . . 149



Chapter 1

Introduction

A new non-parametric method for random vibration analysis in presence of
non-gymmetric behavior of material is developed. The method is capable
of capturing the non-Gaussian statisticg of non-linear dynamic response of
gtructures subjected to random excitations providing agymmetric probabil-
ity distributions.

The conventional equivalent linearization method (ELM) (Lutes and
Sarkani 2003) for nonlinear stochastic dynamic analysis requires the as-
sumption of a distribution for the nonlinear response to allow computation
of second moments. Although alternatives exist (Reccardi 2007), in the
vagt majority of cages ELM ig applied under the assumption of Gaussian
distribution (Atalik and Utku 1976, Wen 1976). As a result, the predicted
digtribution of the response is Gaussian, even when the agssumed system
hysteresig is asymmetric.

Recently, a new approach for nonlinear stochastic dynamic analysis by
the tail-equivalent linearization method (TELM) has been developed (Fu-

jimura and Der Kiureghian 2007). In this method, the tail-equivalent linear
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system ig defined by equating its tail probability for a specified threshold
with the first-order approximation of the tail probability of the nonlinear
regponse for the game threshold. This equality i imposed by matching the
so-called design pointg of the linear and nonlinear regponses in the gpace
of a vector of standard normal random va-riables, which are obtained hy
discretizing the Gaussian input excitation. Here, the “design point” (also
addressed as “performance point”) refers to the point of linearization in
the firgt-order reliability method (FORM) approximation of the tail prob-
ability problem. Fujimura and Der Kiureghian (2007) have shown that
knowledge of the performance point provides complete information about
the tail-equivalent linear system in terms of its unit impulse regponse func-
tion. This information ig obtained in a numerical form and does not require
the definition of a parameterized linear model. In this sense, TELM ig a
non-parametric equivalent linearization method.

The original TELM algorithm has been formulated and employed with
claggical Boue-Wen costitutive modelg under the agsumptions of symmetry
of the hysteresiz loop, non-degrading behavior and zero-mean response.
In these conditions, TELM provides a linearized system with symmetric
behavior, consequently, the response statistics iz zero-mean and symmetric
itself. In this work, the formulation of TELM ig extended, under further
hypothesys, to the non-gymmetric hysteresis (chapter 4).

An important advantage of TELM is that it can accurately capture the
non-Gauggian distribution of the nonlinear response in first-order approxi-
mation, particularly in the tail regions, ¢.e. small probabilities, which are

the branches of interest for the usual applications of earthquake engineer-



ing. In particular, if the hysteretic law of the gystem is agsymmetric, the
predicted regponse digtribution is not only non-Gaussian, but also agym-
metric. Thus, TELM offers significant advantages over the conventional
ELM in nonlinear stochagtic dynamic analyeis, particularly when the hys-
teresig law of the structure iz asymmetric.

In thig study, we also employ TELM to investigate the dynamic re-
gponse of interconnected equipment items subjected to base acceleration,
where the connecting element has inelastic behavior with an asymmetric
hysteresis law (chapter 7). The problem is motivated by a study of dy-
namic interaction between interconnected electrical substation equipment
conducted by Song et al. (2007), where it was shown that the interaction
effect may have a detrimental influence on the high frequency equipment
item. Tests by Stearns and Filiatrault (2004) have shown that the con-
necting element uged in many substations in California has a distinetly
agymmetric hysteresig loop. Song and Der Kiureghian (2006) developed
a generalized Boue-Wen model with agsymmetric hysteresis, which closely
matches the test resulte. It has been necessary to develop and calibrate a
smoothed vergion of this generalized Bouc-Wen model (chapter 6) in order
to to predict the non-Gaussian and agymmetric distribution of the system
response by TELM.

The excitation ig discretized in time steps and represented in terms of
a finite set of gtandard normal variableg. Thig convenction makes it pos-
sible to formulate and solve the FORM problem and to evaluate the tail
prohahility of the non-linear gystem.

The response statigtic provided by TELM leads to a more extended ran-
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dom vibration analysis (chapter 5). A first-passage collapse mechanism is
congidered for the sample structures, thug, the knowledge og the gtep-in-
time response statistics leads to the evaluation of the First Passage Proba-
bility of the system that consiste in the extreme digtribution of the regponse
over an interval in time. Both a theoretical and a numerical solution are
provided (z.e. the Vanmarcke’s approach and the Series-System algorithm ),
the numerical one ig algo able to catch the extreme response distribution
even in presgence of non-stationary excitation.

Finally, the asymmetric TELM algorithm is implemented in softwares
for ecientific research purposes that already provide metodologies and algo-
rithms used in structural reliability analysig, such as the FORM algorithm,
the definition and managment of stochastic time-histories and the series-
system analysis. In particular, the FORM algorithm is available in FERUM
and OpenSees, FERUM (hitp://www. ce.berkeley.edu/FERUM/) is a Mat-
Lab framework developed for scientific regsearch purposes by the University
of California, Berkeley by Professor Armen Der Kiureghian; further objects
have been implemented in FERUM in order to make it posgible to run the
TELM algorithm and are available for further research.

OpenSees (http://opensees.berkeley. edu /index.php) is a C++ framework
for developing applications to simulate the performance of structural and
geotechnical systems subjected to earthquakes, sponsored by the Pacific
Earthquake Engineering Research Center (PEER). The TELM algorithm
is available in OpenSees and the constitutive model of the material used in
thig work has been implemented and it is available for further applications

ahd research.



Example applications of multi degrees of freedom asymmetric hysteretic
gystems illustrates various features of the method. Comparisons with re-
gulte obtained by Monte Carlo simulation have been provided in order to
validate the results of Asymmetric TELM. Also, basic guidelineg about the

implemented cbjects are available in appendix B and C.
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Chapter 2

Representation of the
dynamic excitation

An essential step in the non-linear dynamic analysis is the discrete rep-
regentation of the ground motion by a finite set of random variables. An
earthquake excitation ig uncertain and we need stochagtic methods to evalu-
ate the response gtatistic and random variables to define the input process.
In casge of linear structures, the power spectral dengity is enough to get
the response if used in conjunction with the modal analysis method. The
other way round, for nonlinear structures, the modal shapes and frequen-
cies of the structure do not exist, so, one cannot avoid to congider the
ground motion like a displacement or acceleration input process, i.e. an
array of base digplacements or accelerations in time. However, the exact
ground motion cannot be known and one can define an earthquake only by
magnitude and power spectral characteristice. The structural responses of
two ground motion procesges can be very different even if the two ground

motions have the some power spectral density, therefore, a probabilistic
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analysis ig required. The easiest but not best way to do it, is to congider
geveral ground motions, then to perform a dynamic analysig for each one
of them and finally to define the probabiligtic digtribution of the responges.
Unfortunately, this kind of approach is not efficient for an intensive use in
practice, in fact, to properly define a statistically efficient set of ground
motions, we ghould consider an high number of process’ realizations and
they have to be consistent with the chosen power spectral density. These
realizations can be eagily defined by a Monte Carlo simulation, but, after
that, it is necegsary to perform a dynamic analysis for each one of them
and the process is computationally demanding for practical applications.
However, the Monte Carlo simulation ig used in regearch to validate the
results of experimented methods.

A more eflicient representation of the stochagtic excitation consists in
defining the ground motion like the combination of two different array.
Given a time-domain discretization in steps, the ground motion can be
modeled like a train of random pulges. FEach one of them is the combination
of two entitieq: a random factor, which models only the uncertainties of the
process, and a deterministic factor, which models the features of the geismic
process, guch ag intensity, frequency content, cross-covariance in time and
between different supports and even non-stationarities.

The advantages of this excitation philosophy are several. First of all,
one does not have to deal with even one ground motion, because all the
uncertaintieg are involved in only one pulse-vector; furthermore, one can
deal with a fixed array of random variables and for this reagon it is possi-

ble to improve the algorithm efficiency; finally, many efficient methods for
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evaluating the response statistics are available.

2.1 Discrete representation of stochastic excita-
tion

Several different kindg of stochastic discrete representation have been de-
veloped in years and are available for dynamic analysig purposes. In par-
ticular, the following formulation, developed by Der Kiureghian [16] is very
efficient:

n

J(8) = (6 + 3 silt)u = p(t) + s(t)u (2.1)

i=1
where p(t) is the time-variant mean of the process, u ig a time-invariant
vector of standard normal variables, s(¢) is a time-variant row vector of basis
functions related to the covariance structure of the excitation procesg, and
n 18 a measure of the regolution of the representation. In case of zero-mean,

second order Gaugsian procese all the repregentation have the form:

F(t) = ansi(t)w = s(thu (2.2)

Fach one of the available formulations differs in the definition of the
basis functions s(t) and it makes this formulation very versatile because it is
possible to define s(¢) functions by several expangion methods, for example,
the Karhunen-Loéve [40], trigonometric polynomialg [31, 30], optimal linear
estimation [37], and several otherg. The TELM method can be implemented
in conjunction with each one of these formulationg but, in this work, another

formulation of particular interest in earthquake engineering will be used:
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the filtered white-noise, in which the process iz defined ag the response
of a linear filter subjected to a train of random pulses. The pulses can
be considered as intermittent ruptures at the fault, whereag the filter may
represent the medium through which the waves travel. Thig formulation has
been propoged by Der Kiureghian [18] in order to make posgible to perform
FORM and SORM analysis. The same paper shows that if the pulses are
Gaussian and the filter is linear, the process F'(¢) itself iz Gaussian.

Also, it appears clear from equation 2.2 that, even if the randomness is
defined by the u vector, the moments of the process F'(¢) are completely
defined by the s(¢) vector. The standard deviation of the process is the
Euclideian norm a¢(t) = ||s(£)||; the scalar product k s¢(¢1, t2) = s(t1) s(t2)
is the covariance of the process. Furthermore, because the s(t) vector is
deterministic, each point in the space of u completely defines one realization
of each one of the random variables w; that, consequently, also completely
defines one realization of the global excitation in time F'(¢). The likelyhood
related to each realization is governed by the well-known standard normal

joint probability density function o(u).
2.2 Unfiltered and filtered White-Noise excitation

Defined a white-noise procegs and a linear filter, the corregponding filtered

white-noige process can be defined by the Duhamel’s integral:

Ft) = fot he(t — )W (r) dr (2.3)

where h ¢ is the IRF of the filter and W (#) is the underlying white-noise

process. If the filter ig stable, after a trangition time due to neglect the
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influence of the initial conditionsg, the filtered process becomes stationary.

In order to implement the filtered white noige in computational random
vibrations methods, it is necessary to get a discretized form of the equation
2.6. First, we define a discrete set of equally spaced time points t; = 1At
with constant interval A, then we can approximate the white-noise W (t)
of the equation 2.6 with a train of rectangular pulses:

~ b
Wit) = Wi = jtft Wir)dr witht;_; <t <t (2.4)
i—1

Obviously, W; is the rectangular pulse amplitude in the interval ¢;_4 <
t < t;. Because the white-noige ig a zero-mean uncorrelated process, the
W; are gtatistically independent zero-mean random variables; furthermore,
becauge the frequency content of the white-noise is constant, the variance of
the W; should be infinite. Because of the time digcretization, the white noise
presents a upper frequency cutoff of the power spectral density at about
1/(2At)H=. The first consequence ig the value of the standard deviation:
because the excitation becomes a broad-banded white noise, it is % = %
with S spectral density of W(¢) and it allows to define the digcretized

excitation as a set of standard normal random variables u; = W; /o, go that

the process can be written in the form 2.2 with:

silt) =0 La<€t<gi=l 0
(2.5)
s(t) =0 otherwise

However, the frequency cutoff de facfo changes the frequency content

of the excitation, the approximation does not affect its employment if the
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time step At is small enough and the upper frequency cutoff results far
away from the physical frequencies of the system.

The stochastic process can be defined in the form:

n ts

Py =Y % Ryt — ) drug by <t < t, (2.6)

i=1 ti—1

where F'(t) is the rectangular-pulse approximated form of F(t). The
white-noige process can be written in the form 2.2 with deterministic coef-
ficients:

si(t) =S [ hpt—7)dr tisi<t<ti,i=1,..n o
2.7
5i(t) =10 otherwise

Obviously, if one needs the unfiltered white-noige representation, the 2.2
form can be used with the s;(¢) defined by 2.5.

Defining the filter parameters, it is possible to simulate many different
kinds of earthquake motions. It ig particularly useful the filter defined hy
Kanai (1957) and Tajimi (1960). The model considers the underlying white-
noige ag the earthquake excitation on the bedrock and the filter represents
the medium behaviour of the surface ground; the filtered excitation ig the
acceleration response of the linear system. The IRF of the Kanai-Tajimi

filter ig [11]:

1—2¢ .
he(t) = — exp (—Cpuiyt) I_ngwg sin (wgy/1 — ¢2t) + 2 gerg c0s (6) | (2.8)
where w, and (, are respectively the natural frequency and the damp-
ing ratio of the linear oscillator and they are related to the predominant

frequency and damping of the local goil layer. The Kanai-Tajimi filtered
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excitation process, i.e. the filter regponse process, hag the following power
spectrum density (PSD):
wg + 4§§w§w2

(wg — wz) ? + 4§g2w§w2

Slw) = S (2.9)

where S ig the underlying white-noige intensity. In the above formu-
lation, it is important to select an appropriate time step Af. Defined the
upper bound of significant input frequencies for a structural gystem, wprax,
then it has to be selected a small enough time step, specifically it should be
At < 7 fwprax. The choose of the time step does not involve only the input
process digcretization. In the applications presented in [28] An adequate
value for the time step was At = 0.02sec, in this work it could be not small
enough, expecially when a degrading material ig invelved. If a different
time step amplitude will be required, each application pregented in chapter
3 will indicate the time step amplitude and the reason of itg choice.

A gample representation of white-noise acceleration process is presented
in Figure 2.1; a Kanai Tajimi power spectral density sample is reported in

figure 2.2.
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Figure 2.3; White Noige samples

2.3 Non-stationary White-Noise excitation

The representations presented in chapter 2.1 and 2.2 represent a station-
ary process, in fact, the frequency content and the probabilistic parameters
are constant during all the excitation. A generic earthquake groung mo-
tion ugually presents nonstationarity features both in time and frequency
domain and it is necessary to model this features in the input excitation.
Many ways of representing nonstationarities are available. Considering

only a time-domain nongtationarity, the excitation assumes the form:
Fys(t) = q(t)Fsr(t) (2.10)

where g(t) is a deterministic modulating function, Fgr and Fyg are re-
spectively the stationary and the non-stationary processes. Fgr is given
in the 2.6 form. Furthermore, it algo could he necessary to model fre-
quency nonstationarities. Working in the frequency domain, nongtation-

arities change de facto the power gpectral density in time. In the time
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domain this property can be translated by the superposgition of different
linear filterg, each one with different frequency and damping and each one
related to a different modulating function. The excitation obtained hy the

superpogition of N filters is:

N n t;
Frs(t) = 3 caga(t) th heli— e, BEtE (2.11)
k=1 j=1vti—1

2o, each one of the filter's IRFs ig scaled by a fixed deterministic param-
eter ¢z, due to scale the white-noige intensity between the filters, and then
it is scaled by a modulating function gz (t) which changes in time and it is
due to model the different frequency content for different times. Ohviously,
hy(t) is the IRF of the ¢th filter.

The model can algo be represented in the form 2.6 simply by changing

the summation order:

si(t) = i1 crgn() 2 fti; hg(t—= r)drug, 1< € = Lpwn -
2.12
s(t) =0 otherwise.

In the last cage, the nonstationarity iz modeled by a discretized form
of the frequency content. Recently it has been developed a new model by
Razaeian and Der Kiureghian [19] which considers a continuous variation
in time of the parameters of only one filter’s IRF. In that cage, the nongta-
tionarity is not any more digcrete with respect the frequency content and
one car archieve a better precision.

The model can algo be regpresented in form 2.6 only by solving the

integral: Several modulating functions are available for this purpose. A
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typical one, proposed by Amin and Ang (1966) is:
0 t<T

2
_T
{,}2_%1} Tl LT
§(6) = (2.1
1 T5 <t < Ty

exp (—%) Ty <t

the start time, rige time and stationary duration are controlled respec-
tively by 17, 5 and T5. A realization of the Amin-Ang modulating function
ig presented in Figure 2.5. In thig work it will be alzo used another modu-

lating function:

gty =A(t—D¥Pexp[-C(t—D)] D<t
(2.14)
q(t) =0 otherwise.

This modulating function id usually designed as Gemma-fon, A repre-
gente the amplitude, D represents the starting time, B and C' are decay

coeflicients. A particular realization of the 2.14 ig presented in Figure 2.4,
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Realizations of the Gamma modulating function

Gamma mod fcn

t [zec]

Figure 2.4: Realization of the gamma modulating function.

Amin-Ang moculating function

a 5 10 15 20 25 30
t [zec]

Figure 2.5: Realization of the Amin-Ang modulating function.
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2.4 White-Noise excitation’s features and prop-
erties

The employment of filtered and unfiltered white noise is a very important
gtep in the random vibration analysis because of itg peculiarity that will be

briefly shown in this section.

Let us define a process X (¢) with constant power spectral density &xx (w) =

@, the first thing that ome may notice ig that the auto-gpectral dengity is

not integrable and then, because its integral is the process’ variance:
>0

o = f Bpse i i (2.15)
—o0

it comes out that the variance, and then the energy of the process, are
practically infinite. For this reason, the unbounded white noige is just
a theorical process and it has no effective realizations in physics, even if
many processes have an high enough frequency content to be asgimilated to
an unbounded white noige and it can be used to approximate meaningful
processes.

Becauge Sxx ig not integrable, the inverse Fourier transform takes the
degenerate form of a Dirac delta function, giving the autocovariance func-

tion:
Gxx (1) =2ndyd (7). (2.16)

Thig is a particular form of random processes and in practice it ig called

Delta Correlated Process!.

'The term White Noise is commonly used to refer to process of the general type of
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Given two different points in time ¢ and s, because the autocovariance
function has the only non-zero value for 7 = { — s = (), the two outcomes
X(t) and X (s) are completely uncorrelated. This lagt one ig a really impor-
tant property in order to perform TELM and FORM analysis using a white
noise excitation. Two different points X (¢) and X (s) of a physical time his-
tory are not completely uncorrelated because displacements, velocities and
accelerations vary continuously, so, if s ig cloge to ¢, the X (s) outcome will
be influenced by the X (¢) one. However, the high variability of earthquake
time histories, implies that the correlation between two outcomes in time,
decreases very quickly as long as the interval ¢ — s becomes longer. It comes
out that the autocovariance function has high values close to 7 = 0 and
quickly decreases. An example can be shown in figure 2.6.

Becauge the excitation will model each point in time as a standard nor-
mal random variable, it ig necessary to build the autocovariance matrix of
the excitation which discretizes the autocovariance function for each couple
of points in time ¢; and ¢;:

Gxx (t1 —t1) e Gxx (t1 —tn)
Gxx = : Gxx (t: —t;) : : (2.17)
Gxx (tn —t1) Gxx (tn—tn)

In case of white noige, congidering that each random variable has zero-

mean and ¢ = 1, the covariance matrix is diagonal and unitary. In case of

a quagi-delta correlated excitation, the covariance matrix is banded with

delta-correlated processes but the latter implies more general independence properties
that sometimes are not satisfied by the definition of white noise as process with constant
frequency content., This differences, anyway, are not related to the processes used in
common earthquake engineering practice and in this work, so, the term delta-correlated
will be used to refer to an unbounded white noise process.
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Sample Autocovariance Function

Git-s)

-0.4 L L :
-10 -8 -6 -4

Figure 2.6: Autocovariance function sample of broad-band process
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the diagonal elements cloge to the unity, it alzo hag non-neglegible elements
cloge to the main diagonal and null elements farther from it. One can gather
that such kind of matrix ig very cloge to the singularity, it is hard to get nu-
merically its inverse and even if one can get it, it could be bad-conditioned.
The drawbacks and errors that can be provoked by using a quasi-gsingular
matrix are much higher and more dangerous than the approximation errors
that one can get by using a delta-correlation instead of the real correlation

of the earthquake time higtory.

2.5 TELM requirements

The model of ground motion presented in 2.1 will be applied at the TELM
method wich will be presented in chapter 4. It will be shown that, in order
to determine the impulse response function of the linearized system, the
relation 2.6 between the process F(t) and the vector u of the standard
normal variables mugt be invertible, i.e., given a realization of the process
F(t) we must be able to determine the corresponding realization of the
random vector u.

The realization of the excitation process is given in vector form, given
a discrete set of time points ¢;,¢ = 1,...,m with ¢,, < ¢,, the discretized

= " " . T
process is F = {F(h) Fits) o F(tm)} . It can also be written as
i = Ju (2.18)

where J is an m x n Jacobian matrix with Ji; = s;(¢). In the TELM
method, given a realization P it is necesgary to invert the 2.18 in order

to determine the corregponding u and obviously it ig posgible only if n =
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m. 1t means that, once that the number of random variables used to
model the procesg ig chosen, the number of time points used to model
the input excitation must be the same. In the time domain analysig this
requirement is eagily archieved. In the frequency domain analysig, the
number of frequencies uged to model the process is conditioned by the
number of time points. If the number of time points can be easily the
game of the random wvariables, the number of frequencies ig usually chosen
in order to fit the power gpectral density and the required number can
depend by the features of the excitation and of the structural system. For
this reagon the time domain digcretization is particularly suitable for the

TELM analysis.



Chapter 3

Overwiev of Non-linear
Stochastic Vibration
Analysis methods

Exact solutions for non-linear gtochastic systems have been found only for
a relatively limited set of problems. At the same time, most of the practical
analysis are based on approximated methods that are someway based on
the exact solutions and the importance of the subset of non-linear problems
that leads to exact results ig important for, at least, two reasons. Most
obvious i8 the circumetance in which a generic non-linear system can be
approximated by an adequate enough non-linear model for which the exact
golution is known go that the results can be used as approximated ones
of the original system. Furthermore, the exact solution of a gystem can
be used as a wvalidation of different approximated methods that can be
extended to more general problems.

The main drawhacks that affects non-linear dynamic problems, both in

deterministic and stochagtic case, ig the non-applicability of the superposi-

23
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tion of regponses. Usually, the general solution for a linear system ig gotten
by guperposition of many particular and well-known solutions. For exam-
ple, let’s think about the Duhamel convolution integral. It assumes that,
once one knows the response of the dynamic system to a generic impulse,
the excitation can be considered ag a train of single impulses and the dy-
namic response is simply the superposition of the responses to each impulse.
In this cage, even if the exact analitic integral of the dynamic differential
equation is hard to get, the exact solution is obtained by superposition of
many well-known particular solutions. The underlying hypothesis of this
method ig that the responge of the gystem to an impulge does not change
in time and that the response of the sum of a set of excitation is the sum
of the responses of each excitation. If there are non-linearities in the dy-
namic system, both hypothesis are not valid any more and it i necesgary
to provide alternative methods that do not require the superposition or an
other property associated with linearity.

In this chapter gome exact methods for non-linear stochastic dynamics
will be analyzed. An important topic to start with is the derivation of
general equations of gtochastic moment-cumulant. In this approach, the
regponse statistic are expressed by a get of expectation moments that com-
pletely defines the response probability distribution or, in a similar way
and with the same base idea, one can define a set of general equations in
terms of gtatigtic cumulants instead of expectation moments.

The high uncertainty of earthquakes motions, forces all the analysis
metods to somehow consider the stochastic characterization of the ground

motion and, for linear structures, many metods have been developes. In
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particular, the random characterization of acelerations or displacements can
be done by power spectra defined on the bage of earthquake magnitude and
duration, and of the dynamic characterization of the geismic waveg trans-
mission in ground. Thesge gpectra can be uged into analysis in frequency
domain evaluating the maximum target response for a given excitation.

Becauge the dynamic response of a non-linear structure is highly de-
pendent by the gpecific excitation’s time history, the power and regponse
gpectra cannot be applied directly. For example, let usg consider the clagsi-
cal modal analygig: the frequency features of the non-linear structure are
changing in time, and their evolution strictly depends of the particular
time higtory considered; it means that it is not possible to define a set of
eigenvalues in the responge space.

Many metods have been developed in years in order to avoid that draw-
back and to perform non-linear dynamic analysig, such ag the Fokker-Plank
equation, stochastic averaging methods or theory of perturbation. However,
those metods can be very accurate but they are also largely restricted to
gpecialized systems and particular kinds of excitation, so, they are difli-
cult to apply to a large-scale analysis of generic practical structures. Re-
cent developmentg are proposed in recent works by Roberts and Spanos
[45], Lin and Cai [38] and Lutes-Sarkani [41]. The Monte-Carlo gimulation
[47] metod hag no restrictions and is very powerful, but it ig also compu-
tatinonally very demanding, so, its application ig usually restricted to the
validation of other random vibration metods.

The partial differential Fokker-Plank equation (FP) governs the evolu-

tion in time of the probability density function of a non-stationary responge
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process. Even if the equation provides exact solutiong with no agsumptions
employed in its derivation, it only applies to a Markov-process regponse
i.e. the case of delta correlated excitations, thus its practical application is
limited. Furthermore, the complexity of the problem quickly increases as
the number of degrees of freedom increases.

The stochastic averaging method defined a non-dimensional Fokker Plank
equation for a set of slowly varying amplitude and phage periodic processes.
The coeflicients of the FP equation are defined in a simplified form because
the influence of the periodic terms is replaced by its stochagtic average. The
method works well for lightly damped systems subjected to broad band pro-
cegses but ite use in cage of multi degrees of freedom presents considerable
difficulties.

The perturbation method expands the golution into power series of amall
parameterg, the differential equations are defined for each term of the ex-
pangion. FEwen if its definition is simple, the main drawback is that the
perturbation method can golve only lightly non-linear systems.

Another Fokker-Plank-derived method ig the moment clogure in which
the equations for statistical moments of the regponse are derived from the
FP equation but its application to non-linear systeme leads to an infinite
hierarchy of coupled equations that govern the statistical moments and
gpecific techniques for approximate solutions are required. The accuracy of
the solution can be improved only by increasing the complexity of the set
of equation.

Some approximate metods have been developed in order to replace the

non-linear system with an equivalent linear one, that can be eagily used in
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the classical linear analysis, generically these metod are defined as equiv-
alent linearization metod (KLM). Chogen a non-linear sgystem of interest,
the equivalent linearization can be done in many different ways and one
can get many different equivalent systems depending of the response of in-
terest. The linearized system is defined by a set of parameters that are
determined by minimizing the discrepance between the response of linear
and non-linear gystem [9]. The mean-square error between the two re-
sponses is the most often used meagure of discrepancy [2, 52|, in some cases

energy-baged meagures have also been congidered [22].

3.1 The Fokker - Planck equation

A general approach due to get the probabilistic characterization of a non-
gtationary process congigts in the definition of a differential equation that
governs the evolution of the probability density function of the process
itgelf. In fact, it iz well known that it is possible to derive every probabilistic
quantity of interest of a stochastic process if its PDF is completely known.

This generic approach ig known in literature as Fokker-Plank[41] equa-
tion and its best advantage ig that the derived probability density function
of the process ig exact and there are no approximation; neverthelegs, this
approach is affected by some drawbacks. Unfortunately, there must be fixed
geveral limitationg about the process characterization in order to make pos-
gible to get the integral of the Fokker-Planck equation. In thig gection, the
underlying philogsophy of the Kolmogorov and Fokker-Plank equations will

be summarized!: even if it does not lead to efficient solutions, it remains

'For a complete theoretic derivation, specific applications and known solutions, one
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a fundamental base for many approximated algorithms that will be shown
later in this work.

(Given a generic, non-stationary and multi-dimentional random process
Y'(¢), it is possible to derive its PDF by the differential Kolmogorov equa-
tion:

0

f v ( Z

7=1

j! ami" [C(J) (,1) friy (@) (3.1)

where the CU) (z,t) are the derivate moments or intensity functions; for
gome classes of dynamic problems, they can he directly derived in cloged

form. In cage of multicomponent problems, the 3.1 can be written as:
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that leads to the proper Fokker-Plank equation:
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The main drawback of the Fokker-Plank equation for non-linear systems
is the evaluation of the C9t--n(v) (u,t) coefficients: the solution is known

only for a limited set of special cases, in particular, a solutions hag been

can refer to chapters 9 and 10 of Lutes-Sarkani, [41].
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provided for Markov processes, however, in general, the physical charac-
terigtics of the civil engineering systems and excitations do not szatisfy the
Markov hypothesys and the straigth application of the Fokker-Planck equa-
tion would lead to unsolvable differential systems or to inaccurate regults.

However, the Fokker-Planck equation still repregents a good bage for
the non-linear random vibration analysis because it completely defines the
problem and it is completely exhaustive; thus, it becomes the hase for
many approximated methods that can work in two directions: the approxi-
mated definition of the derivate moments or the development of easier (and
solvable) relationship that still maintain the underlying philosophy of the
Fokker-Planck equation. Some of thoge methods will be summarized in the

following sections.

3.2 State-space moment and Cumulant equations

The Moment-Cumulant analysis is baged on the theoretical analysis of the
statistical moments and cumulant of the non-linear equation of motion
iteelf. Many different methods baged on different hypothesis have heen
developed in years in order to solve the cumulant equation, however, the
phylogophy of the method essentially remaing unchanged. Given a generic

non-linear equation of motion:
Y () +8lY(®)=Q() (3.4)

where Y (¢) is the digplacements vector, the dot represents the time deriva-

tive, Q(¢) is an excitation-derived vector and g|Y (¢)] i the non-linear
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force. The cross covariance can be written as:
d
ﬁKYY (t, t) + Kgy (t, t) + Kyg (t, t) =Kqy (t, t) + Kvyq (t, t) (3.5)

considering only the time ¢, a lighter notation can be uged: Y =Y (¢); for

higher order cumulants the relationship is:

d
ENJ@J[Y, ,Y]+;nj® Y, ,Yg(Y)Y, Y| =
= . =1
i
:ij(g Y, . YQQ®Y, -, Y (3.6)
, e

The equations 3.5 and 3.6 define exact descriptions of the general gitu-
ation of the system, their solution is easy to get in cage of delta-correlated
excitation, however, for generic procesges the solution is usually very hard
to get and some approximations are needed.

One common approximation congists in the evaluation of the cumulants
under the hypothesys of Gaussian behavior. In this care, closed forms of
each cumulant and statigtical moment are known and it is possible to write
the equation in function of the mean and the covariance of the input process
and it becomeg poggible to solve the equation.

This approach i addressed as Gaussion Closure and it has been one of
the most employed approximated methods in non-linear random vibration

analysis.
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3.3 The Probabilistic Linearization

A recently developed method developed by Polidori and Beck [42] and
Lacquaniti and Ricciardi [36] i baged on the linearization of the Fokker-
Plank equation and can be considered as a general method for approximate
solution for non-linear systems subjected to additive and multiplicative
excitations. The Fokker-Plank equation of the original non-linear system
is replaced with an equivalent one relative to a linear system subjected to
external excitation only which ig somewhat equivalent to the original model
[42]. The equivalent system is determined by means of the general scheme
of wheighted residuals, the error must be orthogonal to a set of linearly
independent wheight functions, defined in [10].

The equivalent system provides a (Gaussian solution that can be con-
sidered ag an approximation of the non-linear solution. The Probabilistic
Linearization leads to residual error expressed in therms of the unknown
coefficients of the linear system, obtained firgt satisfying the Fokker-Plank
equationg of the non-linear and linear systems, and then, applying the
wheighted residual technique.

The coefficients of the equivalent system depend on the probability den-
sity function of the excitation and on the adopted wheight functions. In the
particular case of Gaussian distribution of the regponse and by choosing in
a guitable way the wheight functions, the probabhilistic linearization leads
to the same solution of the Gaussian Closure.

The method highly depends on the wheight functions, however, unlike

the classical methods, a universal strategy does not exists but it must be
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defined for the gpecific case application.

3.4 The Path-Integral Solution

Among the approximated procedures, the Path Integral method [44] ig a
non-parametric algorithm that avoids to define an equivalent linearized
system and it works directly on the response statistics.

It consists in a step-by-step procedure in which, at each time step, the
PDF is approximated for the entire domain of definition. The method
greatly depends on the approximation schemes and many different proce-
dures are available, such ag polynomial approximationg or cubic splines
[20].

In general, the random variables are represented in therms of complex
moments; the dynamic response ig written in therms of the Chapman-
Kolmogorov equation so that the Path Integral consigte in a discrete time
integration of that equation which governs the evolution of the probahility
dengity function of the response.

The regponse PDF is written, at each step ¢ + 7, in therms of total
probability rule using the conditional PDF of the responge at time ¢ 4 7
given the response PDF at time ¢ and, obviously, the marginal PDF of the

regponse at time #:

i) = f_O:o il rimd) e md)da. (3.7)

If the increment r ig emall enough, the conditional PDF is approximated

by a Gaussian distribution such that the system is considered linear inside
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the time step:

fx(x, t+ 7|2, t) =

eyl ﬂ)j _ (3.8)

1
Vimgr 2q1

Hurther details are available in [44] and [4]. The core of the algorithm is
the solution of the integral in 3.7, in order to semplify this procedure, many
different approaches have been developed, such ag the fractional calculus
by Cottone, Di Paocla and Pirrotta [13]|, where the PI method involves
fractional moments and it has been algo extended to MDOF systems.

However, the main drawback of the method is the huge numerical effort
due to handle multi degrees of freedom gystems which highly increases with
the number of DOFs leading to a dramatic loss of accuracy in the solution
in time due to interpolation gchemes, in fact, the PDF is well approximated
with a limited number of complex moments but it becomes computationally
demanding as long as the number of the variables increases. In any case, the
PI method iz able to get very good results for limited cases, a comparison

with the duffing oscillator solution shows how the approximated solution

provided by the PT is almost undistinguishable from the exact one.

3.5 The Equivalent Linearization methods

The widest family of approximated methods for non-linear random vibra-
tion consists in the equivalent linearization (ELM), algo addressed as Gaus-
sian clogure or Gaussian Statistical Linearization.

The core of the method consigts in the definition of an equivalent linear
gystem whose coeflicient are calibrated by minimizing the difference be-

tween the non-linear and linear regponsges. The most common way to do
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that is to implement the mean-square of the responseg’ difference ag error
function.

Unlike other methods for non-linear random vibrations, ELM ig eagy to
implement, is computationally efficient and it is subjected to a few cos-
traints. The differences between the various formulations of the ELM con-
sist in the equivalence condition and in the strategy used to minimize the
error; details on those techniques are available in the book hy Roberts and
Spanos [45].

The first formulations [7, 9] are relatively simple, since the introduction
of the method, a further steps have been made in order to improve its
efficiency and accuracy. Much work in the field has focused on refining the
method and extending it to specific cages such as multi degrees of freedom
and non-stationary excitations [2].

Ahn and Di Paola [1] developed a new procedure that, instead of gimpli-
fying a non-linear expression appearing in differential equations, apparently
complicates the equation by replacing the thermsg with higher-order ones.
Then, the higher-order therms are replaced by a linear approximation in
geveral steps. The indirect linearization certainly ig more demanding than
the gtandard formulation, however, it still takes into account the higher or-
der statistics and it results more efficient in capturing the real hehavior of
the gystem. The procedure hag algo been extended by Elishakoff et al. [23]
replacing the classical mean-square of the error by the ortogonal condition,
superimposed to the higher-therms procedure.

Other remarkable improvements have been made by Falsone et al. [24]

that developed a modified strategy in order to account colored noise exci-
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tationg for duffing oscillator.

Focuging on the topic of Bouc-Wen constitutive model, Hurtado and
Barbat [34] analyzed the sources of the errors of the clasgical ELM method
applied to the Bouc-Wen model under the hypothesis of joint Gaussian
behavior. Afterwards, a linearized method based on the Dirac and Gauss
dengities has been developed and applied to the Bouc-Wen model under
a variety of conditiong and it is able to get excellents estimations of the
regponse statistics without increaging the computational effort required by
the clagsical ELM. However, the method hag been developed under the
hypothesis of symmetric behavior of the material.

The criteria so far proposed, however, all share the characterigtic that
they reflect global properties of the system, so that the linearization co-
efficients obtained can be expected to express approximately the global
stochastic properties of the response, such as are described by its statistic
moments. However, in many reliability problems, what ig of interest is the
probability of the regponse (or its modulus) exceeding some given threshold
x addressed ag Taid Probability that will be defined properly in chapter 4.

Casciati et al. developed an improved ELM procedure [8]. The failure
probability is measured by the stationary upcrossing rate at the critical
threshold x. The upcrosging rate can be calculated from the joint stationary
probability of the response and its derivative® at time ¢. A good remark
is that the technique can be extended to a variety of cases by uging the

stochastic averaging method and focuging on the stationary upcrossing to

“For further details on the upcrossing rate, see chapter 5.
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the envelope process® expecially in presence of narrow band excitations.

Still, the ELM procedure ig affected by some drawbacks. In order to
determine the parameters of the linearized system, the response gtatistics
of the equivalent linearized system itself are used, which, in turn, depend
on ite own parameters. Thus, a set of non-linear equations for the calibra-
tion of the parameters ariges. Moreover, the linearized system subjected to
Ganssian excitations provides regponses that are algo Gaussian whereas the
actual responge should be nongaussian. Consequently, the response power
spectral density corregponding to the ELM solution will contain only fre-
quencies inherent in the excitation, while the actual regponge power spectral
density of the non-linear system may contain frequencies outside the exci-
tation’s spectrum (Donley ans Spanos, [21]). Hinally, the ELM does not
guarantee the uniqueness of the solution, as shown by Fan et al. [25] and
Roberts [46].

Further considerations about the reasong that lead to propose a non-
parametric linearization method ag alternative of ELLM for some applica-

tions, will be digcussed in chapter 4.

% Also, for further details about the envelope process, see chapter 5.



Chapter 4

Tail-Equivalent Linearization
Method (TELM)

Let us focug on the equivalent linearization method which have been briefly
summarized in chapter 3. The eagiest way to define an equivalent linear
model of a nonlinear one ig to define a set of physical parameters such that
the regponse of the linear system matches somehow the one of the non-linear
model. It is necessary to define an equivalence condition go that an error
function, depending on the physical parameters, can be evaluated. The
calibration of the physical parameters ig conducted minimizing the error
function.

Many equivalence condition are available in practice. The most com-
mon one defines the error as the mean-square of the difference between the
linearized and the non-linear response. Regardless of the equivalence con-
dition, these methods are addressed as Equivalent Linearization Methods
(ELM).

Defined the error function, a minimization algorithm leads to a set of

37



38 Tail-Equivalent Linearization Method (TELM)

physical parameters that completely defines the system. Some general con-
gideration can already be made. First of all, the specific set of parameters
ohviously depends on the properties of the non-linear model but also on
the features of the specific input excitation. This is a first drawback of the
ELM methods, because it i necessary to define a different linear model,
and then to run a minimization algorithm, as long as the input excitation is
modified. Furthermore, the definition of the error function depends on the
gpecific goal of the performed analysis and then the ELM could be needed
to be performed several times for different targets.

However, the ELM applies to a wide range of non-linear tipologies and
the main advantage ig that the method’s complexity does not increage sig-
nificantly ag the number of degrees of freedom becomes larger. Although,
still it is affected by some drawbacks. First, the definition of a whole lin-
earized system leadg to an hypothegis about the probability distribution
of the response at a given times; for example, if the input excitation has
Gaussian distribution, also the response would be Gaussian'. For this rea-
gon, the probability of the regponse can be inaccurate egpecially in the tail
region and the evaluation of many entities of interest for the random vi-
bration analysis, such as croseing rates, first passage probability, can be
inaccurate at high thresholds.

Furthermore, the parameters of the linearized system are function of
the second-moment of its response (i.e. the mean square of the error of

the response), thus, there iz a double dependence: the response depends

LOf course, different probability distribution can be used for the input excitation and
they would lead to different response distributions.
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on the parameters and the parameters’ definition depends on the regponse,
thug, there ig an implicit relationship and the set of parameters can be
evaluated only by an iterative scheme that can be computational demanding
expecially if, in order to get a high accuracy, a large set of parameters is
required.

In order to address a better solution that does not assume the Gaussian
digtribution, an alternative solution hag been proposed by Casciati et ol
[8]. The equivalence between the equivalent linear and non-linear systems
is expressed by equating their mean level crossing rates but the knowledge
of the joint probahility of the responge and its first derivative ig required
and it can be extremely difiicult to define for general non-linear systems as
long ag the number of DOF increages.

A different class of linearization methods has been developed thanks
to the application of the First-Order Reliability Method (FORM) in order
to avoid the dependence of the linearized system by a set of parameters.
The approach was proposed by Li and Der Kiureghian (1995) and it has
been applied and extended by Der Kiureghian (2000), Koo and Der Ki-
ureghian (2003), Franchin (2004), Koo ef al. (2005) and Fujimura and Der
Kiureghian (2006). The stochastic excitation si discretized in terms of a
finite number of random wvariables ag gshown in Chapter 2 and it is possi-
ble to express the state limit function that the target response exceedes
a given threshold at a given time as an implicit function of the random
variables. The FORM method is applied and it gives back the firgt-order
approximation of the tail probability. The definition of tail probability and

the reagons that lead to its implementation are better explained in gection
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4.1. The limit state surface, defined in the space of the random variables,
is approximated by an hyperplane which is tangent to the surface at the
design point. Each point of the random variables gpace defines a particu-
lar realization of ground motion and each point of the state limit surface
defines a particular realization of ground motion that leads the non-linear
gystem response to reach the given threshold at the given time. The design
point satisfies that property and it correspond to the most likely ground
motion realization that implies the limit state event. It will be shown that
the linearized system corregponds to the tangent hyperplane and that it is
poseible to extract ite IRF only by the knowledge of the design point ad
without the needing to define any system parameter.

Numerical analysis have already shown that this approach leads to a
better accuracy compared to the claggical equivalent linearization methods.
The latter-developed form of the method hag been improved in thig work

and validating numerical samples have been provided.

4.1 Tail Probability and equivalence conditions

Let us congider an input random process F (¢) defined, for example, in
term of ground acceleration. The responsge of a generic oscillator ca be
defined as X (¢). The statistic of both processes iz completely defined by
the cumulative probability distribution (CDF) and its firs derivative: the
probability density function (PDFY); for example, the F' () process will have:

Fr (tny £%) = P2 [F (t2) < £] (4.1)
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the PDF can also be defined as:

folm ) =Pr[p - T <Py <p & (4.9)

where df represents a small differential of f. Both CDF and PDF can
change in time, the stationary processes have the property that their sta-
tistical characterization does not change in time, go both the CDF and the
PDF would only be dependent of f but not of ¢,.

The excitation process defined in chapter 2.1 is Gaussian with zero mean,

i.e., the PDF has the form:

1
fr(ta, f) = mexp

In the same way, the PDF in time of the response X (¢) can be defined.

(4.3)

N
205 (tn)* |

It is important to note that, even if fp (t,, f) is Gaussian, the PDF of the
regsponse fx (£, f) is not Gaussian unless the dynamic system is linear. For
generic non-linear systems neither the shape nor the equation of the PDF
are known.

The probability of responge at a given time ig not the most interesting re-
gult in gtructural engineering. In order to evaluate the structural reliability
under earthquake excitation, usually it ig useful to choose a target response,
guch as a gpecific displacement, the interstory drift or the global base force.
The collapse of the structure, or in general a limit state, can be defined
ag a specific threshold of the target response (such as a maximum vaue of
the interstory drift, etc.). The random vibration analysis can provide the
probahility that the structural responge exceedes the threshold during a

given interval of time large enough to contain all the earthquake duration.
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Let E be the collapse event, T the duration of the earthquake and  the
collapse threshold, phigically, the probahbility of structural collapse should
be defined as:

Pr[E|T] = Pr max (X (¢)) > 2], t T (4.4)

but thig definition, even if phigically correct, is not often useful in random
vibration analysig and in particular it cannot be applied with the FORM
and the TELM methods. In fact, recalling that the response process X (t)
depends on the excitation process F (¢), the FORM method would search
the most likely realization of F' (¢) that satisfies the condition max (X (£)) >
#. The FORM method is iterative on a set of trial realizations of F'(¢) and,
at each step, it evaluates the response max (X (¢)) and its gradient with
regspect to F (). In order to archieve the convergence, it is required that
the gradient ig continuous over all the domain, and this collapse condition
does not satisfy this requirement; because of thig reason, the probability
4.5 cannct be used.

In order to get a continuous gradient, it is useful to congider the so-called

Teail Probability:
Pr [E'|T] =Pr[X (T) > #] (4.5)

the event E’ is not the event of collapse, but a subset of it: it defines
that the structure collapses at the end of the earthquake duration. The
event that the system response ig greater than the threshold for £ < T but
not at t = T is simply E — E’. Note that £’ and E — E’ are not mutually

exclusive because in general if the system does not collapse at £ = 7 it does
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not mean that it did not collapse for £ < T, as shown, for example, in figure

4.1.

A
X(1)| First passage

ANV
ke

Figure 4.1: Realization of firgt excursion before £,

Even if the tail probability leads to approximate regults, they are accu-
rate enough to be employed if practice. Numerical analysis show that the
event F’ has a probability of occurrence bigger that the event F — F’, thus,
fixed an interval 7" most likely the collapge will occur at the end of the
interval. A deeper treatment about this topic ig shown in [29] in which the
employment of the tail probability ig algo validated by a set of Monte Carlo
gimulation. Only to understand the phisical meaning, the figure 4.2 shows
the structural response of an oscillator and itg probability distribution, be-

cauge the process is stationary, the PDF remains the same during all the T’



44 Tail-Equivalent Linearization Method (TELM)
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Figure 4.2: Stationary response gtatistic in time

interval, thus, the likelyhood of the peaks occurring during the interval T’
are as high ag the peak is short, 8o, because the influence of each peak on
the regponge at £ = T is ag smaller as the peak occurs early in the interval,
the peaks gradually grew in time and lead to the final, highest value of the
response at ¢t = T. Of course, it i8 necessary to consider different intervals
T; in order to consider the cage of shorter earthquake and the cage of col-
lapse occurring early in time. Evermore in [29] it is shown that accurate
enough results are given by a set of analysis performed ad different times

fixed from 0 and then every 5 gecondg until the entire earthquake duration.

4.1.1 Equivalence conditions

The underlying idea under all the linearization methods is to replace a non-
linear gystem with a conveniently chogen linear system. This convenience

lays into an equivalent condition, in fact, fixed a non-linear system, it is
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poseible to define several equivalent linear ones, each one of them on the
bage of a different entity of interest. Of course, each linear system hag its
own application field and effectiveness domain.

Becauge the entity of interest of the TELM is the tail probability, the
condition of equivalence is defined in terms of if. Given a threshold and at
a given time, the tail probability of the equivalent linear system is fixed to
be the same of the first-order approximation of the tail probahility of the
non-linear system, evaluated by a FORM.

Both probabilities are defined in the gpace of the standard-normal ran-
dom variables, then the tail probability is completely defined by a design
point. In the following sections, the equivalence will be set in terms of

design point and reliability index.

4.2 Characterization of linear systems

Let us define a dynamic linear gystem in terme of a set of differential equa-

tions:
My (t) + C3(t) + Ky (t) = P/ (1) (4.6)

where M, C and K are respectively the mass, damping and stiffness
matrix, P is a load distribution factor, f(¢) ig the excitation, y(¢) is the
digplacement vector and the dots represents derivatives with respect the

time. The stiffness matrix is congtant in time and, fixed the initial condi-

tions:
¥(0) = ao
y(0) =vo (4.7)

y(0) = do
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it is possible to get the solution y(¢). Many computational methods
have been developed for this purpose, but it ig algo well known that a
gtable linear oscillator can be completely defined by the go-called Impulsge
Response Function (IRF).

Defined a pair excitation-response? f;(t), z(¢); the IRF ig defined as:

h(t) = x(t)  with £(t) = 6(8) (4.8)

where §(¢) ig the Dirac’s function; go, the IRF is the response of the
system for an impulge at £ = 0. It only depends by the gpecific chosen pair
excitation-regponse, it is invariant in time and with regpect the gcale of the
excitation. Because the gystem ig linear, the superposition of the responses
of different excitation ig simply the sum of the individual responses, this
property leads to the well known Duhamel’s integral that, if the IRF is

defined, evaluateg the response of the gystem for any excitation:

t
x(t) = f R(t— 1) f (r)dr (4.9)
Q
the IRF of a SDOF oscillator has the expression:

W] = Bl il Bom D (4.10)

“p

where wq is the natural frequency of the oscillator, { is the damping

ratio and wp = wgv/{ — 1 18 the damped frequency.

2If the system is multi-degrees of freedom and the excitation is multi-component
and/or multi-support, it is necessary to define one target response, such as a specific
displacement or a force, and a. specific component and/or support excitation.
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The system ig defined ag stable if its free vibration response approaches
zero after a long enough time, independently of the initial conditiong. Nec-

esgary and gufiicient condition for the stability of a system ig the following:

lim A (t) =0 (4.11)

A
it ig easy to verify that the SDOF oscillator with IRF 4.10 is stable as
long as ¢ > 0.
As long as the system is stable, it has a steady-state and it is possible to
define the Frequency Responge Function (FRF), H (w) as the steady state

response amplitude when f(¢) = exp (iwt):

lim @ (t) = H (w)exp (iwt). (4.12)

t—oo

The FRF of a system is the Fourier transform of its IRF:

Hw) = fo "~ ) el —ur i, (4.13)

Both functions will be ugeful in the random vibration analysis. At this
point it is important to note that the IRF or the FRF completely define a

linear system, even if the matrixes M, C and K are not known.
4.2.1 Relationship between IRF and Performance Point

Let us consider the SDOF linear oscillator with IRF defined in 4.10 sub-
jected to a single-component-and-support excitation F(t) defined in the
form 2.2, the capital letters denotes a random process, in fact /(¢) is func-
tion of a set of standard-normal random variables u. The response at a

given time ¢ ig given by the Duhamel’s integral:

X(t) = /:h(tT)F(T)dT (4.14)
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substituting F'(¢) with its discretized form 2.2 and changing the integration-
summation order, 1t leads to:
t 1
X(t) = / B(t—7)Y s (r)wdr =a(t)u (4.15)
o i=1

where the generic component of the array a (¢) is:

ailH) — /:h(t—*r) 5 I (4.16)

It follows that the response process ig the scalar product of a determin-
istic row vector a (¢) and the random vector u.

Now, fixed a threghold = for the response, in the gpace of the standard-
normal variables the locus of all realizations that give rige the regponse

X (t) = z at time ¢ = £, can be defined; it ig given by the equation:
z—a(t,)u=0 (4.17)

and it defines an hyperplane in the standard-normal space with normal
vector a(t,). The 4.17 ig also defined as Ultimate State Limit Function
(USL). The projection of the origin of the space on the hyperplane ig defined
ag Performance Point (PP) and it is denoted as u* (z,t,), as shown in
figure 4.3 for only two dimentions of the standard normal variableg set.
The performance point has the minimum digtance from the origin over all
the points of the hyperplane, thug, it also has the maximum likelyhood.

Becauge there is one and only one performance point for each given

couple (z,¢,) and there ig one and only one vector a(t,) fixed t,, it is
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i
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Figure 4.3: Performance Point

poseible to express the performance point in terms of the threshold and

a(t,) vector. By geometric congiderations:

4.5
0t (3,8,) = — = 2ltn) (4.18)
& (En)l] [la ()]
and the equation can be inverted and it gives:
* T
arlt) 2 w(zt) (4.19)

T G, o) 7 Gy )]
It is clear that, if the performance point u* (z, ¢,) ig known, it is possible
to determine the gradient vector a (t,).
Becauge this last one vector ig deterministic and it only depends on
the excitation covariance structure, given by s; (), and on the IRF of the
gystem, it is possible to invert the relation 4.16 and get the IRF itegelf. In

order to do that, the IRF can be discretized and approximated as a set of
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rectangular responses and then the integral 4.16 becomes the summation:

ai(tn) = h (tn - tj) 55 (tj) At (420)

n
i—=1

which represents a set of n linear equations where the only unknown
quantities are the h (¢, —¢;). Note that, thanks to the properties of the
IRF and because the time step is constant in time, each solution of the

4.20, h (t, —t;) corresponds to the IRF of a specific point in time:
h(tn — t5) = h(tn—j) (4.21)

furthermore, assuming the particular form of the s; (¢;) as defined in
gection 2.2, the characteristic matrix of the system defined above ig trian-
gular in form and in the particular casge of unfiltered and unhbounded white
noise, it ig in diagonal form and the equation are uncoupled:

Bty — &) = QZS\:) (4.22)

Thus, the systems 4.20 and 4.22 are easgily invertible. It is obvious that
a long enough responge time #, has to be considered in order to capture
the whole decaying tail of the IRF and a small enough time step At has
to be used in order to avoid too much large approximations about the
rectangular-shape discretization of the IRF defined in the 4.20 and =o to
get a high enough resolution. Specifically, as shown previously in section
2.2, the digcretization of the input excitation cutg ite PSD and, even if
an unbounded white noise has been defined, it will he de facto upper-

bounded at the approximative frequency 1/ (2A¢) H z, thus, it is necessary
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to congider a small enough Af value in order to have a cutoff frequency much
higher than the gignificant frequencies of the dynamic system, go that one
can avoid to loose not neglectible contributions at high frequencies.

Finally, the system ig always invertible if the excitation has always non-
zero variance over all the interval [0,4,], i.e., the s; (¢;) on the main diagonal
of the matrix are non-zero values. The seismic excitation commonly used
in practice usually satisfy this last requirement.

Summarizing, at that point, given the performance point of the linear
system u* (x,¢,) of a specific time ¢,, and threshold z, and fixed the exci-
tation, it is possible to get the a (t,) functions and, then, the rectangular-
approximated digcretized IRF of the linear system. The figure 4.4 shows
the IRFs of a SDOF oscillator with f = 1Hz, { = 0.02, the firg one ig the
IRF obtained from the exact solution given by the equation 4.10, the gec-
ond one ig obtained applying the procedure just described with a unitary
white noise excitation, = = 1, £, — 30sec and a time step At — 0.02sec,
one can notice that the approximated IRE perfectly matches the theorical

one.
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¢ TELM
Theoretical )

Figure 4.4: Impulse Regponse Function linear SDOF ogcillator, f = 1 H =

4.3 Tail Probability of the non-linear system and
Tail-Equivalent Linearized System (TELS) def-
inition

Let us consider a multi-degree-of-freedom (MDOF) non-linear system, it

can be defined by the 2nd order differential equation:
MY +CY + R(Y,Y) = PF(¢) (4.23)

where Y denocteg the digplacement vector, M ig the mags matrix, C
denotes the viscous damping matrix, R denotes the restoring force vector
and it depends by hoth displacements and velocities, and finally P ig a
load digtribution factor. The MDOF gystem is subjected to a stochastic

excitation F'(¢) which is in the form defined in section 2.2 with null initial
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conditions Y(0) = 0 and Y{0) = 0. In this section the case of a single-
component excitation process, subsequently, the cage of multi-component
process will be developed.

The restoring force vector R(Y, Y) depends by the digplacement and
the velocity vectors and it allows the system to have a non-linear hysteretic
behavior. Many different models of restoring forces are available, in the
present work the Bouc-Wen model has been used.

The system response X(f) = X (Y,Y) ig usually defined ag a non-
linear function of the nodal displacements and velocitieg; common quantity
of interest are the interstory drifte, the top displacement or the glohal
horizontal force. Defined F'(T) as in 2.2, the domain variables vectors Y
and Y are implicit function of the standard-normal variables u, it follows
that the gystem response can be defined as dependent by the time and the
random variables, as X (¢, u).

Fixed a threshold z and an excitation time £, similarly ag the previous

gection, the tail prohahility of the X regponse is defined as:

P [ £.X (1) (4.24)
and it corresponds to a limit state function:

Gz, ty, 1) =z — X (i, u) (4.25)
and the 4.24 becomes:

Priz < X (tn, u)] = Pr[G (=, tn,u) < 0]. (4.26)

Provided that ¢ has continue firg derivative with respect to u, the equa-

tions 4.23 and 4.26 become a standard structural component reliability
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problem with loads randomply defined by u and limit state parameters de-
fined by ¢, and z. In order to get the tail probability, many methods can be
applied, the one of interest is the First-Order Reliability Method (FORM)
becauge the equivalence condition between the non-linear and equivalent
linear system defined in section 4.1.1 imposge the equality between the tail
probability of the equivalent linear system and the first-order approxima-
tion of the tail probability of the nonlinear system. Thisg latter one is
directely provided by the FORM.

In the standard normal space, the limit state function 4.25 is related to

the limit state surface:
Gl ity u =10 (4.27)

each point of it corresponds to a particular realization of excitation F'(¢)
that leads the system response X to reach the threshold = at time ¢,,
now, the first-order probahbility approximation ig obtained by linearizing
the limit state surface in the standard normal space at the point which
ig closest to the origin and, for this reason, has the maximum likelyhood.
This point, again designed as "design point”, is the solution of the following

congtrainted optimization problem:
u* (z,1,) = arg min [||u|| |G (=, t,, u) = 0] (4.28)

and it ig related to the firs-order tail probability given by the joint Gaus-

sian cumulative probability function &:

Prlz < X (ty, u)] = Pr[G (2,0, 0) < 0] 2 &[5 (2, £)] (4.20)
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where 8 (z, £,,) is the reliability index given by:
B (&5, = &3, t) 0" (6 5.) (4.30)

in which « (a, ,) is the normalized negative gradient vector of he limit

gtate surface at the design point:

V@ (z,tn, u")
IVG (2t u?)||

o, 4,) = (4.31)

The reliability index and the negative gradient completely define the
hyperplane tangent to the limit state surface at the design point by the

equation:
B (z,tn) — a(z,t,)u=0. (4.32)

It is important to note that both quantities ff (a,t,) and 3(z,t,) are
univocally defined by the performance point, ¢.e. the knowledge of u* (z, ¢,,)
completely defines both the first-order tail probahility and the tangent hy-
perplane to the state limit surface. Thig important property allows to apply
the equivalence condition between the equivalent linear and non-linear sys-
tem defined in 4.1.1 in terms of performance point ingtead of, more strictly,

tail probability.
4.3.1 Tail-Equivalent Linearized System (TELS) definition

Ag shown in section 4.2.1, a linear system is defined, in the standard normal
gpace, by an hyperplane and the projection of the origin on it ig the perfor-
mance point. Algo, the performance point of the linear system u% ¢ (z, ¢,)

ig related to the tail probahility given time £,, and threshold .
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Furthermore, ag shown in section 4.3, a non-linear system defines a limit
gtate surface in the standard normal space, the first-order approximation
performance point uly (z,t,) i the one on the limit state surface with
the maximum likelihood of occurrence; the hyperplane tangent to the limit
state surface at the performance point is completeli defined by uf ¢ (=, t,)
and in turn it completely defines the first-order approximation of the tail

prohahility. The equations of the two hyperplanes are totally analogous:

AL (2, tn) — ang (2, ta) Uy =0 (4.33)

for the non-linear system, and

Ber (z,1,) — apr (z,1,) uyg =0 (4.34)

for the linear system.

It ig clear that, if the equivalent linear and non-linear tail probabilities
have to coincide, algo the hyperplanes have to be the same. In order to
archieve this equivalence note that, because threshold, time and excita-
tion are the same for both systems, it is necessgary, and at the same time
gufficient, that also the performance points are equal.

Thus, the equivalence condition defined in section 4.1.1 in terms of tail
probability, can be proposed in terms of performance points; go, the Tail-
Equivalent Linearized System (TELg) can be defined as the linear system

that leads to:

We now have all the elements to get an equivalent linear system given:
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e the threshold =
e the excitation time ¢,

e the excitation s;(¢)

and, of course, the physicl characteristics of the gystem. The TELM pro-

cedure can be summarized as:

1. Performing the FORM method on the non-linear system, it gives back
the performance point u};, the reliability coefficient Sy (%, €, ) and

the normal vector any (z, t,);

2. Setting the equivalence between the performance points ugy = uy, =

u*

U*(W,tn - .
(AR

3. Ewvaluation of the a (f,) vector by a ({,) = \l"*(i TN

4. Inversion of the system 4.20 in order to get the impulse response

function of the equivalent linear gystem.

Note that the obtained TRF is reliable only for the specified time and
threshold ¢,, and «x, ite dependence by the excitation structure and scale will
be analyzed in the next section. However, the TELsg permits the perfor-
mance of a random vibration analysis and the parameters of the linearized
system, such as mass, stiffness and damping, are not even needed. The im-
plementation of the TELg in the most common random vibration methods

will be analyzed in chapter 5.
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4.4 Features and peculiarities of the Asymmetric

TELM

In order to apply the TELS in random vibration analysis it is useful to
briefly analyze its features and its physical admissibility. In this section,
the TELS dependance on the physical parameters will be analyzed, then,
the requirements for ite existence and uniqueness will be shown.

It is important to emphasize that the properties explained in [28] only
apply to the clagsical formulation of TELM, for this reason, in the following
gectiong the corresponding properties related to the specific asymmetric
material defined in chapter 6 will be analyzed. The implementation of
different kinds of materials can compromize gome of this featureg and the
TELS properties must be analyzed for the gpecific implemented constitutive

model.

4.4.1 Physical admissibility of TELS

In order to employ the obtained TELS in engineering applicationg, its phys
ical admisgibility hag to be archieved. The only way to do it is to investigate
if the IRF of the TELS satigfies all the fundamental requirements of the
IRF of a generic and stable system.

The first property, as mentioned earlier, is that it must result h(t) =0
for each ¢ < 0. The set of equations in 4.20 does not involve any value of
the IRF for negative times, therefore this requirement is satisfied for any
hyperplane in the gtandard normal gpace.

Furthermore, it is required that the system is gtable, i.e., the IRF has fi-
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nite value of the integral over all the positive domain [0, oof: [ k(t)dt < oo
which algo implies that the IRF must decay to zero after a long enough in-
terval of time: limy o R(t) = 0 but this requirement is harder to archieve
becauge some hyperplanes in the standard normal space may lead to un-
stable systems. For example, fixed a white noige excitation (z.e. the 4.20
system has its characteristic matrix as a multiple of the unitary matrix), if
the gradient of the hyperplane hag equal components, it leads to a congtant
IRF, regardless of the length of the congidered time interval, so, its integral
and its limit are not zero.

It i not possible to make sure that the TELM leads to a stable sys-
tem and it ig necessary to check the IRF properties anytime the TELM is
applied, however, Fujimura [28] shows how, for most of the practical ap-
plications, the symmetric formulation of TELS is stable. Algo, the TELS
related to the applications of the present work are always made of admis-
gible TRFg; for this reason, it is reagonable to say that, in general, TELM
provides physically admissible resulte but a deeper analysis of the solution
ig required in order to assure that each IRF of the TELS corregponds to a

gtable linearized system.

4.4.2 Influence of the threshold

In order to investigate the dependence of the TELS on the response thresh-
olds, it is useful to consider the Impulse Response Functions (IRFs) and the
Frequency Response Functions (FREs) of the TELS for different thresholds
x.

A set of IRFs for negative and positive thresholds are shown respectively
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in figures 4.5 and 4.6. Some observations are noteworthy. First, the rate
of decay in the amplitude of the IRF increases with increasing threshold
of the response. Thig ig becauge higher thresholds lead to higger hysteresis
loops and, therefore, the system dissipates more energy. Furthermore, the
predominant period of the cscillation tends to increase with increasing re-
sponse threshold. This is due to softening of the connecting element with
increaging threshold. However, this two phenomena are common to gym-
metric hysteretic behavior as well. A more inter-esting observation is made
by comparing the IRFs for symmetric thresholds, such ag those shown in
figure 77 for the threshold of +0.1m and 0.1m.

As can be seen in figure 4.9, the TELSs for positive and negative thresh-
olds of equal magnitude are distinctly different. The IRF of the TELS for
the negative threshold (compression side) decays more rapidly and exhibits
a longer predominant period than the IRF of the TELS for the pogitive
threshold. These are because of the asymmetry of the hysteregis law of
the material. With decreasing magnitude of the thresholds, the two TRFs
become gimilar and approach the IRF of the linear gystem corregponding
to the cage of o = 1.

Similar considerations can be made on the FRFs which are obtained
taking the Fourier transform of the corresponding IRFs. A set of FRFEs
have heen plotted togheter in figures 4.7 and 4.8 respectively for negative
and positive thresholds. As the threshold increages, the dominant peak of
the FRF shifts to the lower frequencies and decreases in intensity. Also, the
frequency containt near the origin glowly increages. It means that, fixed the

parameter properties, the linearized system hecomes softer as the threghold
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increages. This hehaviour depends on two factorg: the shifting to the lower
frequencies depends on the smaller stiffness of the Bouc-Wen material as
long as the digplacements increase; the smaller value of the FRF depends
on the higher dissipation of elastic energy during the hysteresis as long as
force and digplacement become larger and so the cycles becomes wider.

It 18 clear that there is a high dependance of the TELS on the threshold,
and it results the biggest one. In order to get the non-GGaussian probability
digtribution of the non-linear response, thig hehaviour forces the evaluation
of the IRFs for a range of threshold of interest while, for example, it is not

necessary, in case of symmetric material.
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TELS IRFs for positive thresholds
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4.4.3 Existence and uniqueness

The existence of the TELS directly depends on the existence of the design
point and its tangent hyperplane. Thig implies that the limit state surface
must be differentiable with regpect to u at the design point. Furthermore,
becauge the FORM is an iterative method and at each step it determines
the value of the limit state function and its gradient, it is convenient that
the limit state surface, and then the dynamic regponsge of the non-linear
gystem, are differentiable in any point of the gpace.

As shown in [32], the differentiability is archieved if the costitutive model
of the employed material is smooth, 4.¢e. its first derivative ig always contin-
uous. The generalized Bouc-Wen model uged in thig work is smooth, many
materials uged in engineering practice have some derivative discontinuities.
The drawback can be eagily solved by smoothing the model with transition
archs®.

The uniqueness of the TELSg requires that there must be one and only
one design point. It is possible to get limit state surfaces with more than
one point at the same minimum distance from the origin, and thig case
cannot lead to a unique TELS?, in this case the first order approximation
is non accurate enough in case of multiple performance pointg and all the
procedure would not be reliable,

Furthermore, the FORM method cannot distinguish between the global

#The implementation of the Smoothed-Generalized Bouc-Wen material, deseribed in
chapter 6, has been made in order to archieve this specific requirement.

*Tn general, the specific limit state surface employed in this work presents many than
a single convergence point because the limit state is archieved if the response at ¢, is
equal to a threshold, regardless of the responses in the previous step in time, then, there
would be several time histories that correspond to a local minimum on the surface.
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and the local minimum distance points, then, the evaluated TELS could
not correspond to the global minimum. It is well known that the speed
and the accuracy of the FORM convergence highly depend on the firgt trial
value of the random variableg array, in this work, the start point excitation.
In order to investigate the convergence to different minimum points, the
TELM has been performed with different starting pointg in the standard

normal gpace. In particular, for a generic threshold z;:

1. Perf. Point excitation of the linear system for the same threshold x;;

2. Perf. Point excitation of the non-linear system for the symmetric

threshold —xj;

3. Perf. Point excitation of the non-linear system for the threshold z;_q;

4. Hot starting point 0" defined by Koo et al. [35] as:

u’ (i1, tn) — U (2j-2,4n)

0 =u™ (xj_q1,t,) + X 4.36
(5 ) M (1, ) — 0 ()] e
5. Random white noise excitation;
6. Sinusoid excitation defined as:
u; = gsin (woti + (9) (437)

where 7 ig the index of the generic element of the u vector, wy is the
firet natural frequency of the gystem neglecting itg non-linear behavior

(i.e., setting a: = 1), ¢ is an amplitude coeflicient® and & is a phase

5Tn this work it is always g = 1.
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angle,

The simulations show how, for the application that will be presented in
chapter 7, the starting point excitationg corresponding to the items 1, 2, 4
and 5 always lead to the same TELS but with highly different convergence
gpeads. The conventions 3 and 6 present some cages of non-convergence,
expecially for high thresholds. However, the fastegt conventions have heen
the 4 for large thresholds and 4 for small thresholds while the 5 pregents
an intermediate behavior and the 2 seems to be the slowest one.

A reasonably good strategy to find the performance points could employ
the linear start point (item 1) to find the performance points of the smallest
two thresholds (respectively, the two smallest positive thresholds and the
two largest negative ones), and then the hot starting point can be used
moving farther from the zero.

In case of non-convergence of the FORM, firgt the linear starting point
(item 1) and then the white-noise starting point (item 5) should be used.

In case of convergence to a non reasonable performance point, it would
be appropriate to lightly modify the value of the threshold and to check
the new convergence trend or to construct an approximated model by in-

terpolation of the nearest reliable TELS.



Chapter 5

Non-linear Random
Vibrations analysis

Ag shown in the previous chapters, the IRFs and then the FRFs completely
define a linearized system for a fixed threshold at a given time; the TELM so
far also provides the tail probahility for given threshold and time. The two
setg of IRFs and FRFs may be implemented into a deeper random vibration
analysig in order to evaluate other stochastic quantities of interest.

The failure problem can be considered the main interest in engineering,
it simply congists in the analysis of the gystem’s behavior to make sure
that it will be able to carry out its purposge under exercige actions. In the
particular case of civil and earthquake engineering, the events of failure
can be separated in two broad categories. The fatigue failure occurs due
to an accumulation of damage in time; the first-passage fatlure ig related
to the first up-corssing of a critical value of a specific response, such as
digplacements, strains or forces.

The purpose of this chapter is to introduce some methods due to es-

67
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timate the likelihood of failure of a mechanical system (or its reciprocal
likelihood of survival) under the effect of random dynamic excitations. In
the common practice of civil engineering the event of failure of a structure
ugually belongs to the figrt-passage clasg, the limit gtate can be the occur-
rence of large stresges or displacements but also brittle fracture, buckling
or instability.

A stochastic analysis of failure requires study of the extreme values of
the response process. Two kinds of extreme problems can be defined, the
local extreme and the globel one . In the first cage there will be analyzed
the regponse’s behavior in a neighbourhood of a fixed time ¢ go that this
case asgumes an nstantoneous meaning; it will be alzo used the term peck
to refer to the local extrema of a process. The global case congiders the
extreme valueg distribution over a longer time window such ag T3 << T
and it will be used the term extreme distribution to refer to this more
general case.

The oeccurrence and the likelihood of a first-passage global extrema ig of
courge related to the statigtics of the local peaks, this chapter shows the
application with TELM of three entity of interest related to both local and
global extrema, in particular, there will be analyzed the Peok Probability
Distribution, the Up-Crossing Rates and the First Passage Probability or
the corresponding First Possage Thime.

The dynamics of the system are involved only marginally because, as
shown previougly, the system iz completely defined by the set of IRFs and
FRFs and, furthermore, the presented procedures are generically applicable

to any kind of dynamic system because they only concern about the FRFs.
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It iz important to emphagize that the Gaussian characterization of the
excitation leads to many gemplifications. In fact, the non-linear system
has been replaced by a set of linear gystems and it is well known that the
regponse of a linear system subjected to a stationary, Gaussian process, is
Gaussian iteelf. Thusg, each one of the linearized system, singularly, has a
response that can be characterized by a standard-normal CDF, its mean
and its variance, and the same happens for other derived probhlems such as
the local peaks, the up-crossing rate and the first passage probability.

Once the TELS is defined, it is not necesgary that the excitation used
to get it in the TELM, must be the game used into the random vibration
analysis. Usually, the TELM uses an unfiltered white-noise excitation and
it has already been shown how the TELS is independent on the white-noige
scale.

The excitation that will be used in the random vibration analysig can be
as general as possible and its only requirement ig that the excitation must
be given in the form defined in chapter 2 and since now it will be called
design ercitation.

The described procedures are accomplished using a MatLab package

developed on purpose.

5.1 Response probability distribution at a given
time

The dynamic response of the system is defined ag X (t;,u) for a given time
t;; fixed a threshold x, let F,.. denote the event that the responsge at ¢; is

bigger than the threshold. As shown previously, the vector u completely
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defineg the input stochastic excitation. The probability distribution of the

regponse at the given time ¢; can be defined in terms of CDF as:

Pr[Eyes] = Pr |2 < X (¢, u)] (5.1)

As long as the system ig non-linear, it iz impossible to guess the shape
or the mathematical expresgion of the 5.1; however, the system hag been
linearized and it is possible to replace the X (t;, 1) responge of the non-linear
system with the response X (#;, u) of the linearized one because the first-
order tail probahility is exactly the same. Thus, the first-order regponse

probhahility approximation will be Gaussian:
PriEl=Prlz< X (t;,u)] =88 (z,%)] (5.2)

where @[] ig the standard normal CDF and 3 (z, ¢;) is the reliability index
for a fixed threshold x at the given time #;.
Thus, the digtribution of the regponse for a given time, in terms of CDF,

can be defined as:

Fxy () = @[8(z, 1)) (5.3)

and the corregponding PDE can be obtained by derivation:

Froo (2) 2 9 (8, ) P00t (5.4

T

where ¢ [-] is the standard normal PDF.
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Also, it has been ghown in [18] and [28] that the first derivative of the

3 i8 reciprocal to the norm of the response gradient:

5z Ve ()] (5:5)

and it ig evaluated at the degign point. However, if the design point is not
available, the PDF can be also evaluated by numerical differentiation of the
CDF.

However, this approach requires the knowledge of the design point ex-
citation that, sometimesg, ig not available. In fact, the TELM provides
the RSFs and FRFg of the linearized system evaluated thanks to a white-
noise excitation and it hag been shown in [28] how those functions can
be employed even with noticeably different excitations, such as modulated
white-noige, non-stationary excitation or, more in general, excitations that
have a a different amplitude or shape of the power spectral density. For this
reagon, the knowledge of the design point excitation may not he available
and a numerical approach is required. A first way to determine it is the
time domain approach that will be presented in the following subsection
but, in case of stationary excitations, a frequency domain approach can be

more ugeful and it will be presented in gection 5.2.1.

5.1.1 Time domain approach

The time-domain approach is able to determine by numerical evaluation
the performance point of a system given time and treshold, through a nu-
merical I[RF, and the statistics of the train-pulse excitation, through the s

vector and the probabilistic digtribution of each time pulse, through the u
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vector. In the present work, the s vector can model filtered and unfiltered
white noiges and, more in general, nonstationary excitations, the u vector
is usually made of gtandard normal variables.

As shown in section 5.1, the knowledge of the reliability coefficient 5 is
required in order to get the responge distribution for a given time. The
7 is, more in general, part of the solution of a reliability problem which
gives back a performance point excitation u* which is equivalent to its
reliability coefficient 8 and the gradient of the limit state surface « (z, ¢,,)
at the performance point.

These values can be directly evaluated by the TELM but, in many cases,
we need to evaluate them by a numerical way because the TELS is already
known by ite IRFs and the excitation ig different by the one uged to perform
the TELM.

It has been already shown in chapter 4.2.1 that;

zn: htn,x (tn - tj) S8g (tj) At = ag (tn) (56)

this relation hag been uged to determine the IRFs at given time and thresh-
old and the a; (t,) are related to the performance point of the FORM
problem over the white-noige random variables. In the previous case, the
performance point was known and the 5.6 was used in order to get the
IRFs.

When TELS is already known, the same relation can be applied in order
to get the a; (£,) and its knowledge leads to the performance point and
reliability coefficient. It is enough to determine the s;(¢;) of the design

excitation and the 5.6 leads to the a; (¢,,) for fixed time ¢,, and threshold «.
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Now, the design point of the design excitation will be:

z a7
ut (z,t,) = 5.7
) = g (@l e ()] >l
The reliability coeflicient is:
Btz b} = elind,) = uFlad,) (5.8)

where o (x, t,,) is the negative normalized gradient of the limit state surface

at the design point:

@ bl = e (5.9)
the limit state surface is:

Gz, th, 1) =z — X (tp, u) (5.10)
now, the response is:

X (tn,u) = ay (t,) u (5.11)

Collecting the 5.11, 5.8 and 5.9 we can determine the reliability coeffi-

cient:
= A (1) €T A (tn)T
B ) = 1 e Ta @) Taw )] (5-12)
and finally:
Bz tn) = law Gl (5.13)
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in case of double bounded threshold, beta has to be independent on the
algebric gign of the threshold:

I
B (z,tn) T )l (5.14)

Now, we have all the elements to apply the procedure described in the
gection 5.1 in order to get the regponse digtribution at a given time for both
gtationary and non-stationary excitations and responsges. The time domain
approach requires more computational resources than other methods that
will be shown, but it has the great advantage that it is possible to apply it
to any posgible cage, even if the gystem is not stable or if the stationarity

i not archieved, or if the knowledge in time of the IRFs is only partial.

5.2 Stationary response statistic

Animportant class of stochastic process X (1) is referred to the stationarity
of the procesges. In general, the probabilistic description of a generic pro-
cess evolves in time, in some cases one or more characteristic of the process
are constant in time and the process iz defined as stationary. Depending
on the invariant characterigtic, it is possible to define many different kinds
of stationarity.

The most strict type of stationarity is archieved if the complete proba-

bility structure is invariant of a shift in the parameter origin:
). X@n) (@185 T, tn) =

= [X(t4R).. X nth) (@t + B @, By + A); Vb (5.15)
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If only a suhbset of the probabilistic characterization ig invariant in time,
the stationarity can be defined in weak sense. Many different convenctions

are available, Lutes and Sarkani [41] generalize the weak stationarity as:
¢ mean stationarity
pex (t) = px (5.16)
¢ autocorrelation stationarity
¢xx (t,5) = Rxx (t —s) (5.17)
¢ autocovariance stationarity
Kxx(t,s)=Ixx (t—s) (5.18)

With more than one stochastic process, it is also posgible to introduce
the concept of joint stationarity and the property refers to the joint prob-
abiligtic characterization. Given two processes X (¢) and Y (¢}, they are

jointly weakly stationary if each one is weakly stationary and:

e joint autocorrelation stationarity
pxy (t,8) = Rxy (t—s) (5.19)
e joint autocovariance stationarity

Kxyv (t, 8) = Iyy (t — 8) (5.20)
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The strict or weak stationarity is an important stochastic property in
practical applications. The simple archievement of the 5.17 or 5.18 leads
to easier calculations becausge the autocorrelation, or autocovariance, can
be treated ag univariate functions and thig property simplifies the integral
evaluationg in time. Also, in order to define the power spectral density as
in chapter 2.2, the stationarity is a fundamental requirement! and it leads
to the applications of the procedures pregented in sections 5.2.1, 5.2.2 and

T2

5.2.1 Stationary response probability distribution at a given
time; frequency domain approach
It is useful to notice that each one of the FRFs corresponds to a different
linear system. Because the input excitation is Gaussian, the response of
each one of the linearized systems will be Gauggian ag well. Furthermore,
if the excitation is stationary, the regponse of each one of the linearized
gystems will be stationary as well. Thus, the numerical evaluation of the
regponse probability is possible recalling that, given the power spectral
density of the excitation $gp (w) the corresponding PDF of the response

will be:

Oxx (W) = Brr (W) |Hop () (5.21)

It is also possible to define models of frequency domain analysis for non-stationary
excitations and response by the instantanecous FSD, the physical spectrum, the evelution-
ary PSD [43, 38] or parametric PSD [54]. However, it will be shown that excitation has
to be stationary in order to provide the invariance in time of the linearized system once
that stationarity is archieved, thus, only the stationary PSD will be used in this work.
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where H,; (w) is the FRF for a fixed threshold = at a given time ? ¢. The

cumulative probability of the responge ig defined as:

Flz)=Prlz < X(#)|0<t<T] (5.22)
and recalling that the regponge ig algo gaussian for fixed = and ¢, we obtain:
F(z) =& () oxg (5.23)

where Z'[-] indicates the standard normal CDF and o is the standard

deviation of the response at time ¢. This latter one can be eagily evaluated

by the PSD:

ox =2 [ Bxx(@)do=2 [ () |Ha ()P do (5.2
and finally:

F(m,t):E(m)Q/:O@XX (w)dwzzfoooqapp (@) | Hop @)Pdw  (5.25)

Recall that the integral in the 5.25 is in effect a summation because
the FRFs are available only in the form of a set of points in the frequency
domain. For this reason ig abgolutely required for the FRFs to be consistent
with the original model, i.e. they must cover a large enough frequency

domain and the Fourier transform from the IRFs must be accurate. For

2In case of stationary response, the FRFs does not depend on time as long as the
stationarity is archieved but, in the more general case of non-stationary response, it is
necessary to consider different IRFs and FRFs as long as the response statistics evolves
in time. In order to give a more general meaning to the procedure, the dependance on ¢
will be shown.
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this purpose it is necessary that the IRFs are defined in a large enough time
window go that it will be noticeable the decay to zero in order to aveoid hig

approximations into the Fourier integral by cutting a non neglectible tail.
5.2.2 Mean up-crossing rate

An important measure of the process’ stochastic is the so-called mean up-
crossing rate> which already presuppose a global meaning of the process,
because its value changes in time, but it is algo still has a local interpreta-
tion, becauge it defines the crossing rate with instantaneuos meaning. Its
main purpose ig to lead from the local analysis to a more general global
one, 2.e. the first passage problem.

Let vx (z7,) be the expected rate of occurrence of the up-crossing
event: X (t) = z M X (¢) > 0, and let vx (z™,t) be the expected rate of
occurrence of the down-crossing event X (¢) = =N X (£) < 0* of the same
level X = x, as shown in figure 5.1; the expected number of up-crossing
during an interval will be the integral of vx (x ™, ) over the integral itself,
go the mean rate can be defined as a limit value over a small enough interval

as follows:

Pr[X(r) =2 X (r) >0t <7 <t + At
vx ($+,t) = lim

5.26
At—0 At ( )
The theoretical value of the fraction’s numerator that appears in the 5.26

can be developed from the joint PDF of the response and its first derivative.

30r mean down-crossing rate

“Note that this down-crossing definition is intended with respect the +z level, as
shown in the figure. In other cases, when there is a. symmetric bound, it will be considered
the down-crossing of the —z level
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Figure 5.1: Crosgings of the level X (f) = x.

The event of up-crossing can be defined as UC (¢, At) = X (1) = 2nX (1) >

0,t < 7 < t+ At and its probability of occurrence will be:

Pr[UC (¢, At)] :A [Hm Fxioxco () dwdy (5.27)

taking the limit for At — 0, the mean up-crossing rate is:

X (37“‘,15) = /(; UfX(t),X(t) (u,v) dv (5.28)

This formulation is not rigorous: the JPDF is unbounded with respect
X (¢) that can assume arbitrairly large values, but, in this case, the integra-
tion interval [x — vA¢, x| should be conveniently chosen and it ig possible to
prove that the limiting process ig legitimate despite this drawback. How-

ever, in common practice, approximate formulation of the up-crossing rate
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are uged becauge it ig difficult to deal directly with the JPDF of the regponse
and its derivative.

In cage of stationary-Gaussian procesges, it is possible to express the
mean crossing rates as functions of the standard deviations of the regponse

and first-derivative processes:

2
1 9% 1
p 8] = ﬂaig exp {—5 (0;@)) ] (5.29)

known as Rice’s formulation (1943) [41]; it may be applied to any type of

excitation ag long as it’s stationary and Gaussian. Becauge the analysis usu-
ally involves the employment of the power spectral dengity of the regponse
process, it is useful to rewrite the 5.29 using the gpectral moments instead
of the standard deviations because the regponse varlance o x(; corresponds
to the zero-order gpectral moment Ap and the first-derivative variance o @)
corresponds to the second-order one As.

As long as the power spectral density of the response is known, the

spectral moments are defined as:
[o. @]
Ao — f P el oo (5.30)
0
where Gxx (w) is the single-side PDF, defined as:
Gxx (w) =2&xx (w) w >0 (5.31)

and it ig easily evaluable by the 5.21. The 5.29 becomes:

1 (X 1 2
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However, the Rice’s formulation presents a tricky drawhback. The 5.32
descends by a limiting process and does not congider the global hehavior of
the response process, i.e. it doeg not consider if the response at a certain
time t is already over the considered threshold =. In casge of white-noige or
broad-band processes the very irregular behavior of the response does not

provoke big errors, the 5.32 works well and it can be applied without any
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Figure 5.2: Crossings of the level X (¢) = « for a Narrow-Band excitation.

In case of narrow band processges the approximationg becomes not ne-
glegible any more, let’s for example congider the narrow-band realization in
figure 5.2. The most regular behavior of the response process implies that,
if the response X (¢) is already over the threshold z, it is impossible to have

another up-crosging if the responge do not goes back under the threshold
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again, thus, in the up-crossing formulation must be considered the likeli-
hood that X (¢) > x already and then the likelihood that a down-crossing

occurs before the next up-crossing.

5.2.3 First passage probability

The extreme value analysis shown in sections 5.1 and 5.2.2 lead to the
main first-passage failure problem. As shown in the introduction of this
chapter, the failure problems in civil engineering can be differentiated in
two categories: the fafigue and the first-passege failure. Usually this latter
one occurg when one particular entity such as a displacement or a force in
the model crosses for the first time a critical value that will be considered
as a threshold. The purpose of this section ig to evaluate the probability
that, during a particular interval of time [T}, 73] the responge overcrosses
the critical value.

Let us set a safety threshold =, and a stochastic process with one re-
alization shown in figure 5.3. The upcrosging probhahility of a stochastic

process, given the threshold = in the interval [¢;,¢; + &¢], is defined as:
Prluper] =Pr|X () <@ X (t48t) > 2N X (£) > 0] (5.33)
with ¢ & [t;, ¢; + t]. Substituting X (¢ + 8t) = X (£) + X (¢) 8t we obtain:
Prluper] =Prle— X () < X (£) <2n0 < X (¢)] (5.34)

g0, if the joint PDF of X and X is known, it ig possible to evaluate the
istantaneous upcrossing probability. However, this probability distribution

ig related to a specific istant in time, the first excursion ig more general.
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Selected = and 7, the First Passage Probability is defined as the probability
that the first excursion of X (¢) above x oceurs for ¢ < 7. Defined the peak

process X, = maXp<i<, X (t) the FPP is defined as:
FEPPilz,7) = Pr|X: > =]. (5.35)

However, the exact value of the first-passage probability is hard to ob-
tain due to evaluate the process X, but some approximate solutiong are
available. An upper bound developed by Bolotin for stationary broad-band

excitations and high threghold is the following:
Pr(X, > a] <1— Fyg (x,0) +f v lwt 1) di (5.36)
0

where Fy (x,0) ig the probability that the process is already above level
x at time zero, and v (xT,¢) is the mean up-crossing rate of level z. The

two-sides® analogous equation is:
Pr[X; > z] <1 — Fx( (,0) +f vzt t) dt +f v(—xz,t) dt. (5.37)
0 a

A further solution available is based on the assumption that the crossing

of the specified threshold is a Poisson’s process:
Pr[X; > z] = 1— Fxg (%,0) exp [—vx (zt) 7] (5.38)
for one gide and stationary response, and:

Pr[X; > z] = 1-Fx (x,0) exp

_/;— vy (er,t) dt — —/(;T vx (—mf,t) dt| (5.39)

5Useful if the threshold —z is a limit state as well as +z.
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for two-gides and non-stationary processes.

Thig approximation agsumes a simplified form for Gaussian process and
it can be ghown that it becomes close to the Gumbel digtribution, however,
becauge the purpose of TELM ig to get the distribution of non-Gaussian
regponse, it is not useful and it will not be presented.

The Poisson’s approximation is able to catch the distribution of a broad-
band excitation at high thresholds because each crossing becomes a point
of a Poigson’s process and its statistics do not consider the correlation that
each crossing can have with respect other crossings. Physically, given a
time instant £;, the probability of an up-crossing dependg on the state of the
process itself: if the response ig already above the threshold level, obviously
it hag to came down under it before we can have another up-crosging;
thus, the up-crossing probahility of the process above the threghold = is
minor than its probability when it is under =. In case of high thresholds
and broad-band processes, the crossings are weakly correlated® and the
error of the Poiggon’s process is negligible; for narrow-band processes or
low thresholds, the peaks of the process are strongly correlated” and the
Poiggon’s approximation does not work.

In order to avoid this drawhack, a better approximation has been de-
veloped by Vanmarcke (1975) [51] which defines an envelope process of the
response and defines the statistics of its crossings. A realization of the

envelope process is shown in figure 5.4.

“Tn the extreme case of white-noise, each point of the process is completely uncorre-
lated from the others.

"In the extreme case of a single periodic component, each point of the process is
completely correlated with all the others.



5.2 Stationary response statistic

85

d
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Figure 5.3: First passage of a stochastic process

Envelope process malization
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——threshold ~—
Crossings

t [520]

Figure 5.4: Realization of the envelope process A (t) = x.
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The envelope process has been introduced first by Rice (1944) but it has
many definitions, one of the most applied formulations has heen developed

by Stratanovic (1963-67) and it is:
AR =X2@)+X2@) (5.40)

where A(¢) is the envelope process, X (¢) is the narrow-band process and

X () iz a conjugate of X obtained by a linear transformation:
X (#) = I.(t) sin (wmt) + s (¢) cos (wpnt) (5.41)

where wy, 18 the midpoint frequency of the narrow-band process and I, and
f. are coefficients obtained by an Hilbert transform.

The number of crossings of the narrow-hand process is usually higher
than the envelope’s one, because the narrow-band crosgings are usually
grouped in clusters or clumps like shown in figure 5.5. It can happen
for extremely high thresholds that the envelope process has unqualified
crossings (Figure 5.6) because there are no crossgings of the narrow-band
process. Vanmarcke's formulation of the first passage probability accounts
for the envelope statistics, for the clusters’ size and for posgible unqualified
crossings.

The final form of the Vanmarcke's digtribution of extreme peaks is:
»:. 1—exp (—\/27r51.2m)
l—exp|——
2 exp (ﬁ) —1
2

where the exponent 1.2 is an experimental correction factor, x is the thresh-

FX(T) (:)5) - (5'42)

exp {—VX %)+

old and ¢ is a regularity factor that characterizes the X (¢) process:

M
Xoda

5=4/1 (5.43)



5.2 Stationary response statistic 87

and it involves up to the second spectral moment. Furthermore, it must
be 0 << § <1 and if 4 is close to 1, then the process is broad-band, on the
other way, when it i cloger to 0, the process is narrow-hand.

The Vanmarcke's formulation is very useful for stationary processes be-
cauge, even if the design excitation is broad-band or even white noise, it is
filtered by the model and its response usually shows a narrow-band behav-

ior, thus, the Poigson’s approximation can result inaccurate.
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Figure 5.5: Cluster of an envelope process
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Unqualified Crossi

Threshold

% g

Figure 5.6: Unqualified crossing of an envelope process

5.3 Non-stationary response statistic

The response statistics of a non-stationary process is more difficult to obtain
because it ig not possible to apply the first passage probability formulations
shown in section 7.2.2. Note that, in this section, the non-gtationarity refers
only to the response process and not necessairly to the design excitation. A
non-stationary design excitation usually leads to a non-stationary response,
it can happen that, for epecific constitutive models, also a stationary exci-
tation has a non-stationary regponse.

The first pagsage probability of a non-gtationary process is ugually eval-
uated by digeretizing the time interval [0, £,,] into a sequence of time steps ¢;
and considering the regponse at digcrete times only. Of course, because the

excitation hag already been discretized and the IRFg of the TELS are avail-
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able only in discrete time points, the same digcretization will be congidered.
The first passage probability, in this case, is the union of the probabilities
that, at each time step, the response exceedes the threshold:
n
Prlz < maxp<i<s, X (t,u)] =Pr {U x < X (&, u)} (5.44)
i=0
this formulation is properly a lower-bound of the first passage probahility,
becausge the maximum can occur gomewhere in between two consecutive
time steps, of course, the smaller the time step, the closer lower bound is
to the exact solution.
The left side of the 5.44 ig a series-system reliability problem. It is
posgible to golve the problem using a FORM metod; the solution is given

by the complement of the n + 1-dimensional multinormal probability:
1—&n41 (B, R) (5.45)

where B = [3(z, t0) 8 (z,t1) ... B(x,t,)] is the set of the reliability indexes
for each time step, and R 1s the correlation matrix having elements p;; =
o (z,t) o (w, )7, with a (z,#;) defined earlier.

The multi-normal probability ig easily computed by an algorithm devel-
oped by Au and Beck [3], furthermore, all the geries-system problem can be
solved by an algorithm implemented in FERUM by Song that also requires
the definition of the limit state function for each time step.

Becauge the TRFs are known, the best way to do it is to compute a

Duhamel convolution integral in digcrete form:

T

T (te, ) =3 f(tu) A, — &) At (5.46)

=1
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The implemented FERUM object will be used in this work for the ap-
plications that requires a non-stationary evaluation of the first passage

probhahility.

5.4 Linear response analysis

In order to verify the results of the non-linear analysis, a linear random
vibration analysis will be performed. The « parameter of the restoring
force will be set equal to one so that only the linear part of the regponse
will be congidered. It is important to consider the limit case of linear
behavior because it has an already known and analytical golution.

For each model, a frequency domain analysis will be performed and the
case of multi degrees of freedom will be shown is this section. It can be
easily extended to the case of single degree of freedom simply congidering
gcalars instead of matrixes, furthermore, the analysis will be performed
uging a Matlab code due to take advantage of its matrix calculus features.

Each model ig defined in terms of a well-known differential equation of

motion:
M§ + Cy + R(y,¥,2) = —Lf (1) (5.47)

in each one of the implemented material, the restoring force, in case of

a = 1, it becomes:
My + Cy + Ky = —Lf (). (5.48)

The frequency response function of a linear, multi degrees of freedom
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system is:
oo
H(w) = [K—w®M +iwC| . (5.40)

Given the power gpectral density function of a stationary excitation
@ pr (w), the response will be stationary itself and its power spectral density

will be:
Pxx (w) = H(w) MRPrp (w) RTMTH (w) (5.50)
and it leads to the covariance matrix of the response which is:
0
5 :f Bxx (w) du (5.51)
—C0
in the particular case of two degrees of freedom it is:

2
a1 a2
B e { s ] . (5.52)

Let us congider a sample 2-DOF model, shown in figure 5.7, with mass,

damping and stiffness as:

553.9 0

M=1"9 o759 ] g (B:55)
606 0 | Kg

L= { 0 1740 1 s (G
—125.73 1476 | kN

k= { —147.6  420.93 ] m (m33)

The Frequency Regponse Function is shown in figures 5.8 and 5.9, the

real part results symmetric and the imaginary part results antisymmetric.
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f(t)

Figure 5.7: Two degrees of freedom linear oscillator
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Figure 5.9: Frequency Response Function, imaginary part
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The generic 4,7 component of the FRF iz defined as the steady-state re-
gponse of the degree of freedom ¢ with excitation applied to the degree of
freedom 3.

Fixed a Gaussian white-noige excitation with owy = 2¢, the power

spectral dengity of the regponse is shown in figures 5.10 and 5.11; and the

Re[Sxx(w)]

Figure 5.10: Response Power Spectral Dengity, real part

covariance matrix is:

(5.56)

o 0.0136 0.0024
~ | 0.0024 0.0002 |-
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x 10+ Power Spectral Density of Linear Response, imaginary part

m{Sxx(w)]

Figure 5.11: Response Power Spectral Dengity, imaginary part



Chapter 6

Uniaxial
Smoothed-Generalized
Bouc-Wen material

According to the model of oscillator proposed in chapter 4, it is necessary
to define a costitutive model for the non-linear restoring force and its sen-
sitivity response. Obviougly, the choosen model must satisfy all the TELM
requirements in terms of consigtency, regularity and differentiability.

The Bouc-Wen model is a well-known smooth hysteretic material de-
veloped by Bouc (1971) and Wen (1976); it has been extended in many
directions in order to introduce degrading behaviour, pinching and asym-
metric hysteregis. In any case, the common feature ig that it has a continue
firgt derivative that aveoids gradient digcontinuities that could compromize
the convergence of the FORM methods.

In order to congider a non gymmetric behavior of the hysteretic model, a
generalized material has been defined and calibrated by Song and Der Ki-

ureghian (2006) on the basge of the underlying phylogophy of the Bouc-Wen

a7
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material. The generalized Bouc-Wen model presentg a gufficient flexibility
in ghape control to describe highly agymmetric hysteresis loops.

The main purpose of the new model is to describe the behavior of flexible
strap connectors (FSCg) which are inserted for thermal expansion between
electrical substation equipment items connected by a rigid bus (RB). The
model hag been calibrated on experimental data provided by the Pacific
Gag & Electric Company (PG&E). A rigid bus typically consists of an
aluminium pipe connected hetween two electrical equipment items for con-
ductions. The FSCs are U-shaped spring elements made of three straps,
each one congigting of two copper bars, inserted at one or both ends of the
rigid bug. In cage of zevere earthquake excitations, the relative digplace-
ment demand bhetgeen the two interconnected equipments in general causes
huge inelastic deformationg of the spring elements, whose behavior pregents
large and non symmetric hysteresis loops.

The specific shape of the straps governs the shape and the extension
of the hysteretical loops; in the common practice, PG&E employes three
gpecific classes of connectors whose shapes are shown in figures 6.2, 6.4 and
8.6. Further details about connectors’ dimensions and features can also be
found in [15, 17].

In order to employ the generalized Bouc-Wen model in the TELM anal-
ysais, a further step i required. In fact, the original model does not satisfy
all the requirements of the FORM analysis already summarized in section
2.5, in particular, the hysteresis loop is affected by discontinuities of its first

derivatives at = = 0 and w = 0, ¢.e. at the zero-crossings of the restoring
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force! and/or the displacement?. Thus, the definition of the constitutive
maodel requires the implementation of a smoothing therm that provides the
continuity of the hysteresis’ first derivative.

In thig chapter, the theoretic definition and the incremental formulation
of the Smoothed-Generalized Bouc-Wen material are provided. Further-
more, its implementation in TELM requires an iterative Newton's algorithm
and a sengitivity analysis with respect the digplacements, both topics are
discussed in the following sections; also, the constitutive parameters for

each connector clags are summarized.

YOr of the axial stress in case of single fiber.
20r of the axial strain in case of single fiber.
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_ 3048cm  _
20 )-Fﬂ

Figure 6.1: Rigid bus with asymmetric strap connector

25,4 cm

Figure 6.2: Dimensions of FSC No. 30-2021
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304,8 cm
4 JL

Figure 6.3: Rigid bus with asymmetric strap connector

21,59 cm

20,32 cm

Figure 6.4: Dimensions of FSC No. 30-2022
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304,8 cm
A )-Fq

Figure 6.5: Rigid bus with asymmetric strap connector

e
e

5,08 cm

10,16 cm

B

20,32 cm

37,9 cm

Figure 6.6: Dimensions of FSC No. 30-2023
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6.1 Model definition

The generalized Bouc-Wen model can be implemented in order to define
the regtoring force of a non-linear oscillator or the atress of a uniaxial fiber.
In the first case, the current displacement and the historical variables (such
ag displacements, velocity and dissipated energy) are known, the second
case only differs from the first one becauge the strain is defined instead of
the displacement and its first derivative with respect the time ig defined
ingtead of the velocity.

In fact, the restoring force of the oscillator can be congidered like the
strain of a unitary-area and unitary-length fiber so that the integrals of
stress and strain (which give back respectively the total force and the dis-
placement) are exactly the stress and the strain. To avoid confusion, the
material will be defined in therms of force and digplacement, respectively
R and y (¢).

The restoring force iz defined asg the sum of a linear and a hysteretic

part:
R=cakoy(t)+ (1 —a)koz (6.1)

where o ig the ratio of the post-yielding to the linear stiffness, kg ig the
initial linear stiffness and z is the hysteretic displacement that is defined

by the following differential equation:
z2=Ae)— |2[*¥ (y,9,2) 9. (6.2)

The shape of the hysteretic loop is defined by n and ). This last one has
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been defined by Song [49] and it is capable of modelling highly asymmetric
loops with constant parameters. The auxiliary equation is:

(0, 9,2) = Po + Brsen(yz) + Basmlyd) + Basan(yz)+ €3
+B4sgn(y) + Fssgn(z) + Bssgn(y) ' '

However, thig lagt formulation of ¢ is affected by an important draw-
back. Asg long ag the sign operator appears in the expression, there will be
digcontinuities where ite argument crosses the zero. In order to assure the
convergence of the FORM algorithm, it is necessary that the costitutive
law has continuous firgt derivative with regpect the displacements y in the
load and unload phases. Thus, the 6.3 must be modified in order to avoid
these discontinuities. It ig possible to use another algebric function ingtead
of the sign operator, in this case the function that appears to match best
the original one, is the hyperbolic tangent, go, the following approximation

can be defined:
sgn (z) = tanh (kx) (6.4)

where z 18 a generic argument and & is a coefficient that governs the shape
of the hyperbolic tangent and, particularly, its slope. In figure 6.7 several
realizations of the 6.4 for different valuer of &k are shown.

because the firgt derivative’s continuity is required only with respect to
%, the smoothed sign operator will be used only for 51, 32, #3 and 35 and

only for ¥ and z. Furthermore, because:

sgn (ab) = sgn (b)sgn (b), (6.5)
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Hyperbolic tangent

tanh(kx)

Figure 6.7: Hyperbolic tangent parametrized on &

the 6.3 becomes:

6 (9,9,2) = fio + usen(g)tanh(k=) + ytanh (ky) sen(i)+ .6
+pBstanh (kyz) + Basgn(y) + Bstanh(z) + Gstanh (ky)

A realization of the hysteresis loop of the restoring force is shown in
figure 6.8, note that, fixed the input excitation, three different loops have
been plotted corresponding to different values of £, The parameters of
the material can be found in table 6.1. Also, it is important to notice
that the k& parameter hag a big influence on the loops, expecially in the
regions cloge to the origin; in fact, note that, for & = 10 the hysteresis
loop remains almogt coincident with the one of non-smoothed material.
In this work, the parameter has been set & = 0.5 for two reasons: first,

phyeically the transition between the positive and negative half does not



106 Uniaxial Smoothed-Generalized Bouc-Wen material

show any kink and the material gradually amooths; second, even if the first
derivative is continuous, it is important that the FORM analysis can " feel
the continuity. In fact, for short time steps, the material can behave like if
there ig a kink in the origin even if the hyperbolic tangent hag been used
becauge the regtoring force jumps the smoothing region. Ifthis phenomenon

happens, then some convergence problems could affect the FORM analysis.

Restoring Force

R [kN]

-4
02 -0.15 -01 -0.05 0 0.05 01 015 02
u[m]

Figure 6.8: Smoothed-generalized Bouc-Wen restoring force
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PG&E 30-2021 | PG&E 30-2022 | PG&E 30-2023
ko (kN/m) 147.60 106.80 33.30
o 0.10 0.10 0.10
A 1.00 1.00 1.00
n 1.00 1.00 1.00
81 (1/m) 18.50 16.50 11.22
B2 (1/m) -1.65 -7.60 -3.61
s (1/m) 1.16 6.85 1.48
By (1/m) 453 3.55 4.17
Bs (1/m) -4.76 -6.14 -2.20
Bs (1/m) -4.41 -5.58 -2.19

Table 6.1: Parameters of the smoothed-generalized Bouc-Wen material.

6.2 Incremental formulation

As shown in the previous section, the solution for the Boue-Wen restoring
force given the digplacement depends on an implicit first order differential
equation in z. In order to get a robust zolution, a Newton's iteration
method ig required.

Let us congider 7 as the generic step in time, regardless of the integration
method, it is necessary to get the value of the restoring force R (y,y) given
the value of the displacement y and of the velocity . The non linear
equivalent displacement z (y, y) is the only unknown therm of the restoring
force formulation and it ig defined in therms of its first derivative by the
equation 6.2.

The effective value of z ghould be evaluated by time integration of the
6.2, however, a solution in closed form is hard to obtain. The eagiest numer-

ical golution is obtained simply by calculating the integral as a rectangular
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summation, ¢.e., the current value of 2 can be written in incremental form:
zipr = 2 + Aty [A — |z "% (2500, w41, 0541)] - (6.7)

The previous equation shows how the current value of z has an implicit
dependance on iteelf, thus, in order to numerically evaluate the golution,
an iterative algorithm is required. In the FERUM object, a Newton's algo-

rithm has been implemented and it can me gummarized as the following:

o Sel 2pe = 75 4

o While |zpe0 — 2o1q| > tol.

1. evaluation of ¥ (y;11,¥j+1, Znew)

2. evaluation of the f(z;;1) as:

f (Zj+1) - Znew_zold_Aty [A - ‘Z,’H»l‘n’%b (znew: Yi+r1, yj+1)} (68)
3. evaluation of the first derivative f'(z;41)
f(zj+1)

4. the Newton's trial value is obtained as: znew = Zold — Flas i)
i

3. updating of z.q

¢ cvaluation of the restoring force.

The derivatives needed by the Newton's scheme are intended with re-

spect Znew:

fl (Zj+1) = 1 Aty [n ‘znew ‘n 8gn (znew) Y+ ‘Znew ‘n rﬁbl] (69)

Note that zpeq and zgg are step values of z;11 énside the Newton’s scheme at the
time step 7 + 1 while z; is the value at the previous time step.
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5 g8 g, O
cosh? (kz) ® cosh? (kyz) ® cosh? (kz)

Y = Bisgn (9;41) (6.10)

Then, one can keep on the evaluation of the restoring force as defined

in the previous gection.

6.3 Model sensitivity

The implementation of the Bouc-Wen asymmetric material in the TELM
requires that the Newmark oscillator previously shown in chapter 4 pro-
videg the dynamic response but also its first derivative. If a finite differ-
ences algorithm is used, the TELM loges every advantage with respect any
other method, because the dynamic response would have to be evaluated so
many times that a gtraight Monte Carlo simulation would become sustain-
able. Zhang et al. developed a lighter method that evaluates the gradient
of the time response with respect a generic status variable for inelastic
systems[53], the Direct Differentiation Method (DDM) and its complete
implementation in OpenSees hag been made by Haukaas [32, 33].

The DDM is able to evaluate the derivative or the gradient of any status
variable of a dynamic gystem with respect any variable. As it has been
shown previously, in order to get the most likeliable excitation, the TELM
runs a FORM method that consigte of an iteration algorithm that gradually
approaches the minumum of a target function. While the FORM evaluates
the i + 1 step trial excitation, at the generic ¢ step, the response gradient
ig evaluated with respect of the random variables of the problem.

Regardless of the definition of those random wvariables, the DDM only

requires the evaluation of the restoring force derivative with respect the dis-
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placement. In fact, defined k ag the generic random variable, the restoring

force derivative can be written as:

OR(y,y,2) OR(y,y,2) 0

Bk By Ok 1L

where the gradient of ¥, %, is the unknown variable that the DDM will
evaluate.

For this reason, it i8 necessary to define the gradient of the regtoring force
with respect the digplacement that will be addressed as the mnstentancous
tangent stiffness. It’s essential to notice that it is not sufficient to estract
the theoretical derivative because it would lead to wrong values of the
gradient: the restoring force implemented in the algorithm hag heen defined
in incremental form, thus, an algoritmically consigtent first derivative of the
regtoring force is required.

In thig section, the sensitivity analysis of the asymmetric Bouc-Wen
model will be shown, in order to get the required derivatives that have to
be implemented in the general algorithm.

The tangent stiffness of the material ig given by:

dR (y,y, z) dz
—= L — ak 1— ) kg— 6.12
i aky+ (1—a) n (6.12)

note that one can be tempted to evaluate the first derivative of 2 by the 6.2
but it would lead to an error in the algorithm. The evaluated derivative
must be algorithmically consistent, :.e., it has to be the derivative of the
expression effectively employed in order to evaluate the z, thus, it must be

ohtained directly by taking the first derivative of the 6.7. Defining:

P = A— |z ¥ (241, 9541, Y1) (6.13)
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the derivative of z is:

dzji1 dyj1 L dP
— At B At 6.14
dyj1 dyjt1 Tyt (6:14)

Note that in the last equation there ig the therm gijii, it strictly de-

pends on the specific integration algorithm of the equation of motion. If a
Newmark's scheme is implemented, then the velocity is linear combination
of the digplacement, velocity and acceleration at the time step 7 but algo
of the current displacement y;11, thus, the derivative will be the specific
coefficient employed in the Newmark’s updating formula. This is the par-
ticular case of the implementation in FERUM. Aw contraire, it some other
integration algorithm ig employed, the velocity can be written in its incre-

Yit1i Y
At 7

mental formulation g;41 = then the equation 6.7 can be written
only in therms of displacements and its derivative would be easier to ob-
tain. However, in this work the complete form will be congidered in order
to be consistent with the implementation in FERUM and also becauge if
the gimplified form would be required, it i easy to evaluate it simply by

evaluating the derivative of the velocity as ﬁ.

The firgt drivativeg of @ and v will be:

dd . dzj11 n b
= —nN |Zi Sgn Zill ’gb— 2441 615
dyj+1 ‘ i+ ‘ ( i+ )dw“ | a4 ‘ dyj+1 ( )
a . B drpy kS0 ({g)j41)
B — P1580 W) o 2 i ) . (6.16)
k

133 kz dorr | Bs krpps s g Bs

cosh®(ky; 11 zi41) Witt cosh”(kz;yq) Wit cosh’(ky;41)

Collecting the therms with g;j% the following auxiliary therms may be
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defined:

Ay =1+ Aty 241" nsgn (zj-l—l) Y (Y541, Y41, Z541) +

% | kSgn(ﬂﬁi) k24 (6.17)
A " | B e T8 P8 I e

ksgn ((y)541) k (6.18)
2 65,0 < ;
cosh? (ky;11) cosh? (ky;.1)

cosh” (kya+1z:r+1)

A1 .
AQ = Atiép—ﬂtyj+1 |Zj+1‘n
dyj 11

and the latters finally lead to the derivative of z;4:

dzji1 _ Az
dyjp1 Ay

(6.19)



Chapter 7

Example applications

7.1 Multi Degrees-Of-Freedom electrical substa-
tion equipment

The multi degrees-of-freedom application ig an electrical substation made
by two equipments connected by a generalized Bouc-Wen material modelled
connector. Its hysteregis is non symmetric as shown in chapter 6 and its
parameterg will be shown in the following. The oscillator presents only
two degrees of freedom hut the case can be eagily extended to any number
of DOF changing conveniently the mass and damping matrixes and the
restoring force vector,

Each equipment item can be idealized ag a linear SDOF oscillator char-
acterized by the effective mass m;, damping ¢;, stiffness k; and loading
force [; regtardless of their real number of nodes and elements, so that
the global model results gimplified and not computationally demanding
whithout compromige the final result.

The displaced shape U; (£2,¢) of each equipment can be obtained as

113
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U (£2,8) = o (£2) y; (t), where (2 is the domain, y; (¢) is the displacement
of the connection node and ; (£2) is the shape function of the linear model
relative to the connected node. The virtual work principle gives the global

parametersg of the gystem as:

mfzﬂﬁm@nuefd@ (7.1)
kpi&EﬂKD¢W@fd@ (7.2)
c; = 2G/mik; (7.3)
L= ) [ p(0)u(6) o (7.4

where p (@) is the mass density, ¢; is the damping ratio and ¥ ig the Young
modulus.

Baged on the above idealization, the global model, showed in figure 7.1
becomes a two degrees-of-freedom non linear oscillator with equation of

motion:
My (t)+Cy () + R(y (¢),y (t),2) = —Lij, (7.5)

where 9, is the support acceleration and:

n mAq 0
M = { 0 1y (7.6)
C:{q+% —co } (7.7)
—cnp  czt o

where ¢; is the viscous damping of the connector,

L{h] (7.8)

l2
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K — | v (8) —g(Ay, Ay, 2)

Foya (t) —q (Ay, Ag, z) |~ (7.9)

where Ay = yo (£)—y; (¢) ig the relative displacement between the connected
nodes of the first and second equipment, z (¢) is an auxiliary variable rep-
regenting a non-linear equivalent displacement of the Bouc-Wen material

and:
q (Ay, Ay, z) = akoAy + (1 — a) ko= (7.10)

the general meaning and the termg of the 7.10 have already been shown in
chapter 6. In this casge, it represents the restoring force of the Bouc-Wen

connector subjected to displacement Ay (¢) and velocity Ay (¢).

oy, W,
mo )
R(y,y',2)

ki,x k2, x

f(t)

Figure 7.1: Non linear two-DOF oscillator
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The equation of motion can be solved by a Newmark algorithm im-
plemented in FERUM, in order to perform the TELM analysis. In the
following section, physical parameters and results of the MDOF system

will be provided.
7.1.1 Mechanical characterization

The system parameters have been chogen so that the results can be in-
terpretated regardless of the specific mags, stiffness and damping of each

gubstation. In particular, the frequencies are:

I =5 =1H%

fo = % — 5Hz (7.11)
furthermore, masses, loads and initial stiffnesses are:

mi
— =32 7.12
= (7.12)
h by (7.13)
miq g

k+0 1

== 7.14

ki + ko 2 ( )

where kg is the initial stiffness of the connector. The vigcous damping of
the substations 18 {1 = {z = 0.02 and the connectors’ damping is neglected:
cp = 0.

The connecting element is made of three gingle rigid-bus, flexible-connectors
(RB-FCs). Thus, fixed the initial stiffiness of the connector, it is possible to
determine the properties of each model component uging the relations 7.11,
7.12, 7.13 and 7.14. The different properties of each kind of consgidered

conhectors are summarized in Table 7.1 and 7.2.
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PG&E 30-2021

PG&E 30-2022

PG&E 30-2023

Fo (kN /m)
Ky (KN /m)
ks (kN /m)
my (t)
mg (%)

147.60
21.87
273.33
0.55
0.28

106.80
15.82
197.78
0.40
0.20

33.30
4.93
61.67
0.13
0.06

Table 7.1: Stiffness and mass parameters of the MDOF models.

PG&E 30-2021

PG&E 30-2022

PG&E 30-2023

147 .60
0.10
1.00
1.00

18.50
-4.65
1.16
4.53
-4.76
-4.41

106.80
0.10
1.00
1.00

16.50
-7.60
6.85
3.55
-6.14
-2.22

33.30
0.10
1.00
1.00

11.22

-3.61
1.48
4.17

-2.29

-2.19

Table 7.2: Parameters of the smoothed-generalized Bouc-Wen material.
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7.2 Electric substation equipment connected by
PG&E 30-2021

The TELM procedure described in chapter 4 provides the tail-equivalent
linearized system (TELS) as a set of impulse response functions (IRFs)
shown in figures 7.2 and 7.3, on itg bage, some considerations can me made
before the real random vibrations analysis.

First of all, fixed the value of the threshold, the asymmetric behavior
of the Bouc-Wen generalized material provides two different linearized sys-
tem for positive or negative excursions. For example, given @ = +0.0125m,
the two IRFs, plotted in Figure 7.5, show as the decaying of the impulse
regponse results completely different and it is higher for the negative value
of the threshold. The reason of this phenomenon ig due to the asymmet-
ric hysteresig loop and to the different hehavior for positive and negative
digplacements. Two hysteresis loops of the non-linear oscillator subjected
to sinugoid exitation are shown in figure 7.4, the maximum pogitive dis-
placement of the first plot (blue line) is y.! . = 0.20m and it corresponds
to a maximum negative displacement of y,_ ., = —0.15m. It is possible
to increage the excitation scale in order to get a maximum negative dis-
placement of y_ .. = —0.20m (red line); in this case the maximum positive
displacement is higher: y1 .. = 0.25m. Furthermore, it appears clear that
the gecond loop ig wider than the first one, z.e. fixed the ahsolute value of
the target displacement, the disgipated energy ig higher when the target is
required to occur in the negative gide. The higher level of dissipation of the

negative target displacement, causes an higher decay of the corregponding
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IRF for negative thresholds!.

A different decay can also be noticed comparing the IRFs of the positive
threshold set (or, similarly, the negative threshold set); it results directly
proportional to the threshold, again, becausge, ag long as the maximum

digplacement grews, the hysteresis loopg become wider.

TELS IRFs for negative thresholds
DOB - oo R B R Y

x =-4.000e-001
x =-3.500e-001
x =-3.000e-001
x =-2.500e-001
x =-2.000e-001
: : x =—1.500e-001
_0.08 A b : x =-1.000e-001

i : | = = — x =-5.000e-002
| = = — x =-3.750e-002

I B R S e I I
x ==2.500e-002
: x =-1.250e-002
-0.12 L i
05 1 15
t [sec]

Figure 7.2: TELS Impulse Regponsge Functions for negative thresholds

'This property can be easily noticed at low threshold, on the other way, high thresholds
can be related to a different behavior with the positive IRF that decays faster than the
negative one. The reason is related to the global behavior of the oscillator: because the
system has two degrees of freedom, at high thresholds the non-linear connector becomes
softer, so, the global dynamic behavior, and then the IRF, depends much more on the
properties of the two connected linear oscillators that can trigger resonance phenomena
and the hysteresis loop for negative thresholds can result smaller than the loops of the
corresponding positive thresholds.
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TELS IRFs for paositive thresholds

006 e R R e A
004 o e ," ..........................
0.02 {4 / ,

of

E 0.02

S x =1.250e-002

L

‘ N, ; x =2.500e-002
—0.04F - AWRAHE - - =3.750e-002
LV : : x =5.000e-002

, : : x =1.000e-001
-0.08F k- '. .......................... x =1 500e-001
' ] : x =2.000e-001

— — — x =2.500e-001
— — — x =3.000e-001

-0.08F --- %

Y x =3.500e-001
-0.1 . '
0 05 1 15
t [sec)

Figure 7.3; TELS Impulse Response Functions for positive thresholds
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Restoring Force

R [kN]

xmax=0.2 |
—xMiN=-0.2

-0.3 -0.2 -041 0 01 02 0.3

Figure 7.4: Symmetric threshold hysteresis loops

IRFs x = +/- 0.0125

0.04

0.03

0.02

0.01

-0.02
-0.03 . )
004 5 s ‘
0.05F - ........................ - X=_0'0125
’ : : x=0.0125 | '
-0.06 ; ; ;
0 0.5 1 15

t [sec]

Figure 7.5: TELS Impulge Response Functions for x = +£0.0125m
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It is also interesting to appreciate this latter effect analysing the fourier
transform of the [RF defined ag the corresponding frequency regponsge func-
tions (FRE). The moduli of the FRE set are provided in Figures 7.6 and
7.7. Increaging the threshold level, this time, two different effects can be no-
ticed. The frequency content always shows a peak that corresponds to the
first natural frequency of the linearized oscillator. As long ag the threshold
increases, the peak hecomes smaller and moves to the low frequencies.

The firgt phenomenon is due the higher dissipation of the hysteresis
loop, ¢.e. the steady-state regponse of the natural frequency becomes lower
becauge of the higher level of dissipation. Thig effect clearly corresponds to
the different decay of the [RFs.

The second effect is due the softening of the oscillator: because the
stiffness of the material is invergely proportional to the digplacement, as
long as the threshold increaseg, the system becomes softer and its period
ig longer. This latter effect, also, amplifies the portion of FRF at low
frequencies, as long as the threshold increases and it can algo be appreciated
in the IRFs’ plot because the distances between the zeros of each IRF (which
corresponds exactly to the oscillator’s half-period) are noticeably different.

Note that both IRFs and FRFs tend to converge to a common function
as long as the threshold becomes smaller. The reason is related to the
“level” of non-linearity of the material. As shown in chapter 6, the non-
linearity of the Bouc-Wen material is strongly related to the displacement.
For small digplacements, the influence of the linear part i high and the
stiffness of the material becomes closer to the linear value. As long as the

threshold decreases, then, the constitutive law becomes cloger to the linear
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case.

However, at the sgame time, the Boue-Wen non-linear phase ig completely
negligible only when the displacement is exactly zero, then, even for the
smallest thresholdg the IRF will not be exactly the linear cage which cor-
regponds only to the limit case of zero-threshold. Even if physically the
zero-threshold does not make sense?, the linear IRF is the splitting fune-
tion between the pogitive and negative threshold gets. This property has a
congequent numerical drawhack that affects the evaluation of the regponse

at a given time for emall threshold, presented in section 7.2.1.

“The case of zero-threshold practically corresponds to an oscillator that does not
oscillate. Remember that the “target” entity is the response X (£.); even if it is always
possible to find a non-zero excitation that satisfies the condition # — X (¢.) = 0 =
0—X (t:) = X (t») = 0, the purpose is to evaluate the most likely one. Fach pulse of the
excitation train has a zero-mean Gaussian distribution, then, the most likely excitation
would result always the zero-excitation.
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xi0°® FRF positive thresholds

B S AR B S A S S RS
x =1.250e-002

ran X =2.5008-002 ...... b
x =3.750e-002 |
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Figure 7.6: TELS Frequency Responsge Functions for positive thresholds

102 FRF negative thresholds

1 rrrrrrrrrrrrrrrrrrrrrrrrrrr
X =—4.000e-001
0.9 x =-3.500e-001
X =-3.000e-001

0.8
X =-2.500e-001
4 x =-2.000e-001
x =—1.500e-001
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[H(w)|

x =—1.250e-002

Figure 7.7: TELS Frequency Response Functions for negative thresholds
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7.2.1 Statistics of response at given time

Once the TELS of the system hag been defined, the procedures shown in
chapter 5 lead to a complete random vibration analysis. The first result
i about the probabilistic distribution of the regponse for a specified step
in time. Because the excitation is stationary, once that the system has
archieved the stationarity of the regponse, its probabilistic distribution does
not change in time. Thus, the regponse statistics have been evaluated at
t = 12sec which is the time that has been congidered to be enough in order
to get a stationary response. Figure 7.8 shows plots of the reliability index
versus threshold for response to a digcretized white noige base accel-eration
with a standard deviation® of ,,, = 1g. The response considered is the
relative digplacement of the two equipment items, as normalized by the
standard deviation of the response of the linear system (o = 1). Four sets
of results are shown: TELM by time-domain analysis (blue line), TELM by
frequency-domain analysis (diamonds), Monte Carlo (MC) simulation with
10° simulations (red line), and the response of the linear system (black line,
o = 1), which is Gaussian and appears ag a straight line.

Several observations are noteworthy in figure 7.8. First, it is noted that
the two TELM results are practically identical, thus indicating the validity
of both approaches. Second, both TELM and MC results significantly de-
viate from a straight line, thus indicating the non-Gaussian nature of the

regponse. Third, while the error in the TELM approximation ig negligible

3The standard deviation o, refers to the white noise. Theoretically, an unfiltered and
unbounded white noise has an infinite standard deviation, in this case, because there is a
discretization in time, the PSD of the excitation is affected by a cut at high frequencies
related to the size of the time steps as shown in chapter 2



126 Example applications

Reliability coefficient, sO=1g

5 ........................................................................
TELM time domain : : :

al <> TELM frequency domaini- -« SRTERPRRE SRR
MonteCarlo 10° : : : :

3 Llnear Case e ............ .......... plsiizen ey

Figure 7.8: Reliability index versus normalized threshold, &, = lg
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in the two tail regions, there is a significant error for small thresholds (3
values around zero). This is due to the asymptotic nature of the FORM ap-
proximation, as well as the convergence of the IRF of the TELS to the linear
case for emall thresholds. In case of zero-threshold at ¢ = ¢,,, the limit-state
surface pasges through the origin and the reliability index ig zero regardless
of the nonlinearity of the surface (see figure 7.11). Thus, TELM produces
prohahility 0.5 for zero threshold regardless of the shape of hysteresis loop.
The correct result, of course, may correspond to a probability different from
0.5 when the hysteregiz loop ig agymmetric. This effect is further evident
in the complementary CDF of the response, which is shown in figure 7.9,
Nevertheless, it is noted that TELM produces accu-rate results in the two
tail regions, which are regiong of interest in reliability analysis. This is
evident in figure 7.10, which shows the tails in log scale®.

The agymmetric nature of the distribution can be geen in figure 7.10,
which shows the CDF of the regponsge for negative thresholds and the com-
plementary CDFE of the response for positive thresholds, as predicted by
TELM and Monte Carlo simulations. The response of the linear (o = 1)
gystem is also shown. It is evident that TELM is able to capture the
non-Gauggian distribution of the response in the tail regions, including the
agsymmetric nature of the two tails. This should be contrasted with the
conventional ELM, which would essentially predict a Gaussian distribution
even with an asymmetric hysteresis law. The TELM constraint of proba-

bility 0.5 at zero threshold cannot be avoided ag long as the FORM approx-

“Note that, in figure 7.10, in order to show the tails in log scale, the left (negative)
side is the CDF of the response while the right (positive) side is its complementary CDF.
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Prix{n)=x]

0.2t TELM time domain L N
<> TELM frequency domain| :
01F MonteCarlo 155 e AN e
Linear case
o} 1 1 H
-3 -2 -1 6]

normalized thershold x/sO

Figure 7.9: Complementary CDIF at a given time versus normalized thresh-

old, aun = lg

imation is used. If the low thresholdg are of interegt, one possible approach
ig to construct a second-order equivalent system. The implementation of

such an approximation ig currently under investigation.
Similar results have been obtained for the standard deviation of g =

0.75¢ and are shown in appendix A together with further results for oy =
1g.
7.2.2 Extreme Statistics of response for a given time

The First Passage Probability (FPP) has been evaluated following the pro-

cedures already described in section 7.2.2 which specifically are:
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CDF of the response attn=12sec, s=1g

PriX(in)>x]
=}

TELM time domain
() TELM frequency domain | : :
; i MonteCarlo 15°
B Linear case

3 _2 = 0 1 2 3
normalized thershold x/sO

Figure 7.10: CDF and complementary-CDF of the regponsge at a given time
versug normalized threshold in log scale, ay,, = lg
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Wi

Figure 7.11: Limit state surface at zero-threshold

¢ Vanmarcke's formula for single bounded problems;

¢ Series System problem with the FERUM package.

The Poigson approximation provides results cloge to the Vanmarcke's
formula and it’s known as less accurate, then it will not be shown in the
results. The firat passage probabilities bagsed on TELM have been evaluated
for three different stationary time processes: 7' =3, 6 and 10 seconds® and
the plots are compared with Monte Carlo simulation results.

Note that, because of the asymmetry of the response distribution, it is
necessary to separately evaluate the first passage probabilities for positive

and negative thresholds. Furthermore, the two obtained CDFs will be

5Tn order to avoid redundance, in the present section only the results for T = 10sec
will be shown; further results for different time durations can be found in appendix A
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plotted on the same graph, then, the right (positive) branch will correspond
to the probahility:

Fx(n(z) =Pr[X (t) 2 2|0 <t < 7] (7.15)
and the negative branch will correspond to the following:
Fyxn(z) =Pr[X (t) <z/0 <t < 7], (7.16)

It is ohgerved in figure 7.12 that the TELM results based on Vanmarcke’s
formula and the series-system approximation are nearly the same. Both re-
sults are somewhat higher than the MC estimates, but nevertheless good
approximations for all practical purposes. Remarkably, the TELM approx-
imation correctly predicts the agymmetric distribution of the first-passage
probability. In particular, the probability of exceeding negative thresholds
is much higher than that of exceeding positive thregholds of similar magni-
tude. This hag to do with the smaller atiffness in compression, ag observed

in the hysteresis behavior of the connecting element.
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First passage probability, T=10sec, s=1g

FPP-CDF
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Figure 7.12: Firet Passage Probability, T = 10sec, ay, = lyg

First passage probability, T=10sec, s=1g
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Figure 7.13: Firet Passage Probability, T = 10sec, gy, = lg



Chapter 8

Conclusions

The tail-equivalent linearization method, TELM, is a non-parametric method
for approximate golution of nonlinear stochastic dynamic problems. The
method employs a linearization of the system regponse for each congidered
threshold, which matches the tail probability of the nonlinear responge
in first-order approximation. The linearized gystem is obtained in a non-
parametric form, in terme of ite impulse-response function, which depends
on the congidered threshold. Through this dependence, TELM is able to
capture the non-Gaussian distribution of the non-linear response.

Previous studies have invegtigated TELM for stationary and non-stationary
excitation procesges, but always in presence of gsymmetric hysteresis loops
that lead to a zero-mean and symmetric response digtribution. In this
work, the performance of TELM for regponse analysis of dynamical sys-
tems with agsymmetric hysteretic behavior is investigated. For thig pur-
pose, a smoothed version of the generalized Bouc-Wen model is developed,
g0 that the response is continuougly differentiable.

It is found that TELM ig able to capture the non-Gaussian and asymmet-
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ric digtribution of both the point-in-time responge, as well ag the maximum
regponse over a time interval (the first-passage probability distribution) for
large thresholds (small exceedance probabilities).

The distributions for the positive and negative thresholds are distinctly
different, reflecting the difference in the behavior of the system for the
two regimes. It ig found, however, that TELM is unable to provide good
accuracy for thresholds near zero. In particular, the cumulative probability
approximation by TELM for a zero threshold ig always 0.5, regardless of the
shape of the hysteresis loop. This ig a characteristic of FORM, which can
only be overcome through a higher-order approximation method, such as
SORM. Although probability values for small thresholds are not of interest
in reliahility analysis, work is currently in progress to construct a better
approximation for small thresholds by use of SORM.

The major developments and findingg of this work can be summarized

ag follows:

¢ The TELM provides a linearized system in therms of non-gymmetric
set of Impulse Response Functions (IRFg); in particular, the IRF of a
threshold is different than the IRF of the symmetric threshold. The
decay and the frequency content of the IRFs of symmetric threshold
are noticeably different due to the different shapes and areas of the
hysteresys loops of each threshold. Specifically, the provided appli-
cation ghows a higher energy dissipation for negative threshold. The
diffecence between the IRFs of symmetric thresholds decreasges ag long

as the absolute value of the thresheold becomes smaller and the IRF
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tend to converge to the linear cage as the threshold approaches to

ZEeTOo.

This latter convergence implies a costraint in the regponse-in-time dig-
tribution at zero-threshold, in particular, the median of the regponse
(i.e 50% probability) always occurs at zero. Consgequently, the error
of TELM at low threshold is significant, however it does not affect

the results in therms of extreme distribution.

The TELM provides the non-Gausgian and non-symmetric regsponse-
in-time distribution, Monte Carlo gimulations show that the TELM

provides good approximations at high thresholds (tail region).

The TELM also provides non-symmetric, non-Gauggian and non-zero
mean extreme distribution, again, the Monte Carlo simulationg ghow
that the method provides good approximation at high thresholds (tail
region) and for long enough time intervals. However, the TELM
extreme distributions results more conservative than the Monte Carlo

simulations.

In order to perform the FORM analysis, it is important to determine
a good sgtarting point defined in the standard normal space. The
gtarting point highly influence the convergence velocity of the algo-
rithm and the convergence itself. Criteria and strategies about the

starting point definition are provided.

Objects coded in Matlab and C++ are implemented in Ferum and

OpenSees and are available for further regearch and applications.
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In summary, TELM is an alternative for nonlinear random vibration
analyses, which offers a hetter accuracy for the tail probability for higher
threshold than the ELM, which cannot provide non-symmetric digtribu-
tions, and a better efficiency than the MCS. The selection of the appropri-
ate solution method for each problem should be made by considering the

required accuracy and efficiency.

8.1 Reccomendations for further research

In order to improve the accuracy, applicability and efficiency of TELM to
non-gymmetric problems, the following topics are reccomended for further

research:

¢ Development of more efficient criteria to define the starting point in
order to assure the convergence of the algorithm and a high enough
gpeed of convergence. In particular, the fagtest one of the proposed
criteria, requires a high fitting of the threshold interval of interest.
The propoged criteria that are not dependent on the performance
points of previoug thresholds still provide slow convergence gpeed. On
the other way round, it is possible to investigate if higher tolerances
for the FORM convergence still provide good enough results in therms

of extreme distributions.

e Implementation of the Second Order Reliability Method (SORM) in
order to avoid the median-at-50 phenomenon. The linearized system
would be defined asg its tail probability mathches the second-order

approximation of the tail probability of the non-linear system. In



case of o therghold, FORM always swithes the standard normal gpace
in two perfectly equal halves, so, it leads to a probability of 50%. Au
contratre, SORM would provide different values of the tail probability
at zero threshold. This feature, would eliminate the costraint at 50%

of the response-in-time distribution.

It would be worthwhile to define and apply TELM with multi-component
and multi-support excitations. It would be required a new formula-
tion of the input excitation and the theoretical response of the lin-
earized system (which defines the IRFg given the performance point)

has to be defined on the base of the new linearized system definition.

Becauge the best feature of TELM is that it bypasses the usunal de-
pendence of the regponse statigtices on the Gausgian distribution, it
could be interesting to investigate the behavior of TELM in pregence
of non-Gaussian input excitation. It would be required to define a
new clage of excitation in order to get an efficient mapping on the

standard normal space that allows FORM to be performed.

It can also be desiderable to apply TELM to complex highly non-
linear and multi degrees of freedom gystems in order to emphagize the
advantages of TELM with respect other conventional methods and its
efficiency, as well as to investigate itg drawbacks, identify shortcom-
ings and needg for further development. It iz believed that these
practical applications will be bheneficial for acceptance of the class
of Tail-Equivalent Linearization Methods by the engineering commu-

nity.
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Appendix A

Further results of the MDOF
system PG&E 30-2021

In the pregent appendix are shown further results about the two-degrees-
of-freedom gystem connected with PG&E 30-2021 for values of the banded
white noige of g, = 1g and g, = 0.75g.
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A.1 Results for o,, = 0.1g
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Figure A.1: Normal probability plot, MonteCarlo 10° simulations, ., = 1g
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MNormalized plot reliability coefficient TELM, s=1g
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First passage probability, T=6sec, s=1g
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Appendix B

Implementation in OpenSees

The Smoothed-Generalized Bouc-Wen material has been implemented in
OpenSees, a framework for scientific research purposes developed by the
Pacific Earthquake Engineering Earthquake Regearch Center (PEER) and
the constitutive model ig available for any kind of purpose. The code has
been written in C++ following the algorithm summarized in chapter 6. In
thig section the OpenSees definition will be shown and the main properties
and methods will be explained. Firgt, we recall the theoretical definition:

R =cokoy(t)+ (1 —a)kpz (B.1)
b= AL — o 9, 2) 4 ®2)
@ﬁ’ (y: ya Z) = 50 + ﬁngn(y)tanh(kz) r 62tanh (ky) Sgﬂ(y)+ ) (BS)

+pBstanh (kyz) + Basgn(y) + Bstanh(z) + Gstanh (ky)

The definition of the material follows the command line:

uniaxialMaterial GenBoucWen $i $alpha $kO0 $n $bl $b2 $b3
$b4 $b5 $b6 $btan $A 1.0e-10

The meaning of the arguments is summarized in table B.1. Furthermore,
the main methods of the C+4 object are summarized in table B.2.
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Argument Meaning
GenBoucWen Name of the specific OpenSees object
$i Progressive index of the material
$alpha a (0,1 in B
$k0 Initial stiffness of the material in B.1
$n n exponent in B.2
$b1 .. ¢bs coefficients 3..35 in B.3
$btan smoothing coefficient & B.3
$a A coefficient in B.2
1.0e-10 tolerance of Newton's algorithms, default 1017

Table B.1: OpenSees Smoothed-Gen. Bouc-Wen material arguments mean-
ing

Method Purpose
GenBoucWenMaterial Creates an istance of the material.
setTrialStrain Defines the strain value.
getStress FEvaluates the stress.
getInitialTangent Fvaluates the tangent at e = (.
getTangent Fvaluates the current tangent.
revertToStart Resets the hystory variables.
getStressSensitivity Evaluates the stress gradient.

Table B.2: OpenSees Smoothed-Gen. Boue-Wen material methods
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Appendix C

Implementation in FERUM

The Smoothed-Generalized Bouc-Wen material is implemented in FERUM,
a Matlab framework for scientific research purposes. The constitutive model
is available for any kind of purpose. In this section the list of ohjects
available in FERUM will be summarized. First, we recall the theoretical
definition:

R=oakoy(t)+ (1 —a)koz (C.1)
=g~ Pl (©2)
¥ (y,9,2) = Bo + Bisgn(y)tanh{kz) + Satanh (ky)sgn(y)+ _ (C.3)

+pgtanh (kyz) + Basgn(y) + Bstanh(z) + Bstanh (ky)

1. [hfcn, risFORM]=TELM(TELMparameters, Excitation, ...)

Evaluates a set of IRFs (hfen) and the results of FORM for a set of
times and thresholds.

2. TELMparameters

Input object consisting in the following fields:

e threshold: set of thresholds for which TELM ig performed;
e times: set of ¢, for which TELM is performed;

3. Excitation

Excitation’s parameters:
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e S50: white noige intensity;

e displ: initial displacement;
e speed: initial velocity;

e accel; initial acceleration;
e dt: time sgtep amplitude;

e tn: stationary time;

4. [Res, grad] = gfun betallewmarkFFD(t, thr, u, Si, gchk, lin);

Non-linear oscillator object, Res is the response R = x— X (), grad
is ite gradient. It rewuires the following input arguments:

t: vector of time steps;
e thr: current threshold (scalar value);
e u: realization of the standard normal variables vector;

e Si: deterministic matrix due to the excitation’s covariance struc-
ture (cfr. 2.2);

e gchk: string flag, "no ? does not evaluate the gradient, ’££d’
useg the finite differences method, ddm? uses the direct differ-
entiation method;

e lin: linear check: if 1, the oscillator becomes linear fixing the
initial stiffness, regardless of the restoring force model.

5. [R, dR] = GetGenBoucWenA{index, u, ul, Dul, dt, step)
Restoring force object, it evaluates the smoothed generalized Bouc-
Wen restoring force R and its tangent stiffness dR. It requires the
following arguments:

e index: progresgive number of the material;
e u; current digplacement;
e ul: current velocity;

e Dul: derivative of the velocity with respect the displacement (in
the Newmark’s approximated formula);

dt: time sgtep amplitude;
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o textttstep: current time step index.

Also, the material needs to be created with the following:

6. InitializeGenBoucWen(index, par)

where index is the progressive index of the material and par is an
object containing the material’s parameters (see tab C.1).

Further objects for random vibration analysig have been developed by
the author and are available for common use. The main ones are summa-

rized in tab C.2.

par.* Meaning
alpha a € [0,1] in C.1;
k0 Initial stiffness of the material in C.1;
n n exponent in C.2;
b coeflicients 81..5s in C.3 (row vector);
ks gsmoothing coefficient & C.3;
A A coefficient in C.2;
maxiter | maximum number of iterationg allowed;
toll tolerance of Newton’s algorithms.

Table C.1: OpenSees Smoocthed-Gen. Bouc-Wen material parameters

Funetion

Purpose

GetSplineStatistics.m Evaluates gpline CDF/PDF from discrete ones;

getlLinearIRF
getLinearFRF
get FRF _from IRF
StatMoments
WhiteNoisePSD
KanajTajimiPSD
GetPP_from IRF
GetDispl from PP

IRF of a linear SDOF system;

FRF of a linear MDOF system;

IRF of a linear MDOF system ag F'T of the FRF;
Probability moments given a discrete CDF;
Discrete PSD of a banded white noise;

Discrete Kanai-Tajimi PSD;

Performance point given discrete IRF;
Performance point response;

GetDuhamelResponse Convolution Duhamel’s integral.

Table C.2: Random Vibration analysis objects

155




156



Bibliography

[1]

Ahn N.D., Di Pacla M. — Some extensions of Gaussian HEquivalent
Linearization — International Conference on Nonlinear Stochastic Dy
namics, Hanot, Vietnom, 5-16, (1995).

Atalik T.S., Utku S. — Stochastic linearization of multi-degree of free-
dom nonlinear systemg — Farthquake Engineering and Structural Dy
namics, 4, 411-420, (1976).

Au S K., Beck J.L. — First excursion probability for linear systems
by very efficient algorithm — Probabilistic Fngineering Mechanics, 16,
193-207, (2001).

Barone G., Navarra G, Pirrotta A. — Probabilistic response of linear
structures equipped with nonlinear damper devices (PIS method) —
Probabilistic Engineering Mechanics, (to appear) (2008).

Barbato M., Conte J.P. — Finite element structural response sensitiv-
ity and reliability analysis using emooth versug non-smooth material

constitutive models — Infernational Journal of Reliability and Safety,
1, 3-39, (20086).

Barber T.T., Noori M.N. — Modeling general hysteresiz behavior and
random vibration application — J. Vib, Acoust. Stress Reliab. Des.
ASME, 108, 411-420, (1986).

Booton R. C. — The analysis of nonlinear control systems with random
inputs — IRE Transactions on Circuit Theory, 1 32-34 (1959).

157



8]

[16]

[17]

[18]

Casciati F., Faravelli L., Hasofer A.M. — A new philosophy for
stochastic equivalent linearization — Probabilistic Engincering Me-
chanics, 8(3-4), 179-185, (1993).

Caughey T.K. — Equivalent linearization techniques — Journal of the
Acoustical Society of America, 35(11), 1706-1711, (1963).

Cai G.Q., Lin Y .K ., Elishakoff . — A new approximate solution tech-
nique for randomly excited non-linear oscillators, part Il — Journal of
Non-Linear Mechanics, 27(6), 969-979, (1992).

Clough R.W., Penzien J. — Dynamics of structures, 2nd edition —
McGraw-Hill, New York, 924-963, (1993).

Chopra A K. — Dynamic of Structures — Prentice Hall, (2007).

Cottone G., Di Paola M., Pirrotta A, — Path Integral solution by
fractional calculus — Journal of Physics: conference series, 96, 012007
(2008).

Der Kiureghian A. — A structural response to stationary excitation
— Journal of Engineering Mechanics Division, 106(6), 1195-1213,
(1980).

Der Kiureghian A., Sackman J.L., Hong K.J. — Interaction in inter-
connected electrical subgtation equipment subjected to earthquake
ground motions — PEER report 1999/01, University of Culifornia,
Berkeley, (1999).

Der Kiureghian A. — The geometry of random vibrations and solutions
by FORM and SORM — Probabilistic Engineering Mechanics, 15, 81-
90, (2000).

Der Kiureghian A., Hong K.I., Sackman J.L.. — Further studies on
seiemic interaction in interconnected electrical gubstation equipment
— PEER report 2000/01, University of California, Berkeley, (2000).

Der Kiureghian A., Fujimura K. — Computational nonlinear
stochastic dynamics by tail linearization — Proceedings ECCOMAS,
Rethymno, Crete, Greece, (2007).

158



[19]

23]

[24]

[25]

[26]

[27]

[28]

[29]

Der Kiureghian A., Razaeian S. — A stochastic model for earthquake
ground motion with separable temporal and spectral nongtationarity
— Proceedings ICASP10, Tokyo, Jopan, 924-963, (2007).

i Pacla M., Santoro R. — Non linear systems under Poiggon White
Noisge handled by Path Integral Solution — Journal of Vibration and
Control, 14, 35-40, (2008).

Donley M.G., Spanos P.D. — Dynamic Analysis of Non-Linear Struc-
tureg by the Method of Statistical Quadratization — Springer, New
York, (1990).

Elighakoff 1., Zhang R. — Comparigon of new stochastic linearization
criteria — In: Bellomo N., Coscials F., editors. Nonlinear stochastic

dynamics. Berlin: Springer-Verlag, 201-212, (1992).

Elichakoff I., Andriamasy L., Dolley M. — Application and extension
of the stochastic linearization by Ahn and Di Paola — Acta Mechanica,
(publighed online) (2008).

Falsone G., Elishakoff [. — Modified stochastic linearization technique
for colored noige excitation of Duffing oscillator — nternational Jour-
nal of Non-Linear Mechanics, 29(1) 65-69 (1994).

Fan F.G., Ahmadi G. — On loss of accuracy an non-uniqueness of
solutions generated by equivalent linearization and cumulant-neglect
methods — Journal of Sound and Vibrations, 137(3) 385-401 (1990).

Foliente G.C. — Stochastic dynamic response of wood structural sys-
tems — PhD) Thesis, Virginia Polytechnic Institute and State Univer-
gity, Blacksburg VA, (1993).

Foliente G.C. — Hysteresis modeling of wood joints and structural
gystems — J. Struct. Engrg. ASCE, 121, 1013-1022, (1995),

Fujimura K., Der Kiureghian A. — Tail-equivalent linearization
method for nonlinear random vibration — Prob. Fngng. Mech., 22,
63-76, (2007).

Fujimura K. — Tail equivalent linearization method for nonlinear ran-
dom vibration — PhD dissertation, UC Berkeley, (2006).

159



[30]

[31]

132]

[40]

Grigoriu M. — Simulation of non-stationary Gaussian processes by
random trigonometric polynomials — Jowrn. of Engrg. Mech. ASCE,
119(2), 328-343, (1993).

Hagofer A.M. — Distribution of the maximum of a Gaussian process
by a Monte Carlo method — Journal of Sounds and Vibrations, 112,
283-203, (1987).

Haukaas T., Der Kiureghian A. — Finite element reliability and

gensitivity methods for performance-based earthquake engineering —
PEER Report, 2003-14, Pacific Earthquake Engineering Research
Center, UC Berkeley (2003).

Haukaas T., Scott M.H. — Shape sesnitivities in the reliability analysis
of nonlinear frame structures — Computers & Structures, 84, 964-977
(2006).

Hurtado J.E., Barbat A .H. — Equivalent linearization of the Bouc-
Wen hysteretic model — Engineering Structures, 22, 1121-1132 (2000).

Koo H., Der Kiureghian A., Fujimura K. — Design-point excitation
for nonlinear random vibrations — Prob. Fngrg. Mech., 20, 136-147,
(2005).

Lacquaniti S., Ricciardi 3. — A probabilistic linearization method for
non-linear systems subjected to additive and multiplicative excita-
tions — International Journal of Non-Linear Mechanics ASCE, 41,
1192-1205, (2006).

Li C-C. Der Kiureghian A. — Optimal discretization of random fields
— Journ. of Engrg. Mech. ASCE, 119(6), 1136-1154, (1993).

Lin Y.K., Yong Y. — Evolutionary Kanai-Tajimi Earthquake Models
— Journal of Engineering Mechanics, 113(8), 1119-1137 (1987).

Lin Y.K., Cal G.Q. — Probabhiligtic structural dynamic-advanced the-
ory and applications — McGraw-Hill inc., New York (NY), (2004).

Loéve M. — Probability Theory — 4New York: Springer, (1977).

160



[41]

[42]

[43]

[44]

[45]

[46]

[49]

[50]

[51]

[52]

Lutes L.D., Sarkani S. — Random Vibrations, analysig of structural
and mechanical systems — Elsevier, (2004).

Polidori D.C., Beck J.L. — Approximate solutions for non-linear ran-
dom vibration problems — Probabilistic Engineering Mechanics, 11
179-185 (1996).

Priestly M.B. — Non-Linear and Non-Stationary Times Series Analy-
gis — Academic Press, London, (1988).

Riske H. — The Fokker-Planck equation. Methods of solution and
applications. — Berlin, Springer, (1989).

Roberts I.B., Spanog P.D. — Random vibrations and statistical lin-
earization. — John Wiley & sons, New York (NY), (1990).

Roberts J.B. — Multiple solutiong generated by statisgtical lineariza-
tion and their physical significance — International Journal of Non-
Linear Mechanics, 26(6), 945-959 (1991).

Shinozuka M. — Monte Carlo solution of structural dynamics — Com-
puters and Structures, 2, 855-874, (1972).

Song J., Der Kiureghian A., Sackman J.L.. — Seismic interaction in
electrical substation equipment connected by non-linear rigid bus con-
ductors — Farthq. Engrg. and Struct. Dyn., 36, 167-190, (2006).

Song J., Der Kiureghian A, — Generalized Bouc-Wen model for highly
asymmetric hysteresis — Journ. Engrg. Mech. ASCE, 132(6), 610-618,
(2006).

Vanmarcke E.H. — Properties of spectral moments with applications
to random vibrations — Journal of the Engineering Mechonics Dive-
sion, ASCE, 98, 425-446, (1972).

Vanmarcke E.H. — On the distribution of the firet-pasgage time for
normal stationary random processes — Journal of Applied Mechanics,
ASME, 42, 215-220, (1975).

Wen Y K. — Equivalent linearization for hysteretic gystems under ran-
dom excitation — Journal of Applied Mechanics, ASME, 47(3), 150-
154, (1980).

161



[53]

[54]

Zhang Y., Der Kiureghian A. — Dynamic response sensitivity of in-
elastic structures — Computer Methods in Applied Mechanics and En-
gineering, 108(1), 23-26, (1993).

Zhang Z.G., Tsui S.C., Chan S.C., Lau W.Y., Aboy M. — A novel
method for nongtationary power spectral dengity estimation of car-
diovagcular pressure gignals bagsed on a Kalman filter with variable
number of measurements — Medical and Biological Engineering and

Computing, 46, 789-797, (2008).

162



	2009_Tesi dottorato_Pagina_001
	2009_Tesi dottorato_Pagina_002
	2009_Tesi dottorato_Pagina_003
	2009_Tesi dottorato_Pagina_004
	2009_Tesi dottorato_Pagina_005
	2009_Tesi dottorato_Pagina_006
	2009_Tesi dottorato_Pagina_007
	2009_Tesi dottorato_Pagina_008
	2009_Tesi dottorato_Pagina_009
	2009_Tesi dottorato_Pagina_010
	2009_Tesi dottorato_Pagina_011
	2009_Tesi dottorato_Pagina_012
	2009_Tesi dottorato_Pagina_013
	2009_Tesi dottorato_Pagina_014
	2009_Tesi dottorato_Pagina_015
	2009_Tesi dottorato_Pagina_016
	2009_Tesi dottorato_Pagina_017
	2009_Tesi dottorato_Pagina_018
	2009_Tesi dottorato_Pagina_019
	2009_Tesi dottorato_Pagina_020
	2009_Tesi dottorato_Pagina_021
	2009_Tesi dottorato_Pagina_022
	2009_Tesi dottorato_Pagina_023
	2009_Tesi dottorato_Pagina_024
	2009_Tesi dottorato_Pagina_025
	2009_Tesi dottorato_Pagina_026
	2009_Tesi dottorato_Pagina_027
	2009_Tesi dottorato_Pagina_028
	2009_Tesi dottorato_Pagina_029
	2009_Tesi dottorato_Pagina_030
	2009_Tesi dottorato_Pagina_031
	2009_Tesi dottorato_Pagina_032
	2009_Tesi dottorato_Pagina_033
	2009_Tesi dottorato_Pagina_034
	2009_Tesi dottorato_Pagina_035
	2009_Tesi dottorato_Pagina_036
	2009_Tesi dottorato_Pagina_037
	2009_Tesi dottorato_Pagina_038
	2009_Tesi dottorato_Pagina_039
	2009_Tesi dottorato_Pagina_040
	2009_Tesi dottorato_Pagina_041
	2009_Tesi dottorato_Pagina_042
	2009_Tesi dottorato_Pagina_043
	2009_Tesi dottorato_Pagina_044
	2009_Tesi dottorato_Pagina_045
	2009_Tesi dottorato_Pagina_046
	2009_Tesi dottorato_Pagina_047
	2009_Tesi dottorato_Pagina_048
	2009_Tesi dottorato_Pagina_049
	2009_Tesi dottorato_Pagina_050
	2009_Tesi dottorato_Pagina_051
	2009_Tesi dottorato_Pagina_052
	2009_Tesi dottorato_Pagina_053
	2009_Tesi dottorato_Pagina_054
	2009_Tesi dottorato_Pagina_055
	2009_Tesi dottorato_Pagina_056
	2009_Tesi dottorato_Pagina_057
	2009_Tesi dottorato_Pagina_058
	2009_Tesi dottorato_Pagina_059
	2009_Tesi dottorato_Pagina_060
	2009_Tesi dottorato_Pagina_061
	2009_Tesi dottorato_Pagina_062
	2009_Tesi dottorato_Pagina_063
	2009_Tesi dottorato_Pagina_064
	2009_Tesi dottorato_Pagina_065
	2009_Tesi dottorato_Pagina_066
	2009_Tesi dottorato_Pagina_067
	2009_Tesi dottorato_Pagina_068
	2009_Tesi dottorato_Pagina_069
	2009_Tesi dottorato_Pagina_070
	2009_Tesi dottorato_Pagina_071
	2009_Tesi dottorato_Pagina_072
	2009_Tesi dottorato_Pagina_073
	2009_Tesi dottorato_Pagina_074
	2009_Tesi dottorato_Pagina_075
	2009_Tesi dottorato_Pagina_076
	2009_Tesi dottorato_Pagina_077
	2009_Tesi dottorato_Pagina_078
	2009_Tesi dottorato_Pagina_079
	2009_Tesi dottorato_Pagina_080
	2009_Tesi dottorato_Pagina_081
	2009_Tesi dottorato_Pagina_082
	2009_Tesi dottorato_Pagina_083
	2009_Tesi dottorato_Pagina_084
	2009_Tesi dottorato_Pagina_085
	2009_Tesi dottorato_Pagina_086
	2009_Tesi dottorato_Pagina_087
	2009_Tesi dottorato_Pagina_088
	2009_Tesi dottorato_Pagina_089
	2009_Tesi dottorato_Pagina_090
	2009_Tesi dottorato_Pagina_091
	2009_Tesi dottorato_Pagina_092
	2009_Tesi dottorato_Pagina_093
	2009_Tesi dottorato_Pagina_094
	2009_Tesi dottorato_Pagina_095
	2009_Tesi dottorato_Pagina_096
	2009_Tesi dottorato_Pagina_097
	2009_Tesi dottorato_Pagina_098
	2009_Tesi dottorato_Pagina_099
	2009_Tesi dottorato_Pagina_100
	2009_Tesi dottorato_Pagina_101
	2009_Tesi dottorato_Pagina_102
	2009_Tesi dottorato_Pagina_103
	2009_Tesi dottorato_Pagina_104
	2009_Tesi dottorato_Pagina_105
	2009_Tesi dottorato_Pagina_106
	2009_Tesi dottorato_Pagina_107
	2009_Tesi dottorato_Pagina_108
	2009_Tesi dottorato_Pagina_109
	2009_Tesi dottorato_Pagina_110
	2009_Tesi dottorato_Pagina_111
	2009_Tesi dottorato_Pagina_112
	2009_Tesi dottorato_Pagina_113
	2009_Tesi dottorato_Pagina_114
	2009_Tesi dottorato_Pagina_115
	2009_Tesi dottorato_Pagina_116
	2009_Tesi dottorato_Pagina_117
	2009_Tesi dottorato_Pagina_118
	2009_Tesi dottorato_Pagina_119
	2009_Tesi dottorato_Pagina_120
	2009_Tesi dottorato_Pagina_121
	2009_Tesi dottorato_Pagina_122
	2009_Tesi dottorato_Pagina_123
	2009_Tesi dottorato_Pagina_124
	2009_Tesi dottorato_Pagina_125
	2009_Tesi dottorato_Pagina_126
	2009_Tesi dottorato_Pagina_127
	2009_Tesi dottorato_Pagina_128
	2009_Tesi dottorato_Pagina_129
	2009_Tesi dottorato_Pagina_130
	2009_Tesi dottorato_Pagina_131
	2009_Tesi dottorato_Pagina_132
	2009_Tesi dottorato_Pagina_133
	2009_Tesi dottorato_Pagina_134
	2009_Tesi dottorato_Pagina_135
	2009_Tesi dottorato_Pagina_136
	2009_Tesi dottorato_Pagina_137
	2009_Tesi dottorato_Pagina_138
	2009_Tesi dottorato_Pagina_139
	2009_Tesi dottorato_Pagina_140
	2009_Tesi dottorato_Pagina_141
	2009_Tesi dottorato_Pagina_142
	2009_Tesi dottorato_Pagina_143
	2009_Tesi dottorato_Pagina_144
	2009_Tesi dottorato_Pagina_145
	2009_Tesi dottorato_Pagina_146
	2009_Tesi dottorato_Pagina_147
	2009_Tesi dottorato_Pagina_148
	2009_Tesi dottorato_Pagina_149
	2009_Tesi dottorato_Pagina_150
	2009_Tesi dottorato_Pagina_151
	2009_Tesi dottorato_Pagina_152
	2009_Tesi dottorato_Pagina_153
	2009_Tesi dottorato_Pagina_154
	2009_Tesi dottorato_Pagina_155
	2009_Tesi dottorato_Pagina_156
	2009_Tesi dottorato_Pagina_157
	2009_Tesi dottorato_Pagina_158
	2009_Tesi dottorato_Pagina_159
	2009_Tesi dottorato_Pagina_160
	2009_Tesi dottorato_Pagina_161
	2009_Tesi dottorato_Pagina_162
	2009_Tesi dottorato_Pagina_163
	2009_Tesi dottorato_Pagina_164
	2009_Tesi dottorato_Pagina_165
	2009_Tesi dottorato_Pagina_166
	2009_Tesi dottorato_Pagina_167
	2009_Tesi dottorato_Pagina_168
	2009_Tesi dottorato_Pagina_169
	2009_Tesi dottorato_Pagina_170
	2009_Tesi dottorato_Pagina_171
	2009_Tesi dottorato_Pagina_172
	2009_Tesi dottorato_Pagina_173
	2009_Tesi dottorato_Pagina_174
	2009_Tesi dottorato_Pagina_175
	2009_Tesi dottorato_Pagina_176
	2009_Tesi dottorato_Pagina_177
	2009_Tesi dottorato_Pagina_178

