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CHAPTER

1Introduction

The study of hysteretic systems has garnered significant atten-
tion across various disciplines, including physics, engineering,
and material science, due to the ubiquitous presence of hystere-
sis in natural and engineered systems. Hysteresis, characterized
by the dependence of the output not only on the current in-
put but also on its past history, manifests in many applications
ranging from magnetic and electrical systems to biological and
mechanical systems. In mechanical systems, hysteresis is partic-
ularly evident in structural elements, materials, and devices, in
which it influences the behavior under cyclic loading conditions.
These applications underscore the critical importance of accu-
rately modeling and predicting hysteretic behavior for designing
robust systems and optimizing their performance.

Historically, a wide range of mathematical models have been
developed to capture the complex dynamics of hysteresis. Phe-
nomenological models such as those by Bouc and Wen, Preisach,
and Baber-Noori have provided valuable frameworks for simu-
lating hysteresis in mechanical systems. However, these mod-
els often exhibit significant limitations since they are typically
tailored for specific types of hysteretic behaviors and may fail
to be generalized for different loop shapes. Moreover, the lack
of clear mechanical interpretation for many model parameters
complicates their calibration, often requiring computationally
intensive numerical optimization techniques. These challenges
have hindered the widespread applicability of existing models in
real-world scenarios.

To address these shortcomings, Vaiana and Rosati intro-
duced a novel rate-independent hysteretic model (VRM) and
subsequently improved it with the VRM+A and VRM+D for-
mulations. These advancements offer a unified framework for
modeling diverse hysteretic behaviors, including asymmetric
and flag-shaped loops, with closed-form solutions and a clear
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mechanical interpretation of the parameters involved in the
model. The differential formulation, VRM+D, further extends
the model’s applicability to nonlinear dynamic analyses, en-
abling a detailed study of stability and bifurcation phenomena
in mechanical systems subjected to periodic forces.

This dissertation builds upon these recent advancements
by applying the VRM+D to analyze and predict the dynamic
responses of hysteretic mechanical systems. By leveraging the
Poincaré map-based continuation method, a robust numerical
technique, we systematically explore the steady-state dynam-
ics, stability, and bifurcation characteristics of mechanical sys-
tems exhibiting complex hysteretic behaviors. The integration
of the VRM+D and continuation methods represents a novel
contribution to the field, offering a comprehensive approach to
investigating the effects of hysteresis on frequency response and
dynamic stability.

The novelty of this work lies in its systematic examina-
tion of how different hysteretic loop shapes influence the dy-
namic behavior of mechanical systems. While prior research has
largely focused on symmetric or simplified hysteretic models,
this study explicitly incorporates asymmetric and non-standard
loop shapes, reflecting the complexities observed in real-world
materials and structures. Moreover, this work extends the ap-
plication of hysteresis modeling to new domains, including me-
chanical metamaterials and rocking systems, where hysteresis is
deliberately exploited for vibration control and energy dissipa-
tion.

The thesis is organized as follows:

• Chapter 2: This chapter offers a detailed exploration of
the fundamental concepts and mathematical frameworks
essential to the study of dynamical systems. It is di-
vided into three main sections: the mathematical formu-
lation of dynamical systems, the analysis and classifi-
cation of continuous-time systems, and the introduction
of essential techniques such as phase portraits and non-
dimensionalization. The chapter is designed to progres-
sively build a comprehensive understanding of both theo-
retical and applied aspects of dynamical systems.

• Chapter 3: Leveraging the principles of proportionality
and additivity, this chapter delves into the analysis of
linear time-invariant dynamical systems. It begins with
an overview of these systems and introduces the Laplace
transform, a key tool for frequency domain analysis. The
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chapter also covers various mathematical frameworks, in-
cluding state-space and frequency domain representations,
illustrating how they facilitate the study of linear dynam-
ical systems.

• Chapter 4: Nonlinearity introduces complexities that ne-
cessitate a distinct analytical approach. This chapter pro-
vides a comprehensive overview of nonlinear dynamical
systems, encompassing smooth and non-smooth nonlinear
dynamical systems. Topics include the behavior of one-
, two-, and three-dimensional flows, periodic solutions,
Poincaré maps, and bifurcation theory. Special emphasis is
placed on hysteretic mechanical systems, with discussions
on their mathematical modeling, including the Vaiana-
Rosati model, Poincaré map-based continuation methods,
and energy components. The chapter aims to equip the
reader with the tools and concepts needed to understand
the results presented in the last chapter.

• Chapter 5: This chapter focuses on hysteretic mechanical
systems, providing a systematic analysis of their complex
dynamic responses and key characteristics. It examines the
frequency response of hysteretic systems exhibiting com-
plex behaviors and investigates the impact of asymmetry
on their dynamic response. The discussion extends to the
dynamic behavior of negative stiffness metamaterials, of-
fering insights into their unique properties. Additionally,
the chapter explores hysteretic rocking systems, analyz-
ing the influence of different loop shape types on their
responses, with particular attention to energy considera-
tions. Finally, an analysis of MDoF hysteretic systems is
presented, highlighting their complex hysteretic behaviors
and dynamic interactions.

By means of these investigations, this thesis aims to con-
tribute to the field of nonlinear dynamics and hysteresis model-
ing by offering new insights and practical methodologies for the
analysis of mechanical systems exhibiting complex hysteretic be-
havior.
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CHAPTER

2Dynamical Systems

La filosofia è scritta in
questo grandissimo libro
che continuamente ci sta
aperto innanzi a gli occhi
(io dico l’universo), ma non
si può intendere se prima
non s’impara a intender la
lingua e conoscer i caratteri,
ne’ quali è scritto. Egli è
scritto in lingua matematica,
e i caratteri son triangoli,
cerchi, ed altre figure ge-
ometriche, senza i quali
mezzi è impossibile a inten-
derne umanamente parola;
senza questi è un aggirarsi
vanamente per un oscuro
laberinto.
— Galileo Galilei

Section 2.1 Definition of a
Dynamical System
Section 2.1.1 Mathematical For-
mulation
Section 2.1.2 State-Space
Section 2.1.3 Time
Section 2.1.4 Time Evolution
Rule
Section 2.2 Continuous-Time
Dynamical Systems
Section 2.2.1 State-Space Rep-
resentation
Section 2.3 Classification of
Continuous-Time Dynami-
cal Systems
Section 2.3.1 Autonomous Sys-
tems
Section 2.3.2 Nonautonomous
Systems
Section 2.4 Phase Portraits
Section 2.5 Nondimensional-
ization

This chapter provides a structured exploration of the funda-
mental concepts and mathematical frameworks underlying the
study of dynamical systems. The chapter is organized into three
main sections: the mathematical formulation of dynamical sys-
tems, the analysis and classification of continuous-time systems,
and fundamental techniques such as phase portraits and non-
dimensionalization. Each section builds progressively to offer a
comprehensive understanding of both the theoretical and ap-
plied aspects of dynamical systems.

7



Definition of a Dynamical System 8

Section 2.1

Definition of a Dynamical System

Definition 1 A dynamical system S (Fig. 2.1) can be formally defined as a
combination of a state-space X , a set of times T , and a time
evolution rule R : X × T → X that defines how the system’s
state evolves over time [42, 46, 64].input output

S

Figure 2.1. Dynamical system.
Subsection 2.1.1

Mathematical Formulation

The concept of a dynamical system is the mathematical for-
mulation of the general scientific idea of a deterministic process.
The future and past state of many physical, chemical, biological,
ecological, economic, and even social systems can be predicted
to some extent by knowing their present state and the laws gov-
erning their evolution. Provided that these laws remain constant
over time, the behavior of such a system can be considered fully
determined by its initial state. Therefore, the concept of a dy-
namical system includes a set of its possible states (state-space),
a set of times, and a law governing the evolution of the states
over time. We will discuss these elements separately [42, 46, 64].

Subsection 2.1.2

State-Space

All possible states of a dynamical system are characterized by
the points of a certain set X . This set is referred to as the state-
space of the system. Indeed, specifying a point x ∈ X must be
sufficient not only to describe the system’s current "position" but
also to determine its future evolution. In various scientific disci-
plines, suitable state-spaces are designated, frequently referred
to as phase-space within the framework of classical mechanics.

Example In classical mechanics, the state of a system with n Degrees-of-
Freedom (DoF) is characterized by a real vector of dimension
2n:

x ≡ [q1, q2, . . . , qn, p1, p2, . . . , pn]T ,

where qi are the generalized coordinates and pi are the corre-
sponding generalized momenta. Therefore, in this case, X =
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R2n. If k coordinates are cyclic, X = Sk × R2n−k where S is
the unit circle parameterized by the angle.

Subsection 2.1.3

Time

The evolution of a dynamical system represents a change in the
system’s state over time t ∈ T , where T is a numerical set. In
general, we can distinguish two types of dynamical systems:

• Continuous-time dynamical systems T = R.

• Discrete-time dynamical systems T = Z.

Continuous-time systems hold greater relevance in engineering,
while discrete-time systems emerge naturally in fields like ecol-
ogy and economics, where a system’s state at time t entirely
determines its state at t+ 1.

A set of times T may extend only into the future (for irre-
versible or non-invertible processes) or into both the past and
the future (for reversible or invertible processes). The sequence
of time instants for a reversible discrete-time process naturally
corresponds to the set of all integers Z; irreversibility corre-
sponds to considering only non-negative integers Z+. Similarly,
for a continuous-time process, time is represented by the set
of all real numbers R in the reversible case, and by the set of
non-negative real numbers R+ in the irreversible case.

Subsection 2.1.4

Time Evolution Rule

The main component of a dynamical system is the time evo-
lution rule that determines the state of the system at time t
provided that the initial state is known. In the most general set-
ting, the time evolution rule R : X ×T → X is a rule that allows
us to determine the state of the system at each time t from its
states at previous times. Thus, the most general time-evolution
law is time dependent and has infinite memory. It is common,
however, to consider only those time evolution rules that allow
us to define all future states (and for reversible systems also
past states) given a state at a particular time. Furthermore, it
is commonly assumed that the same time evolution rule does not
change with time. In other words, the result of time evolution
will depend only on the initial position of the system and the
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duration of the evolution, but not on the time when the state of
the system was initially recorded.

The most general way to specify the evolution of a system
is by assuming that, for a given t ∈ T , a mapping φt is defined
on the state-space X , where φt : X → X , which transforms an
initial state x0 ∈ X at time t0 into a state xt ∈ X at time t,
such that xt = φtx0. Thus, if our system was initially at a state
x ∈ X , after time t, it will be at a new state uniquely determined
by x and t, and can therefore be denoted by F (x, t). Fixing t,
we obtain a transformation φt : x → F (x, t) of the state-space
into itself.

The map φt is often referred to as the evolution operator
of the dynamical system. It may be explicitly known, but in
most general cases, it is defined indirectly and can only be cal-
culated approximately. In the case of continuous-time dynamical
systems, the family φt of evolution operators is called a flow.

Dynamical systems with an evolution operator φt defined
for both t ≥ 0 and t < 0 are called invertible. In such systems,
the initial state x0 fully determines not only the future states of
the system but also its past behavior. However, it is also useful
to consider dynamical systems in which the future behavior for
t > 0 is completely determined by the initial state x0 at t = 0,
but the history for t < 0 cannot be uniquely reconstructed.
Such systems (called non-invertible) are described by evolution
operators defined only for t ≥ 0 (i.e., for t ∈ R+ or Z+). In the
case of continuous-time systems, these are called semi-flows.

Historically, smooth continuous-time dynamical systems ap-
peared first because of Newton’s discovery that the motions of
mechanical objects can be described by second-order Ordinary
Differential Equations (ODEs). More generally, many other nat-
ural and social phenomena, such as radioactive decay, chemical
reactions, population growth, or dynamics of prices on the mar-
ket, may be modeled with various degrees of accuracy by sys-
tems of ODEs [46]. These scenarios are within the framework
of our investigation because, in almost all relevant cases, the
state-space of a dynamical system has a specific structure that
is respected by the time evolution rule. Different structures lead
to the development of theories that focus on dynamical systems
maintaining such intrinsic structures.

Section 2.2

Continuous-Time Dynamical Systems
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A continuous-time dynamical system constitutes a mathemati-
cal model of a physical object interacting with its surrounding
environment through continuous time-dependent variables [7].

It is crucial to establish a fundamental distinction between
the different types of variables involved, which can be catego-
rized into two main categories:

• input variables;

• output variables.

Input variables represent the actions exerted on the system by
external agents, whereas output variables represent the aspects
of the system’s behavior that are of interest. As previously men-
tioned, a cause-effect relationship exists between these classes
of variables, almost always functions of time, moderated by the
time evolution rule of the system. These systems are highly sig-
nificant in the context of control problems because the particular
properties that characterize such mathematical models allow for
their broad applications.

Subsection 2.2.1

State-Space Representation

As discussed in Section 2.1.4, for historical reasons the most
common way to define a continuous-time dynamical system is
through ODEs. Specifically, the dynamical systems of relevance
in engineering applications are represented by a finite number
of coupled first-order ODEs in the following form:

ẋ1 = f1 (x1, . . . , xn, u1, . . . , um, t)
ẋ2 = f2 (x1, . . . , xn, u1, . . . , um, t)

...
ẋn = fn (x1, . . . , xn, u1, . . . , um, t) ,

where ẋi denotes the derivative of the n state variables xi with
respect to time variable t and uj are the m specified input vari-
ables. The vector notation is commonly used to write these equa-
tions in a compact form as one n-dimensional first-order vector
differential equation:

ẋ = f (x(t),u(t), t) , (2.2.1)
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where x ∈ Rn×1, u ∈ Rm×1, and the vector function f : Rn →
Rn assumed to be sufficiently regular (differentiable). This equa-
tion is called the state-equation and refer to x as the state and
u as the input. Sometimes another equation is associated with
Eq. (2.2.1), that is:

y = g (x(t),u(t), t) . (2.2.2)

Here y ∈ Rp×1 is defined as a p-dimensional output vector

Figure 2.2. SDoF damped har-
monic oscillator.

that includes variables of particular interest in the analysis of
the dynamical system, (e.g., variables that can be physically
measured or variables that are required to behave in a specified
manner). This equation is called the output equation and refer
to Eqs. (2.2.1) and (2.2.2) together as the state-space model, or
simply the state model [44].

Figure 2.3. Ideal pendulum.

Remark Note that, unlike the state equation, the output equation is
an algebraic equation. Additionally, it is worth emphasizing
that the number n of state variables constitutes the order of
the system [7].

Example An example of a dynamic system governed by a second-order
ODE is the damped harmonic oscillator, as illustrated in Fig.
2.2. The behavior of this system is described by the following
ODE:

m
d2u

dt2
+ c

du

dt
+ ku = 0, (2.2.3)

where m represents the mass, c is the damping coefficient, k
is the spring stiffness, and u denotes the displacement of the
oscillator.
Equation (2.2.3) can be reformulated into the form presented
in Eq. (2.2.1) by introducing the new variables x1 = u and
x2 = u̇. Based on these definitions and the governing equation,
the equivalent system is thus represented as follows:{

ẋ1 = x2

ẋ2 = − c
mx2 − k

mx1.

The system obtained is an example of a linear system, because
all the xi on the right-hand side appear to the first power only.

Example Another example is provided by an ideal pendulum, as illus-
trated in Fig. 2.3. In this case, the state of the system is fully
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characterized by defining its angular displacement θ (mod 2π)
from the vertical position, along with the corresponding an-
gular velocity θ̇. It is crucial to emphasize that the angle θ
alone is inadequate for determining the future state of the
pendulum.
Thus, for this mechanical system, the state-space is X = S ×
R, where S is once again the unit circle parameterized by
the angle, and R is the real line corresponding to the set of
all possible angular velocities. The set X can be considered
as a smooth two-dimensional manifold (cylinder) in R3. The
dynamics of an ideal pendulum is fully described by Newton’s
second law, resulting in the following ODE:

θ̈ = −g

l
sin θ,

where l represents the length of the pendulum and g denotes
the acceleration due to gravity.
At this point, if we introduce x1 = θ and x2 = θ̇ such that the
pair (x1, x2) represents a point in the state-space X = S×R1,
the governing ODE can be rewritten in the form of Eq. (2.2.1)
as: {

ẋ1 = x2

ẋ2 = − g
l sin x1,

where the vector field f is defined as:

f(x) =
[

x2
− g

l sin x1

]
.

The system obtained is an example of a nonlinear system, due
to the term sin x1.
Concerning the output transformation given by Eq. (2.2.2),
we can select the output variables to be the position and an-
gular velocity of the pendulum by introducing the following
expressions: {

y1 = x1

y2 = x2.

Consequently, the vector field g can be expressed as:

g(x) =
[
x1
x2

]
.
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Section 2.3

Classification of Continuous-Time Dy-
namical Systems

Dynamical systems described by Eqs. (2.2.1) and (2.2.2) can
be classified in different ways based on the characteristics of the
vector fields f and g. In particular, based on the number of input
and output variables, they can be classified as:

• Single-Input-Single-Output (SISO): systems characterized
by having a single input variable and a single output vari-
able;

• Multiple-Input-Multiple-Output (MIMO): systems defined
by the presence of multiple input variables and multiple
output variables.

Additionally, systems can be classified based on the character-
istics of the output transformation g into:

• Proper systems: for which Eq. (2.2.2) holds. A special case
is that of a static system, i.e., a system where the function
g does not depend on the state vector;

• Strictly proper systems: for which the function g does not
depend on the input vector.

Further classification can be made between:

• Linear systems: defined as those systems where the func-
tions ẋ(t) and y(t) are linear combinations of the compo-
nents of the state and input vectors.

• Nonlinear systems: defined as systems that cannot be de-
scribed as linear combinations of the components of the
state variable vectors x(t) and input vectors u(t).

Finally, dynamical systems can be classified based on their direct
time dependence into:

• Autonomous systems: those systems where there are no
direct time dependencies;

• Nonautonomous systems: those systems that explicitly de-
pend on time.
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The distinction between autonomous and nonautonomous sys-
tems is fundamental in the analysis of dynamical systems, as it
significantly influences their behavior and characteristics. The
following subsections will delve into the characteristics of au-
tonomous and nonautonomous systems, providing a description
of each category.

Subsection 2.3.1

Autonomous Systems

Definition 2 In the case where the function f does not explicitly depend
on time, the system is classified as autonomous and operates
within a general n-dimensional state-space [64]. The govern-
ing equation for an autonomous system is then expressed as
follows:

ẋ = f (x) . (2.3.1)

The evolution of autonomous systems is determined just by
the current state of the system, without any external temporal
influence. This leads to a simpler analytical framework, often
allowing for the derivation of general solutions and stability as-
sessments. The behavior of an autonomous system is invariant
to shifts in the time origin, since changing the time variable
from t to t+ a does not change the right-hand side of the state
equation.

Subsection 2.3.2

Nonautonomous Systems

Definition 3 In the case where the function f explicitly depend on time, the
system is classified as nonautonomous. The governing equa-
tion for a nonautonomous system is formally expressed by
means of a different symbol, F, as follows:

ẋ = F (x, t) . (2.3.2)

Nonautonomous systems incorporate time as an explicit
variable, resulting in dynamics that can vary over time and
depend on external inputs. This time dependence introduces
additional complexity, necessitating specific approaches to fully
understand the system’s behavior.

The time variable introduces a state-space of one dimension
higher than defined by x. The new dimension is time, although
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time is not on an equal footing with x because time cannot
be controlled. However, the higher dimensionality does allow
different dynamics. For instance, in a 2D state-space, as we will
see in the following chapters, chaos is not allowed because of
the non-crossing theorem. However, in a driven 2D system, the
extra dimension of time lifts this restriction and chaos is thus
possible.

There are many ways to introduce a new variable related to
time. For instance the new variable may be introduced as:

xn+1 = t,

ẋn+1 = 1.

On the other hand, for θ = ωt, a natural variable to describe
the dynamics is:

xn+1 = ωt,

ẋn+1 = ω,
(2.3.3)

and the angle can be plotted as mod 2π. Both of these substi-
tutions convert a nonautonomous flow into an autonomous one.

Figure 2.4. SDoF forced
damped harmonic oscillator.

In the case of a harmonic forcing function, the new variable
can also be:

xn+1 = sin (ωt),
ẋn+1 = ω cos (ωt).

This representation has the benefit that trajectories are bounded
along the new dimension, while in the first cases the trajectories
are not. If F is an explicit function of time, then the system is
nonautonomous with an (n+ 1)-dimensional state-space [64].

Example To address autonomous and nonautonomous equations, we
examine the case of a forced damped harmonic oscillator as
shown in Fig. 2.4. This system is described by the following
second-order ODE:

m
d2u

dt2
+ c

du

dt
+ ku = f cos (ωt) , (2.3.4)

where, u represents the displacement, m is the mass, c is the
viscous damping coefficient, k is the elastic stiffness, and f
and ω are the amplitude and angular frequency of the external
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forcing, respectively.
We can rewrite this equation in the form described in Eq.
(2.3.2) by introducing the variables x1 = u and x2 = u̇ as:{

ẋ1 = x2

ẋ2 = 1
m [−cx2 − kx1 + f cos (ωt)] ,

where the nonautonomous vector fiel F (x, t) is defined by:

F(x, t) =
[

x2
1
m [−cx2 − kx1 + f cos (ωt)]

]
.

At this point, by introducing a new state variable x3 = ωtmod
2π (Eq. (2.3.3)), we can express the initial set of equations as
an autonomous system described by Eq. (2.3.1). In such a
way, since ẋ3 = ω, the equivalent autonomous system is:

ẋ1 = x2

ẋ2 = 1
m [−cx2 − kx1 + f cos (x3)]

ẋ3 = ω,

(2.3.5)

and the autonomous vector field f (x) is:

f (x) =

 x2
1
m [−cx2 − kx1 + f cos (x3)]

ω

 .
In a more general setting, a nth-order nonautonomous equa-

tion is a special case of a (n + 1)-dimensional autonomous sys-
tem. Through this substitution, we can always remove any time
dependence by adding an extra dimension to the system. The
main advantage of this change of variables is that it allows us
to visualize a state-space with trajectories frozen in it. Other-
wise, if we allowed an explicit time dependence, the vectors and
trajectories would always be oscillating.

A more physical reason is that the state of the forced har-
monic oscillator is truly three-dimensional; in fact, we need to
know u, u̇ and t, to predict the future, given the present, so a
three-dimensional state-space is natural. The cost, however, is
that some of our terminology is non-traditional. For example,
the forced harmonic oscillator would traditionally be considered
as a second-order linear system, whereas in this case we can
consider it a third-order nonlinear system, since Eq. (2.3.5) is
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nonlinear, thanks to the cosine term [80].

Section 2.4

Phase Portraits

The fundamental idea of geometric methods, such as the phase
portrait construction, is to assume that the solution for partic-
ular initial conditions is known. This solution will be composed
of functions representing the position and velocity of the vector
field in the state-space. At this point the solution at any instant
of time will correspond to a point moving along a curve, called
trajectory, in the state-space of the system. The state-space is
completely filled with trajectories, since each point can serve as
an initial condition. Given a system, the main goal is to draw
the trajectories, and thereby extract information about the so-
lutions.

The general form of a vector field in the state-space is given
by:

ẋ = f (x) , (2.4.1)

where x represents a point in the state-space, and ẋ is the ve-
locity vector at that point. The entire phase plane is filled with
trajectories, since each point can play the role of an initial condi-
tion. The strength of the graphical method lies in the fact that,
in the case of a nonlinear system, it is not possible to deter-
mine the trajectories analytically, even when explicit formulas
are available. For such a reason, the goal is to determine the
phase portrait of a system directly from the properties of f.

The most important features of any phase portrait are:

• Fixed-points: These points satisfy the equation f (x) = 0
and correspond to steady states or equilibria of the system.
In terms of the original differential equation, fixed-points
represent equilibrium solutions.

• Nullclines: Nullclines are defined as the curves where all
the ẋi are equal to zero except one. The nullclines indicate
where the flow is purely in one direction.

• Closed orbits: These correspond to periodic solutions, i.e.,
solutions for which x (t+ T ) = x (t) ∀t, given T > 0.

• The arrangement of trajectories near the fixed-points and
closed orbits.
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• The stability or instability of the fixed-points and closed
orbits. In particular, an equilibrium is defined to be stable
if all sufficiently small disturbances away from it damp out
in time. Conversely, unstable equilibria, in which distur-
bances grow in time.

Sometimes also quantitative aspects of the phase portrait are
important. In these cases we solve the system in Eq. (2.4.1) by
means of numerical integration. One of the most used numerical
integration methods is the fourth order Runge-Kutta method
(ode45).
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Figure 2.5. Phase portrait
showing vector field, flow lines,
nullclines and fixed-point [80].

Example Consider the following nonlinear system:{
ẋ1 = x1 + e−x2

ẋ2 = −x2.
(2.4.2)

1. To find the fixed-points of this system we impose f(x) =
0, for which the only solution is the point x∗ ≡ [−1, 0]T .

2. The stability of the system is determined by noting that
x2 → 0 as t → ∞, since the solution to ẋ2 = −x2 is
x2(t) = x2(t = 0)e−t. Hence, e−x2 → 1 and so in the
long run, the equation for x1 becomes ẋ1 ≈ x1 + 1; this
has exponentially growing solutions, which suggests that
the fixed-point is unstable [80].

3. To obtain the nullcines we observe that the flow defined
in Eq. (2.4.2) is horizontal where ẋ2 = 0, and since
ẋ2 = −x2, this occurs on the line x2 = 0. Along this
line, the flow is to the right where ẋ1 ≈ x1 + 1 > 0, that
is, where x1 > −1. Similarly, the flow is vertical where
ẋ1 = x1 +e−x2 = 0, which occurs on the curve shown in
Fig. 2.5. On the upper part of the curve where x2 > 0,
the flow is downward, since ẋ2 < 0.
The nullclines also partition the plane into regions where
x1 and x2 have different signs. Even with the limited
information obtained so far, we obtain a good sense of
the overall flow pattern.

The phase portrait, derived by merging the insights gathered
from prior analyses with the outcomes of the direct numerical
computation, is provided in Fig. 2.5.
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Section 2.5

Non-dimensionalization

Non-dimensionalization is a powerful technique that can be used
to simplify and parameterize problems involving physical quanti-
ties. Specifically, by eliminating the physical dimensions from an
equation, one can identify which combination of parameters best
describes the behavior of the solution and reduce the number
of parameters in a system. Additionally, non-dimensionalization
allows us to recover some intrinsic properties of a system, such
as resonant frequency, length, or time constant. Through the
careful application, non-dimensionalization offers great poten-
tial for understanding complex systems with multiple variables
involved.

Non-dimensionalization serves as an effective approach for
simplifying systems of differential equations by scaling each in-
dependent and dependent variable with respect to a characteris-
tic unit of measurement. This process reduces the complexity of
the equations while preserving their essential features, making it
especially valuable in addressing physical problems often repre-
sented by ODEs. Beyond this, non-dimensionalization also finds
applications in fields such as dimensional analysis and statistical
normalization, where it aids in establishing comparability across
diverse datasets.

A system of equations can be non-dimensionalized by fol-
lowing these steps:

1. Identify all independent and dependent variables;

2. Replace all variables with non-dimensional quantities
based on characteristic units;

3. Divide the obtained equation by the coefficient of the
highest-order derivative;

4. Choose the characteristic unit for each variable so that po-
tential auxiliary conditions become as simple as possible;

5. Rewrite the equation in terms of new non-dimensional
quantities.

It may be necessary to perform the last three steps depending
on the type of problem being addressed. However, all systems
require the fulfillment of the first two steps.
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Example As an example, we consider Eq. (2.3.4) which is a second-order
ODE with constant coefficients, characteristic of a forced
damped harmonic oscillator. By applying the previously de-
scribed steps to:

m
d2u

dt2
+ c

du

dt
+ ku = f cos (ωt), (2.5.1)

we have that:

1. The independent variable is time t, whereas the gener-
alized displacement u is the dependent one.

2. We define the non-dimensional time τ and displacement
x as:

τ = t− tr
ts

, x = u− ur

us
.

These two quantities are defined as the difference of the
dimensional variable and a reference value, indicated
with tr and ur, over a dimensional scaling factor (i.e.,
ts and us). If we assume that the dimensional reference
values are equal to zero, we obtain:

t = tsτ, u = xsx.

Now if we plug these quantities into Eq. (2.5.1) the ob-
tained ODE is:

m
d

dt

(
du

dt

)
+ c

du

dt
+ ku = f cos (ωt),

m
d

d(tsτ)

[
d(xsx)
d(tsτ)

]
+ c

d(xsx)
d(tsτ) + k(xsx) = f cos (ωtsτ),

mxs

t2s

d2x

dτ2 + cxs

ts

dx

dτ
+ kxsx = f cos (ωtsτ).

3. The coefficient of the highest ordered term is mxs

t2
s

, di-
viding by this we obtain:

d2x

dτ2 + cts
m

dx

dτ
+ kt2s

m
x = ft2s

mxs
cos (ωtsτ).

4. To determine the scaling factors ts and xs such that
equations and potential auxiliary conditions, become as
simple as possible, we can set, as an example, the coef-
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ficients in front of x and cos (ωtsτ) equal to one:

kt2s
m

= 1 → ts =
√
m

k
= 1
ω0
,

ft2s
mxs

= 1 → xs = f0

k
.

5. The final non-dimensional equation in this case becomes
dependent only on two non-dimensional parameters:

2ζ = c√
mk

, Ω = ω

√
m

k
,

so the final non-dimensional form of the initial ODE is:

d2x

dτ2 + 2ζ dx
dτ

+ x = cos (Ωτ).



CHAPTER

3Linear Dynamical
Systems

I do not know what I may
appear to the world, but to
myself I seem to have been
only a poor boy playing on the
sea-shore, and diverting my-
self in now and then finding
a smoother pebble or a pret-
tier shell than ordinary, whilst
the great ocean of truth lay all
undiscovered before me.
— Sir Isaac Newton

Section 3.1 Linear Time-
Invariant Dynamical Sys-
tems
Section 3.2 Laplace Trans-
form
Section 3.2.1 Laplace Integral
Transform
Section 3.2.2 Inverse Laplace
Transform
Section 3.3 Mathematical
Representations
Section 3.3.1 State-Space Rep-
resentation
Section 3.3.2 Frequency Do-
main Representation
Section 3.4 Time Domain
Section 3.4.1 Undamped SDoF
System
Section 3.4.2 Damped SDoF
System
Section 3.5 Frequency Do-
main
Section 3.5.1 Undamped SDoF
System
Section 3.5.2 Damped SDoF
System

Linear physics is the bedrock upon which all introductory
physics and engineering courses are built. The power of linearity
comes from proportionality and additivity. With proportional-
ity, all systems respond in a manner proportional to the strength
of the inputs. With additivity, known as the principle of linear
superposition, the behavior of complicated systems can be de-
composed into their fundamental elements.

This chapter delves into the analysis of linear time-invariant
dynamical systems, beginning with fundamental concepts and
progressing to advanced mathematical techniques. It starts with
an overview of linear time-invariant systems and introduces
Laplace transform, which are essential tools for analyzing system
behavior in the frequency domain. Subsequent sections focus
on various mathematical representations, including state-space
representation and frequency domain representation, illustrating
how these frameworks facilitate the analysis of linear dynamical
systems.

23
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Section 3.1

Linear Time-Invariant Dynamical Sys-
tems

For linear systems, the state model represented by Eqs. (2.2.1)-
(2.2.2) takes the form:{

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t).

A case of particular interest in various fields of engineering is
that of Linear Time-Invariant (LTI) systems. These systems are
characterized by the following equations:{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t),

(3.1.1)

where the matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and
D ∈ Rp×m are all time-invariant and defined within the matrix
spaces mentioned in Section 2.2.1. These matrices are commonly
referred to as the state matrix, input matrix, output matrix, and
feed-through matrix, respectively [7].

Properties Due to their distinctive properties, LTI systems
hold significant importance in the fields of control theory, me-
chanics, and a broad spectrum of engineering applications. In
particular, these systems are characterized by the following
properties:

u1 +u2 S(u1) + S(u2)
S

Figure 3.1. Superposition prin-
ciple.

αu S(αu)
S

Figure 3.2. Scaling principle.

• Superposition principle: The response of a linear sys-
tem to a linear combination of a certain number of linearly
independent inputs can be obtained by summing the indi-
vidual responses that each input would generate if it acted
independently (Fig. 3.1):

S(u1 + u2) = S(u1) + S(u2).

• Scaling principle: For a linear system, scaling an input
by a certain factor results in the output being scaled by
the same factor (Fig. 3.2):

S(αu) = αS(u) ∀α ∈ R.



Linear Time-Invariant Dynamical Systems 25

• Closed-form solutions: A linear system has explicit so-
lutions, often represented by Lagrange formulas. Specifi-
cally, the state vector x(t) and the output vector y(t) cor-
responding to the input u(t) over the time interval (t− t0)
∀t ≥ t0, can be explicitly determined given the state vari-
ables at time t0 (i.e., x(t0) = x0). The expressions for
these vectors are as follows:

x(t) = eA(t−t0)x0 +
∫ t

t0

eA(t−τ)Bu(τ)dτ, (3.1.2)

y(t) = CeA(t−t0)x0+
∫ t

t0

[
CeA(t−τ)B + Dδ(t− τ)

]
u(τ)dτ.

(3.1.3)
The contribution that depends uniquely on the initial state
x(t0) = x0 is referred to as the system’s free response,
which occurs when the input is zero for the same x0:{

xl(t) = eA(t−t0)x0

yl(t) = CeA(t−t0)x0.
(3.1.4)

Conversely, the contribution to the overall response that
relies exclusively on the input is defined as the system’s
forced response:{

xf (t) =
∫ t

t0
eA(t−τ)Bu(τ)dτ

yf (t) =
∫ t

t0

[
CeA(t−τ)B + Dδ(t− τ)

]
u(τ)dτ.

Additionally, the following matrices can also be defined:

– State transition matrix: Φ(t − t0) := eA(t−t0) ∈
Rn×n.

– Impulse response matrix for the state: H(t − t0) :=
eA(t−t0)B ∈ Rn×m.

– Output transition matrix: Ψ(t − t0) := CeA(t−t0) ∈
Rp×n.

– Impulse response matrix for the output: W(t−t0) :=
CeA(t−t0)B + Dδ(t− τ) ∈ Rp×m.

In such a way, the responses in Eqs. (3.1.2) and (3.1.3) can
be expressed more compactly as follows:

x(t) = Φ(t− t0)x0 +
∫ t

t0

H(t− τ)u(τ)dτ, (3.1.5)
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y(t) = Ψ(t− t0)x0 +
∫ t

t0

W(t− τ)u(τ)dτ. (3.1.6)

Further details regarding the exponential matrix eAt in-
troduced in the above equations can be found in Appendix
A.

• Rouché–Capelli theorem: For a linear system of the
type Ax = b, where the matrix A ∈ Rn×n and the vectors
x,b ∈ Rn×1:

– There are no solutions if the rank of the incomplete
matrix is less than the rank of the augmented matrix:

rk(A) < rk(A|b) =⇒ ∄ solutions.

– There is exactly one solution if the rank of the in-
complete matrix is equal to the rank of the aug-
mented matrix, which is also equal to the number
of unknowns n:

rk(A) = rk(A|b) = n =⇒ ∃! solution.

– There are infinite solutions, to the order of n−rk(A),
if and only if the rank of the incomplete matrix is
equal to the rank of the augmented matrix, which in
turn is greater than the number of unknowns n:

rk(A) = rk(A|b) > n =⇒ ∃ ∞n−rk(A) solutions.

• Stability: A linear stationary system is stable or asymp-
totically stable, respectively, if and only if all its free re-
sponses are bounded or tend to zero as t → ∞. If at least
one of the state motions is unbounded, the system is un-
stable.
To better understand the concept of stability, consider a
time-invariant dynamical system with a given input u(t)
for t ≥ 0, an initial state x0, and the resulting trajectory
x(t), referred to as the nominal motion. Additionally, con-
sider a second trajectory, referred to as the perturbed mo-
tion, x̃(t), generated by the same input u(t) but starting
from a different initial state x̃0.

Definition 4 The motion x(t) is defined as stable (Fig. 3.3a), in the
sense of Lyapunov, if ∀ε > 0 there exists a δ(ε) > 0 such



Laplace Transform 27

x1

x1

x2

x2

t
/ (")

~x(t)

x(t)

"

(a)

x1

x1

x2

x2

t

~x(t)

/ (")

x(t)

"

(b)

Figure 3.3. Graphical represen-
tation of stable (a) and asymp-
totically stable (b) motion.

that for all initial states x0, x̃0 satisfying:

||x̃0 − x0|| < δ(ε),

it turns out to be:

||x̃(t) − x(t)|| < ε ∀t ≥ 0.

Furthermore, if:

lim
t→∞

||x̃(t) − x(t)|| = 0,

the motion is said to be asymptotically stable (Fig. 3.3b).

For a LTI system, the stability property of the motion
depends just on the free response. Moreover, for this class
of systems, it is noteworthy that local stability implies
global stability1. 1 A change is considered global

if it occurs outside the lo-
cal neighborhood of the point,
where the local neighborhood
refers to the immediate region
surrounding the point under
consideration.

Section 3.2

Laplace Transform

Laplace transform is an important mathematical tool used in
the analysis of linear dynamical systems to solve linear differ-
ential equations by transforming them into algebraic equations,
which are easier to solve. It is also widely used in control system
analysis, signal theory, circuit analysis, and many other fields of
engineering and physics. The use of Laplace transform is justi-
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fied by the simplification of linear differential equation analysis
that results from its application.

Subsection 3.2.1

Laplace Integral Transform

The Laplace integral transform, formally, represents a mathe-
matical operation that transforms a real ODE into a complex
valued algebraic one through the following integral transforma-
tion:

L{f(t)} = F (s) =
∫ ∞

0
f(t)e−stdt,

where f(t) is the function being transformed, depending on the
continuous time variable, and e−st is the complex valued ex-
ponential function, with s being a complex variable specifically
defined by the expression:

s = σ + iω,

where i is the imaginary unit.
In other words, the Laplace transform is an integral transfor-

mation of the real function f(t), multiplied by a complex valued
exponential function. The result of this operation is a function
of the complex variable s, expressed as F (s).

Properties There are several key properties that make
Laplace transform a highly useful mathematical tool for dealing
with problems related to linear dynamic systems. The following
are the main ones:

• Linearity: Given two real functions f and g, with α, β ∈
R, it follows that:

L {αf(t) + βg(t)} = αF (s) + βG(s),

where F and G are the Laplace transform of f and g,
respectively.

• Transform of the time-domain derivative: Assuming
that the function f(t) is differentiable ∀t ≥ 0, the Laplace
transform of the nth derivative of this function is given by:

L
{
f (n)(t)

}
= snF (s) −

n∑
i=1

sn−if (i−1)(0),
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where sn is the nth power, in the complex sense, of the
variable s previously defined.

• Transform of the time-domain integral: Assuming
that the function f is integrable from 0 to t, we have:

L
{∫ t

0
f(τ)dτ

}
= 1
s
F (s).

• Time-domain translation: For any τ > 0, consider the
function f̂(t) = f(t− τ), then:

L
{
f̂(t)

}
= L {f(t− τ)} = e−τsF (s).

• Complex-domain translation: For any α ∈ C, consider
the function f̂(t) = eαtf(t), then:

L
{
f̂(t)

}
= L

{
eαtf(t)

}
= F (s− α).

• Complex-domain derivative: The derivative of the
function F : s → F (s) with respect to the complex vari-
able s is equal to:

dF (s)
ds

= L {tf(t)} .

• Time convolution: The Laplace transform of the convo-
lution integral between two time functions f1(t) and f2(t)
is equal to the product of their transforms F1(s) and F2(s):

L
{∫ +∞

−∞
f1(t− τ)f2(τ)dτ

}
= F1(s)F2(s).

Appendix B lists several fundamental transforms useful for
solving key problems in linear dynamics.

Subsection 3.2.2

Inverse Laplace Transform

In mathematics, the inverse Laplace transform, also known as
the Bromwich integral or the inverse Mellin formula, is given by
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the line integral:

L−1 {F (s)} = f(t) = 1
2πi lim

T →∞

∫ γ+iT

γ−iT

estF (s)ds,

where the integration is done along the vertical line Re(s) = γ
in the complex plane such that γ is greater than the real part
of all singularities of F (s) and F (s) is bounded on the line.

Here we will focus on the procedures for obtaining the in-
verse Laplace transforms of rational functions, which are the
most common in problems typically encountered in the dynam-
ics of linear systems.

By applying the classical polynomial division algorithm, any
rational function can be expressed as the sum of a polynomial
and a rational function, where the degree of the denominator
exceeds the degree of the numerator. Specifically, for a rational
function of the form:

F (s) = N(s)
D(s) = bms

m + · · · + b1s+ b0

ansn + · · · + a1s+ a0
,

the relative degree is defined as the difference n−m. The objec-
tive at this stage is to rewrite the ratio of polynomials as a sum
of elementary terms, simplifying the computation of the inverse
transform (a process known as partial fraction decomposition).
Depending on the relative degree, the following cases arise:

• n−m > 0: the fraction is already strictly proper, and the
ratio between N(s) and D(s) can be decomposed into a
sum of terms that are readily inverse transformed;

• n − m = 0: it is necessary to first decompose the func-
tion F (s) into the sum of a strictly proper fraction and a
constant, before applying partial fraction decomposition;

• n − m < 0: the system is anti-causal, implying that the
output is nonzero for t < 0.

This systematic procedure enables a rigorous analysis of ratio-
nal functions. In particular, for the computation of the inverse
Laplace transform of a complex valued rational function F (s),
the application of the Residue Theorem is often employed. The
decomposition of a complex function into partial fractions is
expressed as follows:

F (s) = N(s)
D(s) = N(s)

(s− p1)(s− p2) . . . (s− pn) =
n∑

i=1

Ki

s− pi
,
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where pi are the zeros (or poles) of the polynomial D(s) at
the denominator, and Ki are the residues corresponding to the
various poles. These are computed as:

Ki = (s− pi)
N(s)
D(s)

∣∣∣∣
s=pi

.

Using the linearity property:

L−1
{

1
s− α

}
= eαt,

the inverse transform of the output is given by:

y(t) =
n∑

i=1
Kie

pit.

Now suppose there are h distinct poles, denoted as pj , and that
each has a multiplicity ri ≥ 1. The partial fraction decomposi-
tion of the system’s output transform can be expressed as:

F (s) = N(s)
(s− p1)r1(s− p2)r2 . . . (s− pn)rk

=
h∑

i=1

ri∑
l=1

Kil

(s− pi)ri−l+1 ,

where the residues Kil are calculated as:

Kil = 1
(l − 1)!

dl−1

dsl−1 (s− pi)ri
N(s)
D(s)

∣∣∣∣
s=pi

.

Exploiting the linearity property of Laplace transforms and the
relation:

L
{
tneαt

}
= n!

(s− α)n+1 ,

we finally obtain the inverse transform of F (s) as:

y(t) =
h∑

i=1

ri∑
l=1

Ki

(ri − l)! t
ri−lepit.

Section 3.3

Mathematical Representations for Me-
chanical Systems
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Figure 3.4. General family of lin-
ear MDoF mechanical systems.

In the study of mechanical systems, accurate mathematical rep-
resentations are crucial for understanding and predicting the
system’s behavior. This section focuses on two fundamental rep-
resentations: the state-space representation and the frequency
domain representation.

The state-space representation provides a comprehensive
framework for modeling Multi-Degree-of-Freedom (MDoF) me-
chanical systems, encapsulating the dynamics of the system
through a set of first-order ODEs. We begin with the second-
order ODE governing the motion of a general class of MDoF
system, which incorporates mass, damping, and stiffness matri-
ces. By reformulating this equation into state-space form, we
can derive the matrices that describe the system’s dynamics,
including the state matrix.

Following the state-space representation, we will explore the
frequency domain representation. This approach leverages the
Laplace transform to convert the time-domain equations into a
form that is often easier to manipulate. By applying the Laplace
transform to the state-space equations, we obtain expressions
that reveal the relationship between the system’s input and out-
put in the frequency domain.

Overall, this section aims to provide a clear and methodi-
cal understanding of the mathematical representations used for
mechanical systems, highlighting their importance and practical
differences.

Subsection 3.3.1

State-Space Representation

The following section presents the state-space formulation for a
general family of linear MDoF systems as depicted in Fig. 3.4.
This formulation is derived from the second-order ODE that
governs the motion of the system, expressed as follows:

M¨̄u + C ˙̄u + Kū = p. (3.3.1)

In this equation, M, C, K ∈ Rn×n represent the mass,
damping, and stiffness matrices, respectively. The variables
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¨̄u, ˙̄u, ū ∈ Rn×1 denote the accelerations, velocities, and dis-
placements of the system. This general setting serves as the basis
for deriving the state-space representation, enabling a system-
atic analysis of the system’s dynamics.

To obtain the representation seen in Eq. (3.1.1), the equa-
tion of motion is rewritten by defining x1 := ū and x2 := ˙̄u,
obtaining the following system:{

ẋ1 = x2

ẋ2 = M−1(p − Cx2 − Kx1),

thus, the matrices A ∈ R2n×2n and B ∈ R2n×n, previously
introduced are:

A =
[

0 I
−M−1K −M−1C

]
, B =

[
0

M−1

]
, (3.3.2)

where 0 ∈ Rn×n is the zero matrix, and I ∈ Rn×n is the identity
matrix. The input vector is u(t) = p ∈ Rn×1.

Regarding the output variables that represent displacement,
velocity, and acceleration, the following relationships are estab-
lished: 

y1 = x1

y2 = x2

y3 = M−1(p − Cx2 − Kx1).

Thus, the matrices C ∈ R3n×2n and D ∈ R3n×n are:

C =

 I 0
0 I

−M−1K −M−1C

 , D =

 0
0

M−1

 .
In such a way, the system represented by Eq. (3.3.1) has been re-
duced to the more general system of first-order ODEs described
by Eq. (3.1.1).

Subsection 3.3.2

Frequency Domain Representation

In this section, we derive the frequency domain representation of
a MDoF system based on the previously established state-space
formulation. Specifically, by applying the Laplace transform, we
can facilitate the evaluation of system responses, which is partic-
ularly beneficial for various engineering applications. We begin
by considering a linear system described by Eq. (3.1.1). Upon
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applying the Laplace transform to both equations, we obtain
the following system:{

sX(s) − X(0) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s).

From here, using matrix properties, the first equation can be
rewritten as:

(sI − A)X(s) = X(0) + BU(s),

where the term (sI − A) represents an invertible matrix only if
s ̸= λi for i = 1, . . . , n2. By explicitly solving for X(s) and Y(s),2 With λi representing the

eigenvalues of matrix A the system becomes:{
X(s) = (sI − A)−1X(0) + (sI − A)−1BU(s)
Y(s) = C(sI − A)−1X(0) + [C(sI − A)−1B + D]U(s).

Remark It is worth noting that the Laplace transforms of matrices
previously introduced to obtain Eqs. (3.1.5)-(3.1.6) appear
again here. Specifically:

• Φ(t) := eAt −→ L {Φ(t)} = Φ(s) = (sI − A)−1

• H(t) := eAtB −→ L {H(t)} = H(s) = Φ(s)B

• Ψ(t) := CeAt −→ L {Ψ(t)} = Ψ(s) = CΦ(s)

• W(t) := CeAtB −→ L {W(t)} = W(s) = CΦ(s)B +
D.

Therefore, Eqs. (3.1.5)-(3.1.6) can be rewritten in the fol-
lowing form:{

X(s) = Φ(s)X(0) + H(s)U(s) = Xl(s) + Xf (s)
Y(s) = Ψ(s)X(0) + W(s)U(s) = Yl(s) + Yf (s),

where the terms Φ(s)X(0) and Ψ(s)X(0) correspond to the
Laplace transforms of the free response of the state Xl(s) and
the output Yl(s), respectively. Similarly, the terms H(s)U(s)
and W(s)U(s) represent the Laplace transforms of the forced
responses Xf (s) and Yf (s), respectively.

Section 3.4

Time Domain
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x1

x2

Figure 3.5. Phase portrait for
undamped SDoF mechanical
system.

In civil engineering, the analysis of commonly used linear dy-
namical systems can be effectively carried out in the time do-
main, using the previously introduced state-space representa-
tion. Below, we will demonstrate how this approach can be ap-
plied to the analysis of two SDoF systems, with and without
viscous damping.

Subsection 3.4.1

Undamped SDoF System

Based on the formulation presented for the MDoF system (Sec-
tion 3.3) we now consider a mechanical system in which there
is no damping and where n = 1. This assumption reduces the
model to a Single-Degree-of-Freedom (SDoF) system, simplify-
ing the matrices M, K to scalar quantities m and k, whereas
the vectors ¨̄u, ˙̄u, ū become scalar variables representing the
mass’s acceleration, velocity, and displacement.

Using Eq. (3.3.2), where ω2 := k
m is the natural frequency

of the system, we obtain:[
ẋ1
ẋ2

]
=

[
0 1

−ω2 0

] [
x1
x2

]
, (3.4.1)
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which in matrix form is:

ẋ = Ax.

The dynamics of this system is fully determined by Eq.
(3.1.4), which is reported below for the reader convenience:

xl(t) = eA(t−t0)x0.

By setting t0 = 0, it is necessary to evaluate only the ma-
trix exponential eAt (Appendix A) to determine the system’s
dynamics for all possible initial conditions x0. To achieve this,
we must evaluate the eigenvalues λ of the state matrix A. In
this case, we have:

det(λI − A) = det
[
λ −1
ω2 λ

]
= λ2 + ω2 = 0,

whose roots are: {
λ1 = iω

λ2 = −iω.

Thus, we obtain two complex conjugate eigenvalues, indicative
of periodic solutions with a fixed-point in [0, 0]T as shown in
Fig. 3.5.

To evaluate the eigenvectors, we need to solve the following
system of linear equations:

(λ1I − A)u1 = 0,

which can be rewritten as:[
iω −1
ω2 iω

] [
u11
u12

]
=

[
0
0

]
.

The two equations are linearly dependent therefore, by the
Rouché-Capelli theorem, this system admits ∞1 solutions. As-
signing one of the unknowns as a fixed value, for example
u11 = 1, we have:{

u11 = 1
u12 = iω

→ u1 =
[

1
iω

]
.

To preserve the real form of the modal matrix containing the
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system’s eigenvectors, we can rewrite the vector u1 as follows:

u1 = ua + iub =
[

1
0

]
+ i

[
0
ω

]
.

Thus, the real modal matrix UR is:

UR =
[

ua ub

]
=

[
1 0
0 ω

]
,

while the real diagonal matrix of eigenvalues ΛR is:

ΛR =
[

0 ω
−ω 0

]
= U−1

R AUR.

The inverse matrix U−1
R is evaluated as:

U−1
R = 1

det(UR)

(
Cof(u11) Cof(u12)
Cof(u21) Cof(u22)

)T
.

Note that Cof(uij) =
(−1)i+j det(Uij).

Hence, the inverse of the real modal matrix is:

U−1
R =

[
1 0
0 1

ω

]
.

Finally, by using the properties of the matrix exponential
(Appendix A), we obtain:

eAt = URe
ΛRtU−1

R =
[

1 0
0 ω

] [
cosωt sinωt

− sinωt cosωt

] [
1 0
0 1

ω

]
,

which is:
eAt =

[
cosωt 1

ω sinωt
−ω sinωt cosωt

]
.

Given the matrix exponential, for any pair of initial conditions
x0, the system’s free response can be determined using Eq.
(3.1.4) as:

x(t) = eAtx0 =
[

cosωt 1
ω sinωt

−ω sinωt cosωt

] [
x1(0)
x2(0)

]
=

=
[
x1(0) cosωt+ x2(0)

ω sinωt
−ωx1(0) sinωt+ x2(0) cosωt

]
.

It is evident that the response in terms of displacement and
velocity coincides with well-known results from the literature
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[21].

Subsection 3.4.2

Damped SDoF System

Based on the formulation presented for the MDoF system (Sec-
tion 3.3) we now consider a mechanical system with damping
and where n = 1. This assumption reduces the model to a SDoF
system, simplifying the matrices M, C, and K to scalar quan-
tities m, c, and k, whereas the vectors ¨̄u, ˙̄u, ū become scalar
variables representing the mass’s acceleration, velocity, and dis-
placement.

Also in this case, by using Eq. (3.3.2), where ω2 := k
m is the

natural frequency of the system and ζ := c
2mω is the damping

ratio, we obtain:[
ẋ1
ẋ2

]
=

[
0 1

−ω2 −2ζω

] [
x1
x2

]
, (3.4.2)

which, in matrix form, becomes:

ẋ = Ax.

As in the undamped SDoF system, we evaluate the eigen-
values λ of the state matrix A for the current system by solving:

det(λI − A) = det
[
λ −1
ω2 +2ζω + λ

]
= λ2 + 2ζωλ+ ω2 = 0,

whose roots are given by:

λ = −2ζω ±
√

4ζ2ω2 − 4ω2

2 = −ζω ± ω
√
ζ2 − 1.

Differently from the undamped system, here we can distin-
guish three cases depending on the value of the damping ratio
ζ. Specifically, we have:

1. ζ > 1 ⇒ λ1, λ2 ∈ R (overdamped system).

2. ζ = 1 ⇒ λ1, λ2 = λ ∈ R (critically damped system).

3. ζ < 1 ⇒ λ1, λ2 ∈ C (underdamped system).

We will now analyze each of these cases individually.
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3.4.2.1 Overdamped System
When ζ > 1, the system is referred to as overdamped. In this
case, the eigenvalues of the system’s state matrix A are:

λ1,2 = −ζω ± ω
√
ζ2 − 1 ∈ R.

The corresponding eigenvectors can be computed by solving the
following systems of linear equations:

(λ1I − A) u1 = 0 →
[

−ζω + ω
√
ζ2 − 1 −1

ω ζω + ω
√
ζ2 − 1

] [
u11
u12

]
=

[
0
0

]
(

−ζω + ω
√
ζ2 − 1

)
u11 = u12 →

{
u11 = 1
u12 = −ζω + ω

√
ζ2 − 1

(λ2I − A) u2 = 0 →
[

−ζω − ω
√
ζ2 − 1 −1

ω ζω − ω
√
ζ2 − 1

] [
u21
u22

]
=

[
0
0

]
(

−ζω − ω
√
ζ2 − 1

)
u21 = u22 →

{
u21 = 1

−ζω+ω
√

ζ2−1
u22 = 1

,

which correspond to the following eigenvectors:

u1 =
[

1
λ1

]
, u2 =

[ 1
λ2
1

]
.

Based on these eigenvalues and eigenvectors, we can con-
struct the diagonal eigenvalues matrix Λ and the modal matrix
U as follows:

Λ =
[
λ1 0
0 λ2

]
, U = [u1 u2] =

[
1 1

λ2
λ1 1

]
.

In this case, the matrix exponential can be evaluated using
the following relation:

eAt = UeΛtU−1,

and we will therefore need to compute the inverse matrix U−1,
which is:

U−1 = λ2

λ2 − λ1

[
1 − 1

λ2
−λ1 1

]
.
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Finally, the matrix exponential is:

eAt = UeΛtU−1 =

=
[

1 1/λ2
λ1 1

] [
eλ1t 0

0 eλ2t

] [
1 −1/λ2

−λ1 1

]
λ2

λ2 − λ1
=

=
[

λ2
λ2−λ1

eλ1t − λ1
λ2

λ2
λ2−λ1

eλ2t − 1
λ1

λ2
λ2−λ1

eλ1t + 1
λ2

λ2
λ2−λ1

eλ2t

λ1
λ2

λ2−λ1
eλ1t − λ1

λ2
λ2−λ1

eλ2t − λ1
λ2

λ2
λ2−λ1

eλ1t + λ2
λ2−λ1

eλ2t

]
.

Once the matrix exponential is known, for any pair of ini-
tial conditions x0, applying Eq. (3.1.4), the free response of the
system can be obtained as:

x(t) = eAtx(0) =

=
[

λ2
λ2−λ1

eλ1t − λ1
λ2−λ1

eλ2t − 1
λ2−λ1

eλ1t + 1
λ2−λ1

eλ2t

λ1λ2
λ2−λ1

eλ1t − λ1λ2
λ2−λ1

eλ2t − λ1
λ2−λ1

eλ1t + λ2
λ2−λ1

eλ2t

] [
x1(0)
x2(0)

]
=

=
[

λ2x1(0)
λ2−λ1

eλ1t − λ1x1(0)
λ2−λ1

eλ2t − x2(0)
λ2−λ1

eλ1t + x2(0)
λ2−λ1

eλ2t

λ1λ2x1(0)
λ2−λ1

eλ1t − λ1λ2x1(0)
λ2−λ1

eλ2t − λ1x2(0)
λ2−λ1

eλ1t + λ2x2(0)
λ2−λ1

eλ2t

]
.

These expressions can be reformulated into the standard form
commonly employed in the literature [21] to represent such so-
lutions, as detailed below:

x1(t) = A1e
λ1t +A2e

λ2t,

x2(t) = λ1A1e
λ1t + λ2A2e

λ2t,

where: {
A1 = λ2x1(0)−x2(0)

λ2−λ1

A2 = x2(0)−λ1x1(0)
λ2−λ1

.

3.4.2.2 Critically Damped System
When ζ = 1, the system is referred to as critically damped. In
this case, the eigenvalues of the state matrix A are:

λ1 = λ2 = λ = −ω ∈ R.

Here, we have a single eigenvalue with an algebraic multiplic-
ity of 2. To verify whether a basis of eigenvectors can be con-
structed, we need to check the relationship between the algebraic
and geometric multiplicities. Specifically, the geometric multi-
plicity is given by:

mg(λ) = n− rk (λI − A) ,
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where n is the order of the state matrix A. In this case, we have:

mg(λ) = 2 − rk(A − λI) = 2 − rk
([

ω 1
−ω2 −ω

])
= 1.

Thus, the algebraic multiplicity ma(λ) = 2 differs from the ge-
ometric multiplicity mg(λ) = 1, indicating that the matrix A is
not diagonalizable. Therefore, we need to work with generalized
eigenvectors, through which we can construct the Jordan form
of the matrix A.

The Jordan form matrix UJ is an invertible matrix such
that the following equality holds:

J = U−1
J AUJ ,

where the matrix J is the Jordan canonical form of the matrix
A. The Jordan canonical form of a square matrix is a triangular
matrix J, similar3 to A, that has a structure as close as possible 3 In linear algebra, two n× n

matrices A and B are called
similar if there exists an in-
vertible n × n matrix P such
that B = P−1AP.

to a diagonal matrix. The matrix is diagonal if and only if A is
diagonalizable; otherwise, it is divided into Jordan blocks.

To compute the generalized eigenvectors, we evaluate the
following generalized eigenspaces:

U1 =
{

u ∈ R2 : (A − λI)u = 0
}
,

U2
1 =

{
u ∈ R2 : (A − λI)2u = 0

}
.

From the eigenspace U1 we obtain the following systems of equa-
tions:

(A − λI) =
[

0 1
−ω2 −2ω

]
+

[
ω 0
0 ω

]
=

[
ω 1

−ω2 −ω

]
,

which give the following eigenvectors:[
ω 1

−ω2 −ω

] [
u11
u12

]
=

[
0
0

]
⇒

[
− 1

ω
1

]
and

[
1

−ω

]
.

On the other hand, from the eigenspace U2
1 we obtain:

(A − λI)2 =
[

ω 1
−ω2 −ω

] [
ω 1

−ω2 ω

]
=

[
0 2ω
0 −2ω2

]
,

which give the following eigenvector:[
0 2ω
0 −2ω2

] [
u11
u12

]
=

[
0
0

]
⇒

[
1
0

]
,
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from which we can construct the matrix UJ by identifying the
Jordan chains as:[

ω 1
−ω2 −ω

] [
1
0

]
=

[
ω

−ω2

]
.

The resulting matrices are:

UJ =
[

ω 1
−ω2 0

]
, U−1

J =
[

0 − 1
ω2

1 1
ω

]
.

As a result, the Jordan canonical form of the matrix A is:

J = U−1
J AUJ =

=
[

0 − 1
ω2

1 1
ω

] [
0 1

−ω2 −2ω

] [
ω 1

−ω2 0

]
=

[
−ω 1
0 −ω

]
.

In this case, the matrix exponential is computed using the
following relation:

eAt = UJeJtU−1
J ,

and thus we need to compute the matrix exponential of J, that
is:

eJt =
[
e−ωt te−ωt

0 e−ωt

]
.

Finally, the matrix exponential of the system is:

eAt = UJeJtU−1
J =

[
ω 1

−ω2 0

] [
e−ωt te−ωt

0 e−ωt

] [
0 − 1

ω2

1 1
ω

]
=

=
[
ωte−ωt + e−ωt − 1

ω e
−ωt + te−ωt + 1

ω e
−ωt

−ω2 + e−ωt e−ωt − ωte−ωt

]
.

With the matrix exponential known, for any initial condi-
tions x0, by applying Eq. (3.1.4) we obtain the free response of
the system as:

x(t) = eAtx0 =

=
[
ωte−ωt + e−ωt − 1

ω e
−ωt + te−ωt + 1

ωte
ωt

−ω2 + e−ωt e−ωt − ωte−ωt

] [
x1(0)
x2(0)

]
=

[
{x1(0) + t [ωx1(0) + x2(0)]} e−ωt{
x2(0) − t

[
ω2x1(0) + x2(0)ω

]}
e−ωt

]
,

which correspond to the solutions commonly found in the liter-
ature [21].



Time Domain Damped SDoF System 43

3.4.2.3 Underdamped System
When 0 < ζ < 1, the system is referred to as underdamped.
In this case, the eigenvalues of the state matrix A are complex
conjugates and equal to:

λ1,2 = −ζω ± iω
√

1 − ζ2 ∈ C.

The associated eigenvectors are found, as in the case of the un-
damped system, by solving the following system of linear equa-
tions:

(λ1I − A) u1 = 0.

This can be rewritten as follows:[
λ1 −1
ω2 +2ζ − ω + λ1

] [
u11
u12

]
=

[
0
0

]
.

The two equations that make up this system are linearly depen-
dent. Therefore, according to the Rouché-Capelli theorem, the
system admits ∞1 solutions. Assigning one of the two unknowns
as a fixed parameter, for example u11 = 1, we obtain:

u1 =
[

1
−ζω + iω

√
1 − ζ2

]
.

As in the case of the undamped system, in order to preserve
the real form of the modal matrix, we can rewrite the vector u1
as follows:

u1 = ua + iub =
[

1
−ζω

]
+ i

[
0
Ω

]
,

where Ω = ω
√

1 − ζ2. In such a way, the real modal matrix UR

is:
UR =

[
ua ub

]
=

[
1 0

−ζω Ω

]
,

whereas the real diagonal eigenvalue matrix ΛR is:

ΛR =
[

−ζω Ω
−Ω −ζω

]
= U−1

R AUR.

The inverse matrix U−1
R is calculated as in the previous cases

and is:
U−1

R =
[

1 0
ζω
Ω

1
Ω

]
.
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Once again, using the properties of the matrix exponential (Ap-
pendix A), we have:

eAt = URe
ΛRtU−1

R =

= e−ζωt

[
1 0

−ζω Ω

] [
cos Ωt sin Ωt

− sin Ωt cos Ωt

] [
1 0

ζω
Ω

1
Ω

]
=

= e−ζωt

[
cos Ωt+ ζω

Ω sin Ωt 1
Ω sin Ωt

−Ω sin Ωt− (ζω)2

Ω sin Ωt − ζω
Ω sin Ωt+ cos Ωt

]
.

Now, knowing the matrix exponential, for any initial con-
dition x0, by applying Equation (3.1.4), it is possible to obtain
the free response of the system as:

x(t) = eAtx0 =

=

 e−ζωt
{
x1(0) cos Ωt+

[
x2(0)+x1(0)ζω

Ω

]
sin Ωt

}
e−ζωt

{
x2(0) cos Ωt−

[
Ωx1(0) + (ζω)2

Ω x1(0) + ζω
Ω x2(0)

]
sin Ωt

}  .
Note how the response in terms of displacement and velocity
matches the widely known results in the literature [21].

Section 3.5

Frequency Domain

In this section, we show how the analysis of dynamical systems
commonly encountered in civil engineering is systematically con-
ducted in the frequency domain, employing the previously in-
troduced Laplace transforms and their inverses. The subsequent
discussion illustrates how this approach simplifies the analysis of
the SDoF systems examined earlier. Each step of the process is
detailed to elucidate how the same results are obtained through
this frequency-domain methodology.

Subsection 3.5.1

Undamped SDoF System

By recalling the results presented in Section 3.4.1 and applying
the methodology discussed in Section 3.3.2, we derive that for
the undamped system described by Eq. (3.4.1), the matrix Φ(s)
is given by:

Φ(s) = 1
s2 + ω2

[
s 1

−ω2 s

]
.
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Thus, recalling that:

Φ(t) = eAt = L−1 {Φ(s)} ,

and using the Residue Theorem seen in Section 3.2.2, we obtain
the exponential matrix as:

eAt =
[

cos (ω t) sin(ω t)
ω

−ω sin (ω t) cos (ω t)

]
.

The obtained result matches the expression found in Section
3.4.1. Additionally, recalling that Xl(s) = Φ(s)X(0), we can
easily obtain the free response of the system as:

x(t) = L−1 {Xl(s)} =
[

x1(0) cos (ω t) + x2(0)
ω sin (ω t)

−ω x1(0) sin (ω t) + x2(0) cos (ω t)

]
.

These solutions coincide with those obtained in the time do-
main but are simpler to derive, as they do not require solving
differential equations directly.

Subsection 3.5.2

Damped SDoF System

By recalling the results presented in Section 3.4.2 and applying
the methodology discussed in Section 3.3.2, we derive that for
the damped system described by Eq. (3.4.2), the matrix Φ(s) is
given by:

Φ(s) = 1
s2 + 2ζωs+ ω2

[
s+ 2ζω 1

−ω2 s

]
.

Thus, the system’s displacement response in the frequency do-
main is:

X1(s) = X2(0) + 2ζωX1(0) + sX1(0)
s2 + 2ζωs+ ω2 .

To return to the time domain and obtain x1(t), it is nec-
essary to perform the inverse Laplace transform of the rational
complex function X1(s). Specifically, this process depend on the
poles of X1(s), which are:

s = −ζω ± ω
√
ζ2 − 1.

Once again, we can distinguish three cases depending on the
value of ζ. Specifically, we have:
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1. ζ > 1 ⇒ real and distinct poles.

2. ζ = 1 ⇒ real and coincident poles.

3. ζ < 1 ⇒ complex conjugate poles.

3.5.2.1 Overdamped Systems
When ζ > 1 we are once again dealing with an overdamped
system. In this case, the poles of the function X1(s) are:

p1,2 = −ζω ± ω
√
ζ2 − 1.

By expressing the function in partial fractions, we have:

X1(s) = X2(0) + 2ζωX1(0) + sX1(0)
(s− p1) (s− p2) =

= A

s− p1
+ B

s− p2
= A (s− p2) +B (s− p1)

(s− p1) (s− p2) ,

where

A = p2X1(0) −X2(0)
p2 − p1

, B = X2(0) − p1X1(0)
p2 − p1

.

The system’s response in the time domain is obtained by
taking the inverse Laplace transform of the previous expression:

x1(t) = L−1
{

A

s− p1

}
+ L−1

{
B

s− p2

}
= Aep1t +Bep2t =

= p2x1(0) − x2(0)
p2 − p1

ep1t + x2(0) − p1x1(0)
p2 − p1

ep2t.

3.5.2.2 Critically Damped System
When ζ = 1 we are once again dealing with a critically damped
system. In this case, the poles of the function X1(s) are:

p1,2 = p = −ω.

Expressing the function in partial fractions gives:

X1(s) = X2(0) + 2ζωX1(0) + sX1(0)
(s− p)2 =

= A1

(s− p)2 + A2

(s− p) = A1 +A2s−A2p

(s− p)2 ,
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where
A1 = X2(0) + ωX1(0), A2 = X1(0).

The system’s response in the time domain is obtained by
taking the inverse Laplace transform of the previous expression
as follows:

x1(t) = L−1
{

A1

(s− p)2

}
+ L−1

{
A2

(s− p)

}
=

= A1e
ptt+A2e

pt = (A1t+A2) ept =
= [x2(0)t+ ωtx1(0) + x1(0)] e−ωt.

3.5.2.3 Underdamped System
Finally, when ζ < 1, we are once again dealing with an under-
damped system. In this case, the poles of the function X1(s)
are:

p1,2 = −ζω ± iω
√

1 − ζ2.

Expressing the function in partial fractions, we have:

X1(s) = sX1(0) +X2(0) + 2ζωX1(0)
s2 + 2ζωs+ ω2 = As+B

[(s+ α)2 + Ω2] .

By imposing

s2 + 2ζωs+ ω2 = s2 + 2αs+ α2 + Ω2,

we obtain:
α = ζω, Ω = ω

√
1 − ζ2,

and thus the expression for X1(s) becomes:

X1(s) = As+B

[(s+ ζω)2 + Ω2] ,

where
A = X1(0), B = X2(0) + 2ζωX1(0).

The system’s response in the time domain is obtained by
simply taking the inverse Laplace transform of the previous ex-
pression as follows:

x1(t) = L−1
{
X1(0)(s+ ζω − ζω)

[(s+ ζω)2 + Ω2]

}
+ L−1

{
Ω
Ω
X2(0) + 2ζωX1(0)
[(s+ ζω)2 + Ω2]

}
=

= e−ζωt

[
x1(0) cos(Ωt) + x2(0) + ζωx1(0)

Ω sin(Ωt)
]
.
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It is noteworthy that the same results achieved in the time do-
main (Section 3.4) are obtained here through a significantly sim-
pler approach, without the need to directly solve the differential
equation governing the problem.



CHAPTER

4Nonlinear Dynamical
Systems

On dira que la science n’est
qu’une classification et qu’une
classification ne peut être
vraie, mais seulement com-
mode. Mais il est certain
qu’elle est commode, qu’elle
l’est non seulement pour moi,
mais pour tous les hommes;
il est vrai enfin que tout cela
ne peut pas être seulement par
hasard.
— Jules Henri Poincaré

Section 4.1 A Framework for
Nonlinear Dynamical Sys-
tems
Section 4.2 Smooth Nonlin-
ear Dynamical Systems
Section 4.2.1 1D Flows
Section 4.2.2 2D Flows
Section 4.2.3 3D Flows
Section 4.2.4 Periodic Solutions
and Poincaré Maps
Section 4.2.5 Bifurcation The-
ory
Section 4.2.6 Nonlinear Reso-
nance and Frequency Response
Section 4.3 Non-smooth
Nonlinear Dynamical Sys-
tems
Section 4.3.1 Hysteretic Me-
chanical Systems
Section 4.3.2 Mathematical
Modeling of Hysteresis
Section 4.3.3 Poincaré Map
Based Continuation
Section 4.3.4 Energy Compo-
nents in Hysteretic Systems

In linear systems, the whole is quite simply the sum of the parts.
But the world is not linear. While many systems behave approxi-
mately linearly for small displacements, all systems are bounded
by natural constraints (the length of a spring, the size of the
system) and cannot maintain linearity to all levels of excitation.
Some systems are fundamentally nonlinear, even for their small-
est excursions. And when these systems have several degrees of
freedom, most of the intuition and mathematical tools we use
for linear systems no longer apply, and an entirely new toolbox
is needed to understand these types of systems [64].

This chapter provides a comprehensive exploration of non-
linear dynamical systems, beginning with a comprehensive
framework that underpins the study of such systems. It encom-
passes a variety of topics, including smooth nonlinear dynam-
ics and the behavior of one-dimensional, two-dimensional, and
three-dimensional flows. The discussion extends to periodic solu-
tions and Poincaré maps, as well as bifurcation theory, which are
essential for understanding the stability and transitions within
these systems.

Furthermore, the chapter delves into the realm of non-
smooth nonlinear dynamical systems, with a particular focus
on hysteretic mechanical systems. It examines mathematical
modeling techniques for hysteresis, including the Vaiana-Rosati
model, and introduces Poincaré map based continuation meth-
ods to analyze system behavior. Finally, the chapter concludes
with an investigation of the energy components in hysteretic
systems, offering insights into their dynamic responses.

49
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Section 4.1

A Framework for Nonlinear Dynamical
Systems

Our objective is to delineate the logical structure that under-
pins the study of nonlinear dynamical systems. Specifically, we
will use the theoretical framework proposed by [80] to guide our
analysis, focusing on the number of variables necessary to char-
acterize the system’s state, which corresponds to the dimension
of the state-space. This approach is particularly pertinent in
nonlinear systems, as increasing the state-space dimension from
n = 1 to n ≥ 3 introduces distinct phenomena at each level: for
n = 1, we observe fixed-points and their bifurcations; for n = 2,
nonlinear oscillations may also arise; and for n ≥ 3, complex
behaviors such as chaos and fractals emerge. In this context, a
geometric approach proves to be highly effective, offering sig-
nificant insights even when explicit solutions to the differential
equations are not available (see Table 4.1).

Furthermore, the proposed framework encompasses a fron-
tier of topics that, while not entirely uncharted, delineate the
limits of current understanding. Notably, research has demon-
strated that non-smooth dynamical models exhibit a broader
spectrum of possible behaviors compared to smooth models.
Some of these behaviors arise specifically when considering dis-
continuous ODEs [74]. The inherent complexity of such prob-
lems, coupled with their nonlinear and non-smooth character-
istics, will persist in presenting significant challenges for future
research endeavors.

Table 4.1. Nonlinear system signatures [64].
Breakdown of linear superposition
Exponential sensitivity to initial conditions
Sudden discontinuous changes (thresholds, jumps, bifurcations,
intermittency)
Amplitude-frequency coupling, frequency entrainment or phase
locking (synchronization)
Hysteresis
Order within chaos (islands of stability)
Self-similarity (fractals and scaling)
Emergence (large-scale structure/order arising from local
interactions among many parts)
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Section 4.2

Smooth Nonlinear Dynamical Systems

In Chapter 2, we introduced the general system:

ẋ = f (x) , (4.2.1)

where x ∈ Rn is the state vector and f : Rn × R → Rn is
a nonlinear smooth vector field f ∈ C2. The solutions of this
system can be visualized as trajectories flowing through an n-
dimensional state-space with coordinates [x1, . . . , xn]T .

Subsection 4.2.1

One-dimensional Flows

Before addressing the more complex cases, we begin with the
simplest scenario for Eq. (4.2.1), where n = 1. This results in a
single equation of the following form:

ẋ = f(x).

In this context, x : t → x(t) represents a real-valued function of
time t, whereas f denotes a smooth, real-valued nonlinear func-
tion of x. To clarify terminology, the term "system" is used here
in the context of a dynamical system, rather than in the classical
sense of a collection of two or more equations. Consequently, a
single equation may also be considered a "system" [80].

One-dimensional (1D) dynamical systems, although seem-
ingly simple, exhibit behaviors that can be generalized to higher
dimensions, including two-dimensions and beyond. For instance,
the identification of fixed-points within a 1D system underscores
the significance of linearization and the classification of these
fixed-points [64]. When the function equals zero, we have:

ẋ = f(x∗) = 0,

indicating that the position x∗ defines a fixed-point of the flow.
At this point, the time rate of change of the variable is zero, sug-
gesting that the system cannot move away from this fixed-point
(Section 2.4). However, it is essential to assess the stability of
the fixed-point. To address this, the system is linearized around
the fixed-point using the expression:

f(x) = f(x∗) + (x− x∗)f
′
(x∗) + . . . ,
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where f(x∗) = 0. To the lowest order, this simplifies to:

f(x) ≈ (x− x∗)f
′
(x∗).

By introducing the change of variable η = x−x∗, the differential
equation becomes:

η̇ ≈ f
′
η,

which has the solution:

η(t) = η(0)eλt,

where:
λ = df(x)

dx

∣∣∣∣
x∗
,

is referred to as the Lyapunov exponent. This leads to a classi-
fication based on the value of λ:

λ < 0 Stable Node (Attractor)
λ > 0 Unstable Node (Repellor).

In the case of a stable node, small perturbations are contrasted
by a restoring force, similar to the behavior of a spring, whereas
for an unstable node, small perturbations are amplified, leading
to positive feedback.

Example Consider a mass m immersed in a vat of highly viscous fluid,
experiencing a damping force represented by cu̇. According
to Newton’s law, the governing equation for this system is
expressed as:

mü+ cu̇ = p(u).

In scenarios where the viscous damping is significantly
stronger than the inertial effect, (i.e., when cu̇ ≫ mü), the
system can be approximated by the equation:

cu̇ = p(u),

which can be rearranged to yield:

u̇ = p(u)
c

= f(u).

In this overdamped limit, the dynamics of the mechanical
system become clear. The mass tends to settle at a stable
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equilibrium point, characterized by the conditions f(u) = 0
and f

′(u) < 0. When the mass is slightly displaced from this
equilibrium position, it is gradually returned to equilibrium
by the restoring force, reflecting a slow response due to the
high damping. Notably, no overshoot occurs, as the extensive
damping prevents any oscillatory behavior. Consequently, un-
damped oscillations are not a viable possibility under these
conditions.

Subsection 4.2.2

Two-dimensional Flows

Two-dimensional (2D) dynamical systems present more interest-
ing and complex behaviors than those found in 1D systems. The
governing equations remain relatively simple, whereas the visual
representations facilitate a more comprehensive understanding
of the system’s dynamics. Moreover, 2D systems are particularly
important as they establish a clear contrast to the behaviors ex-
hibited by dynamical systems in three dimensions and higher.
This contrast not only deepens our understanding of dynamical
behavior but also serves as a foundational framework for the
exploration of more complex, higher-dimensional systems.

Consider a 2D dynamical system described by the following
equations: {

ẋ1 = f1 (x1, x2)
ẋ2 = f2 (x1, x2) .

Let us denote the fixed-point of this system as x∗ ≡ [a, b]T ,
where we have f1(a, b) = f2(a, b) = 0 (Section 2.4). To ana-
lyze the behavior of small disturbances from the fixed-point, we
define the perturbations as follows:

δx1 = x1 − a, δx2 = x2 − b.

Next, we examine the time derivative of δx1 to determine the
evolution of this disturbance in time:

˙δx1 = d

dt
(δx1) = ẋ1,

where a is treated as a constant. Substituting the expression for
δx1, we obtain:

˙δx1 = f1(a+ δx1, b+ δx2).
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By applying a Taylor series expansion around the fixed point,
we derive the following expression:

˙δx1 = f1(a, b) + ∂f1

∂x1

∣∣∣∣
x∗
δx1 + ∂f1

∂x2

∣∣∣∣
x∗
δx2 + . . .

Similarly, for δx2, we have:

˙δx2 = f2(a, b) + ∂f2

∂x1

∣∣∣∣
x∗
δx1 + ∂f2

∂x2

∣∣∣∣
x∗
δx2 + . . .

Consequently, the disturbances evolve according to the following
differential system:[ ˙δx1

˙δx2

]
=

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
x∗

[
δx1
δx2

]
+ . . .

In matrix form, this can be expressed as:

δ̇ = Jδ + . . . ,

where J is defined as the Jacobian matrix at the fixed-point
x∗. By neglecting higher-order terms, we arrive at the linearized
system:

δ̇ = Jδ. (4.2.2)

The dynamics of the system described by Eq. (4.2.2) can be
analyzed by seeking solutions of the form:

δ = eλtv.

Substituting this expression into Eq. (4.2.2) yields:

(J − λI) v = 0,

indicating that solutions exist if v is an eigenvector of J corre-
sponding to the eigenvalue λ. In general, the eigenvalues of the
matrix J are determined by the characteristic equation:

det (J − λI) = 0,

which simplifies to:

λ2 − tr(J)λ+ det(J) = 0.
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τ

∆

τ2 = 4∆

saddle points

unstable nodes

stable nodes

unstable spirals

stable spirals

centers

degenerates nodes

non-isolated
fixed point

stable

Figure 4.1. Equilibrium type as
a function of the trace (τ) and
determinant (∆) of the Jacobian
matrix evaluated near a fixed-
point.

4.2.2.1 Classification of fixed-points
We can show the type and stability of all the different fixed-
points on a single diagram (Fig. 4.1). To arrive at Fig. 4.1 we
need the following formulas:

λ1,2 = τ ±
√
τ2 − 4∆
2 ,

where τ = tr(J) and ∆ = det(J). In fact, we can observe that:

• ∆ < 0, the eigenvalues are real and have opposite signs
(λ2 < 0 < λ1); hence, the fixed-point is a saddle node.

• ∆ > 0, the eigenvalues are either real with the same sign
(node), or complex conjugate (spirals and centers). In par-
ticular, nodes satisfy τ2 > 4∆, and spirals satisfy τ2 < 4∆.

• ∆ = 0, at least one of the eigenvalues is zero. Then points
on the vertical line at the origin, in the (∆, τ) plane are
not isolated fixed-points.

• The points on the parabola τ2 − 4∆ = 0 are the border-
line between nodes and spirals; on this line we have the
degenerate nodes.

The stability of the nodes and spirals is determined by τ :

• τ < 0, both eigenvalues have negative real parts, so the
fixed-point is stable.
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Figure 4.2. Limit cycles: Stable
(a), unstable (b), and half-stable
(c) [80]. (a) (b) (c)

• τ > 0, the fixed-point is unstable.

• τ = 0, here the eigenvalue are purely imaginary, and we
have stable centers.

Centers, stars, degenerate nodes, and non-isolated fixed-
points are borderline cases that occur along the curves in the
(∆, τ)-plane. Of these borderline cases, centers are by far the
most important, since they occur very commonly in conserva-
tive mechanical systems. If Re (λ) ̸= 0 for both eigenvalues,
the fixed-point is often called hyperbolic. Hyperbolic fixed-points
are sturdy; their stability type is not affected by small nonlin-
ear terms. On the other hand, non-hyperbolic fixed-points have
brittle stability.

These ideas have also been generalized to higher-order sys-
tems.

Definition 5 A fixed-point of an nth order system is hyperbolic if all the
eigenvalues of the linearization lie off the imaginary axis, i.e.,
Re (λi) ̸= 0 for i = 1, . . . , n.

4.2.2.2 Limit Cycles
Fixed-points are not the only possible steady-state solutions in
a dynamical system. A 2D (or higher) system may also exhibit
repetitive oscillations or orbits, known as limit cycles.

Definition 6 A limit cycle is defined as an isolated closed trajectory, where
isolated means that nearby trajectories are not closed but
instead spiral either toward or away from the limit cycle.

In a 2D system, limit cycles can be classified into three
types, as illustrated in Fig. 4.2: stable, unstable, and saddle
limit cycles. A stable limit cycle attracts neighboring trajecto-
ries, while an unstable limit cycle repels them. The saddle limit
cycle4, which is relatively rare, attracts trajectories on one side4 In some cases they are also

called half-stable limit cycles
[80]
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and repels them on the other [64].
Stable limit cycles are of significant scientific importance,

particularly in modeling systems that exhibit self-sustained os-
cillations. In structural dynamics, for example, they are associ-
ated with potentially dangerous self-excited vibrations, such as
those occurring in bridges or airplane wings. In these scenar-
ios, the system tends to oscillate with a characteristic period,
waveform, and amplitude. Even when subjected to small per-
turbations, the system returns to its standard cycle, illustrating
the robustness of the stable limit cycle.

Remark Limit cycles are inherently nonlinear phenomena. They can’t
occur in linear systems. Of course, a linear system ẋ = Ax
can have closed orbits, but they won’t be isolated (Section
3.4.1). In fact, if x (t) is a periodic solution, then so is cx (t)
∀c ̸= 0. Hence, x (t) is surrounded by a one-parameter family
of closed orbits (see Fig. 3.5). Consequently, the amplitude
of a linear oscillation is set entirely by its initial conditions,
any slight disturbance to the amplitude will persist forever. In
contrast, limit cycle oscillations are determined by structure
of the system itself. Normally it’s difficult to tell whether a
given system has a limit cycle, or indeed any closed orbits,
from the governing equations alone.

Subsection 4.2.3

Three-dimensional Flows

The behavior of nonlinear dynamical systems changes dramati-
cally when going from 2D to 3D state-space. Dynamic systems
are subjected to non-crossing theorem, which states that no tra-
jectory can cross itself (in finite time). However, in a 3D state-
space there is plenty of "room" for trajectories to move above
and below and around other trajectories without intersecting.
Hence, the addition of a third dimension opens the possibility
for chaotic behaviors. Because the transition to chaos occurs in
the transition from 2D to 3D, the most “interesting” chaotic
systems tend to have low dimensionality of three or four dimen-
sions. These systems can totter on the edge of chaos, and are
tipped into or out of chaos depending on the parameters defining
the dynamics. In systems of high dimension, on the other hand,
chaos is more easily displayed, as for instance in the motions of
a gas molecule in a gas at thermodynamic equilibrium [64].
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Flow in 3D take the form:
ẋ1 = f1 (x1, x2, x3)
ẋ2 = f2 (x1, x2, x3)
ẋ3 = f3 (x1, x2, x3) .

The Jacobian matrix is:

J =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

 ,
with characteristic values given by:

det (J − λI) = 0,

which yields a cubic equation:

λ3 + pλ2 + qλ+ r = 0,

which is solved for three eigenvalues and eigenvectors.

3D Fixed-Points Classification Fixed-points in 3D systems
are classified according to the signs of the real and imaginary
parts of the characteristic values of the Jacobian matrix. Table
4.2 shows the possible combinations of the characteristic values
and the associated fixed-point classification [64].

Table 4.2. 3D fixed-point clas-
sification.

Characteristic
values

Fixed-point

(−, −, −) Attracting node
(−, −r + ia, −r −
ia)

Stable spiral

(+, +, +) Repellor
(+, +r + ia, +r −
ia)

Unstable spiral

(−, −, +) Saddle point in-
dex 1

(−, +, +) Saddle point in-
dex 2

(−r + ia, −r −
ia, +)

Spiral saddle in-
dex 1

(−, +r + ia, +r −
ia)

Spiral saddle in-
dex 2

Subsection 4.2.4

Periodic Solutions and Poincaré Maps

4.2.4.1 Periodic Solutions

Definition 7 A solution of a continuous-time system is periodic with least
period T if:

x(t+ T ) = x(t) and x(t+ τ) ̸= x(t) for 0 < τ < T.

Unlike equilibrium solutions, periodic solutions are charac-
terized by time-varying states. A periodic solution is a dynamic
solution that is characterized by one basic frequency. The spec-
trum of a periodic signal consists of a spike at zero frequency55 If the signal has a non-zero

mean. and spikes at integer multiples of the basic frequency. The am-
plitudes of some of the frequency components may be zero.
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ΣΣ

η

(a) (b)

Figure 4.4. Poincaré section of
periodic orbits: (a) one intersec-
tion with Σ and (b) two inter-
sections with Σ.

Remark A periodic solution is called a limit cycle if there are no other
periodic solutions sufficiently close to it. In other words, a
limit cycle is an isolated periodic solution and corresponds to
an isolated closed orbit in the state-space.

4.2.4.2 Poincaré Map

x1

x2

t

ΣΣΣ

t0 t0 + T t0 + 2T

Figure 4.3. Poincaré section
Σ of a 2D system with time-
periodic terms.

Poincaré maps are useful for studying the flow near a periodic
orbit, or the flow in some chaotic systems [80]. Consider a generic
n-dimensional system described by Eq. (4.2.1), and let Σ be a
(n − 1) dimensional Poincaré Section (Fig. 4.3). The surface
of section Σ is required to be transverse to the flow, i.e., all
trajectories starting on Σ flow through it, and not parallel to it.

Definition 8 The Poincaré map P is a mapping from Σ to itself, obtained
by following trajectories from one intersection with Σ to the
next one. If xk ∈ Σ denotes the k-th intersection, then the
Poincaré map is defined by:

xk+1 = P (xk) .

If η is a fixed-point of P (i.e., P (η) = η), a trajectory
starting at η returns to η after some time T , and is therefore a
closed orbit for the original system.

Moreover, by looking at the behavior of P near this fixed-
point, we can determine the stability of the closed orbit. Thus,
the Poincaré map converts problems about closed orbits (which
are difficult) into problems about fixed-points of a mapping
(which are easier in principle, though not always in practice).
The snag is that it’s typically very difficult to find an exact
closed-form for P in nonlinear systems.

Since xk+1 uniquely specifics xk and vice versa, a Poincaré



Smooth Nonlinear Systems Periodic Solutions 60

map is an invertible map. Hence, we have:

xk = P−1(xk+1).

In Fig. 4.4 two periodic orbits of an autonomous system are
shown in the corresponding state-space. The periodic orbit in
Fig. 4.4a intersects the hypersurface Σ transversely once at the
point η, so it is a fixed-point of the associated Poincaré map P;
that is:

η = P(η).

In the case shown in Fig. 4.4b, each point on the section Σ
is a period-two point of the associated Poincaré map P and a
fixed-point of the map P2. In a general setting, a periodic orbit
of a continuous-time system may intersect a Poincaré section k
times before closing on itself. Let one of these k-intersections be
η. Then, the corresponding Poincaré map P is such that:

η = Pk(η),

implying that η is a period-k point of P or a fixed-point of
Pk. Hence, the stability of a periodic orbit of a continuous-time
system may be determined by examining the stability of a fixed-
point of an associated map.

4.2.4.3 Linear Stability of Periodic Solutions
In order to understand how a Poincaré map can be used to
determine the stability of a closed orbit, let us consider a system
as the one in Eq. (4.2.1) with a closed orbit. Equivalently, we
want to determine if the correspondending fixed-point η of the
Poincaré map is stable or unstable.

Let δη0 be an infinitesimal perturbation such that η + δη0
is in Σ. Then, after the first return to Σ:

η + δη1 = P (η + δη0) = P (η) + ∂P (η)
∂x

∣∣∣∣
η

δη0 + . . . ,

where ∂P(η)
∂x is a (n− 1) × (n− 1) matrix called the monodromy

matrix Φ (Jacobian of the Poincaré map) at η.
Being η = P (η) and assuming that we can neglect the high

order terms, we get:

δη1 = ∂P (η)
∂x δη0 = Φ(η) δη0.
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The stability criterion is expressed in terms of the eigenvalues
λj of the monodromy matrix.

Definition 9 The closed orbit is linearly stable if and only if |λj | < 1 for
all j = 1, . . . , n − 1. The λj are called the characteristic or
Floquet multipliers of the periodic orbit.

Remark These are the nontrivial multipliers since there is always an
additional trivial multiplier λ = 1 corresponding to perturba-
tions along the periodic orbit. In general, the Floquet multi-
pliers can only be found by numerical integration.

To understand this criterion, let us consider the generic case
where there are no repeated eigenvalues. Then, there is a basis
of eigenvectors vj of Φ and we can write:

δη0 =
n−1∑
j=1

ηjvj .

As a result,

δη1 = ∂P (η)
∂x

n−1∑
j=1

ηjvj =
n−1∑
j=1

ηjλjvj .

Iterating the linearized map k-times gives:

δηk =
n−1∑
j=1

ηj (λj)k vj .

Hence, if all |λj | < 1, then |δηk| → 0 geometrically fast. This
proves that η is linearly stable. Conversely, if |λj | > 1 for some j,
then perturbations along vj grow, so η is unstable. A borderline
case occurs when the largest eigenvalue has magnitude |λm| =
1; this occurs at bifurcations of periodic solutions, and then a
nonlinear stability analysis is required.

Example As an example, we consider the construction of a Poincaré
section and of a Poincaré map, reported in [62], for a generic
3D flow: ẋ1

ẋ2
ẋ3

 =

f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

 . (4.2.3)
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Figure 4.5. Poincaré section of a
three-dimensional flow: (a) two-
sided section Σ and (b) one-
sided section Σ+.

x1x1

x2x2

x3x3 Σ Σ+

p(1)

p(2)

(a) (b)

A Poincaré section is defined as a hypersurface in the state-
space that is transverse to the flow of a given system of equa-
tions. If the trajectory evolves in an n-dimensional space, it
follows that the Poincaré section is a (n− 1)-dimensional sur-
face and hence each point on this section is specified by (n−1)
coordinates.
By letting n(x) denote a unit vector normal to the Poincaré
section located at x, and f(x) the vector field describing the
flow, the transversality condition is enforced by:

n(x) · f(x) ̸= 0.

A trajectory of the system in Eq. (4.2.3) in the (x1, x2, x3)-
space and a two-dimensional section Σ transverse to it are
shown in Fig. 4.5. The section Σ is defined as:

Σ = {(x1, x2, x3) ∈ R × R × R : x2 = c} .

The vector normal to Σ is given by:

n =

0
1
0

 .
The section Σ is transverse to the trajectories of the 3D au-
tonomous system whenever:

n · f =

0
1
0

 ·

f1(x1, c, x3)
f2(x1, c, x3)
f3(x1, c, x3)

 = f2(x1, c, x3) ̸= 0.

On the other hand, the section Σ+ is defined similarly to the
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section Σ as:

Σ+ = {(x1, x2, x3) ∈ R × R × R : x2 = c, f2 > 0} .

Poincaré sections, such as Σ, where n·f does not have the same
sign for all intersections, are called two-sided sections (Fig.
4.5a). Whereas Poincaré sections, such as Σ+, where n · f has
the same sign for all intersections, are called one-sided sections
(Fig. 4.5b). In Fig. 4.5a, there are three intersections, two of
them correspond to a positive value of f2, and one of them
corresponds to a negative value of f2. On the other hand, in
Fig. 4.5b the first and second intersection of the trajectory
with Σ+ have been marked as p(1) and p(2). It is important
to note that the time interval between two successive inter-
sections of a trajectory with a chosen Poincaré section is not
a constant in all situations.
In a general setting, let the successive intersections of a tra-
jectory of an autonomous system with a one-sided Poincaré
section be p(1), p(2), p(3), and so on. The transformation or
map that maps the current intersection to the subsequent in-
tersection on a Poincaré section is called a Poincaré map. This
map, which is (n− 1)-dimensional, is described by:

p(i+1) = P(p(i)).

Finally, it is important to specify that one can construct
Poincaré sections at different locations on the periodic orbit.
Consequently, one can obtain different Poincaré maps for the
considered orbit. However, in most cases there exists a dif-
ferentiable coordinate transformation from one Poincaré map
to another, and the maps on the different sections exhibit
the same qualitative dynamics; that is, the same number of
fixed-points, similar stability properties of fixed-points, and
so forth.

4.2.4.4 Nonautonomous Systems
In nonautonomous systems, the period associated with a pe-
riodic orbit is usually explicitly known. If the vector field f is
periodic in time with period T , then a periodic solution of the
dynamic system has a period that is either an integer multiple
or integer submultiple of the period T . This period can be used
to construct a Poincaré section. For an n-dimensional nonau-
tonomous system, the Poincaré section is an n-dimensional sur-
face and the associated map P is n-dimensional (Fig. 4.6).
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Figure 4.6. Poincaré section Σ
of an orbit of a two-dimensional
nonautonomous system with
time-periodic terms.

ẋ

x

t

ΣΣΣ

t0 t0 +
2π
ω

t0 + 2 2π
ω

x0

ẋ0

The Poincaré map is also called the first-return map, be-
cause if a trajectory starts at a certain value on the line θ = 0
(mod 2π), then the Poincaré map is the value when it returns
to that line for the first time.

Example Consider the case of a periodically forced linear oscillator as
the one in Eq. (2.3.4). Our goal is to study the nature of the
solutions in the context of the Poincaré maps, as reported in
[94]. This will enable us to obtain a new point of view on
something relatively familiar and to see the value of this new
point of view.
Rewriting Eq. (2.3.4) as a system of first-order ODEs, we
obtain:

ẋ = F(x, t, ω) →

{
ẋ1 = x2

ẋ2 = −ω2
0x1 − 2ζx2 + F cos (ωt) .

(4.2.4)
By rewriting Eq. (4.2.4) as an autonomous system, we get:

f(x, ω) =


x2

−ω2
0x1 − 2ζx2 + F cos (x3)

ω.

(4.2.5)

The flow generated by Eq. (4.2.5) in the space (x1, x2, x3) ∈
R×R×S is given by (x1(t), x2(t), ωt+x3(t = 0)). In particular,
to compute the solution of the system using Eq. (3.1.2) which
gives:

x1(t) = e−ζt [C1 cos (ω̄t) + C2 sin (ω̄t)]+A cos (ωt)+B sin (ωt) ,
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and:

x2(t) = e−ζt {[−ζC1 + ω̄C2] cos (ω̄t) − [ζC2 + ω̄C1] sin (ω̄t)} =
= −Aω cos (ωt) +Bω sin (ωt) ,

where ω̄ =
√
ω2

0 − ζ2, and:

A =
(
ω2

0 − ω2)
F

(ω2
0 − ω2)2 + (2ζω)2 , B = 2ζωF

(ω2
0 − ω2)2 + (2ζω)2 .

The constants C1 and C2 are obtained by requiring:{
x1(0) = x1(t = 0)
x2(0) = x2(t = 0),

which yields,{
C1 = x1(0) −A

C2 = 1
ω̄ [ζ (x1(0) −A) + x2(0) − ωB] .

Next we turn to the construction of the Poincaré map. For
this we will consider only the case where ζ < 1 since the
other cases are similar.
As a first step, we construct a Poincaré section at x3 = 0,
i.e., this is why we specified the initial conditions at t = 0, as
follows:

Σ = {(x1, x2, x3) ∈ R × R × S : x3 = 0 ∈ [0, 2π)} .

The Poincaré map is given by P : Σ → Σ, so we have to
evaluate x1

( 2π
ω

)
and x2

( 2π
ω

)
:[

x1
x2

]
→ e−ζ 2π

ω

[
C + ζ

ω̄ S 1
ω̄ S

− ω2
0

ω̄ S C − ζ
ω̄ S

] [
x1
x2

]
+

+ e−ζ 2π
ω

 −AC −
(

ζ
ω̄A+ ω

ω̄B
)

S

−ωBC +
(

ω2
0

ω̄ A+ ζω
ω̄ B

)
S

 +
[
A
ωB

]
,

(4.2.6)

where
C = cos

(
2π ω̄
ω

)
, S = sin

(
2π ω̄
ω

)
.

This is an example of an affine map, i.e., it is a linear map
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plus a translation. The Poincaré map has a single fixed-point
given by η ≡ [A,ωB]T .
A simple calculation shows that the eigenvalues of the deriva-
tive of the Poincaré map (the monodromy matrix) evaluated
at the fixed-point η are given by:

∂P
∂x

∣∣∣∣
η

= e−ζ 2π
ω

[
C + ζ

ω̄ S 1
ω̄ S

− ω2
0

ω̄ S C − ζ
ω̄ S

]
→ λ1,2 = e−ζ 2π

ω ±i 2πω̄
ω ,

(4.2.7)
thus, the fixed-point is asymptotically stable with nearby or-
bits.
In the case of resonance (ω̄ = ω) we have that:

C = cos
(

2πω
ω

)
= 1, S = sin

(
2πω
ω

)
= 0.

The Poincaré map becomes:[
x
ẋ

]
→ e−ζ 2π

ω

[
1 0
0 1

] [
x
ẋ

]
+

(
1 − e−ζ 2π

ω

) [
A
ωB

]
, (4.2.8)

in this case the eigenvalues of ∂P
∂x

∣∣
η

are:

λ = e−ζ 2π
ω ,

thus, the fixed-point η is asymptotically stable with nearby
orbits appearing (Fig. 4.7). In this case orbits do not spiral
near the fixed-point since the eigenvalues are purely real.

Figure 4.7. Asymptotically sta-
ble fixed-point.

In the previous example, we note that for ζ > 0 in all cases
the free oscillation dies out, and we are left with the forced
oscillation of frequency ω which is represented as an attracting
fixed-point of the Poincaré map (Fig. 4.7). On the other hand,
in the case ζ = 0, we see that this does not happen. In general,
for ζ = 0, it should be clear that the solution is a superposition
of solutions of frequencies ω and ω0.

Example Another example is provided by the autonomous system in
Eq. (4.2.5), with ζ = 0:

f(x, ω) =


x2

−ω2
0x1 + F cos(x3)

ω.

(4.2.9)
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For this system we will first write down the Poincaré map and
then consider each case individually. The solutions in terms
of displacement and velocity for Eq. (4.2.9) are given by:

x1(t) = C1 cos(ω0t) + C2 sin(ω0t) + Ā cos(ωt),
x2(t) = −ω0C1 sin(ω0t) + ω0C2 cos(ω0t) + Āω sin(ωt),

where:

Ā = F

ω2
0 − ω2 , C1 = x1(0) + Ā, C2 = x2(0)

ω0
,

from the existence condition for Ā, it follows that ω ̸= ω0.
Examining the solution x1(t), it is evident that it represents
a superposition of solutions with frequencies ω and ω0. The
behavior of the system can be analyzed by considering various
cases depending on the relationship between ω and ω0.
The Poincaré map, denoted by P : Σ → Σ, can be derived by
evaluating x1

( 2π
ω

)
and x2

( 2π
ω

)
as follows:[

x1
x2

]
→

[
cos

(
2π ω0

ω

) 1
ω0

sin
(
2π ω0

ω

)
−ω0 sin

(
2π ω0

ω

)
cos

(
2π ω0

ω

) ] [
x1
x2

]
+

+
[
Ā

[
1 − cos

(
2π ω0

ω

)]
ω0Ā sin

(
2π ω0

ω

) ]
.

The fixed-points of the map are determined by solving:[
1 − cos

(
2π ω0

ω

)
− 1

ω0
sin

(
2π ω0

ω

)
ω0 sin

(
2π ω0

ω

)
1 − cos

(
2π ω0

ω

] ] [
x1
x2

]
=

=
[
Ā

[
1 − cos

(
2π ω0

ω

)]
ω0Ā sin

(
2π ω0

ω

) ]
,

whose unique solution is the point
[
Ā, 0

]T , which is a fixed-
point, as starting from this point, the system returns to the
same solution after a period of T = 2π

ω . In the other cases, as
reported in [94], we have:

• Subharmonic Response: ω
ω0

= m with m > 1;

• Ultraharmonic Response: ω
ω0

= 1
n with n > 1;

• Ultrasubharmonic Response: ω
ω0

= m
n with m, n > 1;

• Quasiperiodc Response: ω
ω0

= irrational number.
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Subsection 4.2.5

Bifurcation Theory

Bifurcation, a term derived from French and introduced into
nonlinear dynamics by Henri Poincaré, denotes a qualitative
change in the characteristics of a system, such as the number
and type of solutions, as one or more parameters that influence
the system are varied.

Definition 10 A local bifurcation refers to a qualitative change that occurs
in the vicinity of a fixed-point or a periodic solution of a dy-
namical system.

Definition 11 Any qualitative change that occurs outside the neighborhood
of a fixed-point or periodic solution is classified as a global
bifurcation.

Definition 12 The state-control space is defined as the space formed by the
state variables and control parameters of the system, which is
instrumental in analyzing bifurcation problems.

Many authors classify bifurcations as continuous or discon-
tinuous6, based on whether the states of the system change con-6 Also referred to as catas-

trophic bifurcations. tinuously or discontinuously as the control parameter is varied
gradually through its critical value [46, 62]. Discontinuous bi-
furcations can be further classified into dangerous and explosive
bifurcations, depending on whether the system response tran-
sitions suddenly to a disconnected attractor or expands into a
larger attractor, with the new attractor including the previous
one as a proper subset [62].

In the case of a dangerous bifurcation, the current attrac-
tor suddenly vanishes from the state-space of the system. The
post-bifurcation response shifts to a remote attractor, which
may be either bounded or unbounded. Bounded responses can
manifest as point, periodic, quasiperiodic, or chaotic attractors.
Conversely, unbounded responses can result in catastrophic out-
comes, such as the capsizing of ships or voltage collapses in
power systems. The outcome of a dangerous bifurcation may be
deterministic or indeterminate, depending on whether a single
attractor exists beyond the critical control value. When multi-
ple attractors are present, the post-bifurcation response is in-
fluenced by the rate of control sweep and the presence of noise
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[62].
In an explosive bifurcation, the system response does not

transition to a remote attractor. The outcome of this bifurca-
tion is deterministic, unaffected by the rate of control parameter
adjustment, and insensitive to noise. Consequently, if the control
sweep is reversed in a quasi-stationary manner, the new larger
attractor collapses back to the original smaller attractor at the
same critical bifurcation value. Explosive bifurcations can lead
to intermittent transitions to chaos [62].

4.2.5.1 Local Bifurcations of Fixed-Points
Let us suppose that as one or more control parameters are var-
ied, a fixed-point becomes nonhyperbolic at a certain location in
the state-control space. Then, if the state-space portraits before
and after this location are qualitatively different, this location
is called a bifurcation point and the accompanying qualitative
change is called a bifurcation. Furthermore, a bifurcation that
requires at least m independent control parameters to occur is
called a codimension-m bifurcation.

If we start with control parameters corresponding to a stable
fixed-point of a continuous-time system, and then slowly vary
one of the control parameters, this fixed-point can lose stability
through one of the following bifurcations [3]:

• saddle-node bifurcation;

• pitchfork or symmetry-breaking bifurcation;

• transcritical bifurcation;

• Hopf bifurcation.

Remark In alignment with the classifications established by various
authors [57, 58, 62], bifurcations can be further categorized
as static or dynamic. Specifically, at bifurcation points asso-
ciated with saddle-node, pitchfork, and transcritical bifurca-
tions, since only branches of fixed-points or static solutions
converge these three types of bifurcations are designated as
static bifurcations. In contrast, at a Hopf bifurcation point,
the intersection occurs between branches of fixed-points and
periodic solutions. Thus, Hopf bifurcations are classified as
dynamic bifurcations.

4.2.5.2 Bifurcation of Periodic Solutions
In Section 4.2.4, we analyzed the stability of periodic solutions.
It was established that, in a general setting, the monodromy
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Figure 4.8. Scenarios depicting
how the Floquet multipliers
leave the unit circle for different
local bifurcations: (a) transcrit-
ical, symmetry-breaking, and
fold bifurcation; (b) period-
doubling bifurcation; and (c)
Neimark-Sacker bifurcation. (a) (b) (c)

matrix and the corresponding Floquet multipliers are depen-
dent on the control parameters. Specifically, by considering a
situation in which one or more control parameters are varied,
leading to a periodic solution becoming nonhyperbolic at a spe-
cific point within the state-control space, if the qualitative char-
acteristics of the state-space portraits prior to and following this
point differ, this point is referred to as a bifurcation point. The
associated qualitative change is a bifurcation. Furthermore, a bi-
furcation that requires the variation of at least m independent
control parameters is classified as a codimension-m bifurcation.
This systematic classification enhances our understanding of the
dynamics within nonlinear systems.

Specifically, if we start with control parameters correspond-
ing to a stable periodic solution of a continuous-time nonlinear
system as:

ẋ = f (x, α) , x ∈ Rn, α ∈ R, (4.2.10)

and then vary one of the control parameters until this periodic
solution loses stability, the resulting solution depends on the
manner in which the Floquet multipliers leave the unit circle.
There are three possible scenarios, as depicted in Fig. 4.8:

1. A Floquet multiplier leaves the unit circle through +1
(Fig. 4.8a), resulting in one of the following three bifur-
cations:

• Transcritical bifurcations.
• Symmetry-breaking bifurcations.
• Cyclic-fold bifurcations.

2. A Floquet multiplier leaves the unit circle through −1
(Fig. 4.8b), resulting in a period-doubling bifurcation.
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3. Two complex conjugate Floquet multipliers leave the unit
circle away from the real axis (Fig. 4.8c), resulting in a
secondary Hopf or Neimark-Sacker bifurcation.

Since the Floquet multipliers correspond to the eigenvalues of
the monodromy matrix, which is derived by solving a linearized
system of equations around the periodic solution under investi-
gation (Section 4.2.4), it follows that the bifurcations associated
with this periodic solution are classified as local bifurcations.
This classification emphasizes the inherent connection between
the stability analysis of the periodic solution and the local be-
havior of the system in its vicinity.

We also note that the three scenarios in Fig. 4.8 are similar
to those encountered in the context of local bifurcations of fixed-
points. Specifically, if a Poincaré map:

P (η, α) : Σ → Σ,

associated with a periodic solution, where Σ is a local Poincaré
section, can be constructed. The local bifurcation of the con-
sidered periodic solution can be studied by examining the local
bifurcation of the fixed-point of the map.

As in the case of bifurcations of fixed-points, bifurcations
of limit cycles can be classified into continuous and discon-
tinuous (or catastrophic) bifurcations. In the case of continu-
ous bifurcations, the motion of the system evolves continuously
onto another motion as a control parameter is varied in a quasi-
stationary manner [62]. As in the case of fixed-points, discontin-
uous (or catastrophic) bifurcations may be:

• Dangerous bifurcation: In a dangerous bifurcation, the sys-
tem response jumps to a remote attractor which may be in-
finity, as a control parameter is varied in a quasi-stationary
manner. The outcome of these bifurcations may be deter-
minate or indeterminate, depending on whether the sys-
tem has a single attractor past the bifurcation value or not
[62].

• Explosive bifurcation: In an explosive bifurcation, the old
attractor explodes into a larger attractor, with the old at-
tractor being a proper subset of the new attractor. Again,
the new attractor may or may not be chaotic [62].

4.2.5.3 Symmetry-Breaking Bifurcation
When a Floquet multiplier leaves the unit circle through +1, as
shown in Fig. 4.8a, the associated bifurcation depends on the
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Figure 4.9. Local scenarios:
(a) supercritical symmetry-
breaking bifurcation and (b)
subcritical symmetry-breaking
bifurcation (continuous line:
stable behavior; dashed line:
unstable behavior). (a) (b)

nature of the periodic solution prior to the bifurcation. Let us
suppose that the periodic solution prior to the bifurcation is a
symmetric solution; that is, it possesses a symmetry property.
Then, if the bifurcation breaks the symmetry of the periodic
solution, it is called a symmetry-breaking bifurcation [62].

In some continuous-time systems with odd nonlinearities7 a7 Odd function: It is a func-
tion for which f(−x) = −f(x)
and therefore which is sym-
metrical with respect to the
origin. Even function: It is a
function for which f(−x) =
f(x) and therefore which is
symmetrical with respect to
the y-axis.

solution possesses the symmetry:

x(t) = −x
(
t+ T

2

)
,

where T is the period of the solution. This symmetry property is
called inversion symmetry. The spectra of the scalar components
of x contain only odd harmonics of the frequency 2π

T . However,
this symmetry is broken when a bifurcation introduces a zero
frequency component and/or an even harmonic of the frequency
2π
T . Both the phase portrait and power spectrum8 are indicative8 A power spectrum provides

a measure of the energy of a
system at different frequencies

of the inversion symmetry of the periodic solution.
The behavior near supercritical and subcritical symmetry-

breaking bifurcation points is illustrated in Figs. 4.9a and 4.9b,
respectively. In these diagrams, the amplitude A of the periodic
solution is plotted against the scalar control parameter α. Solid
lines represent branches of stable periodic solutions, whereas
dashed lines indicate unstable ones.

At the bifurcation points, the branches corresponding to
symmetric and asymmetric periodic solutions intersect. In both
Figs. 4.9a and 4.9b, the stable branch of symmetric periodic
solutions, which exists before the bifurcation, transitions into
an unstable branch of symmetric periodic solutions beyond the
bifurcation point. Further, in the case of:
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• Supercritical bifurcation, locally stable asymmetric peri-
odic solutions coexist with unstable symmetric periodic
solutions on one side of the bifurcation point (Fig. 4.9a).

• Subcritical bifurcation, locally unstable asymmetric peri-
odic solutions coexist with stable symmetric periodic so-
lutions on one side of the bifurcation point (Fig. 4.9b).

We note that supercritical and subcritical symmetry-breaking
bifurcations are examples of continuous and discontinuous bi-
furcations, respectively [62].

4.2.5.4 Cyclic-Fold Bifurcation

Figure 4.10. Scenario near to a
cyclic-fold bifurcation (continu-
ous line: stable behavior; dashed
line: unstable behavior).

The scenario near a cyclic-fold bifurcation point is as follow, a
branch of stable periodic solutions and a branch of unstable pe-
riodic solutions, which exist for α < αc, coalesce and obliterate
each other at the bifurcation point αc. Typically, the unstable
periodic solutions are of the saddle type (Fig. 4.10).

Remark Note that locally there are no other solutions in the vicinity
of the bifurcation point on one side (i.e., α > αc). There-
fore, cyclic-fold bifurcations are discontinuous or catastrophic
bifurcations.

When a dynamical system undergoes a cyclic-fold bifurca-
tion, the system will be in a state corresponding to an attracting
limit cycle for α < αc. On the other hand, for α > αc, the system
behavior cannot be determined from local considerations alone
and global considerations are necessary. The post-bifurcation
state is usually determined through numerical simulations and
there are two possibilities:

1. The system evolution may be attracted to a distant solu-
tion, which is either bounded or unbounded. The bounded
solution may be a point attractor, or a periodic attractor,
or an aperiodic attractor. The bifurcation is dangerous and
its outcome may be determinate or indeterminate.

2. The old attractor may explode into a new larger attractor
with the old attractor being a proper subset of the new
attractor. Such a bifurcation is an example of an explo-
sive bifurcation. An orbit on this attractor spends long
stretches of time near the destroyed limit cycle (ghost or
phantom limit cycle), with interruptions in the form of
excursions or outbreaks away from the ghost limit cycle.
When the attractor is chaotic or strange, the stretches of
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Figure 4.11. Two examples of lo-
cal scenarios for a transcritical
bifurcation (continuous line: sta-
ble behavior; dashed line: unsta-
ble behavior). (a) (b)

time spent near the ghost limit cycle are called laminar
phases, and the excursions away from the ghost limit cy-
cle are called turbulent or chaotic bursts.

Remark Note that a cyclic-fold bifurcation of a periodic solution of
a dynamical system may lead to a chaotic solution of the
considered dynamical system [62].

4.2.5.5 Transcritical Bifurcation
A transcritical bifurcation of a periodic solution may occur when
a Floquet multiplier leaves the unit circle through +1, as shown
in Fig. 4.8a. The branches of stable and unstable periodic solu-
tions that exist before the transcritical bifurcation continue as
branches of unstable and stable periodic solutions, respectively,
after the bifurcation. Hence, a transcritical bifurcation leads to
an exchange of stability (Fig. 4.11).

4.2.5.6 Period-Doubling Bifurcation
When a Floquet multiplier crosses the unit circle through −1
(Fig. 4.8b), a period-doubling bifurcation occurs. The branch of
stable periodic solutions that exists prior to the bifurcation (i.e.,
for α < αc) becomes an unstable branch of periodic solutions at
the bifurcation point α = αc. If the bifurcation is supercritical,
a stable branch of period-doubled solutions emerges, whereas
in the case of a subcritical bifurcation, the unstable branch of
period-doubled solutions is annihilated (Fig. 4.12). In the power
spectrum of a period-doubled solution, a peak at T

2 appears, in-
dicating that the fundamental frequency of the system is halved
relative to the excitation frequency.
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(a) (b)

Figure 4.12. Periodic orbit (a)
before and (b) after period-
doubling bifurcation.

Remark Period-doubling bifurcations can occur successively as a single
control parameter is varied, leading to an infinite sequence of
such bifurcations, which ultimately results in a chaotic solu-
tion [62].

4.2.5.7 Secondary Hopf or Neimark-Sacker Bifurca-
tion

A Hopf bifurcation of a fixed-point of a continuous-time system
leads to a periodic solution of this system. So, essentially, a Hopf
bifurcation introduces a new frequency (possibly incommensu-
rate) with the first one in the bifurcating solution. Similarly, a
Hopf bifurcation of a periodic solution9 occurs when two com- 9 Called a secondary Hopf or

Neimark-Sacker bifurcationplex conjugate eigenvalues exit the unit circle away from the
real axis, as shown in Fig. 4.8c. The bifurcating solution may be
periodic or two-period quasiperiodic, depending on the relation-
ship between the newly introduced frequency and the frequency
of the periodic solution that exists prior to the bifurcation.

Similar to subcritical and supercritical Hopf bifurcations of
fixed-points, there are subcritical and supercritical Neimark-
Sacker bifurcations of periodic solutions. In both bifurcations,
the branch of stable periodic solutions that exists prior to the
Neimark-Sacker bifurcation continues as a branch of unsta-
ble periodic solutions after the bifurcation. A branch of stable
quasiperiodic solutions is created if the bifurcation is supercrit-
ical. This bifurcation is an example of a continuous bifurcation.
On the other hand, a branch of unstable quasiperiodic solutions
is destroyed if the bifurcation is subcritical [62].

Subsection 4.2.6

Nonlinear Resonance and Frequency Response
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Nonlinear resonance occurs when the oscillations of a nonlinear
system are amplified due to a correspondence between the fre-
quency of an external forcing and a natural frequency of the sys-
tem. Unlike linear resonance, where the behavior is predictable,
nonlinear resonance can lead to complex and unpredictable out-
comes. This phenomenon is particularly intriguing in the context
of chaos theory and the stability of dynamical systems.

Henri Poincaré, one of the founders of chaos theory, signifi-
cantly contributed to the understanding of resonance in nonlin-
ear systems. Poincaré maps associated with second-order ODEs
in resonance can demonstrate that the qualitative structure of
solutions may change significantly due to nonlinearity.

Nonlinear resonance plays a fundamental role in various
scientific and engineering fields, with relevant applications in
acoustics, structural engineering, and biology.

• In acoustics, nonlinear resonance is crucial for understand-
ing the generation of higher harmonics during the prop-
agation of sound waves. This phenomenon is particularly
important in ultrasound applications, where the distortion
of ultrasonic waves can enhance the quality of diagnostic
images. This improvement is attributed to the ability of
harmonic waves to provide superior details compared to
traditional linear sound waves.

• In structural engineering, nonlinear resonance is carefully
considered in the design of buildings and infrastructures.
It is essential to anticipate the emergence of nonlinear vi-
brations that could cause structural damage. To mitigate
such effects, vibration control techniques are implemented,
such as damping devices or seismic isolators, which reduce
the risk of critical resonance.

• In biology, nonlinear resonance is observed in various com-
plex systems, influencing processes such as the synchro-
nization of neural activities and the dynamics of cellular
populations. Such synchronization processes are vital for
the proper functioning of biological networks, such as the
central nervous system.

In recent years, nonlinear resonance has been the subject of
intensive studies, with new applications particularly in the fields
of imaging and materials analysis.
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(a) (b)

Figure 4.13. Nonlinear res-
onance hysteresis: Arrows
indicate the direction of pro-
gression along the resonance
curve when the excitation
frequency undergoes gradual
variation.

4.2.6.1 Duffing Model
A linear oscillator always responds at the driving frequency, once
transients are damped out. The oscillator response grows very
large when the driving frequency approaches the natural fre-
quency of the oscillator10 [37]. In contrast, if a small nonlinearity 10 This is the resonance.
is present, periodic solutions still occur and resonant instabili-
ties are now possible for rational frequency ratios between the
driving frequency and the natural oscillator response11. 11 This phenomenon plays a

key role in the route to chaos
for Hamiltonian systems.

One of the most extensively studied models in the field of
nonlinear dynamics is the Duffing oscillator [61]. This system
is characterized as a nonlinear SDoF oscillator, which may also
include a small linear damping component, that is subjected to
an external periodic force. The equation of motion governing
this system is expressed as follows:

ü+ 2ζu̇+ u+ εu3 = f cos (ωt) , (4.2.11)

where f and ω are considered to be parameters, fixed at any
given time, but variable in order to study the oscillator’s re-
sponse to this time-dependent driving force.

The introduction of the nonlinear term introduces at least
three distinct physical effects associated with its presence:

• When the driving frequency is progressively decreased
from above the resonance frequency, the system’s ampli-
tude exhibits a sudden transition to a higher value at
a specific frequency threshold (Fig. 4.13a). In contrast,
when the driving frequency is gradually increased from a
lower frequency range, the amplitude remains stable un-
til it reaches a significantly higher frequency threshold, at
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which point it experiences an abrupt decrease (Fig. 4.13b).
This directional dependence, whereby the oscillator retains
a form of "memory" about whether the driving frequency
ω is being adjusted upwards or downwards, is known as
hysteresis within the framework of nonlinear dynamics. In
the subsequent section, we will formally define hysteresis
as it pertains specifically to mechanical systems.

• Under specific conditions, subharmonic frequencies (such
as ω

n , where n represents an integer) can be generated. The
existence of subharmonics indicates that the system can
exhibit a significant response even when driven at n times
the natural resonant frequency. However, stable solutions
will only arise for particular driving amplitudes.

• A nonlinear system can function as a mixer. When ex-
cited by two distinct frequencies, the output of the system
generates oscillations at both the sum and the difference of
the original exciting frequencies. While there are numerous
practical applications for this effect, it is particularly note-
worthy that most radio receivers utilize nonlinear mixer
devices within their circuitry. For the purposes of this dis-
cussion, we will acknowledge this effect without delving
into further details.

4.2.6.2 Introduction to the Analysis of Nonlinear Os-
cillator Dynamics

In this section, we investigate the behavior of a nonlinear os-
cillator modeled by the Duffing equation, given by Eq. (4.2.11)
where ε represents the nonlinearity, ζ indicates damping, f is the
amplitude of the driving force, and ω is the driving frequency.
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Figure 4.14. Duffing oscillator
with ε = 0.1, ζ = 0.05, and f =
1 when ω = 1.

We begin by selecting specific parameters: ε = 1
10 , f = 1,

and ζ = 0.05. The oscillator is driven precisely at its resonant
frequency of the linear part, ω = 1. The phase plane plot (u, u̇)
of the solution, obtained through numerical integration, is pre-
sented in Fig. 4.14.

In the absence of the nonlinear term, the expected trajectory
in the phase plane would yield a perfect circle, represented by
the equation:

u(t) = f

1 − ω2 cos (ωt) .

However, as we observed in Fig. 4.14, the presence of non-
linearity leads to a distorted trajectory of finite amplitude12.12 Even in the absence of

damping.
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For such a reason, we assume that the solution is periodic, al-
lowing us to express it in terms of a Fourier series. By using
the symmetries13 inherent in Eq. (4.2.11), we can simplify our 13 Eq. (4.2.11) is invariant

with respect to the transfor-
mations:

t → t+ π,

u → −u.

analysis. The time-reversal symmetry indicates that the Fourier
series consist solely of cosine terms. Additionally, through the
transformation invariance of the equation, we can deduce that
only odd harmonics appear in the series expansion:

u(t) =
∑

n=1,3,5,...

An(ω) cos (nωt) .

By substituting this expression into Eq. (4.2.11), without the
dumping term, we obtain:

(1 − ω2)A1 cos (ωt) + (1 − 9ω2)A3 cos (3ωt) + . . .

+ε
[

3
4A

3
1 cos (ωt) + 1

4A
3
1 cos (3ωt) + . . .

]
= f cos (ωt) ,

(4.2.12)

where we used the trigonometric identity reported in Appendix
C. The coefficients of each harmonic, cos (nωt), must vanish,
since we can isolate each one of them by Fourier analysis. Thus,
Eq. (4.2.12) implies that, to this level of approximation:{

(1 − ω2)A1 + 3
4εA

3
1 = f

(1 − 9ω2)A3 + 1
4εA

3
1 = 0,

where, given ω and f we can solve the first equation for A1, and
then we can solve the second one for A3

14. 14 The method we have used
here is called harmonic anal-
ysis.

At this point we assume ζ ̸= 0. Let’s assume a solution of
the type:

u(t) = a cos (ωt) + b sin (ωt) ,
u̇(t) = −ωa sin (ωt) + ωb cos (ωt) ,
ü(t) = −ω2a cos (ωt) − ω2b sin (ωt) .

By substituting these expressions into Eq. (4.2.11) we obtain:[
−ω2a+ 2ζω b+ a

]
cos (ωt) +

[
−ω2b− 2ζω a+ b

]
sin (ωt) +

+ε [a cos (ωt) + b sin (ωt)]3 = f cos (ωt) .

In this expression, remembering the trigonometric relations in
the Appendix C, and neglecting the terms of the higher har-
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monics:[
−ω2a+ 2ζω b+ a

]
cos (ωt) +

[
−ω2b− 2ζω a+ b

]
sin (ωt) +

+3
4ε

[
a3 cos (ωt) + b3 sin (ωt) + a2b sin (ωt) + ab2 cos (ωt)

]
=

= f cos (ωt) .

Thus, {
−ω2a+ 2ζω b+ a+ 3

4εa
(
a2 + b2)

= f

−ω2b− 2ζω a+ b+ 3
4εb

(
a2 + b2)

= 0,

But A1 = a2 + b2 therefore, by squaring both equations and
adding them up, we have that:

A1 = f√(
1 − ω2 + 3

4εA
2
1
)2 + (2ζω)2

. (4.2.13)

This equation highlights the relationship between the amplitude
A1, the driving force f , the frequency ω, the damping coefficient
ζ, and the nonlinearity parameter ε.
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Figure 4.15. Frequency re-
sponse curves for different values
of f obtained using Eq. (4.2.13)
with ε = 0.05 and ζ = 0.1.

Figure 4.15 presents two curves obtained by applying Eq.
(4.2.13) under various operational conditions. These plots pro-
vide valuable insights into the amplitude response of the oscilla-
tor as a function of the driving frequency, highlighting the effects
of nonlinearity and damping on the system’s dynamics. This
framework allow us to derive the coefficients of the Fourier series
and analyze the Duffing oscillator response under the specified
driving conditions, leading to insights regarding the system’s
dynamic behavior in the presence of nonlinearity and damping.

Section 4.3

Non-smooth Nonlinear Dynamical Sys-
tems

So far, we have considered nonlinear systems where the vector
field f (x) is a continuous function. Therefore, the solution is a
continuously differentiable curve, whose time derivative always
(i.e., ∀t ≥ t0) follows the direction of the vector field. However,
the requirement of the vector field to be continuous in many
cases is too much restrictive.
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Example Consider friction phenomena in mechanical systems, mechan-
ical impacts, power electronics (switching in gates), genetic
circuits, optimal control problems, sliding model control, relay
feedback control, and many others. In non-smooth mechanics,
the evolution of rigid bodies is subject to velocity jumps and
force discontinuities as a result of friction and impacts [24].

Since the vector field is discontinuous, continuously differ-
entiable curves that satisfy the associated dynamical system do
not exist in general, and we must face the issue of identifying
a suitable notion of solution. A look into the literature reveals
that there is not a unique answer to this question. Depending on
the specific problem at hand, authors have used different notions
[23].

Caratheodory solutions are the most natural generalization
of the classical notion of solution. Roughly speaking, one pro-
ceeds by allowing classical solutions not to follow the direction
of the vector field at a few time instants. However, Caratheodory
solutions do not exist in many applications. The reason is that
their focus on the value of the vector field at each specific point
makes them too rigid to cope with the discontinuities [23].

On the other hand, Filippov solutions utilize the concept
of differential inclusion. To define a differential inclusion, one
employs set-valued maps. Similar to a standard map, which as-
sociates a point in one space to a point in another, we can define
a set-valued map as follows:

Definition 13 A set-valued map assigns a point in some space to a set of
points in another space.

It is important to note that a standard map can be viewed
as a set-valued map that maps points to singletons, which are
sets containing a single point.

Definition 14 A differential inclusion is an equation that stipulates that the
derivative of the state must belong to a set of permissible
directions, rather than being confined to a specific direction
determined by the vector field.

This added flexibility is crucial for establishing general con-
ditions under which Filippov solutions exist. Such notions of
solutions are particularly significant in a variety of applications,
including mechanics involving friction and sliding mode control
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[23].
The continuity of the vector field in ODEs does not nec-

essarily ensure uniqueness of solutions, and this remains true
for non-smooth vector fields regardless of the chosen solution
concept. When uniqueness is absent, additional analysis is re-
quired, particularly when studying properties of dynamical sys-
tems. The potential for multiple solutions from the same initial
condition introduces the need to differentiate between "weak"
and "strong" properties. "Weak" properties are satisfied if at
least one solution from each initial condition holds the prop-
erty, while "strong" properties are satisfied if all solutions from
each initial condition meet the criterion [23].

Subsection 4.3.1

Hysteretic Mechanical Systems

As discussed in Chapter 2, a dynamical system can be formally
defined as a combination of a state-space X , a set of times T , and
a rule R that specifies how the system’s state evolves over time.
Hysteretic mechanical systems subjected to time-periodic inputs
fit within this general framework. Specifically, these systems are
governed by a set of first-order nonautonomous ODEs of the
form:

ẋ = F (x, t,Ω) , (4.3.1)

where t represents time, x denotes the state vector contain-
ing the system’s state variables, F represents a typically non-
differentiable vector field associated with the problem, and Ω is
the control parameter, referred to as the continuation parame-
ter15.15 Typically the driving fre-

quency. To analyze the behavior of Eq. (4.3.1), the governing
ODEs can be reformulated, as outlined in Section 2.3.2. This
is achieved by employing the transformation described in Eq.
(2.3.3), resulting in a system of first-order autonomous ODEs
expressed as follows:

ẋ = f (x,Ω) . (4.3.2)

It is important to note that in Eqs. (4.3.1) and (4.3.2), there
is a slight abuse of notation, as the same symbol x is used to
denote vectors of different dimensions, as well as the vector fields
F and f.

Subsection 4.3.2

Mathematical Modeling of Hysteresis Phenom-
ena
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The analytical modeling and response prediction of hysteretic
systems is an area of growing interest. Certain systems subjected
to severe loading conditions, such as earthquakes and pressure
shock waves, exhibit nonlinear hysteretic behavior. Additionally,
some systems inherently possess nonlinear hysteretic character-
istics [50].

Hysteresis is present in a variety of phenomena across dis-
ciplines including physics, chemistry, biology, and engineering.
For example, in physics, hysteresis is observed in processes such
as plasticity, friction, ferromagnetism, ferroelectricity, supercon-
ductivity, and in the adsorption and desorption processes, as
well as in materials with shape memory. More broadly, hystere-
sis manifests in phase transitions [88].

u(t) fri(t)H

Figure 4.16. Hysteretic dy-
namical system.

Rate-dependent hysteresis has been recognized by mathe-
maticians for many years, with Volterra’s pioneering studies
tracing back to the early 20th century [89]. Conversely, the study
of rate-independent hysteresis has a relatively short history,
as mathematical developments in this area have lagged behind
those in physics and engineering. While mathematics has been
applied in the work of applied scientists on rate-independent
hysteresis, it has often been utilized in a more calculus-oriented
framework rather than through functional analysis. It was not
until 1966 that a functional approach to rate-independent hys-
teresis was first introduced, pioneered by engineering student
R. Bouc, who modeled various hysteresis phenomena by treat-
ing hysteresis as a mapping between function spaces [8, 9].

To illustrate these concepts, let us consider a simple system
characterized by two scalar variables, u and fri, which depend
continuously on time t. In the context of system theory, u is
referred to as the input, while fri is designated as the output.
This discussion adopts a purely phenomenological perspective.

Definition 15 In a phenomenological approach, the system is treated as a
deterministic black box, disregarding its internal structure. It
is assumed that the evolution of the output variable fri is
determined only by the evolution of the input variable u (see
Fig. 4.16).

4.3.2.1 Duhem Model
In this section, we introduce a rate-independent hysteresis
model commonly attributed to the 19th century physicist Pierre
Duhem. This model offers a notable straightforward analytical



Non-smooth Nonlinear SystemsModeling Hysteresis 84

representation; however, it presents certain limitations that re-
strict its applicability. Specifically, for some materials, the state
cannot be fully characterized by the pair (u, fri), necessitating
that the model also accounts for the evolution of one or more
internal parameters [88].

In the Duhem model, for every differentiable input function
u(t) and for any initial value of the output function fri(uP ) =
fP , the output function fri(t) is defined as the solution to the
following Cauchy problem:{

ḟri = k1(u, fri)u̇+ − k2(u, fri)u̇−

fri(uP ) = fP

in ]0, T [, (4.3.3)

where we define:

u+ := |u| + u

2 , u− := |u| − u

2 ∀u ∈ R,

whereas the functions k1 and k2 are non-negative and sufficiently
regular to guarantee a unique solution to the previously defined
Cauchy problem16. Assuming that Eq. (4.3.3) holds exclusively16 They are Lipschitz in fri

and continuous in t, thus for
some ε > 0, there exists a
unique solution fri(t) to the
initial value problem on the
interval [t0 − ε, t0 + ε].

for t > 0 and imposing dt > 0, we obtain:

dfri

du
=

{
k1(u, fri) du > 0
k2(u, fri) du < 0

in ]0, T [ (4.3.4)

In such a way, by integrating the fields k1 and k2, two families
of curves in the plane (u, fri) are obtained, which describe the
evolutionary paths for increasing and decreasing u. These curves
cover the entire plane R2 or a subset of it. By imposing:

sgn(x) :=


−1 x < 0
0 x = 0
+1 x > 0

and 
k(u, fri,−1) := k1(u, fri)
k(u, fri, 0) := 0
k(u, fri,+1) := k2(u, fri)

∀(u, fri) ∈ R2,

we can rewrite Eq. (4.3.4) as:

dfri

du
= k (u, fri, sgn(u̇)) in ]0, T [ (dt > 0),
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Figure 4.17. State-Space for the
VRM+D.

or equivalently:

dfri

dt
= h (u, fri, u̇) in ]0, T [ (dt > 0),

where the function h is positively homogeneous of degree one
with respect to u̇. Hence, Duhem models are expressed by non-
smooth differential equations of the form:

ḟri = k (u, fri, sgn(u̇)) u̇. (4.3.5)

4.3.2.2 Differential Vaiana-Rosati Model
Vaiana and Rosati introduced a new phenomenological model
to simulate the rate-independent hysteretic behavior exhibited
by mechanical systems [84]. This model, denominated, for sim-
plicity, VRM, uses closed-form expressions for the evaluation of
the output variable. Specifically, it enables an uncoupled mod-
eling of the loading and unloading phases and permits an easy
identification of the involved parameters thanks to their clear
mechanical and/or graphical interpretation.

Recently, Vaiana and Rosati proposed an enhanced equiva-
lent differential formulation of the model (VRM+D) to allow for
its use in the field of nonlinear dynamics [83]. Both the original
and reformulated models effectively address the challenges as-
sociated with the simulation of complex hysteresis phenomena
and, thanks to the extension provided by VRM+D, offer a prac-
tical solution for the analysis of hysteretic mechanical systems.

According to the VRM+D [83], the generalized rate-
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independent hysteretic force fri is governed by the following
ODE:

ḟri = {ke (u) + kb + αf0 + sα [fe (u) + kbu− fri]} u̇,

where the generalized function ke is expressed as:

ke (u) = β1β2e
β2u + 4γ1γ2

e−γ2(u−γ3)[
1 + e−γ2(u−γ3)

]2 ,

whereas fe is given by:

fe (u) = β1
(
eβ2u − 1

)
+ 2γ1

1 − e−γ2(u−γ3)

1 + e−γ2(u−γ3) .

An example of hysteresis loop obtaied using the VRM+D is
shown in Fig. 4.17.

Furthermore, the model parameters need to be updated de-
pending on the sign of the velocity u̇, namely s := sgn (u̇).
In particular, kb = k+

b

(
k−

b

)
, f0 = f+

0
(
f−

0
)
, α = α+ (α−),

β1 = β+
1

(
β−

1
)
, β2 = β+

2
(
β−

2
)
, γ1 = γ+

1
(
γ−

1
)
, γ2 = γ+

2
(
γ−

2
)
,

γ3 = γ+
3

(
γ−

3
)

if s > 0 (s < 0). The mechanical/graphical inter-
pretation of the above-mentioned model parameters is reported
below for the reader convenience:

• kb is the slope of the limiting straight lines when β1 =
β2 = γ1 = γ2 = γ3 = 0;

• f0 represents the ordinate of the intersection point between
the limiting curve and the vertical axis;

• α represents the grow rate of the hysteretic tangent stiff-
ness;

• β1, β2, γ1 and γ2 allow us to transform the limiting straight
lines into limiting curves with different number of inflect-
ing points;

• γ3 allow us to modify the position of the inflection point.

More details on the mechanical/graphical interpretation of the
above model parameters can be found in [83, 84].

Subsection 4.3.3

Poincaré Map Based Continuation
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The problem of constructing periodic solutions of general non-
linear dynamical systems and assessing their stability is a com-
mon problem in applied mechanics as well as in various fields of
applied sciences [50].

When dealing with strong nonlinearities and with a global
dynamic behavior, recourse to numerical technique is nearly un-
avoidable17. The Poincaré map based continuation method is a 17 This is the case with hys-

teretic systems.numerical algorithm to compute variation of periodic solutions
and their codimension-one bifurcations. It is particularly useful
in the case of non-smooth systems18 since some components of 18 Specifically, in the case of

hysteretic systems.the vector field are non-differentiable.
This section presents a brief overview of the Poincaré map-

based continuation procedure, in the form originally introduced
in [50], to facilitate the efficient numerical calculation of periodic
solutions for hysteretic dynamical systems subjected to a time-
periodic input. This method also enables the determination of
stability and bifurcations through the use of Floquet’s Theory.
Our objective is to provide a comprehensive framework with
particular emphasis on implementation details able to ensure
the reproducibility of the procedure.

4.3.3.1 How to find periodic solutions

x1

t0

'

x2 2

x1

t0 + T

'

x2 P(2;+)

'(2; t0; t)

Figure 4.18. Graphical repre-
sentation of the first return map
for a 2D nonautonomous system
periodic in time with period T .

Computing periodic solutions for hysteretic mechanical systems
under time-periodic inputs is a highly challenging task. However,
in the case of the n-dimensional hysteretic mechanical systems
described by Eq. (4.3.2), the period associated with a periodic
orbit can be explicitly determined. This is due to the fact that
the vector field f exhibits periodicity with a period T = 2π

Ω . As
a result, a periodic solution of Eq. (4.3.2) will have a period
that is either an integer multiple or an integer submultiple of
T . The knowledge of this period can be used, as shown in the
sequel, to construct a Poincaré section, enabling the mapping
of intersecting points after a specific return period T j = jT [47,
62].

A Poincaré section is a hypersurface in the state-space de-
fined as:

Σ :=
{

x ∈ Rn−1 × S : xn = j2π
T

(t− t0)
}
,

where xn = Ωt (mod 2π) is the additional state variable intro-
duced to deal with time dependence. Moreover, the space which
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the state variables belong to is a cylindrical space written as
Rn−1 × S [62].

The hypersurface Σ of dimension (n− 1) must be chosen so
as to ensure that the flow defined by Eq. (4.3.2) is everywhere
transversal to Σ [36], that is:

n (x) · f (x,Ω) ̸= 0 ∀x ∈ Σ,

where n (x) represents the unit vector normal to the Poincaré
section Σ at point x.

To obtain a global section19 the (n× 1) normal vector n(x)19 Transverse to the flow ev-
erywhere in the state-space. is defined as:

n(x) :=


0
...
0
1

 ∀x ∈ Rn−1 × S.

It is now possible to introduce a Poincaré map based on the
return time T j as the value that the trajectory having x̃ ∈ Σ as
its initial point at time t0 takes on when t = t0 + T j. In other
words, we can express the Poincaré map as:

Pj (x,Ω) : Σ → Σ Pj (x̃,Ω) = φ
(
x̃, t0, t0 + T j) .

Hence, assuming that a specific point η ∈ Σ is a fixed-point of
the first return map P (η,Ω), then all trajectories starting from
η return to the same point after a period T , which is equal to the
period of the input (Fig. 4.18). This condition, called fixed-point
condition, can then be written as follows:

P (η,Ω) = η,

and a periodic solution can be found as a solution of the fixed-
point equation:

P (η,Ω) − η = 0. (4.3.6)

This is conceptually simpler than searching for periodic solu-
tion, but it requires refined numerical tools to solve the prob-
lem. Moreover, since most of the problems of interest do not
have a closed-form expression for the Poincaré map, it is neces-
sary to rely on approximate methods or simulations instead of
analytical solutions.
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4.3.3.2 How to solve the fixed-point equation
When strong nonlinearities are involved, numerical techniques
such as continuation become necessary to solve the fixed-point
equation. This is especially true in the case of hysteretic me-
chanical systems since a time-periodic input can cause different
behavior depending on the frequency of the applied loading.

Basically a continuation scheme is a numerical algorithm
that:

• compute solution branches through both regular points
and singular points;

• detect and diagnose bifurcation points;

• switch branches at bifurcation points.

In practice, it is rare that an analytical solution to Eq. (4.3.6)
can be found, although it is commonly assumed that at least one
solution point (η0,Ω0) is known a priori. Due to the difficulty in
finding analytical solution, a great deal of work in the technical
literature has been directed towards developing efficient and ac-
curate numerical continuation schemes to compute approximate
solutions. Hence, the two basic steps of a continuation scheme
are:

1. A predictor step to generate an initial guess of a new so-
lution point (η(1),Ω(1)) near the last converged solution
point.

2. An iterative correction algorithm designed to successively
update and improve the initial guess until some conver-
gence criterion is met.

Perhaps the most popular solution algorithm with these ca-
pabilities is the pseudo-arclength continuation scheme [47, 73,
95]. (20,+0 )

"s

b

(2(1),+ (1 ))

a

(2(s),+(s))

P(2(s),+(s))-2(s) = 0

Figure 4.19. Graphical
representation of the pseudo-
arclength scheme in the case of
3D (η, Ω)-space.

4.3.3.3 Pseudo-arclength continuation method
The pseudo-arclength method describes the solution path de-
fined by Eq. (4.3.6) incrementally, using a sequence of arclength
increments ∆s. The main idea is to extrapolate a distance of ∆s
in the (η,Ω)-space from the known solution point (η0,Ω0) along
the tangent vector a at the known solution point. This serves as
a prediction, but then a numerical method is performed to get
back onto the solution branch, as shown in [33], individuated by
its intersection with the plane perpendicular to a at a distance of
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∆s. Figure 4.19 shows a representation of the pseudo-arclength
continuation method where s denotes the arclength along the
solution curve.

Expressing both the periodic solution η and the continua-
tion parameter Ω as functions of the coordinate s, the number
of unknowns is increased by one and the fixed-point equation
(4.3.6) is reparameterized as:

p (η(s),Ω(s)) = P (η(s),Ω(s)) − η(s) = 0. (4.3.7)

The initial prediction is evaluated by means of a linear ex-
trapolation along the unit tangent direction a defined as:

a =
[
∂η0

∂s
,
∂Ω0

∂s

]T
.

Since (η(s),Ω(s)) satisfies Eq. (4.3.7) ∀s, at s0 + ∆s, the new
solution point must satisfy the Taylor expansion of Eq. (4.3.7)
at s0 + ∆s, given by:

p(η(s0 + ∆s),Ω(s0 + ∆s)) =
=

[
pη(η(s0),Ω(s0)) · ηs + pΩ(η(s0),Ω(s0))Ωs

]
∆s+ . . . ,

(4.3.8)

where the subscript denotes differentiation with respect to the
subscript. By neglecting higher-order terms, one can cast in ma-
trix form Eq. (4.3.8) as:[

pη(η(s0),Ω(s0)),pΩ(η(s0),Ω(s0))
]

· a = 0,

where
[
pη,pΩ

]
is the (n+ 1) × (n+ 1) matrix, and a the (n+ 1)

tangent vector, evaluated in the point with abscissa s0 (Fig.
4.19). At this point, we assume that the tangent vector a has
unit length by imposing a · a = 1, which gives:

ηs · ηs + Ω2
s = 1. (4.3.9)

The matrix pη is assumed to be nonsingular together with pΩ ̸=
0 [47]. Therefore, Eq. (4.3.8) can be rewritten as:

pη(η(s0),Ω(s0)) · ηs = −pΩ(η(s0),Ω(s0))Ωs,

since ηs is proportional to Ωs, the unknown vector ηs is ex-
pressed as:

ηs = Ωsc,
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while the normalization condition (Eq. (4.3.9)) solved for Ωs,
gives:

Ωs = ± 1√
c · c + 1

.

The sign in the previous equation is chosen such that the orien-
tation of a is close to that of the tangent vector aprevious at the
previous value of s, i.e. we require aaT

previous > 0 [72]. The initial
guess for the updated solution at s0 + ∆s can be obtained as:[

η(1)

Ω(1)

]
=

[
η0
Ω0

]
+ a∆s,

The updated equilibrium solution is sought as the intersection
between the plane perpendicular to the unit tangent vector a
passing through

[
η(1),Ω(1)]T and the solution curve (Fig. 4.19).

Denoting by b the vector normal to the tangent vector a
passing through (η(1),Ω(1)):

b =
[

η(s) − η(1)

Ω(s) − Ω(1)

]
,

the updated state of the system (η(s),Ω(s)) is sought as the
solution of the fixed-point equation, e.g., Eq. (4.3.7), subjected
to the orthogonality condition b · a = 0. Hence, one has to solve
the following nonlinear equation:

g (η(s),Ω(s)) = [η(s) − η0] · ∂η0

∂s
+ [Ω(s) − Ω0] ∂Ω0

∂s
− ∆s = 0.

Based on the known solution point (η0,Ω0), and given the
∆s increment, the solution of the augmented system is sought
as a solution of the following system:{

p (η(s),Ω(s)) = 0
g (η(s),Ω(s)) = 0. (4.3.10)

To solve the system of nonlinear equations obtained in Eq.
(4.3.10), several methods can be used, as shown in [31–33]. The
most classical one, used for example in [48–50], is the Newton-
Raphson method.
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4.3.3.4 Newton-Raphson method
According to the Newton-Raphson method, at the k-th iteration,
one sets:

η(k) = η(k-1) + ∆η(k),

Ω(k) = Ω(k-1) + ∆Ω(k),

into Eq. (4.3.10) so that a Taylor expansion about (η(k-1),Ω(k-1))
yields the incremental linearized equations in matrix form:

J(k-1)∆z(k) = −r(k-1), (4.3.11)

where the notation (k-1) indicates that the scalar and matrix-
valued functions are evaluated at (η(k-1),Ω(k-1)). In particular,
the augmented unknown vector and the augmented residual vec-
tor are given, respectively, by:

∆z(k) =
[

∆η(k)

∆Ω(k)

]
,

r(k-1) =
[
P

(
η(k-1),Ω(k-1)) − η(k-1)

g
(
η(k-1),Ω(k-1)) ]

,

while the augmented (n+ 1) × (n+ 1) Jacobian matrix is:

J(k-1) =


(

∂P
∂η − I

)(k-1) (
∂P
∂Ω

)(k-1)(
∂η0
∂s

)T
∂Ω0
∂s

 .
The Jacobian matrix of the Poincaré map with respect to the
periodic solution η and the control parameter Ω is computed
via a central finite-difference scheme, according to the following
expressions:

∂P
∂η

· em ≈ P(η + δ1em,Ω) − P(η − δ1em,Ω)
2δ1

,

∂P
∂Ω ≈ P(η,Ω + δ2) − P(η,Ω − δ2)

2δ2
,

(4.3.12)

where δ1 and δ2 are the finite differences in the two gradients
computations, respectively, and em is the m-th column of the
(n× n) identity matrix I.

Since the Jacobian J is generally nonsingular [47], the solu-
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tion can be determined as:

∆z(k) = −
[
J(k-1)

]−1
r(k-1).

The iterations are continued until a suitable convergence condi-
tion is satisfied.

When the convergence is achieved, the new periodic solution
on the solution curve at s + ∆s is assumed as the new known
solution (η0,Ω0).

Remark Since the matrix p(k-1)
η =

(
∂P
∂η − I

)(k-1)
is almost everywhere

nonsingular [47], a bordering algorithm may be employed as
follows:

p(k-1)
η · ∆η(k) = −p(k-1) − p(k-1)

Ω ∆Ω(k).

By virtue of the principle of superposition, the incremental
vector ∆η(k) is expressed as a linear combination of two vec-
tors according to:

∆η(k) = z1 + ∆Ω(k)z2, (4.3.13)

where z1 and z2 are found by solving the following linear
equations:

p(k-1)
η · z1 = −p(k-1),

p(k-1)
η · z2 = −p(k-1)

Ω .

If the matrix p(k-1)
η does not happen to become singular at any

of the iterative steps, the unknown vectors can be determined
as:

z1 = −
[
p(k-1)

η

]−1
· p(k-1),

z2 = −
[
p(k-1)

η

]−1
· p(k-1)

Ω .

The incremental load multiplier ∆Ω(k) is obtained through
the (n+1)-th equations, given by the second equation in Eqs.
(4.3.11), which, by substitution of Eq. (4.3.13), the increment
is obtained as:

∆Ω(k) = −ηs · z1 + g(k-1)

ηs · z2 + Ωs
.
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Initial conditions
Start with (η0,Ω0) and ∆s
set stepcut = 0, contflag = 0, PA iter = 1
Computations at each Pseudo-Arclength (PA) step
while (contflag == 0)

Compute initial prediction
(
η(1),Ω(1))

set corrflag = 0
while (corrflag == 0)

Correct the initial prediction⋆

Check corrector stopping criteria†

if (corrflag == 1)
Study Stability and Bifurcation

PA iter = +1, stepcut = 0, adjust ∆s and (η0,Ω0)
else

∆s = ∆s
2 , stepcut = +1

Check continuation stopping criteria‡

end
⋆ Newton-Raphson

Modified Newton-Raphson
Krylov accelerated Newton-Raphson

† (corrflag = 1) convergence attained
(corrflag = 2) divergence detected
(corrflag = 3) maximum number of iterations ex-

ceeded
‡ (contflag = 1) exceeded maximum number of steps

(contflag = 2) Ω0 < Ωmin
(contflag = 3) Ω0 > Ωmax

Table 4.3. Pseudo Code of the Pseudo-Arclength continuation
method.

4.3.3.5 Pseudocode description
In this section, we present a detailed description of the pseu-
docode outlined in Table 4.3. A step-by-step analysis is pro-
vided to explain the logic and methodology behind each line of
the pseudocode, aiming to clarify its computational processes
and algorithmic structure.

The arclength parameter s is used for continuation and, to
compute the solution at s + ∆s, a Newton-Raphson scheme is
employed with a tangent predictor, in conjunction with the bor-
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dering algorithm. The iterations proceed until the convergence
criterion is met within the Newton-Raphson process.

Initial Conditions The initial stage of the analysis involves
defining the parameters of the hysteretic mechanical system un-
der consideration. Specifically, the excitation frequency Ω is des-
ignated as the control parameter governing the system’s dy-
namic behavior. This methodological approach enables the in-
vestigation of the system’s response over a range of frequencies,
providing a comprehensive understanding of its complex behav-
ior under external excitation across varying amplitude levels.

The parameters employed in the pseudo-arclength path fol-
lowing procedure are summarized in Table 4.4. The selection of
these parameters is grounded in a robust foundation of previ-
ous studies, particularly those conducted by Lacarbonara and
collaborators, which have consistently demonstrated the algo-
rithm’s reliable convergence characteristics [50].

In earlier investigations by Lacarbonara and Vestroni [49],
a central finite-difference scheme was used to compute the Jaco-
bian of the Poincaré map for Masing and Bouc–Wen oscillators.
In these studies, the tolerances for the convergence test (tol =
10−6) and the finite difference increment (δi = 10−3) were deter-
mined as optimal. The normalized time step (T/∆t = 2048) was
also carefully chosen, with the study revealing that the bifurca-
tion results were not sensitive to the specific numerical integra-
tion method used, whether it was the fourth-order Runge–Kutta
or the Fehlberg-Dormand-Prince schemes.

Subsequent research [48] continued this approach, confirm-
ing that the use of central-difference schemes for Jacobian com-
putation and the previously prescribed tolerances and time steps
(T/∆t = 2048) yielded consistent and reliable results. The ro-
bustness of the algorithm was further verified, with no signif-
icant sensitivity to the choice of numerical integration scheme
affecting the bifurcation outcomes.

In more recent work [32], the authors adopted a fourth-order
Runge–Kutta procedure with a fixed time step. Again, the tol-
erances for the convergence test (tol = 10−6) and finite differ-
ence increments (δi = 10−3) remained consistent. The number of
time steps per excitation period (T/∆t = 2048) was maintained,
further corroborating the stability and insensitivity of these pa-
rameters to the specific numerical method used for bifurcation
analysis.

This well-established parameter set, detailed in Table 4.4,
ensures the stability of the numerical procedures, with minimal
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Table 4.4. Parameters used for
the pseudo-archlength path fol-
lowing procedure.

T/∆t δ1 δ2 tol ∆smin ∆smax k̄ km

2048 10−3 10−3 10−6 10−10 10−3 10 100

impact on the accuracy of the bifurcation results.
To obtain an initial equilibrium point (η0,Ω0), we solve the

equation of motion for the hysteretic mechanical system with
zero initial conditions, for a time of integration tmax = 100T .
In such a way, the steady-state response can be obtained for the
first value of Ω analyzed.

At this point we can enforce the following quantities: stepcut
= 0, contflag = 0, PA iter = 1.

Computations at each Pseudo-Arclength step

1. Compute initial prediction: While we are still within
the Pseudo-Arclength (PA) algorithm, we start by com-
puting the following matrix associated with the equilib-
rium point (η0,Ω0):

J0 =


(

∂P
∂η − I

)
0

(
∂P
∂Ω

)
0(

∂η0
∂s

)T
∂Ω0
∂s

 .
The components of the Jacobian matrix of the map, and
those of the derivative of the map with respect to the
control parameter are computed numerically via a finite-
difference scheme, with a central-difference technique. The
following quantities are evaluated to compute numerically
the elements on the first row of J0:

∂P
∂η

· em ≈ P(η0 + δ1em,Ω0) − P(η0 − δ1em,Ω0)
2δ1

,

∂P
∂Ω ≈ P(η0,Ω0 + δ2) − P(η0,Ω0 − δ2)

2δ2
.

where em is the m-th column of the (n×n) identity matrix,
δ1 and δ2 are the central-difference parameters (10−3). In
order to compute the Poincaré map, we use a fourth-order
Runge-Kutta scheme (ode45) to integrate Eq. (4.3.1) from
t0 to t0 + Tn subject to the initial condition η0.
The matrix ∂P

∂η for the system under consideration will
have dimensions n × n, given that P(η,Ω) is a (n × 1)
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vector, as is the vector η0 with respect to which it is de-
rived. Whereas, ∂P

∂Ω is a (n × 1) vector. In particular, the
components of the matrices ∂P

∂η and ∂P
∂Ω are expressed as

follows:

∂P
∂η

·

1
...
0

 =

P

η0 + δ1

1
...
0

 ,Ω0

 − P

η0 − δ1

1
...
0

 ,Ω0


2δ1

,

∂P
∂η

·

0
...
1

 =

P

η0 + δ1

0
...
1

 ,Ω0

 − P

η0 − δ1

0
...
1

 ,Ω0


2δ1

,

∂P
∂Ω = P (η0,Ω0 + δ2) − P (η0,Ω0 − δ2)

2δ2
.

Now recalling the Taylor series expansion made for the
initial problem P (η(s),Ω(s)) − η(s) = 0 we have that:(

∂P
∂η

− I
)

0
· ∂η0

∂s
= −

(
∂P
∂Ω

)
0

∂Ω0

∂s
.

Since ∂η0
∂s and ∂Ω0

∂s are proportional, the unknown vector
∂η0
∂s can be expressed as:

∂η0

∂s
= ∂Ω0

∂s
z, (4.3.14)

through which we can write:(
∂P
∂η

− I
)

0
· z = −

(
∂P
∂Ω

)
0
.

In this expression the only unknown quantity is the z vec-
tor which can be computed as:

z = −
(
∂P
∂η

− I
)−1

0

(
∂P
∂Ω

)
0
.

On the other hand, the requirement for the tangent vector
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a to have unit norm enables us to compute ∂Ω0
∂s as:

∂η0

∂s
· ∂η0

∂s
+

(
∂Ω0

∂s

)2
= 1 → ∂Ω0

∂s
= ± 1√

c · c + 1
.

Specifically, the sign in this expression is chosen such that
the orientation of a is close to that of the preceding vector
a (indicated as apre). This implies checking whether a ·
apre > 0 (or < 0). In this case, the sign will be set to +
(-).
At this point, by invoking Eq. (4.3.14) we can compute
∂η0
∂s and complete the evaluation of the Jacobian matrix

J0, and also proceed to evaluate the initial prediction as:[
η(1)

Ω(1)

]
=

[
η0
Ω0

]
+ a∆s.

2. Correct the initial prediction: To correct the ini-
tial prediction, several methods can be used, such as the
Newton-Raphson method, the Modified Newton-Raphson
method, and the Krylov-accelerated Newton-Raphson
method, as shown in [31–33].
The most classical method, used for example in [48–50],
is the Newton-Raphson method, for which we begin with
the evaluation of the residual:

r(k-1) =
[
P

(
η(k-1),Ω(k-1)) − η(k-1)

g
(
η(k-1),Ω(k-1)) ]

.

Specifically, if |r(k-1)| < tol, the iterations are ended. Oth-

erwise, since
(

∂P
∂η − I

)(k-1)
is nonsingular almost every-

where [47], a bordering algorithm can be employed to ob-
tain a new estimation of the solution point. Based on the
bordering algorithm, and invoking the superposition prin-
ciple, we can set:

∆η(k) = z1 + ∆Ω(k)z2,
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the two unknown vectors z1 and z2 can be computed as:

z1 = −

[(
∂P
∂η

− I
)(k-1)

]−1

·
[
P

(
η(k-1),Ω(k-1)

)
− η(k-1)

]
,

z2 = −

[(
∂P
∂η

− I
)(k-1)

]−1

·
(
∂P
∂Ω

)(k-1)
.

On the other hand, the increment ∆Ω(k) can be obtained
as:

∆Ω(k) = −
∂η0
∂s · z1 + g(k-1)

∂η0
∂s · z2 + ∂Ω0

∂s

.

3. Study stability and bifurcations: An additional ad-
vantage of the described procedure is the possibility of
using Poincaré maps to determine the stability and bifur-
cation of a periodic solution by analyzing its behavior near
a fixed-point (Floquet’s Theory) [47, 62]. After achieving
convergence, the procedure furnishes the Jacobian matrix
evaluated at the periodic solution (i.e., the so-called mon-
odromy matrix Φ):

Φ = ∂P
∂η

.

The eigenvalues of the monodromy matrix Φ, known as
Floquet multipliers, allow us to ascertain the stability of
the calculated orbit and its bifurcations using the concepts
introduced in Section 4.2.5.

4. Adjust ∆s: As indicated by many authors in the litera-
ture [73, 95], the basic issue of the procedure is controlling
the size of the step length ∆s. In fact, the convergence
characteristics of the correction procedure vary along dif-
ferent parts of a solution curve. For this reason, it is im-
portant to have an adaptive step length control strategy
to ensure a reasonable performance of the continuation
procedure.
A common design goal for developing step length control
procedures is to choose ∆s to maintain a certain user-
defined target iteration count [95]. By prescribing an initial
∆s and a desired number k̄ of loops to achieve convergence
at the solution point, the increment ∆s(k+1) at the (k+1)-
th solution step is set based on the number of iterations
k⋆ actually needed for the convergence at the k-th solution
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step, according to the general formula:

∆s(k+1) = ρ(k)∆s(k), ∆s(k+1) ∈ [∆smin,∆smax] ,
(4.3.15)

where ρ(k) is a coefficient that corrects the step ∆s de-
pending on the assigned law. For example, Riks in [73]
proposed:

ρ(k) :=
(
k̄

k⋆

)0.5

.

This value provides good results, although it tends to
maintain an excessively small step in some portions of
the solution curve. More recently, Formica et al. in [33]
proposed the following expression for the coefficient ρ(k):

ρ(k) :=
(

1 + k̄ − k⋆

k̄ + km

)
, (4.3.16)

where km is the maximum number of admissible iteration
loops. Such an expression, as shown in [33], provides ex-
cellent computational times.

Subsection 4.3.4

Energy Components in Hysteretic Systems

In applications where devices with a strongly nonlinear response
are required, a fundamental piece of information is the time evo-
lution of the energy components of the SDoF systems [68]. In
particular, the damping ratio for the viscoelastic system is de-
fined by equating the energy dissipated in a cycle by the rate-
independent hysteretic force with the energy dissipated by the
equivalent viscoelastic system in the steady-state response at
resonance [40]. Furthermore, the response of many mechanical
systems and materials is strongly influenced by degradation phe-
nomena often quantified based on energy components [34, 98].

For this reason, over the years, many researchers have de-
rived expressions of the energy components starting from the
nonlinear equilibrium equation of a SDoF hysteretic mechanical
system [10, 38, 81]. In these papers, the amount of mechani-
cal energy lost by the system is denominated dissipated energy,
without specifying whether it refers to rate-dependent or rate-
independent phenomena. In addition, the work done by the gen-
eralized rate-independent forces is typically referred to in the
literature with different, sometimes misleading, denominations
such as absorbed energy or strain energy, and its closed-form
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Figure 4.20. Structural model of
the selected family of MDoF
hysteretic mechanical systems.

expressions are provided only for some models, such as the sym-
metric bilinear one, while for some phenomenological models, it
is derived in incremental form.

Such an issue has been the object of a recent paper by Va-
iana, Capuano and Rosati [82], in which the Modified Work-
Energy (MWE) theorem has been generalized and applied to
MDoF hysteretic systems in order to properly account for the
definition and evaluation of path-dependent work and internal
energy change associated with non-conservative internal forces.
The general findings contributed in [82] are here shown and then
specialized to the case of a SDoF subjected to both conservative
and non-conservative forces, to understand the energy and work
evolution in hysteretic mechanical systems.

4.3.4.1 MDoF Hysteretic Mechanical Systems
The selected family of MDoF hysteretic mechanical systems can
be analyzed by employing the structural model illustrated in
Figure 4.20.

Such a structural model is made up of N masses, N exter-
nal elements, and 3N internal elements; the former (latter) are
referred to as external (internal) elements since they do not (do)
allow for interaction among masses.

The motion of mass m(i) is described by the generalized dis-
placement u(i), the generalized velocity u̇(i), and the generalized
acceleration ü(i) evaluated with respect to the mass equilibrium
position. Such a mass is subjected to the generalized external
force p(i)

e , exhibited by the ith external elastic element, and to
the generalized external force p(i). The former is a function of
the generalized displacement u(i), that is, p(i)

e (u(i)), whereas the
latter is a function of time t, namely p(i)(t).

In addition, the ith and (i + 1)th masses are connected by
means of three different types of internal elements:

• an elastic element exhibiting a generalized internal elas-
tic force f (i+1)

e that is a function of the relative general-
ized displacement u(i+1) between the two masses, that is,
f

(i+1)
e (u(i+1)), with u(i+1) = u(i+1) − u(i);
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• a rate-dependent hysteretic element that displays a gener-
alized internal rate-dependent hysteretic force f (i+1)

rd that
is a function of the relative generalized velocity u̇(i+1)

between the two masses, namely f
(i+1)
rd (u̇(i+1)), where

u̇(i+1) = u̇
(i+1) − u̇

(i);

• a rate-independent hysteretic element exhibiting a gen-
eralized internal rate-independent hysteretic force f (i+1)

ri

that is a function of the relative generalized displacement
u(i+1) between the two masses, that is, f (i+1)

ri (u(i+1)).

To derive the nonlinear equilibrium equations of the above-
described structural model at the generic time t, we invoke New-
ton’s second law:

f(t) = Mü(t), (4.3.17)

where f(t) represents the generalized force vector, M the con-
stant mass matrix, and ü(t) the generalized acceleration vector.

The generalized force vector f(t) can be expressed as the
sum of two components:

f(t) = fc(t) + fnc(t), (4.3.18)

in which fc(t) is the generalized conservative force vector, namely
a force vector whose integral is path-independent, whereas fnc(t)
represents the generalized non-conservative force vector, that is,
a force vector whose integral is path-dependent. In particular,
such vectors can be written as:

fc(t) = −fe(t) − pe(t), (4.3.19)

fnc(t) = −frd(t) − fri(t) + p(t), (4.3.20)

where fe(t), frd(t), fri(t) are, respectively, the generalized inter-
nal elastic force vector, the generalized internal rate-dependent
hysteretic force vector, and the generalized internal rate-
independent hysteretic force vector, whereas pe(t) and p(t)
represent, respectively, the generalized conservative and non-
conservative external force vectors. It is important to note that
the minus signs appearing into Eqs. (4.3.19) and (4.3.20) are
adopted to take into account that the generalized internal forces
as well as the generalized conservative external ones act in an
opposite direction with respect to the motion.

Making use of Eqs. (4.3.17)-(4.3.20), it is possible to obtain
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the set of N nonlinear equilibrium equations:

Mü(t) + fe(t) + frd(t) + fri(t) = −pe(t) + p(t), (4.3.21)

whose extended form is available in Appendix D.
The ith equation of (4.3.21) represents the equilibrium con-

dition of the ith mass isolated from the other ones:

m(i)ü
(i)(t) + f (i)

e (t) − f (i+1)
e (t)+

+f (i)
rd (t) − f

(i+1)
rd (t) + f

(i)
ri (t) − f

(i+1)
ri (t) =

= −p(i)
e (t) + p(i)(t).

It can be easily observed that the ith component of the gen-
eralized internal force vectors fe(t), frd(t), fri(t) represents the
difference between the two forces exerted by the ith and (i+1)th

elements, respectively, on the ith mass.
In order to simplify the evaluation of the work done by gen-

eralized conservative and non-conservative internal forces, it is
convenient to rewrite the set of N nonlinear equilibrium equa-
tions by assuming as unknowns the relative generalized displace-
ment, velocity, and acceleration between two consecutive masses.
To this end, we first express the generalized displacement, ve-
locity, and acceleration vectors as:

u = T u, (4.3.22a)
u̇ = T u̇, (4.3.22b)
ü = T ü, (4.3.22c)

where T represents the coordinate transformation matrix,
whose expression is given in Appendix D, whereas u, u̇, and ü
are the relative generalized displacement, velocity, and acceler-
ation vectors. Accordingly, the nonlinear equilibrium equations
in the new reference frame ruled by T read:

Mü(t) + fe(t) + frd(t) + fri(t) = −pe(t) + p(t), (4.3.23)

where:

M = TT MT, (4.3.24a)
fe(t) = TT fe(t), frd(t) = TT frd(t), fri(t) = TT fri(t),

(4.3.24b)
pe(t) = TT pe(t), p(t) = TT p(t). (4.3.24c)



Non-smooth Nonlinear Systems Energy 104

As done for Eq. (4.3.21), the extended form of Eq. (4.3.23) is
illustrated in Appendix D.

The ith equation in (4.3.23) represents the equilibrium con-
dition of a system made up by the last (N + 1 − i) masses, that
is, masses from the ith to the N -th ones:

m(i)ü
(i)(t) + · · · +m(N)ü

(N)(t) + f (i)
e (t) + f

(i)
rd (t) + f

(i)
ri (t) =

= −p(i)
e (t) + p(i)(t) + · · · − p(N)

e (t) + p(N)(t).

In particular, the ith component of the generalized internal force
vectors fe(t), frd(t), fri(t) represents the force applied by the
ith element on the ith mass. As it will be shown in the sequel,
such a coordinate transformation will simplify the evaluation of
the work done by generalized conservative and non-conservative
internal forces.

Modified Work-Energy Theorem Let us invoke the Work-
Energy (WE) theorem stating that the change in the generalized
kinetic energy ẼK of the system is equal to the work W̃ done
by all the generalized forces acting on it [43]. Thus, it is possible
to write:

∆ẼK = W̃ , (4.3.25)

that represents the integral form of the WE theorem. Note that
the symbol "˜" is employed to emphasize that such scalar quan-
tities are computed with reference to generalized forces acting
on masses.

As done for the generalized force vector f(t), the generalized
work W̃ can be expressed as the sum of two components:

W̃ = W̃c + W̃nc, (4.3.26)

in which W̃c is the work related to generalized conservative
forces, whereas W̃nc represents the work performed by the gen-
eralized non-conservative ones. In particular, such work compo-
nents can be written as:

W̃c = −∆Ẽi
P − ∆Ẽe

P , (4.3.27)

W̃nc = W̃ i
nc + W̃ e

nc, (4.3.28)

where Ẽi
P (Ẽe

P ) is the generalized internal (external) potential
energy of the system, whereas W̃ i

nc (W̃ e
nc) is the work done by

generalized non-conservative internal (external) forces.
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By combining Eqs. (4.3.25)-(4.3.28), it is possible to obtain
the expression of the MWE theorem stating that the change in
the generalized mechanical energy ẼM = ẼK + Ẽi

P + Ẽe
P of the

system is equal to the work W̃nc done by all the generalized
non-conservative forces acting on it:

∆ẼM = ∆ẼK + ∆Ẽi
P + ∆Ẽe

P = W̃ i
nc + W̃ e

nc. (4.3.29)

Specifically, the change in the kinetic energy and in the internal
and external potential energies can be computed as:

∆ẼK = 1
2Mu̇f · u̇f − 1

2Mu̇i · u̇i, (4.3.30)

∆Ẽi
P = −W̃e, (4.3.31)

∆Ẽe
P = −W̃pe, (4.3.32)

whereas the work done by generalized non-conservative internal
and external forces can be evaluated as:

W̃ i
nc = W̃rd + W̃ri, (4.3.33)

W̃ e
nc = W̃p. (4.3.34)

In the previous equations, u̇i (u̇f ) represents the relative
generalized velocity vector computed at the initial (final) time
ti (tf ) of a generic time interval, W̃e and W̃pe are the amounts
of work done by generalized internal and external elastic forces,
respectively, whereas W̃rd, W̃ri, W̃p represent the amounts of
work performed by generalized internal rate-dependent and rate-
independent hysteretic forces and by generalized external forces,
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respectively. In particular, they can be computed as follows:

W̃e = −
∫ uf

ui

fe · du, (4.3.35a)

W̃pe = −
∫ Tuf

Tui

[(
TT

)−1
pe

]
· d (Tu) , (4.3.35b)

W̃rd = −
∫ uf

ui

frd · du, (4.3.35c)

W̃ri = −
∫ uf

ui

fri · du, (4.3.35d)

W̃p = +
∫ Tuf

Tui

[(
TT

)−1
p

]
· d (Tu) , (4.3.35e)

where ui (uf ) is the relative generalized displacement vector
evaluated at the initial (final) time ti (tf ) of a generic time
interval.

For the reader’s convenience, in Appendix D, we have
rewritten Eqs. (4.3.35a)-(4.3.35d) to express the different work
components of the system, namely W̃e, W̃pe, W̃rd, W̃ri, as the
sum of contributions respectively computed with reference to
the generalized force acting on the ith element, that is, W (i)

e ,
W

(i)
pe , W (i)

rd , W (i)
ri .

Remark It is important to note that the work done by generalized ex-
ternal (internal) force vectors needs to be evaluated by consid-
ering the (relative) generalized displacement vector u = T u
(u). In addition, we can also observe that the work computed
by using Eqs. (4.3.35a)-(4.3.35d) is negative since the general-
ized internal forces and the generalized conservative external
ones act in a direction opposite to the one of the motion. Con-
versely, the work evaluated by Eq. (4.3.35e) may be positive
or negative.

Finally, taking into account that the generalized mechanical
energy of the system is converted (dissipated) into the general-
ized internal energy ẼI due to the work done by all the gener-
alized non-conservative internal forces, it is possible to write:

W̃ i
nc = −∆ẼI = −∆(ẼI)rd − ∆(ẼI)ri, (4.3.36)

and, consequently, Eq. (4.3.29) can be rewritten as:

∆ẼM + ∆ẼI = W̃ e
nc. (4.3.37)
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4.3.4.2 SDoF Hysteretic Mechanical Systems
m

u

Figure 4.21. SDoF hysteretic
mechanical system.

The results previously shown are now specialized for SDoF
hysteretic mechanical systems. Specifically, the selected general
family of SDoF hysteretic mechanical systems is illustrated in
Fig. 4.21. Such a model consists of a mass m connected with
three different types of elements in parallel:

• an elastic spring;

• a rate-dependent hysteretic element;

• a rate-independent hysteretic spring.

Denoting by u, u̇ and ü the generalized displacement, velocity
and acceleration, respectively, the nonlinear equilibrium equa-
tion of the system having mass m can be derived from the gen-
eral form of the Newton’s second law:

fR = dq

dt
, (4.3.38)

where fR denotes the resulting force acting on the mass and q
the momentum. Considering the mass as a constant quantity
over time, we can obtain the well known equation of motion:

fR = mü. (4.3.39)

The resulting force fR, introduced in Eq. (4.3.38), can be
evaluated considering the free body diagram in Fig. 4.22, where
all forces acting on the mass are illustrated; therefore,

fR = −fe(u)−frd(u̇)−fri(u)+p(t) = −f(u, u̇)+p(t), (4.3.40)

where fe (fri) is the generalized elastic (rate-independent hys-
teretic) force exerted on the elastic (rate-independent hysteretic)
element, assumed to be a function of the generalized displace-
ment u. Furthermore, frd is the generalized rate-dependent hys-
teretic force exerted on the rate-dependent hysteretic element,
expressed as a function of the generalized velocity u̇; finally, p is
the generalized external force acting on the mass and depending
on time t.

The forces exerted by the three elements on the mass have
a negative sign since they tend to bring the system back to its
equilibrium position; on the contrary, the generalized external
force p(t) is assumed to be positive if having the same direction
of the generalized displacement u.
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Figure 4.22. Free body diagram
of the SDoF hysteretic mechan-
ical system.
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The equation of motion for the general family of SDoF hys-
teretic mechanical systems illustrated in Fig. 4.21, can be easily
obtained combining Eqs. (4.3.39) and (4.3.40):

mü+ frd(u̇) + fri(u) + fe(u) = p(t). (4.3.41)

The numerical solution of Eq. (4.3.41), performed by employing
a suitable time integration method [86], requires the following
two initial conditions:

u(0) = u0,

u̇(0) = u̇0,

where u0 and u̇0 are, respectively, the generalized displacement
and velocity of the SDoF hysteretic mechanical system at the
beginning of the analysis.

Modified Work-Energy Theorem We now proceed to spe-
cialize the MWE theorem previously outlined to SDoF hysteretic
mechanical systems. Although the theorem is well known in
standard textbooks of physics [43], it is instructive to briefly
recall the basic assumptions underlying its derivation mainly to
introduce the relevant notation adopted in the sequel.

By integrating Eq. (4.3.39) in a generalized displacement
interval [ui, uf ], where ui and uf denote the initial and the final
generalized displacements respectively, one obtains:

W =
∫ uf

ui

fR du =
∫ uf

ui

mü du, (4.3.42)

where W represents the generalized work performed on the mass
by the resulting force fR.

Denoting by u̇i (u̇f ) the velocity of the mass at the begin-
ning (end) of the interval of interest, the right-hand side of Eq.
(4.3.42) can be further elaborated upon by writing:∫ uf

ui

mü du =
∫ u̇f

u̇i

mu̇ du̇ = 1
2m(u̇2

f − u̇2
i ) = ∆EK ,

where ∆EK is defined as the variation of generalized kinetic
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energy EK .
In conclusion, Eq. (4.3.42) can be rewritten as:

W = ∆EK , (4.3.43)

stating that the variation in generalized kinetic energy of a sys-
tem is equal to the generalized work done by all the generalized
forces acting on it. This classical result is known in physics as
the WE theorem [43].

In turn, the generalized work W can be expressed as the
sum of two contributions:

W = Wc +Wnc, (4.3.44)

in which Wc (Wnc) is the generalized work related to the gen-
eralized conservative (non-conservative) forces. In this respect,
we recall that the former (latter) represent forces for which the
integral along a closed displacement path is equal to (different
from) zero.

Denoting by EP the generalized potential energy, defined
as:

∆EP = −Wc, (4.3.45)

one obtains the general expression of the MWE theorem by com-
bining Eqs. (4.3.43)-(4.3.45):

∆EK + ∆EP = ∆EM = Wnc. (4.3.46)

The previous equation states that the sum of the varia-
tion of generalized kinetic and potential energy, usually called
generalized mechanical energy EM , is equal to the general-
ized work done by all the non-conservative forces acting on the
mass. In particular, if the generalized work related to the non-
conservative forces is zero, the generalized mechanical energy
EM of the system is constant.

To be specific let us make reference to the hysteretic me-
chanical system shown in Fig. 4.21. The only generalized con-
servative force is the one exerted by the elastic spring fe (Fig.
4.22), and the related generalized work provides:

Wc = We = −
∫ uf

ui

fe(u) du. (4.3.47)

On the other hand, the generalized work done on the mass
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Figure 4.23. Graph of the
generalized restoring: (a) lin-
ear elastic force-displacement
−fe(u) and elastic work We;
(b) hysteretic rate-dependent
force-displacement −frd(u̇) and
rate-dependent work Wrd; (c)
hysteretic rate-independent
force-displacement −fri(u) and
rate-independent work Wri;
(d) generalized external force-
displacement p(t) and external
work Wp.
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by the generalized non-conservative forces, can be expressed as
the sum of two contributions:

Wnc = W int
nc +W ext

nc , (4.3.48)

where W int
nc (W ext

nc ) represents the work done by the generalized
non-conservative internal (external) forces. Specifically, the for-
mer is associated with the generalized non-conservative internal
forces, namely the generalized forces exhibited by the hysteretic
elements (Fig. 4.22), and can be evaluated as:

W int
nc = Wrd+Wri = −

∫ uf

ui

frd(u̇) du−
∫ uf

ui

fri(u) du, (4.3.49)

where Wrd (Wri) is the generalized work done by the generalized
rate-dependent (rate-independent) hysteretic force on the mass
m.
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Furthermore, the work W ext
nc done by the generalized non-

conservative external force is given by:

W ext
nc = Wp =

∫ uf

ui

p(t) du. (4.3.50)

It is clear from Eqs. (4.3.49)-(4.3.50) that, Wrd and Wri

are resisting works (W < 0), whereas Wp can be both resisting
or motor work (W > 0), depending on the relationship between
the sign of the generalized external force p(t) and the generalized
displacement u(t) at a specific time.

Figure 4.23a graphically shows the generalized restoring
force −fe(u) (the force acting on the mass) versus the gener-
alized displacement for the elastic force and also the associated
work that can be calculated by means of Eq. (4.3.47).

Similarly, Fig. 4.23b (Fig. 4.23c) shows the generalized
restoring force versus the generalized displacement for the rate-
dependent −frd(u̇) (rate-independent −fri(u)) hysteretic force
and the related work that can be evaluated by using Eq. (4.3.49).

Finally, in Fig. 4.23d, it is shown a generic generalized ex-
ternal force p(t) versus the generalized displacement and the
work associated with the external force that can be computed
by means of Eq. (4.3.50).

Eq. (4.3.46) can be further elaborated upon by using Eq.
(4.3.48) as:

∆EM = W int
nc +W ext

nc .

At this point, due to the work of the non-conservative internal
forces W int

nc , one naturally wonders which kind of energy the
variation of generalized mechanical energy ∆EM is associated
with.

The answer to this question is provided by the generalized
internal energy EI of the system, a concept mainly related to
the energy at a molecular level and/or thermal energy of the
system, which the generalized mechanical energy is converted
to. In particular, it is possible to write that:

W int
nc = −∆EI = −∆(EI)rd − ∆(EI)ri.

According to this interpretation, the total amount of energy
of an hysteretic mechanical system is equal to the work done
by all the generalized non-conservative external forces acting
on it; consequently, the single contribution of the total energy
can change over time, as a result of the transformations of one
type of energy into the other, but leaving constant the sum
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of the separate contributions. In other words, the sum of the
variation between generalized mechanical and internal energy of
the system is equal to the work done by the external force:

∆EM + ∆EI = Wp.
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This chapter offers a thorough examination of various aspects
of hysteretic mechanical systems and their dynamic responses.
The initial section focuses on complex hysteretic mechanical
responses, discussing dimensional systems and the process of
nondimensionalization, followed by an analysis of frequency re-
sponse characteristics.

Subsequent sections investigate the influence of asymmetry
in hysteretic systems, providing detailed insights into the mathe-
matical models utilized, the properties of the analyzed systems,
and the numerical results obtained. A discussion on the fre-
quency response of negative stiffness metamaterials is included,
encompassing both mathematical modeling and specific system
analyses.

The chapter further explores hysteretic rocking systems, ad-
dressing their dimensional characteristics, the influence of shape
types, and the responses achieved through the combination of
different shapes. It concludes with an investigation into the dy-
namic response of MDoF hysteretic mechanical systems, em-
phasizing the application of the Krylov algorithm and the key
phenomena encountered in these systems. Finally, the chapter
examines the work and energy components within hysteretic sys-
tems, providing a comprehensive understanding of their behav-
ior and implications.

Through this organized approach, the chapter aims to pro-
vide a comprehensive understanding of hysteretic mechanical
systems and their behaviors.

113



Complex Hysteretic Responses 114

Section 5.1

Frequency-Response Curves for Rate-
Independent Hysteretic Mechanical
Responses of Complex Shape

The analytical modeling and prediction of the response of hys-
teretic systems is an area of growing interest in physics, engineer-
ing, and material science since hysteresis is an almost ubiquitous
nonlinear phenomenon.

For instance, electrical systems often exhibit nonlinear hys-
teretic behavior, a peculiar feature common to magnetic ones
as well [92]. Analogously, the cardiovascular system, along with
other biological systems, also exhibits a nonlinear response, hav-
ing a hysteretic nature, to changes in blood pressure [101]. Me-
chanical systems such as engines and machines, may exhibit
nonlinear hysteretic behavior as a result of the nonlinear be-
havior of the materials used in their construction [11, 78, 82].
Finally, civil engineering structures exhibit nonlinear hysteretic
behavior when exposed to large amplitude vibrations due, e.g.,
to wind loads or earthquakes. Moreover, hysteresis is often de-
liberately incorporated into the system to influence its behavior
in a controlled manner [22, 25, 67].

The occurrence of hysteresis in such a wide range of mate-
rials and systems used in different fields underscores the impor-
tance of understanding the influence of hysteresis in the design
and analysis of structures subjected to cyclic loading. An accu-
rate modeling of hysteresis is crucial for researchers and design-
ers to better grasp and predict the behavior of systems under
different conditions, since this can significantly impact the de-
sign and optimization of different devices and processes.

Over the years, many mathematical models have been de-
veloped to accurately reproduce experimentally measured hys-
teretic behaviors. Focusing on mechanical hysteresis only, some
of the well-known phenomenological models include the mod-
els by Bouc and Wen [9, 93], by Baber and Noori [5, 13], by
Preisach [69], by Vaiana et al [85, 87] and by Graesser and Coz-
zarelli [35]. However, one of the main limitations of these models
is their inability to capture different types of hysteretic behav-
ior in a unified manner. In fact, each model is most effective at
modeling systems with specific hysteretic behavior and may not
be accurate for other complex loop shapes. Additionally, the pa-
rameters of such models do not always have a clear mechanical
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interpretation, making it challenging to determine their values
only on the basis of physical experiments. Consequently, it is
often necessary to use a combination of experimental testing
and numerical optimization techniques to accurately estimate
the parameters of the adopted model. This makes it difficult
to apply these models to real-world systems without significant
computational resources and experimental data.

To overcome these difficulties, Vaiana and Rosati [84] intro-
duced a new approach for modeling rate-independent hysteretic
behavior in mechanical systems and materials (Section 4.3.2).
Upon classifying complex hysteresis loops, ranging from asym-
metric to flag-shaped, they proposed a novel rate-independent
hysteretic model, denominated VRM, having an exponential na-
ture and allowing for closed-form expressions in the evaluation
of the output variable. As discussed in Section 4.3.2, the VRM
enables uncoupled modeling of the loading and unloading phases
and allows for a straightforward identification procedure due to
the clear interpretation of the involved parameters. More re-
cently Vaiana and Rosati [83], improved their original model by
formulating the VRM+A, and proposed in addition a differential
formulation, namely VRM+D, in order to allow for its use in the
field of nonlinear dynamics. To sum up both the original and the
improved model formulated by Vaiana and Rosati address the
difficulties associated with modeling hysteretic behavior quite
efficiently and offer a practical solution for analyzing hysteretic
mechanical systems subjected to time-periodic inputs.

Hence, it is natural to evaluate the adequacy of the VRM+D
in addressing the search for periodic solutions of hysteretic me-
chanical systems and evaluating their stability and bifurcation.
In the literature both analytical and numerical techniques have
been used to study this phenomenon; to the first class belongs
the method of slowly varying parameters [41] and the harmonic
balance method [96, 97]. They have been used to obtain the
steady-state dynamics of SDoF hysteretic mechanical systems
subjected to time-periodic forcing input. Interestingly, it has
been found that the response of these systems can be multival-
ued and include jumps, this contradicts a widely-held belief in
the early sixties according to which all hysteretic systems should
have had stable and single-valued frequency response curves [19,
39].

On the other hand, when dealing with strong nonlineari-
ties, such as those found in hysteretic mechanical systems, and
in situations where global dynamic behaviors are involved, nu-
merical techniques are often necessary. Some of these techniques
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Figure 5.1. Dimensional (a) and
non-dimensional (b) SDoF hys-
teretic mechanical systems.
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include frequency-domain, time-domain, and frequency/time-
domain methods. A well-established and powerful numerical
strategy to find periodic solutions and determine their stabil-
ity and bifurcations is the Poincaré map-based method devel-
oped in [50], often used in conjunction with Floquet theory (de-
scribed in Section 4.3.3). Specifically, this method was applied
to investigate the response and stability of elastoplastic oscilla-
tors. Additionally, in a later work by Lacarbonara and Vestroni
[49], the responses and stability of SDoF hysteretic mechanical
systems endowed with Bouc-Wen and Masing hysteretic mod-
els were examined using the Poincaré map-based method in the
time-domain.

In this section, we show how the unifying modeling features
of the VRM+D [83] are carried over to an accurate prediction
of periodic solutions for mechanical systems characterized by
hysteretic response of complex shape. The result is obtained
by combining the VRM+D (Section 4.3.2) with the Poincaré
map continuation method (Section 4.3.3) and systematically
constructing a series of frequency-response curves. By means
of such curves the steady-state response, stability, and bifurca-
tion of the systems are illustrated and discussed for each shape
of the assumed hysteretic behavior.

Subsection 5.1.1

Dimensional Equations of Motion

This section focuses on formulating the nonlinear equations of
motion for a general class of SDoF hysteretic mechanical sys-
tems. Specifically, we derive these equations in their dimensional
form.

The dimensional SDoF hysteretic mechanical system (shown
in Fig. 5.1a) consists of a mass m connected in parallel to three
distinct types of elements:

• a linear elastic spring;

• a linear rate-dependent hysteretic element;

• a rate-independent hysteretic spring.
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Denoting by u, u̇ and ü the generalized displacement, ve-
locity and acceleration, respectively, the dimensional equations
of motion of the SDoF hysteretic mechanical system (Fig. 5.1a)
can be derived from the general form of the Newton’s second
law as:

mü+ cu̇+ ku+ fri = p0 cos (2πfpt) , (5.1.1)

where c is the viscous damping coefficient, k is the stiffness of the
elastic spring, fri is the generalized rate-independent hysteretic
force exerted on the hysteretic element, whereas p0 (fp) is the
amplitude (frequency) of the input force.

According to the VRM+D (Section 4.3.2) the generalized
rate-independent hysteretic force fri in Eq. (5.1.1) is governed
by the following ODE:

ḟri = {ke (u) + kb + αf0 + sα [fe (u) + kbu− fri]} u̇, (5.1.2)

where s := sgn (u̇), and the generalized function ke is given by:

ke (u) = β1β2e
β2u + 4γ1γ2

e−γ2(u−γ3)[
1 + e−γ2(u−γ3)

]2 .

Similarly, the generalized function fe is given by:

fe (u) = β1
(
eβ2u − 1

)
+ 2γ1

1 − e−γ2(u−γ3)

1 + e−γ2(u−γ3) .

As seen in Section 4.3.2, the model parameters in Eq. (5.1.2)
can be updated depending on the sign of the velocity u̇. In partic-
ular, kb = k+

b

(
k−

b

)
, f0 = f+

0
(
f−

0
)
, α = α+ (α−), β1 = β+

1
(
β−

1
)
,

β2 = β+
2

(
β−

2
)
, γ1 = γ+

1
(
γ−

1
)
, γ2 = γ+

2
(
γ−

2
)
, γ3 = γ+

3
(
γ−

3
)

if
s > 0 (s < 0).

Subsection 5.1.2

Non-dimensionalization Procedure

In this section, we follow a systematic procedure consisting of
five steps (Section 2.5) to obtain the non-dimensional form for
the system of interest and a non-dimensional version of the
VRM+D for the evaluation of the hysteretic variable.

Non-dimensionalization, as we have seen in Section 2.5, is a
fundamental technique employed in the analysis of systems gov-
erned by ODEs. There are many reasons for using such a tech-
nique. Firstly, this approach simplifies the problem by reduc-
ing the number of the involved parameters. This simplification
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makes it easier to analyze and grasp the relationship between
the parameters of the system. Secondly, non-dimensionalization
allows for the comparison of different systems with varying phys-
ical parameters on the same scale, facilitating the identification
of common trends and properties across different systems. More-
over, it helps to eliminate the units of measurement, making the
problem more general and independent of specific units [80].

Although there are several approaches to non-dimensional-
ize an equation, see, e.g., [80], the non-dimensionalization pro-
cedure can be systematically divided into five distinct steps.
These sequential steps include; i) identifying all independent
and dependent variables; ii) replacing all variables with non-
dimensional quantities based on characteristic units; iii) divid-
ing the obtained equation by the coefficient of the highest-order
derivative; iv) selecting the characteristic unit for each variable
so that potential auxiliary conditions become as simple as pos-
sible; v) rewriting the equation in terms of new dimensionless
quantities.

By applying these steps to the system of differential equa-
tions represented by Eqs. (5.1.1) and (5.1.2) we have that:

i) The independent variable is the time t whereas the general-
ized displacement u, and the generalized rate-independent
hysteretic force fri are the dependent variables.

ii) We introduce as non-dimensional variables:

τ := t− tr
ts

, x := u− ur

us
, z := fri − fr

fs
.

These quantities are defined as the difference between the
dimensional variable and a reference value, (i.e., tr, ur and
fr), scaled by a dimensional scaling factor (i.e., ts, us and
fs). Based on these definitions, the dimensional variables
can be expressed as follows:

t = tsτ + tr, u = usx+ ur, fri = fsz + fr. (5.1.3)

Now it is possible to replace the dimensional variables in
Eqs. (5.1.1) and (5.1.2) with the non-dimensional ones, by
using Eqs. (5.1.3). In particular, we obtain for Eq. (5.1.1):

mus

t2s

d2x

dτ2 + cus

ts

dx

dτ
+ k (usx+ ur) + (fsz + fr) =

= p0 cos [2πfp (tsτ + tr)] .
(5.1.4)
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On the other hand, if we plug Eqs. (5.1.3) into Eq. (5.1.2),
we obtain:

fs

ts

dz

dτ
= {ke (usx+ ur) + kb + αf0+

sgn
(
us

ts

dx

dτ

)
α [fe (usx+ ur) + kb (usx+ ur) +

− (fsz + fr)]} us

ts

dx

dτ
. (5.1.5)

iii) The coefficients of the highest-order term in Eq. (5.1.4)
and (5.1.5) are mus

t2
s

and fs

ts
, respectively. Hence, upon di-

viding Eq. (5.1.4) by mus

t2
s

and Eq. (5.1.5) by fs

ts
one ob-

tains:

ẍ+ cts
m
ẋ+ kt2s

m
x+ fst

2
s

mus
z + t2s

mus
(kur + fr) =

= p0t
2
s

mus
cos [2πfp (tsτ + tr)] ,

and

ż = us

fs
{ke (usx+ ur) + kb + αf0+

+ sgn
(
us

ts
ẋ

)
α [fe (usx+ ur) + kb (usx+ ur) +

− (fsz + fr)]} ẋ.

where the superimposed dot now represents the derivative
with respect to the non-dimensional time τ .

iv) To simplify the final dimensionless expressions as much as
possible, we impose that the reference values tr, ur, fr are
equal to zero. In such a way we obtain:

ẍ+ cts
m
ẋ+ kt2s

m
x+ fst

2
s

mus
z = p0t

2
s

mus
cos (2πfptsτ) , (5.1.6)

and

ż = us

fs
{ke (usx) + kb + αf0+ sgn

(
us

ts
ẋ

)
α [fe (usx) + kbusx− fsz]} ẋ. (5.1.7)
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Thus, it is only necessary to determine the scaling factors
ts, us and fs so that Eqs. (5.1.6) and (5.1.7), and potential
auxiliary conditions, become as simple as possible. One
possible choice is to set the coefficients in front of x and z
in Eq. (5.1.6) equal to one:

kt2s
m

= 1 → ts =
√
m

k
,

fst
2
s

mus
= 1 → k = fs

us
.

A further assumption concerning Eq. (5.1.7) can be made
by requiring that:

sgn
(
us

ts
ẋ

)
= sgn (u̇) ⇒ us

ts
> 0.

Let α+ = α− = α and f+
0 = f−

0 = f0. Knowing, from the
general formulation of the model by Vaiana and Rosati
[83, 84], that α > 0, and imposing that f0 > 0, we can
define the scaling factors as:

us := 1
α
, fs := f0,

so as to obtain:
us

ts
=

√
f0

αm
> 0.

As a result, the other non-dimensional coefficients are de-
fined as follows:

2ζ := cts
m

= c√
mk

,

F := p0t
2
s

mus
= p0

f0
,

Ω := 2πfpts = 2πfp

√
m

k
.

v) The final non-dimensional SDoF hysteretic mechanical
system (see Fig. 5.1b) is ruled by the following ODEs:

ẍ+ 2ζẋ+ x+ z = F cos (Ωτ) , (5.1.8)
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Figure 5.2. Dimensional hystere-
sis loops simulated by using the
VRM+D parameters in Table
5.1.

and

ż =
{
ke

(
x
α

)
f0α

+ kb

f0α
+ 1 + s

[
fe

(
x
α

)
f0

+ kb

f0α
x− z

]}
ẋ.

(5.1.9)

5.1.2.1 Non-dimensional VRM+D
The non-dimensional form of the VRM+D in Eq. (5.1.9) can
be further simplified if we define two new non-dimensional func-
tions:

κe (x) :=
ke

(
x
α

)
f0α

and ϕe (x) :=
fe

(
x
α

)
f0

.
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Figure sgn(u̇) kb f0 α β1 β2 γ1 γ2 γ3

5.2a + 0.5 2.0 10 0.0 0.0 0.0 0.0 0.0
− 0.0 2.0 10 0.0 0.0 0.0 0.0 0.0

5.2b + 0.5 4.0 10 0.5 1.2 1.5 -2.0 -2.0
− 0.0 4.0 10 -0.5 -0.8 1.5 -2.0 2.0

5.2c + 0.5 2.0 10 0.0 0.0 0.5 4.0 0.5
− 0.5 2.0 10 0.0 0.0 0.5 8.0 -1.0

5.2d + 0.5 0.5 10 0.1 2.0 1.0 40 0.0
− 0.5 0.5 10 -0.1 -2.0 1.0 40 0.0

Table 5.1. Dimensional VRM+D parameters adopted to simulate
the hysteresis loops in Figure 5.2.

Figure 5.3. Non-dimensional
hysteresis loops simulated by
using the VRM+D parameters
in Table 5.2.
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Figure sgn(ẋ) χ1 χ2 χ3 χ4 χ5 χ6

5.3a + 0.0 0.0 0.0 0.0 0.0 0.025
− 0.0 0.0 0.0 0.0 0.0 0.0

5.3b + 0.125 0.12 0.75 -0.2 -20.0 0.0125
− -0.125 -0.08 0.75 -0.2 20.0 0.0

5.3c + 0.0 0.0 0.5 0.4 5.0 0.025
− 0.0 0.0 0.5 0.8 -10.0 0.025

5.3d + 0.2 0.2 4.0 4.0 0.0 0.1
− -0.2 -0.2 4.0 4.0 0.0 0.1

Table 5.2. Non-dimensional VRM+D parameters adopted to simu-
late the hysteresis loops in Figure 5.3.

Along with these non-dimensional functions, we can define six
non-dimensional model parameters such as:

χ1 := β1

f0
, χ2 := β2

α
, χ3 := 2γ1

f0
,

χ4 := γ2

α
, χ5 := αγ3, χ6 := kb

f0α
.

(5.1.10)

Some of these quantities appear in the non-dimensional function
κe (x):

κe (x) = χ1χ2e
χ2x + 2χ3χ4

e−χ4(x−χ5)[
1 + e−χ4(x−χ5)

]2 ,

and in the non-dimensional function ϕe (x):

ϕe (x) = χ1 (eχ2x − 1) + χ3
1 − e−χ4(x−χ5)

1 + e−χ4(x−χ5) .

Finally, the general form of the non-dimensional VRM+D
can be expressed as follows:

ż = {κe (x) + χ6 + 1 + s [ϕe (x) + χ6x− z]} ẋ. (5.1.11)

Remark It is worth noting that the non-dimensionalization led to a
reduction in the number of parameters upon which the hys-
teretic mechanical system is dependent, from 21 in the model
depicted in Fig. 5.1a to 15 in the one illustrated in Fig. 5.1b.
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On account of the reduced number of parameters in the
non-dimensional model, it is natural to ask if some information
has been lost in the description of the system behavior, an is-
sue that, to the best of our knowledge, has not been addressed
in the specialized literature. For this reason, we have decided
to compare the loop shapes predicted by the dimensional and
non-dimensional form of the VRM+D. Specifically, by using the
dimensional parameters given in Table 5.1 and imposing a si-
nusoidal generalized displacement having an amplitude of 1.5 m
and a frequency of 1 Hz, we obtained the dimensional hysteresis
loops in Fig. 5.2. On the other hand, for the non-dimensional
model, it is easy to derive the non-dimensional parameters listed
in Table 5.2 by applying Eqs. (5.1.10). These parameters are
used in Eq. (5.1.11) to derive the non-dimensional hysteresis
loops in Fig. 5.3.

Remark It is important to note that for both dimensional and non-
dimensional loops, the classification proposed in [84] does ap-
ply. In fact, according to their proposal hysteresis loops can
be classified into four main categories:

• Shape type S1: Characterized by hysteresis loops lim-
ited by two straight lines (Figs. 5.2a and 5.3a).

• Shape type S2: Characterized by hysteresis loops lim-
ited by two curves with no inflection point (Figs. 5.2b
and 5.3b).

• Shape type S3: Characterized by hysteresis loops lim-
ited by two curves with one inflection point (Figs. 5.2c
and 5.3c).

• Shape type S4: Characterized by hysteresis loops lim-
ited by two curves with two inflection points (Figs. 5.2d
and 5.3d).

In the sequel we shall derive the Frequency-Response Curves
(FRCs) for the four categories of loop shapes.

Subsection 5.1.3

Description of the Analyzed Systems

The four SDoF hysteretic mechanical systems under analysis
are:

1. System S1: In the first system, both upper and lower lim-
iting curves (red dashed lines in Figs. 5.2 and 5.3) are
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represented by straight lines (shape type S1). This system
exhibits asymmetric behavior due to the different values
of χ+

6 and χ−
6 while no other parameters contribute to the

hysteretic behavior.

2. System S2: The second system has a more complex hys-
teretic behavior, since all parameters are different from
zero. Both upper and lower limiting curves has a pro-
nounced curvature due to the contributions of χ1, χ2,
χ3, χ4, and χ5 but no inflection points (shape type S2).
The asymmetry between the loading and unloading phases
arises from distinct values of χ1, χ2, and χ6 during each
phase.

3. System S3: For the third system, both upper and lower
limiting curves are characterized by one inflection point
(shape type S3). Furthermore, this system exhibits asym-
metry between upper and lower limiting curves, with dif-
ferent values of χ4 and χ5 causing the hysteresis loop to
be wider in one direction than in the other.

4. System S4: The fourth system has a symmetric hystere-
sis loop shape, with both upper and lower limiting curves
exhibiting two inflection points (shape type S4) and sig-
nificant stiffening effects. The non-zero values of χ1, χ2,
χ3, and χ4 all contribute to the complex flag-shaped be-
havior of this system. On the other hand, the high value
of χ6 contribute to the stiffening behavior.

5.1.3.1 Methods
We analyze the four SDoF hysteretic mechanical systems and
obtain their FRCs using the procedure described in Section 4.3.3
(the pseudo-code can be found in Table 4.3). The continuation
parameter is Ω, while the non-dimensional amplitude of the in-
put force F remains constant. Furthermore, the parameters used
in the procedure are listed in Table 4.4.

In particular, T/∆τ is the number of steps that are numer-
ically used to evaluate the Poincaré map using the MATLAB
function ode45. The parameters δ1 and δ2 are introduced in
Eq. (4.3.12) for the evaluation of the Jacobian matrix of the
Poincaré map, and tol is the value of the tolerance imposed for
the stopping criterion of the Newton-Raphson method (|r(k)| <
tol). The last four parameters in Table 4.4 are used for the step
length control using Eqs. (4.3.15) and (4.3.16).
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Figure 5.4. FRCs for SDoF hys-
teretic mechanical systems hav-
ing S1 (a), S2 (b), S3 (c), S4
(d) hysteresis loops and different
amplitudes F of the input force.
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The procedure provides a fixed-point of the Poincaré map,
which is used as the initial condition to integrate Eqs. (5.1.8)
and (5.1.11) again in order to obtain the FRCs shown in Fig. 5.4,
where max|x| is plotted against Ω, and those in Fig. 5.12, ex-
pressing the maximum displacement, velocity, transmitted force,
and normalized transmitted force. In Figs. 5.4 and 5.12 the gray
dot markers represents the maximum value for the FRC.

To determine the stability of the solutions and their bifur-
cations in the 3D state-space, the evolution of the three Floquet
multipliers associated with the 3×3 monodromy matrix is exam-
ined. The solid lines in Figs. 5.4 and 5.12 indicate stable periodic
solutions, where the magnitude of their complex-valued Floquet
multipliers is less than 1. Conversely, dashed lines correspond
to unstable responses for which the magnitude of at least one
of the multipliers exceeds 1. In Fig. 5.4 red diamond markers
represent the bifurcation points.
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Figure 5.5. Validation of the
results in Fig. 5.4 through
NLTHAs (dot markers) for dif-
ferent amplitudes F of the input
force.

Finally, the accuracy of the periodic solutions estimated by
the continuation algorithm is verified by performing Nonlinear
Time History Analyses (NLTHAs), that is, directly integrating
Eqs. (5.1.8) and (5.1.11), and analyzing the stable solution in-
dicated by the dot marker in Fig. 5.5. In Appendix E additional
details can be found on the number of maximum, minimum and
average iterations required by the Newton-Raphson method to
achieve convergence for all numerical experiments.

Subsection 5.1.4

Frequency-Response Curves: Stability and Bi-
furcation

In this section, we discuss a comprehensive examination of the
FRCs of the four SDoF hysteretic mechanical systems subjected
to time-periodic input. The assumed hysteretic behaviors are the
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Figure 5.6. System S1: FRC as-
suming as amplitude of the in-
put force F = 1.2 (a) and peri-
odic orbit in the state-space at
Ω = 1.01725 (b).
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ones previously described and depicted in Fig. 5.3. This compre-
hensive analysis provides valuable insights into the stability and
bifurcation characteristics of the analyzed systems.

We analyze the hysteretic mechanical system depicted in
Figure 5.1b with four different hysteretic laws, namely those
whose loop shapes are obtained by applying the parameters
listed in Table 5.2. Each system is defined by Eqs. (5.1.8) and
(5.1.11), with the additional condition ζ = 0.

The results are organized in order to improve readability. In
particular, they are grouped according to loop shape typology,
and for each shape, a detailed description of the FRCs obtained
for different amplitudes of the input is provided, along with sta-
bility and bifurcation indications. Finally, for each system, sig-
nificant points of the FRCs are represented in state-space in
order to comment on specific results for particular amplitudes
and angular frequencies.

Furthermore, for the hysteresis loop S4 in Fig. 5.3d, four
additional FRCs are provided. These additional curves are ex-
pressed in terms of maximum velocity, acceleration, transmitted
force and normalized transmitted force, which can be useful in
various engineering applications.

5.1.4.1 System S1
In the following we present the outcomes of the investigation
conducted on System S1, as described in Section 5.1.3, using
different amplitudes of the input force F . The amplitudes of
interest are 0.5, 0.6, 0.8, 1.0, 1.1, 1.2.

Frequency-response curves For all tested levels of F , it can
be observed in Fig. 5.4a that the FRCs are bent to the left
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(indicating a softening nonlinearity) and globally stable within
the investigated range of F and Ω. Specifically:

• F = 0.5
Three resonance peaks are observed at angular frequencies
of 0.282694, 0.460423, and 1.25527.

• F = 0.6
Similarly to the previous case, three resonance peaks are
observed at angular frequencies of 0.282297, 0.466413, and
1.22085.

• F = 0.8
The observed resonance peaks increase to four, occurring
at angular frequencies of 0.200937, 0.282297, 0.461909, and
1.14957.

• F = 1.0
As in the previous case, four resonance peaks are observed
at angular frequencies of 0.200095, 0.279511, 0.455687, and
1.07779.

• F = 1.1
Four resonance peaks are still present, but they occur
within an angular frequencies range of (0.15, 1.05), specif-
ically at 0.155183, 0.278341, 0.452139, and 1.04455.

• F = 1.2
The four resonance peaks are located within the previ-
ous range, occurring at angular frequencies of 0.199027,
0.277747, 0.449525, and 1.01725. Hence, the first and last
two values become closer with respect to the case F = 1.1,
with the initial value of the first (second) pair increasing
(decreasing).

Orbits in the state-space It is of interest to examine the
state-space of the system at specific values of Ω and F . When
F = 1.2 and Ω = 1.01725, corresponding to the fourth reso-
nance peak, there is only one intersection with the FRC in Fig.
5.6a. This intersection indicates the existence of a unique stable
periodic solution for the system, with a maximum displacement
(max |x|) equal to 16.6649.

Figure 5.6b shows the shape of the periodic orbit in the
state-space, as well as its projections onto the planes (x, ẋ),
(x, z), and (ẋ, z). The figure also includes the fixed-point pro-
vided by the procedure (red dot) and the point corresponding
to the maximum displacement reported in the FRC (gray dot).
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Figure 5.7. Enlarged views of
the FRCs in Fig. 5.4b (system
S2) assuming as amplitude of
the input force F = 10.0 (a) and
F = 30.0 (b).
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Figure 5.8. System S2: FRC as-
suming as amplitude of the in-
put force F = 2.0 (a) and peri-
odic orbits in the state-space at
Ω = 1.05 (b).
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5.1.4.2 System S2
In the sequel we present the results obtained from the anal-
ysis of the System S2, as described in Section 5.1.3, under
different values of amplitudes for the input force F , that are
1.0, 2.0, 3.0, 10.0, 20.0, 30.0.

Frequency-response curves Making reference to the FRCs
in Fig. 5.4b one has:

• F = 1.0
At this level of load amplitude, it can be observed that the
FRC is slightly bent to the right (indicating an hardening
nonlinearity) and globally stable within the investigated
range of Ω.

• F = 2.0
By increasing the load value, the hardening behav-
ior of the FRC is accentuated. Furthermore, at points
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(1.04927, 30.5508) and (1.05482, 40.2793) the system ex-
hibits two fold bifurcations.

• F = 3.0
In this case, the behavior exhibited by the curve is of the
same type as the previous level of amplitude. Indeed, there
is a further increase in the hardening behavior of the FRC,
while the two fold bifurcations at points (1.06602, 32.0483)
and (1.08362, 46.3749) move slightly away.

• F = 10.0
In this case, there is a further increase in the harden-
ing behavior of the FRC. The two fold bifurcations at
points (1.15556, 39.3649) and (1.23174, 60.3052) move
further away. Furthermore, as shown in Fig. 5.7a, the
FRC loses its stability at A ≡ (0.3463, 11.8456) and B
≡ (0.346303, 11.7194) due to two fold bifurcations.

• F = 20.0
A further increase in the amplitude modifies the bifurca-
tion scenario, as the system exhibits two fold bifurcations
at points (1.25333, 44.6038) and (1.38267, 66.8305). In
addition, the unstable portion in the region of small Ω
is lost.

• F = 30.0
In this last case, there is a further increase in the
hardening behavior of the FRC. In particular, the
two fold bifurcations at points (1.33497, 47.8529) and
(1.50612, 70.3138) move further away. Moreover, as shown
in Fig. 5.7b, the FRC loses its stability again at points C
≡ (0.223514, 29.792) and D ≡ (0.223526, 29.7392) due to
two fold bifurcations.

Referring to the FRCs with an amplitude of 1.0, 2.0, 3.0, a series
of resonance peaks were observed in the range Ω ∈ (0.1, 0.4).
These peaks become less sharp when the force amplitude is in-
creased.

Orbits in the state-space The investigation of the state-
space at specific values of Ω and F is a matter of interest. In
particular, by observing the FRC obtained for the analyzed sys-
tem for F = 2.0 (Fig. 5.8a), it can be seen that there are three
intersections with the FRC at Ω = 1.05.

This indicates the existence of three periodic solutions for
the system of interest. Specifically, two stable orbits (labeled as
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Figure 5.9. System S3: FRC as-
suming as amplitude of the in-
put force F = 1.2 (a) and peri-
odic orbits in the state-space at
Ω = 1.01724 (b).

1.01 1.016 1.022 1.028 1.034 1.04

+

0

20

40

60

80

100

m
ax

jx
j

F = 1:2

a

c

b

B

A

(a) (b)

a and c in Fig. 5.8a), and one unstable solution (labeled as b in
Fig. 5.8a).

The shape of the periodic orbits in the state-space is il-
lustrated in Fig. 5.8b that also depicts the projections of the
periodic orbits onto the planes (x, ẋ), (x, z) and (ẋ, z) in the
state-space. Additionally, the orbits in Fig. 5.8b also include
the fixed-points provided by the procedure (red dots) and the
points corresponding to the maximum displacement reported in
the FRC (colored dots).

5.1.4.3 System S3
The following results are obtained by analyzing System S3, de-
scribed in Section 5.1.3, subjected to amplitudes of the input
force F equal to 0.5, 0.6, 0.8, 1.0, 1.1, 1.2.

Frequency-response curves The FRCs reported in Fig. 5.4c
show that:

• F = 0.5, 0.6, 0.8, 1.0, 1.1
For these amplitude of the input force it can be observed
that the FRCs are softening and globally stable within the
investigated range of Ω.

• F = 1.2
The FRC shows an accentuated softening behavior,
and two fold bifurcations are experienced at points
(1.01689, 75.7157) and (1.01819, 28.0416).

Orbits in the state-space Of particular interest is the ex-
ploration of the state-space at specific Ω and F values. In par-
ticular, by observing the FRC obtained for the system under
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Figure 5.10. Enlarged views of
the FRCs in Fig. 5.4d (system
S4) assuming as amplitude of
the input force F = 1.0, 2.0, 3.0
(a), F = 10.0 (b) and F = 20.0
(c)-(d).

consideration for F = 1.2 (Fig. 5.9a), it can be seen that there
are three intersections with the FRC at Ω = 1.01724.

This indicates the existence of three periodic solutions for
the system, specifically, two stable orbits (labeled as a and c in
Fig. 5.9a) and a unique unstable periodic solution (labeled as b
in Fig. 5.9a).

The shapes of the periodic orbits in state-space are illus-
trated in Fig. 5.9b, in which their projections onto the planes
(x, ẋ), (x, z), and (ẋ, z) are also shown. Additionally, the orbits
in Fig. 5.9b include the fixed-points provided by the procedure
(red dots) and the points corresponding to the maximum dis-
placement reported in the FRC (colored dots).

5.1.4.4 System S4
Let us now illustrate the results obtained by analyzing System
S4, as described in Section 5.1.3, under different amplitudes of
the input force F equal to 1.0, 2.0, 3.0, 10.0, 20.0, 30.0.
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Figure 5.11. System S4: FRC
assuming as amplitude of the in-
put force F = 3.0 (a) and peri-
odic orbits in the state-space at
Ω = 1.3214 (b).
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Frequency-response curves From the FRCs in Fig. 5.4d
one infers:

• F = 1.0
At this level of amplitude, the FRC exhibits a soft-
ening behavior. Additionally, the system undergoes
two fold bifurcations at points (1.54293, 4.61446) and
(2.56595, 0.457121). Moreover, a resonance peak is ob-
served at an angular frequency of 1.04696 (shown in Fig.
5.10a).

• F = 2.0
For this level of amplitude, the FRC exhibits an in-
termediate behavior between hardening and softening.
The system undergoes two fold bifurcations at points
(1.23972, 14.0108) and (2.18536, 0.6483). Furthermore, as
shown in Fig. 5.10a, the FRC loses stability at points A
≡ (0.990398, 0.494804) and B ≡ (1.00008, 0.364599) due
to two fold bifurcations, as shown in Fig. 5.10a. Three res-
onance peaks are also present at the angular frequencies
of 0.439879, 0.614078, and 0.990398 (shown in Fig. 5.10a).

• F = 3.0
The system exhibits an intermediate behavior between
hardening and softening of the FRC. Additionally, the sys-
tem undergoes a series of eight fold bifurcations (shown
at points A ≡ (1.31984, 19.1817), B ≡ (1.32162, 21.378),
C ≡ (1.20139, 13.4231), D ≡ (1.85713, 0.837714) in Fig.
5.11a, while, in Fig. 5.10a, at C ≡ (0.881828, 0.964232),
D ≡ (0.922575, 0.584871), E ≡ (0.582661, 0.455316), F
≡ (0.582676, 0.445658)). Finally, there are four resonance
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Figure F = 1 F = 2 F = 3
5.4d (1.5449, 4.64) (1.2727, 17.96) (1.3108, 22.33)
5.12a (1.5463, 7.81) (1.2748, 23.24) (1.3151, 28.84)
5.12b (1.5512, 10.47) (1.2753, 31.87) (1.3142, 46.81)
5.12c (1.5449, 10.41) (1.2727, 31.83) (1.3108, 46.79)
5.12d (1.5449, 10.41) (1.2727, 15.91) (1.3108, 15.59)

Table 5.3. Coordinates of the
peaks of the FRCs associated
with the system S4 for different
amplitudes F of the input force
(Figs. 5.4d and 5.12).

peaks corresponding to angular frequencies of 0.32768,
0.420242, 0.58274 and 0.881875 (shown in Fig. 5.10a).

• F = 10.0
For such an amplitude level the system exhibits a fully
hardening behavior of the FRC. The bifurcation sce-
nario of the system includes two fold bifurcations at
points (1.46291, 20.5305) and (1.6029, 30.9474). Addi-
tionally, the system undergoes two pitchfork bifurcations
at points A ≡ (0.610606, 4.48271) (supercritical) and B
≡ (0.567639, 4.21748) (subcritical) (shown in Fig. 5.10b).
The equilibrium paths that arise from these bifurcations
are stable until points B’ ≡ (0.567554, 4.24512) and B” ≡
(0.567562, 4.18991) where they lose stability through two
fold bifurcations (shown in Fig. 5.10b). Moreover, there
are six fold bifurcations at points C ≡ (0.45597, 8.23794),
D ≡ (0.445504, 8.01708), E ≡ (0.322458, 4.99206), F
≡ (0.324257, 5.07358), G ≡ (0.227272, 6.2892) and H
≡ (0.22834, 5.7705) in Fig. 5.10b.

• F = 20.0
At this level of amplitude, there is a further increase in
the hardening behavior of the FRC. Specifically, at points
(1.61803, 22.4509) and (1.89484, 35.1896), the two fold bi-
furcations move further apart. Additionally, as shown in
Figs. 5.10c and 5.10d, the stability of the FRC is lost at
points A ≡ (0.433459, 11.8114), B ≡ (0.43346, 11.8312),
C ≡ (0.265907, 16.5118) and D ≡ (0.265908, 16.4237),
due to four fold bifurcations.

• F = 30.0
Finally, for this amplitude level the FRC shows a
hardening behavior with only two fold bifurcations at
(1.74896, 23.782) and (2.12659, 37.5445).
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Figure 5.12. System S4: FRCs
in terms of maximum velocity
(a), acceleration (b), transmit-
ted force (c), and normalized
transmitted force (d) for differ-
ent amplitudes F of the input
force.
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Table 5.4. Coordinates of the
peaks of the FRCs associated
with the system S4 for different
amplitudes F of the input force
(Figs. 5.4d and 5.12).

Figure F = 10 F = 20 F = 30
5.4d (1.5831, 31.32) (1.8597, 35.60) (2.0785, 37.98)
5.12a (1.5463, 7.81) (1.8920, 58.32) (2.1212, 69.24)
5.12b (1.5908, 143.91) (1.8717, 289.6) (2.0931, 442.0)
5.12c (1.5834, 144.37) (1.8601, 291.2) (2.0780, 444.9)
5.12d (1.5834, 14.44) (1.8601, 14.56) (2.0780, 14.83)

In addition to the FRCs in Fig. 5.4d, which represent the varia-
tion of the maximum displacement as a function of the angular
frequency Ω for the S4 system, we have also obtained the addi-
tional FRCs shown in Fig. 5.12. We have not explicitly reported
the analogous FRCs related to the systems S1, S2, and S3 due
to space limitations and also because the S4 system, due to its
peculiar features, has been considered to be worth deserving a
greater attention.
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In particular, once the fixed-point of the Poincaré map is
obtained by further integrating the equations of motion using
the fixed-point as the initial condition, a series of significant
quantities can be obtained for the periodic orbit, such as:

• the maximum velocity of the obtained response (Fig.
5.12a);

• the maximum acceleration of the obtained response (Fig.
5.12b);

• the maximum transmitted force ftot = x+ z (Fig. 5.12c);

• the maximum normalized transmitted force ftot

F (Fig.
5.12d).

The stability and bifurcation behavior of the curves in Fig.
5.12 remain the same as previously described. However, it is
noted in Table 5.3-5.4 that, for different amplitude levels of the
input force F , the value of the angular frequency for which the
maximum value is obtained in the equivalent FRC does modify.

The observation that the FRCs for other quantities such as
maximum velocity, acceleration, and transmitted force are af-
fected by the amplitude level of the input force in a different
way than the maximum displacement is crucial for many engi-
neering applications.

Example As an example, in the design of mechanical systems, it is im-
portant to consider not only the maximum displacement but
also the maximum velocity and acceleration to ensure that
the system does not exceed its safe operating limits. Simi-
larly, in the analysis of civil and mechanical structures such as
bridges and motors, it is important to consider the maximum
transmitted force to ensure that the considered structure can
withstand the loads imposed on it.
Therefore, understanding how the amplitude of the input force
affects the value of the angular frequencies at which different
significant quantities reach their maximum value is critical for
the design and analysis of many physical systems.

Orbits in the state-space Examining the state-space for
specific values of Ω and F is an intriguing prospect. In par-
ticular, by observing the FRC obtained for the system under
consideration for F = 3.0 (Fig. 5.11a), it can be seen that there
are five intersections with the FRC at Ω = 1.3214.
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This indicates the existence of five periodic solutions for the
system, specifically, three stable orbits (labeled as a, c, and e
in Fig. 5.11a) and two unstable periodic solutions (labeled as b
and d in Fig. 5.11a).

The shape of the periodic orbits in the state-space are il-
lustrated in Fig. 5.11b in which the projections of the periodic
orbits onto the planes (x, ẋ), (x, z), and (ẋ, z) are reported. Ad-
ditionally, the orbits in Fig. 5.11b also include the fixed-points
provided by the procedure (red dots) and the points correspond-
ing to the maximum displacement reported in the FRC in Fig.
5.11a (colored dots).

Subsection 5.1.5

Conclusions

We analyzed the behavior of SDoF hysteretic mechanical
systems subjected to time-periodic input by combining the
VRM+D hysteretic model with a continuation procedure based
on Poincaré maps. By applying this approach to different types
of hysteresis loop shapes, we have shown its effectiveness in ac-
curately predicting the behavior of complex mechanical systems,
including their steady-state response, stability and bifurcation.
In particular, the bifurcation analysis provides valuable infor-
mation on the dynamics of the system under different loading
conditions and can help in the design of control strategies to
mitigate unwanted effects related to hysteresis.

For these reasons further studies will be conducted to ex-
plore the full potential of the proposed approach. In particular,
we will integrate the proposed procedure with algorithms able
to perform branch-switching and compute the bifurcation points
of codimension-one.
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Section 5.2

Influence of asymmetric behavior on
the frequency response and stability of
rate-independent hysteretic mechanical
systems

We address the modeling of mechanical systems exhibiting
a rate-independent hysteretic behavior, i.e. a nonlinear phe-
nomenon in which the output variable depends upon the past
history of the input, beside its current value, but not upon its
rate of change [77]. Behaviors of this kind are typically caused by
plastic deformation and/or low-velocity friction mechanisms [11,
12]. The onset and evolution of hysteretic behaviors are charac-
terized by loops, associated with loading and unloading curves
relating input and output variables, having different shapes and
analytical properties. Mechanical hysteresis phenomena can be
broadly categorized as either symmetric or asymmetric, depend-
ing on whether they exhibit or not, in the input-output plane,
the same shape during the loading and unloading phase. Specif-
ically, we focus on asymmetric loops, i.e. those that commonly
characterize materials like metals, polymers, and shape mem-
ory alloys, as well as in structural elements such as reinforced
concrete and steel beam-column connections [56, 77].

The complex asymmetric rate-independent hysteretic be-
havior observed in mechanical systems has been mainly modeled
by means of algebraic [70], transcendental [45, 85], differential
[66], and integral models [69], this classification referring to the
analytical approach used to compute the output variable [13].

Asymmetric hysteresis phenomena are mostly simulated by
differential models that basically stand as modified versions of
the celebrated Bouc-Wen Model (BWM) [9, 93] belonging to
the wider class of Duhem models (Section 4.3.2). Basically, all
of these evaluate the generalized force as the sum of a linear elas-
tic component, depending on a generalized displacement, and a
rate-independent hysteretic component. The latter is a function
of a generalized hysteretic variable, derived through the solution
of a nonlinear first-order ODE usually formulated on a ad-hoc
basis. Such models can be further grouped in:

1. models that deviate from the BWM by incorporating in
the generalized hysteretic force a modulating function to
scale the hysteretic component [27, 63];
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2. models that differ from the BWM because the expression
of the ODE, used to compute the hysteretic variable, is
properly modified [79, 90].

Although significant advancements have been achieved, such
models fail to encompass different types of complex hysteretic
behavior within a unifying framework. Typically, each model is
optimized to reproduce specific hysteretic responses and may
not perform well for loops having differing shapes. Furthermore,
the model parameters often lack a clear mechanical meaning
thus complicating the calibration process. As a result, numerical
optimization methods are frequently required to estimate these
parameters accurately.

To overcome such drawbacks, Vaiana and Rosati introduced
a new phenomenological model to simulate the rate-independent
hysteretic behavior exhibited by mechanical systems [84]. More
recently, Vaiana and Rosati proposed an enhanced analytical
version of the model (VRM+A) and presented its equivalent
differential formulation (VRM+D) [83]. This advancement aims
to facilitate the application of the model in nonlinear dynamics
by simplifying and providing a more comprehensive analysis of
systems that have been explored in the existing literature [4,
6, 65]. In summary, both the original and reformulated model
effectively address the challenges associated with the simulation
of complex hysteresis phenomena and, thanks to the extension
provided by VRM+D, provide an effective approach for examin-
ing hysteretic mechanical systems subjected to periodic inputs
[82]. In this regard, Capuano et al. [14] have recently shown
the ability of VRM+D to analyze SDoF hysteretic mechanical
systems under the action of periodic forces, employing a well-
established numerical method based on Poincaré maps [50]. This
methodology, generally integrated with Floquet theory, has been
employed to study the response and stability of various types of
SDoF systems, utilizing different hysteretic models, including
elasto-plastic, Masing, and Bouc-Wen models [50].

In this section, we perform an accurate frequency response
analysis of asymmetric hysteretic systems modeled by means
of the VRM+D. In particular, we begin with a detailed for-
mulation of the equilibrium equations, followed by the deriva-
tion of the associated non-dimensional form. Next, after a brief
summary of the typical shapes of hysteresis loop generally ob-
served in rate-independent hysteretic mechanical systems, we
illustrate the asymmetric responses characterizing the selected
non-dimensional hysteretic systems. Finally, we present the re-
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Figure 5.13. Dimensional (a)
and non-dimensional (b) classes
of SDoF hysteretic mechanical
systems.

sults of the analyses performed on them, with a focus on the
influence of asymmetry on their frequency response and stabil-
ity.

Subsection 5.2.1

Mathematical Model

In this section, we outline the equations of motion for the class
of hysteretic mechanical systems under investigation. After a
detailed formulation of the dimensional governing equations, we
derive the associated non-dimensional ones thus reducing the
number of parameters and facilitating a more general analysis
of the systems’ dynamics.

5.2.1.1 Equations of Motion
The dimensional equation of motion for the class of SDoF hys-
teretic mechanical systems shown in Fig. 5.13a is derived from
Newton’s second law in its general form as:

mü+ fri(u) = p0 cos (ωt) . (5.2.1)

In this context, u, u̇, and ü represent the generalized displace-
ment, velocity, and acceleration of mass m, respectively. Fur-
thermore, fri(u) denotes the generalized rate-independent hys-
teretic force acting on the hysteretic element, whereas p0 (ω) is
the amplitude (angular frequency) of the external generalized
force.

According to the VRM+D, as seen in Section 4.3.2, the
generalized rate-independent hysteretic force fri, appearing in
Eq. (5.2.1), is governed by the following ODE:

ḟri = {ke (u) + kb + αf0 + sα [fe (u) + kbu− fri]} u̇, (5.2.2)

where the generalized function ke is expressed as:

ke (u) = β1β2e
β2u + 4γ1γ2

e−γ2(u−γ3)[
1 + e−γ2(u−γ3)

]2 ,
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whereas fe is given by:

fe (u) = β1
(
eβ2u − 1

)
+ 2γ1

1 − e−γ2(u−γ3)

1 + e−γ2(u−γ3) .

In Eq. (5.2.2), the model parameters need to be updated
depending on the sign of the velocity u̇, namely s := sgn (u̇).
In particular, kb = k+

b

(
k−

b

)
, f0 = f+

0
(
f−

0
)
, α = α+ (α−), β1 =

β+
1

(
β−

1
)
, β2 = β+

2
(
β−

2
)
, γ1 = γ+

1
(
γ−

1
)
, γ2 = γ+

2
(
γ−

2
)
, γ3 =

γ+
3

(
γ−

3
)

if s > 0 (s < 0).

5.2.1.2 Non-dimensionalization Procedure
To ensure a more general analysis of the asymmetric behavior
of the systems under consideration and minimize the number
of involved parameters, we perform a non-dimensionalization
of the governing equilibrium equations (see Section 2.5). This
approach eliminates the system’s reliance on specific units of
measurement, enabling a more abstract and general treatment.
The non-dimensionalization procedure involves five steps, as de-
tailed in [14], and is performed on Eqs. (5.2.1) and (5.2.2). For
the reader’s convenience, these five steps are presented below:

i) We observe that time t is the independent variable whereas
the generalized displacement u and the generalized rate-
independent hysteretic force fri represent the dependent
ones.

ii) We introduce the following non-dimensional variables:

τ := t

ts
, x := u

us
, z := fri

fs
.

Each of them is defined as the associated dimensional vari-
able scaled by a dimensional scaling factor (i.e., ts, us, and
fs). Based on these definitions, the dimensional variables
can be expressed as follows:

t = tsτ, u = usx, fri = fsz. (5.2.3)

Consequently, by using Eqs. (5.2.3), it is possible to replace
the dimensional variables in Eqs. (5.2.1) and (5.2.2) with
the non-dimensional ones. In particular, for Eq. (5.2.1), we
obtain:

mus

t2s

d2x

dτ2 + fsz = p0 cos (ωtsτ) , (5.2.4)
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whereas for Eq. (5.2.2) we have:

fs

ts

dz

dτ
= {ke (usx) + kb + αf0+

+ sgn
(
us

ts

dx

dτ

)
α [fe (usx) + kbusx− fsz]}

us

ts

dx

dτ
.

(5.2.5)

iii) The coefficients of the highest-order term in Eqs. (5.2.4)
and (5.2.5) are mus

t2
s

and fs

ts
, respectively. Hence, upon di-

viding Eq. (5.2.4) by mus

t2
s

and Eq. (5.2.5) by fs

ts
, one ob-

tains:
ẍ+ fst

2
s

mus
z = p0t

2
s

mus
cos (ωtsτ) , (5.2.6)

and

ż = us

fs
{ke (usx) + kb + αf0+

+ sgn
(
us

ts
ẋ

)
α [fe (usx) + kbusx− fsz]} ẋ. (5.2.7)

We note that, with a slight abuse of notation, the over-
dot now represents the derivative with respect to the non-
dimensional time τ .

iv) To simplify the final non-dimensional expressions as much
as possible, we suitably select the scaling factors ts, us, and
fs and impose auxiliary conditions. A possible approach is
to set the amplitude of the harmonic forcing in Eq. (5.2.6)
equal to one:

p0t
2
s

mus
= 1 ⇒ ts :=

√
mus

p0
.

This implies that the coefficient in front of z becomes fs

p0
.

To further simplify Eq. (5.2.6), we make an additional as-
sumption by setting:

fs := p0.

Consequently, the non-dimensional angular frequency is
defined as:

Ω := ωts = ω

√
mus

p0
.
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Lastly, we set us := 1 to achieve the condition:

sgn
(
us

ts
ẋ

)
= sgn (u̇) ⇒

√
usp0

m
> 0.

v) The ODEs governing the behavior of the non-dimensional
class of SDoF hysteretic mechanical systems, illustrated in
Fig. 5.13b, become:

ẍ+ z = cos (Ωτ) , (5.2.8)

and

ż =
{
ke (usx) us

fs
+ kbus

fs
+ αus

f0

fs
+ sαus

[
fe (usx)
fs

+ kbus

fs
x− z

]}
ẋ.

The latter can be further simplified by defining the following
non-dimensional functions:

κe (x) := ke (usx) us

fs
and ϕe (x) := fe (usx)

fs
,

as well as the following eight non-dimensional model parameters:

χ1 := β1

fs
, χ2 := β2us, χ3 := 2γ1

fs
, χ4 := γ2us,

χ5 := γ3

us
, χ6 := kbus

fs
, χ7 := αus, χ8 := f0

fs
,

which appear in κe (x) and ϕe (x):

κe (x) = χ1χ2e
χ2x + 2χ3χ4

e−χ4(x−χ5)[
1 + e−χ4(x−χ5)

]2 ,

ϕe (x) = χ1 (eχ2x − 1) + χ3
1 − e−χ4(x−χ5)

1 + e−χ4(x−χ5) .

Thus, the Non-Dimensional VRM+D (NDVRM+D) can be
written as:

ż = {κe (x) + χ6 + χ7χ8 + sχ7 [ϕe (x) + χ6x− z]} ẋ. (5.2.9)

We may note that Eqs. (5.2.8) and (5.2.9) represent the non-
dimensional form of the initial equilibrium equations.

Subsection 5.2.2

Analyzed Hysteretic Mechanical Systems
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In the sequel, for the reader’s convenience, we briefly summa-
rize the four types of hysteresis loop shape that are generally
observed in hysteretic mechanical systems. Subsequently, we de-
scribe the asymmetric responses characterizing the four types of
selected hysteretic mechanical systems that will be numerically
analyzed.

5.2.2.1 Hysteresis Loops Classification
According to the classification proposed in [84], hysteresis loops
can be classified into four main categories:

• Shape type S1: the hysteresis loops are limited by two
straight lines (Fig. 5.14).

• Shape type S2: the hysteresis loops are bounded by two
curves with no inflection point (Fig. 5.15).

• Shape type S3: the hysteresis loops are limited by two
curves with one inflection point (Fig. 5.16).

• Shape type S4: the hysteresis loops are bounded by two
curves with two inflection points (Fig. 5.17).

Given their central role in the above-described classification, it
is essential to formally define the terms upper and lower limiting
curves within the NDVRM+D. According to the definitions pro-
vided in [83], the closed-form expression of the rate-independent
hysteretic force described by Eq. (5.2.9) is given by:

z(x) =
{
z+(x) = ϕ+

e (x) + χ+
6 x+ χ+

8 + C+(xP , zP )e−χ+
7 x for s > 0

z−(x) = ϕ−
e (x) + χ−

6 x− χ−
8 + C−(xP , zP )e+χ−

7 x for s < 0,

where P ≡ (xP , zP ) is a generic point in the generalized force-
displacement plane whereas C±(xP , zP ) are functions defined
as:{
C+(xP , zP ) = −

[
ϕ+

e (xP ) + χ+
6 xP + χ+

8 − zP

]
e+χ+

7 xP for s > 0
C−(xP , zP ) = −

[
ϕ−

e (xP ) + χ−
6 xP − χ−

8 − zP

]
e−χ−

7 xP for s < 0.

It can be easily demonstrated, adopting the previous equa-
tions, that the upper (lower) limiting curve cu (cl) represents
an asymptote of the generic loading curve z+ (z−) and that its
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expression is:

cu = ϕ+
e (x) + χ+

6 x+ χ+
8 ,

cl = ϕ−
e (x) + χ−

6 x− χ−
8 .

Subsection 5.2.3

Properties of the Selected Systems

The analyzed SDoF hysteretic mechanical systems, referred to
as Systems S1, S2, S3, and S4, in the sequel, are respectively
characterized by the non-dimensional hysteresis loops illustrated
in Figs. 5.14-5.17. The latter have been obtained by imposing a
non-dimensional sinusoidal generalized displacement, with 1.5
amplitude and unitary frequency, and by adopting the non-
dimensional parameters listed in Tables 5.5-5.8.

5.2.3.1 Systems S1
In Systems S1, both upper and lower limiting curves are repre-
sented by straight lines. The three selected systems are:

• System S1a (Fig. 5.14a): asymmetry arises from the dif-
ferent values of χ+

6 and χ−
6 , resulting in limiting straight

lines with different slopes.

• System S1b (Fig. 5.14b): asymmetry is due to the different
values of χ+

7 and χ−
7 , leading to a hysteresis loop with

identical limiting straight lines but generic loading and
unloading curves with different curvature.

• System S1c (Fig. 5.14c): asymmetry arises from the dif-
ferent values of χ+

8 and χ−
8 , producing limiting straight

lines with the same slope but asymmetric with respect to
the x-axis.

5.2.3.2 Systems S2
Systems S2 are characterized by more intricate hysteretic be-
havior because of the significant curvature of both upper and
lower limiting curves, although neither curve exhibits inflection
points. Specifically, the three selected systems are:

• System S2a (Fig. 5.15a): asymmetry arises from differing
values of χ+

7 and χ−
7 , leading to a hysteresis loop with

identical limiting curves but loading and unloading curves
with different curvature.
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Figure 5.14. Asymmetric hysteresis loops, belonging to shape type S1, that describe the behavior of
(a) System S1a, (b) System S1b and (c) System S1c.

sgn(ẋ) χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

S1 + 0.00 0.00 0.00 0.00 0.00 0.25 10.00 1.00
− 0.00 0.00 0.00 0.00 0.00 0.25 10.00 1.00

S1a + 0.00 0.00 0.00 0.00 0.00 0.25 10.00 1.00
− 0.00 0.00 0.00 0.00 0.00 0.00 10.00 1.00

S1b + 0.00 0.00 0.00 0.00 0.00 0.25 5.00 1.00
− 0.00 0.00 0.00 0.00 0.00 0.25 10.00 1.00

S1c + 0.00 0.00 0.00 0.00 0.00 0.25 10.00 1.25
− 0.00 0.00 0.00 0.00 0.00 0.25 10.00 1.00

Table 5.5. NDVRM+D parameters adopted to simulate the hysteresis loops in Figure 5.14.

• System S2b (Fig. 5.15b): asymmetry is caused by varia-
tions in χ+

1 , χ−
1 , χ+

2 , and χ−
2 . Specifically, increasing χ+

1
while decreasing χ+

2 reduces the curvature of the upper
limiting curve.

• System S2c (Fig. 5.15c): asymmetry also results from dif-
ferent values of χ+

1 , χ−
1 , χ+

2 , and χ−
2 . In this case, decreas-

ing χ+
1 while increasing χ+

2 increases the curvature of the
upper limiting curve.
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Figure 5.15. Asymmetric hysteresis loops, belonging to shape type S2, that describe the behavior of
(a) System S2a, (b) System S2b and (c) System S2c.

Table 5.6. NDVRM+D parame-
ters adopted to simulate the hys-
teresis loops in Figure 5.15.

sgn(ẋ) χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

S2 + 0.50 1.00 0.0 0.0 0.0 0.25 10.0 0.5
− -0.50 -1.00 0.0 0.0 0.0 0.25 10.0 0.5

S2a + 0.50 1.00 0.0 0.0 0.0 0.25 10.0 0.5
− -0.50 -1.00 0.0 0.0 0.0 0.25 2.0 0.5

S2b + 2.00 0.01 0.0 0.0 0.0 0.25 10.0 0.5
− -0.50 -1.00 0.0 0.0 0.0 0.25 10.0 0.5

S2c + 0.005 4.00 0.0 0.0 0.0 0.25 10.0 0.5
− -0.50 -1.00 0.0 0.0 0.0 0.25 10.0 0.5

5.2.3.3 Systems S3
Systems S3 exhibit complex hysteretic responses due to a signif-
icant curvature and the inflection point characterizing both the
upper and lower limiting curves. In particular, the three selected
systems are:

• System S3a (Fig. 5.16a): asymmetry is due to differing
values of χ+

3 and χ−
3 . This results in an hysteresis loop

with asymmetric limiting curves, leading to a larger area
in the negative x-direction where the limiting curves are
more widely spaced.

• System S3b (Fig. 5.16b): asymmetry arise from variations
in χ+

4 and χ−
4 . This induces a change in the curvature of

the upper limiting curve, creating an hysteresis loop with
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Figure 5.16. Asymmetric hysteresis loops, belonging to shape type S3, that describe the behavior of
(a) System S3a, (b) System S3b and (c) System S3c.

a larger area in the positive x-direction, where the limiting
curves are more separated.

• System S3c (Fig. 5.16c): asymmetry results from different
values of χ+

5 and χ−
5 . This causes a shift in the inflection

point of the upper limiting curve, thus reducing the hys-
teresis loop area.

sgn(ẋ) χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

S3 + 0.00 0.00 4.00 2.00 0.00 0.50 10.00 1.00
− 0.00 0.00 4.00 2.00 0.00 0.50 10.00 1.00

S3a + 0.00 0.00 2.40 2.00 0.00 0.50 10.00 1.00
− 0.00 0.00 4.00 2.00 0.00 0.50 10.00 1.00

S3b + 0.00 0.00 4.00 4.00 0.00 0.50 10.00 1.00
− 0.00 0.00 4.00 2.00 0.00 0.50 10.00 1.00

S3c + 0.00 0.00 4.00 2.00 0.18 0.50 10.00 1.00
− 0.00 0.00 4.00 2.00 0.00 0.50 10.00 1.00

Table 5.7. NDVRM+D parameters adopted to simulate the hystere-
sis loops in Figure 5.16.

5.2.3.4 Systems S4
Finally, Systems S4 display a quite complex behavior since both
upper and lower limiting curves, having two inflection points,
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Figure 5.17. Asymmetric hysteresis loops, belonging to shape type S4, that describe the behavior of
(a) System S4a, (b) System S4b and (c) System S4c.

show significant stiffening effects thanks to the non-zero param-
eters χ1, χ2, χ3, and χ4. The three selected systems are:

• System S4a (Fig. 5.17a): asymmetry arises from the differ-
ing values of χ+

1 , χ−
1 , χ+

2 , and χ−
2 . Specifically, increasing

χ+
1 while decreasing χ+

2 results in a reduction of the cur-
vature of the upper limiting curve.

• System S4b (Fig. 5.17b): asymmetry is due to variations
in χ+

3 , χ−
3 , χ+

4 , χ−
4 , χ+

5 , and χ−
5 . The combined effect of

these parameters leads to an upper limiting curve with
a different inflection point, being χ+

5 ̸= 0, and a greater
curvature at that point due to the values assumed by χ+

3 ,
χ+

4 , and χ+
5 .

• System S4c (Fig. 5.17c): asymmetry results from different
values of χ+

6 , χ−
6 , χ+

7 , χ−
7 , χ+

8 , and χ−
8 . These differences

create a hysteresis loop having limiting curves with dif-
ferent curvatures due to variations in χ+

6 and χ−
6 . Addi-

tionally, the intercept of the upper limiting curve is not
symmetrical with respect to the lower limiting curve due
to different values of χ+

8 and χ−
8 . Furthermore, the generic

loading curve has a different curvature with respect to the
unloading one because of the differing values of χ+

7 and
χ−

7 .

Subsection 5.2.4

Numerical Results
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sgn(ẋ) χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

S4 + 0.0005 5.0 1.00 8.0 -0.05 0.00 20 0.25
− -0.0005 -5.0 1.00 8.0 0.05 0.00 20 0.25

S4a + 0.2500 1.2 1.00 8.0 -0.05 0.00 20 0.25
− -0.0005 -5.0 1.00 8.0 0.05 0.00 20 0.25

S4b + 0.0005 5.0 1.25 7.0 -0.20 0.00 20 0.25
− -0.0005 -5.0 1.00 8.0 0.05 0.00 20 0.25

S4c + 0.0005 5.0 1.00 8.0 -0.05 0.25 15 0.50
− -0.0005 -5.0 1.00 8.0 0.05 0.00 20 0.25

Table 5.8. NDVRM+D parameters adopted to simulate the hysteresis loops in Figure 5.17.
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Figure 5.18. Effects of asymmetries on FRCs of Systems S1: (a) System S1a, (b) System S1b, and (c)
System S1c.

In this section, we present the results of the analyses conducted
on the non-dimensional hysteretic systems detailed in the pre-
vious sections. We analyze the systems FRCs obtained by using
the procedure described in Section 4.3.3 (the pseudo-code can
be found in Table 4.3), where the continuation parameter is Ω.
Furthermore, the parameters used in the procedure are listed in
Table 4.4. These analyses emphasize the effects of asymmetries
on the FRCs and on related resonance peaks and bifurcation
shifts.
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Figure 5.19. Systems S1: (a) FRCs with highlighted points, (b) corresponding state-space representa-
tion of the periodic orbits, and (c) Fourier transform of the signals x(τ).

5.2.4.1 Systems S1
In the following, we present the results of the analyses car-
ried out on Systems S1 previously described. The adopted ND-
VRM+D parameters are listed in Table 5.5 whereas the corre-
sponding hysteresis loop shapes are illustrated in Fig. 5.14.

Figure 5.18 shows that the FRCs exhibit a leftward bend,
indicative of a softening nonlinearity, and are globally stable
within the analyzed range of Ω. Notably, the asymmetric be-
havior affects the resonance peak values. Indeed, while the sym-
metric System S1 has a resonance peak at (1.4467, 0.405457),
the asymmetric ones exhibit resonance peaks at:

• S1a: (1.30146, 0.388739) (Fig. 5.18a);

• S1b: (4.99873, 1.31446) (Fig. 5.18b);

• S1c: (4.99913, 0.434436) (Fig. 5.18c).

Furthermore, in the low-frequency range, the asymmetric sys-
tems exhibit multiple resonance peaks that differ from those ob-
served in the symmetric case. Specifically, while the symmetric
system shows five resonance peaks within the frequency range
Ω ∈ [0.635434, 0.212975], System S1a displays four peaks in the
range Ω ∈ [0.575991, 0.22099], System S1b has four peaks for
Ω ∈ [0.950858, 0.236365], and System S1c shows seven peaks in
the range Ω ∈ [1.07329, 0.214785].

Finally, Fig. 5.19 illustrates that for the points highlighted
in Fig. 5.19a, both the state-space representation of the peri-
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Figure 5.20. Effects of asymmetries on FRCs of Systems S2: (a) System S2a, (b) System S2b, and (c)
System S2c.
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Figure 5.21. Systems S2: (a) FRCs with highlighted points, (b) corresponding state-space representa-
tion of the periodic orbits, and (c) Fourier transform of the signals x(τ).

odic orbits (Fig. 5.19b) and the Fourier transform of the cor-
responding x(τ) signals (Fig. 5.19c) reveal symmetry changes
in the periodic solution when asymmetry is introduced into the
hysteresis loop. This leads to the formation of stable asymmet-
ric solutions. Specifically, for Systems S1a, S1b, and S1c, the
appearance of even harmonics and a zero-frequency component
can be observed, indicating a loss of symmetry due to the odd
nonlinearities and the presence of a non-zero mean in the signals.



Influence of Asymmetry Numerical Results 154

5.2.4.2 Systems S2
In this section, we illustrate the results of the analyses performed
on Systems S2 previously introduced. The adopted model pa-
rameters are provided by Table 5.6 whereas the associated hys-
teresis loop shapes are presented in Fig. 5.15.

Figure 5.20 shows that the FRCs exhibit a rightward bend,
indicating a hardening nonlinearity. As in the previous case, the
asymmetric behavior affects the resonance peak values. Specif-
ically, while the symmetric System S2 shows a resonance peak
at (1.0959, 1.86253), the asymmetric ones yield different peak
values, which are:

• S2a: (1.23028, 2.05198) (Fig. 5.20a);

• S2b: (0.792923, 4.70872) (Fig. 5.20b);

• S2c: (1.11139, 1.71099) (Fig. 5.20c).
Furthermore, the FRC for the symmetric Systems S2 does
not exhibit global stability across the entire range of Ω, as
shown in Fig. 5.20. Specifically, the system experiences a se-
ries of fold bifurcations at the points (0.491811, 1.49016) and
(0.499025, 1.43468). The introduction of asymmetries alters
these bifurcation scenarios. Indeed, for Systems S2a and S2b
the unstable regions are eliminated, resulting in globally stable
responses. In contrast, for System S2c, the fold bifurcations shift
to the points (0.699439, 1.60923) and (0.701636, 1.62981).

In the low-frequency range, the asymmetric systems ex-
hibit multiple resonance peaks that differ from those observed
in the symmetric case. Specifically, while the symmetric sys-
tem displays three resonance peaks at angular frequencies of
0.359254, 0.273955, and 0.21778, the asymmetric System S2a
exhibits six peaks within the range Ω ∈ [0.709812, 0.21953]. In
addition, System S2b shows five peaks in the frequency range
Ω ∈ [0.518018, 0.263544] and System S2c reveals five peaks
within Ω ∈ [0.689203, 0.226802].

Moreover, Fig. 5.21 demonstrates that for the resonance
peaks highlighted in Fig. 5.21a, both the state-space representa-
tion of the periodic orbits (Fig. 5.21b) and the Fourier transform
of the corresponding x(τ) signals (Fig. 5.21c) suggest significant
changes when asymmetry is introduced into the hysteresis loop.
This results in the emergence of stable asymmetric solutions
for Systems S2a, S2b, and S2c. Finally, we may note that the
appearance of even harmonics and a zero-frequency component
indicate a loss of symmetry and the presence of a non-zero mean
in the signals.
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Figure 5.22. Effects of asymmetries on FRCs of Systems S3: (a) System S3a, (b) System S3b, and (c)
System S3c.

5.2.4.3 Systems S3
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Figure 5.23. Systems S3: (a) FRCs with highlighted points, (b) corresponding state-space representa-
tion of the periodic orbits, and (c) Fourier transform of the signals x(τ).

In the sequel, we present the results of the analyses car-
ried out on Systems S3 previously described. The adopted ND-
VRM+D parameters are listed in Table 5.7 whereas the corre-
sponding hysteresis loop shapes are illustrated in Fig. 5.16.

As shown in Fig. 5.22, the FRCs exhibit a slight left-
ward bend, indicating a softening nonlinearity. Once again, the
asymmetric behavior affects the location of the resonance peak.
Specifically, while the symmetric System S3 exhibits a resonance
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peak at (2.41869, 0.445915), the asymmetric ones yield different
results:

• S3a: the peak occurs at (2.23587, 0.477059) (Fig. 5.22a);

• S3b: the peak is found at (2.6237, 0.47944) (Fig. 5.22b);

• S3c: the peak is located at (1.65751, 2.22496) (Fig. 5.22c).

Furthermore, the FRCs for both the symmetric System S3
and the asymmetric System S3a are globally stable across the
examined range of Ω, as shown in Fig. 5.22a. On the con-
trary, the introduction of asymmetries modifies the stability
scenarios for the other two asymmetric systems. Indeed, Sys-
tems S3b and S3c exhibit two fold bifurcations, occurring at
the points (2.58044, 0.42432) and (2.59294, 0.286992), and at
(1.65259, 2.20899) and (1.92751, 0.708143), respectively.

In the low-frequency range, the asymmetric systems dis-
play multiple resonance peaks that differ from those observed
in the symmetric case. Specifically, while the symmetric sys-
tem exhibits eight resonance peaks within the frequency range
Ω ∈ [1.13931, 0.21758], the asymmetric System S3a shows six-
teen peaks in the range Ω ∈ [1.48551, 0.208533]. Furthermore,
System S3b presents a series of peaks within Ω ∈ [1.90118, 0.20]
(Fig. 5.25a), whereas System S3c displays seven peaks within
Ω ∈ [0.94955, 0.210044].

Figure 5.23 reveals that the resonance peaks, indicated in
Fig. 5.23a, exhibit clear symmetry changes in the state-space
trajectories (Fig. 5.23b) and in the Fourier transform of the cor-
responding signals x(τ) (Fig. 5.23c). The introduction of hys-
teresis loop asymmetry in Systems S3a, S3b and S3c induces
stable asymmetric periodic solutions that show the appearance
of even harmonics and a zero-frequency component, confirming
the loss of symmetry and the generation of a non-zero mean
value in the signals.

5.2.4.4 Systems S4
Let us now present the results of the analyses performed on Sys-
tems S4 previously introduced. The adopted model parameters
are provided by Table 5.8 whereas the associated hysteresis loop
shapes are shown in Fig. 5.17.

As illustrated in Fig. 5.24, the FRCs initially display a
softening behavior, followed by a slight rightward bend, indi-
cating the presence of hardening nonlinearity. Once again, the
asymmetric behavior affects the location of the resonance peak.
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Figure 5.24. Effects of asymmetries on FRCs of Systems S4: (a) System S4a, (b) System S4b, and (c)
System S4c.
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Figure 5.25. Detailed view of the
FRCs in the low-frequency range
for Systems (a) S3 and (b) S4.

Specifically, while the symmetric System S4 shows a resonance
peak at (1.48753, 2.02269), the asymmetric ones present the fol-
lowing resonance peaks:

• S4a: (1.30871, 2.36697) (Fig. 5.24a);

• S4b: (1.48427, 1.98867) (Fig. 5.24b);

• S4c: (1.4803, 1.94743) (Fig. 5.24c).

Additionally, the symmetric system undergoes a series of
four fold bifurcations at (0.603965, 1.2666), (0.854123, 0.418801),
(1.3158, 1.52252), and (1.52581, 2.00313). The presence of asym-
metries modifies the bifurcation scenarios as follows:
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Figure 5.26. Systems S4: (a) FRCs with highlighted points, (b) corresponding state-space representa-
tion of the periodic orbits, and (c) Fourier transform of the signals x(τ).

• for System S4a, the four fold bifurcations
shift to (0.720801, 1.20065), (0.913773, 0.468821),
(1.34854, 1.7609), and (1.35695, 2.16914) (Fig. 5.24a);

• for System S4b, the fold bifurcations move to
(0.736037, 1.10803), (1.18676, 0.19649), (1.34491, 1.48896),
and (1.51782, 1.9683) (Fig. 5.24b);

• for System S4c, they shift to (0.759006, 1.11382),
(1.04232, 0.383246), (1.36337, 1.43941), and
(1.50922, 1.92684). Additionally, two more fold bifurcations
occur at (0.874157, 0.302852) and (0.89352, 0.206033) (Fig.
5.24c).

In the low-frequency range, the asymmetric systems dis-
play multiple resonance peaks that differ from those observed in
the symmetric case. Specifically, as shown in Fig. 5.25b, while
the symmetric system exhibits five resonance peaks within the
frequency range Ω ∈ [0.648081, 0.219302], the asymmetric Sys-
tem S4a shows several peaks within Ω ∈ [0.837753, 0.228199].
Additionally, System S4b displays peaks in the range Ω ∈
[1.02588, 0.212699] whereas System S4c shows peaks within the
range Ω ∈ [0.891506, 0.207391].

In conclusion, Fig. 5.26 provides a detailed examination of
the resonance peaks identified in Fig.5.26a. The accompanying
state-space representation of the periodic orbits, shown in Fig.
5.26b, along with the Fourier transform of the corresponding
x(τ) signals, depicted in Fig. 5.26c, clearly demonstrate how
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the introduction of asymmetry into the hysteresis loop alters the
symmetry of the periodic solutions. This alteration results in the
emergence of stable asymmetric solutions for Systems S4a, S4b,
and S4c. In these cases, the presence of even harmonics and a
zero-frequency component indicates a significant shift in sym-
metry, as typically expected in systems with odd nonlinearities,
along with the generation of signals exhibiting a non-zero mean.

Subsection 5.2.5

Conclusions

In this study, we have performed a frequency response analysis of
asymmetric hysteretic systems modeled using the VRM+D [83].
Starting from the dimensional governing equations, we derived
the associated non-dimensional ones thus reducing the number
of involved parameters.

By employing the Poincaré map based continuation method
described in Section 4.3.3, we investigated the periodic solu-
tions of various mechanical hysteretic systems having different
asymmetric responses. In particular, the findings revealed that
variations in the degree of asymmetry of the hysteresis loop sig-
nificantly impact both frequency responses and stability of the
analyzed systems when subjected to periodic excitations. This
clarifies the intricate relationship between the asymmetry of the
hysteresis loop and the dynamic behavior of such systems.

This research contributes to the ongoing efforts to better
understand and model the behavior of asymmetric hysteretic
mechanical systems, offering a benchmark for future studies and
practical implementations. Further work may expand on the cur-
rent findings by exploring other types of asymmetries and their
effects on more complex, real-world systems.
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Section 5.3

Frequency Response Curves of Nega-
tive Stiffness Metamaterials

Mechanical metamaterials have revolutionized material science
with their ability to exhibit properties unattainable in conven-
tional materials. These engineered structures have found appli-
cations in different fields, including vibration isolation [55], and
seismic wave manipulation [20]. Among the various types of me-
chanical metamaterials, those with negative moduli, such as neg-
ative bulk modulus or negative elastic modulus, have garnered
significant attention due to their unique deformation capabili-
ties.

Negative metamaterials represent a significant deviation
from traditional mechanical behavior. As reported in [99], his-
torically, it has been assumed that the elasticity tensor must
be positive definite, implying that both the bulk modulus and
the shear modulus should be positive. This assumption has long
been considered a necessary condition for the thermodynamic
admissibility of elasticity tensors in continuum mechanics. The
logic is that negative compressibility or stiffness leads to in-
stability of the material; nevertheless, materials with negative
compressibility or stiffness have been observed under various ex-
perimental conditions, and if their stability can be assured, such
materials can have numerous practical applications [99]. Specif-
ically, many applications of negative stiffness materials can be
found in the literature, including vibration protection systems
for vehicles [55], seismic protection of structures [75], and vi-
bration isolation of railroads [54]. In spite of their promising
potential, a complete understanding of the complex mechanical
response of negative stiffness metamaterials is far from being
achieved, mainly due to lack of mathematical modeling and ex-
perimental testing.

To bridge this gap, we present a comprehensive analysis of
the FRCs for a specific Negative Stiffness Device (NSD) intro-
duced in [75] and briefly described in Section 5.3.1. Our ap-
proach involves simulating the response of a SDoF hysteretic
mechanical system with the characteristic hysteresis loop shape
of the NSD. To simulate the complex hysteretic behavior of
the metamaterial, we employ the VRM+D, a novel hysteresis
model designed to simulate complex hysteretic behaviors (Sec-
tion 4.3.2). This uniaxial phenomenological model offers several
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Figure 5.27. Undeformed Neg-
ative Stiffness Device (a) and
experimental force-displacement
hysteresis loop without GSA (b)
[75].

advantages over existing models [13, 85, 87] since it can describe
complex shapes of hysteresis loops in a unified way; moreover,
it employs differential or equivalent analytical closed-form ex-
pressions to evaluate the generalized rate-independent hysteretic
force [11, 82]. Finally, we analyze the FRCs for the NSD obtained
using the continuation technique based on Poincaré maps, as de-
scribed in Section 4.3.3.

Subsection 5.3.1

Negative Stiffness Metamaterials

In this section, we explore the properties and applications of
metamaterials with negative stiffness, with a focus on the NSD
proposed in [75]. Specifically, we start by discussing the funda-
mental characteristics of a negative stiffness metamaterial, and
then delve into the specific design and experimental observations
of the NSD.

5.3.1.1 Properties of Negative Stiffness Metamaterials
Metamaterials with negative stiffness deform in the direction op-
posite to the applied force, creating an assisting force that facili-
tates further deformation. This behavior is in contrast with what
happens in traditional materials with positive stiffness which de-
form in the direction of the applied force and generate a restoring
force to resist deformation, aiming to return the material to its
original shape [99].

As a consequence, negative stiffness metamaterials experi-
ence larger deformations compared to positive stiffness materi-
als when subjected to comparable loading conditions. A number
of studies [51, 53] have demonstrated that combining positive
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and negative stiffness elements can achieve exceptional prop-
erties, such as simultaneously high damping and stiffness, with
extremely high stiffness values possible through specific arrange-
ments of these elements [52, 91].

5.3.1.2 Negative Stiffness Device
The NSD proposed by Sarlis et al. [75] exemplifies the princi-
ples previously discussed. As illustrated in Fig. 5.27a, the device
features a precompressed spring and two Gap Spring Assemblies
(GSAs) at the bottom. The GSAs provide positive stiffness up to
a certain displacement, resulting in an overall effective stiffness
that is nearly zero within this range. Additionally, the precom-
pressed spring connects to a mechanism with a lever and pivot
plate, which transfers horizontal loads to the frame.

The device achieves negative stiffness through the rotation
of the precompressed spring when the device deforms. Experi-
mental force-displacement relations for the tested prototype un-
der harmonic motion of 0.1 Hz frequency and 6.4 cm amplitude
are shown in Fig. 5.27b [75]. The observed S-shaped, pinched
hysteresis loop, caused by joint friction not accounted for in
Sarlis et al.’s models [75], necessitates the use of a more elab-
orate model to accurately simulate the device’s complex hys-
teretic behavior.

Subsection 5.3.2

Mathematical Model

In this section, we outline the mathematical model used to an-
alyze the NSD discussed earlier. In particular, we introduce the
general class of SDoF hysteretic mechanical systems, with a fo-
cus on the hysteresis model and the non-dimensionalization pro-
cedure.

5.3.2.1 Hysteretic Mechanical System
The general class of dimensional SDoF hysteretic mechanical
system, considered in [14] and shown in Fig. 5.28a, comprises a
mass m connected in parallel to three different types of elements:

• a linear elastic spring with stiffness k;

• a linear rate-dependent hysteretic element with viscous
damping coefficient c;

• a rate-independent hysteretic spring.
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For this system, the dimensional equation of motion can be de-
rived from Newton’s second law in its general form as:

mü+ cu̇+ ku+ fri(u) = p0 cos (2πfpt) , (5.3.1)

where u, u̇, and ü denote the generalized displacement, velocity,
and acceleration of the mass m, respectively. In this equation,
fri is the generalized rate-independent hysteretic force exerted
on the hysteretic element, whereas p0 (fp) is the amplitude (fre-
quency) of the input force.

5.3.2.2 VRM+D
To describe the rate-independent hysteretic force fri in Eq.
(5.3.1) we use the VRM+D described in Section 4.3.2. Accord-
ing to its original formulation, the generalized rate-independent
hysteretic force fri(u) is governed by the following ODE:

ḟri = {ke (u) + kb + αf0 + sα [fe (u) + kbu− fri]} u̇, (5.3.2)

where s := sgn (u̇), and the generalized function ke is given by:

ke (u) = β1β2e
β2u + 4γ1γ2

e−γ2(u−γ3)[
1 + e−γ2(u−γ3)

]2 .

Similarly, the generalized function fe is given by:

fe (u) = β1
(
eβ2u − 1

)
+ 2γ1

1 − e−γ2(u−γ3)

1 + e−γ2(u−γ3) .

In Eq. (5.3.2), the model parameters can be updated based
on the sign of the velocity u̇.

5.3.2.3 Non-dimensionalization procedure.
Non-dimensionalization is a useful technique in the analysis of
systems governed by ODEs since it reduces the number of pa-
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rameters involved, simplifying the analysis and aiding in un-
derstanding the relationships between system parameters. This
process also allows for the comparison of different systems on
a common scale by removing specific units, identifying common
trends and properties, and thus generalizing the problem (Sec-
tion 2.5).

The non-dimensionalization process comprises five steps
[14], briefly outlined below for the reader’s convenience:

i) identify all independent and dependent variables;

ii) replace all variables with non-dimensional quantities de-
fined by relationships between dimensional variables and
newly introduced dimensional coefficients;

iii) divide the resulting equation by the coefficient of the
higher order derivative;

iv) select the dimensional coefficients previously introduced
based on the characteristic units of the system in order to
simplify any auxiliary conditions;

v) rewrite the equation in terms of new non-dimensional
quantities.

By applying these five steps to the equation of motion rep-
resented by Eqs. (5.3.1) and (5.3.2) we have that a suitable
non-dimensionalization of the governing equations is obtained
by setting:

t =
√
m

k
τ, u = x

α
, fri = f0z.

In such a way, the final non-dimensional SDoF hysteretic me-
chanical system (see Fig. 5.28b) is ruled by the following ODEs:

ẍ+ 2ζẋ+ x+ z = F cos (Ωτ) , (5.3.3)

and

ż = {κe (x) + χ6 + 1 + s [ϕe (x) + χ6x− z]} ẋ, (5.3.4)

where, with slight a abuse of notation, an overdot now represents
differentiation with respect to the non-dimensional time τ and
s := sgn (ẋ). Furthermore:

2ζ := c√
mk

, F := p0

f0
, Ω := 2πfp

√
m

k
.
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sgn(ẋ) χ1 χ2 χ3 χ4 χ5 χ6

+ 1.0 0.008 16.0 -0.02 0.0 0.01
− -1.0 -0.008 16.0 -0.02 0.0 0.01

Table 5.9. Non-dimensional VRM+D parameters adopted to simu-
late the hysteresis loops in Figure 5.29.

Finally, notice that the non-dimensional form of the VRM+D
in Eq. (5.3.4) depends upon the following six non-dimensional
model parameters:

χ1 := β1

f0
, χ2 := β2

α
, χ3 := 2γ1

f0
,

χ4 := γ2

α
, χ5 := αγ3, χ6 := kb

f0α
,

some of which appear in the non-dimensional function κe (x):

κe (x) = χ1χ2e
χ2x + 2χ3χ4

e−χ4(x−χ5)[
1 + e−χ4(x−χ5)

]2 ,

and ϕe (x):

ϕe (x) = χ1 (eχ2x − 1) + χ3
1 − e−χ4(x−χ5)

1 + e−χ4(x−χ5) .

Note that Eqs. (5.3.3) and (5.3.4) represent the non-dimensional
form of the initial equilibrium equations.

Subsection 5.3.3

Description of the Analyzed System

The main advantage of the mathematical model previously de-
scribed lies in its ability to analyze the behavior of a hysteretic
system with loop shapes similar to those experimentally ob-
tained for the NSD in Fig. 5.27b. Specifically, we study the
SDoF hysteretic mechanical system obtained using the non-
dimensional VRM+D parameters listed in Table 5.9 with ζ = 0.
The continuation parameter is Ω, whereas the non-dimensional
amplitude of the input force F remains constant.
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Figure 5.29. FRCs for SDoF
hysteretic mechanical system
having hysteresis loop as in Fig.
5.27b when F = [0.5, 1.0] (a)
and when F = [1.5, 2.0, 2.5]
(b).
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Subsection 5.3.4

Frequency-Response Curves: Stability and Bi-
furcation

Referring to the FRCs shown in Fig. 5.29, obtained using the
procedure outlined in Section 4.3.3 imposing the parameters
listed in Table 4.4 (the pseudo-code can be found in Table 4.3),
we have:

• F = 0.5: At this level of amplitude, as shown in Fig. 5.29a,
the FRC is globally stable within the investigated range
of Ω and exhibits a softening behavior with a resonance
peak at A ≡ (1.193, 1.481).

• F = 1.0: Also for this level of load amplitude, it can be
observed in Fig. 5.29a that the FRC is slightly bent to
the left (indicating a softening nonlinearity) and globally
stable within the investigated range of Ω with a resonance
peak at B ≡ (1.003, 4.527).

• F = 1.5: By increasing the load value, we observe in
Fig. 5.29b that the FRC is bent to the right (indicat-
ing an hardening nonlinearity) with a resonance peak
at C ≡ (0.951, 129.276). Furthermore, at points F ≡
(0.942, 57.461) and G ≡ (0.950, 128.377), the system ex-
hibits two fold bifurcations.

• F = 2.0: In this case, the behavior exhibited by the
FRC is of the same type as the previous level of am-
plitude. Indeed, there is a further increase in the hard-
ening behavior of the curve with a resonance peak at
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Figure 5.30. FRC for F = 1.5
(a) and periodic orbits in the
state-space at Ω = 0.943 (b).

D ≡ (0.9686, 216.494), whereas the two fold bifurcations
at points H ≡ (0.947, 67.696) and I ≡ (0.9689, 215.182)
move away.

• F = 2.5: In this last case, there is a further increase
in the hardening behavior of the FRC with a resonance
peak at E ≡ (0.977, 269.368). In particular, the two
fold bifurcations at points L ≡ (0.952, 75.313) and M ≡
(0.977, 266.794) move further away.

5.3.4.1 Orbits in the State-Space
Of particular interest is the exploration of the state-space at
specific values of Ω and F . For instance, the FRC shown in
Fig. 5.30a, obtained at F = 1.5, reveals three intersections at
Ω = 0.943. This finding indicates the presence of three periodic
solutions: two stable orbits (denoted P1 and P3 in Fig. 5.30a)
and one unstable periodic solution (denoted P2 in Fig. 5.30a).

Each of the three intersection points with the FRC corre-
sponds to a periodic orbit in the state-space, as illustrated in
Fig. 5.30b. This figure also shows the projections of these peri-
odic orbits onto the (x, ẋ), (x, z), and (ẋ, z) planes. In Fig. 5.30b,
the red points on the orbits represent the fixed-points identified
using the Poincaré map-bases continuation procedure, whereas
the points on the FRC denote the maximum displacement asso-
ciated with each orbit.

Subsection 5.3.5

Conclusions
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The analysis confirms that the mathematical model effectively
captures the behavior of hysteretic systems with loop shapes
similar to experimental observations for the NSD. The frequency
response curves reveal that, at lower forcing amplitude levels,
the system exhibits stable and softening behavior. As the forcing
amplitude increases, the system shifts to a hardening nonlinear-
ity and shows fold bifurcations, highlighting complex changes in
stability and dynamic behavior. Overall, these findings enhance
our understanding of the system’s response and demonstrate the
model’s ability to accurately represent hysteretic behavior and
stability.
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Section 5.4

Rate-Independent Hysteretic Rocking
Systems

The rocking phenomenon, which refers to the rotation at the
base of structural or non-structural elements under dynamic ex-
citations, has been extensively studied in the literature to pro-
tect the involved components [26, 28, 60, 100]. In recent decades,
however, the idea of exploiting the rocking mechanism between
assembled elements has emerged as a potential solution to vi-
bration control, with particular emphasis on the integration of
energy dissipation devices.

Caterino et al. (2018) [17] specifically explored the possibil-
ity of actively controlling rocking through a semi-active system
based on magnetorheological devices, capable of modulating the
stiffness at the base of precast RC columns, allowing real-time
energy dissipation during an earthquake.

Another crucial application of controlled rocking is the pro-
tection of tall wind turbine towers which are subject not only
to wind-induced dynamic loads but also to wave-induced loads
in offshore environments [18]. The interaction between aerody-
namic and hydrodynamic forces can lead to excessive vibrations,
posing a risk to the mechanical systems of the turbine and con-
tributing to structural fatigue. To reduce top displacements and
base stresses, Di Paolo et al. (2021) [30] proposed the use of a
rotational friction damper in parallel with a rotational spring
adopted as re-centering device.

Research has also focused on passive nonlinear control sys-
tems to optimize structural performance under dynamic loads
[1, 2, 12, 27, 84, 85, 87]. Notably, Carpineto et al. (2014) [16] in-
troduced the concept of hysteretic Tuned Mass Damper (TMD)
to mitigate earthquake-induced oscillations by avoiding the lim-
itations of traditional linear TMDs, such as detuning during op-
erational conditions; in addition, hysteretic TMDs do not need
for external power or complex control systems, as it happens
with active and semi-active systems.

In this context, hysteretic rocking systems represent a
promising approach for efficiently dissipating energy [1, 2, 11,
27, 82], reducing peak displacements, velocities, and acceler-
ations, and minimizing structural stresses. These systems en-
hance resilience during seismic events or wind-induced vibra-
tions. By leveraging nonlinear behavior and controlled rocking
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mechanisms for energy dissipation, they offer substantial po-
tential to improve the performance of both existing and newly
designed structures, making them safer and more cost-effective.

To achieve this outcome, it is essential to extend the model
proposed by Di Paolo et al. (2021) [30] in order to simulate more
complex hysteretic behaviors in the involved base elements. This
can be accomplished through the use of the Vaiana-Rosati model
of hysteresis (Section 4.3.2) since it enables a unified represen-
tation of different types of hysteresis loop shape [83, 84]. Ad-
ditionally, the dynamic behavior of a hysteretic rocking system
can be analyzed under periodic forcing using the continuation
method based on Poincaré maps, as described in Section 4.3.3.
This numerical method, similarly to analytical approaches pro-
posed in the literature [29, 56, 59], enables the identification of
the system’s stability and bifurcations.

In this section, we present the mathematical model ap-
plicable to a class of rocking systems characterized by rate-
independent hysteretic behavior. We begin by formulating the
dimensional equations of motion for these systems. Next, we
transform these equations into a non-dimensional form, which
facilitates analysis by reducing the number of parameters and
highlighting the key non-dimensional quantities that dictate the
system’s behavior. Following this transformation, we present the
results of our numerical analyses. Specifically, we provide a con-
cise explanation of the parameters utilized in the continuation
method. We then investigate how the shape of the hysteresis loop
affects the frequency response of four distinct hysteretic rocking
systems. Furthermore, we extend our analysis to examine the ef-
fects of combining hysteretic elements with varying loop shapes,
thereby offering insights into how these combinations influence
the overall behavior and stability of the system.

Subsection 5.4.1

Dimensional Equations of Motion

In this section, the equations of motion for a class of hysteretic
rocking systems are introduced, starting with their dimensional
form. The dimensional equation of motion for the class of hys-
teretic rocking systems shown in Fig. 5.31a is derived from New-
ton’s second law in its general form as:

Iθ̈ + f
(1)
ri (d1θ) d1 + f

(2)
ri (d2θ) d2 = m0 cos (ωt). (5.4.1)
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(a) (b)

Figure 5.31. Dimensional (a)
and non-dimensional (b) classes
of hysteretic rocking systems.

In this context, θ, θ̇, and θ̈ represent the angular displacement,
velocity, and acceleration of the rocking rigid block, respectively
[71]. The block has a mass m and a moment of inertia about
the axis of rotation given by I = mh2. Furthermore, f (1)

ri and
f

(2)
ri represent the generalized rate-independent hysteretic forces

acting on the left and right hysteretic elements, respectively,
positioned at distances d1 (d1 < 0) and d2 (d2 > 0); in addition,
m0 and ω denote the amplitude and the angular frequency of
the periodic input forcing.

According to the differential formulation of the VRM+D
(Section 4.3.2), the generalized rate-independent hysteretic
forces in Eq. (5.4.1) are governed by the following ODEs:

ḟ
(i)
ri =

[
k(i)

e (diθ) + k
(i)
b + α(i)f

(i)
0 +

+sgn
(
diθ̇

)
α(i)

(
f (i)

e (diθ) + k
(i)
b diθ − f

(i)
ri

)]
diθ̇, for i = 1, 2,

(5.4.2)

in which the model parameters are properly updated based on
the sign of the velocity. In the previous equation, the generalized
function k

(i)
e is defined as:

k(i)
e (diθ) = β

(i)
1 β

(i)
2 eβ

(i)
2 diθ + 4γ(i)

1 γ
(i)
2

e
−γ

(i)
2

(
diθ−γ

(i)
3

)
[
1 + e

−γ
(i)
2

(
diθ−γ

(i)
3

)]2 ,
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whereas f (i)
e is given by:

f (i)
e (diθ) = β

(i)
1

(
eβ

(i)
2 diθ − 1

)
+ 2γ(i)

1
1 − e

−γ
(i)
2

(
diθ−γ

(i)
3

)
1 + e

−γ
(i)
2

(
diθ−γ

(i)
3

) .
Subsection 5.4.2

Non-dimensionalization Procedure

To simplify the analysis and reduce the number of involved
parameters, a non-dimensionalization process is carried out.
This approach rescales variables and identifies essential non-
dimensional parameters, leading to a set of simplified equations
that more clearly reveal the behavior of the analyzed system.
In addition, it offers a more general framework for examining
the dynamics of the system, emphasizing the influence of the
hysteretic elements and forcing frequency, and enabling the ex-
ploration of various dynamic phenomena (Section 2.5).

The analysis of the behavior of a hysteretic rocking sys-
tem involves examining the above differential equations, which
includes a considerable number of parameters. Specifically, 3
parameters are associated with the system’s geometric and in-
ertial properties (I, d1, d2), whereas 32 parameters are related
to the hysteretic elements; indeed, two sets of 8 parameters, cor-
responding to the loading and unloading phases, are associated
with each of the two rate-independent hysteretic elements. Ad-
ditionally, there are 2 parameters related to the external force
(m0, ω), resulting in a total of 37 parameters.

To simplify the analysis and reduce the number of parame-
ters, a non-dimensionalization procedure is applied to the equa-
tion of motion. This approach facilitates the understanding of
the relationships between the parameters and frees the system
from specific units of measurement, allowing for a more abstract
and general analysis.

The non-dimensionalization procedure consists of five steps.
First, all independent and dependent dimensional variables
are identified and then these variables are replaced with non-
dimensional quantities. The next step involves dividing the re-
sulting equation, after the substitution of non-dimensional quan-
tities, by the coefficient of the highest-order derivative term.
Subsequently, characteristic units are selected to simplify the
auxiliary conditions as much as possible. Finally, the equation
is rewritten using only non-dimensional quantities [14].
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By applying the above-described procedure to Eqs. (5.4.1)
and (5.4.2), a more concise and manageable form of the equa-
tions is obtained. Specifically:

i) The independent variable is the time t whereas the gen-
eralized rate-independent hysteretic forces f (1)

ri and f
(2)
ri

represent the dependent ones. Note that θ is already a
non-dimensional quantity and therefore is not included in
the non-dimensionalization process.

ii) We introduce as non-dimensional variables:

τ := t

ts
, z(1) := f

(1)
ri

f
(1)
s

, z(2) := f
(2)
ri

f
(2)
s

.

These quantities are defined as the dimensional variables
scaled by specific dimensional scaling factors (i.e., ts, f (1)

s ,
and f

(2)
s ) whose expressions may be chosen in order to

simplify the final non-dimensional equations as much as
possible. Based on these definitions, the dimensional vari-
ables can be expressed as follows:

t = tsτ, f
(1)
ri = f (1)

s z(1), f
(2)
ri = f (2)

s z(2). (5.4.3)

By using Eq. (5.4.3), it is possible to replace the dimen-
sional variables in Eqs. (5.4.1) and (5.4.2) with the non-
dimensional ones. In particular, we obtain for Eq. (5.4.1):

I

t2s

d2θ

dτ2 + f (1)
s d1z

(1) + f (2)
s d2z

(2) = m0 cos (ωtsτ) , (5.4.4)

and for Eq. (5.4.2):

f
(i)
s

ts

dz(i)

dτ
=

{
k(i)

e (diθ) + k
(i)
b + α(i)f

(i)
0 +

+sgn
(
di

ts

dθ

dτ

)
α(i)

[
f (i)

e (diθ) + k
(i)
b diθ − f (i)

s z(i)
]} di

ts

dθ

dτ
.

(5.4.5)

iii) The highest-order terms in Eqs. (5.4.4) and (5.4.5) are I
t2

s
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and f(i)
s

ts
, respectively. Dividing Eq. (5.4.4) by I

t2
s

gives:

d2θ

dτ2 + f
(1)
s t2s
I

d1z
(1) + f

(2)
s t2s
I

d2z
(2) = m0t

2
s

I
cos (ωtsτ) ,

(5.4.6)
whereas, dividing Eq. (5.4.5) by f(i)

s

ts
yields:

dz(i)

dτ
= di

f
(i)
s

{
k(i)

e (diθ) + k
(i)
b + α(i)f0(i)+

+sgn
(
di

ts

dθ

dτ

)
α(i)

[
f (i)

e (diθ) + k
(i)
b diθ − f (i)

s z(i)
]} dθ

dτ
.

(5.4.7)

iv) To determine the scaling factors ts, f (1)
s , and f

(2)
s that

simplify Eqs. (5.4.6) and (5.4.7) as much as possible, we
need to introduce three equations. A possible approach
is to set the coefficients in Eq. (5.4.6) equal to one. This
results in:

m0t
2
s

I
= 1 → ts :=

√
I

m0
,

f
(i)
s t2s
I

di = 1 → f (i)
s := m0

di
for i = 1, 2.

As a result, the non-dimensional angular frequency in Eq.
(5.4.6) is defined as follows:

Ω := ω

√
I

m0
.

On the other hand, the non-dimensional form of the VRM
in Eq. (5.4.7) (which will be referred to as NDVRM in the
following) can be further simplified by defining two new
non-dimensional functions:

κ(i)
e (θ) := k(i)

e (diθ)
di

f
(i)
s

and ϕ(i)
e (θ) := f

(i)
e (diθ)
f

(i)
s

,
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along with the non-dimensional model parameters:

χ
(i)
1 := β

(i)
1

f
(i)
s

, χ
(i)
2 := β

(i)
2 di, χ

(i)
3 := 2γ(i)

1

f
(i)
s

, χ
(i)
4 := γ

(i)
2 di,

χ
(i)
5 := γ

(i)
3
di

, χ
(i)
6 :=

k
(i)
b di

f
(i)
s

, χ
(i)
7 := α(i)di, χ

(i)
8 := f

(i)
0

f
(i)
s

.

We may note that some of such quantities appear in the
non-dimensional function κ

(i)
e (θ):

κ(i)
e (θ) = χ

(i)
1 χ

(i)
2 eχ

(i)
2 θ + 2χ(i)

3 χ
(i)
4

e
−χ

(i)
4

(
θ−χ

(i)
5

)
[
1 + e

−χ
(i)
4

(
θ−χ

(i)
5

)]2 ,

and in the non-dimensional function ϕ
(i)
e (x):

ϕ(i)
e (θ) = χ

(i)
1

(
eχ

(i)
2 θ − 1

)
+ χ

(i)
3

1 − e
−χ

(i)
4

(
θ−χ

(i)
5

)
1 + e

−χ
(i)
4

(
θ−χ

(i)
5

) .
v) The final non-dimensional form of the equation of motion,

associated with the class of hysteretic rocking systems il-
lustrated in Fig. 5.31b, is described by a set of ODEs that
depend only on the parameters of the hysteretic elements
and the forcing frequency Ω. These equations are:

d2θ

dτ2 + z(1) + z(2) = cos (Ωτ) , (5.4.8)

and

dz(i)

dτ
=

{
κ(i)

e (θ) + χ
(i)
6 + χ

(i)
7 χ

(i)
8 +

+ s(i)χ
(i)
7

[
ϕ(i)

e (θ) + χ
(i)
6 θ − z(i)

]} dθ

dτ
for i = 1, 2,

(5.4.9)

with s(i) := sgn
(
di

√ m0
I

dθ
dτ

)
.

Such a non-dimensional form provides a powerful framework for
analyzing the system’s behavior under different conditions. As
a matter of fact, by varying the parameters associated with the
hysteretic elements, a wide range of dynamic phenomena can be
explored.
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Subsection 5.4.3

Analyzed Hysteretic Rocking Systems

The non-dimensional model introduced in the previous section
offers a robust tool for conducting parametric studies, enabling
a detailed exploration of the system’s dynamic behavior under
different conditions. Specifically, the impact of varying the value
of the hysteresis model parameters on the system’s frequency-
response behavior is crucial, and systematically altering the hys-
teresis loop shape characterizing the rate-independent hysteretic
elements allows for a comprehensive analysis of the system’s re-
sponse.

The NDVRM facilitates a detailed exploration of hystere-
sis loop shapes which are categorized into four distinct types,
each exhibiting specific characteristics according to the analyt-
ical properties of the upper and lower limiting curves (Table
5.10).

It is worth noting that by selecting Ω as the control parame-
ter, the hysteresis parameters are considered constant during the
computation of periodic solutions. To further reduce the number
of involved parameters, systems with symmetric hysteresis loop
shapes are analyzed. This implies the following relationships for
the NDVRM parameters:

χ+
1 = −χ−

1 , χ+
2 = −χ−

2 , χ+
3 = +χ−

3 , χ+
4 = +χ−

4 ,

χ+
5 = −χ−

5 , χ+
6 = +χ−

6 , χ+
7 = +χ−

7 , χ+
8 = +χ−

8 .

The proposed approach enables the analysis of geometric asym-
metries (i.e., |d1| ≠ |d2|) and cases where f (1)

ri and f (2)
ri are char-

acterized by different sets of parameters.

5.4.3.1 Shape Type S1
Shape type S1 is characterized by hysteresis loops bounded by
two straight lines. This occurs when all parameters related to
curvature and inflection points of the limiting curves are zero.
This simple shape is commonly found in smooth steel reinforcing
bars, steel dampers, and steel beam-column connections.

5.4.3.2 Shape Type S2
Shape type S2 is characterized by limiting curves with no in-
flection points, resulting in a more complex hysteresis loop
shape compared to S1. This category is divided into three
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Shape Type Subtype Parameters Conditions

S1 − χ+
1 = 0 χ+

2 = 0 χ+
3 = 0 χ+

4 = 0
χ−

1 = 0 χ−
2 = 0 χ−

3 = 0 χ−
4 = 0

S2

S2.1 χ+
1 > 0 χ+

2 > 0 χ+
3 = 0 χ+

4 = 0
χ−

1 > 0 χ−
2 > 0 χ−

3 = 0 χ−
4 = 0

S2.2 χ+
1 > 0 χ+

2 > 0 χ+
3 = 0 χ+

4 = 0
χ−

1 < 0 χ−
2 < 0 χ−

3 = 0 χ−
4 = 0

S2.3 χ+
1 > 0 χ+

2 > 0 χ+
3 > 0 χ+

4 < 0
χ−

1 < 0 χ−
2 < 0 χ−

3 > 0 χ−
4 < 0

S3

S3.1 χ+
1 = 0 χ+

2 = 0 χ+
3 > 0 χ+

4 > 0
χ−

1 = 0 χ−
2 = 0 χ−

3 > 0 χ−
4 > 0

S3.2 χ+
1 = 0 χ+

2 = 0 χ+
3 > 0 χ+

4 > 0
χ−

1 = 0 χ−
2 = 0 χ−

3 > 0 χ−
4 < 0

S3.3 χ+
1 > 0 χ+

2 > 0 χ+
3 > 0 χ+

4 < 0
χ−

1 < 0 χ−
2 < 0 χ−

3 > 0 χ−
4 < 0

S4 − χ+
1 > 0 χ+

2 > 0 χ+
3 > 0 χ+

4 > 0
χ−

1 < 0 χ−
2 < 0 χ−

3 > 0 χ−
4 > 0

Table 5.10. NDVRM parameters conditions to simulate different
types of hysteresis loop shape.

subcategories depending on the values of the parameters
χ±

1 , χ
±
2 , χ

±
3 , and χ±

4 . Specifically:

• S2.1: The hysteresis loop takes this shape when the pa-
rameters for the upper (lower) limiting curve are χ+

1 > 0
(χ−

1 > 0), χ+
2 > 0 (χ−

2 > 0), and χ+
3 = 0 (χ−

3 = 0),
χ+

4 = 0 (χ−
4 = 0). It is commonly observed in magnesium

alloy bars, spring connectors, and wire rope isolators.

• S2.2: The hysteresis loop assumes this shape when the
parameters for the upper (lower) limiting curve are χ+

1 > 0
(χ−

1 < 0), χ+
2 > 0 (χ−

2 < 0), χ+
3 = 0 (χ−

3 = 0), and χ+
4 = 0

(χ−
4 = 0). This type of loop is typical of expansion anchors

and steel-concrete composite beam-column connections.

• S2.3: The hysteresis loop takes this shape when the pa-
rameters for the upper (lower) limiting curve are χ+

1 > 0
(χ−

1 < 0), χ+
2 > 0 (χ−

2 < 0), χ+
3 > 0 (χ−

3 > 0), and χ+
4 < 0
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(χ−
4 < 0). It generally characterizes the behavior of steel

dampers.

5.4.3.3 Shape Type S3
Shape type S3 is defined by limiting curves with a single in-
flection point, adding a layer of complexity compared to the
previous shape types. This category of hysteresis loops, as the
previous one, is divided into three subcategories based on the
values of the parameters χ±

1 , χ
±
2 , χ

±
3 , and χ±

4 . Specifically:

• S3.1: The hysteresis loop assumes this shape when the
parameters for the upper (lower) limiting curve are χ+

1 = 0
(χ−

1 = 0), χ+
2 = 0 (χ−

2 = 0), χ+
3 > 0 (χ−

3 > 0), and χ+
4 > 0

(χ−
4 > 0). It is typically found in brick masonry walls,

reinforced high-strength concrete columns, wood element
connections, and SMA helical springs.

• S3.2: The hysteresis loop takes this shape when the pa-
rameters for the upper (lower) limiting curve are χ+

1 = 0
(χ−

1 = 0), χ+
2 = 0 (χ−

2 = 0), χ+
3 > 0 (χ−

3 > 0), and
χ+

4 > 0 (χ−
4 < 0). This loop shape is typical of buckling

steel braces, steel bar members, and steel reinforcing bars.

• S3.3: The hysteresis loop assumes this shape when the
parameters for the upper (lower) limiting curve are χ+

1 > 0
(χ−

1 < 0), χ+
2 > 0 (χ−

2 < 0), χ+
3 > 0 (χ−

3 > 0), and
χ+

4 < 0 (χ−
4 < 0). It is typically observed in negative

stiffness devices.

5.4.3.4 Shape Type S4
Shape type S4 is characterized by limiting curves with two in-
flection points, making it the most complex among the four
shape types. It occurs when the parameters for the upper lim-
iting curve are χ+

1 > 0, χ+
2 > 0, χ+

3 > 0, χ+
4 > 0, whereas

those for the lower limiting curve are χ−
1 < 0, χ−

2 < 0, χ−
3 > 0,

χ−
4 > 0. This complex shape is commonly observed in steel fram-

ing walls, unbounded fiber-reinforced elastomeric bearings, rein-
forced concrete walls, pre-strained SMA wires, and steel-timber
hybrid shear walls.

5.4.3.5 Continuation Procedure Parameters
The parameters employed for deriving the FRCs are essential to
ensuring the accuracy and convergence of the adopted continua-
tion procedure [14]. Specifically, the parameter T/∆τ , governing
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Figure 5.32. Non-dimensional
hysteresis loops simulated by
using the NDVRM parameters
in Table 5.11.

the number of numerical steps in the evaluation of the Poincaré
map, is set to 2048. Both δ1 and δ2, which represent the finite-
difference increments for the numerical computation of the Ja-
cobian matrix, are set equal to 10−3, thus achieving a balance
between precision and computational efficiency. To guarantee a
high level of accuracy in the Newton-Raphson iterative solution
process, the tolerance tol of the stopping criterion is set to 10−6.
An essential aspect of the continuation procedure is the control
of the step length ∆s since the convergence characteristics may
significantly vary along different sections of the solution curve.
To address such an aspect and optimize the algorithm perfor-
mance, an adaptive step length control strategy is implemented.
Specifically, the minimum (maximum) step size ∆smin (∆smax)
is set to 10−10 (10−3), ensuring the stability of the continuation
procedure (see Section 4.3.3).
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Set χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

S1 a 0.0 0.0 0.0 0.0 0.0 0.0417 -5.0 -0.4167
b 0.0 0.0 0.0 0.0 0.0 0.1667 10.0 0.8333

S2 a -0.1 -1.0 0.0 0.0 0.0 0.0125 -5.0 -0.1
b 0.2 2.0 0.0 0.0 0.0 0.0500 10.0 0.2

S3 a 0.0 0.0 -1.0 -1.5 0.0 0.0417 -5.0 -0.3333
b 0.0 0.0 2.0 3.0 0.0 0.1667 10.0 0.6667

S4 a -0.005 -1.0 -0.1 -20.0 0.0 0.0125 -5.0 -0.025
b 0.010 2.0 0.2 40.0 0.0 0.0500 10.0 0.050

Table 5.11. NDVRM parameters adopted to simulate the hysteresis
loops in Figure 5.32.

Subsection 5.4.4

Influence of the Shape Type

To analyze the effect of different hysteresis loop shapes on the
dynamic behavior of hysteretic rocking systems, we present three
different FRCs for each hysteresis loop shape detailed in the
previous section. In particular, in each of them, we analyze two
different configurations:

1. Symmetric Configuration (gray line): it is obtained by us-
ing the parameters from "set b" listed in Table 5.11 for
both z(1) and z(2). Note that, in this symmetric setup, pa-
rameters from "set b" that are directly dependent on the
sign of d1 change sign when applied to simulate z(1).

2. Asymmetric Configuration (colored line): it is obtained by
adopting parameters from "set a" for z(1) and from "set b"
for z(2), as detailed in Table 5.11.

The symmetric configuration is reported as a reference to show
the impact of having different loops for the two rate-independent
elements.

The FRCs illustrate how key aspects of the periodic orbits,
such as maximum angular displacement, velocity, and accelera-
tion, vary with the angular frequency Ω. These curves are gen-
erated by first determining the fixed-point of the Poincaré map,
which is then used as the initial condition for further integra-
tion to extract these important quantities. Moreover, to better
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Figure 5.33. FRCs for Systems S1 where the gray (colored) line indicates the symmetric (asymmet-
ric) configuration: maximum angular displacement (a), maximum angular velocity (b), and maximum
angular acceleration (c).
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Figure 5.34. System S1: maximum angular displacement FRC (a), and periodic orbit in the state-space
at Ω = 1.81688 (b) and (c).

understand the system’s state-space dynamics, key points along
the FRCs are plotted in state-space. Being the state-space of
this non-autonomous system four-dimensional, the trajectory is
projected onto (θ, θ̇, z(1)) and (θ, θ̇, z(2)) to visualize the peri-
odic orbits. This approach allows us to assess the structure and
stability of the periodic orbits for specific values of Ω.

5.4.4.1 Shape Type S1
In the following, we present the results of the analysis performed
on a non-dimensional hysteretic rocking system in which the
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rate-independent hysteretic elements are characterized by the
hysteresis loops illustrated in Fig. 5.32a and are modeled by
using the NDVRM parameters listed in Table 5.11.

Frequency Response Curves: Figure 5.33 shows that the
FRCs for the system S1 bend to the left, indicating a softening
nonlinearity, and are globally stable within the examined range
of Ω. Notably, with a specific focus on the asymmetric configu-
ration, the resonance peak for the three different FRCs occurs
at:

• (1.81688, 0.330704) for the maximum angular displace-
ment (Fig. 5.33a);

• (2.37554, 0.620298) for maximum angular velocity (Fig.
5.33b);

• (3.25509, 1.966050) for maximum angular acceleration
(Fig. 5.33c).

Furthermore, the system exhibits a series of resonance peaks
across different frequency ranges provided by the odd superhar-
monics of the excitation frequency:

• for the maximum angular displacement in the range Ω ∈
[0.101374 − 0.79504] (Fig. 5.33a);

• for the maximum angular velocity in the range Ω ∈
[0.101374 − 0.807052] (Fig. 5.33b);

• for the maximum angular acceleration in the range Ω ∈
[0.101374 − 0.840424] (Fig. 5.33c).

Orbits in the State-Space: At the resonance frequency
Ω = 1.81688, corresponding to the maximum angular displace-
ment for the asymmetric configuration, the system exhibits a
unique stable periodic orbit. This is depicted in Fig. 5.34, where
the projections onto (θ, θ̇, z(1)) (Fig. 5.34b) and (θ, θ̇, z(2)) (Fig.
5.34c) highlight the distinct hysteresis loop shapes inherent to
shape type S1. The figures also show the fixed-point (red dots
in Figs. 5.34a and 5.34b) and corresponding point on the FRC
(orange dot), illustrating the stable periodic solution.

5.4.4.2 Shape Type S2
Below, we present the results of the analysis on a non-
dimensional hysteretic rocking system, with the NDVRM pa-
rameters for the rate-independent hysteretic elements simulat-
ing the shape type shown in Fig. 5.32b, listed in Table 5.11.
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Figure 5.35. FRC for System S2 where the gray (colored) line indicates the symmetric (asymmetric)
configuration: maximum angular displacement (a), maximum angular velocity (b), and maximum an-
gular acceleration (c).
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Figure 5.36. System S2: maximum angular displacement FRC (a), and periodic orbit in the state-space
at Ω = 0.550548 (b) and (c).

Frequency Response Curves: As shown in Fig. 5.35, the
FRCs exhibit a rightward bend, indicative of hardening nonlin-
earity. The resonance peaks for the three FRCs in the asymmet-
ric configuration occur at the following points:

• (1.34534, 1.61015) for the maximum angular displacement
(Fig. 5.35a);

• (1.39720, 2.00636) for the maximum angular velocity (Fig.
5.35b);
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• (1.37807, 5.59221) for the maximum angular acceleration
(Fig. 5.35c).

Additionally, across different ranges of Ω, the system exhibits a
series of resonance peaks for each FRC due to the odd super-
harmonics of the excitation frequency:

• for maximum angular displacement, within the range Ω ∈
[0.100323 − 0.379318] (Fig. 5.35a);

• for maximum angular velocity, within the range Ω ∈
[0.100323 − 0.381185] (Fig. 5.35b);

• for maximum angular acceleration, within the range Ω ∈
[0.100323 − 0.208048] (Fig. 5.35c).

Furthermore, the FRCs are not globally stable throughout the
examined range of Ω, as demonstrated in Fig. 5.35. Specifically,
the asymmetric system undergoes a series of fold bifurcations at
angular frequencies of 0.543208, 0.557175, 1.43128, and 1.43129.
On the other hand, in the symmetric case, only two fold bifur-
cations occur at the values 0.607582 and 0.621976.

Orbits in the State-Space: At the angular frequency Ω =
0.550548, associated with loss of stability due to fold bifurca-
tions, three intersections with the FRC are observed in the asym-
metric case, as depicted in Fig. 5.36a. These correspond to two
stable periodic orbits with maximum angular displacements of
1.33500 and 1.37292, and an unstable orbit with a maximum
angular displacement of 1.38382. The projections in the state-
space, shown in Figs. 5.36b and 5.36c, further illustrate the two
different structures of the periodic orbit for the shape type S2.

5.4.4.3 Shape Type S3
In the following, we present the results of the analysis conducted
on a non-dimensional hysteretic rocking system, with the ND-
VRM parameters for the rate-independent hysteretic elements
simulating shape type S3 listed in Table 5.11, and the corre-
sponding loop shapes illustrated in Fig. 5.32c.

Frequency Response Curves: As illustrated in Fig. 5.37,
the FRCs exhibit a slight leftward bend, indicating a softening
nonlinearity. Resonance peaks for the three FRCs in the asym-
metric configuration occur at:

• (2.1349, 0.60016) for the maximum angular displacement
(Fig. 5.37a);
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Figure 5.37. FRC for Systems S3 where the gray (colored) line indicates the symmetric (asymmetric)
configuration: maximum angular displacement (a), maximum angular velocity (b), and maximum an-
gular acceleration (c).
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Figure 5.38. System S3: maximum angular displacement FRC (a), and periodic orbit in the state-space
at Ω = 2.08439 (b) and (c).

• (2.16624, 1.25418) for the maximum angular velocity (Fig.
5.37b);

• (2.2684, 3.13212) for the maximum angular acceleration
(Fig. 5.37c).

Moreover, within different ranges of Ω, the system exhibits mul-
tiple resonance peaks across the three FRCs also in this case
provided by the odd superharmonics of the driving frequency:

• for maximum angular displacement within the range Ω ∈
[0.109748 − 1.04093] (Fig. 5.37a);
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Figure 5.39. FRC for Systems S4 where the gray (colored) line indicates the symmetric (asymmetric)
configuration: maximum angular displacement (a), maximum angular velocity (b), and maximum an-
gular acceleration (c).

• for maximum angular velocity within the range Ω ∈
[0.109748 − 1.02533] (Fig. 5.37b);

• for maximum angular acceleration within the range Ω ∈
[0.109748 − 1.05406] (Fig. 5.37c).

Finally, differently from the symmetric case, the asymmetric one
shows that the FRCs are not globally stable across the entire
range of Ω under investigation, as illustrated in Fig. 5.37. In par-
ticular, the asymmetric system undergoes two fold bifurcations
at angular frequencies of 2.0843 and 2.08466.

Orbits in the State-Space: At the angular frequency Ω =
2.08439, the asymmetric system experiences a loss of stability,
resulting in three intersections with the FRC, as shown in Fig.
5.38a. The corresponding stable periodic orbits are characterized
by maximum angular displacements of 0.419855 and 0.506595,
whereas the unstable orbit has a displacement of 0.477754. The
state-space projections in Figs. 5.38b and 5.38c display the dis-
tinct hysteresis loop shapes of the two hysteretic elements.

5.4.4.4 Shape Type S4
In this section, we present the results of the analysis on the
non-dimensional hysteretic rocking system, with the NDVRM
parameters for the rate-independent hysteretic elements simu-
lating shape type S4 listed in Table 5.11 and the corresponding
loop shapes shown in Fig. 5.32d.
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Figure 5.40. System S4: maximum angular displacement FRC (a), and periodic orbit in the state-space
at Ω = 0.984231 (b) and (c).

Frequency Response Curves: As depicted in Fig. 5.39, the
FRCs display a rightward bend, indicating a hardening nonlin-
earity. The resonance peaks for the three FRCs, associated with
the asymmetric configuration, are located at:

• (1.06986, 3.51442) for the maximum angular displacement
(Fig. 5.39a);

• (1.10357, 3.38342) for the maximum angular velocity (Fig.
5.39b);

• (1.08299, 11.9223) for the maximum angular acceleration
(Fig. 5.39c).

Across different ranges of Ω, the system exhibits multiple reso-
nance peaks within the three FRCs influenced by the odd su-
perharmonics of the driving frequency:

• for maximum angular displacement within the range Ω ∈
[0.099987 − 0.282193] (Fig. 5.39a);

• for maximum angular velocity within the range Ω ∈
[0.099987 − 0.282795] (Fig. 5.39b);

• for maximum angular acceleration within the range Ω ∈
[0.099987 − 0.284134] (Fig. 5.39c).

The FRCs are not globally stable across the entire investigated
range of Ω, as illustrated in Fig. 5.39. Notably, even the FRC
for the symmetric configuration displays three regions of insta-
bility, which contrasts with the previously analyzed cases (S1
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and S3). In addition, the asymmetric system undergoes mul-
tiple stability losses over different frequency ranges. Two sig-
nificant regions of instability are observed between the angular
frequencies 0.388241–0.389705 and 0.943656–1.11138. Further,
smaller stability losses occur in the narrower frequency ranges
of Ω ∈ [0.38877 − 0.388772] and Ω ∈ [0.455738 − 0.455742].

Orbits in the State-Space: At the frequency Ω = 0.984107,
the asymmetric system shows three intersections with the FRC,
as depicted in Fig. 5.40a. The selected angular frequency lies
within a region where the system experiences a loss of stability.
Specifically, the two stable periodic orbits correspond to max-
imum angular displacements of 1.78102 and 3.48121, whereas
the unstable orbit shows a maximum angular displacement of
2.81901. The distinct hysteresis loop shapes associated with
shape type S4 are illustrated in the state-space projections
shown in Figs. 5.40b and 5.40c, where we can also notice the
different structures of the periodic orbit.

Subsection 5.4.5

Influence of the Combination of Different Shape
Types

Based on the analyses performed for four different shape
types, we examine an additional hysteretic rocking system us-
ing two different hysteresis loop shapes for the hysteretic rate-
independent elements z(1) and z(2). In particular, in the fol-
lowing, we present the results of the analysis, focusing on the
non-dimensional hysteretic system in which the element with
restoring force z(1) uses the loop shape S2, whereas the element
with restoring force z(2) employs the loop shape S4. The ND-
VRM parameters adopted for these simulations are detailed in
Table 5.12.

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

S2 z(1) -0.2 -2.0 0.0 0.0 0.0 0.0500 -10.0 -0.2
S4 z(2) 0.01 2.0 0.2 40.0 0.0 0.0500 10.0 0.050

Table 5.12. NDVRM parameters used for evaluating the different
loop shapes.
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5.4.5.1 Frequency Response Curve
As shown in Fig. 5.41, the FRCs exhibit a rightward bend, in-
dicative of hardening nonlinearity, in agreement with the behav-
ior observed for systems S2 and S4 (see Section 5.4.4). The res-
onance peaks for the three FRCs occur at the following points:

• (1.41457, 1.66524) for the maximum angular displacement
(Fig. 5.41a);

• (1.46133, 2.18186) for the maximum angular velocity (Fig.
5.41b);

• (1.44205, 6.2510) for the maximum angular acceleration
(Fig. 5.41c).

In this case, it is noteworthy that the results obtained by com-
bining the two shape types are very close to those obtained for
shape type S2 in terms of maximum angular displacement, ve-
locity, and acceleration. However, the effect of shape type S4 is
evident in the frequencies at which these maxima occur, as they
are higher compared to the case of shape type S2.

Additionally, across different ranges of Ω, the system ex-
hibits a series of resonance peaks for each FRC:

• for maximum angular displacement, within the range Ω ∈
[0.0999928 − 0.372626] (Fig. 5.41a);

• for maximum angular velocity, within the range Ω ∈
[0.0999928 − 0.375637] (Fig. 5.41b);

• for maximum angular acceleration, within the range Ω ∈
[0.0999928 − 0.373599] (Fig. 5.41c).

Furthermore, the FRCs are not globally stable throughout the
entire range of Ω examined, as shown in Fig. 5.41, and this
range is larger than that obtained for systems with S2 and S4
shape types. Specifically, the system undergoes a series of fold
bifurcations at angular frequencies of 0.54774, 0.555669, 1.48515,
and 1.48838. Finally, it is noteworthy that the instability regions
have decreased compared to the behavior observed in the S4
system, with the instabilities previously seen in the narrower
ranges now being eliminated (see Section 5.4.4).

5.4.5.2 Orbits in the State Space
For the hysteretic rocking system with the combined loop shapes
S2 and S4, we consider the angular frequency Ω = 1.48681, since
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Figure 5.41. FRC for combined system S2−S4: maximum angular displacement (a), maximum angular
velocity (b), and maximum angular acceleration (c).
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Figure 5.42. Combined system S2 − S4: maximum angular displacement FRC (a), and periodic orbit
in the state-space at Ω = 1.48681 (b) and (c).

this value corresponds to a region where the system undergoes a
loss of stability. Specifically, at this angular frequency, there are
three intersections with the FRC, as shown in Fig. 5.42a. The
two stable orbits correspond to maximum angular displacements
of 1.24152 and 1.55886, respectively, whereas the single unstable
periodic orbit has a maximum angular displacement of 1.41969.

Figures 5.42b and 5.42c show the projections of the periodic
orbit onto the (θ, θ̇, z(1)) and (θ, θ̇, z(2)) spaces, respectively.
These figures also include projections onto the planes (θ, θ̇),
(θ, z(1)), (θ, z(2)), and (θ̇, z(1)), (θ̇, z(2)). The projections onto
the (θ, z(1)) and (θ, z(2)) planes are particularly significant as
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they clearly highlight the distinct hysteresis loop shapes char-
acterizing the hysteretic rate-independent elements. Addition-
ally, the state-space projections shown in Figs. 5.42b and 5.42c
further elucidate the different structures of the periodic orbits.
These figures also mark the fixed-point determined by the pro-
cedure (red dot) and the corresponding points identified on the
FRC (colored dots).

Subsection 5.4.6

Conclusions

In this study, we have developed a comprehensive mathemati-
cal framework for analyzing hysteretic rocking systems, with a
focus on their frequency response characteristics. Starting from
the equations of motion, we have transformed them into a non-
dimensional form, which has enabled a more general analysis
by reducing the number of governing parameters. This simpli-
fication was essential in allowing us to focus on the primary
non-dimensional quantities that influence the system’s behav-
ior.

A key part of the analysis involved classifying different hys-
teresis loop shapes and applying a continuation method to ex-
plore their impact on system dynamics. Through this, we were
able to assess how variations in the loop shape influence the
frequency response. In particular, we found that different loop
shapes can lead to significant differences in system performance,
especially with respect to stability.

Additionally, the study examined the combined effects of
two loop shapes, providing deeper insights into how these com-
binations can modify system behavior. The results demonstrated
that a careful selection of hysteresis loop shapes can be used to
tune the dynamic response of hysteretic rocking systems, offer-
ing valuable guidance for designing resilient structures in engi-
neering applications.

These findings contribute to a better understanding of hys-
teretic rocking systems and their potential for improving struc-
tural performance, particularly in environments subject to dy-
namic loads such as earthquakes or wind-induced vibrations.
Further research could explore the practical implementation of
these concepts and their applicability to specific structural sys-
tems.
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Section 5.5

Dynamic Response of MDoF Systems
with Complex Rate-Independent Hys-
teretic Behavior

Hysteresis, a highly nonlinear phenomenon present in various
mechanical systems and materials, presents significant chal-
lenges in the dynamic analysis of rate-independent hysteretic
systems, particularly under periodic excitations [12]. While pre-
vious research extensively examined Single-Degree-of-Freedom
(SDoF) systems using models like Bouc-Wen [50] and Vaiana-
Rosati [14], recent advancements have expanded the focus to
MDoF systems. These systems exhibit more complex dynamics
due to modal interactions, bifurcations, and potential chaotic
responses.

Formica et al. [32] made a significant contribution by provid-
ing a robust framework for analyzing MDoF hysteretic systems
by combining an exponential hysteretic model and advanced nu-
merical techniques, to identify periodic solutions and character-
ize bifurcation phenomena. However, the inability of the adopted
hysteretic model to capture more complex hysteresis loop shapes
[85], limited its applicability to real-world scenarios.

This study overcomes these limitations by incorporating the
Vaiana-Rosati model since it can accurately reproduce complex
hysteresis behaviors of quite arbitrary nature. The generalized
framework investigates the influence of system dimensionality on
the dynamic behavior of hysteretic systems using advanced nu-
merical methodologies. In particular, we systematically presents
the governing equations of motion and the integration of the
Vaiana-Rosati model (Section 5.5.1), the continuation proce-
dures for numerical analysis (Section 5.5.3), and the influence of
dimensionality on the dynamic behavior of systems with com-
plex hysteresis loop shapes, analyzing how response patterns
evolve with increasing degrees of freedom and highlighting key
phenomena (Section 5.5.5).

Subsection 5.5.1

Mathematical Model

In this section, we introduce the equations of motion for a
class of MDoF rate-independent hysteretic mechanical systems,
starting from their dimensional formulation. To facilitate the
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Figure 5.43. General family of
MDoF hysteretic mechanical
systems.

analysis and reduce the number of parameters, we present the
non-dimensional form of these equations, emphasizing key non-
dimensional parameters. This approach results in simplified
equations that generalize the behavior of the system under in-
vestigation.

5.5.1.1 Dimensional System
The general class of dimensional MDoF hysteretic mechani-
cal systems, considered in [32] and shown in Fig. 5.43, com-
prises n masses connected in series; each mass is denoted as
mj (where j = 1, 2, . . . , n). These masses are interconnected
by rate-independent hysteretic elements. For this system, the
dimensional equation of motion can be derived from Newton’s
second law in its general form as:

m1ü1 + f
(1)
ri (u1) + f

(2)
ri (u2 − u1) = −m1üb cos(ωt),

...
mj üj + f

(j)
ri (uj − uj−1) + f

(j+1)
ri (uj+1 − uj) = −mj üb cos(ωt),

...
mnün + f

(n)
ri (un − un−1) = −mnüb cos(ωt),

(5.5.1)
where the hysteretic forces f (j)

ri are governed by the Vaiana-
Rosati model, denoted as VRM+D and formulated in Section
4.3.2, that will be detailed in the following.

5.5.1.2 Non-dimensional System
Non-dimensionalization is a valuable technique in the analysis
of systems governed by ODEs, as it simplifies complex systems
by reducing the number of involved parameters. This method
facilitates a clearer understanding of the relationships between
system parameters and enables the comparison of different sys-
tems on a common scale by eliminating specific units. The non-
dimensionalization process consists of five steps (Section 2.5):

1. Identify all independent and dependent variables within
the system.
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2. Replace all variables with non-dimensional quantities de-
fined by relationships between the dimensional variables
and newly introduced dimensional coefficients.

3. Divide the resulting equation by the coefficient of the
highest-order derivative.

4. Choose the dimensional coefficients based on the charac-
teristic units of the system, simplifying any auxiliary con-
ditions that may arise.

5. Rewrite the equation in terms of the newly defined non-
dimensional quantities.

By applying these five steps to the equations of motion in
Eq. (5.5.1), a suitable non-dimensionalization of the governing
equations can be effectively achieved by setting:

t = tsτ, uj = usxj , f
(j)
ri = f (j)

s z(j), for j = 1, 2, . . . , n.
(5.5.2)

The final non-dimensional MDoF hysteretic mechanical system
is governed by the following ODEs:

ẍ1 + z(1)(x1) + ψ2z
(2)(x2 − x1) = −A cos(Ωτ),

...
ẍj + ψjµjz

(j)(xj − xj−1) + ψj+1µjz
(j+1)(xj+1 − xj) = −A cos(Ωτ),

...
ẍn + ψnµnz

(n)(xn − xn−1) = −A cos(Ωτ),
(5.5.3)

where:

ts :=
√
m1us

f
(1)
s

, A := übm1

f
(1)
s

, Ω := ω

√
m1us

f
(1)
s

,

µj := m1

mj
, ψj := f

(j)
s

f
(1)
s

, for j = 1, 2, . . . , n.

(5.5.4)

In these equations, the non-dimensional hysteretic variables z(j)

are governed by a non-dimensional version of the VRM+D,
which will be elaborated upon in the following.

Subsection 5.5.2

Vaiana-Rosati Model
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Vaiana and Rosati first developed a novel phenomenological
model to simulate rate-independent hysteretic behavior in me-
chanical systems, utilizing closed-form expressions for output
evaluation [84]. They later introduced an enhanced equivalent
differential formulation, known as VRM+D [83]. as shown in
previous sections, both models effectively address the challenges
of simulating complex hysteresis phenomena, offering practical
solutions for the analysis of hysteretic mechanical systems.

5.5.2.1 Dimensional Vaiana-Rosati Model
According to the VRM+D formulation [83], the generalized rate-
independent hysteretic force fri is governed by the following
first-order ODE:

ḟri = {ke (u) + kb + αf0 + sα [fe (u) + kbu− fri]} u̇, (5.5.5)

where u represents the elongation of the hysteretic element,
ke(u) is the function expressed as:

ke (u) = β1β2e
β2u + 4γ1γ2

e−γ2(u−γ3)[
1 + e−γ2(u−γ3)

]2 , (5.5.6)

whereas fe(u) is given by:

fe (u) = β1
(
eβ2u − 1

)
+ 2γ1

1 − e−γ2(u−γ3)

1 + e−γ2(u−γ3) . (5.5.7)

Specifically, the VRM+D enables an uncoupled modeling of the
loading and unloading phases, as in Eqs. (5.5.5)-(5.5.7), the
model parameters can be updated depending on the sign of the
velocity u̇ (s := sgn (u̇)). Furthermore, it facilitates the identifi-
cation of the involved parameters due to their clear mechanical
and/or graphical interpretation.

5.5.2.2 Non-Dimensional Vaiana-Rosati Model
Following the non-dimensionalization procedure detailed in Sec-
tion 5.5.1.2, the resulting NDVRM+D is governed by the fol-
lowing first-order ODE:

ż = {κe (x) + χ6 + χ7χ8 + sχ7 [ϕe (x) + χ6x− z]} ẋ, (5.5.8)
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Figure 5.44. Two complex hys-
teresis loop shapes simulated us-
ing the NDVRM+D parameters
in Table 5.13.
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Table 5.13. NDVRM+D parameters used for the hysteretic ele-
ments.

Figure sgn(ẋ) χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

5.44a + 0.2 0.2 4.0 4.0 0.0 0.1 1.0 1.0
− -0.2 -0.2 4.0 4.0 0.0 0.1 1.0 1.0

5.44b + 0.002 0.25 4.0 0.4 -1.0 0.0 1.0 1.0
− -0.002 -0.25 4.0 0.4 1.0 0.0 1.0 1.0

where the functions κe(x) and ϕe(x) are defined as:

κe (x) = χ1χ2e
χ2x + 2χ3χ4

e−χ4(x−χ5)[
1 + e−χ4(x−χ5)

]2 ,

ϕe (x) = χ1 (eχ2x − 1) + χ3
1 − e−χ4(x−χ5)

1 + e−χ4(x−χ5) .

The model involves eight non-dimensional parameters, which
are expressed in terms of the original dimensional parameters
as follows:

χ1 := β1

fs
, χ2 := β2us, χ3 := 2γ1

fs
, χ4 := γ2us,

χ5 := γ3

us
, χ6 := kbus

fs
, χ7 := αus, χ8 := f0

fs
.

Finally, an illustrative example of complex hysteresis loop
shapes generated by using the NDVRM+D is presented in Fig.
5.44 in which the parameters in Table 5.13 have been adopted.
This highlights the effectiveness of the non-dimensional model
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in capturing the intricate characteristics of hysteretic behaviors.

Subsection 5.5.3

Poincaré-map Based Continuation

As discussed in Section 4.3.3, the pseudo-arclength continuation
method leverages the Poincaré map, combined with arclength
parameterization, to compute periodic solutions of strongly non-
linear systems as the selected control parameter varies. Specif-
ically, when the class of systems under analysis is subjected to
a T -periodic external excitation, the Poincaré map is defined
as P(η,Ω) : η 7→ x(τ0 + T,η,Ω), where T represents the return
time. Periodic solutions are then identified as fixed-points of this
map, satisfying the following equation:

P(η,Ω) − η = 0. (5.5.9)

5.5.3.1 Continuation procedure
To solve Eq. (5.5.9) both the periodic solution η and the con-
tinuation parameter Ω are parameterized by s, resulting in a
redefined fixed-point equation p (η(s),Ω(s)). An initial predic-
tion is made using linear extrapolation along the unit tangent
direction a. At the new solution point s0+∆s, the Taylor expan-
sion of p must hold and, by neglecting higher-order terms [33],
we can express the unknown vector ηs in terms of Ωs. The tan-
gent vector a is then normalized, leading to an updated guess
for the solution at s0 + ∆s. The updated state of the system
(η(s),Ω(s)) is then obtained by solving the fixed-point equation
subject to an orthogonality condition g (η(s),Ω(s)), leading to
the augmented system:{

p (η(s),Ω(s)) = 0
g (η(s),Ω(s)) = 0.

(5.5.10)

The augmented system in Eq. (5.5.10) is solved using iterative
procedures such as Newton-Raphson [14, 49, 50] or, for improved
efficiency in high-dimensional problems, the Krylov subspace
method [33].

Subsection 5.5.4

Krylov Subspace Acceleration Algorithm

Krylov subspaces represent the basis of numerous iterative al-
gorithms in numerical linear algebra, including those for solv-
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ing eigenvalue problems and linear systems of equations [76].
A Krylov subspace of dimension m, denoted as Km, is defined
as the span of vectors generated by repeated multiplication of
an initial vector b by a matrix A (e.g., the updated iteration
matrix), such that:

Km = span
{

b,Ab,A2b, . . . ,Am−1b
}
.

An essential advantage of Krylov subspace methods lies in their
computational efficiency, as the matrix A is never explicitly
formed. Instead, its action is computed through successive vec-
tor operations, avoiding the costly construction of A. This ef-
ficiency is particularly relevant for large-scale systems where
direct computation of A would be excessively demanding. In
the context of the modified Newton–Raphson scheme and its
Krylov-accelerated version, the matrix A is purely formal and
simplifies to the identity matrix [33].

5.5.4.1 Description of the Pseudocode
The following pseudocode implements a Krylov acceleration al-
gorithm for the iterative solution of a system of nonlinear equa-
tions.

1. Initialization: The solution vector (η,Ω) is initialized with
an initial value (η0,Ω0), and the corresponding residual
r0 is calculated. The maximum dimension of the Krylov
subspace is defined as mmax + 1, where mmax represents
the maximum number of stored vectors, typically chosen
within the range of three to six [76].

2. Main Loop: The algorithm enters an iterative loop, contin-
uing until ∥rk∥ < tol, indicating that the iterative solution
has achieved satisfactory convergence.

(a) If the dimension of the subspace m exceeds the max-
imum value mmax, the tangent matrix (i.e., the sys-
tem’s Jacobian) is updated, and the Krylov subspace
is reinitialized.

(b) The residual vector rk is computed using LU decom-
position.

(c) If the subspace has been accumulated (m > 0), the
correction wk+1 is computed in order to minimize, in
a least-square sense, the norm ∥rk − Awk+1∥, that is
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Figure 5.45. FRCs for 1DoF
(a), 2DoFs (b), 3DoFs (c), and
4DoFs (d) hysteretic mechani-
cal systems having complex hys-
teresis loop shape shown in Fig.
5.44a, and different amplitudes
A, as defined in Eq. (5.5.4), of
the input force.

the distance from the solution. This correction is cal-
culated as a linear combination of the residual vectors
accumulated in the Krylov subspace.

(d) The solution is updated by adding the acceleration
component wk+1 and the standard modified Newton
component of the increment qk+1. A new residual
rk+1 is calculated, and the subspace is updated with
the new residual.

Subsection 5.5.5

Frequency-Response Curves: Stability and Bi-
furcations

The following sections present the results of the analysis. Specif-
ically, the FRCs for the different DoF systems are discussed,
highlighting the key observations related to the amplitude de-
pendence, and the effect of the DoFs’ number.
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Figure 5.46. FRCs for 1DoF (a),
and 2DoFs (b), 3DoFs (c), and
4DoFs (d) hysteretic mechani-
cal systems having complex hys-
teresis loop shape shown in Fig.
5.44b, and different amplitudes
A, as defined in Eq. (5.5.4), of
the input force.
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5.5.5.1 Analyzed systems
The study investigates four mechanical systems characterized
by rate-independent hysteretic behavior, modeled using the ND-
VRM+D shown in Section 5.5.2.2. The four analyzed configura-
tions correspond to systems with an increasing numbers of DoFs,
from 1 to 4, in which each oscillator exhibits an hysteretic behav-
ior described in Fig. 5.44. We present and discuss the dynamics
of these systems under harmonic external forcing, analyzing the
resulting periodic solutions obtained using the continuation pro-
cedure described in Section 5.5.3.

5.5.5.2 Numerical Analysis and Results
Figure 5.45 (5.46) illustrates the FRCs for mechanical systems
exhibiting the rate-independent hysteretic behavior in Fig. 5.44a
(5.44b), modeled using the NDVRM+D. The FRCs depict the
maximum displacement of the first mass as a function of the ex-
citation frequency Ω, by providing a comprehensive view of the
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systems’ dynamic behavior. The hysteretic elements embedded
in the systems strongly influence the observed FRCs, since non-
linear behaviors such as amplitude-dependent resonance shifts,
multi-stability, and jump phenomena are observed [19, 97]. Due
to its peculiar features, the following analysis focuses specifically
on the behavior of the system incorporating hysteretic elements
as depicted in Fig. 5.44a.

Amplitude Dependence: The amplitude A of the external
forcing significantly affects the dynamic response across all sys-
tems. As A increases, the FRCs exhibit higher peak displace-
ments and broader resonance regions, independently from the
number of hysteretic elements, indicative of a strong nonlinear
behavior. This amplitude dependence highlights the sensitivity
of the systems to external forcing intensity and the pronounced
role of hysteretic nonlinearity.

Effect of Degrees of Freedom: For the 1DoF system (Fig.
5.45a) the FRC displays a single dominant resonance peak with
softening behavior and multiple fold bifurcation, characteristic of
rate-independent hysteretic systems. This response reflects the
simplicity of the system’s dynamics combined with strong non-
linear effects. In the case of the 2DoFs system (Fig. 5.45b), the
introduction of a second DoF introduces an additional resonance
peaks and a more complex bifurcation scenario, broadening the
instability region. This behavior is attributed to the interaction
between the two coupled oscillators, leading to richer dynamic
characteristics. Finally, for the 3DoFs and 4DoFs systems (Figs.
5.45c and 5.45d) as the number of DoFs increases, the FRCs
exhibit a progressively intricate structure. This includes mul-
tiple resonance peaks and more complex bifurcation scenarios.
Notably, it is observed that the introduction of internal masses
leads to the emergence of an equal number of completely unsta-
ble peaks corresponding to the number of internal masses.

Subsection 5.5.6

Conclusions

The results underscore the critical influence of the number of
DoFs on the stability and bifurcation characteristics of hys-
teretic mechanical systems. The increasing complexity of the
FRCs with higher-dimensional configurations reflects the en-
hanced nonlinear dynamics introduced by additional DoFs. For
the 1DoF system, the response is dominated by a single reso-
nance, whereas in higher-dimensional systems, coupling between
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oscillators introduces additional modes of vibration and nonlin-
ear interactions. Future research endeavors may focus on extend-
ing this analysis to investigate additional system configurations
and behaviors, as well as exploring the implications of these
dynamics in real-world contexts. Such investigations could en-
hance the understanding of hysteretic systems and inform the
development of more robust and efficient engineering solutions.
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Section 5.6

Work and Energy Components in Me-
chanical Systems with Complex Hys-
teretic Behavior

In this section, using the results provided in Section 4.3.4, we
present the comparison of the results obtained by the numeri-
cal analyses performed on two SDoF hysteretic mechanical sys-
tems in which the nonlinear responses are modeled by means
of a rate-independent hysteretic element and using the VRM;
the analyses are performed for three specific conditions: (i) free
vibration, (ii) oscillations forced by a harmonic load, (iii) os-
cillations forced by a random load. Specific attention is paid to
the evolution of the various components of generalized work and
energy components once a steady-state condition, in the case of
harmonic force, is reached by the system.

Subsection 5.6.1

Equation of Motion fri(u)
m

u

p(t)

Figure 5.47. SDoF hysteretic
mechanical system.

The selected general family of SDoF hysteretic mechanical sys-
tems is illustrated in Fig. 5.47. Such a model is composed of a
mass m connected to a rate-independent hysteretic spring. De-
noting by u, u̇ and ü the generalized displacement, velocity, and
acceleration, respectively, the equation of motion for the general
family of SDoF hysteretic mechanical systems illustrated in Fig.
5.47, can be easily obtained from Newton’s second law as:

mü+ fri (u) = p (t) ,

where fri is the generalized rate-independent hysteretic force
exerted on the rate-independent hysteretic element, assumed to
be a function of the generalized displacement u and simulated
by using the VRM. Furthermore, p is the time-dependent gen-
eralized external force acting on the mass.

Subsection 5.6.2

Analyzed Hysteretic Mechanical Systems

Two hysteretic mechanical systems are selected:
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Figure 5.48. Complex hysteretic
behavior charactering system A
(a) and system B (b) simulated
by using the VRM parameters in
Table 5.14.
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1. System A: with hysteretic behavior shown in Fig. 5.48a
characterized by an asymmetric flag-shaped hysteresis
loop, and belonging to S3 category.

2. System B: with hysteretic behavior shown in Fig. 5.48b,
characterized by an asymmetric S-shaped hysteresis loop
with pinching and belonging to S4 category.

Finally, the loops in Fig. 5.48 are simulated using VRM by em-
ploying the parameters listed in Table 5.14.

Figure sgn(u̇) kb f0 α β1 β2 γ1 γ2 γ3

5.48a + 0.5 1.0 30 0.0 0.0 1.5 40 0.0
− 0.0 1.5 20 0.0 0.0 1.5 30 0.0

5.48b + 0.5 1.0 20 0.2 1.0 1.5 5.0 0.0
− 0.0 1.0 10 -0.2 -1.0 1.5 5.0 0.0

Table 5.14. VRM parameters adopted to simulate the hysteresis
loops in Figure 5.48.

Subsection 5.6.3

Modified Work-Energy Theorem

As shown in Section 4.3.4, the general expression of the MWE
theorem for SDoF hysteretic systems states that the sum of
the generalized mechanical and internal energy variations of a
system is equal to the work done by the generalized external
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forces acting on the system:

∆EM + ∆EI = Wp, (5.6.1)

where the generalized mechanical energy EM is equal to the sum
of the generalized kinetic EK and potential EP energies of the
system.

With respect to the hysteretic mechanical system shown
in Fig. 5.47, there are no generalized conservative forces so
that the generalized potential energy is equal to zero. On the
other hand, we know that the variation of the generalized in-
ternal energy ∆EI is related to the generalized work of the
non-conservative internal forces W i

nc, that in the general fam-
ily of mechanical systems under consideration, is represented by
the work Wri performed by the generalized force exhibited by
the rate-independent hysteretic element; hence, it is possible to
write:

∆EI = −W i
nc = −Wri.

On the other hand, Wp in Eq. (5.6.1), is the generalized work
done by the generalized external force p(t) on the mass m. These
quantities can be computed as follows:

Wri = −
∫ uf

ui

fri(u) du,

Wp =
∫ uf

ui

p(t) du.

In particular, Wri can be computed in a closed-form for any
generalized displacement interval, whereas Wp can be evaluated
numerically.

Subsection 5.6.4

Numerical Results

The response of the systems is evaluated by using an explicit,
accurate, and computationally efficient time integration method,
described in [86], using a time step ∆t = 0.001 s and a unitary
mass. The hysteretic model and the solution algorithm have
been programmed in MATLAB R2022b and run on a computer
having an Intel Core i5 dual-core processor and a CPU at 2.30
GHz with 8 GB of RAM [15].
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Figure 5.49. Time histories of
the generalized energy and
work components for the rate-
independent hysteretic systems
A (a, b, c) and B (d, e, f),
obtained for free (a, d), forced
harmonic (b, e) and forced
random (c, f) vibrations.

(a) (b) (c)

(d) (e) (f)

5.6.4.1 Free vibrations
To evaluate the free vibration response of the systems under in-
vestigation, the following initial conditions were chosen in terms
of generalized displacement u0 = 0.0 m and velocity u̇0 = 2.5
m/s, whereas the generalized external force p(t) is considered
null. Fig. 5.49a (Fig.5.49d) shows the time history of the vari-
ous generalized work and energy components for system A (B).
In both cases, it can be noted that:

(i) the generalized rate-independent work Wri assumes neg-
ative values since the generalized rate-independent hys-
teretic force fri tends to bring the mass m back to its
equilibrium position;

(ii) the reduction of the generalized mechanical energy EM

can be interpreted as an energy conservation process in
which energy is converted into generalized internal energy
EI ;

(iii) it can be noted that in the case of free vibrations, the
entire amount of generalized mechanical energy, initially
supplied to the system due to the initial conditions, has
been converted into generalized internal energy through
the rate-independent hysteretic phenomena, thus guaran-
teeing energy conservation;
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Figure 5.50. Steady-state
response in the (u, u̇, fri)-
state-space for the hysteretic
mechanical system, and gen-
eralized work and energy
components over a period T .

(iv) since the generalized external force p(t) is equal to zero, it
can be deduced, from Eq. (5.6.1), that the sum between
generalized mechanical and internal energy EM + EI is
constant over time.

5.6.4.2 Forced harmonic vibrations
To evaluate the response of the system in the case of oscillations
forced by a harmonic force, initial conditions of zero generalized
displacements and velocity are imposed, whereas the load is as-
sumed to be a harmonic function of the following type:

p(t) = p0 cos(2πfp t),

where the amplitude is p0 = 10 N and its frequency is fp = 0.75
Hz. Fig. 5.49b (Fig. 5.49e) shows the time history of the various
generalized work and energy components for system A (B). In
both cases, it can be noted that:
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(i) the motion of the mass m is caused by the generalized
external work performed by the harmonic load that, as
shown in the Figs. 5.49b and 5.49e, is an increasing func-
tion over time;

(ii) the generalized mechanical energy and rate-independent
work will no longer tend to an asymptotic value, as in the
case of the free vibration, but they will assume values able
to ensure fulfillment of the MWE theorem, i.e., Eq. (5.6.1);

(iii) as a result of the chosen initial conditions, the sum between
generalized mechanical and internal energy EM + EI co-
incides with the generalized work done by the harmonic
forcing Wp.

In this case, the time variation of the generalized mechanical en-
ergy EM gives us precious information to distinguish the transi-
tion from a transient behavior, in which a reduction of the peaks
of the generalized mechanical energy is observed, to a steady-
state behavior [32].

Having determined the steady-state response of the two sys-
tems under consideration, a further analysis is performed, in
which the initial conditions are chosen such that the system is in
a steady-state response. In Fig. 5.50 we can see the steady-state
responses in the (u, u̇, fri)-state-space, with the relative projec-
tions for the two analyzed systems (Figs. 5.50a and 5.50c), and
time evolution of the generalized work and energy components
over a period T = 1

fp
(Figs. 5.50b and 5.50d).

5.6.4.3 Forced random vibrations
To evaluate the response of the system in the case of vibrations
induced by a random load, initial conditions of zero generalized
displacements and velocity are imposed, and a random force
modeled as a Gaussian white noise with a variance iwn = 40, is
applied to the system as external force p(t). Figure 5.49c (Figure
5.49f) shows the time history of the various generalized work and
energy components for system A (B).

These latter cases are similar to the harmonic loading ones
except for the distinction of transient and steady-state behav-
iors, which is not possible in this case since the load is not pe-
riodic.

Subsection 5.6.5

Conclusions
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We have used the MWE theorem to evaluate the generalized
work and energy responses of different SDoF hysteretic mechan-
ical systems with complex hysteresis loop shapes simulated by
the VRM, in three particular cases: (i) free vibrations, (ii) forced
harmonic vibrations and (iii) forced random vibrations.

The performed analyses show valuable information on the
time history of the generalized energy components of the systems
under consideration, particularly in the case of the steady-state
response of a harmonically forced system .
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Conclusions

This thesis hopes to contribute to a better understanding of
hysteretic mechanical systems by providing a detailed analysis
of these systems under time-periodic inputs. By integrating the
Vaiana-Rosati model with advanced numerical methods such as
the continuation procedures based on Poincaré maps, we have
effectively demonstrated the framework’s capability to predict
complex mechanical behaviors, including steady-state responses,
stability, and bifurcation phenomena. The bifurcation analysis
conducted, in particular, has proven invaluable for elucidating
the dynamics of hysteretic systems under varying loading con-
ditions, providing critical insights that can inform the design
of control strategies to mitigate adverse effects associated with
hysteresis.

In our investigation of asymmetric hysteretic systems, we
have established a clear relationship between the asymmetry of
hysteresis loops and the frequency response and stability of the
systems. The frequency response analysis highlighted how varia-
tions in hysteresis loop shapes significantly influence system per-
formance, particularly when subjected to periodic excitations.
Our findings indicate that understanding these asymmetries is
crucial for optimizing the dynamic behavior of hysteretic sys-
tems in practical applications.

Additionally, the examination of negative stiffness metama-
terials introduced a novel perspective on frequency response
characteristics. By analyzing this type of metamaterials, we
demonstrated that their unique properties can lead to enhanced
performance in controlling vibrations and improving stability.
This work not only expands the theoretical framework for an-
alyzing hysteretic systems but also provides practical guidance
for leveraging metamaterials in engineering applications.

Further, the examination of hysteretic rocking systems re-
vealed how different loop shapes affect frequency response and
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stability. By carefully selecting hysteresis loop shapes, one can
tune system dynamics to enhance resilience in structural design.
This work not only expands the theoretical framework for an-
alyzing hysteretic systems but also provides practical guidance
for engineering applications.

The findings also underscore the critical impact of di-
mensionality on the stability and bifurcation characteristics of
hysteretic mechanical systems. As the number of degrees of
freedom increases, the complexity of the frequency response
curves reflects enhanced nonlinear dynamics, which necessitates
a more nuanced understanding of system behavior in higher-
dimensional configurations.

Finally, the application of the MWE theorem to evaluate
generalized work and energy responses across various scenar-
ios has yielded important insights into the energy dynamics of
SDoF hysteretic mechanical systems with complex loop shapes.
The analyses conducted under free vibrations, forced harmonic
vibrations, and forced random vibrations have provided a com-
prehensive view of how energy components evolve over time,
particularly in steady-state conditions.

In summary, this thesis contributes to the field of nonlinear
dynamics by providing a robust mathematical framework and
innovative approaches for the study of hysteretic mechanical sys-
tems. The insights gained from this research lay the groundwork
for future investigations and applications, enhancing our under-
standing of complex hysteretic behaviors and their implications
in engineering design and analysis.
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APPENDIX

AMatrix Exponential

In mathematics, the matrix exponential is a matrix function on
square matrices analogous to the ordinary exponential function.
It is used to solve systems of linear differential equations. The
formal definition of the matrix exponential is:

Definition 16

eAt :=
+∞∑
i=0

(At)i

i! , (A.0.1)

where A ∈ Rn×n, t ∈ R and A0 := I ∈ Rn×n. The series
always converges, so the exponential of At is well-defined.

It is easy to note that if we apply the definition in Eq. (A.0.1)
to a diagonal matrix A as follows:

A =

a11
. . .

ann

 ,
the result is simply a diagonal matrix, whose elements are the
exponential of the original elements, namely:

eA =

e
a11

. . .
eann

 .
On the contrary, in case of a full matrix, the matrix exponential
is not a simple application of the exponential function to each
element of the matrix and the definition in Eq. (A.0.1) must be
used to determine its form. For this purpose, the reduction of the
matrix A to its canonical Jordan form can be a straightforward
way for the explicit calculation of the matrix exponential. In
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fact, there exists an invertible matrix U ∈ Cn×n, such that
A = UĀU−1, where Ā is the Jordan canonical form of A. For
a matrix expressed in its canonical Jordan form, the following
property is fulfilled:

eAt = UeĀtU−1,

and due to the diagonal-block-structure of A, the matrix expo-
nential eAt can easily be computed from Eq. (A.0.1).

The derivative in time of the matrix exponential defined in
Eq. (A.0.1) is equal to:

d

dt
eAt = AeAt = eAtA,

therefore it is now clear why x(t) = eAtb (where b is an un-
determined constant vector) can be chosen as a solution of the
linear autonomous system ẋ = Ax. Finally, the imposition of
initial conditions leads to b = x0.

Let’s note that for autonomous systems a shift in time is
always allowed, so, in this case, the time t in the matrix expo-
nential actually can be substituted by a time interval from the
initial condition. Hence, for a general initial reference time t0,
the correct form for the solution is:

x(t) = eA(t−t0)x(t0).
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APPENDIX

B Notable Laplace
Transforms

The fundamental transformations commonly found in engineer-
ing systems are listed below:

L {δ(t)} = 1

L {δ−1(t)} = L
{∫ t

−∞
δ(τ)dτ

}
= L

{∫ t

0
δ(τ)dτ

}
= 1
s

L {δ−2(t)} = L
{∫ t

−∞
δ−1(τ)dτ

}
= L

{∫ ∞

0
δ−1(τ)dτ

}
= 1
s2

L {δ−3(t)} = L
{∫ t

−∞
δ−2(t)dτ

}
= L

{∫ t

0
δ−2(τ)dτ

}
= 1
s3

L {fδ−n(t)} = 1
sn

L
{
eαtδ−1(t)

}
= 1
s− α

L
{
teαtδ−1(t)

}
= 1

(s− α)2

L
{
tn

n!e
αtδ−1(t)

}
= 1

(s− α)n+1

L {sin(ωt)δ−1(t)} = ω

s2 + ω2

L {cos(ωt)δ−1(t)} = s

s2 + ω2

L
{
eαt sin(ωt)δ−1(t)

}
= ω

(s− α)2 + ω2

L
{
eαt cos(ωt)δ−1(t)

}
= s− α

(s− α)2 + ω2

L {t sin(ωt)δ−1(t)} = 2ωs
(s2 + ω2)2

L {t cos(ωt)δ−1(t)} = s2 − ω2

(s2 + ω2)2

L
{
teαt sin(ωt)δ−1(t)

}
= 2ω(s− α)

[(s− α)2 + ω2]2

L
{
teαt cos(ωt)δ−1(t)

}
= (s− α)2 − ω2

[(s− α)2 + ω2]2



APPENDIX

CTrigonometric Rela-
tionships

Trigonometric expressions useful for harmonic analysis:

sin (α) sin (β) = 1
2 [cos (α− β) − cos (α+ β)] ,

cos (α) cos (β) = 1
2 [cos (α− β) + cos (α+ β)] ,

sin (α) cos (β) = 1
2 [sin (α− β) + sin (α+ β)] .

(C.0.1)

cos3 α = cosα
(
cos2 α

)
= cosα

[
1 + cos (2α)

2

]
=

= 1
2 cosα+ 1

2 [cosα cos (2α)]

= 1
2 cosα+ 1

4 [cos (−α) + cos (3α)]

= 1
2 cosα+ 1

4 [cos (3α) + cosα]

= 3
4 cosα+ 1

4 cos (3α) .

(C.0.2)
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sin3 α = sinα
(
sin2 α

)
= sinα

[
1 − cos (2α)

2

]
=

= 1
2 sinα− 1

2 [sinα cos (2α)]

= 1
2 sinα− 1

4 [sin (−α) + sin (3α)]

= 1
2 sinα− 1

4 [− sinα+ sin (3α)]

= 3
4 sinα− 1

4 sin (3α) .

(C.0.3)



APPENDIX

DMDoF Hysteretic Sys-
tems Energy Compo-
nents

For the reader’s convenience, we provide the extended form of
matrices and vectors presented in Section 4.3.4.

In particular, with reference to the set of N nonlinear equi-
librium equations given in Eq. (4.3.21), the constant mass ma-
trix M and the generalized acceleration vector ü(t) are:

M =



m(1) · · · 0 · · · 0
...

. . .
...

...
0 · · · m(i) · · · 0
...

...
. . .

...
0 · · · 0 · · · m(N)

 , (D.0.1)

ü(t) =



ü
(1)(t)

...
ü

(i)(t)
...

ü
(N)(t)


. (D.0.2)

In addition, the three generalized internal force vectors fe(t),
frd(t), and fri(t), appearing on the left-hand side of Eq. (4.3.21),
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are given by:

fe(t) =



f
(1)
e (t) − f

(2)
e (t)

...
f

(i)
e (t) − f

(i+1)
e (t)

...
f

(N)
e (t)


, (D.0.3)

frd(t) =



f
(1)
rd (t) − f

(2)
rd (t)

...
f

(i)
rd (t) − f

(i+1)
rd (t)

...
f

(N)
rd (t)


, (D.0.4)

fri(t) =



f
(1)
ri (t) − f

(2)
ri (t)

...
f

(i)
ri (t) − f

(i+1)
ri (t)

...
f

(N)
ri (t)


, (D.0.5)

whereas the two generalized external force vectors pe(t) and
p(t), appearing on the right-hand side of Eq. (4.3.21), are:

pe(t) =



p
(1)
e (t)

...
p

(i)
e (t)

...
p

(N)
e (t)


, (D.0.6)

p(t) =



p(1)(t)
...

p(i)(t)
...

p(N)(t)


. (D.0.7)

As regards the coordinate transformation matrix T, em-
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ployed in Eq. (4.3.22) and having order N ×N , we have:

T =



1 · · · 0 · · · 0
...

. . .
...

...
1 · · · 1 · · · 0
...

...
. . .

...
1 · · · 1 · · · 1

 . (D.0.8)

Furthermore, with regard to the set of N nonlinear equilib-
rium equations in Eq. (4.3.23), the constant mass matrix M and
the relative generalized acceleration vector ü(t) are:

M =



m(1) + · · · +m(N) · · · m(i) + · · · +m(N) · · · m(N)

...
. . .

...
...

m(i) + . . .+m(N) · · · m(i) + . . .+m(N) · · · m(N)

...
...

. . .
...

m(N) · · · m(N) · · · m(N)

 ,
(D.0.9)

ü(t) =



ü(1)(t)
...

ü(i)(t)
...

ü(N)(t)


=



ü
(1)(t)

...
ü

(i)(t) − ü
(i−1)(t)

...
ü

(N)(t) − ü
(N−1)(t)


. (D.0.10)

Finally, the three generalized internal force vectors fe(t), frd(t),
and fri(t), appearing on the left-hand side of Eq. (4.3.23), are
given by:

fe(t) =



f
(1)
e (t)

...
f

(i)
e (t)

...
f

(N)
e (t)


, (D.0.11)

frd(t) =



f
(1)
rd (t)

...
f

(i)
rd (t)

...
f

(N)
rd (t)


, (D.0.12)
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fri(t) =



f
(1)
ri (t)

...
f

(i)
ri (t)

...
f

(N)
ri (t)


, (D.0.13)

whereas the two generalized external force vectors pe(t) and
p(t), appearing on the right-hand side of Eq. (4.3.23), are:

pe(t) =



p
(1)
e (t) + · · · + p

(N)
e (t)

...
p

(i)
e (t) + · · · + p

(N)
e (t)

...
p

(N)
e (t)


, (D.0.14)

p(t) =



p(1)(t) + · · · + p(N)(t)
...

p(i)(t) + · · · + p(N)(t)
...

p(N)(t)


. (D.0.15)

The expressions for the evaluation of the system work com-
ponents W̃e, W̃pe, W̃rd, W̃ri, W̃p, presented in Section 4.3.4, can
be rewritten as:

W̃e = −
∫ uf

ui

fe · du = −
N∑

i=1

∫ u
(i)
f

u
(i)
i

f (i)
e du(i) = −

N∑
i=1

W (i)
e ,

(D.0.16)

W̃pe = −
∫ Tuf

Tui

[(
TT

)−1
pe

]
·d (Tu) = −

N∑
i=1

∫ u
(i)
f

u
(i)
i

p(i)
e du(i) = −

N∑
i=1

W (i)
pe ,

(D.0.17)

W̃rd = −
∫ uf

ui

frd · du = −
N∑

i=1

∫ u
(i)
f

u
(i)
i

f
(i)
rd du(i) = −

N∑
i=1

W
(i)
rd ,

(D.0.18)

W̃ri = −
∫ uf

ui

fri · du = −
N∑

i=1

∫ u
(i)
f

u
(i)
i

f
(i)
ri du(i) = −

N∑
i=1

W
(i)
ri ,

(D.0.19)



APPENDIX D. MDOF SYSTEMS ENERGY
COMPONENTS 225

W̃p = +
∫ Tuf

Tui

[(
TT

)−1
p

]
·d (Tu) = +

N∑
i=1

∫ u
(i)
f

u
(i)
i

p(i) du(i) = +
N∑

i=1
W̃ (i)

p ,

(D.0.20)
in which W

(i)
e and W

(i)
pe are the amounts of work done by the

generalized forces acting on the ith internal and external elas-
tic elements, respectively, whereas W (i)

rd and W
(i)
ri represent the

amounts of work performed by the generalized forces acting on
the ith internal rate-dependent and rate-independent hysteretic
elements, respectively. Finally, W̃ (i)

p is the work done by the
generalized external force applied to the ith mass.
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APPENDIX

ENumerical Details

0 25 50 75 100

s

0

5

10

15

20

N
ew

to
n
-R

a
p
h
so

n
it
er

at
io

n
s

S1
S2
S3
S4

Figure E.1. Number of Newton-Raphson iterations as a function
of the arc length s corresponding to the four types of loop shapes
analyzed with a forcing amplitude F = 1.

In this appendix, we provide a detailed account on the con-
vergence properties of the Newton-Raphson numerical method
adopted to solve the system of equation in Eq. (4.3.10), focusing
in particular on the number of iterations required to achieve con-
vergence. By presenting key metrics such as the average, min-
imum and maximum number of iterations required to achieve
convergence of the Newton-Raphson method in each numerical
experiment (see Table E.1), we intend to provide a broader per-
spective on the efficiency and reliability of the computational
methodology. We believe that this additional level of detail con-
tributes to a deeper assessment of the proposed approach and
its suitability for applications. Fig. E.1 illustrates how much the
adopted procedure is robust for the four considered hysteresis
loop shapes with an amplitude F = 1 of the input force. A min-
imum number of iterations is required for the majority of the
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Table E.1. Minimum, maxi-
mum, and average number of
Newton-Raphson iterations for
each PA step corresponding to
the FRCs depicted in Fig. 5.4
for different amplitudes of the
input force F .

loop shape F min average max

S1

0.5 2 2.1097 29
0.6 2 2.0811 14
0.8 2 2.0848 38
1.0 2 2.0357 3
1.1 2 2.0273 29
1.2 1 1.8922 4

S2

1.0 1 1.7044 4
2.0 1 1.7329 3
3.0 1 1.0501 2
10.0 1 1.0531 5
20.0 1 1.0786 44
30.0 1 1.1166 97

S3

0.5 2 2 2
0.6 2 2 2
0.8 2 2 2
1.0 2 2 2
1.1 1 1.6190 2
1.2 1 1.3204 2

S4

1.0 1 2.0103 11
2.0 1 2.0301 90
3.0 1 2.0092 6
10.0 1 2.0211 23
20.0 1 1.9862 100
30.0 1 1.1802 62

analyses, in which occasional instances where a higher number
of iterations is needed.
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