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Chapter 1 –INTRODUCTION 

1.1 Background and motivations  

In the framework of performance-based earthquake engineering (PBEE, [1]) 

the most notable task is the problem of evaluating the rate of earthquakes 

leading a structure to fail in meeting a performance objective (a situation often 

referred, in the framework of construction codes, to as exceedance of a limit 

state). This calculation, in one of its simplest forms, can be performed by an 

implementation of the total probability theorem: 

f f im
im

P EDP edp IM im d  =  =   .      (1) 

Equation (1) introduces two interfacing random variables, the so-called 

engineering demand parameter (EDP) and the seismic intensity measure (IM) 

that in this context will be both assumed scalar, for simplicity. The other terms 

appearing in the equation are: the annual rate of earthquakes able to cause 

structural failure, f ; the rate of exceeding a certain value of a ground motion 

IM, that is
im ; the conditional probability, 

fP EDP edp IM im  =  , that 

structural response given a certain IM level, exceeds the performance objective 

threshold, fedp ; the so-called fragility function. EDP is a generic term used for 

any measure of structural response of engineering significance, that can be used 

to check or determine if the structure has failed to meet a given performance 

objective due to, for example, excessive stress or deformation. Examples of 

often-used EDPs for building structures are inter-storey drift ratio or roof-level 

displacement. In this context, failure can be expressed as the exceedance of a 

predefined threshold EDP-value; i.e., fEDP edp . On the other hand, an IM 

can be some direct instrumental measure of ground motion amplitude, such as 

peak ground acceleration (PGA), or a quantity of elastic response, such as 

spectral pseudo-acceleration at various periods, ( )Sa T . The term 
im  is a 

measure of the seismic hazard at a specific site and can be evaluated by means 

of probabilistic seismic hazard analysis and imd  is the absolute value of its 

differential. 

In the state-of-the-art approach, fragility can be analytically evaluated via 

several procedures that all require non-linear dynamic analysis of a structural 
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numerical model subjected to set of ground motions, selected consistently with 

the seismic hazard of the site [2]. Analysis aims at the generation of samples of 

structural response given samples of ground motions. 

The main disadvantages of the dynamic-analysis-based derivation of 

fragility functions is the computational burden involved and the amount of 

effort that has to go into modelling highly non-linear structural behaviour. The 

combination of numerical model complexity, required number of runs and the 

need for elaborate result post-processing can add-up to such demands of human 

and computing resources that engineers find themselves strongly motivated to 

look for simpler, approximate alternatives. The most notable simplifying 

alternative, one that has been with PBEE in various forms since its early years, 

involves making recourse to an equivalent single-degree of freedom (SDOF) 

non-linear system. One key point in this approximation is the assignment of a 

force-deformation law governing the SDOF system’s response to monotonic 

lateral loading, typically referred to as the backbone curve. The definition of 

this backbone is typically based on the (numerically-evaluated) response of the 

original multiple-degree of freedom (MDOF) structure to a progressively 

increasing lateral force profile, known as its static push-over (SPO) curve. Due 

to their approximate nature, SPO-based methods have limitations that have 

been extensively documented and discussed (e.g., [3,4]). The other key point 

that is ubiquitous among SPO-based procedures is the calculation of the seismic 

demand of the equivalent SDOF system and the subsequent estimation of the 

original MDOF structure’s seismic demand (e.g. [5]). 

As previously introduced, the evaluation of the fragility function is often 

based on the results of non-linear dynamic analysis of a complex or simplified 

numerical model, which is subjected to a sample of ground motions, in order to 

capture the record-to-record variability of structural response (e.g., [6,7]). 

Thus, when a structure’s probability of failure-given-intensity is inferred from 

a sample of structural responses from dynamic analysis, that only constitutes 

an estimate of the fragility function. As a consequence, any seismic risk metric 

calculated on the basis of that fragility, such as the failure rate, is also an 

estimate, henceforth indicated as ˆ
f , of the unknown true value f . In other 

words, any probabilistic model for structural fragility that is based on that 

limited sample of structural responses, will be affected by estimation 
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uncertainty and that uncertainty will be propagated to the estimator of the 

failure rate ˆ
f  (e.g., [8]).  

Past PBEE-oriented research on the topic has seen discussion on the number 

of records that ought be used for estimating the distribution of EDPs at a single 

level (or stripe) of intensity [2,6]. The effect of estimation uncertainty on 

parametric fragility was investigated and in some of these previous studies that 

examined estimation uncertainty for the fragility parameters (e.g., [9,10]) it was 

recognized that further research was needed to investigate the effect of this 

uncertainty to the actual end result; i.e., the failure rate estimate. 

In this context, this thesis is focused towards achieving the following 

distinct objectives: 

• provide tools and methodologies to evaluate seismic fragility 

function by of means simplified pushover-based approaches; 

• provide operational tools for the quantification of estimation 

uncertainty behind seismic risk estimates due to record-to-record 

variability of structural response; 

• investigate the choice of the number of records to use for dynamic 

analysis to achieve quantifiable levels of mean relative estimation 

error on seismic risk metrics; 

• investigate the use of parametric fragility functions within the 

context of an Italian research project (RINTC, [11]) that examined 

code-designed buildings belonging to different structural 

typologies. 

1.2 Outline of the thesis 

In Chapter 2, typical dynamic analysis methods in the context of PBEE are 

recalled first. Subsequently, concepts at the base of the software SPO2FRAG 

are illustrated before that the main features and operational outline of the tool 

are described and some numerical examples are provided. In the second part, 

the software for dynamic analysis of single-degree-of-freedom, DYANAS, is 

introduced with its structure and user interface. Finally, illustrative applications 

are provided as well. 

In Chapter 3, the concept of estimation uncertainty in seismic risk evaluation 

and fragility function evaluation is recalled first. Then, the software R2R-EU, 

developed for estimating structure-specific seismic fragility, based on dynamic 
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analysis, and quantifying estimation uncertainty, emanating specifically from 

record-to-record variability of seismic structural response, is described. Finally, 

two applications, one of which using results from the RINTC projects (Rischio 

Implicito delle strutture progettate secondo le Norme Tecniche per le 

Costruzioni – implicit seismic risk of code-conforming Italian buildings), are 

developed. 

Chapter 4, in the first part advocates the use of quantitative criteria to 

determine the sample size of ground motion records, based on the statistical 

inference concept of estimation uncertainty, for estimating the annual failure 

rate. In particular, analytical and numerical means to investigate the record 

sample size required to achieve quantifiable levels of mean relative estimation 

error on seismic risk metrics are introduced. The second part, as a step 

backwards, asks another type of question, whether the statistical concepts 

previously introduced are an appropriate tool for addressing the minimum 

number of records mandated by modern codes. 

Chapter 5 aims at discussing the seismic fragility curves for code-conforming 

Italian buildings developed within the RINTC project. Fragilities refer to two 

different structural failure criteria, global collapse failure and usability 

preventing damage, are derived via state-of-the-art methods and include 

consideration of the uncertainty in the estimation of the parameters. In 

conclusion, the impact of the fragilities on the failure rate estimation is 

deepened. 

In Chapter 6 general outcomes derived from the topics faced off in the previous 

sections are finally summarized. 
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Chapter 2 – SEISMIC FRAGILITY ASSESSTMENT VIA STATIC 

AND DYNAMIC NON-LINEAR ANALYSIS: THEORY AND 

IMPLEMENTATION IN SPO2FRAG AND DYANAS 

The following papers have been derived from this Chapter: 

• Baltzopoulos G., Baraschino R., Iervolino I., Vamvatsikos D. (2017) 

SPO2FRAG: Software for seismic fragility assessment based on static 

pushover. Bulletin of Earthquake Engineering. DOI: 10.1007/s10518-

017-0145-3. 

• Baltzopoulos G., Baraschino R., Iervolino I., Vamvatsikos D. (2018) 

Dynamic analysis of single-degree-of-freedom systems (DYANAS): A 

graphical user interface for OpenSees. Engineering Structures, 177: 

395-408. 

2.1. Introduction 

The methods used to derive fragility functions can be classified as empirical, 

analytical or hybrid; the interested reader is referred to [12] for a comprehensive 

overview. In recent years there has been considerable emphasis on the 

analytical approach, which is based on numerical models, especially for 

structure-specific fragility functions. State-of-the-art analytical methods rely on 

advanced numerical models of the structure subjected to non-linear dynamic 

analyses. A classic example of such analysis is incremental dynamic analysis 

(IDA, [13]). IDA accounts for the variability of structural response (i.e., the 

record-to-record variability) by using a sample of recorded accelerograms as 

seismic input. IDA entails having each accelerogram in the ensemble scaled in 

amplitude to increasing levels of intensity (as measured by the selected IM) and 

estimating the structural response at each such level. In fact, because the IM 

typically does not possess full explanatory power with respect to structural 

response, the variability of the latter with respect to the former has to be 

captured. Thus, IDA seeks to map seismic structural response statistically, from 

the first signs of non-linear inelastic behaviour up to eventual collapse. 

Proposed extensions of this dynamic analysis methodology reserve the 

possibility of accounting for uncertainty in the numerical model itself (e.g. [14–

16]). Alternative-to-IDA dynamic analysis strategies used for estimating 

structural fragility are cloud analysis and multiple-stripe analysis (MSA) (e.g. 

[17–20]). As extension of IDA, another type dynamic analysis called back-to-
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back IDA (B2B-IDA) has been proposed [21] to evaluate structural response 

for a structure previously damaged and still not repaired. 

As previously introduced, the main disadvantages of the dynamic-analysis-

based derivation of fragility functions is the time consumed for performing 

analysis jointed with and the capacity requested to the user to model non-linear 

structural behaviour. For these reasons, the use of simplified methods making 

recourse to a backbone curve of a SDOF system’s subjected to dynamic or static 

excitation has been considered as approximate alternative, with all the 

limitations involved. 

Throughout the years, semi-empirical methods available for this calculation 

have evolved from the equal displacement rule to equations relating strength 

ratio to ductility per oscillator period (often abbreviated as R T− −  relations, 

e.g., [22]) and eventually to the static pushover to IDA (SPO2IDA) algorithm 

of [23]. While earlier inelastic-spectra-based approaches were focused on 

average response of SDOF oscillators with elastic-perfectly plastic or bilinear 

backbone curves, the more recent SPO2IDA tool has the ability to treat more 

complex SPO curves and, more importantly, offers direct estimates of the 

dispersion associated with the record-to-record variability of structural 

response. These two elements render SPO2IDA particularly suitable for 

implementation within the PBEE paradigm, since they facilitate the treatment 

of uncertainty in seismic structural response for limit states approaching global 

collapse. 

After an overview about dynamic analysis methods for PBEE (Section 2.2) 

and the state of the art in fragility function evaluation (Section 2.3), Section 2.4 

comprehensively discusses the earthquake-engineering-oriented software 

SPO2FRAG (first introduced in [24]), an application coded in MATLAB® 

environment that permits the computer-aided evaluation of seismic fragility 

functions for buildings, based on the results of SPO analysis. The SPO2IDA 

algorithm lies at the core of SPO2FRAG, allowing the application to simulate 

the results of IDA without running numerous, cumbersome analyses. The 

background research behind SPO2FRAG is briefly presented, in order to 

highlight the connection between the PBEE paradigm and the program’s 

functionality. The section is dedicated to the detailed description of the program 

itself, addressing the various internal modules that comprise SPO2FRAG, the 

inner workings, methodology and flowchart, as well as the various options 
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available to the user. Finally, two illustrative examples are presented, along 

with some evaluation and discussion of the obtained results. 

Although the use of SDOF systems was initially motivated by the lack of 

computational resources for performing dynamic analysis of larger numerical 

models, in recent years the trend remains - only for different reasons. Advances 

in PBEE and seismic structural reliability (e.g., [25]) have brought forth the 

need for an adequate probabilistic representation of structures’ post-elastic 

behavior during earthquake excitation. Due to the inherently stochastic nature 

of this phenomenon, mainly (but not solely) attributable to the so-called record-

to-record variability of seismic response, such a probabilistic description by 

analytical means may require a prodigious number of dynamic analyses, putting 

a strain even on modern computational power. For this reason, methods that 

employ SDOF-level approximations of structural systems have been duly 

preserved in the arsenal of PBEE and have continued to undergo refinement 

and development. 

Looking back, the dynamic response of yielding SDOF oscillators to base 

acceleration has been in the limelight of earthquake engineering research since 

its early steps [26] and remained there throughout its evolution, as simplified 

methods for seismic assessment and design of buildings appeared that were 

reliant on pushover analysis to define an equivalent, substitute SDOF structure 

[22,27–32]. In more recent years, with the PBEE paradigm gaining an ever-

steadier foothold in the earthquake engineering community, new SDOF-based 

procedures began to surface that additionally sought to map the probabilistic 

distribution of seismic structural response (e.g. [23,33]). Other PBEE-related 

contexts that employed yielding SDOF oscillators as structural proxies, include 

the direct use of inelastic displacement as a measure of shaking intensity [34] 

and the critical scrutiny of prevalent ground motion record selection and 

modification practices for conducting response history analysis of structures 

[35,36]. 

Some of the issues that permeate all of the aforementioned cases are: the 

shape of the backbone curve of the SDOF system, the hysteretic law it follows 

during cyclic loading and the potential presence of strength and/or stiffness 

cyclic degradation in the hysteresis. The force-displacement relationship 

describing response to monotonic static loading, i.e., the backbone curve, is 

typically an idealization of the pushover curve obtained analytically for the 

corresponding structure. This idealization can be a simple bilinear shape, or it 
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can also include a descending, negative stiffness branch and even a residual 

strength plateau. The appearance of negative stiffness in a structure’s pushover 

may be due to P-∆ effects or material strength degradation (often both) and the 

importance of its representation on the equivalent SDOF’s backbone has been 

strongly advocated by past research [37,38]. 

With regard to the hysteretic behavior that ought to characterize a substitute 

SDOF system in order to best represent global response of the corresponding 

structure, there was a shift in modern practice, from the simple, kinematic 

hardening rules that saw extensive use in the past, towards phenomenological, 

evolutionary hysteretic rules (e.g., [39]) that are more representative of real 

structural behavior. Various proposals exist in the literature in this regard, 

typically based on experimental data that refer to specific structural typologies: 

for instance, the studies of Takeda et al. for reinforced concrete [40], Graziotti 

et al. for unreinforced masonry [41] and Lignos and Krawinkler for steel 

structures [42], are mentioned. Typically, the same model used for a structure’s 

numerical simulation at the element level (especially in cases of concentrated 

plasticity modelling) is also assigned to the equivalent SDOF oscillator for that 

structure. However, it should be noted that, in the case of parametric 

phenomenological modelling of cyclic degradation effects, experimental model 

calibration at the element level may not be adequately representative of the 

entire structure’s global behavior and a dedicated study may be needed (e.g., 

[43]). 

Section 2.5 introduces an earthquake-engineering-oriented software: 

DYANAS, a MATHWORKS MATLAB®-based graphical user interface (GUI) 

that expedites the definition of inelastic SDOF systems in the OpenSees (Open 

System for Earthquake Engineering Simulation; [44]) finite element platform, 

streamlines the execution of dynamic analyses under suites of base-acceleration 

time histories and allows for methodical processing of the final results. The 

analysis method and post-processing aspects of the software are focused on 

facilitating dynamic analysis schemes that draw on the PBEE paradigm. The 

graphical interface components of the software run in MATLAB environment. 

Interaction with OpenSees is performed by manipulating Tcl/Tk scripts (Tool 

Command Language – a general scripting language that has been extended with 

OpenSees-specific commands; [45]) via MATLAB functions, in a process that 

will be described in the following sections. OpenSees is an open-source, object-

oriented finite element platform developed for PBEE. Since its inception, 
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OpenSees has seen extensive use for numerical analysis in structural, 

geotechnical and seismic reliability problems (e.g., [46]). In the past, various 

GUIs have been built around OpenSees, intended to facilitate the definition of 

numerical models and subsequent running of analyses. Such examples are the 

Build-X software [47] and the GID interface [48] that are both intended for 

aiding the definition of multi-DOF building models, as well as the web platform 

of Dolšek et al. [49] and the II-DAP interactive interface [50] that operate on 

the SDOF level. DYANAS is a new addition to this list and is, primarily, a 

PBEE tool that incorporates a multitude of functions oriented towards efficient 

seismic analysis of simple structures (e.g., [51]). The software presented, 

DYANAS, is freely available for research purposes as a software package 

(http://wpage.unina.it/georgios.baltzopoulos/software/software_page.html) 

and is also distributed as open-source code, obtainable at 

https://github.com/georgebaltz/SDOF-OSEES. DYANAS allows users to 

easily define yielding SDOF oscillators with classical viscous damping, piece-

wise linear monotonic backbones and a choice of six evolutionary or hardening 

hysteretic rules that are already implemented in OpenSees (to follow). 

Subsequently, the GUI gives users the opportunity to perform non-linear 

dynamic analyses to large sets of accelerometric input, supporting IDA, 

multiple-stripe analysis, cloud analysis and B2B-IDA. For each analysis 

session, users may define a single, or two uncoupled, SDOF oscillators. In the 

latter case, these can be run simultaneously, using bidirectional ground motion 

records. Finally, the software has the capability to post-process results, 

graphically represent them for the users and allows exporting figures and data 

files for further elaboration. The remainder of the Section 2.5 is organized in 

the following fashion: first, an outline of the dynamic analysis methods 

prevalent in PBEE and supported by the GUI is given. Subsequently, a 

description of the software’s function, structure and capabilities is provided. 

Then, a sub-section dedicated to a few illustrative applications that showcase 

specific aspects of the software’s utility as a PBEE tool are to be found, 

followed by some closing remarks and discussion. 

2.2. Dynamic analysis methods for PBEE 

As previously introduced, the primary use of dynamic structural analysis in 

PBEE is as a means of quantifying the ability of a structure to meet certain 

performance objectives, in a probabilistic framework. An understanding of this 

http://wpage.unina.it/georgios.baltzopoulos/software/software_page.html
https://github.com/georgebaltz/SDOF-OSEES
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can be obtained through Equation (1), that looks at part of the PEER framing 

equation [2] to provide the annual rate of a structure’s failure to meet some 

performance objective, f , which is a measure of seismic risk. 

While the concept of structure-specific fragility functions sees extensive use 

in PBEE and seismic risk analysis, in order to determine such a functional 

relationship between EDP and IM as 
fP EDP edp IM im  =   by analytical 

means, engineers may need to resort to a number of non-linear dynamic 

analyses of a numerical model of the structure, according to some methodology 

that maps the distribution of EDP for various IM levels. The methods used most 

frequently to obtain this EDP-IM mapping for seismic response are IDA, MSA 

and cloud analysis. For this reason, the three dynamic analysis methodologies 

(plus a variant of IDA) are briefly outlined below. 

2.2.1 Incremental dynamic analysis 

IDA consists of running a series of dynamic analyses for a non-linear structure, 

using a suite of accelerograms that are progressively scaled upwards in 

amplitude in order to represent a broad range of IM levels. Structural response, 

in terms of some EDP, is being continuously registered at each IM level; thus, 

for each acceleration record, a continuous EDP-IM relationship is obtained, 

termed an IDA curve (Figure 1a). A common way of summarizing IDA results 

for the entire suite of records, is to calculate the 16,50 and 84% fractile IDA 

curves of EDP given IM or vice-versa. As can be seen in the figure, while 

individual-record IDA curves can be non-monotonic, the fractile curves 

generally are. In fact, for structures susceptible to dynamic instability, when a 

record is scaled up to levels that can induce such behavior, the IDA curve tends 

to become horizontal, indicating almost-infinite increase in EDP for small IM 

increments; thus IDA flat-lines are taken to indicate structural collapse (for 

further details the interested reader is referred to [13]. It is mentioned in passing 

that IDA has already found its way into guidelines for practicing engineers that 

espouse PBEE principles (e.g., FEMA-P695, [52]). 

2.2.2 Multiple-stripe analysis 

MSA, like IDA, has the objective of calculating EDP-responses of a structure 

at various, increasing IM levels. The difference from IDA is that MSA does not 

necessarily resort to scaling the same suite of accelerograms to reach these IM 

levels, but may instead use different sets of (scaled or unscaled) records at each 

IM level (e.g., [19]). Ideally, these record sets should be selected to reflect site-
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specific seismic hazard at each IM level, thus rendering the calculated seismic 

structural demand hazard-consistent (e.g., [53]). A schematic example of MSA 

results is given in Figure 1b, where it can be seen that EDP response samples, 

sometimes termed “EDP-stripes”, have been obtained for six IM levels (note 

that in the context of IDA and due to the continuous nature of IDA curves, apart 

from EDP-given-IM, one may also calculate “IM-stripes” for a given EDP 

value). 

 
Figure 1. Illustrating the dynamic analysis methods most frequently used in 

PBEE: thirty IDA curves of a yielding SDOF oscillator and corresponding 

16,50,84% EDP-given-IM fractile curves (a); EDP responses of a non-linear 

structure at six IM levels obtained via MSA (b); logarithmic-scale scatter plot 

of EDP-IM responses obtained via cloud analysis and corresponding ordinary 

least squares regression line (c). 

2.2.3 Cloud analysis 

Cloud analysis gets its name from the fact that it uses sets of unscaled 

acceleration records, meaning that, typically, only a single record will 

correspond to each IM level (besides it being not-very-likely to find many 

records with, say, the exact same PGA or ( )Sa T  value, the very nature of this 

method calls for an even spread of intensity values within the range of interest). 

This results in a “cloud” of points in the EDP-IM plane, such as the scatter-plot 

shown in Figure 1c. With the cloud method, a probabilistic relation between 

EDP and IM can be obtained by means of linear regression and its assumptions 

of homoscedastic, Gaussian residuals (e.g., [20]). Regression of cloud analysis 

EDP-IM data can find application in some simplified seismic reliability 

methods; the interested reader is referred to [54] for further details. 
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2.2.4 Back-to-back incremental dynamic analysis 

Besides traditional IDA, an extended version thereof has also been suggested 

in the past [21]. This extension of IDA was intended to provide a probabilistic 

description of seismic response for structures that have already been damaged 

by a mainshock earthquake (MS) and are susceptible to the effect of aftershocks 

(AS) before any repairs can take place. In this type of analysis, henceforth 

referred to as back-to-back IDA, the analyzed structure is first subjected to an 

initial set of accelerograms, let us call them the MS record set, each scaled to 

produce the same predefined EDP level. At the end of each single-run MS 

analysis, a damaged incarnation of the structure has been produced; this is 

allowed to revert to at-rest conditions and is subsequently subjected to a second 

set of records, let us call these the AS set, that are scaled upwards in the 

traditional IDA manner. Figure 22provides a schematic representation of this 

procedure. The end result, as in traditional IDA, is a set of continuous EDP-IM 

curves, the difference being that these curves no longer describe the seismic 

behavior of the original structure, but that of the structure that has been 

subjected to a specific damaged state. Also note, that the MS-AS 

characterization of the two record sets employed in this discussion is purely 

conventional and was used for designating the order with which the two shocks 

are considered in the analysis, without implying that they must be part of the 

same seismic sequence. 

 
Figure 22. Schematic representation of back-to-back IDA: a “mainshock” 

record acting on a structure in pristine condition is scaled until a limit state 
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threshold edpf is reached, then IDA is performed for a set of “aftershock” 

records, acting on the structure damaged by the mainshock record; the 

procedure is repeated for a predefined number of “mainshock” accelerograms, 

each followed by a set of “aftershock” accelerograms. 

2.3. State- of the art in fragility function evaluation 

Given the output of dynamic analysis, the strategy for analytically evaluating a 

fragility function often branches into one of two approaches: the IM-based 

approach and the EDP-based approach; IM-based fragility estimation is 

suitable within the IDA framework, while EDP-based can be applied in both 

IDA and MSA settings. In both cases, it is assumed that a threshold EDP, fedp

, can be defined, so that its exceedance will be tantamount to failure, that is, 

fP f IM im P EDP edp IM im  = =  =    . In the IM-based approach, a new 

random variable (RV) needs to be introduced: the IM-value causing failure, 

denoted as fIM , which is, in principle, different for each record. After the 

analysis has been concluded and the IDA curves become available, a sample of 

the RV can be obtained by finding the intersection ,f iim  between the vertical 

line passing through fedp  and the i-th IDA curve,  1,2,...,ni =  (Figure 3a). 

The fragility function may then be considered as the probability of fIM being 

equal or lower than the level of seismic intensity possibly occurring at the site: 

i.e., 
fP f IM im P IM im  = =     . It is also possible to assign a parametric 

model to the distribution of fIM  and a typical choice is the lognormal model, 

which is completely defined by mean   and standard deviation   of the 

logarithm of fIM . In that case, fragility can be expressed using the standard 

Gaussian function, ( )  , according to Equation (2): 

ˆ

ln( ) ˆ
f

im
IMP f IM i P imm





 −
     =


=   


=     (2) 

The two parameters  ,   are generally unknown and one way to obtain 

estimates of these parameters,  ˆˆ,  , is by using the sample of responses 

resulting from IDA according to Equation (3): 



14 

 

( )

( )

,

1

2

,

1

1
ˆ ln

1ˆ ˆln
1

n

f i

i

n

f i

i

im
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
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
= 



  =  −

  −





,     (3) 

where n represents the number of IDA curves and is therefore equal to the 

number of records used and ,f iim  is the intensity that one needs to scale the i-

th record (out of n in total), in order to cause failure of the structure. 

 
Figure 3: Fragility assessment using IDA curves assuming either a parametric 

(lognormal) probabilistic model for the distribution of fIM  (a) or a non-

parametric representation (b). 

Of course, it is not necessary to assume a parametric model for IM-based 

fragility; in fact, a non-parametric representation can be obtained directly from 

the sample of fIM  values, according to Equation (4): 

( ),
1

1

f i

n

im im
i

P f IM im I
n 

=

 = =    ,     (4) 

where 
( ),f iim im

I


 is an indicator function that returns 1 if ,f iim im  or 0 if 

,f iim im  (Figure 3b). The use of estimation uncertainty as a means for 

determining the number of records to use in IM-based fragility derivation is 

explored in Section 3.2. 

Structural fragility can also be expressed as the complementary cumulative 

distribution function of fIM , by following an EDP-based approach. In fact, 

the EDP-based method works both for IDA and MSA; in this case, EDP 

responses are obtained at discrete (fixed) IM levels. When these EDP responses 

are plotted against the corresponding IMs, they are arranged in horizontal 
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stripes (e.g., Figure 1b), one for each level of shaking intensity considered. By 

counting the fraction of records in each stripe that cause the exceedance of the 

limit state threshold, fedp , the estimation of the fragility parameters  ˆˆ,   

can be carried out via maximum likelihood, according to Equation (5), which 

is from [55]: 

 
( )

( )
( )

, 1

ln
ˆˆ, arg max ln ln

ln
ln 1

u
j

j

jj

j

j

imn
q

q

im
n q

 


 







=

    −      = +   +  
        

  −   + −  − 
    



,  (5) 

where u  is the number of IM levels considered (i.e., the number of stripes, each 

stripe containing responses from n records), and 
( )1 ij f

n

j edp edpi
q I

=
=  is the 

number of failures observed at the stripe corresponding to jIM im=  (Figure 4 

a), when    ,  1,.., ,  1,..,ijedp i n j u= =  represents the single structural response 

recorded at the i-th record of the j-th stripe. In this formulation, cases of non-

convergent analysis (referred to as collapse cases) due to the numerical model 

coming too close to highly-non-linear behaviour associated with incipient 

instability, say jc  in number, are also counted in jq  and are therefore 

accounted for, despite the potential lack of a credible EDP value [56]. At this 

point it should be noted that, in cases where the observed numbers of failure jq  

remain excessively low over all stripes considered, the maximum likelihood 

estimates implied in Equation (5) can suffer from numerical problems. One 

viable alternative for considering fragility, consistent with the EDP-based 

approach, is the three-parameter-per-intensity model adopted by Shome and 

Cornell [56], given by Equations (6) 
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, (6) 

where | jP C IM im =   is the probability of collapse, | jP C IM im =   is its 

complement, i.e., the probability of non-collapse, jc  is the number of observed 

collapse cases at the j-th stripe, according to the previous definition, and 

( )ln
ˆ

jEDP
 , 

( )ln

ˆ
jEDP

  are the mean and the standard deviation of the logarithm of 

EDP, at jIM im= , provided by structural analysis and not affected by 

numerical instability (no-collapse cases). Note that this approach provides 

fragility at the discrete intensities jIM im= , rather than as a continuous 

function of IM. However, it is also possible to fit a continuous parametric model 

for the probability of collapse, as an alternative to the empirical fractile jc n , 

by means of logistic regression [57] according to Equation (7): 

( )0 1

1
|

1 j
j im

P C IM im
e

 − + 
 = = 

+
.     (7) 
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Figure 4. Maximum likelihood fit of a lognormal fragility function to the results 

of MSA (a); fit of lognormal fragility by means of non-linear least squares (b); 

fit of lognormal fragility on normal probability paper (c). 

Another alternative procedure is to obtain estimates of the parameters  ˆˆ, 

by means of least squares fitting, which can be done in one of two ways. One 

method consists of plotting the failure probabilities per stripe, jP f IM im =
   

obtained from Equation (8), on normal probability paper and estimating the 

parameters via least squares fitting of a line. For this procedure, the values of 

the standard normal variable, Z ,corresponding to the failure probabilities are 

calculated as ( )1

j jz P f IM im−  =  =
   , for which it can be assumed that, on 



18 

 

a normal probability paper [58], a linear relationship of the form 

( )ˆ ˆˆ 1 ln( )Z im  = − +   should hold; e.g., Figure 4c. In this case, the least 

squares estimate for  ˆˆ,  is known to be the one given by Equations (8): 
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,     (8), 

which are derived directly from the normal equations of the least-squares 

problem; e.g., [59]. It should be noted that if the probability of failure decreases 

with increasing seismic intensity, input data may be ill-conditioned and the 

fragility fitting may be not reliable. 

The second method entails fitting a fragility function by minimizing the sum 

of squared errors according to Equation (9): 
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,   (9) 

which is akin to performing a non-linear least squares regression, Figure 4b. 

2.4. Simplified approach via non-linear static analysis: SPO2FRAG 

software 

The conceptual basis of SPO2FRAG lies in simulating the results of 

incremental dynamic analysis using SPO alone. Therefore, the principal 

assumptions behind IDA and the methodologies for fitting IM-based analytical 
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fragility models on IDA results are also relevant in this case and merit briefly 

recalling them. 

IDA collects the responses of a non-linear structure to a suite of 

accelerograms, as these accelerograms are progressively scaled in amplitude to 

represent increasing levels of seismic intensity. These structural responses are 

typically represented by a scalar quantity, the EDP. Examples of EDPs often 

used for buildings are maximum roof drift ratio (RDR) and maximum 

interstorey drift ratio over all floors (IDR). Furthermore, a scalar IM is chosen 

to represent seismic intensity; e.g., PGA or first-mode spectral acceleration, 

( )1Sa T . One basic assumption is that such an IM is sufficient, that is, the EDP 

random variable conditioned on the IM is independent of other ground motion 

features needed to evaluate the seismic hazard for the site, such as magnitude 

and source-to-site distance (e.g., [60]). Another closely related assumption is 

the so-called scaling robustness of the chosen IM, meaning that using records 

scaled to the desired amplitude of the IM, rather than records where said 

amplitude occurred naturally, will not introduce bias into the distribution of 

structural responses obtained (e.g., [35]). This allows plotting EDP against IM 

as each individual record is scaled upwards, resulting in an IDA curve. 

It is assumed that in the numerical model of the structure employed for IDA, 

stiffness and strength degradation under dynamic loading are acceptably 

represented. Consequently, failure of the analysis to provide an EDP value after 

scaling a record to a certain IM level can be attributed to the onset of dynamic 

instability, which would physically correspond to the structure’s side-sway 

collapse (see also [61]). For presentation purposes, this numerical onset of 

collapse can be displayed at the end of the IDA curve as a horizontal segment 

of ever-increasing EDP-values for a fixed IM value, or a flat-line (see Figure 

5). In cases where global collapse is deemed to occur at lower IMs due to non-

simulated modes of failure (e.g., shear or axial failure of columns) an 

appropriate flatline may be used instead to terminate the IDA curve earlier. 

An effective way of summarizing IDA results is to calculate and plot 

counted fractile curves of either EDP for fixed IM or vice-versa [51]. Usually, 

fractile IDA curves at 16%, 50% and 84% are chosen for presentation, 

corresponding to the mean plus/minus one standard deviation of a Gaussian 

distribution. As a matter of fact, as introduced in Section 2.3, analytical 

derivation of fragility functions typically involves fitting a parametric 

probability model to the results of dynamic analysis and the model chosen is 
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very often lognormal. One way of defining the fragility function for a limit state 

is to assume that there exists a threshold (maximum allowable) value of some 

EDP, fedp , whose exceedance also signals failure, i.e., exceedance of the limit 

state, according to Equation (10). 

 
Figure 5. Example of IM-based derivation of structural fragility using IDA 

curves (limit state defined as exceedance of a 2% IDR value). 

f fP f IM im P EDP edp IM im P IM im    = =  = =       .  (10) 

An alternative way of looking at this fragility definition, within the IDA 

framework, can be stipulated by considering a random variable representing the 

IM level at which to scale a specific record in order to fail the structure (i.e., 

causing the event fEDP edp ), denoted as fIM . In this case, the fragility 

function can be written as the probability of this random variable being equal 

or lower than the level of seismic intensity possibly occurring at the site, 

according to Equation (10) – see also [18]. By making the assumption that 

fIM  follows a lognormal distribution, the fragility function will be completely 

defined by estimating the two parameters of the underlying Gaussian, i.e., the 

mean of the logs   and the logarithmic standard deviation  . These 

parameters can be estimated using the sample of ,f iIM values shown in Figure 
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5 as the intersection of the individual IDA curves and the fEDP edp=  vertical 

line. As a consequence, it is possible to write the fragility function via the 

standard Gaussian function ( ) , as in Equation (2). 

As evidenced in Figure 5, the IM-based approach is particularly convenient 

when global collapse becomes the limit state of interest: any vertical line 

intersecting all the records’ flat-lines will provide the empirical distribution for 

collapse intensity to which a model such as the lognormal appearing in 

Equation (2) can be fitted. This, in turn, may be used to compute the failure rate 

via Equation (1). In general, though, pinpointing a fixed value of fedp  that 

signals the transition between limit states can be hard due to the uncertainties 

involved. 

It should be highlighted that when using IDA to estimate the fragility 

P f IM im =  , the two already mentioned assumptions of sufficiency and 

robustness to scaling are endorsed by default, due to the very nature of the 

analysis. In what follows, it will be assumed that first mode spectral 

acceleration, ( )1Sa T , is a sufficient-enough IM with respect to roof and 

interstorey drifts for the structures considered and thus the problem of fragility 

estimation will be treated as site-independent. 

2.4.1 SPO2IDA 

SPO analysis finds application in the context of earthquake engineering as part 

of several approximate procedures that relate the inelastic seismic response of 

structures to that of some equivalent SDOF system. The popularity of such 

methods can be attributed to their inherent simplicity and eventual adoption by 

normative documents and guidelines on seismic structural design/assessment. 

Some of the earlier examples of SPO-based procedures made recourse to 

elastic-perfectly plastic or bilinear SDOF equivalent oscillators and relied on 

inelastic displacement ratio predictive Equations or R T− −  (strength ratio – 

ductility – period) relations to obtain estimates of their average inelastic 

response. More recently, the trend has been shifting towards accounting for the 

variability of inelastic seismic response around its central value and towards 

expanding the limits of structural assessment to include global collapse (e.g., 

[62]). The latter of these trends practically translates into the adoption of more 

elaborate numerical models for the structure and consequently SPO curves that 

trace monotonic response to lateral loading down the (in-cycle) strength-
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degradation descending branch and along an eventual residual strength plateau. 

This, in turn, gives rise to the need for analytical models that predict the 

response of SDOF systems with more complex backbone curves, such as the 

quadrilinear depicted in Figure 6. 

 
Figure 6. Quadrilinear monotonic backbone curve in dimensionless  ,R 

coordinates and defining parameters (a), SPO2IDA prediction against actual 

quadrilinear-backbone SDOF oscillator (T=0.56s) IDA curves obtained using 

all forty-four components of the FEMA P695 far-field ground motion set (b). 

In this format, the quadrilinear backbone can be completely defined by five 

parameters shown in Figure 6(a): the hardening slope 
h (positive ratio of post-

yield stiffness to elastic stiffness), the capping-point ductility 
c (point where 

loss of strength with increasing deformation begins), the post-capping slope 
c

(negative slope corresponding the ratio of the negative post-capping stiffness 

divided by the initial elastic stiffness), the height of the residual strength plateau 

pr (ratio of residual strength divided by yield strength) and the fracture ductility 

f (point corresponding to sudden, complete loss of strength). It is recalled that 

ductility is defined as the ratio of displacement response to yield displacement, 

y  = , while the strength ratio ( ) ( )
y

R Sa T Sa T=  is defined as the ratio of 

the spectral acceleration intensity to its value causing yield, or, equivalently, 

the ratio of the elastic seismic force over the yield base shear of the system ( R

is sometimes encountered in the literature under the term strength reduction 

factor). 

[23] proposed a set of semi-empirical analytical Equations aimed at 

predicting the median and (record-to-record) variability of peak seismic 

response of SDOF oscillators featuring quadrilinear SPOs. These Equations use 

the SPO parameters 
h ,

c ,
c , pr , f  and period of natural vibration T  as 
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predictor (independent) variables to estimate the SDOF structure’s 16%, 50% 

and 84% fractile IDA curves in  ,R  coordinates. For this reason, this set of 

Equations has been named SPO2IDA. The Equations that comprise SPO2IDA 

were fit against the responses of SDOF oscillators with critical viscous damping 

ratios,  , equal to five percent and with hysteretic behavior exhibiting 

moderate pinching but no cyclic degradation of stiffness or strength. These 

oscillators were subjected to a suite of thirty recorded ground acceleration time-

histories, recorded on firm soil and most likely unaffected by near-source 

directivity effects. An example of an SPO2IDA prediction for a quadrilinear-

backbone SDOF system, plotted against the actual (individual and fractile) IDA 

responses for these thirty accelerograms, can be found in Figure 6(b). The limits 

of applicability for SPO2IDA in terms of the independent variables are the 

following: 0.10 4.0s T s  , 0.0 0.90h  ,1.0 9.0c  , 0.02 4.0c   

and 0.0 0.95pr  . 

The key observation behind the development of SPO2IDA was the 

relatively consistent behavior of the IDA fractile curves corresponding to the 

various segments of the underlying SPO (i.e., hardening, softening, residual). 

This behavior is visible in Figure 6(b), where the SPO is plotted along with the 

IDA fractiles (both calculated and predicted). While an almost-constant 

ascending slope characterizes the initial post-yield IDA segments, this gives 

way to gradual flattening upon crossing of the capping point. This flattening is 

temporarily arrested when the residual plateau is encountered, but only until the 

fracture point leads to the flat-lines that indicate collapse. Although analytically 

complex, SPO2IDA is an algorithm that has proven well-suited to computer 

implementation. SPO2FRAG fully exploits SPO2IDA’s potential as a PBEE 

tool by surrounding it with a set of modules that render the SPO-based 

estimation of seismic structural fragility practical. The complete conceptual and 

operational details are presented in the following sections. 

2.4.2 Definition of an equivalent SDOF system 

The choice of an equivalent SDOF system for a given structure lies at the core 

of all SPO-based analysis methods. This choice entails the definition of the 

SDOF oscillator’s mass, *m , yield strength, 
*

yF , yield displacement,
*

y  and as 

many of the dimensionless backbone parameters (see Figure 6a) as are 
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applicable to the case at hand (i.e., depending on whether one is opting for a 

bilinear, trilinear or full quadrilinear approximation of the SPO curve). 

 
Figure 7. Definition of equivalent SDOF system: SPO analysis of the strtucture 

(a), definition of dynamic characteristics of the SDOF system (b), definition of 

monotonic backbone of the SDOF system based on SPO curve (c). 

With reference to Figure 7, we assume that a generic n-storey frame building is 

subjected to a lateral load profile 
i i iF m =    , where 

iF  is the force acting 

on the i-th storey, 
im  represents floor mass, the elements 

i define a 

dimensionless displacement profile, which is assumed constant with unit value 

at roof level ( 1n = ), and   is a scale factor with dimensions of acceleration. 

By gradually increasing the scale factor  , recording the displacement 

response of the deforming structure at roof level, roof , and plotting that 

displacement against base shear, 
1

n

b i

i

F F
=

= , we obtain the SPO curve - Figure 

7(c). This curve is used to determine the monotonic backbone of an SDOF 

system whose mass, *m , is given as a function of the structure’s floor masses 

by *

1

n

i i

i

m m 
=

=   and whose reaction force *F and displacement * are related 

to the structure’s base shear and roof displacement by dividing with the modal 

participation factor   (
*

bF F=   and 
* roof =  ) , which is calculated as 

* 2

1

n

i i

i

m m 
=

 =   [5]. 
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The period of vibration of the equivalent SDOF system, *T , is calculated as 

* *

*

*
2

y

y

m
T

F





=  . As indicated by Figure 7(c), the definition of 

*

yF  and 
*

y  

depends on the piece-wise linear approximation adopted for the SPO curve. As 

far as specific methodologies towards obtaining said approximation are 

concerned, the literature offers some variety but little consensus. Normative 

documents such as Eurocode 8 [63], FEMA-356 [64] and FEMA-273 [65] 

suggest some procedures for obtaining elastic-perfectly-plastic or bilinear 

approximations for the backbone of the equivalent SDOF based on ad-hoc 

criteria such as area balancing [63]. Furthermore, when it comes to trilinear or 

quadrilinear SPO fits that bring to the table a larger number of parameters to be 

estimated, such simple rules are not enough. In fact, more advanced methods 

towards constructing trilinear SPO curve approximations were proposed in 

FEMA-440 [66], ASCE/SEI 41-06 [67] as well as by [68] and [62]. 

Recently, [69] set forth a set of rules for obtaining quadrilinear 

approximations that may potentially include a residual strength plateau. In that 

work, the optimization of the piece-wise linear fit was performed by comparing 

the IDA curves of the multi-linear-backbone SDOF oscillator with those of the 

system sporting the exact backbone. For this reason, this was considered the 

most suited algorithm for inclusion within SPO2FRAG’s modules. In the 

aforementioned study, the authors paid particular attention to systems with 

SPOs exhibiting notable changes of stiffness already from the early, low-base-

shear stages, e.g., Figure 7(c). Such a behavior, which can be due to, for 

example, gradual cracking of reinforced concrete (RC) members is especially 

challenging when it comes to pinpointing a nominal yield point for the 

equivalent SDOF system. It was concluded that the elastic segment of the 

equivalent system’s backbone should correspond to a secant stiffness at an early 

point on the SPO curve, at around 5% to 10% of maximum base shear. This is 

due to the fact that when the elastic stiffness attributed to the equivalent system, 
* *

y yF  , significantly departs from the initial tangent stiffness of the actual 

structure, the IDA curves corresponding to the linearized backbone display 

poor fit with respect to the IDAs of the exact backbone at the comparatively 

low-seismic-intensity region. This is especially relevant in cases where absence 

of a clearly defined elastic segment and high initial curvature characterizes the 

SPOs. 
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2.4.3 Consideration of MDOF effects 

Once an equivalent SDOF oscillator has been fully determined, SPO2IDA can 

provide an approximation for the three fractile IDA curves of this SDOF system 

in  ,R   coordinates, as already discussed (see Figure 8a). The predicted IDAs 

can be regarded as fractiles of strength ratio,
%xR , given  , with 

 16%,50%,84%x = . However, two further steps are needed before this result 

can be used to obtain a meaningful estimate for the fragility of the original 

MDOF structure. First of all, the SDOF IDA curves must be transformed from 

 ,R   into an IM – EDP format appropriate for the structure. Second step is to 

address the variability of response at the nominal yield point 1R = = . Prior 

to this point, the three IDA 
%xR fractiles of the SDOF system coincide, 

corresponding to zero response variability around the median. On the other 

hand, the MDOF structure does exhibit response variability at that point. If the 

nominal yield point corresponds to the structure remaining in the elastic range, 

some limited variability will exist due to higher-mode contributions to base 

shear. Higher variability may be expected when the nominal yield corresponds 

to deformation levels where the structure is already manifesting some non-

linear behavior (e.g., Figure 7c). In either case, the missing amount of 

variability should be estimated and injected back into the SDOF-derived 

approximation of the IDA curves. This is especially important when fragility 

for low-damage limit states is being sought. These operations are schematically 

presented in Figure 8b. 

 
Figure 8. Schematic representation of the conceptual basis of SPO2FRAG: (a) 

obtaining SPO2IDA-predicted IDA fractiles for the equivalent SDOF system, 

(b) transforming the SDOF IDA curves to MDOF IM-EDP coordinates, (c) 
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fitting Gaussian models to the transformed IDA fractiles according to the IM-

based procedure (c). 

Since the restoring force of the SDOF system depends on spectral acceleration 

at its natural period, *T , the transformation of IM is the most immediate 

operation: the 16%, 50% and 84% fractiles of ( )* ,5%Sa T  are obtained from 

their counterpart R  fractiles according to 

( )  
2

*

% *%

2
,5%  , 16,50,84

y

xx
Sa T R x

T

  
=    

  
. 

The passage from ductility demand to RDR and IDR can be performed 

according to Equation(11), where 
ih  denotes the height of the i-th storey and 

eff  is an effective modal participation factor that can be used instead of  : 

*

1

y

eff n

i

i

RDR

h

IDR COD RDR

 

=

 
=  




 = 

         (11) 

In Equation (11), the notation COD stands for coefficient of distortion (e.g., 

[70]). COD is defined as the ratio of maximum IDR to the roof drift and is a 

function of R . This is expressed by Equation (12), where 
i  represents the 

SPO displacement of the i-th storey at base shear level yR F  and 
1

n

i

i

H h
=

=  

the total building height: 

( ) 1max i i i
i

n

h
COD

H

 



−−
=        (12) 

On the other hand, the effective modal participation factor eff  appearing in 

Equation (11) is intended to account for higher-mode effects and possible early 

(prior to nominal yield) non-linear behavior; for an example see [71]. Note that 

eff  can be simply substituted by   when such effects are not of concern. In 

the context of SPO2FRAG, eff corresponds to an approximate analytical 

model that was developed using IDA results obtained for twenty-eight plane, 

steel and RC moment-resisting frames (MRFs) having two to eight storeys, 



28 

 

first-mode periods within 0.25s-2.00s and using both distributed and 

concentrated plasticity models. The proposed functional form for 
eff  is: 

( )
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  .  (13) 

In Equation (13), ( )2Sa T  represents the geometric mean spectral acceleration 

at the second-mode period, when all records of the ground motion suite 

employed by [23] for SPO2IDA are scaled to a common ( )*Sa T  value. On the 

other hand, 
50%

colR  represents the median strength ratio causing collapse, taken 

as the median SPO2IDA flat-line height. 

Note that according to Equation (13), eff  can assume values between 

(lower bound) and 
1 1

n n

i i i

i i

m m 
= =

   (upper bound). The upper bound value 

corresponds to activation of the full structural mass along the vibration mode 

i . Furthermore, eff  depends on R , 
*

1T T , and ( ) ( )*

2Sa T Sa T . The ratio 
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*

1T T  is a measure of how far the nominal yield point of the equivalent SDOF 

system trespasses into non-linear territory; higher values of this ratio 

correspond to SPO curves with considerable initial curvature. The ratio 

( ) ( )*

2Sa T Sa T  is in place to account for the response-amplifying effect of 

higher modes, when the structure is excited by accelerograms exhibiting larger 

spectral ordinates at the second-mode period. It has been known for some time 

that, in MRF structures, such effects persist into the non-linear response range 

(e.g., [7]). 

The second part of the SDOF to MDOF transition consists of adding the 

missing variability at nominal yield, y . [62] suggested that this can be 

achieved by running a set of linear-elastic response history analyses of the 

structure. Although that approach may work when nominal yield of the 

equivalent SDOF system coincides with the linear-elastic limit of the structure, 

in order to deal with a generic case when the former delves into non-linear 

territory a semi-empirical relation was developed for the purposes of 

SPO2FRAG. This relation was calibrated using the same stock of buildings’ 

numerical models as for Equation (13): 
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.   (14) 

According to Equation (14), two separate contributions are considered in the 

estimate of y  . The term yo  that accounts for early non-linear behavior (i.e., 

curvature of the SPO curve prior to the nominal yield point) and the term 
2,y T  

that accounts for purely higher-mode contribution to variability at yield. The 

other terms introduced in Equation (14) are the secant-to-first-mode period 

ratio sec 1T T and the , %

bilin

y xSa  fractiles that determine yo . The terms , %

bilin

y xSa  

appearing in Equation (14), correspond to the x% SPO2IDA fractiles of an 
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auxiliary SDOF system, whose bilinear backbone is fitted using only the SPO 

segment that precedes the nominal yield point; this means that yo  attains 

higher values as the nominal yield point advances into the non-linear part of the 

SPO curve and reduces to zero whenever nominal yield is found on the initial 

linear segment. The 
sec 1T T  ratio used in the calculation of the 

2,y T  term is 

another proxy for early SPO curvature; note that according to Equation (14), 

the influence of the higher-mode term 
2,y T  diminishes for increasing values of 

sec 1T T . This is explained by the fact that larger values of 
sec 1T T  imply 

substantial initial curvature of the SPO curve, in which case the competing term 

yo  tends to account for most of the variability. It should be noted that the 

combination of employing the 
eff  concept and injecting the missing 

variability at yield y , constitutes a simplified method of dealing with higher-

mode effects in the context of SPO analysis that was tailor-made to suit the 

needs of the SPO2FRAG software; therefore, caution is advised should it be 

used to confront this complex issue outside this context. 

2.4.4 SPO-based fragility 

Having thus simulated the three IDA fractile curves, based on the SPO of the 

structure, the parameters of the lognormal fragility model of Equation (2) can 

be fitted for each limit-state (Figure 8c). Since the SPO-based IDA 

approximation does not provide the individual IDA curves, but only fractiles, 

the fragility parameters can be estimated as: 

( )

( )

,50%

,50% ,16% 

ln

ln

LS

f

LS LS

f f

Sa

Sa Sa





 =


=

.      (15) 

The terms , %

LS

f xSa  represent the x% fractile of the structural intensity causing 

exceedance of each limit state LS, as defined when introducing Equation (10) 

and IM-based fragility. 

Finally, once the lognormal fragility parameters  ,   have been estimated 

from the SPO analysis one may consider two a posteriori modifications. One 

modification to the median, in order to account for structural damping other 

than 5% =  and another modification to the dispersion that accounts for 

additional response variability due to structural modelling uncertainty. In the 
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5%   case, it is considered that it is sufficient to modify the median and only 

for limit states nearing collapse. In fact, [68] proposed a modification factor, 

C , to be applied to the median collapse intensity of 5%-damped SDOF 

systems: 

( ) ( )

( )

50% 50%  

0.38 0.26* 0.44

5%

0.07 ln 0.20
1

col col

c c

R C R
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T





 



 
− −

 =  =
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 + = −


 

.     (16) 

However, even for structures with 5%  , it is desirable to maintain 

( )* ,5%Sa T  as IM, since hazard is typically available in terms of 5%-damped 

spectral ordinates. Therefore, the necessary modification boils down to 

Equation (17), where 
col

  represents the logarithmic mean collapsing intensity 

of a 5%   structure in terms of ( )* ,5%Sa T  and 5%

col

 =  is the uncorrected 

SPO2IDA estimate from Equation (15), that considers 5% =  by default: 

5% lncol col C    == − .       (17) 

Apart from the modification of Equation (17), which is applicable at collapse, 

a modification factor is also applied to the median failure intensity of any limit 

states defined by EDP thresholds in proximity to collapse. These modification 

factors are obtained by interpolation, based on the requisite that   increase 

monotonically with fedp . 

When a single deterministic numerical model of the structure is subjected to 

IDA, the distribution of the obtained responses reflects record-to-record 

variability. However, one may also wish to account for uncertainty underlying 

the mechanical model parameters (such as material strength, member hysteretic 

behavior, mass distribution, etc.). A simple method for dealing with this issue, 

adopted by [54], is the so-called first-order assumption, whereby the mean 

logarithmic failure intensity is itself a normal random variable, depending on 

the probabilistic configuration of the structural model, with a standard deviation 

U and mean  . Then, the fragility function remains lognormal with the same 

mean, but with variance 
2 2 2

tot U  = + , with   representing response 

variability estimated directly from SPO2IDA and Equation (15). The 
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variability due to modelling uncertainty, 
U , can either directly assume a value 

proposed in the literature (e.g., values suggested in FEMA P-695 for the 

collapse limit state) or be estimated by combining SPO2IDA and Monte-Carlo 

simulation, similar to what was suggested by [33], to follow. 

2.4.5 Operational outline of SPO2FRAG 

The SPO2FRAG tool is essentially a software implementation of the 

methodology for the SPO-based derivation of seismic fragility functions 

presented in detail in the preceding section. This engineering application 

revolves around a graphical user interface (GUI), which is divided in three parts 

(Figure 5): the SPO to IDA and fragility toolboxes, panels for the visualization 

of intermediate results (SPO processing and IDA curve generation) and an 

output panel where the end result in the form of fragility curves is visualized. 

 
Figure 9. Main SPO2FRAG GUI displaying a completed elaboration of 

fragility curve calculation. 

In operational terms, SPO2FRAG comprises a series of individual modules that 

function independently and complement one another: 

1. input interface; 

2. automatic multi-linearization tool; 

3. dynamic characteristics interface;  

4. SPO2IDA module; 

5. EDP conversion tool; 
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6. limit-state definition interface; 

7. additional variability management tool; 

8. fragility parameter-fitting module. 

These modules are organized into two toolboxes on the main GUI and operate 

according to the flowchart of Figure 10. 

 
Figure 10. SPO2FRAG flowchart, schematically showing the grouping of the 

sub-modules into “SPO2IDA tools” and “Fragility curve tools”. 

2.4.5.1 Data input and definition of equivalent SDOF system 

The SPO2FRAG tool does not include structural analysis code and operates on 

the premise that the necessary static non-linear and any optional modal analysis 

are performed externally. Therefore, any SPO2FRAG project starts at the data 

input interface, which reads SPO force-displacement results from either a text 

or a spreadsheet file. 
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The user is advised to provide SPO displacements at all storeys (rather than 

just at roof level) since this lateral deformation profile 
i  can then be used by 

the program to compute the COD according to Equation (12), permitting a 

direct SPO-based conversion of RDR to IDR – Equation (11). During input, the 

SPO curve is subjected to some rudimentary checks for correctness and 

consistency. Subsequently, the roof displacement – base shear values are 

forwarded to the automated piece-wise linear fitting module. 

 
Figure 11. Multi-linear backbone definition for the equivalent SDOF system 

and input of dynamic and geometric characteristics of the MDOF structure 

(spring-mass representation is purely indicative) within the SPO2FRAG GUI. 

The multi-linear fit module is intended to aid the user in the definition of the 

equivalent SDOF backbone curve and allows for the options listed below: 

• Quadrilinear fit; the SDOF backbone curve receives a piece-wise 

linear fit based on the work of [69], potentially comprising a maximum 

of four segments: elastic, hardening, softening and residual strength. 

Corresponding parameter values are determined via a Monte-Carlo-

based optimization algorithm. 

• Bilinear fit; two-segment (elastic-hardening) fit in the spirit of the 

FEMA-356 displacement coefficient method [64], again according to 

criteria set forth by [69]. 
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• Elastic-perfectly plastic fit; simple bilinear elastoplastic fit based on 

area balancing, compatible with code prescriptions (e.g., [63]), ending 

when strength drops below 80% of maximum (or at the last available 

SPO point). 

• User-defined backbone parameters: manual input by the user. 

The multitude of fitting-scheme choices is intended to accommodate various 

levels of refinement in the numerical modelling, at the user’s discretion. The 

user is also given the option to intervene and override any of the automatically 

assigned backbone parameters. 

Once the backbone parameters have been established, data input continues 

with the dynamic characteristics and geometric configuration of the structure 

(Figure 11). Additional data required at this stage consist of floor masses and 

storey heights, the first and second mode vibration periods and the participating 

mass factor. In cases where the user has provided SPO displacement values at 

all storeys, SPO2FRAG offers the option of internally approximating the modal 

participation factor, participating mass and first-mode period. First of all, a 

segment of the SPO curve is sought that corresponds to linear-elastic response 

(within a certain tolerance). The force (base shear) and i-th floor displacement 

values at the end of said segment are denoted as 
elF  and ,el i ,  1,...,i n= with 

n  corresponding to the top-most storey, as per the convention of Figure 7. By 

making the assumption that the lateral force profile sufficiently approximates 

the first modal load vector,  , 
1T  and the participating mass, m , can be 

automatically estimated by the program according to Equation (18). 
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This is also the point where the user is called upon to decide whether to opt for 

the SDOF to MDOF EDP conversions using eff  as per Equation (13) or to 
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simply set 
eff =  . The former choice can add accuracy to the approximation 

for structures with non-negligible higher-mode contribution to the response, 

while the latter is a cautionary choice for cases when the user desires to employ 

some particular backbone fit of his own devising. 

2.4.5.2 The SPO2IDA module and SDOF to MDOF conversions 

Once the data input and multi-linear fit of the SPO curve phases have been 

concluded, the SPO2IDA module is activated, providing the approximated 

16%, 50% and 84% IDA fractile curves in  ,R   terms. This SPO2IDA output 

is internally converted into ( )* ,5%Sa T versus drift coordinates. In cases where 

the SPO displacements at all storeys have been provided, the default is to 

convert the IDAs into IDR with the aid of Equation (12); otherwise, RDR is 

employed, as estimated via Equation (11). In the latter case, the user is still 

given the option to switch to IDR, using the approximate Equations for the 

lateral post-yield deformation profile suggested in FEMA P-58-1 [72]. 

2.4.5.3 Definition of performance limit states 

By default, SPO2FRAG recognizes five seismic performance limit states, but 

the user is given the choice to add or remove limit states for each project. The 

first four limit states are labeled fully operational, immediate occupancy, life 

safety and collapse prevention (see [73]). The fifth limit state, labeled side-sway 

collapse, is added by SPO2FRAG when the SPO curve exhibits strength 

degradation in the form of a negative-stiffness branch. This limit state 

corresponds to dynamic instability and is matched to the IDA flat-lines, without 

requesting any further user-input. The user may also opt to introduce any non-

simulated collapse modes by appropriately truncating the SPO curve, whereby 

this limit-state (and the corresponding flatlines) more reliably indicate the 

occurrence of global collapse. For the remainder of the limit states, the user is 

expected to define thresholds in terms of EDP that determine each one’s 

exceedance. Exceedance thresholds may be inserted explicitly or defined on the 

SPO curve (e.g., at specified values of global ductility or percentage of peak 

strength loss), via a dedicated tool contained in the limit-state module (Figure 

12). An additional option available to the user is to treat some or all of these 

exceedance thresholds as random variables by assuming that they follow a 

lognormal distribution. In this case, the threshold EDP value is taken as the 

median value and the user must define the log-standard deviation as well. 
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Figure 12. Limit-state threshold definition window and subsidiary tool for 

operating on the SPO curve while defining the thresholds. 

2.4.5.4 Managing additional sources of variability 

At this point, even though SPO2FRAG has accumulated sufficient information 

to be able to proceed with the estimation of the fragility function parameters 

according to Equation (15), two issues pertaining to the introduction of 

additional response variability remain to be addressed on an optional basis. The 

first of these issues is the fact that, prior to nominal yield, the MDOF system 

exhibits record-to-record variability that has not yet been accounted for in the 

SDOF to MDOF transformation, resulting in the 16% and 84% IDA fractiles 

temporarily coinciding with the median for drift values corresponding to 1R 

. This shortcoming can be remedied at this juncture by injecting an estimate for 

this missing variability at nominal yield, which is then propagated along the 

IDA 16% and 84% fractiles. Users may employ the values automatically 

provided by SPO2FRAG, according to Equation (14), or override them with 

their own values from external analysis (e.g., as suggested by [62]). This 

addition can be important when the fragilities of high-performance limit states 

are of interest (i.e., those corresponding to practically unscathed post-

earthquake functionality of the building). 

The second optional issue concerns cases where one wishes to account for 

model uncertainty in the fragility curves. This translates to additional response 

variability, which can be incorporated into the approximated SPO2FRAG IDA 

curves by symmetrically (in log-space) distancing the 16% and 84% fractiles 

away from the median. This only leaves the parameter 
U  to be determined for 

each limit state and the corresponding SPO2FRAG module offers two options 

for doing so (Figure 13). The first option entails user-definition of a 
U  value 
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at one of the predetermined limit states. This value could be obtained from the 

technical literature and should be appropriate for the structure and the level of 

modeling sophistication at hand. This additional uncertainty is then propagated 

along the IDA curves in a manner that ensures their monotonicity. 

 
Figure 13. SPO2FRAG’s window for the additional variability management 

module. 

The second option is to estimate 
U via a combination of SPO2IDA and 

Monte Carlo simulation. In this second case, some of the parameters that define 

the equivalent SDOF backbone are treated as lognormally distributed, 

independent random variables, whose variance is determined by the user (the 

median is taken by default as the value defining the current equivalent SDOF 

backbone). According to this methodology, a number of M  Monte Carlo 

realizations of the backbone are created by sampling from these distributions 

and subsequently SPO2IDA is used to obtain the median intensity per limit state 

exceedance for the j-th backbone realization, ( ),50%

LS

f j
Sa ,  1,...,j M= . Then, 

U  can be estimated according to Equation (19). 
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This operation follows the spirit of the methodology of [33], the difference 

being that, in this case, the Monte Carlo simulations are performed by sampling 

directly the piece-wise linear equivalent SDOF backbones, rather than by 

executing new SPO analysis runs. 

2.4.5.5 Fragility curve parameters 

Upon the conclusion of the preceding operations (even without consideration 

of additional uncertainty) the fragility function estimation module may be 

activated. At this point, SPO2FRAG will query the user regarding the damping 

ratio  characterizing the structure and the choice of estimator for the 

dispersion parameter (see also Figure 10). The former information is needed 

whenever a correction for 5%   should be applied to the estimated 

logarithmic mean according to Equation (17), while the latter provides an 

alternative to the estimation of   given in Equation (15): Instead of using the 

log-space distance between the 50th and the 16th percentile failure intensities, 

one may opt to use instead the log-space half-distance between the 84th and 16th 

percentiles, ( ),84% ,16%1 2 ln LS LS

f fSa Sa =  . 

SPO2FRAG uses Equation (15) by default for two reasons. If one selects, 

among alternative SPO lateral force profiles, the one that leads to the earliest 

failure of the structure (as recommended by [62]) the SPO-based backbone will 

correspond to that single collapse mechanism. On the other hand, IDA of the 

MDOF structure will reveal a variety of collapse mechanisms for different 

records – see for example [74]. Recognizing that the IDA curves corresponding 

to the more favorable collapse mechanisms should be more influential towards 

the shape of the 84% failure intensity fractile, it is to be equally expected that 

the more unfavorable (e.g., soft-storey mechanisms) similarly dominate the 

16% fractile. Hence, one concludes that choosing the most unfavorable SPO 

lateral load profile could result in the lower (50% and 16%) fractile curves 

being better approximated through SPO2IDA than the 84% one. The second 

reason is that Equation (15) may be regarded as compatible with a truncated 

IDA analysis strategy (e.g., [55]), where an analyst chooses to run IDA but only 

scale records up to a certain IM level (e.g., until 50% of records induce 

collapse). This truncated IDA scheme may be dictated by the desire to avoid 
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any scaling bias that might lurk above the considered IM limit (see for example 

[36]). 

 
Figure 14. SPO2FRAG’s dialogue window upon activation of the fragility-

function estimation module. 

For all limit states that have been assigned deterministic exceedance thresholds, 

estimation of the lognormal fragility function parameters  ,   proceeds as 

described in detail in paragraph 2.4.4. In cases where some limit states have 

been assigned exceedance thresholds with an associated lognormal probability 

density, the fragility function is estimated by means of numerically evaluating, 

via Monte Carlo, the integral resulting from application of the total probability 

theorem: 

( )
( ) ( )

ln
f

f

ff

edpLS

f EDP f f

edpEDP

im
P IM im f edp d edp





 −
  =     

  
 .  (20) 

In Equation (20), ( )
fEDP ff edp is the probability density function of fEDP  and 

fedp , 
fedp are the logarithmic mean and standard deviation of 

LS

fIM  

conditional on the limit state threshold assuming each specific value 

fEDP edp= . A noteworthy result of normal theory applicable in this case is 
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that, when ( )
fEDP ff edp  is a lognormal density, then LS

fP IM im   , as given 

by Equation (20), also follows the lognormal model. 

 
Figure 15. Visualization of estimation uncertainty underlying the fragility 

parameter estimates with the aid of a parametric-bootstrap-generated set of 

alternative fragility curves. 

2.4.5.6 Consideration of estimation uncertainty 

The SPO2FRAG tool estimates seismic fragility according to the IM-based 

procedure described in Section 2.3, by simulating dynamic analysis results via 

the SPO2IDA algorithm. Since the SPO2IDA Equations were fit against IDA 

responses to a suite of thirty recorded accelerograms [23], the fragility 

parameter estimates provided by SPO2FRAG can be implicitly regarded as 

(fixed-size) sample estimators of a Gaussian model’s parameters. As such, the 

estimators for the mean and variance are probabilistic results that are affected 

by uncertainty of estimation, i.e., the uncertainty inherent in estimating the 

mean and variance of a population based on an extracted finite-size sample [75]. 

Since quantification of estimation uncertainty associated with structural 

fragility may be of interest for the seismic risk analyst, SPO2FRAG calculates 

the boundaries of the 90% confidence interval for each limit state’s parameter 
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estimates. Furthermore, SPO2FRAG also provides the user with a visual 

representation of the estimation uncertainty associated with the fragility curves 

obtained, shown in Figure 15. The plot depicted is generated using parametric 

bootstrap [76]. The parametric bootstrap belongs to a family of resampling 

schemes for the approximate calculation of estimator statistics and is 

simulation-based. In the case at hand, a fixed number of twenty-five hundred 

bootstrap samples of size thirty are extracted from the Gaussian distribution 

defined by the SPO2FRAG-estimated fragility parameters. Then, a new pair of 

lognormal fragility parameters is re-estimated for each extraction. Finally, the 

fragility functions corresponding to each bootstrap extraction are plotted 

against the originally fitted fragility curve, resulting in Figure 15. 

2.4.6 Illustrative SPO2FRAG applications 

In order to be able to illustrate SPO2FRAG’s function and compare the 

resulting fragility functions with their dynamic-analysis-derived counterparts, 

two applications on MRFs are presented where seismic fragility functions are 

obtained both by means of SPO2FRAG and via IDA. 

2.4.6.1 Structures, numerical models and set of ground motions used in the 

analyses 

The two case-study structures used in these examples are a four-storey steel 

MRF and a six-storey RC-MRF. The four-storey steel MRF (Figure 16a) 

belongs to a set of archetype structures designed and employed for the purposes 

of the NIST GCR 10-917-8 report [77]. On the other hand, the six-storey RC-

MRF (Figure 16c) was designed and used by [78], where information on 

member detailing can be found. 
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Figure 16. Geometry of centerline idealizations of the two MRFs and 

corresponding SPO curves. Four-storey steel MRF geometry (a) and SPO (b). 

Six-storey RC-MRF geometry (c) and SPO (d). 

Both frames were modelled numerically using 2D centerline finite element 

representations in the OpenSees structural analysis platform [79]. Material non-

linearity was accounted for using a concentrated plasticity approach. The 

properties of the monotonic backbone of the plastic hinges at member edges 

were estimated using the regression Equations suggested by [42] for the steel 

and those by [80] for the RC frame, while a moderately pinching hysteretic law 

proposed by [39] was assigned to both. Structural damping of 2% =  was 

assumed for the steel and 5% =  for the RC frame, modelled according to the 

recommendations of [81]. Geometric non-linearity in the form of P−  effects 

was also taken into account. The SPO curves of both frames, obtained using 

first-mode-proportional load patterns, are shown in Figure 16, along with the 

equivalent SDOF backbone of their SPO2FRAG elaboration. 

For the purpose of running IDA with these numerical structural models, a 

set of eighty recorded accelerograms was assembled. This set includes the 

twenty-two ground motions of the far-field set in FEMA-P695 [52], which was 
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enriched by another eighteen records from the Engineering Strong Motion 

database (http://esm.mi.ingv.it). Both recorded horizontal components at each 

station are applied to the plane structural models separately. Overall, the ground 

motion suite includes records from events with magnitude from 6.0 to 7.6, 

recorded at distances from 5 to 50 km on firm soil (EC 8 classification A, B or 

C), not containing relevant directivity effects and exhibiting PGA in the range 

from 0.12 to 0.90g. 

2.4.6.2 Comparison of IDA- and SPO2FRAG-based fragility estimates 

Both structures were subjected to IDA using the set of eighty accelerograms 

described above, while their SPO curves were used to simultaneously run 

fragility estimates in SPO2FRAG. In order to limit the number of required 

analyses to reasonable levels, IDA was run using the hunt-and-fill algorithm 

proposed by [51]. For both structures, limit state exceedance thresholds were 

defined in terms of IDR. Immediate occupancy, life safety and collapse 

prevention IDR thresholds were determined using the SPO results, by imposing 

the maximum plastic rotation acceptance criteria of FEMA-356 to the critical 

elements (first-storey columns). The fully operational threshold was set to 0.5% 

IDR for the RC-MRF and near the nominal yield for the steel MRF. Global 

collapse was left to be automatically determined by SPO2FRAG based on the 

predicted flat-line heights of the IDA fractiles for the RC-MRF (thus mainly 

corresponding to side-sway collapse) while for the steel MRF it was set to the 

IDR corresponding to 50% loss of strength measured on the SPO curve, by 

using the relevant in-built tool (e.g., Figure 12) to capture additional modes of 

failure that may be expected to appear at such large drifts. 

http://esm.mi.ingv.it/
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Figure 17. Analytical IDA curves and corresponding SPO2FRAG predictions 

for (a) the four-storey steel MRF and (b) the six-storey RC-MRF. Comparison 

of IDA- and SPO2FRAG-based lognormal fragility functions per limit state for 

(c) the four-storey steel MRF and (d) the six-storey RC-MRF. 

 Furthermore, for the steel four-storey MRF, 
eff  according to Equation (13) 

was employed due to the more flexible frame’s higher-mode sensitivity and the 

correction due to 5%   was applied according to Equation (17). Finally, the 

default choice of Equation (15) was employed for the estimation of dispersion 

in both cases (see also Figure 14). 

In Figure 17 the IDA results, for both structures, can be seen with the 

SPO2FRAG predictions superimposed. Additionally, the fragility curves 

obtained for each limit state by SPO2FRAG are presented for comparison with 

the same curves derived from the IDA results using Equation (21) for the 

estimate of  , where the index  1,...,i N=  refers to the response to the i-th 

accelerogram. 

( ) ( )( )
2

, ,50%

1

1
ln ln

1

N
LS LS

C i C

i

Sa Sa
N


=

 =  −
  −

      (21) 

The corresponding parameter estimates are provided in Table 1 and Table 2. In 

order to get an appreciation of the effect that the choice of employing eff  (a 

choice made for the case of the steel MRF alone) bears on these results, it is 
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mentioned that the SPO2FRAG prediction of median intensity at collapse for 

the four-storey steel MRF using   is 0.60g (compare with 0.59g in Table 1 

resulting from using 
eff  instead). On the other hand, for the six-storey RC-

MRF, the choice of using 
eff  or  leaves the median collapse intensity 

practically unaffected. 

Table 1. Lognormal fragility function parameter estimates from SPO2FRAG 

and IDA and corresponding annual limit-state exceedance rates (events/year) 

for the four-storey steel MRF assumed to be situated at L’Aquila. 

Limit 

state 

( )exp   

(IDA) 

  

(IDA) 
( )exp   

(SPO2FRAG) 

  

(SPO2FRAG) 
f  

(IDA) 

f  

(SPO2FRAG) 

Fully 

Operational 
0.105 g 0.223 0.117 g 0.189 6.710-3 5.710-3 

Immediate 

Occupancy 
0.149 g 0.239 0.159 g 0.197 4.010-3 3.610-3 

Life Safety 0.410 g 0.340 0.379 g 0.334 7.110-4 8.310-4 

Collapse 

Prevention 
0.476 g 0.364 0.463 g 0.364 5.310-4 5.710-4 

Collapse 0.569 g 0.383 0.589 g 0.409 3.710-4 3.610-4 

Table 2. Lognormal fragility function parameter estimates from SPO2FRAG 

and IDA and corresponding annual limit-state exceedance rates (events/year) 

for the six-storey RC-MRF assumed to be situated at Ancona. 

Limit 

state 
( )exp   

(IDA) 

  

(IDA) 
( )exp   

(SPO2FRAG) 

  

(SPO2FRAG) 
f  

(IDA) 

f  

(SPO2FRAG) 

Fully 

Operational 
0.147 g 0.256 0.136 g 0.226 1.310-3 1.510-3 

Immediate 

Occupancy 
0.217 g 0.278 0.208 g 0.288 5.510-4 6.110-4 

Life Safety 0.473 g 0.403 0.448 g 0.407 9.410-5 1.110-4 

Collapse 

Prevention 
0.544 g 0.421 0.555 g 0.434 6.710-5 6.610-5 

Collapse 0.627 g 0.446 0.662 g 0.458 4.910-5 4.410-5 
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2.4.6.3 Comparing SPO2FRAG and IDA results in the context of seismic risk 

assessment. 

In order to better appreciate the agreement between the SPO2FRAG and IDA 

results, integration with seismic hazard was performed by plugging Equation 

(2) into Equation (1), thus obtaining estimates of the annual exceedance rate for 

each limit state (without considering estimation uncertainty for the sake of 

simplicity). 

 
Figure 18. Map of Italy showing the two sites of interest and the seismic sources 

considered for the seismic hazard calculations (a) and calculated hazard 

curves to be integrated with structural fragility of the case-study examples (b): 

annual exceedance rate of ( )1.80 ,5%Sa s  at L’Aquila and the same for 

( )1.20 ,5%Sa s  at Ancona. As the [82] ground motion prediction Equation is 

employed, the closest available periods to *T are used for each case to avoid 

interpolation. 

To be able to do so, it was assumed that the 4-storey steel MRF is situated at a 

site near the Italian city of L’Aquila and the 6-storey RC-MRF at a site near the 

Italian port-town of Ancona. For both of these sites, the seismic hazard was 

calculated with the aid of the REASSESS software [83], assuming firm soil 

conditions. The hazard at these sites was calculated using the seismic source 

model from [84], seismicity rates from [85,86] and the ground motion 

prediction equation proposed by [82]. The annual exceedance rates of the 5%-

damped spectral acceleration at 
*T are shown in Figure 18. The calculated 

annual rates of limit-state exceedance are included among the results reported 

in Tables 1 and 2. The good agreement between the SPO2FRAG and 

analytically-derived estimate is evident. 
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2.5. Graphical interface for dynamic analysis of single-degree-of-freedom 

systems: DYANAS tool. 

2.5.1  Software structure and graphical user interface 

DYANAS is structured around two main pillars: the various MATLAB-coded 

pre- and post-processing tools that are incorporated into the GUI and the suite 

of parametric scripts that run directly on the OpenSees platform. In order to run 

an analysis defined by the user via the MATLAB GUI, OpenSees must be 

provided with Tcl/Tk scripts that contain definition of the numerical model, 

loading, and the analysis’ operational parameters, including what response 

information to save. These Tcl/Tk scripts are divided into two categories: 

parametric and definition files. Parametric scripts contain all the information 

necessary for model definition and execution of analysis in OpenSees, as 

functions of externally-defined placeholder variables or as hard-coded analysis 

parameters; these files remain unchanged during any analysis session of the 

software (unless the user decides to make a direct, outside intervention of 

course). On the other hand, the definition files are constantly over-written by 

the GUI’s pre-processing tools, according to user input and system definition. 

Once OpenSees concludes a packet of user-requested analyses, output files are 

created, that are subsequently parsed by the GUI’s post-processing MATLAB 

routines for further elaboration of the raw results. This procedure is 

schematically depicted in the flowchart of Figure 19. 

The pre-processing, (system and analysis definition) functionalities of the 

GUI can be further split into two main groups: definition of the SDOF system 

characteristics, such as dynamic properties, backbone curve and the rules 

governing hysteretic behavior, and definition of the type of analysis, including 

definition of controlling parameters and handling of dynamic input. The post-

processing tools, on the other hand, enable organizing, plotting and extracting 

specific subsets of the results, in various common formats, useful within the 

PBEE framework. The remainder of this section describes the salient features 

of the functionalities outlined above. 
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Figure 19. Operational flowchart of the DYANAS GUI’s interaction with 

OpenSees. 

2.5.1.1 Definition of oscillator characteristics, engineering demand 

parameter and seismic intensity measure 

The first step in any new analysis session is the definition of the system to be 

analyzed, that may either be an SDOF oscillator or two uncoupled simple 

oscillators. In the latter case, two separate SDOF systems are defined and 

analyzed simultaneously, without any interaction occurring between them. This 

can be useful in the case of regular, symmetrical structures, for which 

equivalent SDOF systems may be defined via pushover in both principal 

directions [87]. 

In all cases, the SDOF system definition requires the assignment of dynamic 

characteristics, such as period of natural vibration T and viscous damping ratio 

  (modelled as mass-proportional), backbone curve and hysteretic rule. The 

backbone curve corresponds to a piece-wise linear idealization of the force-

displacement response of the system to monotonic loading and is defined by 

the yield strength and displacement, yF  and y  respectively, and up to four 
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parameters for a quadrilinear case, already defined in previous section, shown 

in Figure 20. 

 
Figure 20. Definition of non-dimensional parameters for the characterization 

of an SDOF system’s piece-wise linear backbone curve (a); backbone curve 

with descending branch, residual strength plateau and peak-oriented hysteretic 

loops (b); bilinear, kinematic hardening system (c); trilinear backbone 

exhibiting peak-oriented hysteretic behavior with moderate cylcic strength 

degradation. 

A sample of the GUI’s dialogue windows during the definition of backbone and 

other properties is provided in Figure 21. 

As can be seen in the figure, the software permits the definition of 

asymmetric backbone curves, with 
c , 

f  and yF being allowed to differ in 

the two directions, while maintaining the same elastic stiffness. Regarding the 

choice of hysteretic constitutive law, several options that have been 

implemented in OpenSees in the past are available [37,39,42,88–90]. These are 

divided into two broad categories of peak-oriented and hardening hysteretic 

rules and some of them allow for evolutionary behavior, including cyclic 

strength and stiffness degradation. It should be noted that association of a 

backbone curve with a descending branch is meaningful only for the peak-

oriented hysteretic behavior group; in such cases that include softening 

branches, in-cycle strength degradation can also emerge during dynamic 

response (whenever cycles exceed the 
c  limit – see also [91]). By means of 
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the “quasi-static cyclic” analysis type, the software offers the user a means to 

visualize the effect of each hysteretic rule on displacement-controlled cyclic 

loading. 

 
Figure 21. Main GUI window and subsidiary dialogue windows during 

definition of a SDOF oscillator’s dynamic characteristics, backbone curve 

(asymmetrical in this case) and hysteretic model. 

The second preliminary step, prior to proceeding to the analysis, is to select the 

EDP and IM that will be employed. For such simple structures as these SDOF 

oscillators, the choice of EDP is limited to the peak transient displacement in 

either horizontal direction, 
X  and 

Y , the residual displacements in both 

directions and the demand over capacity ratio, D C . The D C  ratio expresses, 

in non-dimensional form, how close the structure comes to exhausting a 

threshold EDP. It also provides a means of defining an EDP that takes response 

in both directions into account, according to the definition in Equation (22), 

which is valid for all converging runs, where 
f

X  and 
f

Y  are the “failure” 

displacements in the corresponding directions (i.e., the EDP thresholds). 

 max ,
f f

X Y

X YD C    =        (22) 
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Although the actual choice of IM can be deferred until the analysis definition 

phase (the default option being ( )Sa T  at the X-direction oscillator’s vibration 

period), in the case of bi-directional ground motion (i.e., definition of two 

SDOF systems) the user should also determine how that IM is to be calculated: 

for example, ( )Sa T  can be taken as the maximum between the values of the 

two components, ( )maxSa T , or as the geometric mean of the two, ( )gmSa T . 

2.5.1.2 Running IDA and back-to-back IDA 

Due to the particular shape of individual IDA curves, when attempting to 

adequately represent them by scaling all records at a fixed, constant step in 

terms of IM, the number of dynamic analyses that may be needed can prove 

overly time-consuming, even in the case of SDOF systems. DYANAS seeks to 

optimize required analysis time, by incorporating a MATLAB-programmed 

implementation of the “hunt-and-fill” algorithm [51], whereby the number of 

runs for each record is determined on the fly during analysis. According to this 

algorithm, after a few test-runs at characteristic IM levels, the software begins 

to determine the scale factor of the next run based on the history of previous 

results, resulting on a set of EDP-IM points on the curve – black dots in Figure 

22 – that may be closer or farther apart between curves, in an attempt to use 

approximately the same number of runs for all curves, regardless of flat-line 

height. Then, the complete IDA curve (intermediate points – colored segments 

in Figure 22) is obtained by means of piece-wise interpolation between these 

calculation points on the IM-EDP plane. Both spline and linear interpolation 

are possible, with the former being the default option in DYANAS, as it results 

in smoother IDA curves. 
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Figure 22. Conversion of IDA curves from five records between IMs: from 

( )1.25 sSa T =  (a) to PGA (b). The highlighted calculation point on one of the 

five records used for this example (event, year and recording station reported 

in the legend) shows the re-mapping of that point between the two panels, the 

PGA-to-spectral-ordinate ratio for that record being 2.91 1.63 . Herein the 

hunt-and-fill algorithm was stopped prior to evening out the total number of 

runs per curve, when each flatline was adequately captured. 

An additional advantage, provided by this computational strategy, is the 

possibility for nigh-instantaneous change of IM, once a set of IDA curves has 

been obtained. This IM-change operation can prove useful in a variety of 

situations, such as when a set of distinct structures must all have their seismic 

vulnerability functions expressed in a common IM [92] or when the same 

requirement occurs for the two principal orientations of a single structure [93] 

or simply for studying the relative merits of choosing one IM over another [60]. 

This is also demonstrated in Figure 22, where the conversion of a set of five 

IDA curves from spectral pseudo-acceleration, ( )Sa T , at period 1.25 sT =  to 

PGA is shown. Given that each explicit calculation point from the trace-IDA 

implementation, shown in the figure as a black dot upon the spline-interpolated 

curve, corresponds to a specific scale factor applied to that record, each EDP 

value at any of these points can be reassigned to the value that the new IM 

assumes on the record’s scaled spectrum. After this re-mapping of the 

calculation points to the new IM (in this example PGA) is complete, spline 
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interpolation based on the new IM-EDP points provides the converted IDA 

curves. 

The same computational strategy is also followed in the case of back-to-

back IDA, with the only difference being in the management/definition of 

seismic input (to follow). At the conclusion of either of these types of analysis 

(IDA or back-to-back IDA) a set of post-processing options are available to the 

user: change of IM or EDP, extraction of IM or EDP stripes that can be saved 

into MATLAB-variable or text file formats and saving the analysis results for 

later use. Change of EDP offers a choice between 
X , 

Y , residual 

displacements and D C  ratio. Switching EDP is trivial, as all necessary EDP 

responses are recorded and saved during every single run. Conversion to 

different IMs, on the other hand, follows the re-interpolation procedure outlined 

earlier. For single-component ground motion, change of IM entails switching 

to a spectral ordinate at a different period T  and/or different viscous damping 

ratio  , with defaults being the X-direction SDOF’s period of natural vibration 

and five percent, respectively. In the case of bidirectional motion, the definition 

of the IM with respect to the two horizontal acceleration components can also 

be changed among the already-mentioned alternatives being: ( )Sa T  of either 

single component, ( )maxSa T  or ( )gmSa T . 

Finally, the post-processing tools of the GUI can provide the extraction of 

text or MATLAB files containing IDA results organized as either vectors of 

EDP responses given IM (“EDP stripes”) or IM causing exceedance of a 

specific EDP value (“IM stripes”). Such output formats may come handy when 

attempting to fit a parametric probabilistic model to a fragility function (the 

interested reader is referred to [55], for the nuances of fitting such a model in 

the IM- and EDP-based case). For IM stripe extraction (example provided in 

Figure 23), the software finds the intersection of each spline-interpolated IDA 

curve with the vertical line passing through the user-defined EDP threshold; 

the lowest IM value is returned in the case of non-monotonic IDA curves that 

intersect the line at more than one point. For EDP stripes, the user defines a 

vector of desired IM values and the software returns the intersections with the 

corresponding horizontal lines; for IDA curves that have already flat-lined 

below a given IM level, the information that the structure has collapsed is 

returned. 
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Figure 23. Extraction of an IM stripe from a set of IDA curves. The EDP 

threshold is defined in the homonymous dialogue window and the intersections 

with the curves are displayed in the main GUI lower-right window. 

2.5.1.3 Running multiple-stripe and cloud analysis 

To conduct MSA, the user must define all IM levels for which EDP responses 

are needed beforehand, via the dedicated dialogue window of the GUI (Figure 

24), and subsequently assign a set of records to each IM stripe. Each stripe must 

be assigned a specific IM value and all records in the stripe will be then scaled 

to match that value (exception to that rule is cloud analysis, see below). 

Internally, analysis is run using the same MATLAB and OpenSees (Tcl/Tk) 

routines as for IDA, with the difference that record scaling is completely pre-

determined at the start of the analysis and a different seismic input file has to 

be read at each single run. Note that, in the case of MSA, a change of IM 

requires re-running the analysis from scratch (unlike IDA – see above) while 

EDP still can be changed at will after completion of the analysis. 

In the present GUI application and for reasons of convenience, cloud 

analysis is also managed via the MSA window, as one may imagine it as a 

single-record-per-stripe MSA. The user simply has to define a single IM stripe 

with a nominal intensity value, which is disregarded, and check the “do not 
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scale records” box; in that case the software will realize that could analysis is 

in order and will display the results accordingly, as shown in Figure 24. For 

both MSA and cloud analysis, EDP stripes can be exported in text- or 

MATLAB-file format, reducing to IM-EDP pairs in the latter case. 

 
Figure 24. Main GUI window snapshots displaying the results of MSA (upper 

panel) and cloud analysis (middle panel); MSA dialogue window, showing the 

setting-up of an analysis at ten levels of seismic intensity (lower panel). All 

records in each stripe will be scaled to match that stripe’s predefined IM level, 

unless the “Do not scale” checkbox is ticked, in which case cloud analysis runs. 
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2.5.1.4 Seismic input 

Seismic input can be defined by selecting sets of ASCII files, each containing 

a recorded acceleration time-history. The software can parse two standard 

accelerograms formats, namely the Pacific Earthquake Engineering Research 

NGA database format [94] and the Engineering Strong Motion database format 

[95]. In either case, the necessary information for running the analyses are 

extracted/computed from the selected files (units, duration, sampling rate, 

elastic response spectrum) and passed on to the corresponding MATLAB 

routines, while the actual accelerometric data are written into temporary files 

suitable for being read by OpenSees. As an alternative to these standard 

formats, the user may use simple “.txt” ASCII files that contain a single column 

of acceleration values and will be inquired by the software to provide units and 

sampling rate. 

The software, at this stage, is distributed equipped with two folders that 

already contain two sets of accelerograms: one is the suite of thirty single-

component records used for calibrating the SPO2IDA tool and the other is the 

twenty-two bidirectional ground motion “far-field” set of FEMA-P695 [52]. 

Both record sets consist of accelerograms recorded on firm soil, predominantly 

during California events of magnitude six or greater. 

For IDA or cloud analysis, a single set of records must be selected by the 

user, while, in the case of MSA, different sets may be assigned to each 

predefined IM level (stripe), all containing the same number of records. Cloud 

analysis in particular, is defined via the MSA control panel, by suspending 

record scaling, as discussed above. Back-to-back IDA on the other hand, 

requires two sets of records: the first set, referred to as the MS set, is used to 

perform a preliminary IDA analysis, that serves to determine the scale factors 

necessary to induce the predefined EDP value, associated with some structural 

limit state, across the entire MS record set. During any type of analysis, each 

record is followed by an appendix of zero acceleration entries for a duration of 

five times the elastic period of the system, intended to provide time for the 

residual velocity at the end of the excitation to be damped down to negligible 

values. This is performed internally in OpenSees, without tampering with the 

records, so that the next shock will find the system at rest. This procedure is 

implemented to achieve increased precision in the calculation of residual 

displacements, which is especially important in the case of back-to-back IDA. 
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Figure 25. Selection of accelerograms for running back-to-back IDA; the MS 

record set list has been already filled and the record-selection dialogue window 

is open for designating the AS set. 

The second set of accelerograms, referred to as the AS set, is used to run an 

IDA that always follows one of the MS records (the user is actually free to use 

the same set to represent both MS and AS if one so desires, or two sets of 

different size). In other words, each scaled AS record acts on a structure that 

has already experienced the predefined transient maximum EDP value and has 

had some time to come to quasi-rest conditions. In Figure 25 the analysis-

parameter definition panel for back-to-back IDA is shown, with the AS 

acceleration-file selection-window open. The user is additionally given the 

option to define the number of AS IDAs that are going to be run per MS record, 

ranging from one to the number of records in the AS set. When the number of 

IDAs requested per MS is less than the number of AS accelerograms defined, 

a random extraction is performed from among the AS records (independent 

extractions are performed for each MS record). A final option available to the 

user for back-to-back IDA, is that one may request that all MS-AS pairs be 

created so that no AS record is ever used twice, provided that an adequate 

number of records has been provided. 
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In the case of bidirectional ground motion, record assignment proceeds as 

in the single-component-of-motion case, with the difference that all record sets 

must be even in number, so that they may be divided in two halves and re-

assigned to each of the two directions. Pairing of the records follows the ASCII 

dictionary alphabetical order of the filenames, by assigning any two 

consecutive records first in the X and then the Y direction. This is intended to 

take advantage of the fact that, in most strong ground motion databases, 

accelerograms recorded by two streams of the same station will be typically 

saved under filenames differing by only a few characters. 

2.5.2 Illustrative applications 

In this section, some applications are provided as examples, in order to illustrate 

DYANAS’ functionality in more practical terms. The first example uses a pair 

of relatively regular and symmetrical buildings, for which equivalent SDOF 

structures are considered in each principal direction, to provide applications of 

IDA and MSA. The second example deals with cloud analysis, while the third 

application presents the use of back-to-back IDA. In order to consolidate the 

usefulness of the GUI as a PBEE tool, some of these examples involve the 

calculation of fragility functions for SDOF structures, based on IDA results. 

However, it should be clear that the primary scope of the software is to use non-

linear dynamic analysis to provide EDP-IM relationships, one natural use of 

which is the assessment of seismic structural fragility. 

2.5.2.1 Two equivalent SDOF systems representing both principal directions 

of a building 

For this example application, four static pushovers were used, corresponding to 

the two principal directions of two code-conforming, RC moment-resisting 

frame buildings. These two buildings, a three-storey frame with masonry infills 

and a six-storey bare frame, were designed according to the current Italian 

seismic code and subsequently numerically modelled [96]. The scope of these 

numerical models, which were also used to obtain the pushover curves, was the 

analytical assessment of seismic collapse risk implicit in the Italian code’s 

provisions, via non-linear dynamic analysis [97]. Considering both buildings in 

either direction, pushover analysis was performed using a force distribution 

according to the modal load of each direction’s predominant elastic mode 

shape. Thus, four equivalent SDOF systems with tri- or quadri-linear backbones 

were derived from these static pushover curves (for further details, see [98]) 
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and a Clough-type, peak-oriented model without cyclic deterioration [88], was 

assumed to govern hysteretic response. 

The two equivalent SDOF oscillators corresponding to the three-storey 

infilled frame had vibration periods of 0.28 and 0.31 s while those of the six-

storey bare frame were 1.11 and 1.25 s. As can be seen in Figure 26, the bare 

RC frame is characterized by similar maximum attainable base shear and 

displacement capacity in both directions. On the other hand, the infilled frame 

exhibits higher maximum resistance in one direction with respect to the other. 

This is due to the increased presence of openings in the masonry infills along 

the direction parallel to the building’s facade, resulting in lower infill-

contribution to lateral strength in that direction. Furthermore, it can be seen that 

this building is characterized by different ultimate displacement capacity per 

principal direction. 
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Figure 26. Piecewise-linear idealizations of the RC frames’ static pushovers: 

three-storey frame with masonry infills, direction X (a) and direction Y (b), six-

storey bare frame direction X (c) and direction Y (d). Below the pushovers, the 

GUI main window is shown in post-analysis of the six-storey frame. 

2.5.2.2 Incremental dynamic analysis for estimation of collapse fragility 

In this exercise, each pair of equivalent SDOF systems, corresponding to a 

single RC building, was subjected to IDA using a suite of thirty, two-

component acceleration records. These accelerograms were recorded on firm 

soil during events of magnitude ranging from 6.1 to 7.6, at distances from the 

fault plane 44 km or less and are considered to not exhibit impulsive 

characteristics due to directivity; during IDA, the same scale factor was applied 

to both horizontal components with each pair thus always maintaining their as-
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recorded relative amplitudes. In order to be able to express the seismic collapse 

fragility of these structures in terms of a common IM, the geometric mean of 

the two components’ spectral acceleration at one second period, 

( )1.0 sgmSa T = , was arbitrarily selected and all IDA curves were converted to 

that IM. For each building three collapse fragility functions were calculated, 

two curves considering each principal direction X, Y separately and one 

corresponding to the entire building, i.e., considering both directions at once. 

In the first two cases, the EDP was set to 
X or 

Y  and IM stripes were 

extracted at 
f

X  and 
f

Y , respectively. In the third case, the D C  ratio 

according to Equation (22) was taken as EDP and the IM stripe for 1D C =  

was obtained. It follows from Equation (22) that, if one were to name failure in 

the two directions 
Xf , 

Yf  and since failure of the entire structure can be seen 

as the union of the two events, 

1X YP f IM im P f f IM im P D C IM im     = =  = =  =      . In all cases, 

lognormal seismic fragility functions are estimated according to Equation (2), 

where ,f iim  represents the i-th record’s (lowest) scaled IM value causing 

exceedance of the threshold (i.e., the i-th element of the IM stripe at that 

threshold, according to the nomenclature used earlier),   and   are 

parameters defined in Equation (3). 

The resulting fragility curves are shown in Figure 27. At this point, it may 

be useful to recall that the procedure outlined above (as well as those in the 

following illustrative applications) is inextricably linked to the requisites 

behind conducting a pushover-based SDOF simplification of a real structure. 

The main requisites are the predominance of the first mode going into the 

inelastic response range and that the structure be characterized by sufficient 

symmetry and regularity for response in the two principal directions to remain 

largely uncoupled and unaffected by torsion (e.g., [87]). For this reason, 

extending evaluations that are based on an equivalent SDOF systems’ seismic 

response, to the actual corresponding multi-DOF structure, may require 

additional effort to account for the influence of higher modes (see for example 

[62,99]). This being an illustrative example intended to demonstrate the 

capabilities of this software, with no pretense of using the result for seismic risk 

assessment of any real structure, considerations need not and will not depart 

from the SDOF level. 
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With these premises in mind, it can be seen from the figure that, in the case 

of the infilled RC frame (Figure 27a), separate evaluation of collapse fragility 

along the principal directions results in quite different probability distributions 

of collapse intensity, with median collapse intensities in the X and Y directions 

being ( )exp 1.97 gX =  and ( )exp 1.19 gY = , respectively. In this case of one 

direction nominally exhibiting greater seismic vulnerability than the other by a 

wide margin (when the two are viewed as separate structural systems during 

analysis) it happens that the entire system’s collapse fragility almost coincides 

with the most vulnerable one, with ( )exp 1.17 g = . 

On the other hand, in the case of the bare RC frame (Figure 27b), collapse 

fragilities derived separately for each direction are more uniform, with 

( )exp 2.31 gX =  and ( )exp 2.12 gY = . However, in this case, the simplified 

analysis executed for this example indicates that the total building vulnerability 

is greater than the worst of the two nominal vulnerabilities obtained by the 

separate analyses, with a median collapse intensity of ( )exp 1.86 g = . 

 
Figure 27. Collapse fragilities estimated separately for each principal 

direction and for the entire structure. Fragility curves of the three-storey 

infilled RC frame (a) and those of the six-storey bare RC frame (b). 

2.5.2.3 Multiple-stripe analysis using different sets of records per level of 

seismic intensity 

In this example, a six-storey bare RC frame building is used, designed for a site 

in L’Aquila, Italy [96]. Details on the equivalent SDOFs in the two principal 

directions of the structure can be found in [98], while the backbone curve in the 

X direction is shown in the upper left panel of Figure 24. In order to calculate 

site-specific seismic risk for that building, [97] selected hazard-consistent sets 

of records at ten different levels of seismic intensity, when said intensity was 
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expressed in terms of ( )max 1.0 sSa T = . Thus, twenty pairs of bidirectional 

acceleration time-histories were obtained, for each IM level, and were assigned 

to an MSA via the GUI (Figure 24). In this case, definition of IM-type, i.e., 

maximum-among-horizontal-components spectral acceleration 
maxSa , has to 

be defined prior to running the analysis, in order to ascertain correct scaling of 

the records. EDP for the analysis was defined as a D C  ratio by setting 

threshold displacements in both directions, corresponding to a roof drift of the 

actual building of three percent. The resulting EDP vs. IM plot from the analysis 

can be seen in Figure 28, where the dashed line at 1D C =  separates the 

converging runs between those causing failure to the right and those who do 

not, to the left. Note that in the two highest IM levels, 

( )max 1.0 s 1.837 gSa T = =  and 3.52 g , two and ten cases, respectively, 

reached collapse and are thus not present on the plot; collapsed cases per stripe 

are reported separately by the GUI. 

 
Figure 28. MSA results shown in a semi-logarithmic EDP-IM plot obtainable 

via the “export figures” option of the software. 

2.5.2.4 Running cloud analysis via the MSA panel of the GUI 

In this brief example application, the trilinear-backbone SDOF oscillator shown 

in Figure 29 is used, having vibration period 0.60 sT =  and characterized by a 

moderately-pinched peak-oriented hysteresis [89]. As mentioned previously, in 

order to run cloud analysis the user has to define a single nominal IM stripe in 
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the MSA panel of the GUI, assign all records to that stripe and select the “do 

not scale records” option. 

 
Figure 29. Trilinear backbone curve of the SDOF oscillator used for cloud 

analysis and cyclic quasi-static response of the peak-oriented pinched 

hysteretic model (a); cyclic response of the same to a specific accelerogram 

(b). Both plots can be obtained via the GUI’s “export figures” option, following 

a “cyclic quasi-static” or “single-run dynamic” analysis, respectively. 

For this analysis, a set of forty-two single-component records is selected from 

within the Engineering Strong Motion database (http://esm.mi.ingv.it/), with 

the criteria of covering a wide range of as-recorded intensity in terms of 

( )0.60 sSa T = , never using both components of the same station for a single 

event, not using more than three stations from the same event and always 

exceeding yield acceleration of the oscillator in Figure 29. It is evident that this 

type of analysis requires a notably lower number of runs with respect to the 

preceding IDA and MSA examples. The results of the analysis, i.e., an EDP-

IM scatter plot forming the homonymous “cloud”, are shown in Figure 30. 

http://esm.mi.ingv.it/
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Figure 30. Results of cloud analysis, shown in a logarithmic-scale EDP-IM 

scatter plot, obtainable via the “export figures” option of the software. 

2.5.2.5 Back-to-back incremental dynamic analysis for estimating state-

dependent seismic fragility 

State-dependent seismic fragility extends the traditional concept of fragility, 

expressed as the probability of failure for a given IM level, P f IM im =  , to 

the probability of failure given both the occurrence of a specific intensity and 

the structure already being in a generic limit state 
iS , iP f S IM im  =  . 

Such state-dependent fragility functions can find application in seismic 

reliability analysis that considers damage accumulation phenomena (e.g., 

[100]) and may be analytically estimated by means of back-to-back IDA (see 

for example [101]). 

For this illustrative example, a simple SDOF structure is assumed, with 

vibration period 0.50 sT =  and a horizontal post-yield segment stretching up 

to a capping ductility 6.0c = , after which lateral strength drops gradually; 

hysteresis for this system follows the peak-oriented model of [42] and exhibits 

mild cyclic strength degradation, as shown in Figure 31. Furthermore, it is 

assumed that a generic limit state, corresponding to this structure having 

sustained some seismic damage and indicated as 
1S , is reached when 

maximum transient seismic ductility demand,  , exceeds 9.6. The example 
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consists of using IDA to estimate the collapse fragility of this SDOF structure 

at its intact state, indicated as 
0S , and back-to-back IDA for estimating the same 

fragility under the condition that the structure is in the
1S  state due to one or 

more prior shocks. 

 
Figure 31. Backbone curve of the SDOF oscillator used for back-to-back IDA 

and cyclic quasi-static response of the peak-oriented modified Ibarra-Medina-

Krawinkler hysteretic model exhibiting mild strength degradation (a); cyclic 

response of the same to a specific accelerogram (b). Both plots can be obtained 

via the GUI’s “export figures” option, following a “cyclic quasi-static” or 

“single-run dynamic” analysis, respectively. 

As mentioned in passing earlier, back-to-back IDA is preceded by an IDA 

performed with a suite of accelerograms designated as the MS set. In this case, 

the MS set consisted of ten records and the preliminary analysis provided the 

scale factors required to reach the 9.6 =  threshold that was assumed, by 

convention, to signify exceedance of 
1S  (see Figure 32a). During back-to-back 

IDA, each MS record is followed by three AS records that are randomly 

sampled from within a pool of twenty accelerograms, resulting in thirty curves. 

For this analysis, the thirty single-component records provided with the 

software are used. It should be noted that the number of records and back-to-

back IDA runs used in this example is simply dictated by the need to maintain 

Figure 32 easily legible by avoiding overcrowding of IDA curves. In fact, these 

numbers should be chosen on the basis of the confidence that the user desires 

to be able to place on the estimated fragility parameters; the interested reader is 

referred to [8] for more details. 

By taking the IM stripes corresponding to the so-called flat-line heights of 

the IDA curves that, as discussed previously, signify the onset of dynamic 

instability, collapse fragility curves can be obtained according to Equation (2)  
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for both 
0S  and 

1S  initial states. These fragility curves are shown in Figure 32, 

in terms of both ( )0.50 sSa T =  and PGA , with the latter being derived from 

the former almost-instantaneously, via re-interpolation of the IDA curves. In 

either case, one observes the characteristic shift of the 
1S fragilities to the left 

of the 
0S  curves, quantifying the decrease in capacity (or increase in 

vulnerability) of the structure, that has befallen a damaged state. 

 
Figure 32 Preliminary IDA used to determine intact state collapse fragility and 

intensities inducing the S1 limit state threshold (a); back-to-back IDA used to 

determine collapse fragility given that the structure has previously reached the 

limit state S1 (b); comparison of collapse fragility curves of the intact and 

damaged structure, expressed in terms of ( )0.50 sSa T =  (c) and in terms of 

PGA (d), after implementation of the IM conversion tool. 

2.6. Conclusions 

This section first introduced SPO2FRAG, an interactive MATLAB®-coded 

PBEE tool useful for approximate, computer-aided calculation of building 

fragility functions based on static pushover analysis. SPO2FRAG comes as a 

standalone application, with various intercommunicating modules nested 

behind a user-friendly graphical user interface. 

max

y

δ
μ

δ
=

 
 (

=
0.

5
 s

) 
[g

]
S
a

T
 (

=
0
.5

 s
) 

[g
]

S
a

T

  ( =0.5 s) [g]Sa T

PGA [g]

0

2

4

6

5 10 15 2 4 6

2 4 6max

y

δ
μ

δ
=

5 10 15
0

2

4

6

0.2

0.4

0.6

0.8

1

P f

0.2

0.4

0.6

0.8

1

P f

(a) (b)

(c) (d)



69 

 

The software uses SPO results as a vehicle to obtain an equivalent SDoF 

representation of the non-linear structure and subsequently goes on to employ 

the SPO2IDA algorithm to avoid the need for time-consuming dynamic 

analysis for obtaining probabilistic estimates of seismic response. A series of 

specifically-developed tools are then called upon to effect and SDoF-to-MDoF 

response transformation, culminating in the calculation of fragility parameters 

and going as far as providing information related to the underlying estimation 

uncertainty. In the preceding sections, the workflow of a complete SPO2FRAG 

operation was outlined from both the user-end and the software-end.  

The viability of SPO2FRAG as a calculation tool was demonstrated by 

means of two case-study examples, where fragility functions estimated using 

the software were compared and found in agreement with the analytical 

solution involving IDA. It was therefore shown that, for regular, symmetric 

frames (i.e., cases of fist-mode dominated structures for which the fundamental 

assumptions behind static pushover analysis apply) SPO2FRAG is able to 

provide expedient solutions to the issue of analytical, building-specific seismic 

fragility estimation, under the assumptions behind IDA. 

Second part of the section was dedicated to the presentation of DYANAS, 

an open-source, earthquake engineering software. The software is a 

MATHWORKS MATLAB®-based graphical user interface that interacts with 

the OpenSees finite element framework and offers engineers an easy way to 

define and run dynamic analysis of yielding single-degree-of-freedom systems 

subjected to large suites of earthquake-induced ground motion records. 

Therefore, the main purpose of this software is to determine the relationship 

between seismic intensity and engineering demand parameters using any one 

of several dynamic analysis methods that are frequently used in performance-

based earthquake engineering. Incremental dynamic analysis is supported in its 

traditional form and also in a “back-to-back” format that could allow state-

dependent seismic fragility to be estimated. Multiple-stripe and cloud-type 

analyses are also supported, in cases where the user does not desire to use scaled 

records to estimate seismic response at different levels of shacking intensity. 

Much of the software’s utility stems from the post-processing routines, with 

which it is equipped. These routines, which are also programmed in MATLAB 

and can be recalled via the user interface, permit the re-interpolation of 

incremental dynamic analysis curves, thus providing rapid conversion of the 

curves into alternative intensity measures, such as peak ground acceleration or 



70 

 

spectral ordinates at various periods. Furthermore, at the end of analysis, the 

user can obtain vectors of intensity measure given engineering demand 

parameter, or vice versa, thus facilitating further probabilistic seismic demand 

elaborations for these simple structural systems. Overall, the GUI was shown 

to be a useful tool within the context of performance-based earthquake 

engineering, as demonstrated by the illustrative applications provided. 

DYANAS is freely distributed for research purposes by the University of 

Naples Federico II under a GNU general public license v3.0.   
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Chapter 3 – ESTIMATION UNCERTAINTY BEHIND SEISMIK 

RISK EVALUATION IN PERFORMANCE BASED 

EARTHQUAKE ENGINEERING: R2R-EU TOOL 

The following paper has been derived from this Chapter : 

• Baraschino R., Baltzopoulos G., Iervolino I. (2019) R2R-EU: Software 

for fragility fitting and evaluation of estimation uncertainty in seismic 

risk analysis. Soil Dynamics and Earthquake Engineering. 132: 

106093. 

3.1. Introduction 

Recalling what already introduced, both terms under the integral of Equation 

(1), can be affected by so-called estimation uncertainty, since both functions 

have to be deduced from available (i.e., limited) data. Section 3.2 primarily 

deals with estimation uncertainty affecting the fragility function, then the focus 

of this Chapter is the presentation of the PBEE software tool R2R-EU (record-

to-record estimation uncertainty), which was developed in MATLAB® with a 

dual purpose: (i) estimating structure-specific seismic fragility, based on 

dynamic analysis, and (ii) quantifying estimation uncertainty, emanating 

specifically from record-to-record variability of seismic structural response, 

and the extent to which that uncertainty propagates unto risk metrics, such as 

the failure rate. The R2R-EU tool considers various consolidated non-linear 

analysis strategies used in PBEE, such as IDA, MSA or cloud analysis, in the 

context of Cornell’s seismic reliability method [54]. The software (freely 

available) offers several alternatives for the definition of the fragility function, 

and implements a series of statistical inference methods based on resampling 

and/or simulation schemes belonging to the bootstrap family [76], the delta 

method [102] and direct application of formulas from statistical inference 

theory. In the remainder of this Chapter, first a brief overview of the 

methodologies for quantification of estimation uncertainty used in R2R-EU is 

provided, in tandem with a review of the corresponding alternative approaches 

used for conducting dynamic analysis and for evaluating structural fragility. 

Subsequently, a brief operational description of the software capabilities is 

given, and an example application is provided, followed by some concluding 

remarks. 



72 

 

3.2. Estimation uncertainty in seismic risk and fragility function 

assessment 

As highlighted in the introductory discussion, the R2R-EU tool deals with the 

definition of structure-specific seismic fragility and with the quantification of 

that part of estimation uncertainty in the failure rate, that can be attributed to 

the record-to-record variability of structural response. The latter can be 

provided by one of the methods mentioned in the introduction; i.e., IDA, MSA 

and cloud. IDA involves progressively scaling each ground motion in a set, so 

as to cover a broad range of IM levels, and running dynamic analysis, ideally 

until the numerical model experiences instability that can be interpreted as side-

sway structural collapse [56]. A measure of structural response, often termed 

an engineering demand parameter or EDP, is being registered at each IM level. 

The output of this analysis is a set of EDP-IM curves (equal in number to the 

number of ground motion records used). On the other hand, MSA involves the 

use of different sets of – ideally unscaled – accelerograms per IM level, chosen 

to represent the seismic scenarios causing that level of shaking at the 

construction site as indicated by disaggregation of seismic hazard [53]. The 

output of MSA is a set of EDP responses at fixed IM values (Figure 1b). Cloud 

analysis uses a set of unscaled accelerograms to perform dynamic analysis so 

that at each record represents a single IM value and corresponds to a single EDP 

response. The output is a cloud of points (Figure 1c), hence the name. 

As introduced in Section 2.3, given the output of dynamic analysis, the 

strategy for analytically evaluating a fragility function often branches into one 

of two approaches: the IM-based approach and the EDP-based approach. In 

both cases, the two parameters  ,   are generally unknown and one way to 

obtain estimates of these parameters,  ˆˆ,  , is by using the sample of 

responses resulting from IDA/MSA according to Equation (3) or (5). 

Of course, it is not necessary to assume a parametric model for IM-based 

fragility; in fact, a non-parametric representation can be obtained directly from 

the sample of fIM values, according to Equation (4). The use of estimation 

uncertainty as a means for determining the number of records to use in IM-

based fragility derivation is explored in Chapter 4. 

All of the aforementioned approaches for estimating a fragility function 

(which may entail assigning a parametric model or not; e.g., Figure 3) have 

been implemented in R2R-EU. They also allow to quantify the estimation 
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uncertainty in the failure rate, used in conjunction with methodologies of 

statistical inference. These methodologies, summarized in Table 3 and partly 

discussed in [8], but also outlined in the following paragraphs, are: parametric 

or non-parametric resampling plans (generally belonging to the bootstrap 

family), the application of known results for the distribution of the estimators 

of the lognormal parameters, and the delta method, which is based on Taylor 

series expansion of either the risk integral or the formula from Cornell’s seismic 

reliability method. 

Table 3. Methodologies implemented in the R2R-EU tool for the quantification 

of record-to-record estimation uncertainty in PBEE. 

Approach 
Dynamic 

analysis 
Fragility model 

Method for quantifying 

estimation uncertainty 

IM-based IDA 
Lognormal 

Parametric bootstrap, 

probability theory, Delta 

method 

Non-Parametric Bootstrap (resampling) 

EDP-based 

IDA/MSA 

Lognormal Parametric bootstrap 

Shome & Cornell three 

parameter model per 

intensity [56] 

Bootstrap (resampling) 

Normal probability paper Bootstrap (resampling) 

Least squares fit Bootstrap (resampling) 

Cloud - 
Delta method for 

Cornell’s method 

3.2.1 Estimators of the Gaussian distribution’s parameters  

If structural fragility is assumed lognormal, the estimators of the parameters 

logarithmic mean ( )̂  and variance ( )2̂ , obtained according, e.g., to 

Equations (3), have known distributions. The estimator ̂  is distributed as a 

Gaussian with mean and variance equal to   and 
2 n  respectively (but 

assumed equal to̂  and 
2ˆ n ; i.e.,   and 

2  are substituted by the available 

point estimates), while ( )2 2ˆ 1n  −  is chi-squared distributed with 1n−  

degrees of freedom. Since the failure rate is a function of these two 

stochastically independent RVs, shown here as Equation (23): 
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( ) ( )lˆ ˆ ˆˆ ˆ), n( i
M

f m
I

im d      =  − 
  ,    (23) 

it follows that the mean and variance of ˆ
f  can be evaluated (in R2R-EU) 

using their known densities. 

3.2.2 Bootstrap 

The bootstrap is a statistical inference process, which is based on taking an 

original data set and generating, so-called, bootstrap samples by resampling the 

original data with replacement. The bootstrap samples have the same size as 

the original. This resampling process is implemented in R2R-EU for three 

cases: non-parametric IM-based fragility derived from IDA, EDP-based 

fragility using the three-parameter model of Equation (6) and EDP-based 

fragility with parameter estimation via the normal probability paper procedure 

or least square fit. 

3.2.2.1 Resampling for IM-based fragility 

In the case of IM-based non-parametric fragility, the bootstrap implementation 

takes the original n-size sample of fIM  realizations already available from 

IDA,  ,1 ,2 ,, ,..,f f f nim im im , and generates an arbitrary number, m, of bootstrap 

samples  * * *

,1 ,2 ,, ,..,f k f k f nkim im im , where  1,..,k m= . Subsequently, a Monte 

Carlo simulation is performed, where, for each bootstrap sample, Equation (1) 

is used to compute a bootstrap replication of the failure rate, *

,
ˆ

f k . Then, the 

mean and variance of the failure rate estimator (denoted via the operators  E 

and  VAR  , respectively) are evaluated using the simulations results according 

to Equation (24): 
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1
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f f k f

k

E
m

VAR E
m

 

  

=

=


  =   


    = 


−
   −




.    (24) 

3.2.2.2 Resampling for EDP-based fragility 

In the case of EDP-based fragility, the bootstrap process starts from a set of 

n u  EDP responses, available from either MSA or IDA and denoted as 

previously by ijedp , obtained from n records  ( )1,..,i n=  at each one of IM 
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levels  ( )1,..,j u= , denoted as  1 2, ,.., uim im im . As a first step, the EDP 

responses at each IM level (stripe), are resampled with replacement m times, 

resulting in new sets of responses at the j -th stripe (i.e., bootstrap samples) 

   * * *

1 , 2 , ,, ,.., ,   1,..,j k j k nj kedp edp edp k m= . Subsequently, at each and every j-th, 

 1,..,j u= , stripe of the k-th bootstrap sample,  1,..,k m= , the responses 
*

,j kc

, corresponding to collapse cases, are identified, and the probabilities of failure, 

*

k jP f IM im =
  , are calculated according to Equation (6). 

In the case of the three-parameter model, the k-th bootstrap replication of 

the failure rate, *

,
ˆ

f k  is evaluated according to a discretized version of Equation 

(1), reported here as Equation (25): 

* *

,

1

ˆ
j

u

f k k j im

j

P f IM im 
=

 = =  
       (25), 

where ( )
1j j jim im im  
−

 = − . This distinction is made due to the fact that the 

probability of failure is only available at specific, discrete IM levels. Finally, 

after having obtained all bootstrap replications *

,
ˆ

f k , the mean and variance of 

the failure rate estimator are again evaluated according to Equation (24). 

In the case of EDP-based lognormal fragility whose parameters are 

estimated via linear fit on normal probability paper, new parameter estimates 

   * *ˆˆ , ,  1,..,k k k m  = , are obtained via Equation (8) for each bootstrap sample. 

Then bootstrap replications *

,
ˆ

f k  are calculated by substituting the parameters 

 * *ˆˆ ,k k   into Equations (2) and (1). Finally, Equation (24) is used to obtain the 

statistics of the failure rate estimator, same as before. 

3.2.3 Parametric bootstrap 

When a parametric model is assumed for the fragility function, the mean and 

variance of the failure rate’s estimator can be inferred via a parametric version 

of the bootstrap. In the parametric version, bootstrap samples can be extracted 

directly from the assumed fragility model, rather than by means of resampling 

the original dataset. In R2R-EU this is implemented for both cases of IM- and 
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EDP-based lognormal fragility (in the EDP-based case, when parameter 

estimation occurs via maximum likelihood). 

3.2.3.1 Parametric bootstrap for IM-based fragility 

In the IM-based case, the n values of fIM  obtained from IDA, 

 ,1 ,2 ,, ,..,f f f nim im im , are used to derive the reference lognormal fragility 

parameters  ˆˆ,   via Equation (3). Subsequently, an arbitrary number m of 

new bootstrap samples,    * * *

,1 ,2 ,, ,.., ,  1,..,f k f k f nkim im im k m= , is extracted from 

the reference distribution defined by  ˆˆ,  , with each new sample being of 

size n. Then, for the k-th out of m bootstrap samples, a new fragility function 

(Figure 33a) is evaluated via Equation (3), having parameters  * *ˆˆ ,k k  , and the 

bootstrap replication of the failure rate *

,
ˆ

f k  is computed using these parameters 

and Equation (23). Finally, as in the resampling process, the mean and the 

variance of the failure rate estimators are calculated via Equation (24). 

 
Figure 33. Reference fragility functions (black curves) and 200 bootstrap 

extractions of lognormal fragility (a) and empirical fragility (b). 

3.2.3.2 Parametric bootstrap for EDP-based fragility 

In the EDP-based case, the reference structural fragility parameters  ˆˆ,   are 

obtained from the available responses via the binomial maximum likelihood of 

Equation (5). Then, at the j-th stripe, corresponding to  ,  1,..,jIM im j u= = , a 

number of m bootstrap samples is extracted from the binomial distribution with 
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parameter equal to ( ) ˆˆlnj jp im   =  −
   (i.e., the parameter of binomial 

distribution is the probability of failure). Each sample consists of n Bernoulli 

trials, resulting in *

,j kq  failures and *

,j kn q−  survivals of the structure at the j-

th stripe of the k-th bootstrap sample. Subsequently, new lognormal parameters 

 * *ˆˆ ,k k  are obtained from the *

,j kq  failures, via Equation (5). It is assumed that, 

during the bootstrap replications, the maximum likelihood estimate may run 

into numerical problems for a number of om  bootstrap samples, out of a total 

m. With this assumption in mind, the bootstrap replication of failure rate, *

,
ˆ

f k , 

is computed via Equation (1) and then the mean and variance of the estimator 

can be evaluated according to Equation (26): 
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





,  (26) 

which only differs from Equation (24) in the fact that the simulation-based 

statistics are calculated using a number of ( )om m−  bootstrap replications of 

the failure rate; i.e., only those that did not encounter numerical issues. 

3.2.4 Delta method 

An alternative method for evaluating the mean and variance of ˆ
f , besides the 

bootstrap and the properties of the Gaussian function, is the delta method. The 

delta method uses a Taylor series expansion to approximate the expectation and 

variance of a RV and has been applied in the context of Cornell’s seismic 

reliability method in [8]. The latter can be implemented using output from cloud 

analysis, which entails a set of n ground motion records with variable intensities 

and the corresponding sample of EDP responses. By performing linear 

regression of ( )ln EDP  against ( )ln IM  and assuming that the logarithm of the 

hazard curve, ( )ln im , can be approximately considered locally linear, the 

annual failure rate can be estimated in closed-form as 

( ) ( ) ( )2 2 2 2

0
ˆ ˆˆ exp 2

k b

f f D Ck edp a k b  
−

      +
 

, where 0k  and k  are, 

respectively, the slope and intercept of the ( )ln im  curve linearized around the 
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IM corresponding to fedp , â  and b̂  are the slope and intercept from the 

linear regression of ( )ln EDP  against ( )ln IM , ˆ
D  is the standard deviation of 

the residuals of ( )ln EDP  given ( )ln IM , which is estimated from the 

regression and C  is the logarithmic standard deviation of fedp ,which is 

assumed to follow a lognormal distribution. In this context, the statistics of ˆ
f  

can be approximated via Taylor series expansion, which are given in [8]. The 

delta method can be applied for the failure rate estimator from Equation (23), 

under the assumption of lognormal fragility. In this case the failure rate is 

regarded as a function of the fragility parameters, that can undergo a Taylor 

series expansion, which can also be found in [8] along with the necessary 

derivatives of ˆ
f . The advantage of the delta method, over the other procedures 

implemented in R2R-EU, is that the closed-form expressions need only be 

evaluated analytically once, after which the statistics of ˆ
f  can be obtained 

with less computational effort with respect to the bootstrap. 

3.3. R2R software: conceptual framework and implementation 

R2R-EU runs behind a Mathworks MATLAB®-based graphical user interface 

(see Figure 34) which implements all of the methods illustrated in the previous 

section for evaluating a fragility model and for quantification of estimation 

uncertainty in the fragility parameters and in the failure rate. Two sets of input 

data are needed to run R2R-EU: one containing the hazard curve, and another 

containing the structural responses. For the hazard curve, there is the additional 

possibility of directly importing output files from the REASSESS software 

[103]. In all supported cases, after elaborating the hazard and dynamic analysis 

data, R2R-EU provides the fragility model and the point estimates of the 

fragility parameters (where applicable), the point estimate of the failure rate 

and the mean and variance of the failure rate estimator. For the cases where one 

of the bootstrap schemes is applicable, a simulation-based approximation for 

the distribution of ˆ
f  is also provided, in the form of the histogram of requested 

bootstrap replications. In cases where the chosen fragility model is parametric 

(lognormal) and inference is conducted via a bootstrap process, the 

approximate distributions of ̂  and ̂  are likewise provided, in the form of 

the histograms of the corresponding bootstrap replications. The R2R-EU tool 
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allows to save and export results, in either MATLAB data file or ASCII text 

file formats. More details on the workflow and input/output options, as well as 

additional application examples omitted here for reasons of space, can be found 

in R2R-EU user's manual. 

3.3.1 Illustrative Applications 

3.3.1.1 IM-based approach 

In this section an application of R2R-EU is presented, using as case study 

structure a four-story, plane, code-conforming, steel perimeter moment 

resisting frame designed to ASCE-SEI 7-05 criteria and described in the NIST 

GCR 10-917-8 report. (Figure 34a). 

 
Figure 34. Perimeter frame for the case study of IM-based fragility (a); IDA 

curves for the case study frame, from twenty records, in terms of maximum 

interstorey drift ratio and 5% damped spectral acceleration at the structure’s 

first-mode period (b), with crosses marking the IMf vertical stripe at failure 

defined by IDR>3.5 %; non-parametric fragility corresponding to the vertical 

IMf stripe shown (c). 

The structure is ideally located at a site near the town of Amatrice (central Italy; 

lat. 42.53°, lon. 13.29°), for which the hazard curve (Figure 35), in terms of 

http://wpage.unina.it/iuniervo/R2R-EU_tutorial.pdf
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five-percent-damped spectral acceleration at the frame’s first-mode vibration 

period ( )1.25 s,5%Sa T =  is obtained using the software REASSESS, 

considering the seismic source model from . IDA is performed for the structure, 

using a set of fifty records (selected from NESS1, a dataset of the Engineering 

Strong Motion database [104]), which are scaled upwards until side-sway 

collapse (Figure 34b). By considering a generic limit state, which is nominally 

exceeded when a maximum interstorey drift ratio (IDR) above 3.5% is 

recorded, the R2R-EU software is used for the quantification of the failure 

rate’s estimation uncertainty. To this end, the example uses two of the available 

strategies: the bootstrap for non-parametric IM-based fragility (shown in Figure 

34c) and the delta method for lognormal fragility. The exercise is repeated in 

two versions: the first only uses a randomly selected subset of twenty-out-of-

fifty IDA curves, while the entire set of fifty is used on the second go. 
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Figure 35. Seismogenic zones considered in the hazard analysis in REASSESS 

and location of the site (black dot) (a), resulting hazard curve (b). 

For the application of the bootstrap resampling method, first the vectors 

composed by twenty (and later fifty) fIM  values (crosses in Figure 34b) are 

used to build the empirical fragility curves. In this case, five-hundred bootstrap 

extractions of the failure rate are requested from R2R-EU, which leads to 

calculating the mean and variance of the estimator, according to the 
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methodology outlined in paragraph 3.2.2. These statistics are also calculated by 

means of the delta method and the whole process is repeated using the structural 

response results from all fifty records; the results provided by R2R-EU are 

summarized in Table 4, where the coefficient of variation reported in the last 

column is calculated as 
ˆ

ˆ ˆ
f

f fCoV VAR E


    =
   

. The drop in the 

dispersion of the estimator with the increase in the number of records used, is 

evident across both inference methods employed. 

Table 4. Statistics of the failure rate estimator evaluated using samples of either 

twenty or fifty records to obtain structural response via IDA. 

Method 
Number 

of 

records 

ˆ
f  

[events/year] 

ˆ
fE  

 
[events/year] 

ˆ
fVAR  

   

[(events/year)2] 
ˆ

f

CoV


 

Non-parametric 

bootstrap (IM-

based) 

20 41.53 10−  
41.59 10−  

92.34 10−  30%  

50 41.52 10−  
41.53 10−  

104.32 10−  14%  

Delta method 20 41.36 10−  
41.41 10−  

91.82 10−  30%  

 50 41.48 10−  
41.48 10−  

104.68 10−  15%  

3.3.1.2 EDP-based approach: applications from the RINTC project 

This application considers six of the structures that were designed, modelled 

and analysed within the activities of the RINTC project (in italian: Rischio 

Implicito delle strutture progettate secondo le Norme Tecniche per le 

Costruzioni – implicit seismic risk of code-conforming Italian buildings, 

deepened in Chapter 5, which is a research project carried out by a consortium 

of Italian universities (ReLUIS) for the Department of Civil Protection, with 

the objective of analytically assessing the intrinsic seismic reliability of new 

code-conforming structures in Italy [11,105]. Within the framework of that 

project, MSA was used to estimate the seismic reliability for buildings of 

varying typology and configuration, designed for several Italian sites in order 

to cover a wide range of seismic hazard levels. For the purposes of this 

illustrative application of the R2R-EU software, the buildings considered were 

designed for the site of L’Aquila under soil conditions of type C, according to 

Eurocode 8 classification [106], and belong to the following typologies: 

unreinforced masonry residential buildings (URM), cast-in-place reinforced 

concrete residential buildings (RC) and steel industrial buildings (STEEL). The 

three-dimensional numerical model of each building was subjected to MSA 
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using ten stripes, each containing twenty records of hazard-consistent, bi-

directional, ground motion. The shaking intensity, characteristic of each stripe, 

was selected to correspond to a specific return period (Tr), ranging from 10 

years to 
510 years, and the analysis results were combined with the site-specific 

hazard to evaluate f for the collapse limit state (among others) [11]. The six 

buildings used for the application shown here (two of each aforementioned 

category STEEL, URM, RC) are briefly described below. 

STEEL 1: single-storey steel industrial building consisting of 20 m span-

length moment-resisting portal frames in the transverse direction, which are 

repeating every 6 m in the longitudinal sense and are braced via concentric 

braces at the outermost spans; 

STEEL 2: steel structure similar to STEEL 1 only somewhat larger, with 

axial distance between portal frames and braced span length equal to 8 m; 

URM 1: Regular two-story unreinforced masonry structure (configuration 

type “C2” [107]); 

URM 2: Regular in elevation and irregular in plan unreinforced masonry 

structure (configuration type “I1” [107]); 

RC 1: cast-in-place reinforced concrete structure consisting of a nine-story 

moment-resisting frame with masonry infills, coupled with a shear wall; 

RC 2: cast-in-place reinforced concrete structure consisting of a nine-story 

moment-resisting and shear wall pilotis frame, i.e., designed for interruption of 

the masonry infills at the ground floor. 

Details on the design, numerical modelling and non-linear dynamic analyses of 

these structures can be found in [108–110]. 

All three EDP-based procedures for MSA available in R2R-EU (i.e., one 

parametric and two resampling bootstrap processes, see Table 3) were 

implemented for these six structures. The dynamic analysis results that underlie 

the R2R-EU elaborations are presented in Figure 36, where structural responses 

per stripe are given in terms of demand-over-capacity ratios ( )D C , these ratios 

being defined as the EDP values normalized by the fedp  that has been assigned 

to signify conventional collapse for each structure. This means that failure 

corresponds to D C  exceeding unit value, which has been marked on Figure 

36 by a vertical dashed line; on the same figure, all converged-analysis cases 

with 2D C   have been incorporated along with non-convergent analyses into 
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a single point per stripe labelled as collapses, that carries a label reporting the 

number of conventional collapse cases. The results provided by R2R-EU, 

corresponding to these analyses, in terms of point estimate ˆ
f  and estimator 

statistics for the failure rate and fragility parameters (where applicable) are 

summarized in the Table 41 

 
1 It should be noted that it has been RINTC practice to refrain from extending hazard calculations 

to intensities with TR >105 years, so as to avoid extrapolating semi-empirical seismological 

models, assuming that λf  for collapse is at least 10-5 [11]; in the applications presented herein 

this condition is dropped and the failure rates are solely dependent on the structural responses 

available. 
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Figure 36. Structural response of the six considered buildings in terms of 

demand-over-capacity ratios D/C. Crosses represent response values from 

dynamic analysis that converged with 2D C  ; squares are stand-ins used for 

indicating the number of conventional collapses at each stripe. 
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Table 5. Statistics of the estimator of the failure rate by using all three 

procedures implemented in R2R-EU for the MSA EDP-based approach. 

Lognormal fragility (maximum likelihood) 

Building 

 

STEEL 

1 

STEEL 

2 
URM 1 URM 2 RC 1 RC 2 

ˆ
f  

[events/year] 

2.0710
-4 

9.6510
-5 

3.8110
-4 

1.1910
-3 

5.0810
-5 

3.6610
-5 

( )om m−
 

500 491 500 495 431 298 

 ˆE 
 

1.26 1.68 0.52 0.74 1.32 1.47 

 ˆVAR 
 

7.2610
-3 

8.5910
-3 

1.7910
-3 

2.0410
-3 

2.5110
-2 

6.8510
-2 

ˆE  
   

4.5110
-1 

3.7810
-1 

2.3510
-1 

2.2810
-1 

4.9810
-1 

5.3710
-1 

ˆVAR  
   

6.7210
-3 

5.0210
-3 

2.1410
-3 

1.3910
-3 

1.3510
-2 

2.3810
-2 

ˆ
fE  

   

[events/year] 

2.0810
-4 

9.6510
-5 

3.8110
-4 

1.1910
-3 

5.3910
-5 

4.1610
-5 

ˆ
fVAR  

   

[(events/year)2

] 

1.1310
-9 

1.8110
-10 

2.4410
-9 

2.2810
-8 

1.6210
-10 

 

1.0910
-10 

ˆ
f

CoV
  

16% 14% 13% 13% 24% 25% 

Lognormal fragility (normal probability paper procedure) 

Building 

 

STEEL 

1 

STEEL 

2 
URM 1 URM 2 RC 1 RC 2 

ˆ
f  

[events/year] 

1.4210
-4 

1.0610
-4 

3.1010
-4 

8.0910
-4 

9.9810
-5 

6.1510
-5 

m  500 500 500 500 500 500 

 ˆE 
 

1.36 1.5 0.57 0.20 0.90 1.13 

 ˆVAR 
 

2.1710
-2 

2.2610
-2 

2.8910
-3 

3.9510
-3 

1.3810
-2 

2.5010
-2 
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ˆE  
   

2.0610
-1 

2.3910
-1 

1.7810
-1 

1.9510
-1 

1.5710
-1 

1.8510
-1 

ˆVAR  
   

1.1310
-3 

1.3610
-3 

6.0310
-4 

1.6510
-3 

3.0310
-4 

6.8710
-4 

ˆ
fE  

   

[events/year] 

1.4010
-4 

1.0810
-4 

3.1010
-4 

8.3310
-4 

9.1510
-5 

6.4410
-5 

ˆ
fVAR  

   

[(events/year)2

] 

7.8410
-10 

4.3010
-10 

1.5110
-9 

2.6810
-8 

1.2010
-10 

 

4.7010
-10 

ˆ
f

CoV
  

20% 19% 13% 20% 12% 34% 

Three-parameter model per intensity, Equation (6) 

Building 

 

STEEL 

1 

STEEL 

2 
URM 1 URM 2 RC 1 RC 2 

ˆ
f  

[events/year] 

1.8510
-4 

9.5210
-5 

4.1010
-4 

1.1310
-3 

4.4810
-5 

3.2410
-5 

m  500 500 500 500 500 500 

ˆ
fE  

   

[events/year] 

1.8810
-4 

9.5610
-5 

4.1210
-4 

1.1210
-3 

4.6110
-5 

3.2610
-5 

ˆ
fVAR  

   

[(events/year)2

] 

 

3.0310
-10 

8.7010
-11 

2.9510
-9 

9.4510
-9 

1.4310
-10 

 

9.7110
-11 

ˆ
f

CoV
  

9% 10% 13% 9% 26% 30% 
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Figure 37. Fragility functions estimated by R2R-EU from the MSA results of 

the two masonry buildings: URM 1 (a) and URM 2 (b). 

3.4 Conclusions 

This section dealt with R2R-EU, that is an interactive PBEE software tool that 

can be used for quantifying the estimation uncertainty in seismic structural risk 

assessment, due to record-to-record variability of response. R2R-EU takes as 

input a hazard curve, the results of dynamic analysis, which can be incremental 

dynamic analysis, multiple stripe analysis or cloud analysis, and a threshold 

engineering demand parameter that defines the demarcation line for failure. 

With this input, the software first evaluates the structure-specific seismic 

fragility function. Subsequently, R2R-EU goes on to calculate a point estimate 

for the annual failure rate and to evaluate the expected value and variance of 

the rate’s estimator. These calculations can be performed while assuming either 

a non-parametric representation for structural fragility or a lognormal model or 

even when employing Cornell’s seismic reliability formulation. R2R-EU is 

available at www.reluis.it.  

http://www.reluis.it/index.php?option=com_content&view=article&id=542&Itemid=197&lang=it
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Chapter 4 – ON NUMBER OF RECORDS FOR RISK 

ESTIMATION: APPLICATION AND LIMITS OF THE 

STATISTCAL INFERENCE THEORY IN EARTHQUAKE-

ENGINEERING 

The following papers have been derived from this Chapter : 

• Baltzopoulos G., Baraschino R., Iervolino I. (2019) On the number of 

records for structural risk estimation in PBEE. Earthquake 

Engineering and Structural Dynamics, 48 :489–506. 

• Baltzopoulos G, Iervolino I., Baraschino R. (2019) Ground motion 

sample size vs estimation uncertainty in seismic risk, 13th International 

Conference on Applications of Statistics and Probability in Civil 

Engineering (ICASP13), Seoul, South Korea, May 26-30. 

• Baraschino R., Baltzopoulos G., Giorgio M., Iervolino I. (2020) Why 

determining the number of code spectrum-matched records based on 

usual statistics is an ill-posed problem, 17th World Conference on 

Earthquake Engineering, 17WCEE. 

4.1. Introduction 

As exposed in the previous sections, the state-of-the-art for PBEE applications 

entails the analytical estimation of fragility functions by means of various 

procedures that require multiple dynamic analysis runs of a numerical model of 

the structure, while the evaluation of im  for various intensity levels, that is the 

hazard curve, is typically obtained by means of a probabilistic seismic hazard 

analysis (PSHA; e.g., [111]). In principle, both PSHA and the analytical 

derivation of structural fragility involve the use of ground motion records; in 

the former case this is implicit, as PSHA usually models IM via ground motion 

prediction equations (GMPEs; e.g., [112]), that are semi-empirical models 

based on recorded strong motion, while in the latter case it is explicit, as one 

has to select a certain number of accelerograms to conduct the analyses. The 

number of records typically used for non-linear dynamic analysis is mainly 

dictated by the large computation times required for running complex structural 

models at high non-linearity levels. However, the number of records directly 

determines the structural response sample-size to be used in estimating fragility 

and, ultimately, the failure rate. As highlighted, for example, in [8], and 

exposed in the previous Chapter, since these descriptors of seismic fragility and 
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risk are inferred from samples, they are only estimates of the corresponding 

true values, and are therefore affected by estimation uncertainty. In fact, the 

estimator of f , already denoted as ˆ
f , obtained using a specific sample of 

ground motions of certain size, can be considered at the same time a RV and a 

function of the sample. If one were to re-compute ˆ
f  a number of times using 

different sets of accelerograms, equal in number to the first one and equivalent 

in characteristics to the analyst, one would keep obtaining different values for 

the estimator due to the record-to-record variability of inelastic structural 

response.2 In order to illustrate this concept, an example will be provided in the 

context of IDA. As previously said when IDA stops, it is assumed that a certain 

threshold value of the EDP can be defined, fedp , such that the condition 

fEDP edp  can be held to signify failure (e.g., violation of some limit-state). 

This implies that seismic fragility can be expressed as the probability of 

fEDP edp  conditional to IM im= ; i.e., 

fP f im P EDP edp IM im   =  =   
 (EDP-based approach). 

 

 
2 There may be more sources contributing to estimation uncertainty in the fragility and the risk 

estimate; e.g., when accounting for variability in the numerical model properties that may be 

based on samples of experimental data (e.g., [155,156]). Nevertheless, the present study deals 

exclusively with estimation uncertainty related to record-to-record variability of structural 

response to earthquakes, since the intended focus is on the choice of record sample size. 
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Figure 38. Schematic representation of possible derivation of seismic fragility 

functions using incremental dynamic analysis. The intersection of the n IDA 

curves with the threshold EDP value defining failure (a) provides a sample of 

failure intensities used to define a cumulative probability function (b). 

An alternative, widely-used way of expressing seismic fragility is provided by 

the so-called IM-based approach. IM-based fragility entails the introduction of 

a new RV, fIM , that can be regarded as the seismic intensity able to cause 

structural failure [113]. By this definition, fragility can be expressed as the 

complementary cumulative distribution function of fIM ; i.e., 

fP f im P IM im       
. Returning to the IDA example, one can obtain the 

lowest IM value that causes each record to reach the failure criterion, by finding 

the height  , , 1,2, ,f iim i n= , where the i-th IDA curve intersects the vertical 

line fEDP edp= , as shown in the figure. These ,f iim  values can be 

considered as a sample of fIM . Common statistical methods ([55]) can then 

be employed to fit a parametric probability distribution model to the sample, 

such as the lognormal model indicated by a dark line in Figure 38b; 

alternatively, one may even assume that the observed sample values 

approximate the fragility in a non-parametric way, also depicted in Figure 38b 

as a stepwise function. However, if one were to repeat the procedure over a 

large number of times, each time performing IDA with a different set of records, 

it is to be expected that each repetition will lead to a different fragility curve. 

This variability will then reflect on the evaluated failure rate via Equation (1), 

and a quantitative measure can be obtained according to Equation (27): 

ˆ

ˆ

ˆf

f

f

VAR
CoV

E






 
 

=
 
 

,  (27) 

where the notation 
ˆ

f

CoV


 indicates the coefficient of variation of the failure 

rate estimator, and ˆ
fVAR  

  , ˆ
fE  

   denote its variance and expected value, 
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respectively.3 In fact, in the case of unbiased estimators,
ˆ

f

CoV


 provides the 

mean relative (with respect to the true value) estimation error. 

Past PBEE-oriented research on the topic has seen discussion on the number 

of records that ought be used for estimating the distribution of EDPs at a single 

level (or stripe) of intensity [2,6]. In [9] the estimation uncertainty surrounding 

parametric fragility for simplified structural systems was examined, while [10] 

examined the effect of record sample size on the confidence intervals of various 

fractiles of collapse fragility. The effect of estimation uncertainty on the 

parametric fragility model stemming from cloud analysis was considered in 

[20]. The number of records issue has also been studied in a somewhat different 

context: [114] studied its effect under various proposals for spectral-matching 

and scaling of accelerograms and [115] paid particular attention to evaluating 

the ASCE/SEI-7 record selection and scaling procedure. In some of these 

previous studies that examined estimation uncertainty for the fragility 

parameters (e.g., [9,10]) it was recognized that further research was needed to 

investigate the effect of this uncertainty to the actual end result; i.e., the seismic 

risk estimate. 

The objective of this Chapter is to further investigate the issue of the number 

of records and illustrate methodologies to be used as tools for making informed 

decisions about the number of accelerograms to employ in earthquake 

engineering applications, in order to achieve a given value of 
ˆ

f

CoV


. Two 

distinct paths are followed in tandem to reach this aim: an analytical approach 

based on the Cornell reliability method [54] and a computational approach 

based on IDA. In the former case, some additional simplifications are explored, 

intended to render a closed-form expression for 
ˆ

f

CoV


 tractable. The analytical 

result is then evaluated with the aid of cloud analysis [113] performed for some 

simple yielding oscillators, exposed to varying hazard scenarios. In the 

computationally-oriented case, a relatively large pool of records is assembled 

and used to run IDA for an assortment of low-rise code-conforming frames and 

simple inelastic structures. In this context, various limit states and alternative 

IMs are considered. Based on these IDA results, a Monte-Carlo methodology 

 
3 These are typically unknown; however, estimates are obtainable via methods such as those 

presented in [8]. 
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is used to simulate statistics of the estimator ˆ
f , for a wide range of record 

sample sizes n . 

Sections 4.2 and 4.3 are structured in such a way that the analytical treatment 

to the problem is presented first, starting from the classical approximate seismic 

reliability formulation, that is the Cornell reliability method. Following that, 

risk assessments using IM-based, parametric and non-parametric, fragility are 

examined. Subsequently, the procedures for determining the suitable record 

sample size, by setting thresholds of tolerable estimation uncertainty, are 

illustrated, also considering spectral-shape-based (advanced) ground motion 

intensity measures. 

Section 4.4 takes a step backwards with respect to previous section and asks 

another question: are the adopted response statistics an appropriate tool for 

addressing the minimum number of records mandated by modern codes and for 

reconciling the disparity with the sample sizes typically used in seismic risk 

analyses? 

Finally, some concluding discussion is provided to summarize the main 

findings of the study. 

4.2. Cornell reliability method 

Cornell’s seismic reliability method uses some simplifying assumptions to 

provide an elegant closed-form solution to estimate the annual failure rate ˆ
f  

[54]. The analytical expression is given below as Equation (28), where k  is 

the (absolute value of) the hazard curve’s slope, calculated in logarithmic-space 

at CIM , that is the IM corresponding to the median capacity, 
CIM  is the 

annual exceedance rate of CIM  at the site of interest, C  is the standard 

deviation of the structural failure threshold, b̂  and ˆ
D  are the slope parameter 

and the standard deviation of the logarithm of EDP that come with the 

assumption of an EDP-IM relationship as the one expressed by Equation (29). 

( )
2

2 2

2

1 ˆ
ˆ2ˆ e

D C

C

k

b
f IM

 

 
  +

=         (28) 

( ) ( )ˆˆlog logEDP a b IM = +  +       (29) 
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The parameters  ˆ ˆˆ, , Da b   can be obtained via ordinary least squares linear 

regression in the context of cloud analysis (e.g., [113]), which is typically 

performed considering EDP responses to a set of unscaled accelerograms from 

dynamic structural analysis, with ˆ
D  estimated as the standard deviation of 

; i.e., the regression residual [59]. The hat symbol over the notation serves as a 

reminder that these parameters are estimates obtained from finite samples of 

ground-motion and hence also subject to estimation uncertainty. A graphical 

representation of the parameters and quantities relevant to the Cornell method 

is provided in Figure 39. 
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Figure 39. Top: cloud analysis for a simple SDOF inelastic structure situated 

in Naples, Italy. Bottom: local linearization of the hazard curve assumed in 

Cornell’s seismic reliability method. 

In [8], the delta method (e.g., [102]) was used to provide analytical expressions 

that allow calculating the mean and variance of ˆ
f  in the framework of 

Cornell’s method, reported herein in Equation (30), where  COV   represents 

the covariance operator and the derivatives are those of Equation (28). By 

adopting 
ˆ

f

CoV


 as the measure of estimation uncertainty behind the seismic 

risk metric ˆ
f , these two expressions can be used to derive a single formula for 

its quantification, via Equation (27). 

 

( )

 

( )

2 2

2 2

2 2

2

2
2

2 2

2

2
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ˆ ˆ1 1 ˆˆ ˆ ˆ
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ˆ2 ˆˆ

ˆ ˆ
ˆˆ ˆ

ˆˆ

ˆ
ˆ
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f f

f f

f f

D

D
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



 
   = +   +   +

    

 
  +   + 

     

    
      =  +  +

          

 
  + 

   
 

ˆ ˆ
ˆˆ2 ,

ˆˆ

f f
COV a b

a b

 















 
 +       

.  (30) 

By examining applications of Cornell’s method, functional to this study, it was 

observed that some of the terms of Equation (30) containing second derivatives 

of ˆ
f , and especially ( )

2
2 2ˆ ˆ

f D   , were providing much smaller 

contributions to the summations than the other terms of the Taylor expansion. 

In particular, the term ( )
2

2 2ˆ ˆ ˆ
D f DVAR        

   
 was consistently found to be 

around two orders of magnitude lower than the other terms comprising 

ˆ
fVAR  

  . Furthermore, it was observed that ˆ
fE  

   can be adequately 

approximated by the first two terms in the Taylor expansion, i.e., 

  2 2ˆ ˆˆ ˆ1 2f fVAR a a +     . Thus, under these hypotheses, some terms can be 
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dropped from Equation (30) in pursuit of simplification, as they appeared less 

influential in practical applications (see also the applications that follows), 

resulting in Equation (31),which provides the approximate estimates for 

ˆ
fE  

  , ˆ
fVAR  

   to plug into Equation (27). 

 

 

2

2

2 2

ˆ ˆ ˆ1
ˆ2

ˆ ˆ
ˆˆ ˆ
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ˆˆ2 ,
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f f

f f

f

f f

k
E VAR a

b

VAR VAR a VAR b
a b

COV a b
a b

 

 


 

  
    +      


    

        +  +            


 
 +       

.   (31) 

With reference to Figure 39, by denoting the abscissa of the cloud analysis point 

corresponding to the i-th ground motion as ( )log iim  and representing the 

sample mean and standard deviation of the logarithms of these records’ IM 

values by: 

( ) ( )
1

log 1 log
n

i

i

im n im
=

=  and ( ) ( ) ( )
2

log
1

1 log log
n

iim
i

s n im im
=

 =  −
  , 

respectively, then it is known [59] that: 
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



  
    +
  

 

      


 −         
 

 .     (32) 

By combining Equations (27), (31), (32) and substituting the partial derivatives 

of ˆ
f  (that can be obtained from Equation (28), but are also given explicitly in 

[8]), then Equation (33) is obtained. In that Equation, 
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( ) ( )2 2

2

ˆlog
ˆC D C

k
IM

b
  = −  +  and ( ) ( ) ˆˆlog logC fIM edp a b = −

   is the log 

of the median structural capacity. 
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.  (33) 

The simplifications, when passing unto the second (approximate) equality, are 

due to the observations that 
( ) ( ) ( ) ( )

2 2 22

log
1

log 1 log log
n

iim
i

s im n im im
=

+ =    = 

, and that for most typical earthquake engineering applications ˆ
D  in natural 

log scale will be in the 0.20-0.60 range [116], so for a number of records n  of 

more than ten, the term ( ) ( ) ( )( ) ( )
2

2 2 2 2

log
ˆ ˆ1 2 1 log Dim

k b im s n+   +   will tend 

to unity. Thus, apart from the non-surprising fact that 
ˆ

f

CoV


 varies inversely 

proportional to n , the equation suggests that it depends, among other things, 

also on the shape of the hazard curve, around a region of the curve that 

corresponds to the structural capacity. 

To better illustrate the implications of Equation (33), three yielding single-

degree-of-freedom (SDOF) systems were considered; these SDOFs all had 

natural vibration period 0.70T s=  and bilinear backbone curves following a 

peak-oriented hysteretic rule exhibiting some mild cyclic strength degradation 

[42]. Each structure was assumed situated at a site of the same subsoil category 

(class B according to [63]; i.e., soil with thirty-meter shear wave velocity ,30sv  

between 360 and 500 m/s), but characterized by varying levels of seismic 

hazard. Three Italian sites were chosen for this example, namely Milan 

(representing a low seismic hazard), Naples (medium hazard) and L’Aquila 

(high seismic hazard; see also [117]). Hazard curves in terms of spectral 

acceleration at their vibration period ( )0.7Sa T s=  were obtained for all three 
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sites using the REASSESS software [103], considering the seismic source 

model from [84]. The yield displacement yd  for all structures was set 

corresponding to a uniform-across-sites yield annual frequency of 0.0021. The 

hazard curves at the three sites are shown in Figure 40. Finally, cloud analysis 

was performed using three sets of forty-two records and the MATLAB-

OpenSees [44] interface DYANAS (Section 2.5) (the analysis for the SDOF 

situated at the Naples site is shown in Figure 39). The ground motion records 

were selected from within the NESS flat-file [104,118] to provide coverage of 

a relatively wide range of ( )0.7Sa T s=  values. 

  
Figure 40. Hazard curves calculated for the three Italian sites (left) and cloud 

analysis for the SDOF structure assumed at a site near L’Aquila (right). The 

peak-oriented, degrading hysteretic behavior characterizing these inelastic 

SDOF oscillators used in the examples of Cornell’s reliability method is also 

shown. 

Using all of these results, ˆ
f

CoV


was evaluated for various cases of failure 

threshold fedp , set at ductility demands (ratio of maximum-to-yield 

displacement yd d ) of four, six and eight. The results of these calculations are 

presented in Table 6, along with the values assumed by the parameters involved 

in the intermediate computations. The corresponding example of cloud analysis 

for the L’Aquila SDOF structure, considering 4yd d =  as the failure 

threshold, is shown in Figure 40. 

The last two columns of Table 6 provide a direct evaluation for the 

simplifications adopted in Equation (31): a comparison of the results for ˆ
f

CoV


 

given by the delta method implemented as presented in [8] – i.e., computing 

ˆ
f

CoV


 by substituting Equations (30) into Equation (27) – and the simplified 
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Equation (33). It emerges, from this comparison, that the latter remains a good 

approximation of the former. Regarding the resulting ˆ
f

CoV


values themselves, 

it can be seen that passing from a hazard curve slope-at-median-capacity k  of 

around 2.0 at the high-hazard site (L’Aquila) to about 3.5 for the low-hazard 

site (Milan), this metric of estimation uncertainty for the failure rate of 

nominally identical structures more than doubles. Recalling the inverse 

proportionality of ˆ
f

CoV


 to n , according to Equation (33), this result 

implies that more than four times as many records would be needed to reduce 

estimation uncertainty for the risk estimate of the SDOF structure in Milan, to 

the same level as that of the structure in L’Aquila. This difference appears 

despite the fact that estimated dispersion of structural response ˆ
D  and failure 

rate ˆ
f  are very similar for both structures. The same effect is observed at a 

single site, when considering the failure rate for limit states associated with 

progressively higher inelasticity levels: for the L’Aquila structure, changing the 

EDP threshold from four- to eight-times yd  resulted in an increase to ˆ
f

CoV


 

from 0.15 to 0.25, as k  increased from around 2.0 to 2.5 due to 
CIM  moving 

farther to the right of the hazard curve. 

Table 6. Application of Equation (33) to inelastic SDOF systems at sites with 

varying severity of seismic hazard. 

 L’Aquila Naples Milan 

yd d
 

4 6 8 4 4 

â  
 -2.06  -2.12 -2.27 

b̂  
 0.91  0.88 0.88 

ˆ
D  

 0.406  0.425 0.424 

CIM  [g] 1.44 2.24 3.08 0.63 0.19 

0k 510−    50 59.7 74.1 3.19 0.03 

k  2.065 2.351 2.569 3.258 3.574 

CIM
 410−    2.37 0.89 0.41 1.41 1.11 
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ˆ
f 410−    3.638 1.553 0.795 4.834 4.85 

ˆ
f

CoV


 

Eq. 

(30) 
0.17 0.21 0.28 0.4 0.45 

Eq. 

(33) 
0.15 0.18 0.25 0.38 0.44 

The observations stemming from these illustrative examples, albeit quite 

evident from Equation (33), can be summarized as follows: for a fixed sample-

size of ground motions, the variability, due to estimation uncertainty, of the 

seismic risk estimator ˆ
f  does not increase only with 

D , but also with 

increasing (negative) slope of the hazard curve around the intensity where mean 

response matches the failure threshold. In other words, the number of dynamic 

analyses required to reduce the estimation uncertainty of a given structure’s 

failure rate to a specific level, will increase with increasing severity of the limit 

state. Furthermore, for seismic risk analysis studies at sites where the curve 

drops off at steeper slopes one may need a larger number of dynamic analyses 

to achieve a specific target coefficient of variation, with respect to a similar 

analysis performed at a site with a milder-sloping curve and with all else being 

equal structure-wise. At first sight, one might be tempted to treat these 

observations with some caution, as they could be influenced by the simplifying 

assumptions of Cornell’s reliability method (see [119] for a discussion). 

However, the same observations are also generally confirmed under a more 

rigorous context of seismic risk assessment, as discussed in the following. 

4.3. Influence of the site-specific Hazard curve 

In this section, the issue of estimation uncertainty is treated for cases of direct 

application of Equation (1), with the structure-specific fragility function 

P f im    being obtained via IDA. Case-study structures used in this context 

are three SDOF systems at three sites as before and two four-story, plane, code-

conforming, moment-resisting frames: a steel perimeter frame, designed to 

ASCE-SEI 7-05 criteria and described in [77], and a reinforced concrete bare 

frame (i.e., without masonry infills) designed according to EN-1998-1 (see [78] 

for structural details). The only differences of the SDOF structures with respect 

to the previous example is that softening post-peak behavior has been modelled 

on their backbones to allow collapse prediction (e.g., [37]) and yd  has been re-
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adjusted in order to ensure that, for collapse, an arbitrary yet uniform 

4ˆ 4.3 10f
−=   results across all sites, when ( )0.7Sa T s=  is used as IM. The 

steel multiple-degree-of-freedom (MDOF) structure is placed at the L’Aquila 

site and the reinforced concrete one at the Naples site. Center-line models built 

in OpenSees are used for both frames; some basic geometrical information and 

static pushover curves are shown in Figure 41(a,b). For all structural models, 

IDA is performed using a set of two-hundred ground motions that are scaled 

upwards until dynamic instability is observed, signifying side-sway collapse. 

These records were selected primarily from within the NESS database 

(http://ness.mi.ingv.it/ [104,118]) and, to a lesser extent, from the NGA-West2 

database [120]. The selection criteria were to obtain records exhibiting some of 

the highest available naturally recorded spectral ordinates at the first-mode 

vibration periods of the examined structures (to keep scaling-up during IDA to 

a minimum), to exclude records potentially affected by near-source directivity 

or recorded at very soft soil sites and to avoid over-representation of any single 

event. 

 
Figure 41. Basic information on the structures and hazard used in the 

examples. Dimensions and static pushover curves (first-mode proportional 

lateral load) for the two code-conforming, four-story, inelastic MDOF frame 

structures. Steel perimeter moment-resisting frame (a) and reinforced concrete 

moment-resisting frame (b). Hazard curves in terms of two IMs, ( )1Sa T  and 

avgS , are shown for the L’Aquila (c) and Naples site (d). 

http://ness.mi.ingv.it/
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In all cases, seismic fragility functions are estimated via the two-hundred 

records according to the IM-based procedure (e.g., [113]) for the collapse limit-

state; additionally, limit-states characterized by various threshold ( )fedp  

interstory drift ratios (IDRs) are considered for the two frames. This is done 

assuming, alternatively, lognormal and non-parametric fragility functions 

according to Equations (2) and (4) respectively, where ,f iim  represents the i-th 

record’s (lowest) scaled IM value causing exceedance of the threshold (i.e., 

referring again to Figure 38, the intersection of the i-th record’s IDA curve with 

the vertical fEDP edp=  line), ̂  and ̂  are the point estimates of the 

lognormal fragility’s parameters, taken as the mean and standard deviation of 

the logs of ,f iim , and n  is the total number of records. 

IDA curves are initially obtained in terms of 5% damped, first-mode spectral 

acceleration ( )1Sa T  but, thanks to the use of the hunt-and-fill algorithm [51], 

they are subsequently converted into another two more efficient IMs that 

account for spectral shape: average spectral acceleration avgS  ([92,121]) and 

pNI [122], given by Equations (34) and (35), respectively (discussion on IM 

efficiency to follow). 

( )
1

n

n
avg i

i

S Sa T
=

=            (34) 

( ) ( )
0.40

1 1Np avgI Sa T S Sa T =           (35) 

Spectral ordinates at different periods iT  are used to define these IMs for each 

structure. Both avgS and NpI  for the SDOF structures use  0.7s,1.0s,1.4siT =  

while avgS  for the MDOF frames uses each structure’s first-mode period 1T  

and another three periods approximately corresponding to 

 1 1 10.3 ,1.5 ,2T T T   . Hazard curves for these structure-specific IMs are 

provided in Figure 41 (c,d) for the frames and Figure 42 for the SDOF systems. 
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Figure 42. Hazard curves for the structure-specific IMs INp and Savg that were 

used for the collapse risk estimates of the example SDOF structures at the three 

Italian sites of Milan, Naples and L’Aquila. 

For each structure, limit-state and IM, the two-hundred-record IDA-based 

fragilities are treated as the reference - true - fragility functions for the purposes 

of the study. Following the derivation of the fragility functions from the vectors 

of ,f iim  provided by IDA, Monte Carlo simulation is used to calculate the 

relationship of 
ˆ

f

CoV


 against n . The simulation entails randomly sampling l  

times from the reference distribution of IM levels causing failure, fIM , for 

different sample sizes  2,3,...,200n = .4 The reference distribution sampled 

during the simulation is alternatively considered the lognormal function 

estimated from the two-hundred-record IDA via Equation (2) and the non-

parametric version of the same. In the former case, new lognormal fragility 

parameters are fitted to each individual sample according to Equation (2), while 

in the latter, Equation (4) is directly applied to the sample and considered as 

fragility function. Examples of the resulting simulated fragility realizations are 

shown in Figure 43 and Figure 44 for the lognormal and non-parametric case, 

respectively. Both figures refer to the collapse fragility of the four-story steel 

frame at the L’Aquila site, expressed in terms of both ( )1.8Sa T s=  and avgS . 

Each panel displays the reference two-hundred-record fragility function and 

 
4 Although this type of simulation is reminiscent of resampling schemes such as the bootstrap, 

the two methods are only coincident when samples of equal size to the original two-hundred are 

being extracted. 
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five-thousand simulated fragility realizations for sample sizes  20,50,100n =

. These plots provide a visual representation of the effect of estimation 

uncertainty on structural fragility, as increasing the sample size of structural 

responses results in the simulated curves clustering more tightly around the 

sampled reference fragility. 

 
Figure 43. Plots of lognormal collapse fragility functions, produced during 

Monte-Carlo simulations that sample  20,50,100n =  failure intensities from 

the lognormal distribution derived from the two-hundred-record IDA of the 

steel, four-story frame. Top row shows fragilities in terms of ( )1.8Sa T s=  and 

bottom row in terms of avgS . Each panel displays five-hundred simulations. 
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Figure 44. Non-parametric collapse fragility functions, produced during 

Monte-Carlo simulations that sample  20,50,100n =  failure intensities from 

their empirical distribution resulting from the two-hundred-record IDA of the 

four-story steel frame. Top row shows fragilities in terms of ( )1.8Sa T s=  and 

bottom row in terms of avgS , with each panel displaying five-hundred 

simulations. Corresponding simulations performed under the assumption of a 

lognormal fragility model are shown in Figure 43. 

In either case, using Equation (1) leads to a point estimate of the failure rate at 

the j-th simulation 
,

ˆ
f j ,  1,2,...,j l= , with a total of 5000l = simulations 

used for each application. Finally, by substituting ˆ
fVAR  

 
 and ˆ

fE  
 

 in 

Equation (27) with their estimates from the Monte Carlo simulation-generated 

sample, 
ˆ

f

CoV


 is approximated for each n  according to Equation (36). 

2

, j ,k

1 1

ˆ

, j

1

1 1ˆ ˆ
1

1 ˆ
f

l l

f f

j k

l

f

j

l l
CoV

l



 



= =

=

 
 −  

−  




 


     (36) 
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The results of this procedure are shown in Figure 45 for the three SDOF 

systems, in Figure 46 for the steel frame and in Figure 47 for the reinforced 

concrete frame. In these figures, 
ˆ

f

CoV


is plotted against n  for the various limit 

states and IMs considered, and the record sample sizes corresponding to 

coefficients of variation of 0.10 and 0.20 are denoted for select cases to 

facilitate comparison. 

  
Figure 45. 

ˆ
f

CoV


 against n  calculated via Monte Carlo simulation for the 

three SDOF structures considered. 
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Figure 46. 

ˆ
f

CoV


 against n calculated via Monte Carlo simulation for the four-

story steel frame considered at the L’Aquila (high hazard) site. 
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Figure 47. 
ˆ

f

CoV


 against n  calculated via Monte Carlo simulation for the four-

story reinforced concrete frame considered at the Naples (medium hazard) site. 

From these results, it can be observed that
ˆ

f

CoV


from Monte Carlo simulation 

is very nearly inversely proportional to n , especially for 3n  , as suggested 

by Equation (33). Thus, all of these curves are almost linear in the logarithms 

with a slope of 1 2− , i.e., ( ) ( ) ( )ˆlog log 1 2 log
f

CoV n


  −  . It is, therefore, 

useful to calculate the log-space intercept of these curves, ( )log  , equal to 

ˆ
f

n CoV


 =  in linear scale, by least-squares fitting. This information is 

reported in Table 7 along with the logarithmic standard deviation 
fIM  of the 

fragility curve for each case, where the hat from 
fIM is omitted to indicate the 

reference two-hundred record-based estimate, presumed close to the true value. 

It is evident that   bears direct correspondence to the numerator of Equation 

(33) and that cases exhibiting higher   values are subject to larger estimation 

uncertainty of ˆ
f  than cases with lower  , given parity of record sample size. 

From the figures and table, it can be observed that for the limit states 

associated with more severe levels of inelastic response, the lognormal 

assumption for fragility leads to higher 
ˆ

f

CoV


 than the non-parametric 

approach. On the other hand, for limit states corresponding to smaller drifts, 

both the lognormal and non-parametric approach lead to similar levels of 

estimation uncertainty for the failure rate of the structures examined. This 

difference hints at the unsurprising fact that the effect of the hazard curve’s 

shape on the failure rate’s estimation uncertainty is, in reality, somewhat more 

complex than just due to the slope at median capacity, since both of these 

representations of the fragility function share the same median fIM . 

This notwithstanding, the behavior of 
ˆ

f

CoV


with varying conditions of site-

specific seismic hazard observed within these results, is generally consistent 

with the observations made previously, on the basis of the analytical 

approximation derived from Cornell’s method. In fact, at sites with hazard 

curves that slope downwards at steeper angles near the median capacity ˆ
fIM , 

the dispersion of the estimator ˆ
f  increases for structures with equal sample 
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sizes and ostensibly equal f . This is observed among the SDOF systems 

examined, as well as between the two MDOF structures. The same effect is also 

observed at the same site and structure, when different limit-states are 

concerned: the collapse and 3%IDR   limit-states for the steel frame exhibit 

almost identical ˆ
fIM values, but the collapse case is associated with larger 

dispersion of ˆ
f . This can be explained by the fact that collapse is associated 

with a higher ˆ
fIM than 3%IDR   (in terms of ( )1.8Sa T s=  

ˆ

e =0.56
IM f g


 and 

0.37g , respectively). Thus, 
ˆ

f

CoV


 for the collapse limit state is influenced by 

a steeper portion of the hazard curve than for 3%IDR  . This is analogous to 

what was observed when implementing Equation (33) in Cornell’s method, 

with increasing failure thresholds for the same structure. 

Table 7. Logarithmic intercept   of 
ˆ

f

CoV


as a function of n , 

( ) ( ) ( )ˆlog log 1 2 log
f

CoV n


=  −  , calculated via two-hundred record IDA 

for various structures, IMs, site seismic hazard and limit-states. 

Site Structure Limit-state IM 
fIM  Fragility   

Milan 

(low 

hazard) 

 

Inelastic 

SDOF 

T=0.70s 

Collapse 

Sa(T1) 0.443 
Lognormal 1.874 

Non-parametric 1.247 

INp 0.340 
Lognormal 1.453 

Non-parametric 1.047 

Savg 0.222 
Lognormal 0.945 

Non-parametric 0.745 

Naples 

(medium 

hazard) 

Inelastic 

SDOF 

T=0.70s 

Collapse 

Sa(T1) 0.444 
Lognormal 1.521 

Non-parametric 1.108 

INp 0.341 
Lognormal 1.271 

Non-parametric 0.960 

Savg 0.222 
Lognormal Non-

parametric 

0.881 

0.727 

Four-

story 

reinforced 

concrete 

frame 

T1=0.53s 

 

IDR>0.5% 

Sa(T1) 0.314 
Lognormal 0.856 

Non-parametric 0.791 

Savg 0.216 
Lognormal 0.734 

Non-parametric 0.747 

 

IDR>1% 

 

Sa(T1) 0.389 
Lognormal 1.344 

Non-parametric 1.247 

Savg 0.255 Lognormal 1.113 
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Non-parametric 1.020 

L’Aquila 

(high 

hazard) 

Inelastic 

SDOF 

T=0.70s 

Collapse 

Sa(T1) 0.443 
Lognormal 0.956 

Non-parametric 0.737 

INp 0.340 
Lognormal 0.747 

Non-parametric 0.614 

Savg 0.222 
Lognormal  0.505 

Non-parametric 0.455 

Four-

story steel 

moment 

resisting 

frame 

T1=1.82s 

Collapse 

Sa(T1) 0.335 
Lognormal 0.884 

Non-parametric 0.866 

Savg 0.194 
Lognormal 0.637 

Non-parametric 0.616 

IDR>3% 

Sa(T1) 0.329 
Lognormal 0.745 

Non-parametric 0.761 

Savg 0.227 
Lognormal 0.631 

Non-parametric 0.640 

4.3.1 Number of records and efficient intensity measures 

The term efficiency is used in the literature to denote the property of an IM to 

produce lower dispersion of structural responses, conditional to that IM, than 

alternative, less efficient IMs (see for example [6,60]). Efficiency is specific to 

a given structural typology, EDP and level of non-linearity (e.g., [122,123]). 

Past research has shown that for EDPs related to story- and roof-drifts and for 

limit states nearing side-sway collapse, scalar IMs that reflect spectral shape at 

multiple periods, such as avgS  and NpI , are more efficient than the classical 

( )1Sa T  [60,121–124]. High efficiency is typically cited as an important and 

desirable characteristic, precisely because it implies that a smaller number of 

dynamic analysis runs will be required to achieve a given dispersion level for 

the estimator of a seismic-risk-related parameter (e.g., [2]). In fact, even though 

most studies that have investigated IM efficiency tend to focus on the record-

to-record variability of structural response, this is actually intended as a proxy 

for the estimation uncertainty underlying the risk metrics, whose reduction is 

the end objective. It is, therefore, quite natural to directly observe the effect of 

this property on estimation uncertainty, via statistics such as 
ˆ

f

CoV


. 

In this respect, there are two main observations to be made, on the basis of 

the mean relative error results obtained for the example applications. The first 

observation regards cases with 1  ; i.e., combinations of the more severe 

limit states, low-to-medium hazard and adoption of the classical ( )1Sa T  as 
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IM. In these situations, the reciprocal relation of 
ˆ

f

CoV


 with n , means that 

achieving an arbitrary low coefficient of variation of, say, 10% would require 

sample sizes in excess of one-hundred records, which verges on the 

impracticable. This hints at a more pressing need to adopt efficient IMs in such 

cases. 

The second observation, is that when switching to more efficient IMs, the 

reductions in the dispersion ˆ
fIM  are not always consistently reflected in the 

reductions of the number of records required to maintain any given
ˆ

f

CoV


level. 

For example, switching from ( )1Sa T  to avgS  results in about 30% reduction in 

ˆ
fIM  for both the 0.5%IDR   state of the Naples frame and the 3%IDR   

limit state of the L’Aquila frame; however, this translates to a 25% reduction 

in the number of records required to maintain any level
ˆ

f

CoV


 in the latter case, 

but only 8% in the former. Similarly, performing the same operation for the 

collapse case of the SDOFs at the Milan and Naples sites results in the same 

50% reduction in ˆ
fIM , which translates in a 75% reduction in the 

corresponding number of records for the structure in Milan, but only 66% for 

the one in Naples. 

Apart from these observations, a comment should be made about the fact 

that the two-hundred-record point estimate ˆ
f  shifts when switching IM. This 

effect is mainly related to the sensitivity of response to seismological 

parameters when records are scaled (see, for example, [60]), which can be 

different for each IM-EDP combination. However, this is not an issue that is 

directly related to estimation uncertainty and for this reason, further discussion 

thereof falls beyond the scope of this article. 

4.3.2 Target mean relative error and interquantile range of the risk estimate 

The preceding discussion and illustrative applications showcased the influence 

of various parameters on 
ˆ

f

CoV


 and provided some typical ranges of values 

that it is expected to take for given sample sizes. It was highlighted that the 

mean relative estimation error, in the case of IM-based fragility, varies with n  

according to ˆ
f

CoV n

=  , with   depending on the choice of IM and 
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consequent record-to-record variability of structural response and on the shape 

of the corresponding hazard curve. The examples provided indicate that, for the 

simple inelastic structures examined, ( )0.45,1.9 , which translates into 

ˆ
f

CoV


 ranging roughly from 0.45 n  for a combination of efficient IM and 

high seismicity site (mild slope of the hazard curve around average structural 

capacity) to about 1.9 n  for the other extreme of less efficient IM and low 

seismicity site (steeper curve). Given that the hazard curve should be known 

prior to embarking on dynamic analysis and that the literature is rife with 

studies on the efficiency of various IMs for specific EDPs, one should be able 

to assess the required number of records to be 

( ) ( )
22

0.45 1.9tar tarn CoV CoV=       , where tarCoV , is a target value for 

the coefficient of variation of the risk estimate. Once the dynamic analysis has 

been concluded and structural response results have become available, it will 

also be possible to use other tools for assessing estimation uncertainty, such as 

those presented in [8]. 

In this context, it may be useful to illustrate the consequences of setting a 

target 
ˆ

f

CoV


of, say, 0.10 or 0.20 on the precision of the risk estimate, by 

linking these values to another measure of the estimator’s scatter around the 

mean: the 5th to 95th interquantile range, 
,0.95 ,0.05

ˆ ˆ
f f −  [75]. This statistic can 

be calculated from the approximations to the distribution of ˆ
f  obtained by the 

Monte Carlo simulations for each n , an example of which is provided in Figure 

48. The examples in the figure refer to the IDR>1% limit state for the reinforced 

concrete frame and collapse of the steel frame, in both cases using avgS  as IM, 

and are given for  20,50,100n = . The distribution plots clearly showcase the 

reduction in dispersion of the risk estimator, with increasing sample size of 

records. 
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Figure 48. Distributions of the seismic risk estimators ˆ

f , approximated via 

Monte Carlo simulation, for record sample sizes  20,50,100n = . The top row 

corresponds to the IDR>1% limit state of the reinforced concrete frame 

situated at the Naples site and the bottom row to collapse of the steel frame 

situated at the L’Aquila site. The IM employed in both cases avgS . The ordinate 

reports relative frequency, i.e., the number of simulated ˆ
f  point estimates 

contained in each bin of the histogram divided by the total number of 

simulations. 

On the other hand, the interquantile range 
,0.95 ,0.05

ˆ ˆ
f f −  is plotted in Figure 49, 

normalized by the point estimate at 200n = : ( ) 200ˆ n

f
= . This is shown for two 

cases of collapse annual rate: that of the steel four-story frame, using non-

parametric fragility in terms of avgS , and that of the SDOF structure at the 

Naples site, using non-parametric fragility in terms of ( )1Sa T  this time. The 

underlying implication behind plotting the ratio ( ) 200ˆ ˆ n

f f 
= , is that ( ) 200ˆ n

f
=  

should be close to the true rate and thus the interquantile range appears as a 

percentage of that value. From the figure, it can be observed that normalized 

,0.95 ,0.05
ˆ ˆ

f f −  ranges corresponding to the same value of 
ˆ

f

CoV


 are almost 

identical between the two cases, even if the latter requires more records to 

achieve those
ˆ

f

CoV


values than the former. Furthermore, it can be seen that the 
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width of this range shrinks from around 0.70 at 
ˆ 0.20

f

CoV

= , to about 0.33 at 

ˆ 0.10
f

CoV

= . These normalized 

,0.95 ,0.05
ˆ ˆ

f f −  widths suggest that mean 

relative errors in the environs of 10%, and not larger than 20%, should be 

regarded as acceptable target levels of accuracy in estimation, as higher 
ˆ

f

CoV


 

levels imply that the width of this interquantile range would approach the 

reference ( ) 200ˆ n

f
=  value in size. In terms of the required number of records, 

setting 0.10tarCoV =  and assuming that, as discussed previously,   will be 

maintained under 1.0 by judicious selection of IM to avoid impractical sample 

sizes, n would result within a range from forty to one-hundred ground motions, 

depending on IM efficiency with respect to all relevant EDPs and site-specific 

hazard and considering the results of the MDOF frames as representative. In 

fact, for the simple inelastic SDOF structures this number starts from as low as 

around twenty ground motions. 

 
Figure 49. Interquantile range ,0.95 ,0.05

ˆ ˆ
f f −  as a function of n , normalized 

by the two-hundred-record point estimate 
( ) 200ˆ n

f
=

. The ,0.95 ,0.05
ˆ ˆ

f f −  range 

was calculated from the Monte Carlo approximations of the distributions of ˆ
f  

for various sample sizes: cases of collapse limit-state for the steel frame (non-

parametric fragility in terms of avgS , left panel) and collapse limit-state for the 

SDOF system located at the Naples site (non-parametric fragility in terms of 

( )1Sa T , right panel). Record numbers corresponding to ˆ
f

CoV


of 0.10, 0.20 

and 0.30 for each case are highlighted by dashed black lines. 
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4.4. Use of statistics tools when dealing with code-based record selections 

4.4.1 Single-stripe analysis and seismic code provisions 

Structures are typically designed to enter into the range of inelastic response, 

during an earthquake that causes a certain shaking intensity to be exceeded. 

Said design usually entails satisfying specific performance objectives, such as 

damage reparability or safety of human life. In structural analysis, failure to 

meet such seismic performance goals is often defined on the basis of exceeding 

some threshold value of a global measure of inelastic displacement, such as 

RDR or IDR. As previously mentioned, such response measures are sometimes 

generically termed EDPs and their failure-threshold values can be denoted by 

fedp . 

In seismic risk assessment, single-stripe dynamic runs of a structure’s 

computer model, aim at estimating the probability of failure at some specific 

ground motion IM level ( )im , 
fP EDP edp IM im  =  , which can, in turn, 

involve estimating the conditional mean and variance of the EDP at that 

intensity, ˆ
EDP IM im


=

 and 
2ˆ
EDP IM im


=

, where the hat symbols are used to denote 

both the estimator and the point-estimates of the parameters of an underlying 

distribution. In fact, point estimates for the two parameters can be respectively 

obtained from the arithmetic mean, x , and mean squared error, 
2s , of the 

sample of EDP values in the stripe given by Equation (37): 

( ) ( )
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1
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−
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=

 = 



= −  −





,     (37) 

where n  is the number of available responses (and records),  ,  1,..,jedp j n=  

are the structural responses given that IM im= . In cases where ˆ
EDP IM im


=

 is 

estimated as the arithmetic mean of the stripe’s sample of n EDP responses, as 

per the equation, the standard error (SE) of ˆ
EDP IM im


=

 can be approximated by 

s n  (approximated in the sense that the point estimate of the standard 

deviation is used in lieu of the true value 
EDP IM im


=

; [75]). This well-known 

result of statistical inference theory, is often used to highlight the importance 

of adopting efficient intensity measures; i.e., IMs that tend to reduce the 
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conditional variance 2ˆ
EDP  (henceforth omitting for brevity the condition 

IM im= , which is left implied), and consequently reduce the number of 

runs/records needed to maintain a desired SE for ˆ
EDP , since the required 

number is proportional to 2ˆ
EDP  (e.g., [2]). The records used are typically scaled 

to the desired IM level and may also be selected on the basis of approximately 

representing the conditional distribution of spectral ordinates given IM im=

(e.g., [53]); in both cases each record is assumed to represent a possible 

manifestation of future shaking at the site and the corresponding structural 

response is considered a random sample. 

Single-stripe analysis is also used during code-based seismic design, where 

dynamic analysis is typically only needed for the verification of a single 

performance objective, which is associated with a specific return period of the 

seismic actions. Whenever modern seismic codes, such as EC8 and ASCE/SEI 

7, allow or require non-linear dynamic analysis to be employed for seismic 

design in this manner, this usually entails comparing the average of the EDP 

values, which are obtained from a number of non-linear runs that use spectrum-

compatible records, with a permissible value that can still be denoted as fedp , 

as shown in Figure 50. The evident similarities of this code-mandated 

procedure with a single-stripe analysis in PBEE context, may lead to the reflex 

reaction of calculating the sample statistics x  and 
2s  from Equation (37) and 

of treating s n  as the SE of some ˆ
EDP , with the consequent repercussions 

on perceived accuracy of the estimate of the mean. However, the question begs 

to be asked: is the implicit assumption that x  and 
2s  are statistics of a simple 

random sample of EDPs (and therefore point estimates of the mean and 

variance of an underlying distribution) still valid under the spectrum 

compatibility condition imposed on the records? 
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Figure 50. Records selected using the Italian code’s EC8-style design spectrum 

with 5% probability of exceedance in 50 years (i.e., return period of 975 years) 

and corresponding stripe of structural responses. 

At this point, consideration should be given to the issue of spectrum 

compatibility that standards, such as EC8 or ASCE/SEI 7, require for the record 

sets. While the codes themselves do not quantify how closely the mean 

spectrum of the selected records should match the target (bar some lower bound 

limit imposed on the mean), dedicated practice- and research-oriented software 

(e.g., [125–128]) tend to operate on a basis of best-fit-possible, employing 

various optimization algorithms, mainly limited by the size of ground motion 

database available. It is also noteworthy that the codes do not impose any 
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quantitative limitation on the variability that single records may exhibit around 

the target. Regarding the lower bound, EC8 stipulates that the mean spectrum 

of the selected record set should not undercut the design spectrum by more than 

ten percent at any period within the range of interest. It also contains a 

provisional clause that mentions scaling recorded ground motions to the site-

specific design peak ground acceleration (PGA), but past research advises 

against this for medium-to-long period structures from as early as [6] and it is 

not strictly necessary to do so for achieving a good overall match to the target 

spectrum. 

4.4.2 Selection of spectrum-compatible record sets 

For the purposes of this study, a ground motion pool of almost three-thousand 

single-component acceleration records was assembled from within the ESM 

and NGA-West2 databases. These records came from seventy-eight worldwide 

shallow crustal events of moment magnitude ranging from 5.4 to 8.0 (seventy-

five events from ESM and three from NGA-West2, with no overlap between 

databases). From within this strong motion dataset, multiple code-spectrum-

compatible sets were selected. The target spectrum considered for record 

selection was the one shown in Figure 50, i.e., the Italian code’s EC8-style 

design elastic spectrum with 5% exceedance probability in 50 years5 at an 

Italian site near the town of L’Aquila with soil class B. This spectrum is for all 

purposes equivalent to an EC8 spectrum. 

The goodness-of-fit metric adopted for quantifying the proximity of a single 

scaled record’s spectrum to the target spectrum is denoted as j , and is given 

by Equation (38): 

2

1

( ) ( )1

( )

w
j j i TARGET i

j

i TARGET i

SF Sa T Sa T

w Sa T


=

 − 
=   

 
  ,    (38) 

where j is the goodness-of-fit of the generic j-th record of the set, 

( )TARGET iSa T  and ( )j iSa T  are the spectral acceleration values at period 
iT  of 

the target (code) spectrum and of the selected record, respectively, jSF  is the 

 
5 Strictly speaking, only the PGA ordinate of the spectrum corresponding to rock site conditions 

has exactly that probability of exceedance; other spectral ordinates may correspond to slightly 

different probabilities, since the code spectrum’s form is only an approximation of a uniform 

hazard spectrum. 
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scale factor determined for that record and w  is the total number of vibration 

periods considered. In this study, goodness-of-fit was evaluated at the same 

periods 
iT  as those used in [125], while the period interval, in which the 

spectrum matching conditions ought to be met, was  0,2T s , where it is 

implied that ( )0Sa T s=  denotes the PGA. In this light, scaling the records to 

the target PGA becomes moot, since that ordinate is also included in the 

matching interval. 

Matching scaled records to the target spectrum was based on minimizing the 

sum of individual-to-target distances, according to Equation (39): 
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 
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, (39) 

where      ( ), ,  1,.., ,  1,..,j i jSa T SF i w j n= = is the set of spectral ordinates 

and scale factors that together fully define the scaled record set selected. In this 

approach, the SF to apply to each of the accelerograms in the ground motion 

pool is part of the optimization process. The numerical problem of minimizing 

the sum of distances, 
1

n

jj


= , was solved using the Monte-Carlo-based 

algorithm proposed in [127] via a suitable modification of the code provided 

therein. In order to limit potential bias, that could be induced in the estimate of 

seismic response from scaling the records ([80,129]), a maximum admissible 

scale factor of ten was imposed. 

It clearly emerges from the above that this algorithm tends to search for a fit 

of the record set to the target, by minimizing the dispersion of the single scaled 

records around it. On the other hand, an explicit measure of the distance 

between the mean of the selected records and the target, 
m , can be provided 

by Equation (40): 
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Although the optimization process given by Equation (39) provides a fit 

between the mean spectrum of the selection and the target only implicitly, since 

1

n

jj


=  is minimized rather than 
m , it has the advantage of maintaining 

dispersion of spectral ordinates within each set as low as possible. As already 

mentioned, the codes have no explicit requirements for limiting said dispersion, 

but some authors have advocated keeping it as low as possible [125]. 

The matching process provided forty-five non-overlapping sets for a series 

of specific sample sizes  3,5,7,10,15,17,20n = . In other words, for every 

sample size n  considered, the records contained in one set are never repeated 

in any other set of the same size; this was achieved by excluding from the pool 

the records already belonging to sets constructed during previous selections. 

The number of forty-five distinct record sets for every n , was an upper limit 

that was imposed due to database limitations and the need to maintain a 

minimum goodness-of-fit over all selections, which translates into maintaining 

the mean squared normalized deviation from the target spectrum, 

1

1

n

jj
n −

=
=  , below 0.40 in all cases. In Figure 51,   is plotted for all 

selected records at  3,7,20n =  against order of selection. 

 
Figure 51. Goodness-of-fit (normalized deviation from target spectrum) for 

code-compatible record selections against extraction number for sample size 

of three, seven and twenty. 
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It is evident that   tends to increase with each subsequent selection, which is 

to be expected, as the records that led to the best fit of all previous selections 

are removed from the database to avoid overlap. The fact that this trend is not 

strictly monotonic is due to the Monte-Carlo basis of the optimization algorithm 

used to implement Equation (39). In Figure 52, the target spectrum is shown, 

along with record sets consisting of three, seven and twenty ground motions, 

all coming from the multiple extractions described above. For sample sizes of 

three and seven, the selected sets exhibiting the lowest squared normalized 

deviation from the target  , and those exhibiting the best fit to them mean, i.e., 

lowest 
m , are shown for comparison. 

 
Figure 52. Spectrum-compatible ground motion suites composed of three 

records (a-b), seven records (c-d) and twenty records (e). 
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From Figure 51 it can be seen that the intra-set variability of spectral shape 

generally tends to diminish for smaller sample sizes. It can also be observed 

from the same figure, that   tends to increase going to the right (for subsequent 

record selections), which is an effect of database depletion and explains why 

the selections were limited to forty-five sets, maintaining 0.40  . On the 

other hand, Figure 52 attests to the fact that minimizing the distance of 

individual records from the target achieves a good fit of their mean as well, 

since there is hardly any discernible difference in the goodness-of-fit between 

panels a and b, which show the best individual record and best mean fit, 

respectively, for 3n =  and likewise between c and d for 7n =  (for twenty 

records   and 
m  are minimized for the same selection). Furthermore, this 

figure also confirms the previous observation, that the intra-set variability of 

spectral ordinates tends to decrease when less records are used to achieve the 

same goodness-of-fit between their mean and the target spectrum. 

4.4.3 Impact of the records’ set size on the response statistics 

The three-hundred and fifteen record suites assembled according to the 

procedure described in the previous section (seven set sizes times forty-five 

sets) were used to run response-history analysis of a non-linear numerical 

model of a four-storey plane, code-conforming reinforced concrete frame with 

first mode period 
1 0.53T s=  (see Figure 53 and [78] for more information on 

the structure and detailing). The sample intra-set means of the IDR and RDR 

responses that were obtained for each record set, denoted respectively as 
intra

IDR

, 
intra

RDR , are shown in Figure 54. These were calculated as the arithmetic means 

x , of the corresponding EDP, via Equation (37). 

 
Figure 53. Basic dimensions and static pushover curve for the code-

conforming, four-story, inelastic MDOF reinforced concrete moment-resisting 

frame structure used in the example. 
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Figure 54. Intra- and inter-set response means (left panel RDR, right panel 

IDR), for the code-conforming reinforced concrete frame, plotted against 

sample size. 

Also shown in the figure are the inter-set means, 
inter

IDR  and 
inter

RDR , calculated as 

the average of the intra-set means, according to Equation (41): 

inter 1 intra

,1

m

EDP EDP kk
m −

=
=  ,      (41) 

where m  is the total number of record sets available ( 45m =  in this case) and 

intra

,EDP k  is the arithmetic mean of IDR or RDR responses of the k-th record set, 

 1,..,k m= . The relatively low average drift values can be attributed to 

overstrength and capacity design, which lead to moderate plastic rotations 

exclusively at the beam ends for this return period of seismic actions. 

It can be noted that previous studies report that code (i.e., uniform hazard) 

spectrum-matched record sets tend to overestimate the central tendency of 

inelastic response, also when the records are scaled to a common ( )Sa T  

ordinate ([115,130,131]). Be that as it may, it can be observed from the figure 

that, despite some small fluctuations, the inter-set averages inter

IDR  and inter

RDR  do 

not appear to vary much with sample size up to 10n = , but do exhibit a small 

increase for larger sample sizes. In fact, Figure 55 indicates that, for record 

sample sizes  3,7n = , where the sets are expected to share a significant 

amount of records between the two size groups, the intra-set average IDR 

responses, 
intra

IDR , obtained from progressively selecting new sets of increasing 

 , fall around the inter-set average without exhibiting any evident strong trends 
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with the selection order. On the other hand, for 20n = , there appears to be some 

increasing trend of intra

IDR  with the selection order of the corresponding record 

set. In fact, inter

IDR  for the twenty-record sets is larger than that of the lower 

sample sizes of thee and seven; this is a consequence of the increasing variance 

of spectral ordinates around the target for 20n =  which also affects the mean, 

due to the non-linear relationship between the spectra and the inelastic response 

(this can also be appreciated by looking at the first couple of selections at 

20n = , whose spectra are expected to be as close to the target as are their 3n =  

counterparts, and whose mean is also similar). From this observation it follows 

that if the goal of the analysis is to evaluate the average response conditional to 

the code design spectrum, there may be a bias-inducing effect of the record set 

size. 

 
Figure 55. Variation of intra-set mean IDR response with selection order of the 

corresponding record set, for set size of three, seven and twenty records. 

At first glance, this relatively stable behavior, at least the one exhibited by the 

smaller sample sizes, can tempt the observer to mistake the inter-set average 
inter

IDR  for an estimator of the mean of an underlying distribution. But if this were 

the case, one would also expect the sample standard deviations of the IDR 

responses from Equation (37), IDRs , to also vary randomly around some central 

value. However, the fact of the matter is that is not the case at all, as shown in 

Figure 56. In this figure, the calculated IDRs  values for each set were plotted 

against the record selection order, as was previously done for the goodness-of-



125 

 

fit measure (Figure 51) and for the means (Figure 54). This plot is repeated for 

the coefficient of variation, intra

IDR IDR IDRCoV s = . On both of these graphs, the 

least-square regression lines of 
IDRs  and 

IDRCoV  against selection order 

 1,2,..,45m =  are displayed, with separate regressions performed for each 

record set size of  3,7,20n = . Instead of a random variation around some 

central value, an increasing average trend with selection order is observed, 

where selection order is a proxy for decreasing goodness-of-fit, as shown in 

Figure 51. Not only that, but the dispersion of structural response, expressed by 

either 
IDRs  or the normalized value 

IDRCoV , also appears to increase, on 

average, with sample size; this is clearly indicated by the fact that the regression 

lines are arranged one underneath the other, with 20n =  leading with the larger 

average dispersions and the other two following in decreasing order with 

sample size. 
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Figure 56. Standard deviation (left) and coefficient of variation of IDR (right) 

for each set of three, seven and twenty records, plotted against selection order 

and with a regression line displayed. 

This behaviour implies a dependence of the dispersion of IDR from sample 

size, which means that it is not possible to predict the standard error of the 

average response of a larger set by using the mean squared error calculated from 

a smaller set via Equation (37). An explanation for this, is that the structural 

responses from records selected according to the matching criteria in Equation 

(39), do not represent a simple random sample of any distribution. In other 

words, the responses obtained from a record set of a certain size, are not 

independent realizations of a random variable. This is because matching the 
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same spectrum induces a dependence between responses, due to the increased 

intra-set spectral similitude observed in Figure 51 at smaller set sizes; given the 

important role of spectral shape in determining the distribution of inelastic-

displacement-related EDPs (e.g., [122,132]) this lower dispersion in inter-set 

spectral shape can carry over to the responses. This correlation of spectral shape 

and inelastic response can also partly explain the increasing trend of 
IDRs

observed with respect to the selection order: since subsequent selections 

excluded all previously extracted records to avoid overlapping (i.e., avoid the 

presence of the same record in more than one set of the same size), the best-fit 

candidates are gradually removed from the selection pool. Consequently, the 

dispersion of the records’ spectral ordinates from the target increases in 

subsequent selections and the dispersion of inelastic response also reflects that 

increase. 

However, the issue remains that the simple random sample assumption is a 

sine qua non condition, both for using sample statistics, such as those of 

Equation (37), as estimators of the parameters of some underlying distribution, 

as well as for calculating the corresponding SE. Thus, one logical conclusion 

that can be drawn from what evidence was drawn from this example, is that the 

use of statistical inference tools, only suitable in the case of simple random 

sampling, to determine ground motion sample size in the context of code-

mandated spectrum-compatibility may be an ill-posed problem, because the 

underlying assumption of the corresponding structural responses being 

independent and identically distributed does not appear to hold. 

4.5. Conclusions 

The complexity of numerical models that simulate the seismic response of 

structures in the non-linear range grows at a pace that rivals advances in 

computing power. This leads to computational costs for analytical seismic risk 

assessments that remain at constantly high levels, rendering the issue of the 

appropriate number of response-history analyses to run, ever topical. Sections 

4.2 and 4.3 advocate the use of quantitative criteria to determine the sample 

size of ground motion records, based on the statistical inference concept of 

estimation uncertainty. This offers earthquake engineers a means of making an 

informed decision, by weighing computation costs against precision of the risk 

estimates. The study focused exclusively on the use of naturally-recorded 

acceleration time-histories (possibly modified by scaling-in-amplitude only), 
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which is becoming the norm, in part thanks to the widespread recent availability 

of online strong motion repositories. In order to quantify estimation uncertainty, 

the coefficient of variation of the estimator of annual failure rate, ˆ
f

CoV


, was 

chosen. The main conclusions to be drawn from this study are listed here. 

• A closer look at Cornell’s simplified, analytical seismic reliability 

formulation, showed that the record-to-record dispersion of structural 

responses is only part of the story, with ˆ
f

CoV


 also depending on the 

shape of the site-specific hazard curve. The implication of this finding, 

is that for structures located at sites characterized by different 

seismicity levels, different numbers of runs may be required to reach 

the same level of confidence in the risk estimate between sites, even 

for the case of similar structures expected to exhibit the same failure 

rate. The effect of hazard on ˆ
f

CoV


can be summarized by the slope of 

the curve near intensity levels that are most relevant for causing failure: 

the steeper the local drop-off of the curve the greater the estimation 

uncertainty behind ˆ
f . These observations were generally 

corroborated by numerical simulations, based on incremental dynamic 

analysis of simple inelastic systems and two code-conforming frames. 

• Both analytical and numerical investigations showed that the mean 

relative error of the failure rate follows a relation of the type 

ˆ
f

CoV n

=   and suggest that the parameter  , as a rule of thumb 

(based on the applications developed in this study), varies between 

around 0.45 and 1.9 for various limit-states that can be defined in terms 

of maximum drift thresholds, ranging from moderate inelasticity to 

side-sway collapse. The lower value corresponds to cases where 

advanced, efficient scalar seismic intensity measures are employed 

combined with a mild-sloping hazard curve with slope 2k   around 

median structural capacity, and the higher one to the use of traditional 

intensity measures, such as first-mode spectral acceleration, coupled 

with locally steeper hazard curves, e.g., with slope 3.5k  . 

• It was observed that, for nominally equivalent structures, variations in 

the choice of intensity measure and/or site-specific hazard can cause 

the number of records required to achieve a level of ˆ
f

CoV


around 0.10 
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to vary from the low tens to a couple of hundred. This, once again, 

highlights the importance of selecting efficient intensity measures in 

performance-based earthquake engineering, which becomes an almost-

necessity in the case of collapse failure estimation at low-seismicity 

areas, keeping the number of ground motions needed to achieve a 10% 

coefficient of variation for the failure rate estimate within the range of 

forty to one-hundred. 

• Finally, it was observed that the reduction in the dispersion of structural 

response via efficient intensity measures, despite its importance, does 

not tell the whole tale with regard to the corresponding reduction in 

computational costs, which can also be site-dependent. 

• On a concluding note, in the applications presented herein, the general 

trend was that less records are needed to reach the same level of mean 

relative error in the risk estimates for sites exposed to higher seismic 

hazard, than for sites exposed to lower hazard levels; however, this 

result may be a rule-of-thumb that is not necessarily generalizable 

independently of the shape of particular site-specific hazard curves. 

Generally speaking, it was shown that the results and observations 

presented can be useful in practical applications of seismic risk 

assessment, by providing a quantitative basis for determining the 

required number of records for risk-targeted dynamic analysis. This 

number can be defined by setting a target of desired precision for the 

risk estimate in terms of the mean relative error, ˆ
f

CoV


. 

Differently, Section 4.4 investigates the issue of the number of code-

spectrum-compatible records used for dynamic analysis, when the objective is 

estimating mean inelastic structural response. Spectrum-compatibility was 

defined as the property of a set of scaled acceleration records, whose mean 

spectrum is as good a match to the target code spectrum as possible. The 

premise that motivated this investigation, was that the use of well-known 

concepts from inference theory, such as estimation uncertainty, while suitable 

for determining the appropriate sample size of input ground motions in other 

apparently similar earthquake-engineering applications, may not be applicable 

in this case. In the context of this investigation, a Eurocode-8 type design 

spectrum for an Italian site was used as reference and numerous spectrum-

compatible sets, without overlap of records between them, were selected from 

a large pool of three thousand acceleration waveforms. This selection was 
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repeated for various sizes of the record set, between three and twenty. It was 

observed that record selection based on goodness-of-fit of the mean to the 

target, led to less inter-set variability of the spectral ordinates for the smaller 

sample sizes. Non-linear dynamic analysis was performed for the numerical 

model of a plane four-storey inelastic frame for all base-acceleration inputs 

selected. Examination of the obtained structural responses revealed that 

response statistics as a function of sample size did not behave as expected for 

random samples, i.e., the responses did not appear to be independent and 

identically distributed. This implies that determining the number of spectrum-

compatible records to use in this context via statistical tools, such as the 

standard error of the mean, suitable in the case of simple random sampling, is 

an ill-posed problem. In other words, it may be conceptually inappropriate to 

invoke considerations of estimation uncertainty, when dealing with code-based 

record selection.  
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Chapter 5 –SEISMIC FRAGILITY OF ITALIAN CODE-

CONFORMING BUILDINGS BY MULTI-STRIPE DYNAMIC 

ANALYSIS OF THREE-DIMENSIONAL STRUCTURAL 

MODELS 

The following paper has been derived from this Chapter : 

• I. Iervolino, R. Baraschino, A. Belleri, D. Cardone, G. Della Corte, P. 

Franchin, S. Lagomarsino, G. Magliulo, A. Marchi, A. Penna, L. R.S. 

Viggiani and A. Zona (2021). Seismic fragility of Italian code-

conforming buildings by multi-stripe dynamic analysis of three-

dimensional structural models. Journal of Earthquake Engineering 

(submitted) 

5.1. Introduction 

In the current Italian building code (NTC hereafter; [133,134]), somewhat 

similar to Eurocode 8 or EC8 [135], structural performance has to be verified 

with respect to seismic actions (i.e., ground motion intensity) with specific 

return periods ( )RT  of exceedance at the site of interest, which depends on the 

limit-state(s) considered for design. In case of ordinary (e.g., office or 

residential) structures, for example, safety verifications for damage limitation 

and life safety limit states are required against ground motion intensity measure 

(IM) levels corresponding to 
RT  of 50 and 475 years, respectively. However, 

seismic structural reliability resulting by design, that is the annual frequency of 

earthquakes lading to structural failure, is not explicitly controlled although 

design seismic actions have a probabilistic determination. 

To quantitatively address the seismic risk that the code-conforming design 

exposes structures to, a large research project was carried out in Italy between 

2015 and 2017. In the project, named Rischio Implicito – Norme Tecniche per 

le Costruzioni [107], structures belonging to a variety of structural types; i.e., 

un-reinforced masonry (URM); reinforced-concrete (RC); precast reinforced 

concrete (PRC); steel (S) and base isolated reinforced-concrete buildings (BI) 

were designed according to NTC for a number of sites featuring different 

hazard levels (Milan, Naples, and L’Aquila) and local site conditions (A and C 

according to EC8 classification). The buildings are for residential and industrial 

occupancy and, for each typology, various architectural/structural 

configurations were considered [105]. 
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The seismic structural reliability of the designed structures was assessed in 

terms of mean annual failure rate of global collapse and usability-preventing 

damage. The rates were computed within the PBEE framework, that is 

integrating the seismic structural fragility and the hazard curve for the design 

site. The fragility was computed for some IM levels via non-linear dynamic 

analysis using three-dimensional (3D) structural numerical models. 

In fact, in the RINTC project structural fragility was only obtained as 

lumped probabilities at ten IM levels, and fragility curves were not fitted, as 

they are not strictly needed to compute the failure rates [11]. On the other hand, 

parametric fragility curves of the several buildings designed, modelled, and 

analyzed in the RINTC project can be useful for a critical discussion of the 

vulnerability of code-conforming structures and for further risk assessment 

studies. This motivated the study presented herein, where the hazard-consistent 

seismic fragility curves are provided for the models belonging to the five 

structural typologies and both failure criteria investigated in the project. 

Among the variety of approaches to derive a fragility function, the study 

herein presented focuses on so-called analytical fragility functions developed 

via non-linear dynamic analysis of 3D models. In particular, the results of the 

MSA (e.g., [18]), using hazard-consistent ground motion record sets, are 

considered to fit lognormal fragility curves for the RINTC structures at all the 

sites design refers to. The curves are obtained considering a variety of 

procedures able to manage the numerical instabilities arising from non-linear 

dynamic analysis and/or the cases of low-hazard sites, where failures are rarely 

observed. Moreover, the uncertainty in estimation (i.e., [8]) of the fragility 

parameters, arising from the record-to-record variability of structural response 

[6], is also addressed. 

The remainder of the Chapter is structured such that the structure and results 

of the RINTC project are briefly recalled first. Then the three methods for 

lognormal fragility fitting are discussed, along with the resampling procedures 

to account for uncertainty in the parameters’ estimation. Subsequently the 

fragility curves are presented and discussed with respect to the issues arising in 

deriving them and mostly depending on sites’ hazard. As a validation of the 

fragilities, the failure rates computed via the fitted curves are compared to the 

results of those originally the rate of earthquakes causing failure of the structure 

and differences quantitatively explained. Some final remarks close the Chapter. 
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5.2. The RINTC framework  

In this section the RINTC context is given. In particular, the design, modeling, 

and analysis of the buildings is briefly recapped for readability, although for 

typology-specific details the reader is referred to the cited specific references. 

5.2.1 Life safety and damage limitation design 

According to the NTC, seismic design actions derive from probabilistic seismic 

hazard analysis or PSHA [136]. Structural systems must withstand the design 

seismic action with the return period of exceedance depending on the limit state 

of interest at the construction site. For ordinary residential and industrial 

structures, that is, those examined in the RINTC project, mandatory design limit 

states are damage limitation (SLD) and life safety (SLV). Their corresponding 

design actions on rock site conditions are derived from the 5% damped spectral 

pseudo-accelerations, ( )
SLDSa T  and ( )

SLVSa T , obtained from site-specific 

elastic design spectra that are close approximations of the 50- and 475-year 

return period uniform hazard spectra (UHS) at the site. Elastic design spectra 

for soil site conditions different from rock are obtained by conventional 

modification via soil-class-specific adjustments. 

Figure 57 (left) shows the official (current) Italian seismic hazard map in 

terms of peak ground acceleration (PGA) with 475-year return period of 

exceedance on rock and the code-prescribed horizontal elastic response spectra 

for the three considered design sites, representative of low-, mid- and high-

hazard in the country, indicated as MI, NA and AQ, respectively 

 
Figure 57. (a) Italian seismic source zones and official hazard map in terms of 

PGA with 475-year return period of exceedance on rock; for the considered 
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sites design elastic spectra corresponding to 50-year return period (b) and 475-

year return period (c) (in the spectra, T is the natural vibration period). 

Figure 57 (right) shows the design spectra at the sites for the two soil site 

conditions (A and C according to EC8 classification) for the two design limit 

states. In case that linear analysis is employed, the code allows to introduce a 

behavior factor, q, to obtain inelastic design spectra. Those assumed in the 

project are recalled in the next section for each typology. 

5.2.2 Residential URM buildings 

URM buildings considered in this work are two- or three- story buildings made 

of perforated clay units with mortar joints designed for the three sites on both 

the soil conditions (A and C). Different (in plan) architectural configurations, 

either regular or irregular according to the definition provided by NTC, were 

considered as to represent typical Italian residential buildings: regular 

configurations are indicated as C (C1-C7), E2, E8, E9, while those irregular as 

I, E5 (see [110,137] for details). As an example, Figure 58a shows the plan of 

a C-type configuration building, which is regular in both plan and elevation; 

Figure 58b,d,e show the plan of the E2, E8 and E9 building, regular in both 

plan and elevation; Figure 58f shows the plan of the E5 and I configurations. 
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Figure 58. Architectural plan configurations: C (a), E2 (b), E8 (c), E5 (d), E9 

(e), I (f). 

The applied design methods are: simple building (SB) rules, linear static 

analysis (with equivalent frame, LSA-F, or with cantilever modelling, LSA-C), 

and non-linear static analysis (NLSA). In case of LSA, design seismic action 

was determined by the elastic response spectra divided by a behavior factor q 

equal to 3.6. The adoption of different design methods allowed designing the 

same structural configurations in sites with different seismicity with little 

margin of verification. In fact, linear analysis methods, much more 

conservative than non-linear static analysis and the rules for the implicit design 

of simple buildings, are applicable only in sites with lower seismicity. Table 8 

shows the forty-five building-site combinations examined in this study. 

Table 8. ID of the URM structures under investigation. Building ID is organized 

as typology-configuration – number of floors – site – soil condition. The 
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asterisk indicates that structure has been designed according to the recent 

update Italian building code provisions [134]. 

Site 
Soil condition 

A C 

L’Aquila (AQ) 

URM-C1-2-AQ-A 

URM-C1-3-AQ-A 

URM-C3-2-AQ-A* 

URM-I1-2-AQ-A* 

URM-E2-2-AQ-A 

URM-E2-3-AQ-A 

URM-E8-3-AQ-A 

URM-C3-2-AQ-C 

URM-I1-2-AQ-C 

URM-E2-2-AQ-C 

URM-E5-2-AQ-C 

URM-E8-2-AQ-C 

URM-E9-2-AQ-C 

Naples (NA) 

URM-C1-2-NA-A* 

URM-C1-3-NA-A* 

URM-C3-2-NA-A 

URM-C4-3-NA-A 

URM-I2-3-NA-A* 

URM-E5-3-NA-A 

URM-E8-2-NA-A 

URM-C1-2-NA-C 

URM-C2-2-NA-C* 

URM-C3-3-NA-C 

URM-C4-2-NA-C 

URM-C5-3-NA-C 

URM-C5-3-NA-C* 

URM-I1-2-NA-C* 

URM-I2-3-NA-C 

URM-E2-3-NA-C 

URM-E8-3-NA-C 

Milan (MI) 

URM-C1-2-MI-A 

URM-C2-3-MI-A 

URM-C4-2-MI-A 

URM-C6-3-MI-A 

URM-E2-2-MI-A 

URM-E2-3-MI-A 

URM-E5-2-MI-A 

URM-E5-3-MI-A 

URM-C1-2-MI-C 

URM-C2-3-MI-C 

URM-C7-2-MI-C 

URM-E2-2-MI-C 

URM-E2-3-MI-C 

URM-E8-3-MI-C 

URM-E9-3-MI-C 

5.2.3 Residential RC buildings 

Three-, six-, and nine-story RC moment-resisting frame (MRF) buildings and 

nine-story RC shear walls (SW) buildings were designed for each of the three 

sites with different levels of seismicity (soil C for all sites and soil A only for 

AQ), including considerations on soil-structure interaction and modelling 

uncertainty for some selected cases [107,138]. 



137 

 

The buildings were intended for residential use and are all 5 3  bays 

characterized by regularity in plan (Figure 59d) and elevation. The floor area 

of the buildings is approximately 
221.4 11.7m , which is common for all 

cases. The ground floor height and all other story heights are 3.4m  and 3.05m

, respectively. The RC frames include knee-joint beams designed to bear the 

staircases. 

Three different structural configurations (i.e., bare-, infilled-, and pilotis-

frames, hereafter denoted as BF, IF, and PF, respectively; Figure 59a,b,c) were 

considered. From a design point of view, the structural members of BF and IF 

are identical in dimensions and reinforcement detailing (i.e., current practice is 

to consider infills in design only as a gravity load and associated mass, so BF 

and IF only differ in terms of assessment models), while the vertical structural 

members at the ground floor of PF were strengthened to account for the infill 

reduction, as per code requirements. SW buildings are symmetrically arranged 

along the perimeter, are 35cm  thick with height varying with site and floor 

(plan in Figure 59e). 

 
Figure 59. (a) six story bare frame (BF); (b) six story infilled frame (IF); (c) 

six story pilotis frame (PF); (d) MRF building floor plan; (e) SW building floor 

plan. 

For each site, seismic design was performed by means of modal response 

spectrum (MRS) analysis. The reference design strength was assigned by the 

design response spectrum obtained from the horizontal elastic response 
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spectrum for soil C (Figure 57b) divided by a behavior factor 3.9q =  (for 

multi-story RC frames in low ductility class; note that masonry infills are not 

explicitly accounted for in the NTC code-conforming design, hence the 

reference to BF alone covering all frames). For more details on the structural 

design and subsequent numerical modelling, see [109]. Note also that, for some 

RC structures soil-structure-interaction (SSI) and model uncertainty (MU) was 

also considered in modelling [138], even if these are not considered in the 

fragility derivation herein. 

Table 9. ID of the RC structures under investigation. Building ID is organized 

as typology – configuration – number of floors – site – soil condition. 

Site 
Soil condition 

A C 

L’Aquila (AQ) 

RC-BF-9-AQ-A 

RC-IF-9-AQ-A 

RC-PF-9-AQ-A 

RC-BF-3-AQ-C 

RC-IF-3-AQ-C 

RC-PF-3-AQ-C 

RC-BF-6-AQ-C 

RC-IF-6-AQ-C 

RC-PF-6-AQ-C 

RC-SW-BF-9-AQ-C 

RC-SW-IF-9-AQ-C 

RC-SW-PF-9-AQ-C 

Naples (NA) - 

RC-BF-3-NA-C 

RC-IF-3-NA-C 

RC-PF-3-NA-C 

RC-BF-6-NA-C 

RC-IF-6-NA-C 

RC-PF-6-NA-C 

RC-BF-9-NA-C 

RC-IF-9-NA-C 

RC-PF-9-NA-C 

RC-SW-BF-9-NA-C 

RC-SW-IF-9-NA-C 

RC-SW-PF-9-NA-C 

RC-MU-BF-6-NA-C 

RC-MU-IF-6-NA-C 
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RC-MU-PF-6-NA-C 

RC-SSI-SW-BF-9-

NA-C 

RC-SSI-SW-IF-9-

NA-C 

RC-SSI-SW-PF-9-

NA-C 

Milan (MI) - 

RC-BF-3-MI-C 

RC-IF-3-MI-C 

RC-PF-3-MI-C 

RC-BF-6-MI-C 

RC-IF-6-MI-C 

RC-PF-6-MI-C 

RC-BF-9-MI-C 

RC-IF-9-MI-C 

RC-PF-9-MI-C 

RC-SW-BF-9-MI-C 

RC-SW-IF-9-MI-C 

RC-SW-PF-9-MI-C 

5.2.4 BI reinforced-concrete buildings 

A series of six-story infilled RC moment resisting frame isolated buildings was 

designed. Three different isolation systems have been considered: double-

curvature friction pendulums (FPS), high-damping rubber bearings (HDRB), 

and a hybrid system made of HDRB’s and sliders (SLDR). Buildings were 

designed only for mid- and high- hazard sites (Naples and L’Aquila), on soil C 

(see Table 10 for buildings ID), considering not rational to design of isolation 

systems for structures located in low-hazard sites. The seismic response of 

isolated buildings has been evaluated by accounting for the non-linear behavior 

of both the isolation system and the superstructure. For more details on the 

structural design and subsequent numerical modelling; see [139] updated and 

revised as in [140] and [141]. 

Table 10. ID of the BI structures under investigation. Building ID is organized 

as typology– configuration–site–soil condition. 

Site 
Soil condition 

A C 



140 

 

L’Aquila (AQ) - 

BI-FPS-AQ-C 

BI-HDRB+SLDR-AQ-C 

BI-HDRB-AQ-C 

Naples (NA) - 

BI-FPS- NA-C 

BI-HDRB+SLDR-NA-C 

BI-HDRB-NA-C 

5.2.5 Industrial PRC buildings 

Single-story industrial PRC buildings were designed at the three sites with 

different hazard levels (on soil A and C). Each building features 4 1  bays, 

with columns and prestressed principal beams, longitudinal gutter beams, 

prestressed roof elements, and vertical/horizontal cladding Figure 60a,b shows 

the plan and elevation views of the prototype buildings, respectively. The 

columns were assumed to be fixed at the base (pocket foundations) and to be 

connected at the top to both the transverse and longitudinal beams through 

dowel connections. The roof system consists of precast double-tee elements, 

which are pinned to the beams by means of dowel connections and connected 

to each other by steel elements in conjunction with a cast-in-situ concrete slab 

(slab thickness of 50mm ) ensuring a roof rigid diaphragm behavior. The 

vertical cladding panels are connected to the beams and columns by means of 

mechanical connections made of steel elements. 

Each building, typically intended for industrial use, has an overhead 

travelling crane (not modelled, but accounted for in the design), thus there are 

corbels in the precast columns supporting steel runway beams. The beams have 

variable cross-sections varying width and height along the longitudinal and 

transversal directions, respectively, while columns have rectangle cross-

sections. 

For each site, four different configurations were considered to represent the 

typical industrial constructions in Europe, varying four geometry parameters of 

the frames. Those parameters are summarized Table 11 where transverse and 

longitudinal bay widths and story- and crane-bracket heights are indicated as 

XL , 
YL , H , and 

cH . The considered buildings are listed in Table 12. 
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Figure 60. Prototype PRC buildings in plan view (a), transversal frame (b) and 

numerical model (c). 

The seismic design of the buildings was performed by means of MRS analysis 

for two horizontal and vertical directions at each site. The design response 

spectrum was obtained from the horizontal elastic response spectra (Figure 57b) 

divided by a behavior factor 2.5q = , which was prescribed by NTC for low 

ductility class precast buildings with isostatic (see [142–144]). 

Table 11. Geometry parameters for the prototype PRC buildings. 

Geometry LX [m] LY [m] H [m] Hc [m] 

Geom1 15 6 6 4.5 

Geom2 20 8 6 4.5 

Geom3 15 6 9 7.5 

Geom4 20 8 9 7.5 

Table 12. ID of the PRC structures under investigation. Building ID is 

organized as typology-configuration – site – soil condition. 

Site 
Soil condition 

A C 

L’Aquila (AQ) PRC-Geom1-AQ-A PRC-Geom1-AQ-C 
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PRC-Geom2-AQ-A 

PRC-Geom3-AQ-A 

PRC-Geom4-AQ-A 

PRC-Geom2-AQ-C 

PRC-Geom3-AQ-C 

PRC-Geom4-AQ-C 

Naples (NA) 

PRC-Geom1-NA-A 

PRC-Geom2-NA-A 

PRC-Geom3-NA-A 

PRC-Geom4-NA-A 

PRC-Geom1-NA-C 

PRC-Geom2-NA-C 

PRC-Geom3-NA-C 

PRC-Geom4-NA-C 

Milan (MI) 

PRC-Geom1-MI-A 

PRC-Geom2-MI-A 

PRC-Geom3-MI-A 

PRC-Geom4-MI-A 

PRC-Geom1-MI-C 

PRC-Geom2-MI-C 

PRC-Geom3-MI-C 

PRC-Geom4-MI-C 

5.2.6 Industrial steel buildings 

Twenty-four single-story industrial steel buildings equipped with an overhead 

travelling crane were designed as case studies i.e., four geometries in the three 

considered sites (L’Aquila, Naples, and Milan) each allowing two options for 

soil conditions (A and C). As shown in Figure 61, the prototype buildings are 

made of five equally-spaced transverse single-span duo-pitch portal frames 

connected through longitudinal beams at the apex, eaves, and crane-supporting 

bracket levels. Lateral loads are sustained by the MRF system in the transverse 

direction while the resistance in the longitudinal direction is assigned to 

diagonal concentric braces symmetrically placed in the outer spans of the 

frame, i.e., concentrically braced frames (CBFs) with cross-cut braces at the 

ground level and single braces at the crane-bracket level, respectively. Purlins, 

supporting the roof cladding and transferring loads from the roof cladding to 

the rafters, were placed on the rafters with a constant interval. Roof cross braces 

were arranged in the outer bays to transfer lateral loads to the vertical braces. 

Full-strength bolted end-plate connections were designed between the apex and 

eaves, including haunches to improve the structural performance as well as to 

facilitate the construction; the base connections of the columns and the purlin-

rafter connections were designed as pinned; full-strength gusset plate 

connections were designed to connect the braces. 
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Figure 61. (a) prototype steel frame building; (b) cladding panels distribution 

in the longitudinal direction; (c) cladding panels distribution in the transverse 

direction. 

As for PRC buildings, for each site, four different configurations were 

considered varying transverse and longitudinal bay widths and story- and crane-

bracket heights; denoted as 
XL , 

YL , H , and 
cH , as provided in Table 13 and 

shown in Figure 61a. 

Table 13. Geometry parameters for the prototype S buildings. 

Geometry LX [m] LY [m] H [m] Hc [m] 

1 20 6 6 4.5 

2 20 8 6 4.5 

3 30 6 9 7.5 

4 30 8 9 7.5 

The seismic design of the case studies was made in low ductility class; seismic 

actions in horizontal and vertical directions were obtained through MRS 

analysis from the elastic spectra applying a q factor equal to 4.0). The cross-

section designs of structural members for the twenty-four combinations of the 

considered four geometry types, three sites, and two soil conditions, resulted in 

nine different design solutions, as detailed in [108]. 

The three-dimensional models adopted for the MSA of the designed case 

studies include geometric and material non-linearities. Geometric non-

linearities were considered through the large displacements and small strains 

approach, exploiting the corotational coordinate transformation, allowing for 
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the description of the non-linear geometric effects due to the displacements 

induced in the structure as well as to the brace member imperfections. Material 

non-linearities were included using distributed plasticity in all structural 

elements (columns, beams, and braces) while lumped plasticity was used to 

model the out-of-plane behavior of the gusset plates at braces’ ends, according 

to the modelling strategy adopted for the braces [145]. 

In addition to the bare-frame models of the considered case studies, models 

incorporating the non-linear behavior of the cladding panels were developed. 

The number of panels employed in each case study varies, because of the 

different geometries. A schematic representation of the cladding panel 

distribution is given in Figure 61b,c for the longitudinal and transverse façades, 

respectively. Table 14 shows all the analyzed buildings. 

Table 14. ID of the S structures under investigation. Building ID is organized 

as typology-geometry – site – soil condition. 

Site 
Soil condition 

A C 

L’Aquila (AQ) 

S-LX20-LY6-AQ-A 

S-LX20-LY6-PANELS-AQ-A 

S-LX20-LY8-AQ-A 

S-LX20-LY8-PANELS-AQ-A 

S-LX30-LY6-AQ-A 

S-LX30-LY6-PANELS-AQ-A 

S-LX30-LY8-AQ-A 

S-LX30-LY8-PANELS-AQ-A 

S-LX20-LY6-AQ-C 

S-LX20-LY6-

PANELS-AQ-C 

S-LX20-LY8-AQ-C 

S-LX20-LY8-

PANELS-AQ-C 

S-LX30-LY6-AQ-C 

S-LX30-LY6-

PANELS-AQ-C 

S-LX30-LY8-AQ-C 

S-LX30-LY8-

PANELS-AQ-C 

Naples (NA) 

S-LX20-LY6-NA-A 

S-LX20-LY6-PANELS-NA-A 

S-LX20-LY8-NA-A 

S-LX20-LY8-PANELS-NA-A 

S-LX30-LY6-NA-A 

S-LX30-LY6-PANELS-NA-A 

S-LX30-LY8-NA-A 

S-LX20-LY6-NA-C 

S-LX20-LY6-

PANELS-NA-C 

S-LX20-LY8-NA-C 

S-LX20-LY8-

PANELS-NA-C 

S-LX30-LY6-NA-C 
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S-LX30-LY8-PANELS-NA-A S-LX30-LY6-

PANELS-NA-C 

S-LX30-LY8-NA-C 

S-LX30-LY8-

PANELS-NA-C 

Milan (MI) 

S-LX20-LY6-MI-A 

S-LX20-LY6-PANELS-MI-A 

S-LX20-LY8-MI-A 

S-LX20-LY8-PANELS-MI-A 

S-LX30-LY6-MI-A 

S-LX30-LY6-PANELS-MI-A 

S-LX30-LY8-MI-A 

S-LX30-LY8-PANELS-MI-A 

S-LX20-LY6-MI-C 

S-LX20-LY6-

PANELS-MI-C 

S-LX20-LY8-MI-C 

S-LX20-LY8-

PANELS-MI-C 

S-LX30-LY6-MI-C 

S-LX30-LY6-

PANELS-MI-C 

S-LX30-LY8-MI-C 

S-LX30-LY8-

PANELS-MI-C 

5.2.7 Failure criteria 

The seismic performance of all the structures was assessed by carrying out non-

linear dynamic analysis on three-dimensional computer models (see the next 

section). Structural reliability was assessed with respect to the exceedance of 

two damage states, global collapse (GC) and usability-preventing damage 

(UPD). The GC criterion was, in general, defined based on the deformation 

capacity (the EDP is either the RDR or the maximum IDR) corresponding to a 

certain level of post-peak strength deterioration; i.e. 50% of the maximum base-

shear on the SPO curves of the structures for each horizontal direction (Figure 

62a). This is the case of the URM, RC and PRC buildings; however, there are 

some exceptions or adjustments required for some structural typologies. For the 

URM buildings, the collapse criteria were defined based on the MIDR of 

single-wall elements corresponding to a 50% drop of the maximum base-shear 

from SPO analysis, which was carried out under several load patterns (i.e., 

uniform or inverted triangular) in both horizontal directions, and the minimum 

value was defined as the collapse limit threshold. Some adjustments were made 

in the cases the dynamic deformation capacity was found to be lower than the 

SPO-based threshold value (possibly because of torsional effects and cyclic 

degradation). In particular, the threshold was adjusted to the MIDR 
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corresponding to a 35% drop of the maximum base-shear on the static capacity 

curve. Particularly to PRC buildings, a local collapse condition corresponding 

to the attainment of the maximum shear strength of the beam-column dowel 

connections, which is critical for this structural type, was also considered. 

Given that the S buildings have different load-resisting systems in two 

horizontal directions, the collapse criteria were defined individually for each of 

them: 10% RDR was selected for the direction with the MRF system following 

indications by FEMA 350 [146], whereas the collapse in the CBF system 

corresponds to the attainment of the maximum strain range, defined as the 

difference between minimum and maximum strain responses measured at the 

cross-sections of brace members under seismic excitation. For the latter, the 

strain range threshold was set according to past studies on local collapse in 

brace members due to low-cycle fatigue [145]. The collapse condition for BI 

reinforced concrete buildings occurs either if the superstructure fails or if the 

base isolation system fails. The superstructure failure criterion is analogous to 

the one used for the RC buildings, while the failure of the base isolation was 

defined based on the device-specific criteria. For HDRBs, in particular, three 

different failure modes were considered, i.e.: cavitation, buckling, and shear 

failure. The global collapse of the isolation system was conventionally deemed 

to occur when (at least) 50% of the devices of the isolation system 

simultaneously fail due to cavitation, shear or buckling. For FPSs, the global 

collapse was deemed to occur when the first device reaches an ultimate 

displacement in extra-stroke regime, defined considering a limit value of 

contact pressure and other issues related to sliding material degradation. 

 
Figure 62. General definition for the GC failure criterion (RC, URM, PRC, and 

BI) (a) and UPD failure criteria (b). In the latter case, failure is defined as the 

first occurring among the three conditions defined within the text. 

UPD follows a multi-criteria approach (Figure 62b) that considers the onset 

of any of the following three conditions: 
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• a widespread light damage condition: light damage in 50% of the main 

non-structural elements (e.g., infills); 

• a severe damage condition: at least one of the non-structural elements 

reached a severe damage level leading to significant interruption of use; 

• attainment of 95% of the maximum base-shear of the structure. 

These three conditions particularized for each structural typology are 

summarized in Table 15. 

Table 15. Criteria for UPD based on multi-criteria approach for each 

structural typology. 

Typologies 
Multi-criteria approach for UPD 

a b c 

URM 

Light-

widespread 

damage in 

50% of 

masonry 

walls 

(computed 

in terms of 

resisting 

area) in 

each 

direction 

At least one of 

masonry walls 

reached the drift 

limit corresponding 

to a certain level of 

strength 

deterioration in the 

case of the 

phenomenological 

non-linear beam or 

attainment of the 

toe-crushing 

condition in the case 

of the microelement 

mechanical model 

The attainment of 95% of 

the maximum base-shear 

of the structure 

RC 

BI 

Light-

widespread 

damage in 

50% of 

masonry 

infills and 

partitions 

At least one of the 

masonry infills or 

partitions reached 

50% strength drop 

from its maximum 

resistance 

The first attainment of 

95% of the maximum 

base-shear of the 

structure 
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PRC 

1% inter-

story drift 

ratio  

At least one 

cladding panel 

reached the 

maximum strength 

of the panel-

structure 

connection, with 

possible panel 

overturning 

- 

S 

Widespread 

light 

damage in 

50% of the 

cladding 

(sandwich) 

panels, in 

each 

horizontal 

direction 

At least one panel-

to-frame connection 

reached its 

maximum strength 

Having attained 95% of 

the maximum base-shear 

of the structure 

5.2.8 Sites and hazard 

To quantify risk of failure and to select records for the non-linear dynamic 

analysis of structures, hazard curves need to be calculated for the three sites 

under investigation. Therefore, the curves were computed for the two soil 

classes (A and C) using as the IM the spectral ordinates closer to the first-mode 

vibration period of the developed structural models. In fact, the ( )Sa T  at a 

period close to the fundamental model of the structural model is that considered 

to develop the fragility curves (to follow). Table 16 summarizes the hazard 

analysis performed and the corresponding IMs. 

Table 16. Sites and spectral ordinates where hazard curves were computed. 

Site 

Sa(0.15s

) 
Sa(0.5s) Sa(1s) Sa(1.5s) Sa(2.0s) Sa(3.0s) 

A C A C A C A C A C A C 

AQ ü ü ü ü ü ü - ü ü ü - ü 

NA ü ü ü ü ü ü - ü ü ü - ü 
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MI ü ü ü ü ü ü - ü ü ü - - 

Hazard curves, expressed in terms of annual exceedance rate, 
im , were 

computed as described in [11], that is using the seismic zone source model of 

[84], with the magnitude distribution and rates described in [85], and the ground 

motion prediction equation by [147], complemented by that of [82] for periods 

beyond 2s. Hazard analysis was carried out via the OPENQUAKE platform 

[148]. Hazard curves were discretized in ten IM values corresponding to the 

following return periods 
RT  in years: 

 10,50,100,250,500,1000,2500,5000,10000,100000RT years= . No IM-

values with exceedance return period longer than 100000RT years=  were 

calculated, to avoid large hazard extrapolations.6 

Seismic fragility of the designed structures was assessed by subjecting the 

3D models to non-linear multi-stripe analysis. MSA, like IDA, has the objective 

of quantifying a damage measure of a structure when IM levels increase. MSA, 

differently from IDA, may use different sets of (scaled or not) records at each 

IM-level. These record sets should reflect the site-specific hazard changes with 

the intensity of the shaking, for the purpose of rendering the calculated seismic 

structural demand hazard-consistent [53]. The conditional spectrum approach, 

which accounts for seismic hazard disaggregation, was thus employed for 

selecting the ground motion records to be used as input for dynamic analysis. 

The selected records were extracted mainly from the Italian accelerometric 

archive [149] and only if no records with similar spectra were available there, 

records in the NGAwest2 database [94] were selected instead. The record 

selection delivered two-hundreds pairs (horizontal components) of records; 

twenty records for each one of the ten stripes. Hence, two-hundred records have 

been employed in the analysis of each individual structural model. To reduce 

the computational demand from non-linear dynamic analysis, the selected 

records have been post processed to remove the parts of the signal outside the 

 0.05% 99.95%,t t  range, where 
99.90% 99.95% 0.05%D t t= −  is the 99.90% significant 

duration of the record [150], yet keeping synchronization of horizontal 

components, which are applied simultaneously to the model. 

 
6 The seismic source model used for the hazard assessment is coherent with the one employed 

by the Italian code to define the design seismic actions on structures; i.e., [117].  
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5.2.9 Dynamic analysis and seismic reliability evaluation 

In the project, the 3D numerical models for structural analysis were built in 

OpenSees [79] except for URM buildings that were analyzed using TREMURI 

[151]. As described, output analysis for each building consists of ten stripes of 

twenty structural responses obtained from the application of pairs of horizontal 

accelerograms for each of the two horizontal directions of the 3D model with 

the member alignments (called x and y for sake of simplicity). 

Defined 
( ) ,x i j

EDP  and ( ) ,i jy
EDP  as the seismic demand of a structure 

subjected to the j-th record belonging to the i-th stripe along the two directions, 

a structural capacity threshold is defined (as previously seen) for each direction, 

respectively called (, )f xedp and (, )f yedp . For all the structural models, failure 

with respect to the performance level of interest (GC and UPD) was checked 

using the maximum demand-over-capacity ratio in the two directions, here 

defined as ,i jEDP . In the numerical analysis there were also some cases of 

numerical instability. If a numerical instability occurs along only one out of two 

directions, this will be propagated to global response ,i jEDP . Analysis leads to 

ten stripes of twenty responses each; Figure 63a,b. 
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Figure 63. (a) Example of hazard-consistent record-selection for MSA; (b) 

example of MSA results when the EDP is the demand-to-capacity ratio. 

The rate of earthquakes causing failure of the structure, f , was calculated as: 

510

5

0

10

TR
IM

f im im

IM

P f IM im d P f IM im d  
=

−   = =   =  +     , (42) 

where P f IM im =  is the fragility of the structural model, defined as the 

probability of violating a structural limit state, fedp , conditional to the values 

of a ground motion IM im=  and imd  is the absolute value of the derivative 

of the site-specific hazard curve times ( )d im . Consistently with what has been 

previously described, global structural response is defined in terms of demand-

over-capacity so fedp  is equal to one. Structural failure was considered to have 

been reached in cases of numerical instability or the attainment of the collapse 

criteria in either of the two horizontal directions. Given that collapse is 
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indicated as C , fragility has been evaluated via an application of the total 

probability theorem: 

 , 1f

P f IM im P C IM im

P EDP edp C IM im P C IM im

   = = = +   

   +  =  − =  

,  (43) 

where ,fP EDP edp C IM im  =
 

 and P C IM im =   are, given IM, the 

probability of failure given non-collapse and collapse, respectively. 

It was mentioned above that site-specific hazard curves within RINTC 

project have been evaluated for ten return periods 
RT  with an upper bound 

equal to 100000 years so a full evaluation of the failure rate is consequently 

prevented. Consequently, it has been conservatively assumed that ground-

motions having IM larger than the IM corresponding to 100000RT years= , 

named 
,maxRTIM , will certainly cause structural failure, as shown in the last 

equality of Equation (42), where 
510−
 is added to the integral to account for the 

truncation of the hazard curve at 
510im
−= . The discretization of the structural 

analysis at the ten IM levels and the use of twenty pairs of ground motions at 

each IM stripe yielded the following approximation in computing Equations 

(42) and (43): 

( ) ( ) ( )
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(44) 

In the equation ( )  is the cumulative Gaussian distribution function and 

, iC imN  is the number of numerical instabilities at the 
iim  stripe. 
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The main result emerged from the project was that despite the exceedance 

return period of the design seismic actions being the same at all sites, seismic 

reliability is not the same for all the sites, but it increases when seismic hazard 

decreases (see later also). Further research has shown that two different issues 

could explain this result: (i) the first one related to the requirements that the 

code imposes regardless of the design seismic actions (e.g., minimum 

reinforcement requirements and gravity load design) and that are expected to 

have a larger effect on the seismic safety of structures designed for low-hazard 

sites [11]; (ii) the ground motion beyond the design return period, which is 

substantially different for low- and high-hazard sites [152]. 

5.3. Lognormal fragility fitting 

Equation (44) does not require to fit a probabilistic model among different IM 

levels; therefore, the RINTC project has not developed fragility curves based 

on the 3D structural modelling so far, which is the goal of this study. In the 

framework of PBEE, two predominant approaches exist to estimate fragility 

functions analytically, namely IM-based and EDP-based according to the 

terminology of [153], the difference lying in the characterization of demand 

and capacity terms. In the first case, IDA is typically performed to obtain a 

sample of IM causing structural failure and fragility is written as the probability 

that the random variable represented by the IM level causing structural failure 

(capacity) is equal or lower than the level of seismic intensity occurring at site 

(demand). Conversely, in the EDP-based approach, starting from IDA or MSA 

results, fragility function is evaluated as the probability that the random variable 

defined by EDP reached by the structure at a fixed IM level is larger than the 

specified capacity. The IM to express the fragility is the same as the one to carry 

out MSA for the considered structural model, that is, spectral pseudo-

acceleration at a vibration period close to the fundamental one (see from Table 

17 to Table 21 for details). 

In the next sub-sections, the considered procedures to fit lognormal fragility 

functions on the RINTC results are illustrated. More than one procedure has to 

be considered because a single approach did not converge or provide 

satisfactory outcomes in all cases. Consistent with the described project’s 

approach, the fitting approach is the EDP-based. The fragility fitting procedures 

are complemented with equations to quantify estimation uncertainty due to the 

limited sample of structural responses available. Procedures have been 
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described in Section 2.3 and are here recalled for easier reading using consistent 

symbology. 

5.3.1 Maximum likelihood 

If the lognormal probability model is chosen to represent structural fragility, 

mean   and standard deviation   of the logarithms of the random variable IM 

causing structural failure must be evaluated by means Equation (2), here 

recalled for easier reading: 

( )log im
P f IM im





 − 
 =   

 
.     (45) 

The maximum likelihood (ML) method seeks the parameters  ,   such that 

the resulting distribution has the highest likelihood of having generated the 

observed data (e.g., [55]). As previously mentioned, in MSA, for each of stripe 

(out of u ), a total number n  of structural analysis is conducted so that, at the 

end of the analysis, vectors of the kind  ,1 ,2 ,, ,...,j j j j nedp edp edp edp= , are 

available. Each of them can be partitioned in two: one with failure cases, of size 

jq , and one of non-failure cases, of size ( )jn q−  (the failure cases include 

collapse cases). The parameters of the lognormal fragility function,  ,  , can 

be estimated via ML as:7 

 
( )

( )
( )

, 1

ln
, arg max ln ln

ln
ln 1

u
j

j

jj

j

j

imn
q

q

im
n q

 


 







=

    −      = +   +  
        

  −   + −  − 
    



  (46) 

It has been introduced that because of record-to-record variability the 

parameters  ,   are expected to change when the sample of records changes 

so they are not the true parameters characterizing the structural fragility but 

only an estimation of them  ˆˆ,  . Quantification of the uncertainty estimation 

 
7 To fit a fragility function, it could advisable, or even required, that MSA is 

performed up to an IM level for which at least 50% of the records lead to 

failure/collapse, which could imply further stripes (i.e., larger IMs) than those 

routinely considered in the project (e.g., [154]). 
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(see, among others, [8]) will be briefly recalled later. For sake of simplicity, the 

terminology  ,  is from now on used instead of the more accurate  ˆˆ,  . 

5.3.2 Normal probability paper and least square regression 

When the structural vulnerability is low compared to the seismic hazard at the 

site it may be that only a few failures, if any, are observed at each IM level, so 

that the ML fragility fitting is difficult. In this case, another procedure can be 

adopted, provided that structural response is available at each stripe: 

• for each  , 1,2, ,jIM im j u= = , EDP data, that is 

 ,1 ,2 ,, ,...,j j j j nedp edp edp edp= , are divided in collapse cases, if any, 

and non-collapse cases, the count of which are 
, jC IM imk =

 and 
, jC IM im

k
=

, 

respectively (clearly , ,j j
C IM im C IM im

k k n= =
+ = ); 

• the probability of failure based on the non-collapse cases is evaluated, 

for example, as: 

( )

( )

ln

ln

ln
, 1

j

j

f EDP

f j

EDP

edp
P EDP edp C IM im





 −
   = = −

   
 

,  (47) 

where 
( ) ( ) ln ln

,
j jEDP EDP

   are the mean and the standard deviation of 

the logarithms of EDP when  , 1,2, ,jIM im i u= = ; 

• the fragility value when 
iIM im=  is estimated as per Equation (43), 

where 
, jj C IM imP C IM im k n=

 = =  ; alternatively, at any 

 , 1,2, ,jIM im j u= = , value equal to one can be assigned to the 

analyses for which collapse has been observed and zero for the others, 

then a logistic regression (not employed to derive the fragility curves 

employed in the following) can be performed to obtain the sought 

probability as: 

( )1 2

1

1 j
j im

P C IM im
e

 − + 
 = = 

+
,     (48) 

where  1 2,   are the regression coefficients; 

• at this point m fragility values,  , 1,2...jP f IM im j u = =
  , are 

available; then, a fragility function can be fitted, at least in two ways: 
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o via ordinary least square regression of  ln ,j jim z  data, 

where  1

j jz P f IM im−  =  =
 

 i.e., a Gaussian probability 

paper [58] (NPP),8 which yields a line the slope is 
1 −
 and the 

intercept is  −  as: 

 
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=  +  

  −
  + − 
  

  

   − − +      



;  

 (49) 

o Via least square regression (i.e., minimizing the sum of 

squared errors, SSE), which yields the lognormal fragility 

parameters evaluated in the second Equation (50): 

 
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 
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


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 
= +  

  −
  + − 
  

  

  −   − −         



.  (50) 

In both equations, if the logistic functions is used for the collapse 

probability, 
, jC IM imk n=

 is replaced by Equation (48). 

5.3.3 Estimation uncertainty 

As previously stated, the parameters  ,  , evaluated from the Equation (46) 

and both the Equation (50), are only estimates of the true parameters which are 

unknown. To account for such an uncertainty in estimation, an approximation 

 
8 A similar approach can be found in [157]. 
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of the distribution of  ,   can be derived. A possible procedure would consist 

of the following steps. 

(1) the EDP responses at j-th IM level, 

   ,1 ,2 ,, ,..., , 1,2, ,j j j j nedp edp edp edp j u= = , are resampled 

with replacement, resulting in new sets of responses at the i-th 

stripe (i.e., bootstrap samples)  * * * *

,1 ,2 ,, ,...,j j j i nedp edp edp edp= ; 

(2) at each stripe, collapse cases 
,

*

C IM im j

k
=

 and failure cases *

jq  are 

evaluated; then 
*

jP f IM im =
  , is calculated, e.g. according to 

the second Equation (44) or as ( ),

* *

C IM x j
jk q n

=
+ ; 

(3) given 
*

jP f IM im =
  , Equation (46), first or second Equation 

(50), depending on the method used to calculate  ,  , can be 

applied to obtain a new estimation of the fragility parameters that 

can be indicated as  * *,  ; 

(4) repeating steps 1-3 an arbitrary number of times, say k, provides a 

distribution of the curve parameters and then of the structural 

fragility, which can help getting a sense of estimation uncertainty 

involved in the fragility fitting procedure.9 

The obtained family of fragility curves provides a sense of the uncertainty in 

estimation (see next section). 

5.4. Results and discussion  

5.4.1 Fragility curves 

As seen in Chapter 3, the fragility fitting and resampling procedures described 

above are implemented in R2R-EU software, which was used to get the results 

presented in this section. For each structural model under investigation, the 

specific method to derive the fragility curves was chosen first using all 

approaches, then choosing, via expert judgement of the authors, the one better 

fitting the results of the dynamic non-linear analysis (the results of the three 

procedures for each model cannot be given here for the sake of brevity). Figures 

 
9 Note that this is, factually, a non-parametric resampling plan. 
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representing the lognormal fragilities are shown from Figure 64 to Figure 68, 

while lognormal parameters for each structure are listed from Table 17 to Table 

21 (along with other values which will be defined later). In all the figures, 

abscissa axis is limited to the IM value corresponding to the 95th percentile of 

the fragility curve with maximum   (but lower than 3 to keep figures readable) 

among those belonging to the same structural typology, site and having same 

failure criteria. 
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Figure 64. Fragility curves for URM buildings. Figures show curves for L’Aquila (a,b), Naples (c,d) and Milan (e,f) at GC and 

UPD respectively. 

Table 17. URM buildings. 

ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

URM-C1-2-AQ-A 
GC LSF Sa(0.15s) 0.341 0.370 0.92 

UPD LSF Sa(0.15s) -0.795 0.330 1 

URM-C1-2-MI-A 
GC NPP Sa(0.15s) 4.241 0.486 5.40E-15 

UPD NPP Sa(0.15s) -0.688 0.365 0.039 

URM-C1-2-MI-C 
GC NPP Sa(0.15s) -0.452 0.084 1.09E-11 

UPD NPP Sa(0.15s) -1.164 0.091 0.099 

URM-C1-2-NA-A* 
GC ML Sa(0.15s) 0.765 0.468 0.30 

UPD LSF Sa(0.15s) -0.766 0.335 1 

URM-C1-2-NA-C GC LSF Sa(0.15s) 0.946 0.421 0.31 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD LSF Sa(0.15s) -0.719 0.245 1 

URM-C1-3-AQ-A 
GC LSF Sa(0.15s) 0.231 0.463 0.9 

UPD LSF Sa(0.15s) -1.048 0.222 1 

URM-C1-3-NA-A* 
GC LSF Sa(0.15s) 0.654 0.485 0.45 

UPD LSF Sa(0.15s) -1.033 0.236 1 

URM-C2-2-NA-C* 
GC LSF Sa(0.15s) 0.875 0.390 0.36 

UPD LSF Sa(0.15s) -0.702 0.265 1 

URM-C2-3-MI-A 
GC NPP Sa(0.15s) -0.364 0.104 2.28E-16 

UPD LSF Sa(0.15s) -0.989 0.220 0.50 

URM-C2-3-MI-C 
GC NPP Sa(0.15s) -0.057 0.120 2.23E-09 

UPD LSF Sa(0.15s) -0.860 0.309 0.57 

URM-C3-2-AQ-A* GC ML Sa(0.15s) 0.480 0.317 0.95 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD LSF Sa(0.15s) -0.718 0.336 1 

URM-C3-2-AQ-C 
GC LSF Sa(0.15s) 0.515 0.282 1 

UPD LSF Sa(0.15s) -0.551 0.308 1 

URM-C3-2-NA-A 
GC LSF Sa(0.15s) 0.733 0.340 0.34 

UPD NPP Sa(0.15s) -0.879 0.323 1 

URM-C3-3-NA-C 
GC LSF Sa(0.15s) 0.694 0.453 0.53 

UPD LSF Sa(0.15s) -0.873 0.277 1 

URM-C4-2-MI-A 
GC NPP Sa(0.15s) 2.045 0.298 1.61E-14 

UPD NPP Sa(0.15s) -0.434 0.409 0.044 

URM-C4-2-NA-C 
GC LSF Sa(0.15s) 0.955 0.349 0.27 

UPD ML Sa(0.15s) -0.572 0.311 1 

URM-C4-3-NA-A GC LSF Sa(0.15s) 0.694 0.459 0.41 



163 

 

ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD LSF Sa(0.15s) -0.956 0.324 1 

URM-C5-3-NA-C 
GC LSF Sa(0.15s) 0.729 0.417 0.50 

UPD LSF Sa(0.15s) -0.856 0.245 1 

URM-C5-3-NA-C* 
GC ML Sa(0.15s) 0.616 0.390 0.60 

UPD LSF Sa(0.15s) -0.856 0.245 1 

URM-C6-3-MI-A 
GC NPP Sa(0.15s) -0.228 0.127 5.72E-21 

UPD NPP Sa(0.15s) -1.205 0.191 0.15 

URM-C7-2-MI-C 
GC NPP Sa(0.15s) -0.178 0.079 5.25E-24 

UPD NPP Sa(0.15s) -0.834 0.127 0.013 

URM-I1-2-AQ-A* 
GC NPP Sa(0.15s) 0.113 0.249 1 

UPD LSF Sa(0.15s) -1.061 0.354 1 

URM-I1-2-AQ-C GC ML Sa(0.15s) 0.073 0.236 1 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD NPP Sa(0.15s) -1.046 0.409 1 

URM-I1-2-NA-C* 
GC LSF Sa(0.15s) 0.205 0.225 0.99 

UPD LSF Sa(0.15s) -0.940 0.320 1 

URM-I2-3-NA-A* 
GC LSF Sa(0.15s) 0.315 0.484 0.69 

UPD LSF Sa(0.15s) -1.389 0.455 1 

URM-I2-3-NA-C 
GC LSF Sa(0.15s) 0.480 0.456 0.68 

UPD LSF Sa(0.15s) -1.134 0.302 1 

URM-E2-2-AQ-A 
GC LSF Sa(0.15s) 0.681 0.559 0.81 

UPD LSF Sa(0.15s) -0.057 0.302 1 

URM-E2-2-AQ-C 
GC LSF Sa(0.15s) 0.602 0.342 0.98 

UPD LSF Sa(0.15s) -0.041 0.207 1 

URM-E2-2-MI-A GC LSF Sa(0.15s) 0.956 0.167 9.33E-32 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD LSF Sa(0.15s) 0.180 0.200 1.20E-11 

URM-E2-2-MI-C 
GC LSF Sa(0.15s) 0.296 0.124 5.24E-18 

UPD LSF Sa(0.15s) 0.062 0.165 1.49E-05 

URM-E2-3-AQ-A 
GC LSF Sa(0.15s) 0.424 0.535 0.88 

UPD LSF Sa(0.15s) -0.243 0.421 1 

URM-E2-3-MI-A 
GC LSF Sa(0.15s) -0.523 0.082 2.00E-09 

UPD LSF Sa(0.15s) -0.725 0.106 0.0066 

URM-E2-3-MI-C 
GC LSF Sa(0.15s) -0.415 0.081 7.47E-09 

UPD LSF Sa(0.15s) -0.380 0.196 0.015 

URM-E2-3-NA-C 
GC LSF Sa(0.15s) 0.877 0.245 0.29 

UPD LSF Sa(0.15s) -0.065 0.571 0.91 

URM-E5-2-AQ-C GC LSF Sa(0.15s) 0.557 0.427 0.95 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD LSF Sa(0.15s) -0.324 0.261 1 

URM-E5-2-MI-A 
GC LSF Sa(0.15s) 1.216 0.206 6.66E-29 

UPD LSF Sa(0.15s) -0.162 0.211 8.47E-08 

URM-E5-3-MI-A 
GC LSF Sa(0.15s) -0.652 0.096 1.67E-10 

UPD LSF Sa(0.15s) -1.286 0.243 0.91 

URM-E5-3-NA-A 
GC LSF Sa(0.15s) 0.658 0.622 0.44 

UPD LSF Sa(0.15s) -1.282 0.323 1 

URM-E8-2-AQ-C 
GC LSF Sa(0.15s) 0.611 0.321 1 

UPD LSF Sa(0.15s) -0.249 0.199 1 

URM-E8-2-NA-A 
GC LSF Sa(0.15s) 0.842 0.408 0.27 

UPD LSF Sa(0.15s) -0.173 0.266 0.88 

URM-E8-3-AQ-A GC LSF Sa(0.15s) 0.468 0.514 0.90 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD LSF Sa(0.15s) -0.258 0.382 1 

URM-E8-3-MI-C 
GC LSF Sa(0.15s) -0.389 0.131 0.00059 

UPD LSF Sa(0.15s) -0.641 0.147 0.13 

URM-E8-3-NA-C 
GC LSF Sa(0.15s) 0.865 0.323 0.35 

UPD LSF Sa(0.15s) -0.115 0.508 0.95 

URM-E9-2-AQ-C 
GC LSF Sa(0.15s) 0.279 0.262 0.95 

UPD LSF Sa(0.15s) -0.111 0.178 1 

URM-E9-3-MI-C 
GC LSF Sa(0.15s) -0.634 0.094 0.032 

UPD LSF Sa(0.15s) -0.763 0.098 0.32 
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Figure 65. Fragility curves for RC buildings. Figures show curves for L’Aquila (a,b), Naples (c,d) and Milan (e,f) at GC (left) 

and UPD (right) respectively. 

Table 18. RC buildings. 

ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

RC-BF-9-AQ-A 
GC LSF Sa(2.0s) -0.461 0.317 0.68 

UPD LSF Sa(2.0s) -2.725 0.271 1 

RC-IF-9-AQ-A 
GC LSF Sa(1.0s) 0.582 0.367 0.68 

UPD ML Sa(1.0s) -1.426 0.225 1 

RC-PF-9-AQ-A 
GC ML Sa(1.0s) 0.604 0.362 0.65 

UPD LSF Sa(1.0s) -1.460 0.162 1 

RC-BF-3-AQ-C 
GC LSF Sa(1.0s) 1.805 0.702 0.22 

UPD LSF Sa(1.0s) -1.627 0.576 1 

RC-IF-3-AQ-C 
GC LSF Sa(0.15s) 1.791 0.661 0.32 

UPD LSF Sa(0.15s) -0.438 0.414 1 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

RC-PF-3-AQ-C 
GC LSF Sa(0.5s) 1.748 0.465 0.73 

UPD LSF Sa(0.5s) -0.017 0.265 1 

RC-BF-6-AQ-C 
GC LSF Sa(1.5s) 0.526 0.365 0.71 

UPD NPP Sa(1.5s) -2.261 0.388 1 

RC-IF-6-AQ-C 
GC ML Sa(0.5s) 1.498 0.670 0.75 

UPD ML Sa(0.5s) -0.330 0.388 1 

RC-PF-6-AQ-C 
GC LSF Sa(0.5s) 1.479 0.754 0.75 

UPD ML Sa(0.5s) -0.280 0.327 1 

RC-SW-BF-9-AQ-

C 

GC LSF Sa(1.5s) 1.051 0.312 0.15 

UPD LSF Sa(1.5s) -2.270 0.332 1 

RC-SW-IF-9-AQ-C 
GC LSF Sa(1.0s) 1.430 0.613 0.39 

UPD LSF Sa(1.0s) -1.560 0.379 1 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

RC-SW-PF-9-AQ-C 
GC LSF Sa(1.0s) 1.555 0.577 0.30 

UPD LSF Sa(1.0s) -1.714 0.423 1 

RC-BF-3-MI-C 
GC ML Sa(1.0s) 4.373 2.649 0.05 

UPD LSF Sa(1.0s) -1.841 0.439 0.85 

RC-IF-3-MI-C 
GC LSF Sa(0.15s) 0.303 0.318 3.56E-05 

UPD LSF Sa(0.15s) 0.060 0.515 0.05 

RC-PF-3-MI-C 
GC NPP Sa(0.5s) 1.694 0.394 7.07E-09 

UPD LSF Sa(0.5s) -0.508 0.354 0.34 

RC-SW-BF-9-MI-C 
GC NPP Sa(2.0s) 2.419 0.302 4.87E-48 

UPD LSF Sa(2.0s) -2.373 0.160 0.90 

RC-SW-IF-9-MI-C 
GC NPP Sa(1.0s) 2.269 0.344 2.09E-13 

UPD LSF Sa(1.0s) -1.140 0.249 0.25 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

RC-SW-PF-9-MI-C 
GC NPP Sa(1.0s) 0.490 0.208 3.62E-20 

UPD LSF Sa(1.0s) -1.111 0.358 0.29 

RC-BF-6-MI-C 
GC NPP Sa(1.5s) 1.225 0.215 3.36E-44 

UPD LSF Sa(1.5s) -2.442 0.207 1 

RC-IF-6-MI-C 
GC LSF Sa(0.5s) 0.400 0.309 1.09E-05 

UPD LSF Sa(0.5s) -0.547 0.290 0.36 

RC-PF-6-MI-C 
GC NPP Sa(0.5s) 1.427 0.464 1.68E-05 

UPD ML Sa(0.5s) -0.417 0.599 0.40 

RC-BF-9-MI-C 
GC NPP Sa(2.0s) 3.183 0.277 9.84E-42 

UPD ML Sa(2.0s) -2.539 0.257 0.95 

RC-IF-9-MI-C 
GC NPP Sa(1.0s) 4.732 0.721 4.05E-13 

UPD LSF Sa(1.0s) -1.417 0.186 0.73 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

RC-PF-9-MI-C 
GC NPP Sa(1.0s) -0.162 0.143 1.06E-17 

UPD LSF Sa(1.0s) -1.402 0.344 0.61 

RC-BF-3-NA-C 
GC NPP Sa(1.0s) 7.020 0.687 1.27E-11 

UPD ML Sa(1.0s) -1.866 0.430 1 

RC-IF-3-NA-C 
GC LSF Sa(0.15s) 1.411 0.322 0.02 

UPD NPP Sa(0.15s) -0.076 0.512 0.84 

RC-PF-3-NA-C 
GC ML Sa(0.5s) 3.441 1.367 0.05 

UPD LSF Sa(0.5s) -0.511 0.437 0.99 

RC-BF-6-NA-C 
GC NPP Sa(1.5s) 1.498 0.357 9.94E-10 

UPD ML Sa(1.5s) -2.262 0.362 1 

RC-IF-6-NA-C 
GC LSF Sa(0.5s) 1.329 0.235 0.01 

UPD LSF Sa(0.5s) -1.108 0.494 1 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

RC-PF-6-NA-C 
GC LSF Sa(0.5s) 1.887 0.397 2.07E-03 

UPD ML Sa(0.5s) -1.420 0.480 1 

RC-BF-9-NA-C 
GC ML Sa(2.0s) 4.343 2.462 0.05 

UPD LSF Sa(2.0s) -2.757 0.355 1 

RC-IF-9-NA-C 
GC ML Sa(1.0s) 2.782 1.384 0.05 

UPD ML Sa(1.0s) -1.507 0.160 1 

RC-PF-9-NA-C 
GC ML Sa(1.0s) 0.756 0.702 0.15 

UPD LSF Sa(1.0s) -1.447 0.243 1 

RC-SW-BF-9-NA-

C 

GC NPP Sa(1.5s) 1.530 0.185 1.11E-11 

UPD LSF Sa(1.5s) -2.110 0.239 1 

RC-SW-IF-9-NA-C 
GC NPP Sa(1.0s) 8.298 0.653 1.51E-14 

UPD LSF Sa(1.0s) -1.130 0.202 1 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

RC-SW-PF-9-NA-C 
GC NPP Sa(1.0s) 5.220 0.433 1.35E-16 

UPD ML Sa(1.0s) -1.190 0.168 1 

RC-MU-BF-6-NA-

C 

GC NPP Sa(1.5s) 1.585 0.509 4.03E-04 

UPD NPP Sa(1.5s) -2.122 0.298 1 

RC-MU-IF-6-NA-C 
GC NPP Sa(0.5s) 2.621 0.770 4.25E-03 

UPD LSF Sa(0.5s) -0.890 0.667 0.98 

RC-MU-PF-6-NA-

C 

GC LSF Sa(0.5s) 6.187 2.115 4.67E-03 

UPD NPP Sa(0.5s) -0.436 0.600 0.98 

RC-SSI-SW-BF-9-

NA-C 

GC LSF Sa(1.0s) 4.117 1.394 2.22E-04 

UPD ML Sa(1.0s) -2.679 0.549 1 

RC-SSI-SW-IF-9-

NA-C 

GC LSF Sa(1.0s) 4.003 1.459 9.25E-04 

UPD ML Sa(1.0s) -2.180 0.270 1 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

RC-SSI-SW-PF-9-

NA-C 

GC LSF Sa(1.0s) 3.062 1.108 4.13E-04 

UPD ML Sa(1.0s) -2.283 0.241 1 
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Figure 66. Fragility curves for BI buildings. Figures show curves for L’Aquila (a,b) and Naples (c,d) at GC (left) and UPD 

(right), respectively. 
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Table 19. BI buildings. *D= means that fragility parameters are been manually evaluated, without numerical procedure. For 

uncertainty estimation, fragility function for each sample has been evaluated by means LSF method 

ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

BI-FPS-AQ-C 
GC ML Sa(3.0s) -1.435 0.250 1 

UPD ML Sa(3.0s) -1.510 0.370 1 

BI-FPS- NA-C 
GC LSF Sa(3.0s) -1.474 0.088 1 

UPD LSF Sa(3.0s) -1.427 0.176 0.98 

BI-HDRB+SLDR-

AQ-C 

GC ML Sa(3.0s) -1.306 0.189 1 

UPD ML Sa(3.0s) -1.551 0.349 1 

BI-HDRB+SLDR-

NA-C 

GC ML Sa(3.0s) -1.501 0.238 1 

UPD ML Sa(3.0s) -1.614 0.199 1 

BI-HDRB-AQ-C 
GC ML Sa(3.0s) -1.214 0.287 1 

UPD ML Sa(3.0s) -1.774 0.437 1 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

BI-HDRB-NA-C 
GC D* Sa(3.0s) -1.221 0.143 0.90 

UPD ML Sa(3.0s) -1.537 0.166 1 
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Figure 67. Fragility curves for PRC buildings. Figures show curves for L’Aquila (a,b), Naples (c,d) and Milan (e,f) at GC and 

UPD respectively. 

Table 20. PRC building. 
f

CoV NaN = means that resampling procedure does not provide results. This may happen when 

collapses/failures occur only for few records in a single stripe. 

ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

PRC-Geom1-AQ-A 
GC ML Sa(2.0s) -0.709 0.237 0.95 

UPD ML Sa(2.0s) -2.513 0.042 1 

PRC-Geom2-AQ-A 
GC ML Sa(2.0s) -0.322 0.068 0.55 

UPD ML Sa(2.0s) -2.543 0.317 1 

PRC-Geom3-AQ-A 
GC ML Sa(2.0s) -0.295 0.071 0.40 

UPD ML Sa(2.0s) -2.363 0.276 1 

PRC-Geom4-AQ-A 
GC ML Sa(2.0s) -0.286 0.072 0.35 

UPD ML Sa(2.0s) -2.385 0.259 1 

PRC-Geom1-AQ-C GC ML Sa(2.0s) -0.570 0.044 1 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD ML Sa(2.0s) -2.438 0.312 1 

PRC-Geom2-AQ-C 
GC ML Sa(2.0s) 0.083 0.068 0.45 

UPD ML Sa(2.0s) -2.512 0.338 1 

PRC-Geom3-AQ-C 
GC ML Sa(2.0s) 0.152 0.075 0.15 

UPD ML Sa(2.0s) -2.202 0.449 1 

PRC-Geom4-AQ-C 
GC ML Sa(2.0s) 0.083 0.068 0.45 

UPD ML Sa(2.0s) -2.290 0.392 1 

PRC-Geom1-MI-A 
GC LSF Sa(2.0s) 22.780 7.167 1.69E-14 

UPD LSF Sa(2.0s) -1.461 0.582 0.02 

PRC-Geom2-MI-A 
GC LSF Sa(2.0s) 22.780 7.167 3.30E-14 

UPD LSF Sa(2.0s) -1.438 0.582 0.02 

PRC-Geom3-MI-A GC NPP Sa(2.0s) -0.195 0.265 4.02E-19 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD LSF Sa(2.0s) -1.902 0.223 6.44E-04 

PRC-Geom4-MI-A 
GC NPP Sa(2.0s) -1.113 0.251 7.94E-09 

UPD LSF Sa(2.0s) -2.009 0.225 3.45E-03 

PRC-Geom1-MI-C 
GC NPP Sa(2.0s) 13.283 1.749 3.95E-10 

UPD ML Sa(2.0s) -2.172 0.050 0.50 

PRC-Geom2-MI-C 
GC NPP Sa(2.0s) 3.544 0.705 7.11E-12 

UPD ML Sa(2.0s) -2.184 0.049 0.60 

PRC-Geom3-MI-C 
GC NPP Sa(2.0s) -0.880 0.202 4.41E-06 

UPD NPP Sa(2.0s) -2.213 0.152 0.69 

PRC-Geom4-MI-C 
GC NPP Sa(2.0s) -0.963 0.237 2.54E-05 

UPD LSF Sa(2.0s) -0.963 0.237 2.56E-05 

PRC-Geom1-NA-A GC NPP Sa(2.0s) 1.513 0.587 0.04 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD ML Sa(2.0s) -2.375 0.145 1 

PRC-Geom2-NA-A 
GC NPP Sa(2.0s) 4.296 0.962 7.96E-08 

UPD ML Sa(2.0s) -2.385 0.211 1 

PRC-Geom3-NA-A 
GC ML Sa(2.0s) -1.401 0.042 0.90 

UPD ML Sa(2.0s) -2.271 0.172 1 

PRC-Geom4-NA-A 
GC NPP Sa(2.0s) -0.994 0.241 1.03E-04 

UPD ML Sa(2.0s) -2.269 0.188 1 

PRC-Geom1-NA-C 
GC ML Sa(2.0s) -0.951 0.046 0.45 

UPD ML Sa(2.0s) -2.402 0.209 1 

PRC-Geom2-NA-C 
GC ML Sa(2.0s) -0.939 0.047 0.35 

UPD ML Sa(2.0s) -2.244 0.327 1 

PRC-Geom3-NA-C GC NPP Sa(2.0s) -1.071 0.216 0.04 
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ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

UPD ML Sa(2.0s) -2.266 0.245 1 

PRC-Geom4-NA-C 
GC NPP Sa(2.0s) -0.970 0.328 0.09 

UPD ML Sa(2.0s) -2.222 0.245 1 
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Figure 68. Fragility curves for steel buildings. Figures show curves for L’Aquila (a,b), Naples (c,d) and Milan (e,f) at GC and 

UPD respectively. 

Table 21. S buildings. 

 

ID-building 
Failure 

criteria 

Curve 

fitting 

method 

IM     LFM 

S-LX20-LY6-AQ-A 
GC LSF Sa(0.5s) 1.037 0.398 0.88 

UPD LSF Sa(0.5s) -0.481 0.280 1 

S-LX20-LY6-AQ-C 
GC LSF Sa(0.5s) 1.043 0.362 0.96 

UPD LSF Sa(0.5s) -0.470 0.269 1 

S-LX20-LY6-MI-A 
GC LSF Sa(0.5s) -0.027 0.179 8.20E-16 

UPD LSF Sa(0.5s) -0.530 0.375 0.06 

S-LX20-LY6-MI-C 
GC LSF Sa(0.5s) -0.081 0.131 1.24E-14 

UPD LSF Sa(0.5s) -0.431 0.514 0.33 

S-LX20-LY6-NA-A GC LSF Sa(0.5s) 1.129 0.231 3.35E-04 
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UPD LSF Sa(0.5s) -0.524 0.401 0.96 

S-LX20-LY6-NA-C 
GC LSF Sa(0.5s) 1.418 0.368 0.03 

UPD LSF Sa(0.5s) -0.634 0.456 1 

S-LX20-LY6-

PANELS-AQ-A 

GC LSF Sa(0.5s) 1.181 0.351 0.87 

UPD LSF Sa(0.5s) 0.480 0.329 1 

S-LX20-LY6-

PANELS-AQ-C 

GC LSF Sa(0.5s) 1.592 0.408 0.86 

UPD LSF Sa(0.5s) 0.344 0.385 1 

S-LX20-LY6-

PANELS-MI-A 

GC LSF Sa(0.5s) 1.741 0.296 3.59E-23 

UPD LSF Sa(0.5s) 0.313 0.356 3.91E-06 

S-LX20-LY6-

PANELS-MI-C 

GC LSF Sa(0.5s) 2.793 0.338 5.46E-27 

UPD LSF Sa(0.5s) 0.619 0.351 1.01E-04 

S-LX20-LY6-

PANELS-NA-A 

GC LSF Sa(0.5s) 1.728 0.311 5.28E-05 

UPD LSF Sa(0.5s) 0.367 0.302 0.47 

GC LSF Sa(0.5s) 1.169 0.239 0.04 
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S-LX20-LY6-

PANELS-NA-C 
UPD LSF Sa(0.5s) 0.486 0.418 0.76 

S-LX20-LY8-AQ-A 
GC LSF Sa(0.5s) 1.594 0.310 0.47 

UPD LSF Sa(0.5s) -0.587 0.270 1 

S-LX20-LY8-AQ-C 
GC LSF Sa(0.5s) 1.312 0.209 0.98 

UPD LSF Sa(0.5s) -0.549 0.479 1 

S-LX20-LY8-MI-A 
GC LSF Sa(0.5s) -0.184 0.160 4.09E-16 

UPD LSF Sa(0.5s) -0.522 0.360 0.05 

S-LX20-LY8-MI-C 
GC LSF Sa(0.5s) -0.285 0.108 2.72E-13 

UPD LSF Sa(0.5s) -0.398 0.520 0.31 

S-LX20-LY8-NA-A 
GC LSF Sa(0.5s) 1.433 0.229 7.33E-08 

UPD LSF Sa(0.5s) -0.469 0.393 1 

S-LX20-LY8-NA-C 
GC LSF Sa(0.5s) 2.192 0.413 1.42E-05 

UPD LSF Sa(0.5s) -0.614 0.427 1 
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S-LX20-LY8-

PANELS-AQ-A 

GC LSF Sa(0.5s) 1.740 0.264 0.27 

UPD LSF Sa(0.5s) 0.333 0.400 1 

S-LX20-LY8-

PANELS-AQ-C 

GC LSF Sa(0.5s) 1.748 0.265 0.86 

UPD LSF Sa(0.5s) 0.226 0.273 1 

S-LX20-LY8-

PANELS-MI-A 

GC LSF Sa(0.5s) 1.089 0.236 2.03E-21 

UPD LSF Sa(0.5s) -0.248 0.244 2.86E-05 

S-LX20-LY8-

PANELS-MI-C 

GC LSF Sa(0.5s) 1.482 0.230 1.20E-29 

UPD LSF Sa(0.5s) 0.437 0.306 1.84E-05 

S-LX20-LY8-

PANELS-NA-A 

GC LSF Sa(0.5s) 2.730 0.331 6.66E-07 

UPD LSF Sa(0.5s) 0.354 0.224 0.48 

S-LX20-LY8-

PANELS-NA-C 

GC LSF Sa(0.5s) 1.856 0.295 1.51E-05 

UPD LSF Sa(0.5s) 0.461 0.352 0.82 

S-LX30-LY6-AQ-A 
GC LSF Sa(1.0s) 0.594 0.317 0.69 

UPD LSF Sa(1.0s) -0.958 0.487 1 
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S-LX30-LY6-AQ-C 
GC LSF Sa(1.0s) 0.800 0.439 0.85 

UPD LSF Sa(1.0s) -0.831 0.569 1 

S-LX30-LY6-MI-A 
GC LSF Sa(1.0s) 1.013 0.366 1.60E-15 

UPD LSF Sa(1.0s) -0.615 0.556 0.02 

S-LX30-LY6-MI-C 
GC LSF Sa(1.0s) 1.346 0.359 1.70E-12 

UPD LSF Sa(1.0s) -0.460 0.533 0.06 

S-LX30-LY6-NA-A 
GC LSF Sa(1.0s) 2.135 0.902 2.24E-03 

UPD LSF Sa(1.0s) -0.637 0.452 0.70 

S-LX30-LY6-NA-C 
GC LSF Sa(1.0s) 0.489 0.258 0.05 

UPD LSF Sa(1.0s) -0.583 0.551 0.93 

S-LX30-LY6-

PANELS-AQ-A 

GC LSF Sa(1.0s) 1.218 0.628 0.23 

UPD LSF Sa(1.0s) -0.083 0.690 0.90 

S-LX30-LY6-

PANELS-AQ-C 

GC LSF Sa(1.0s) 0.959 0.404 0.77 

UPD LSF Sa(1.0s) -0.060 0.504 1 
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S-LX30-LY6-

PANELS-MI-A 

GC LSF Sa(1.0s) 8.573 1.176 7.62E-17 

UPD LSF Sa(1.0s) 0.176 0.569 1.81E-04 

S-LX30-LY6-

PANELS-MI-C 

GC LSF Sa(1.0s) 2.600 0.558 2.65E-12 

UPD LSF Sa(1.0s) 0.570 0.608 9.99E-04 

S-LX30-LY6-

PANELS-NA-A 

GC LSF Sa(1.0s) 2.321 0.625 1.92E-03 

UPD LSF Sa(1.0s) 0.195 0.630 0.17 

S-LX30-LY6-

PANELS-NA-C 

GC LSF Sa(1.0s) 4.400 0.785 4.86E-03 

UPD LSF Sa(1.0s) 0.223 0.328 0.30 

S-LX30-LY8-AQ-A 
GC LSF Sa(1.0s) 0.656 0.304 0.62 

UPD LSF Sa(1.0s) -1.013 0.505 1 

S-LX30-LY8-AQ-C 
GC LSF Sa(1.0s) 0.686 0.291 0.99 

UPD LSF Sa(1.0s) -1.201 0.646 1 

S-LX30-LY8-MI-A 
GC LSF Sa(1.0s) 0.162 0.268 1.45E-12 

UPD LSF Sa(1.0s) -19 0.428 0.03 
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S-LX30-LY8-MI-C 
GC LSF Sa(1.0s) 1.819 0.353 6.20E-15 

UPD LSF Sa(1.0s) -0.733 0.397 0.07 

S-LX30-LY8-NA-A 
GC LSF Sa(1.0s) 1.234 0.360 3.08E-04 

UPD LSF Sa(1.0s) -0.766 0.400 0.82 

S-LX30-LY8-NA-C 
GC LSF Sa(1.0s) 0.659 0.246 0.01 

UPD LSF Sa(1.0s) -0.716 0.560 0.95 

S-LX30-LY8-

PANELS-AQ-A 

GC LSF Sa(1.0s) 1.343 0.821 0.23 

UPD LSF Sa(1.0s) -0.203 0.615 0.98 

S-LX30-LY8-

PANELS-AQ-C 

GC LSF Sa(1.0s) 1.135 0.534 0.59 

UPD LSF Sa(1.0s) -0.108 0.475 1 

S-LX30-LY8-

PANELS-MI-A 

GC LSF Sa(1.0s) 1.908 0.454 5.63E-18 

UPD LSF Sa(1.0s) 0.203 0.619 4.30E-04 

S-LX30-LY8-

PANELS-MI-C 

GC LSF Sa(1.0s) 2.325 0.491 4.22E-14 

UPD LSF Sa(1.0s) 0.923 0.731 1.12E-03 
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S-LX30-LY8-

PANELS-NA-A 

GC LSF Sa(1.0s) 2.020 0.534 1.44E-04 

UPD LSF Sa(1.0s) 0.363 0.821 0.16 

S-LX30-LY8-

PANELS-NA-C 

GC LSF Sa(1.0s) 2.635 0.577 1.96E-03 

UPD LSF Sa(1.0s) 0.165 0.392 0.39 
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Fitted lognormal fragility curves show a large parameter variability for 

structures belonging to the same structural typology at the same site (e.g., RC). 

This partly depends on the fact that these curves are poorly constrained by non-

linear dynamic analysis results (in turn, a question may arise about the curves’ 

usability in seismic risk evaluation, which is discussed in the following 

section). More specifically, defining the lumped fragility values as 

, ii f IM im totP f IM im N N= = =  (i.e., empirical percentiles according to the 

terminology used in Chapter 3), past research (e.g., [55]) has shown that some 

issue may occur when the IM levels at which P f IM im =   are evaluated, 

discretize in some manner the IM domain. Intuitively, the fragility curve is best 

constrained when the IM discretization at which dynamic analysis is performed 

gives a large and densely populated range of P f IM im =   from 0% to 

100%. The fixed IM levels adopted in the RINTC project lead to a series of 

situations that can be summarized by those sketched in Figure 69, where the 

lumped fragility values are plotted against the result of the fitting procedure 

obtained via ML method (black solid line) for four among all the buildings 

examined so far, chosen as paradigm to deepen different situations in which 

fragility fitting has been performed. 

The level of constraint to the fragility can be quantified by the estimation 

uncertainty of the fragility parameters. To this end, given the lumped fragility 

values from dynamic analysis, procedure above described, performed 500k =

times, has been applied (grey solid line in Figure 69 represents the k parametric 

resampling) and the root mean square error of the sample standard deviation of 

the fragility curves, given that 
*

i  is the lognormal standard deviation from i-th 

simulation, evaluated as: 

2
*

1

, 1,2,...,500

k i

i

RMSE i
k

 

=

 −
 
 

= =


.    (51) 
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Figure 69. Fragility curves and parametric resampling for four different 

buildings exhibiting different LFM: 1 (a), 0.60 (b), 0.30 (c) and 0.05 (d). 

Defining the maximum values of the lumped fragility (from now on LFM) as: 

( )max , 1,2,...,10iLFM P f IM im i = = =  , where 
iim  is the intensity 

corresponding to an exceedance return period of 105 years at the site of interest, 

allows to identify different situations/issues: 

• 1LFM   means that in one of the ten stripes at least, all the records 

applied to the structure lead to failure and/or collapse. Capacity of the 

fragility fitting is considered well constrained, being that the black 

curve is well anchored to the empirical data (i.e., MSA results). As a 

reference, RMSE is equal to 0.18 (Figure 69a). 

• 0.60LFM =  means that the data from dynamic analysis are available 

up to IM levels slightly above the median. Fragility fitting continues to 

well represent the trend of the empirical data, but the estimation 

uncertainty increases with RMSE  equal to 0.21, three times greater 

than the previous case (Figure 69b). 

• 0.30LFM =  means that empirical data are available up to IM level 

lower than the median. Curve fitting is somewhat getting worse and 

estimation uncertainty greatly increases with a RMSE  equal to 0.32 

which means that heterogeneity of the parametric resampling around 

the black solid line significantly increases (Figure 69c). 

• 0.05LFM =  means that no failures and/or collapses occur in nine over 

ten stripes and only one failure occurs in the remaining stripe. Fragility 

curve is extrapolated for P f IM im =   values greater than 0.05, 

therefore uncertainty in parameters estimation is very high with 

RMSE  equal to 1.30 (Figure 69d). 

Summarizing what observed, when LFM decreases, the heterogeneity of the 

parametric resampling around the black solid line increases, meaning that the 

uncertainty in lognormal parameters estimation rises. For this reason, RMSE  

increases when LFM decreases, showing that, as expected, the estimation of the 

lognormal parameters gets worse when LFM is not high enough to warrant that 

the fitted curve is well constrained by lumped fragility values. Analogous 

considerations could be made even if the others curve fitting methods (LSF and 

NPP) were used to estimate fragility parameters and parametric resampling, 
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taking care to evaluate, in that case, P f IM im =   according to the second 

Equation (44) and not as , if IM im totN N= . LFM, for all the structures, is listed 

from Table 17 to Table 21. 

As it could be expected from the conclusion obtained within RINTC project, 

fragility curves for structures designed in the low-seismicity area are most 

likely to exhibit results affected by high estimation uncertainty because of the 

low number of failure cases for each IM-stripe. Conversely, this issue more 

rarely occurs for the structures designed on high-seismicity area (see also 

[154]). These fitting issues could be possibly addressed by using a larger 

number of records for each stripe (instead of the twenty here used) and/or 

increasing the number of return periods at which the IM stripes are evaluated, 

but this is not the focus of the study herein presented, which is based on the 

results of the RINTC project. 

In all the figures, where fragility curves show large parameters variability, 

in particular large values of the parameter  , the case is similar to those 

described in Figure 69c and d. Lower is LFM, more fragility curves are 

unsuitable to well represent structural behavior, being results with 0.50LFM 

to be handled carefully. Some detailed observation can be worth discussing. 

• At GC, fragility curves for the structures designed in the low-hazard 

site show relatively large estimation uncertainty of parameters linked 

to the low number of structural failures. This happens for all the 

structural typology (BI buildings have not been designed in Milan). 

Among the others, this occurs for the three-storey, bare frame, RC 

building sites in Milan on soil C (RC-BF-3-MI-C), the S building sited 

in Milan on soil A identified as S-LX30-LY6-PANELS-MI-A, the PRC 

building having ID PRC-Geom4-MI-C and the URM building URM-

C1-2-MI-A. In these cases, fragility fitting issues are the same as those 

shown in Figure 69c,d. 

• At GC, fragility curves for the structures designed in the mid-hazard 

site show similar fitting issues except for most of URM buildings and 

BI buildings (with few structures). This happens, that is, for the RC 

building RC-SW-PF-9-NA-C, for the S building S-LX30-LY6-PANELS-

NA-C and for the PRC building PRC-Geom2-NA-A. The global trend 

of the results is not clearly defined, this means that all the possible cases 

described in Figure 69 are encountered. All the RC buildings, except 
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the case RC-9-PF-NA-C having 0.15LFM = , and S buildings have 

0.05LFM  , falling into the case described in Figure 69d. All the BI 

buildings have 1LFM = , reflecting the situation described in Figure 

69a. URM buildings spread within a range from 0.27LFM = and 

1LFM = . 

• At GC, fragility curves for structures designed in the high-hazard site 

seem to provide more constrained results for all the typologies except 

for PRC buildings, where five over eight cases show 0.50LFM  . 

Most of the buildings fall into the situation depicted in Figure 69a and 

b, that is, RC building RC-6-PF-AQ-C, PRC-building PRC-Geom1-

AQ-A, URM building URM-I1-2-AQ-C, S building S-LX30-LY8-AQ-

C, and BI building BI-FPS-NTC08-AQ-C. 

• Such considerations can be extended to the results at UPD, with a 

global reduction of the estimation uncertainty due to the increasing of 

failure cases which leads to the increasing of LFM (see from Table 17 

to Table 21 for details). 

The estimation uncertainty produced by the lognormal distribution fitting 

procedure of the empirical data, is not necessarily propagated to the failure rate 

(see the next section). This can be explained because the IM levels more 

relevant for estimating failure rate are located toward the left tail of the fragility 

function and this is due to typical shape of hazard curves. For this reason, when 

quantifying the rate of collapse is the goal, it is more relevant the accurate 

estimation of the left side of the fragility function than the right side. 

5.4.2 Curves’ validation and applicability 

In fact, to validate the obtained fragility curves with respect to the failure rates 

computed in the RINTC project, the rates were also computed using the fitted 

curves, that is via the following equation: 

( )
( )log

,f im

IM

im
d


   



 − 
=   

 
 .    (52) 

To integrate hazard curves in a IM range larger than those considered in the 

RINTC project (i.e., return period up to 10,000 years) probabilistic seismic 

hazard analysis was performed again via REASSESS software [103] for the 

sites in terms the spectral accelerations at the periods at which the curves have 

been developed (0.15s, 0.50s, 1s, 1.5s, 2s and 3s) on soil conditions A and C. 

The seismic zone source model, magnitude distribution and rates and ground 
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motion prediction equations are the same described before and the resulting 

curves are shown in Figure 70. 

 
Figure 70. Hazard curves for soil condition A and C respectively for L’Aquila 

(a,b), Naples (c,d) and Milan (e,f). 

Combining the fragility curves shown from Figure 64 to Figure 68 with the 

relevant hazard curves among those shown in Figure 70, Equation (52) provides 

the failure rates shown in Figure 71a,c for GC and UPD. Apparently, looking 

at Figure 71, where colors identify different buildings within the same structural 

typology, there is a general coherency with the results of the RINTC project 

(Figure 71b,d) and the rates computed via the fitted fragility. Differences 

among the procedures occur when no or quite few failure cases from dynamic 

analysis are observed (e.g., for structures designed at low-to-mid seismicity) up 

to the largest IMs, this impels that the fragility fitting issues, already discussed, 

arise: estimates of the lognormal fragility parameters could be particularly 
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uncertain. As an example, evaluation of the rate of failure at GC for a RC 

structure site in Milan, identified with the ID RC-BF-3-MI-C (gray circle in 

Figure 71a,b), is deepened: it is equal to 
41.19 10− when lognormal fragility is 

considered while it is equal to 
51.00 10−  using RINTC procedure; i.e., 

Equation (44). Structural responses do not exhibit any failure cases and only 

one collapse case at eighth stripe with a probability of failure P f IM im =   

equal to zero for each IM value except for 0.123IM g=  where it is equal to 

0.05 (one over twenty). Figure 72a shows lumped fragility values 

P f IM im =  , lognormal fragility and hazard curve (right vertical axis). The 

difference of one order of magnitude of the failure between two procedures is 

caused by the lognormal fragility fit which gives values of probability of failure 

different from zero at low levels of IM where the hazard magnitude is more 

relevant. Figure 72b shows the impact of the specific IM-level contribution to 

the failure rate evaluation.10 

 
10 Differences among failure rates of BI buildings designed in L’Aquila are not 

strictly related to fragility fitting, yet by the hazard curves used for the 

validation, which are not exactly those of the RINTC original study. 
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Figure 71. Failure rates evaluated by means of lognormal fragility curves for 

GC (a) and UPD (c) and using the procedure implemented in RINTC project 

for GC (b) and UPD (d). Colors represent different buildings in each typology. 
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Figure 72. Empirical percentiles, lognormal fragility and hazard curve for the 

structure identified by the ID RC-MI-C-3-BF (a); disaggregation of the failure 

rate (b). 

With the purpose of a quantification of how much the estimation uncertainty 

involved in the fragility fitting procedure impacts on the seismic rate evaluation 

and to investigate about curves’ usability, parametric resampling, evaluated in 

the previous section for four structures, are now calculated for all the structures 

under investigation. 11  Given the couple of parameters defining lognormal 

fragility from the i-th simulation, indicated as  * *,i i  , the corresponding rate, 

( )* * *

, ,f i i i   , can be evaluated via Equation (52) to finally obtain a distribution 

of the failure rates varying 1,2,...i k= . The coefficient of variation of such a 

failure rate distribution can be evaluated as: 

 
11 For all the structures, fragility fitting method to evaluate  * *,  , shown 

from Table 17 to Table 21, is the same as that used to get  ,  . 



204 

 

( )
2

*

,1

*

,1

1

1
, 1,2,...,

1f

k

f i fif

k
f

f ii

EVAR k
CoV i k

E

k



 

 

=

=

  −     −
= = =

   




, (53) 

where 
fSTD     and 

fE    are the variance and the mean of the estimator of 

the failure rate. In Figure 73 
f

CoV
 has been related to the LFM for all the 

structures involved in RINTC project, grouped by typology and site (red, cyan 

and green markers identify buildings located in L’Aquila, Naples and Milan 

respectively). 

 
Figure 73. Coefficient of variation of failure rate versus LFM for each structure 

designed within RINTC project for GC(a) and UPD(b). 

Analysis of results at GC (Figure 73a) suggests the following. 

• When LFM is lower than 20%, 
f

CoV
 reaches high levels, sometimes 

greater than unit. This happens for all the buildings, belonging to all 

the typologies, designed in Milan where the minimum 
f

CoV
 is about 
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equal to 0.8 and the LFM is lower than 5%. Conclusion is the same for 

buildings designed in Naples (60% out of the total for this site) while 

for L’Aquila the number of buildings in this range is not significant 

(two structures out of fifty-two). 

• When LFM lies within the range of 20% and 50%, which includes 22% 

of the buildings designed in Naples and 23% of the buildings designed 

in L’Aquila, 
f

CoV
 decreases with a high intra-site varying from 0.32 

and 1.60 for the mid-hazard site 0.24 and 1.21 for the high-hazard site. 

• When LFM is greater than 50%, 
f

CoV
 drops considerably up to values 

under 20%. In this range lies the 18% of the buildings designed in 

Naples and more than 75% of the buildings designed in L’Aquila. 

For GC, results referring to buildings designed in low-hazard site (Milan) 

suggest that fragility fitting provides particularly uncertain parameters 

estimates; therefore, these curves must be used with caution, at least 

considering estimation uncertainty in the risk analysis. Results for code-

conforming structures in high-hazard site (L’Aquila) suggests that fragility 

fitting appears to be well constrained, therefore they can be of reference for 

other similar structures; for the mid-hazard site (Naples) the trend of results is 

ambiguous, it is however suggested to account for estimation uncertainty in risk 

analysis carried out employing these curves. 

Analysis of results at UPD (Figure 73b) suggests differentiating some 

conclusion for structural typology. For the low-hazard site: 

• about 90% of the steel structures (14 over 16) have LFM lower than 

7% (minimum 
f

CoV
 about 0.80). Remaining two structures show 

LFM about 35% and 
f

CoV
 about 0.36; 

• 75% (11 over 15) of the URM structures have LFM lower than 15% 

and show minimum 
f

CoV
 equal to 0.50. 2 out of 15 structures do not 

exceed 60% LFM while only one structure shows 
f

CoV
 lower than 

0.20; 

• any PRC structure shows 
f

CoV
 greater than 0.50, independently from 

LFM value; 

• 50% (6 over 12) of the RC structures show LFM greater than 60% with 

f
CoV

 ranging from 0.16 and 0.35; for 5 over 6 structures remaining, 
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LFM varies from 0.25 and 0.40 with 
f

CoV
 within a range from 0.24 

and 0.6; only one structure shows a 
f

CoV
equal to 2 (LFM lower than 

5%); 

• all the BI structures in mid- and high- hazard sites show 
f

CoV
 lower 

than 0.20. 

At UPD fragility curves for structures designed in Milan may be poorly 

explanatory of the structural behavior for all the typologies except, apparently, 

for RC buildings. For mid- and high- hazard sites conclusions are essentially 

equivalent: 
f

CoV
 ranges from 7% to 40% for all the structures belonging to 

all the investigated typologies except for two (over sixteen) steel structures 

exhibiting 
f

CoV
 greater than one, so parameters of fragility function seem to 

be explanatory of structural behavior at UPD more than at GC.  

5.5. Conclusions 

In the presented study parametric fragility curves referred to global collapse 

failure and usability preventing damage for the buildings analyzed within 

RINTC project are derived. It is recalled that structures, belonging to a variety 

of structural types, were designed for damage-limitation and life safety for two 

soil conditions at three sites characterized by seismic hazard ranging from low-

to-high in the country (Milan, Naples and L’Aquila). Starting with results of 

the multi-stripe analysis performed within the project to IM levels 

corresponding to 10,000 years exceedance return period at the construction site, 

EDP-based lognormal fragility was assessed, for all the code-designed 

structures, by means of one fitting method among maximum likelihood, normal 

probability paper and least square regression. The fitting methods include 

quantification of estimation uncertainty that can be carried over the evaluation 

of the seismic structural reliability expressed in terms of failure fatality rates. 

The results show significant heterogeneity of fragility parameters within 

each typology and among typologies. This mainly derives from the number of 

failures observed in the structural dynamic analysis in the range of IMs at which 

they are performed in the project. This has been investigated looking at the 

estimation uncertainty in the fragility parameters and the consequent variability 

of the failure rates when these curves are integrated with the site’s hazard. The 

main conclusions to be drawn from this study are listed here. 
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• At GC, fragility fitting for all the typologies of structures designed at 

low-site hazard provides results relatively weakly constrained, in 

general. This could be motivated by conservative requirements that the 

Italian code imposes regardless of the design seismic actions leading to 

structures which under strong seismic actions do not exhibit any (or 

exhibit very few) failure cases. Conversely, results for structures 

designed at the high-hazard site suggest that estimated fragility 

parameters well represent structural behaviour of all the buildings 

belonging to all the typologies. For the mid-hazard site, the trend in the 

results is not particularly clear, as for the low- and high-hazard sites. 

• At UPD, steel, URM, and PRC structures designed at low-hazard site 

have fragility parameters which are also relatively poorly constrained. 

Only for RC structures designed at Milan, fragilities give results, which 

may indicate the possibility to use the curves with some confidence. 

• At UPD, for mid- and high- hazard sites conclusions are essentially 

equivalent for almost all the buildings belonging to all the typologies: 

parameters of fragility functions seem to be somewhat explanatory of 

structural seismic vulnerability. 

With these considerations in mind, these curves are made available for 

further risk assessment studies involving code-conforming buildings.  
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Chapter 6 – SUMMARY AND CONCLUSIONS 

In the framework of PBEE the evaluation of the fragility function is a 

fundamental step for estimating the rate of earthquakes leading the structure to 

fail in meeting a performance objective. 

In the state-of-the-art approach, fragility assessment is based on procedures 

that require non-linear dynamic analysis of a detailed (e.g., modelling highly 

non-linear structural behaviour) structural model subjected to many ground 

motions selected consistently with the seismic hazard of the site. The main 

disadvantage of these procedures is the computational load needed for 

modelling, performing analysis and for post-processing results; for these 

reasons, engineers are strongly driven to look for simpler alternatives. 

Providing tools and methodologies in order to reduce time spent in analysis was 

the first target in the thesis.  

In this perspective, Chapter 2 introduces two MATLAB-based tools 

developed: SPO2FRAG and DYANAS. SPO2FRAG tool eschews the need for 

computationally demanding dynamic analyses by simulating the results of 

incremental dynamic analysis via the SPO2IDA algorithm and an equivalent 

single-degree-of-freedom approximation of the structure. The software is 

characterized by versatility, accepting as input static pushover results obtained 

from the structural analysis software package of the user’s choice and allowing 

the user to control the IDA simulation and fragility estimation procedure at its 

various steps and intervene where one deems necessary. 

DYANAS uses the OpenSees finite element platform to perform non-linear 

dynamic analysis of the SDOF oscillators. The scope of this open-source, freely 

distributed software is to serve as a tool for earthquake engineering research. 

The main advantages offered by the DYANAS interface are ease in the 

definition of the required analysis parameters and corresponding seismic input, 

efficient execution of the analyses themselves and availability of a suite of 

convenient, in-built post-processing tools for the management and organization 

of the structural responses. The types of dynamic analysis frameworks 

supported are incremental, B2B-incremental (needed for the evaluation of the 

state-dependent fragility) and multiple-stripe and cloud. 

As introduced, the assessment of the fragility term, when simplified 

methods cannot be used, is based on the results of non-linear dynamic analysis 

of a numerical model, which is subjected to a sample of ground motions, in 

order to capture the record-to-record variability of structural response. The 
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simulations aim at the generation of samples of structural response given 

samples of ground motions, following that only an estimate of the fragility (and 

of the failure rate consequently) is obtained; this implies that the failure rate 

changes with the sample of structural responses so an uncertainty in its 

estimation may arise. Providing operational tools for the quantification of 

estimation uncertainty behind seismic risk estimates due to record-to-record 

variability of structural response was herein the second task.  

Chapter 3 presents R2R-EU which is a PBEE software tool (developed in 

MATLAB) that numerically implements various schemes for estimating 

structure-specific seismic fragility and for the quantification of the estimation 

uncertainty behind seismic risk estimates, emanating from record-to-record 

variability in structural response. The software accepts as input the results of 

structural dynamic analysis to a set of accelerograms and seismic hazard curves. 

Estimation uncertainty is quantified by providing statistics, such as mean and 

variance, of the estimators of the failure rate and the fragility parameters (where 

applicable) and possibly an approximation of their distribution. The user can 

choose the analysis method among some resampling and/or simulation schemes 

belonging to the bootstrap family, the delta method and other solutions from 

probability and statistics theory. 

According to what introduced, uncertainty in seismic rate estimation strictly 

depends on the number of records used to perform dynamic non-linear analysis. 

Intuitively, increasing the number of records may lead to get results least 

affected by estimation uncertainty but the need to limit the computation time 

forces to investigate the choice of the number of records to use for dynamic 

analysis to achieve quantifiable levels of mean relative estimation error on 

seismic risk metrics The sample size of the ground-motion record set is 

nowadays usually governed by computation-demand constraints, yet it directly 

affects the uncertainty in estimation of seismic response. 

 Chapter 4 uses analytical and numerical means to investigate the record 

sample size, n, required to achieve quantifiable levels of mean relative 

estimation error on seismic risk metrics. Regression-based cloud analysis in the 

context of Cornell’s reliability method and incremental dynamic analysis using 

various intensity measures were employed to derive a relation of the form 

n , where   is a parameter that depends on both the dispersion of 

structural responses and the shape of the hazard curve at the site. For the cases 

examined, n  can be kept in the forty to one-hundred range and achieve 10% 
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mean relative error. The study can contribute to guide engineers towards an 

informed a-priori assessment of the number of records needed to achieve a 

desired value for the coefficient of variation of the estimator of structural 

seismic risk.  

In the second part of the chapter, question of the number of records is faced 

off from the code-provisions point of view: while structural seismic reliability 

studies use a few tens of records, codes often require no more than seven to 

eleven records for obtaining an estimate of mean response, mandating that these 

records be selected based on criteria of compatibility with the design spectrum. 

This issue is addressed by investigating the effect of spectrum-compatible 

acceleration records’ sample size on estimating average single-stripe inelastic 

structural response. Examination of the results reveals that the spectral 

compatibility condition leads to response statistics that do not exhibit the trends 

expected in the case of simple random samples of various sizes. In fact, the 

responses obtained by using the selected spectrum-compatible records cannot 

be considered neither independent nor identically distributed. Thus, such 

statistics do not provide estimates of the intended characteristics of the 

underlying distribution. In other words, looking at the estimation uncertainty in 

the response distribution’s parameters, by using statistics only suitable for cases 

of simple random sampling, is an ill-posed problem, since the sampled 

distribution may be very different from the one implicitly assumed by this 

approach. In conclusion, when code-based record selection is of concern, using 

tools of statistical inference such as the assessment of estimation uncertainty, 

suitable in cases of simple random sampling, to determine the necessary 

number of spectrum-compatible records, may be conceptually inappropriate. 

Coming back to fragility assessment, often, a probability model is assigned 

to define structural fragility. There is no need to describe it with an equation 

that has parameters, but it is often convenient. There are many such 

distributions for this purpose but only one is used in the present work, the 

lognormal, being the most frequently used in applications. Basically, each time 

a parametric model is used to fit empirical data, it accounts for some limitation 

in its use which needs to become known by the user. In Chapter 5 fragility 

curves referred to two different performance levels, global collapse failure and 

usability preventing damage, for the different structural types analysed within 

RINTC project are derived. Buildings are designed in three different Italian 

sites (characterized by different seismic hazard) for two different soil 



211 

 

conditions. EDP-based lognormal fragility was assessed by means of one fitting 

method among maximum likelihood, normal probability paper and least square 

regression. Estimation uncertainty that can be carried over the evaluation of the 

seismic structural reliability expressed in terms of failure fatality rates, has been 

quantified. The results show significant heterogeneity of fragility parameters 

within each typology and among typologies. Estimation uncertainty grows 

when the number of failures observed analytically, within the range of IMs 

considered for the dynamic runs, decreases. Due to this consideration, 

parametric (lognormal) representations of fragility should be used with caution 

in risk assessment and the standard error in estimation of the fragility 

parameters should not be neglected. 
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 LINKS TO DEVELOPED SOFTWARE TOOLS  

Tools developed during the Ph.D. are freely available for non-commercial 

purposes. 

SPO2FRAG is a MATLAB®-coded software tool for estimating structure-

specific seismic fragility curves of buildings, using the results of static pushover 

analysis, introduced in Chapter 2 and available at: 

http://wpage.unina.it/iuniervo/doc_en/SPO2FRAG.htm 

 

DYANAS is a MATLAB®-based graphical user interface that uses the 

OpenSees finite element platform to perform nonlinear dynamic analysis of 

http://wpage.unina.it/iuniervo/doc_en/SPO2FRAG.htm
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single-degree-of-freedom (SDOF) oscillators, introduced in Chapter 2 and 

available at: 

http://wpage.unina.it/georgios.baltzopoulos/software/software_page.html 

 

R2R is a MATLAB®-coded PBEE software tool that numerically implements 

various schemes for estimating structure-specific seismic fragility and for the 

quantification of the estimation uncertainty behind seismic risk estimates, 

emanating from record-to-record variability in structural response. It is 

described in Chapter 3 and available at: 

https://www.reluis.it/it/progettazione/software/r2r-eu.html 

http://wpage.unina.it/georgios.baltzopoulos/software/software_page.html
https://www.reluis.it/it/progettazione/software/r2r-eu.html

