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He stayed late on deck, after dinner, but that did not help him, for when he
went below, he could not sleep. This surcease from life had failed him. It was too
much. He turned on the electric light and tried to read. One of the volumes was a
Swinburne. He lay in bed, glancing through its pages, until suddenly he became
aware that he was reading with interest. He finished the stanza, attempted to read
on, then came back to it. He rested the book face downward on his breast and fell
to thinking. That was it. The very thing. Strange that it had never come to him
before. That was the meaning of it all; he had been drifting that way all the time,
and now Swinburne showed him that it was the happy way out. He wanted rest,
and here was rest awaiting him. He glanced at the open port–hole. Yes, it was large
enough. For the first time in weeks he felt happy. At last he had discovered the
cure of his ill. He picked up the book and read the stanza slowly aloud:-

’From too much love of living,
From hope and fear set free,
We thank with brief thanksgiving
Whatever gods may be
That no life lives forever;
That dead men rise up never;
That even the weariest river
Winds somewhere safe to sea.’

He looked again at the open port. Swinburne had furnished the key. Life was ill,
or, rather, it had become ill—an unbearable thing. "That dead men rise up never!"
That line stirred him with a profound feeling of gratitude. It was the one beneficent
thing in the universe. When life became an aching weariness, death was ready to
soothe away to everlasting sleep. But what was he waiting for? It was time to go.

Jack London
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ABSTRACT

Fiber Reinforced Elastomeric Isolators (FREIs) have been proposed
as a low-cost alternative to Steel Reinforced Elastomeric Isolators
(SREIs), replacing the reinforcing steel plates with fiber fabrics. De-
spite having a similar elastic stiffness, fibers are cheaper and lighter
than steel, and a simpler and faster manufacturing process, such
as cold-vulcanization, can be used for FREIs instead of expensive
hot-vulcanization process used for SREIs.

Over the last two decades, a significant research effort has been
dedicated to point out the improvement on the response of elas-
tomeric seismic devices when using fiber reinforcement. Several
studies have highlighted the advantages of this technology over
conventional seismic rubber bearings. Experimental tests and fi-
nite element analysis have shown how fiber reinforced bearings can
exhibit a quite high vertical/horizontal stiffness ratio, an equiva-
lent damping ratio higher than the SREIs and a lower horizontal
stiffness.

When FREIs are unbonded to the top and bottom substructure,
the bearings exhibit softening under imposed lateral deformations
with or without instability. The stable/unstable response of the
bearing depends on its mechanical and geometric parameters, and
mostly on the secondary shape factor. Rather high secondary shape
factor values ensure a stable response of the bearing, while below a
limit threshold the response would be unstable, also depending on
the shear modulus of the rubber and the vertical applied pressure.

Also, it is well known how the frequency of an elastomeric isolation
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system depends on the vertical applied pressure. Thus, seismic
isolation of lightweight structures with elastomeric devices is quite
challenging. This limits the enforcing of FREIs to non-engineered
buildings of developing countries.

Research studies available in the literature have focused on the
vertical and horizontal response of the FREIs, but few of these have
been dedicated to the influence of the different mechanical and
geometric parameters on the stability of the FREIs under combined
axial and shear loads. Even fewer studies have focused on the
bearings stability under combined vertical and bidirectional hori-
zontal loads. Finally, no studies were developed on how to change
the lateral response of the FREIs from unstable to stable through
proper modifications of the geometry.

This thesis studies the stability of fiber reinforced elastomeric iso-
lators under simultaneous axial and both mono and bi-directional
shear loads. Three types of FREIs are considered, namely i) infi-
nite long strip-shaped, ii) rectangular-shaped and iii) square-shaped
FREIs, through analytical, numerical and experimental approaches.

As a matter of fact, analytical equations involving the main pa-
rameters affecting the vertical response and the lateral stability
are introduced. Easy-to-use design stability charts are provided
and a simple strategy to improve the stability range of the different-
shaped FREIs under combined vertical and horizontal loads are
also shown.

Conclusions of this study could help disseminate knowledge on
the use of FREIs for seismic base isolation of structures in both
developed and developing countries.
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SUMMARY

This thesis is divided into three parts:

Part I Introduction: introduces the main results on seismic protec-
tion systems achieved in previous research studies.

Part II Finite Element Analyses of FREIs: shows the results of an
extensive numerical study by finite element modeling of fiber
reinforced elastomeric isolators in three different configurations,
i.e. infinite long strip-, rectangular-, and square-shaped FREIs.

Part III Modified FREIs: reports the outcome of experimental tests
on lateral stability of a number of FREIs in different configura-
tions, including modified geometry.

Through these three parts, seven chapters are developed.

Chapter 1 State of art on low-cost seismic protection measures. An
overview of the main low-cost seismic protection measures for
developing countries is presented. Base isolation systems are
widely discussed, with emphasis on the use of both natural and
recycled rubber in developing bearings of different shape. Sliding
isolation systems and hybrid systems (such as geothecnical
isolation) are also accounted.

Chapter 2 Analytical Solutions for Rectangular, Square and Strip-
shaped Fiber Reinforced Elastomeric Isolators: the main analyti-
cal solutions for the vertical and horizontal response parameters
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of three different-shaped FREIs (i.e. strip-, rectangular- and
square-shaped FREIs) are shown. Also, equations from litera-
ture on buckling behavior and stable/unstable response of fiber
reinforced bearings under axial and shear loads are accounted.

Chapter 3 Stability of strip-shaped Fiber Reinforced Elastomeric Iso-
lators. The results of a large number of finite element analyses on
infinite-long strip-shaped FREIs are presented. The vertical and
horizontal responses of the bearings with different mechanical
and geometric parameters are studied. An analytical-numerical
comparison is also provided on the total vertical displacement at
the top of a FREI under combined vertical and horizontal loads.

Chapter 4 Variation of the vertical response of square-shaped Fiber
Reinforced Elastomeric Isolators. An analytical solution for the
vertical response parameters of U-FREIs under combined axial
and shear loads are provided starting from available literature
results. The vertical stiffness and the effective compressive
modulus of square-shaped U-FREIs are calculated accounting
the horizontal deformation of the bearings. The analytical vari-
ations are then compared with outcomes from finite element
analyses on square-shaped U-FREIs with different mechanical
and geometric variable parameters.

Chapter 5 Stability of square-shaped Fiber Reinforced Elastomeric
Isolators. The stability of square-shaped FREIs under axial and
shear load is addressed. With combinations of different mechan-
ical and geometric parameters, the key role of the secondary
shape factor on the stable/unstable response of the bearing
is investigated. The buckling load of square-shaped U-FREIs
are computed both via analytical and numerical method, with
a useful comparison. Finally, stability charts correlating the
stable/unstable response of the bearing to the secondary shape
factor are proposed.

Chapter 6 Stability of rectangular-shaped Fiber Reinforced Elas-
tomeric Isolators under bidiractional shear loads. Recangular
FREIs are studied under combined axial and bidirectional shear
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loads. Novel lateral response parameters of bearings under bidi-
rectional shear load are introduced. The ruling influence on
the stability of FREIs of the secondary shape factor in differ-
ent horizontal directions is addressed in detail. Easy-to-use
design formula for the maximum stable horizontal displacement
of FREIs under axial and bidirectional shear loads is provided.

Chapter 7 Tuning the horizontal response of Unbonded Fiber Rein-
forced Elastomeric Isolators. An innovative technique allowing
the modify of the lateral response of the U-FREIs and the im-
provement of the stability range are presented. Bearings with
modified geometry with horizontal holes are subjected to ex-
perimental tests and the results compared with finite element
analyses.

Chapter 8 Conclusions & Outlook. Conclusions to the proposed
results and outlook for further developments are given.
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CHAPTER 1

STATE OF ART ON LOW-COST SEISMIC
PROTECTION MEASURES

Summary
This chapter collects the main information available in the
literature on low-cost seismic protection measures. The tech-
niques proposed for the protection of the so-called "non-
engineered buildings", typical of rural areas of developing
countries, are illustrated. The information in this chapter is
part of the in progress paper [1].

1.1 Introduction

During the last decades, in the largest earthquakes most casualties
occurred in rural areas of developing countries, i.e. countries with
a less developed industrial base and a low Human Development
Index [2]. According to World Bank most of this type of countries
are in Asia and Latin America [3].

In the last 25 years, among Indonesia, Haiti, Nepal, Pakistan,
India, Iran and Afghanistan, more than half a million people have
lost their lives due to the tragic seismic event occurred (Table 1.1).
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Table 1.1: List of deadliest earthquakes in the last 25 years [5].

N° Fatalities Magnitude Location Event Date
1 227,898 9.1 Indonesia 2004 Indian Ocean Earthquake and tsunami 12/26/2004
2 160,000 7 Haiti 2010 Haiti earthquake 01/12/2010
3 87,587 7.9 China 2008 Sichuan earthquake 05/12/2008
4 87,351 7.9 Pakistan 2005 Kashmir earthquake 10/08/2005
5 26,271 6.6 Iran 2003 Bam earthquake 12/26/2003
6 20,896 9 Japan 2011 Töhoku earthquake and tsunami 03/11/2011
7 20,085 7.7 India 2001 Gujarat earthquake 26/01/2001
8 8,964 7.8 Nepal 2015 Nepal earthquake 04/25/2015
9 5,782 6.4 Indonesia 2006 Yogyakarta earthquake 05/26/2006

10 4,340 7.5 Indonesia 2018 Sulawesi earthquake and tsunami 09/28/2018
11 2,968 6.9 China 2010 Yoshu earthquake 04/13/2010
12 2,266 6.8 Algeria 2003 Boumerdès earthquake 05/21/2003
13 2,189 7.2 Haiti 2021 Haiti earthquake 08/14/2021
14 1,313 8.6 Indonesia 2005 Nias-Simeulue earthquake 03/28/2005
15 1,115 7.6 Indonesia 2009 Sumatra earthquake 09/30/2009
16 1,000 7.4 Afghanistan 2002 Hindu Kush earthquakes 03/25/2002

In these countries, several factors contribute to increasing seismic
vulnerability: growing populations, uncontrolled development in
marginal areas, faulty constructions, local governments lacking of
technical qualified staff and funds, slow code updating, illegalities
in construction etc. [4].

Buildings can be divided into two main categories, namely engi-
neered buildings (EB) and non-engineered buildings (N-EB), their
percentages being quite different in developed, developing, and
underdeveloped countries. Engineered constructions are the result
of a process that involves different types of professional figures.
They are designed to be durable and safe and built following the
most recent engineering techniques implemented in modern seis-
mic design codes. Non-engineered buildings are those which are
spontaneously and informally constructed in various countries in
the traditional manner without any or little intervention by qualified
architects and engineers in their design [6].

Non-engineered buildings con be divided into two categories [7]:

i N-EB built according to the culture and using the typical ma-
terials of the area in which they arise, also called indigenous
or vernacular buildings (Figure 1.1 (a)). Such buildings typ-
ically use field stone, baked brick, concrete block, adobe or
rammed earth and wood (or a combination of these traditional
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(a) (b)

Figure 1.1: Examples of Non Engineered-Buildings: (a) Maasai house
in Tanzania (indigenous houses), (b) nipa hut, traditional house of the
Philippines (from [8]).

materials locally available) in the construction of the walls;
cement, lime or clay mud are used for the mortars [6].

ii Single-family residences and small commercial structures
built by local landowners or craftsmen without engineering
or architectural assistance (Figure 1.1 (b)). This category
includes buildings with load-bearing masonry walls, stud
wall and brick nogged constructions in timber and composite
constructions that use combinations of load-bearing walls
and masonry pillars, reinforced concrete, wood and similar
[7].

The seismic protection of non-engineered buildings is a major
concern since in seismic areas of developing world more than 90%
of the population still lives and works in such buildings and most
of the loss of human lives during earthquakes occurred due to their
failure [9]. These types of buildings are prevalent in rural areas of
countries with a high seismic risk; indeed, countries with many
people below the poverty threshold living in N-EB appear on the
list of the deadliest earthquakes (Table 1.1).

Alongside the seismic protection of non-engineered buildings, an
additional challenge may be to protect the valuable architecture
of developing countries. Countries of the Middle East, Far East
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or Latin America are home to millenary historical artifacts, often
exposed to the natural disasters’ risks as seen for instance in Nepal
or Peru [9].

Scientific research has moved and is moving towards the mit-
igation of seismic risk in less developed or developing countries.
In this chapter a review of the main low-cost seismic protection
techniques with rubber is presented. A large part relating to the
strand of elastomeric seismic isolation is reported, accounting the
developments made by researchers to reduce manufacturing and
installation costs. Hence, hybrid systems that modify the properties
of classical structures, such as foundations, are also recalled.

1.2 Advances in seismic protection in
developing countries

Typically, in developing countries it is easy to recognize highly
populated areas with rich residential neighborhoods, and rural
areas with a high rate of people below the poverty threshold. As said,
in these rural areas the constructions are built on local experience
and poorness hampers access to high quality and certified materials.
Therefore, solutions for seismic risk’s mitigation must be easily
accessible and low-cost. This target could be achieved using low-
cost seismic-protection devices.

Different approaches have been proposed in the literature, either
as an evolution of the already known and used seismic-protection
devices, or as a development of alternative techniques.

1.2.1 Seismic Base Isolation
Base isolation basically consists of interposing a layer with low
horizontal stiffness between the foundation and the structure. This
allows to decouple the structure from the ground motion induced
by the earthquake [10]. The best known and most popular isolation
systems consist of rubber bearing and/or sliding devices. In most
cases, the individual devices are very large, heavy and expensive.
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Their manufacturing process is lengthy and expensive, and on-site
installation is also costly [11].

Apparently, the structures can be decoupled from ground mo-
tions using a number of deformable devices. Starting from this
idea, several proposals have been put forward for low-cost seismic
isolation systems.

1.2.1.1 Fiber-Reinforced Elastomeric Isolators (FREIs)

Common rubber bearings consist of alternating layers of elastomer
and thin steel sheets, and two thick steel plates are placed at the
top and the bottom (Figure 1.2 (a)). They are commonly called
Laminated Rubber Bearings (LRBs) or Steel Reinforced Elastomeric
Isolators (SREIs). The reinforcements provide adequate vertical
stiffness to the devices, avoiding large lateral bulging of the rub-
ber; the external plates allow the connection of the devices to the
structure and the distribution of the vertical load (i.e. the weight
of the structure) [12]. Since most of the weight and cost of SREIs
came from the manufacturing process involving the end plates and
the steel reinforcement (i.e. hot vulcanization), Kelly [11] proposed
replacing the steel sheets with layers of fiber fabrics (such as fiber-
glass) and to remove the external plates by placing the devices in
direct contact with the structure (Figure 1.2 (b)). Suchlike for steel
reinforced ones, these devices are named Fiber Reinforced Bearings
(FRBs) or Fiber Reinforced Elastomeric Isolators (FREIs) [11].

FREIs can be used either in bonded or unbonded configuration.
When bonded (Bonded Fiber Reinforced Elastomeric Isolators, B-
FREIs), the isolators are connected to same external steel plates of
the SREIs and their lateral deformation is linear (Figure 1.3 (a))
[13–15]; when unbonded (Unbonded Fiber Reinforced Elastomeric
Isolators, U-FREIs), the marginal area can detach from the supports
and rotate during the horizontal displacement [16, 17]; this type of
deformation is named rollover (Figure 1.3 (b)).

In bonded FREIs, tensile stresses arise at the edges during the
horizontal deformation, which can cause damage [18]. Using the
FREI in unbonded configuration, the detached areas are stress
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Figure 1.2: Elastomeric bearing: (a) SREI, (b) FREI.

free [19] and the vertical load is fully carried by the overlap area
(Figure 1.4 (a)). Furthermore, as the contact area between bearing
and support decreases during the horizontal displacement, the
lateral stiffness is consequently reduced, and the isolation system
is more efficient [20].

As the lateral deformation continues, the initially vertical faces
of the bearing touch the supports gradually becoming horizontal,
leading to the so-called full rollover (Figure 1.4 (b)). This condition
allows greater stability of the system at large horizontal displace-
ments, since the lateral stiffness starts growing when the vertical
faces begin to touch the supports. Therefore, FREIs are generally
studied in unbonded configuration [19].

The use of fabric reinforcements allows to reduce the weight of the
devices, as the fibers are much lighter than steel despite having a
similar Young’s modulus [21]; removing the external plates further
reduces the weight, so the fiber reinforced bearing is much lighter
and easier to install than the steel reinforced one [11]. Costs can
be further reduced by around 50% compared to SREIs by using
cheap fibers, such as polyester [22–24].

The fiber reinforcement allows for a simpler and cheaper manufac-
turing process (i.e. cold vulcanization) than the hot vulcanization
required between steel and rubber. Also, FREIs can be produced
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Figure 1.3: FREI under combined axial and shear loads: (a) bonded, (b)
unbonded.
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Figure 1.4: Deformed FREI: (a) B-FREI vs U-FREI, (b) U-FREI at full
rollover.
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in larger pads from which the devices of the desired size can be
cut [16, 17]. Finally, it has been theorized that strip-shaped FREIs
(i.e. long rectangular FREIs) can be placed in direct contact with
reinforced concrete shear walls or masonry walls without the use
of specific and expensive transfer beams (i.e. reinforced concrete
beams) [25].

Several studies demonstrated the feasibility of FREIs as seismic
isolators. First, analytical solutions for vertical [11, 26–31] and
horizontal stiffness were proposed [32–36], starting from already
known equations for SREIs and considering the elastomer as incom-
pressible in a first attempt. These relationships were also compared
with results from experimental tests [26, 34, 35, 37] and finite
element analysis [19, 38–40]. Then, analytical solutions for vertical
stiffness including compressibility of the rubber (i.e. bulk modulus)
have been proposed [41–44].

It has been seen how FREIs show a vertical stiffness almost equal
to SREIs, a lower horizontal stiffness [45] and a greater or at least
similar equivalent viscous damping [13, 14, 46–50] with the same
geometry and elastomer mechanical properties.

The excellent responses obtained from experimental tests and fi-
nite element analysis, combined with the rather low manufacturing
costs, make these devices suitable for the isolation of structures in
developing countries, as indeed studied in different papers [51–54].

1.2.1.2 Recycled Rubber Fiber Reinforced Elastomeric
Isolators (RR-FREIs)

Having already reduced the costs of steel reinforced bearings through
fiber reinforcements, a further reduction in the unit cost of a rub-
ber bearing can be achieved by using elastomeric layers made of
recycled rubber [55]. This type of isolators, namely RR-FREI (Re-
cycled Rubber Fiber Reinforced Elastomeric Isolator) is therefore
made by alternating recycled rubber pads and fiber reinforcement
sheets (Figure 1.5). As for FREIs, a simple and cheaper manufac-
turing process can be used for packaging of RR-FREIs (i.e. cold
vulcanization) [56].
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Figure 1.5: RR-FREI sample.

Figure 1.6: Rubber scraps for recycled rubber pads. From the left: SBR,
EPDM, TDM

The elastomer layer can than consist of SBR (Styrene Butadiene
Rubber), EPDM (Ethylene Propylene Dien Monomer) or TDMs (Tire
Derived Materials) type rubber scraps [57–59] (Figure 1.6). The
obtained particles are generally in the shape of granules (rounded)
or fibers (elongated) [60]. These particles are then mixed with
polymeric glue (e.g., polyurethane) and hot pressed, getting pads of
a generic size from which the individual layers of the desired size
can be cut [60].

Elastomeric pads made of recycled rubber with different density
have been tested experimentally obtaining the main mechanical
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parameters, such as the Young’s modulus of the compound, its
vertical stiffness, the shear response and the volumetric behavior.
Good responses in vertical direction were obtained, not far from
those of natural rubber; the shear modulus and the volumetric
modulus, however, are lower due to the very nature of the compound
[57, 60, 61].

Several types of RR-FREIs with different fiber reinforcement were
then studied both with experimental tests and finite element analy-
sis [62]. In general, experimental tests showed a good response of
the RR-FREIs under combined axial and shear load. RR-FREIs ex-
hibit greater vertical compressibility than natural rubber FREIs [63],
due to volumetric compression settling of the granules-adhesive
compound. However, shaking table tests have shown good re-
centering capacity of the devices and no damage up to a threshold
of approximately 100% of shear strain [64]. Above this limit the
lateral response of the bearings becomes unstable and potential
overturning could occur [65]. However, finite element analysis have
shown that these bearings have suitable characteristics for practical
cases in developing countries [66–68].

1.2.1.3 Scrap-Tire Rubber Bearings

As a further alternative to SREIs, the so-called Scrap Tire Pad
(STP) made of used car tires have been proposed [69]. Indeed, car
tires are commonly made of vulcanized rubber with bidirectional
steel mesh, but nylon tires (cross ply tires), i.e. layers made from
nylon cord, were also studied [70]. Alternating layers of scrap tires
allows to reproduce an elastomeric isolator, with the embedded
steel mesh acting as the steel reinforcement in the common SREIs
and preventing the lateral bulging of the rubber compound and
ensuring good vertical stiffness (Figure 1.7).

Each STP is obtained by cutting the sidewalls of a car tire into a
ring, further divided into equal lengths tire layers and then placing
each layer on the top of each other with no adhesive (i.e. just touch
countact).

Experimental compression tests have shown how the initial elastic
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Figure 1.7: Scrap Tire Rubber Bearing

Embedded
Steel mesh

Lean Scrap
Tire Pads

compression modulus of a multilayers (4 – 6 layers) STP and the
modulus at the same compression strain of a SREI are of the same
order of magnitude [69]. However, the vertical ultimate stress of
an STP (8-9 MPa) is 4-5 times lower the vertical strength of a SREI.
The STPs also showed equivalent damping ratios between 18%
and 22%, similar to those of an high damping rubber bearing [69,
71]. Pseudo-dynamic tests on a three-story building isolated with
STRPs have also shown how a reduction up to 70% of the inter-
story drift, absolute acceleration and base shear force transmitted
to the superstructures could be obtained [72]. Experimental shear
tests in unbonded configuration under a vertical pressure of 5 MPa
showed a load capacity up to 100% of shear strain [73, 74]. Past
this threshold, the force-displacement curve shows a softening as
the marginal tire layers tend to detach from the other. However,
finite element analysis have shown that by avoiding the rubber
layers delamination a stable lateral response could be achieved up
to 150% of shear strain [75].

1.2.1.4 Recycled Tire Isolators
The idea of re-using tires to isolate buildings (Figure 1.8) was pro-
posed through the criteria of creating a low/no-cost isolation system
to be applied in developing countries [76]. In the first proposal,
automotive tires filled with 3/4 inch rock aggregate were used and
was shown how 85% of earthquake induced accelerations could
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Figure 1.8: Recycled Tires used as isolation system.
Isolated Building

Tires

be reduced. Then, sand was used as filled materials too [77], as
well as elastomeric recycled materials [78]. When sand was used,
although the isolation system significantly reduces accelerations
protecting the building, the ratio between vertical and lateral stiff-
ness of these devices is not as high as common rubber bearings.
This could cause rocking motions, as the structure rigidly rotates
on the top of the bearings [77]. However, as a rigid motion, it does
not damage the building. When filled with elastomeric recycled
materials, the system is more stable in the vertical direction as the
vertical stiffness is suitably high compared to the horizontal one
[78]. In addition, from shaking table tests it has been seen how a
structure could be adequately isolated with such a system, with a
reduction in the acceleration as well as inter-story drift [78].

Therefore, another innovative isolation system based on recy-
cled tires has been proposed. The so-called Recycled Tire Bearing
(RTB) system uses recycled automobile rubber tires cut along an
horizontal plane across the diameter and inserted underneath the
unit to be isolated (Figure 1.9) [79, 80]. The system was proposed
for the isolation of essential care units of hospitals in developing
countries. System stability is provided avoiding rocking motions, by
using a four-tires coupling configuration. In addition, the vertical
and horizontal period are uncoupled through an Horizontal Sliding
Recycle Tire Bearing (HSRTB) system, that allows the rubber tires
to slide sideways with almost zero horizontal stiffness under service
load while retaining adequate vertical stiffness. The system was
tested under quasi-static vertical and horizontal protocol, showing
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Figure 1.9: Recycled Tire Bearing under service loads
Vertical

load

Horizontal
load

a good energy dissipation with a quite high equivalent damping
ratio (around 8% for vertical response, around 15% for horizontal
response).

1.2.1.5 Sliding Isolators
In sliding isolation system, the structure slide with respect to the
foundation due to devices with a low friction coefficient [81]. Typi-
cally, the sliding devices are composed of a mirror-finish stainless
steel sliding surface and a layer of PTFE (Polytetrafluoroethylene)
traditionally used for the low friction coefficient (e.g., 0.05 – 0.15).

The two most common types of sliding devices are: pure friction
(PF) sliding isolators and friction pendulum systems (FPS). In the first
case, the structure is isolated through sledges with a low friction
coefficient; in the second, based on the pendulum principle, the
structure oscillates along a concave surface [82].

Sliding systems were initially proposed as a low-cost alternative
to SREIs for masonry structures, experimental testing and verifying
how the accelerations could be reduced by up to 80% [83].

One way to reduce the costs of the PF isolation system is to use
low-tech methods. Sand, lighting ridge pebble, polypropylene, PVC
sheet, polythene membrane, marble–marble, marble–high-density
polyethylene, marble–rubber sheet, and marble–geosynthetic were
proposed as materials for the friction isolation system layer. From
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shaking table tests on the different layers material, the acceleration
cut-off imposed by the friction level of the system was observed
[84] and a reduction for the maximum roof acceleration [85]. Finite
element analysis have shown how low-cost pure friction systems can
significantly improve the performance of non-engineered masonry
[86, 87] or RC buildings [88, 89] in developing countries.

A further way of savings could be coupling a seismic friction
base isolation system with a structure made with a percentage of
demolished waste material [90]. Replacing 20% of cement with
demolished waste material does not lead to a significant reduction
in strength. The same structure isolated with a pure friction system
showed a decreasing acceleration of 50% and an energy dissipation
of 70% compared to the non-isolated structure.

In the field of oscillating devices, a low-cost technique has been
proposed for masonry N-EB, namely rocking pillars used as supports
[91]. The system is made with steel pipes filled with concrete and
bearing caps at the top and the bottom. Shaking table tests on 1/4
scaled masonry structures showed the good isolation capacity of
the system with acceleration reduction at the top of the structure
between 25% and 80% [91–93]. However, the rocking pillar isolation
system showed no good re-centering capacity and therefore damping
devices must be provided to limit the excessive motion of the pillars.
The system is very easy to implement and no particular skills
are needed; this makes it attractive to full-scale application in
developing countries.

A comparative experimental study between flat and concave sur-
face sliding isolators was also proposed [94]. Generally, the PF
system has no restoring capacity, but using a medium-high coeffi-
cient of friction (e.g. 0.18), the maximum horizontal displacement
can be limited (around 30 to 42 cm). The concave-surface system
re-centers the building close to the initial position.

Hybrid systems between geotechnical and sliding isolation has
been proposed as a low-cost alternative for masonry N-EB. The
basic principle is to use foundations that allow the structure to
slide under seismic actions. Among the proposals, Natural Sone
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Pebbles (NSP) below the foundation [95], or two layers of PVC that
encapsulate sand [96, 97] or spherical roller bearings [98].

The first technology is based on the oldest isolation technique
found (the orthostat foundation [99]), using natural materials as a
support for the underlayer of foundation (Figure 1.10 (c)). Under
the long-lasting action of rivers and seas, the weak parts of the
stones are straggled, and only smooth and rounded pebbles remain.
Showing a compressive strength around 80 MPa, they proved to be
particularly useful as building materials. Shaking table tests on a
fixed-base and isolated with NSP foundation sample building, have
shown a strong reduction in stress/strain (on average of around
36%) demand and horizontal displacements (on average of around
29%). However, there may be residual displacements (horizontal
and vertical due to rotations) in the foundation on a real struc-
ture. The efficiency of the system does not seem to depend on the
thickness of the NSP layer.

In the second technology, a sliding layer is encapsulated between
two flat PVC surfaces, creating an innovative foundation that incor-
porates the principles of sliding isolation. Systems with interposed
sand (Figure 1.10 (a)) or with metal or glass roller spheres (Fig-
ure 1.10 (b)) between the PVC surfaces were subjected to shaking
table tests, applied to reinforced masonry sample structures. In
both cases, the system starts working by mobilizing some accel-
eration (around 0.05g and 0.1g or with a friction coefficient of
0.2), avoiding unintentional displacements due to ambient noise.
The structures were found undamaged even when subjected to
strong ground motion (around 0.8g). The system, however, did not
show great re-centering capacity, but this can be corrected with
preventive additional measures.

1.2.2 Geotechnical Seismic Isolation
Geotechnical Seismic Isolation (GSI) is a relatively newly developed
seismic protection technique. It consists of a layer placed under the
foundations of the structure, designed to dissipate the energy in-
troduced by the earthquake. As in the case of base isolation, layers
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Figure 1.10: Sliding foundation layer: (a) PVC sandwich isolation with
sand, (b) PVC sandwich isolation with metallic spheres, (c) natural stone
pebbles.

of different materials and properties can be used. A low-cost tech-
nique that uses rubber as an additional material for geotechnical
isolation will be shown below.

1.2.2.1 Rubber-Soil Mixture

The Rubber-Soil Mixture (RSM) is a geotechnical seismic isolation
system consisting of placing underneath the foundation of a build-
ing (whether footing or pile), a layer in the order of 10 m of soil
mixed with rubber (Figure 1.11) [100]. The soil layer below the
foundation allows to reduce the amplitude of the seismic waves
incoming, with only a small part amplified in frequency spectrum
(1-2 Hz). The amplification and de-amplification of the waves de-
pends on the geometric and dynamic properties of the materials of
the layer. Hence the introduction of rubber as a "reinforcement",
provides large energy absorption capability and increasing shear
strength if more than 10% tire chips is used [101].

A number of parametric numerical simulations were conducted to
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Figure 1.11: Rubber-Soil Mixture
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Original
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demonstrate the effectiveness and applicability of the system [100,
102–106], varying the thickness of RSM layer, dynamic properties
(percentage of rubber inside soil, initially assumed around 75%)
of the layer, building geometry (width, height, number of storey
etc.), type and geometry of the foundation and acceleration input
from the earthquake. The mixed layer manages to reduce the
earthquake-induced horizontal accelerations up to 60% compared
to the solely-soil layer, while a lower but still quite good reduction
up to around 20% could be obtained for the vertical accelerations.

The qualities of the system were also investigated experimen-
tally through dynamic tests on shaking table, by varying the ratio
between rubber and soil to identify the best design mix [107]. A
ratio between the size of the rubber and sand aggregates equal to
2 appears to ease the rigid sliding of the structure subjected to
strong ground motion.

Although the system brings unequivocal advantages, it must be
taken into account the potential risks of liquefaction and resonance.
In the first case, the rubber inserts reduce the density of the pure
soil and consequently the shear strength (but only if the quantity
of rubber is quite low, i.e. < 10% of the total weight), increasing
the liquefaction potential [108]. However, rubber has been seen to
increase the friction angle and cohesion of the soil [101, 109]. This,
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combined with the reduction of the intensity of the ground shaking,
can however lead to an advantageous response of the system.

In the same fashion for resonance, the vibration period of the
underlying RSM must not match the main ones of the earthquake-
induced ground shaking, thus avoiding amplified response.
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CHAPTER 2

OVERVIEW OF THE EXISTING ANALYTICAL
SOLUTIONS FOR FIBER REINFORCED

ELASTOMERIC ISOLATORS

Summary
This chapter recalls the analytical equations proposed in the
literature on the main mechanical properties of FREIs.
First, the analytical solutsions on the vertical response of rub-
ber pads of different shapes with flexible reinforcements are
shown. Hence, horizontal stiffness equations of elastomeric
bearings under combined axial and horizontal loads will be
shown. Finally, the stable/unstable response of FREIs in
unbonded configuration is studied.

2.1 Vertical behavior

An important property of rubber bearings is the vertical stiffness.
Typically, the behavior of rubber materials under pure compression
is strongly non-linear from the very first stages of loading, depending
on several factors. However, an initial prediction of the vertical
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stiffness of rubber-based devices such as elastomeric bearings can
be done by the designer with a linear analysis, with an adequate
level of accuracy.

Following this path, the vertical stiffness of a rubber bearing with
equal thickness elastomeric layers, regardless the reinforcement
type, is given by the formula [12]:

𝐾𝑣 =
𝐸𝑐𝐴𝑐

𝑡𝑟
(2.1)

Being 𝐴𝑐 the loaded area (or the contact area between bearing
and support), 𝑡𝑟 the total thickness of rubber in the bearing (𝑛𝑡𝑒 ,
with 𝑡𝑒 thickness of a single elastomeric layer and 𝑛 total number
of elastomeric layers), and 𝐸𝑐 is the effective compressive modulus
of the rubber-reinforcement composite under the specified level of
vertical load (i.e. the Young’s modulus of a single layer of elastomer
between two reinforcement sheets at the top and the bottom).

In Equation 2.1 the two parameters 𝐴𝑐 and 𝑡𝑟 are generally known
in a design phase, while 𝐸𝑐 is unknown. The value of 𝐸𝑐 depends on
several parameters, the main ones being the primary shape factor
𝑆1, defined as [81]:

𝑆1 =
Loaded Area

Force-Free Area
(2.2)

Or, equivalently, the ratio between the plan area of the elastomer
and its lateral area. Research over the years has provided several
analytical solutions for predicting the compressive modulus, first
considering rubber as incompressible and then removing this hy-
pothesis and accounting its compressibility too. There are two main
vein for the effective compressive modulus solutions:

1. Pressure Solution (PS) [11, 27, 110]

2. Pressure Approach (PA) [28–30]

The first approach is based on the following assumptions:

i. A single elastomeric layer is perfectly bonded to two reinforce-
ment layers.
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ii. Horizontal plane remain plane and parallel after compression.

iii. Points on a vertical line before deformation lie on a parabola
after loading (parabolic bulging).

iv. The extension of the reinforcement is uniform through the
layer.

v. The shear stresses in the horizontal plane are negligible.

vi. The stress state is assumed to be dominated by the internal
pressure 𝑝, such that the normal stress components are all
approximately equal to 𝑝.

In the Pressure Approach, the hypothesis vi. is removed. The
main results obtained for two types of bearings, strip- and rectan-
gular (square) - shaped, are shown below.

2.1.1 Eective compressive modulus of incom-
pressible strip-shaped elastomeric pads

For an infinitely long strip-shaped elastomeric layer of width 2𝑎
and thickness 𝑡𝑒 under a compression load 𝐹𝑣 (Figure 2.1 (a)), the
effective compressive modulus is:

PS: 𝐸𝑐 = 𝐺𝑒𝑆
2
1

12
(𝛼𝑎2)

(
1 − tanh𝛼𝑎

𝛼𝑎

)
(2.3a)

PA: 𝐸𝑐 = 2𝜇 + 2𝜇𝜆
𝜆 + 2𝜇

+ 𝜆2

𝜆 + 2𝜇

(
𝛼20

𝛽21

) (
1 − tanh 𝛽1𝑎

𝛽1𝑎

)
(2.3b)

where in Equation 2.3a:

• 𝑆1 = 𝑎/𝑡𝑒 is the primary shape factor of an infinite strip-shaped
elastomeric pad.

• 𝛼 =

√︃
12𝐺𝑒

(
1 − 𝜈2𝑒

)
/𝐸𝑓 𝑡𝑓 𝑡𝑒 .

23



Chapter 2 Existing analytical solutions for FREIs

(a)

x

2b=1

2a

y

FV

te

z

2a
2b

te

FV
b)

(b)

x

2b=1

2a

y

FV

te

z

2a
2b

te

FV
a)

Figure 2.1: Elastomeric pads: (a) infinitely long strip, (b) rectangular.

• 𝐺𝑒 , 𝑡𝑒 and 𝜈𝑒 are the shear modulus, the thickness and the
Poisson’s ratio of the elastomer.

• 𝐸𝑓 and 𝑡𝑓 are the Young’s modulus and thickness of the rein-
forcement.

while in Equation 2.3b:

• 𝜇 and 𝜆 are the Lame’s constants.

• 𝛼0 = 1/𝑡𝑒
√︁
12𝜇/𝜆 + 2𝜇.

• 𝛽1 =
√︃
𝛼20 + 0.75𝛼21.

• 𝛼1 =

√︂
12𝜇

(
1 − 𝜈2

𝑓

)
/𝐸𝑓 𝑡𝑓 𝑡𝑒 .

• 𝜈 𝑓 is the Poisson’s ratio of the reinforcement.
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2.1.2 Eective compressive modulus of incom-
pressible rectangular(square)-shaped elas-
tomeric pads

For a rectangular(square)-shaped elastomeric pad of base dimen-
sion 2𝑎 𝑥 2𝑏 and thickness 𝑡𝑒 under a compression load 𝐹𝑣 (Fig-
ure 2.1 (b)), the effective compressive modulus is:

PS : 𝐸𝑐 =
24𝐺𝑒𝑆

2
1

𝜋 (𝛼𝑎)2
(
1 + 𝑎

𝑏

)2 ∞∑︁
𝑛=1

1
(𝑛 − 1/2)2[

tanh (𝛾𝑛𝑏)
𝛾𝑛𝑏

− tanh (𝛽𝑛𝑏)
𝛽𝑛𝑏

+ tanh (𝛾𝑛𝑎)
𝛾𝑛𝑎

−
tanh

(
𝛽𝑛𝑎

)
𝛽𝑛𝑎

] (2.4a)

PA : 𝐸𝑐 =2𝜇 + 𝜆
[
1 − tanh2(𝛼𝑏)(

1 + 𝜇

𝜆

)
(𝛼𝑏)2

]
−

2𝜆(𝛼𝑏)2
{
1 + tanh(𝛼𝑏)

𝛼𝑏

[
1 − 2𝜇

𝜆+𝜇 + 4(𝛼𝑏)2
𝜋2

]}[
𝜋2

4 + (𝛼𝑏)2 + 𝛽1𝑏
tanh (𝛽1𝑏)

[ (
1 + 𝜇

𝜆

)
𝜋2

4 +
(
1 + 2 𝜇

𝜆

)
(𝛼𝑏)2

] ] (2.4b)

in Equation 2.4a:

• 𝑆1 = 𝑎𝑏/(𝑎 + 𝑏)𝑡𝑒 is the primary shape factor of a rectangular-
shaped elastomeric pad (𝑆1 = 𝑎/2𝑡𝑒 = 𝑏/2𝑡𝑒 for a square-shaped
pad).

• 𝛾𝑛 = (𝑛 − 1/2)𝜋/𝑎.

• 𝛽𝑛 =
√︁
𝛾2𝑛 + 𝛼2.

• 𝛾𝑛 = (𝑛 − 1/2)𝜋/𝑏.

• 𝛽𝑛 =
√︁
𝛾2𝑛 + 𝛼2.

while in Equation 2.4b 𝛼 =
√︁
6𝜇/𝑡2𝑒 (𝜆 + 2𝜇).
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2.1.3 Eective compressive modulus of compress-
ible strip-shaped elastomeric pads

Results for the effective compressive modulus including the com-
pressibility of the rubber were obtained only with the assumptions
of the pressure solution. For the same infinite strip-shaped pad of
Section 2.1.1, 𝐸𝑐 becomes [19]:

𝐸𝑐 = 𝐾
𝛽2

𝛼2 + 𝛽2

(
1 − tanh 𝜆

𝜆

)
(2.5)

where:

• 𝐾 = 2𝐺 (1 + 𝜈𝑒)/3(1 − 2𝜈𝑒) is the bulk modulus of the rubber.

• 𝛼 =
√︁
(12𝐺𝑒𝑎

2)/𝐸𝑓 𝑡𝑓 𝑡𝑒 .

• 𝛽 =
√︁
12𝐺𝑒𝑎

2/𝐾𝑡2𝑒

• 𝜆2 = 𝛼2 + 𝛽2

2.1.4 Eective compressive modulus of compress-
ible rectangular(square)-shaped elastomeric
pads

For the rectangular (square) pads of Section 2.1.2 with compress-
ible elastomer, two approaches are hearein reported; in the first
one, the effective compressive modulus is given by the equation
[111]:

𝐸𝑐 = 96𝐺𝑒𝑆
2
1

(
2 + 𝑎

𝑏

)2 ∞∑︁
𝑛=1,3,5...

1
(𝑛2𝜋2)

(
𝛼21 + 𝛽21

) (
2 + 𝑎

𝑏

)2 + 𝑛2𝜋2

(
1 − tanh 𝜆1

𝜆1

)
(2.6)

with the following parameters:

• 𝛼21 = 24𝐺𝑒𝑆
2
1𝑡𝑒/𝐸𝑓 𝑡𝑓

• 𝛽21 = 12𝐺𝑒𝑆
2
1/𝑡2𝑒𝐾
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• 𝜆1 =

√︃
(𝛼2

1+𝛽21) (2+𝑎/𝑏)2+𝑛2𝜋2

𝑎/𝑏

In the second approach [41], 𝐸𝑐 is given by:

𝐸𝑐 =
768𝐺𝑒𝑆

2
1

𝜋4

(
𝑏

𝑎
+ 1

)2 ∞∑︁
𝑛,𝑚=1

sin2
(
𝑛𝜋
2
)
sin2

(
𝑚𝜋
2

)
𝑛2𝑚2

[ (
𝑛𝜋
2
)2 + (

𝑚𝜋𝑏
2𝑎

)2
+ 2(𝛼𝑏)2 + (𝛽𝑏)2

] (2.7)

where 𝛼 =
√︁
24𝐺𝑒/𝐸𝑓 𝑡𝑓 𝑡𝑒 and 𝛽 =

√︁
12𝐺𝑒/𝐾𝑡2𝑒 .

2.2 Horizontal behavior

As mentioned in Section 1.2.1.1, FREIs under combined axial
and shear loads expierence a rollover deformation as the marginal
areas detach from the supports during lateral deformation. The
contact area between bearing and supports therefore reduces. Plus,
the shear modulus of the elastomer depends on the shear strain,
reducing as it increases. Thus, the lateral response of the FREIs is
somewhat challenging to render analytically.

However, analytical solutions have been proposed for the horizon-
tal stiffness of FREIs based on simplified hypotheses and starting
from the classic formula used for SREIs [112]:

𝐾𝐻 =
𝐺𝑒𝐴𝑐

𝑡𝑟
(2.8)

This simplified equation does not take into account the reduction
of the contact area between the bearing and the supports and the
reduction of the shear modulus with the shear strain. The different
analytical solutions proposed introduce corrective coefficient to
Equation 2.8, or modify the mechanical and geometrical proper-
ties of the bearing (i.e. 𝐺𝑒 or 𝐴𝑐 ). The main results achieved are
presented below.
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2.2.1 Horizontal stiness of a strip-shaped FREI
with corrective coeicient

In one of the first approaches [33], a bearing with total height 𝐻 and
width 2𝑎 is treated as a beam and the infinitesimal deformation the-
ory is adopted. Plane sections normal to the vertical (undeformed)
axis were assumed to remain plane but not necessarily normal after
deformation. The warping of the cross-section of the bearing due
to the flexibility of the reinforcement is taken into account through
a kinematics displacement function that measures the deviation
from plane of the deformed cross-section. The material is assumed
to be linear elastic.

For such a beam with its bottom end fixed and its top end solely
fixed against rotation and warping, the horizontal stiffness is ex-
pressed by the following equations:

𝐾𝐻 =

(
𝐺𝑒𝐴𝑐

𝐻

)
𝐹𝑣

2𝐹𝑣 (1+𝐹𝑣)+𝛽2
𝐹𝑣 (𝛽1+𝛽2)

√︁
2𝜌𝛽1 tan

√︃
𝛽1
8𝜌 + 2𝐹𝑣 (1+𝐹𝑣)+𝛽1

𝐹𝑣 (𝛽1+𝛽2)
√︁
2𝜌𝛽2 tan

√︃
𝛽2
8𝜌 − 1

(2.9a)

𝐾𝐻 =

(
𝐺𝑒𝐴𝑐

𝐻

)
𝐹𝑣

2𝐹𝑣 (1+𝐹𝑣)+𝛽2
𝐹𝑣 (𝛽1+𝛽2)

√︁
2𝜌𝛽1 tan

√︃
𝛽1
8𝜌 + 2𝐹𝑣 (1+𝐹𝑣)+𝛽1

𝐹𝑣 (𝛽1+𝛽2)
√︁
2𝜌 |𝛽2 | tan

√︃
|𝛽2 |
8𝜌 − 1
(2.9b)

The first equation apply when
(
1 + 𝐹𝑣

)
𝜅𝑐 − 𝜅𝑏 ≥ 0, while the second

when
(
1 + 𝐹𝑣

)
𝜅𝑐 − 𝜅𝑏 < 0. In Equation 2.9, for an homogeneous

beam (constant Young’s and shear modulus) with a rectangular
cros-section with plan area 𝐴 = 4𝑎𝑏:

• 𝐻 : is the total height of the undeformed bearing.

• 𝐹𝑣 = 𝐹𝑣/𝐺𝑒𝐴𝑐 : is the dimensionless compression force, with 𝐹𝑣
the vertical applied force.

• 𝜅𝑏 = 7
3
(
1 + 𝐹𝑣

)2: is the first parameter corresponding to cross-
section warping.
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• 𝜅𝑐 = 14
(
1 + 𝐹𝑣

)
: is the second parameter corresponding to cross-

section warping.

• 𝐼 = 4
3𝑏𝑎

3: is the second moment of area.

• 𝐽 = 16
175𝑏𝑎: is a cross-section property of the warping shape.

• 𝛺 (𝑋 ) =
(
𝑋
𝑎

)3 + 3
5
(
𝑋
𝑎

)
: is the warping function.

• 𝐵 = 8
5𝑏: is a cross-section property of warping.

• 𝐶 = 96𝑏
25𝑎 : is a cross-section property of warping.

• 𝛽1 =
10
3
(
1 + 𝐹𝑣

) [ (
𝐹𝑣 − 7

2
)
+

√︃(
𝐹𝑣 − 7

2
)2 + 21

5 𝐹𝑣

]
.

• 𝛽2 =
10
3
(
1 + 𝐹𝑣

) [
−
(
𝐹𝑣 − 7

2
)
+

√︃(
𝐹𝑣 − 7

2
)2 + 21

5 𝐹𝑣

]
.

• 𝜌 = 𝐸𝐼
𝐺𝑒𝐴𝑐𝐻

2 : is the ratio of the flexure to shear rigidity.

2.2.2 Horizontal stiness of rectangular(square)-
shaped FREIs with corrected contact area

Analytical equations for the horizontal stiffness stiffness have been
proposed considering a costant value for 𝐺𝑒 and 𝑡𝑟 , while a reduced
contact area due to the rollover deformation in unbonded configu-
ration:

𝐾𝐻 =
𝐺𝑒𝐴

𝑟
𝑐

𝑡𝑟
(2.10)

where 𝐴𝑟
𝑐 ∝ 𝐴𝑐 is the reduced contact area, proportional to the

plan area of the undeformed bearing with the following expression:

𝐴𝑟
𝑐 = 2𝑏 [2𝑎 − 𝑓 (𝛿𝐻 , 𝐻 )] (2.11)

being 𝑓 (𝛿𝐻 , 𝐻 ) a generic function generally depending on the hori-
zontal displacement and bearing height. Three approaches have
been proposed for deriving the function 𝑓 (𝛿𝐻 , 𝐻 ):
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[113] : 𝑓1(𝛿𝐻 , 𝐻 ) =
25
16
𝐻𝛼 (𝛿𝐻 , 𝐻 ) (2.12a)

[114] : 𝑓2(𝛿𝐻 ) =
3
4
𝛿𝐻 (2.12b)

[34] : 𝑓3(𝛿𝐻 , 𝐻 ) = 𝛿𝐻 − 𝛿𝐻0 (2.12c)

In Equation 2.12a 𝛼 (𝛿𝐻 , 𝐻 ) is a geometric function of the hori-
zontal displacement through the expression:

𝛿𝐻 =
25
64
𝐻

[
2𝛼

√
1 + 4𝛼2 + ln

(
2𝛼 +

√
1 + 4𝛼2

)]
(2.13)

and this equation could be solved for a generic 𝛿𝐻 value.
In Equation 2.12c 𝛿𝐻0 =

√
𝐻 2 − ℎ2 is the horizontal displacement at

the first detachment of the bearing from the supports and ℎ = 𝐹𝑣/𝐾𝑣 =

𝐹𝑣𝑡𝑟/𝐸𝑐𝐴𝑐 the reduced height of the isolator under the compressive
load.

Following, the horizontal stiffness can be calculated as follows:

𝐾𝐻 =
𝐺𝑒2𝑏
𝑡𝑟


2𝑎 −


25
16
𝐻𝛼 (𝛿𝐻 , 𝐻 )

3
4
𝛿𝐻

𝛿𝐻 −
√
𝐻 2 − ℎ2


(2.14)

In these equations, it is suggested to consider a shear modulus
at 100% of shear strain.

2.2.3 Horizontal stiness with corrected shear
modulus

The complementary approach to the prevoius one is obtained us-
ing a constant contact area and a variable and decreasing shear
modulus [115]:

𝐾𝐻 =
𝐺𝑟
𝑒𝐴𝑐

𝑡𝑟
(2.15)
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where 𝐺𝑟
𝑒 ∝ 𝐺𝑒 is the reduced shear modulus, proportional to a

constant value of the shear modulus at a fixed shear strain of 20%.
The proposed expression for the reduced shear modulus is:

𝐺𝑟
𝑒 = 𝐺𝑒,20

(
1 − 𝛿𝐻

2𝑎

)1 −


𝐹𝑣

𝑓𝑐𝑟 0

(
1 −

(
𝛿𝐻
2𝑎

)2)

2 (2.16)

In Equation 2.16:

• 𝑓𝑐𝑟 0 = 𝐹𝑣,𝑐𝑟/𝐴𝑐 : is the critical value of vertical stress.

• 𝐹𝑣,𝑐𝑟 =

√
2𝜋𝐺𝑒,20𝐴𝑐𝑆1𝑟

𝑡𝑟
: is the critical vertical load of the bearing.

• 𝑟 = 2𝑎
2
√
3

2.2.4 Horizontal stiness with corrected shear
modulus and contact area

Using both approaces of Sections 2.2.2 and 2.2.3, a formula for
the horizontal stiffness that takes into account the reduction of
both the contact area and the shear modulus can be obtained:

𝐾𝐻 =
𝐺𝑟
𝑒𝐴

𝑟
𝑐

𝑡𝑟
(2.17)

and with the positions from Equations 2.11 and 2.16, it follows
the full expression for the horizontal stiffness with corrected shear
modulus and contact area:
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𝐾𝐻 =
2𝑏
𝑡𝑟
𝐺𝑒,20

(
1 − 𝛿𝐻

2𝑎

)1 −


𝐹𝑣

𝑓𝑐𝑟 0

(
1 −

(
𝛿𝐻
2𝑎

)2)

2·

2𝑎 −


25
16
𝐻𝛼 (𝛿𝐻 , 𝐻 )

3
4
𝛿𝐻

𝛿𝐻 −
√
𝐻 2 − ℎ2



(2.18)

2.3 Instability and buckling behavior

U-FREIs can show two types of unstable behavior [112]:

1. Buckling under large vertical load. Under large value of vertical
pressure the bearing, subject to an horizontal displacement,
shows a buckling type of instability similar to an ordinary
column (Figure 2.2 (a)).

2. Lateral instability. Since the horizontal force-displacement
curve of the FREIs tends to decrease with horizontal displace-
ment, the tangent stiffness could become negative beyond a
lateral deformation threshold and the bearing is said to be
unstable (Unstable Unbonded Fiber-Reinforced Elastomeric Iso-
lators (UU-FREIs [116]); bearings always showing a positive
tangent stiffness in the lateral response force-displacement
curve are called stable (Stable Unbonded Fiber-Reinforced Elas-
tomeric Isolators, SU-FREIs [117]) (Figure 2.2 (b)).

In the first case, the buckling load 𝐹𝑣,𝑐𝑟 0 corresponds to the vertical
load value where any horizontal displacement, whatever small, re-
sults in a zero or negative horizontal stiffness. The bearing becomes
unstable under pure compression load, showing no lateral capacity.

In the second case, the critical load 𝐹𝑣,𝑐𝑟 is the vertical force at
the peak horizontal force of the bearing lateral response curve, i.e.
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Rollover: maximum stable
horizontal displacement
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H
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SU-FREI

UU-FREI
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Figure 2.2: Limit horizontal response: (a) buckling of short beam, (b)
lateral curve response with and without instability.

where the tangent stiffness is zero. Unlike the previous case, the
bearing shows a stable response up to the peak; past this threshold
the response is no longer reliable.

The main theories on these two topics are shown below.

2.3.1 Buckling load
Buckling load analysis of elastomeric bearings with flexible rein-
forcement were based on beam theory. Assuming the material to
be linear elastic and with the hypothesis of planar sections pre-
serving (but not necessary normal to the deformed vertical axis),
the buckling load was obtained by equaling the horizontal stiffness
of Equation 2.9 to zero. Thus, for a rectangular homogeneous
beam, the buckling load could be obtained by solving the following
non-linear equation [33]:

𝐹 3𝑣,𝑐𝑟 0 +
(
2 + 2

7
𝜋2𝜌

)
𝐹 2𝑣,𝑐𝑟 0 +

(
1 − 5

7
𝜋2𝜌

)
𝐹𝑣,𝑐𝑟 0 −

(
𝜋2𝜌 + 3

35
𝜋4𝜌2

)
= 0 (2.19)

where 𝜌 has been defined in Section 2.2.1. Cubic Equation 2.19
could be solved via numerical method once 𝜌 is known.

33



Chapter 2 Existing analytical solutions for FREIs

For a strip-shaped FREI, a cubic equation as well could be solved
for the buckling load [32]:

(𝐸𝐼 )𝑒 𝑓 𝑓
(𝐸𝐽 )𝑒 𝑓 𝑓

[
𝑓𝐶

𝐴𝑐

−
(
𝑓𝐵

𝐴𝑐

)2]
𝐹 3𝑣,𝑐𝑟 0 +

{
(𝐸𝐼 )𝑒 𝑓 𝑓
(𝐸𝐽 )𝑒 𝑓 𝑓

(
𝐶

𝐴𝑐

+ 𝑓𝐶

𝐴𝑐

− 2
𝑓𝐵𝐵

𝐴2
𝑐

)
+ 𝜋2𝜌[

1 +
(𝐸𝐼 )𝑒 𝑓 𝑓
(𝐸𝐽 )𝑒 𝑓 𝑓

(
𝑓𝐵

𝐴𝑐

)2]}
𝐹 2𝑣,𝑐𝑟 0 +

{
(𝐸𝐼 )𝑒 𝑓 𝑓
(𝐸𝐽 )𝑒 𝑓 𝑓

[
𝐶

𝐴𝑐

(
𝐵

𝐴𝑐

)2]
+ 𝜋2𝜌[

1 +
(𝐸𝐼 )𝑒 𝑓 𝑓
(𝐸𝐽 )𝑒 𝑓 𝑓

(
2
𝑓𝑏𝐵

𝐴2
𝑐

− 𝑓𝑐

𝐴𝑐

)]}
𝐹𝑣,𝑐𝑟 0 −

{
𝜋2𝜌

(𝐸𝐼 )𝑒 𝑓 𝑓
(𝐸𝐽 )𝑒 𝑓 𝑓

[
𝐶

𝐴𝑐

−
(
𝐵

𝐴𝑐

)2]
+ 𝜋4𝜌2

}
= 0

(2.20)

with:

• (𝐸𝐼 )𝑒 𝑓 𝑓 ≈ 𝑎3𝐺𝑒𝑆
2
1
8
15

[
1 − 2

21 (𝛼𝑎)
2].

• (𝐸𝐽 )𝑒 𝑓 𝑓 ≈ 𝑎𝐺𝑒𝑆
2
1

{
32
3675

[
1 − 2

77 (𝛼𝑎)
2] + 1

2𝜆𝑆21 (𝑏/𝑡𝑓 )3
}
.

• 𝐵 ≈ 8
7

[
1 − (𝛼𝑎)2

210

]
.

• 𝐶 ≈ 1
𝑎

{
552
245

[
1 − 4(𝛼𝑎)2

1449

]
+ 2𝑆1

𝜆(𝑏/𝑡𝑓 )3
}
.

• 𝑓𝐵 ≈ 12
35

[
1 + 16(𝛼𝑎)2

315

]
.

• 𝑓𝐶 ≈ 216
245𝑎

[
1 + 26(𝛼𝑎)2

945

]
.

• 𝜌 ≈ 4𝑆21
15

(
𝑎
𝐻

)2 [1 − 2(2𝛼𝑎)2
21

]
.

2.3.2 Critical load
As said in Section 2.3, instability occurs when:

𝐾𝑡𝑎𝑛
𝐻 =

𝜕𝐹𝐻

𝜕𝛿𝐻
= 0 (2.21)
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A first simplified approach for the horizontal displacement at
the peak horizontal force, was proposed considering the rubber
incompressible, the shear modulus constant with the lateral defor-
mation and negleting the roll-off marginal areas contributions [118].
In such assumptions, the lateral resisting force of a rectangular
bearing can be written as:

𝐹𝐻 =
𝐺𝑒

𝑡𝑟
[𝐴𝑐 −𝐴(𝛿𝐻 )]𝛿𝐻 =

𝐺𝑒

𝑡𝑟
[2𝑎 · (2𝑏 − 𝛿𝐻 )]𝛿𝐻 (2.22)

and then, following from Equation 2.21:

𝜕𝐹𝐻

𝜕𝛿𝐻
=
𝐺𝑒

𝑡𝑟
4𝑎(𝑏 − 𝛿𝐻 ) = 0 (2.23)

which shows how the bearing has a stable response up to an
horizontal displacement value equal to half the base side in the
direction of displacement. This simple formula provide an easy-to-
use results for a preliminary estimate of the displacement at peak
of horizontal force.

In a further approach [119], the horizontal force is calculated
divideng the isolator into three zones: the central overlap area and
the two marginal rollover areas. The shear deformation is supposed
to happens in each elastomeric layers, while the fibers are stretched.

The central area shows an horizontal reaction force 𝐹𝐻1 while the
lateral areas two horizontal forces 𝐹𝐻2. Then, the total horizontal
force is the sum of these three rates:

𝐹𝐻 = 𝐹𝐻1 + 2𝐹𝐻2 (2.24)

The horizontal force 𝐹𝐻1 is computed with Equation 2.22. The
rollover portions are then subdivided into two type of deformation
patterns: a pure shear horizontal displacement 𝛿𝑠

𝐻
and a bending -

induced displacement 𝛿𝑏
𝐻

, with the resultant displacemente being
𝛿𝑟
𝐻

= 𝛿𝑠
𝐻
+ 𝛿𝑏

𝐻
. First displacement comes straight from the plane-

section assumption:

𝛿𝑠𝐻 =
𝐹𝐻2𝑡𝑟

𝑎𝐺𝑒𝛿𝐻
(2.25)
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1 Assuming
that all the
elastomer
layers rotate
by the same
angle

For the bending-derived displacement the rollover area is as-
sumed to be a cantilever beam with a follower point load 𝑉 and is
written as a function of the rotation angle 𝜗 of the vertical face of
the bearing1:

𝛿𝑏𝐻 = 𝐻 · sin𝜗 (2.26)

Then, the 𝐹𝐻2 force due to rollover areas is obtained from the
sum of all the horizontal components of the shear force 𝑉 in the
elastomerc layers:

𝐹𝐻2 =

(
2𝐸𝑟 𝐼𝑟

𝑛∑︁
𝑖=1

1
𝑙2
𝑖

+ 2𝐸𝑓 𝐼𝑓
𝑛−1∑︁
𝑖=1

1
𝑙2
𝑖

)
𝜗 tan𝜗 (2.27)

being 𝐸𝑟 the Young’s modulus of the rubber and 𝑙𝑖 = 𝑖 · 𝑡𝑒 · 𝛿𝐻/𝑡𝑟
is the length of the cantilever-equivalent i-th rubber layer. Substi-
tuting Equation 2.27 in Equation 2.25 and then summing with
Equation 2.26 a non linear equation for 𝐹𝐻2 is obtained:

𝐹𝐻2 =
𝐴𝑐 · 𝑡2𝑟
𝛿2
𝐻

tan
[
arcsin

(
𝛿𝐻

𝐻
−

𝐹𝐻2 · 𝑡𝑟
𝑎𝐺𝑒𝛿𝐻𝐻

)]
arcsin

(
𝑥

𝐻
−

𝐹𝐻2 · 𝑡𝑟
𝑎𝐺𝑒𝛿𝐻𝐻

)
(2.28)

and using this equation with Equation 2.22 into Equation 2.24,
a final non linear equation for the total shear force 𝐹𝐻 is achieved:

𝐹𝐻−
2𝑎𝛿𝐻
𝑡𝑟

(2𝑏 − 𝛿𝐻 )𝐺𝑒 −
2𝐴𝑐 · 𝑡2𝑟
𝛿2
𝐻

·

tan
[
arcsin

(
𝐴𝑐𝐺𝑒𝛾𝐻 − 𝐹𝐻
2𝑎𝐺𝑒𝛾𝐻𝐻

)]
arcsin

(
𝐴𝑐𝐺𝑒𝛾𝐻 − 𝐹𝐻
2𝑎𝐺𝛾𝐻𝐻

)
= 0

(2.29)

The equation can be solved via numerical methods, obtaining the
horizontal force as a function of 𝛿𝐻 .
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2.3.2.1 Influence on stability of FREIs
The stability of the FREIs has mostly been studied with experimental
tests. These studies have shown that the stability of FREIs under
combined axial and shear loads mainly depends on the secondary
shape factor 𝑆2 [18, 20, 120], defined as the ratio between the base
size (in the direction of the imposed horizontal displacement) to the
total height of rubber [121]. For instance, for a rectangular FREIs
with base dimension 2𝑎 x 2𝑏, 𝑆2 would be:

𝑆2𝑎2 =
2𝑎
𝑡𝑟

(2.30)

or

𝑆2𝑏2 =
2𝑏
𝑡𝑟

(2.31)

A critical value of this parameter appears to be 2.5 [116, 117]:
bearings with a lower secondary shape factor can be considered
unstable, otherwise they can be considered stable.
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CHAPTER 3

STABILITY OF STRIP-SHAPED FIBER
REINFORCED ELASTOMERIC ISOLATORS

Summary
This chapter introduces the results obtained from parametric
finite element analysis of FREIs. The vertical and horizontal
response of infinite long strip-shape FREIs under combined
axial and horizontal loads has been studied with combina-
tions of mechanical and geometric parameters of the bearings.
The total vertical displacement of U-FREIs has been studied
comparing the numerical results with a modified version of
available analytical equation.
This chapter is based on the journal paper [122].

3.1 Introduction

As mentioned in Section 2.2, analitycal modeling of the response
of FREIs under combined vertical and horizontal loads is quite chal-
lenging due to strongly non linear vertical and horizontal responses.
The experimental tests proposed in the literature are limited to a re-
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2 Deleting spuri-
ous terms.
3 Problem is split-
ted into deviatoric
and dilatational
parts, and the
dilatational parts
of the shape
functions matrice
is replaced with a
modified version.
4 Reduction
of used Gauss
points in numeri-
cal integration.
5 The method
takes the pres-
sure on an
element as an ex-
tra variable next
to the displace-
ment, creating a
two-field problem.

duced number of different bearings and do not provide wide-general
results.

Therefore, Finite Element Analysis (FEA) has proved to be a pow-
erful tool to study the response of a large number of FREIs with
different geometries. In this thesis, the finite element analysis were
carried out with the MSC.Marc/Mentat [123], a general purpose
FEA software optimized for non-linear analyses.

The ultimate behavior of FREIs is challenging for finite element
codes because of large and strongly non-linear strain, nearly - in-
compressible rubber conditions, multiple contacts between rubber-
rubber and rubber-supports, sliding and/or separation, etc. Also,
mesh-locking can occur when dealing with elastomers as for in-
compressible materials the dilatation would shrinks to zero when
Poisson’s ratio approaches to 0.5, while for some elements (e.g.
4 nodes quad elements) remains finite. Locking can occurs both
for element type and shape, but it seems only happens when "an
element cannot interpolate a field property correctly with the nodal
values and the element’s shape functions" [124]. In MSC.Marc
locking can be prevented by using constant dilatation2 or assumed
strain3 when selecting geometric properties, or by using reduced
integration4 or Hermann formulation5 when choosing the element
types [125]. In the analysis herein shown, the Hermann method
was used.

3.1.1 Set of Finite Element Models
An infinite long strip-shaped FREI under combined axial and shear
loads deforms in a plane strain state and can be studied referring to
a generic cross section with unitary out-of-plane width. Therefore,
two-dimensional Finite Element Models (FEM) have been used in
MSC.Marc, under the plane strain assumption.

A large number of FEM (4320) were obtained by varying geometric
and mechanical parameters, such as (Figure 3.1):

• The base side 2𝑎.

• The thickness of the elastomeric layers 𝑡𝑒 .
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Figure 3.1: Schematic of an infinite long strip-shaped FREI.

• The shear modulus of the rubber 𝐺𝑒 .

• The bulk modulus of the rubber 𝐾.

• The vertical pressure 𝜎𝑣 at zero horizontal displacement.

in the ranges shown in Table 3.1. Other parameters were instead
kept constant, such as:

• The total height of the bearing 𝐻 = 180 mm.

• The thickness of the reinforcement 𝑡𝑓 = 0.27 mm.

• The Young’s modulus of the reinforcement 𝐸𝑓 = 50000 MPa.

With the values of 2𝑎 and 𝑡𝑒 of Table 3.1 and constant height
and reinforcement thickness, 18 secondary shape factors 𝑆2 are
obtained in the range 1.41 - 2.92. During the FEAs, the axial load
was applied first and held constant; then a displacement-controlled
analysis was performed with increasing lateral displacements to
push the bearings past their stable response.
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Table 3.1: Variable parameters in the total set of FEM on strip-shaped
FREIs.

2𝑎 𝑡𝑒 𝐺𝑒 𝐾 𝜎𝑣
[mm] [mm] [MPa] [MPa] [MPa]
250 5 0.5 1400 1.5 to 8.5
300 10 0.7 1600
350 15 0.9 1800 with
400 1.1 2000 increments
450 of 0.5 MPa
500

3.1.2 FEAs specifications

3.1.2.1 Materials modeling: elastomer and fiber fabrics
modeling

The elastomer was modeled using an incompressible Neo-Hookean
hyperelastic material model. The strain energy density function
for a compressible generalized Rivlin model is described by the
equation [126]:

𝑊𝑐𝑜𝑚𝑝 =

𝑛∑︁
𝑝,𝑞

𝐶𝑝,𝑞

(
𝐼1 − 3

)𝑝 (
𝐼2 − 3

)𝑞 + 𝑚∑︁
𝑟=1

1
𝐷𝑟

(𝐽 − 1)2𝑟 (3.1)

where:

𝐼1 = 𝐽
−2/3𝐼1 𝐼1 = 𝜆

2
1 + 𝜆22 + 𝜆23 (3.2a)

𝐼2 = 𝐽
−4/3𝐼2 𝐼2 = 𝜆

2
1𝜆

2
2 + 𝜆22𝜆23 + 𝜆23𝜆21 (3.2b)

with 𝜆𝑖 as the principal stretches. 𝐼1 and 𝐼2 are first and the second
invariant of the unimodular component of the left Cauchy-Green
deformation tensor 𝑩 = 𝑭 𝑭𝑇 ; 𝐼1 and 𝐼2 are the first and the second
invariant of the right Cauchy-Green deformation tensor 𝑪 = 𝑭𝑇 𝑭 ;
𝐽 = det(𝑭 ) = 𝜆1𝜆2𝜆3 is the determinant of the deformation gradient 𝑭 .
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𝐶𝑝𝑞 and 𝐷𝑚 are material constants related to the distortional
response and the volumetric response, respectively.

For a compressible Neo-Hookean material, 𝑛 = 1, 𝑚 = 1, 𝐶10 = 𝐶1,
𝐶01 = 0, 𝐶11 = 0 and Equation 3.1 reduced to:

𝑊 𝑁𝐻
𝑐𝑜𝑚𝑝 = 𝐶1

(
𝐼1 − 3 − 2 ln 𝐽

)
+ 𝐷1(𝐽 − 1)2 (3.3)

For an incompressible material 𝐽 = 1 and the strain energy density
function of a Rivlin material is:

𝑊𝑖𝑛𝑐𝑜𝑚𝑝 =

𝑛∑︁
𝑝,𝑞=0

𝐶𝑝,𝑞 (𝐼1 − 3)𝑝 (𝐼2 − 3)𝑞 (3.4)

while for the Neo-Hookean materials, with the same position of
Equation 3.3:

𝑊 𝑁𝐻
𝑖𝑛𝑐𝑜𝑚𝑝 = 𝐶1(𝐼1 − 3) (3.5)

For consistency with linear elasticity, it must be:

𝐶1 =
𝐺𝑒

2
(3.6a)

𝐷1 =
𝐾

2
(3.6b)

The fiber reinforcement is modeled with a linear elastic isotropic
material, fully defined by two parameter: the Young’s modulus 𝐸𝑓
and the thickness 𝑡𝑓 (see Section 3.1.1 for numerical values).

General results on the response of the bearings under combined
axial and shear loads are required in a design phase of a seis-
mic isolation system with U-FREIs. The parametric finite element
analyses proposed in this thesis aim to obtain easy-to-use results
involving the minim number of mechanical and geometric param-
eters. Thus, FEAs presented in this thesis used a constant value
of the shear modulus. According to the material’s model used (i.e.
Neo-Hookean), each value of 𝐺𝑒 corresponds to the initial shear
modulus of the rubber (Equation 3.6). Specific shear tests on
rubber materials [127] demonstrated how simplified hyperelastic
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material model, such as Neo-Hookean or 2-parameters Mooney –
Rivlin, predicted the stress – strain response with good accuracy
up to a shear strain of 25%. Thus, the shear modulus values used
in this thesis could be related to elastomeric materials showing a
stress – strain curve with similar values of secant shear modulus
at the same shear strain threshold.

The values of the shear modulus presented in Table 3.1 are
chosen as common values of rubber compounds generally used in
seismic isolators.

3.1.2.2 FEM elements
The elastomer is modeled with arbritrary quadrilateral plane strain
with Hermann formulation element (element 80 in Marc [128]). It
is a four-node, isoparametric element written for plane strain in-
compressible applications. This element uses bilinear interpolation
functions and the strains tend to be constant throughout the el-
ement and a fine mesh is needed. The stiffness is formed using
four-point Gaussian integration. This element is preferred over
higher-order elements when used in a contact analysis.

Both the mapping and the function assumption take a bilinear
form:

𝑥 = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜂 + 𝑎3𝜉𝜂 (3.7a)
𝜓 = 𝑏0 + 𝑏1𝜉 + 𝑏2𝜂 + 𝑏3𝜉𝜂 (3.7b)

and either the coordinate or function can be expressed in terms
of the nodal quantities by the interpolation functions:

𝑥 =

4∑︁
𝑖=1

𝑥𝑖𝜙𝑖 (3.8)

where:

𝜙1 =
1
4
(1 − 𝜉) (1 − 𝜂) (3.9a)
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1 2

34

5
a)

G.1 G.2

G.3G.4

b)

Figure 3.2: (a): Four-node isoparametric element with extra node, (b):
Gaussian integration points.

𝜙2 =
1
4
(1 + 𝜉) (1 − 𝜂) (3.9b)

𝜙3 =
1
4
(1 + 𝜉) (1 + 𝜂) (3.9c)

𝜙4 =
1
4
(1 − 𝜉) (1 + 𝜂) (3.9d)

The element has four nodes with 2 degrees of freedom for each
one and a four-point Gaussian integration is used Figure 3.2 (b); an
extra fifth node with a single degree of freedom (negative hydrostatic
pressure) is placed in the center Figure 3.2 (a).

The reinforcement is modeled with four-node plane strain rebar
element (element 143 in Marc [128]). It’s an isoparametric, 4-node
hollow quadrilateral element, in which a single strain members
(such as reinforcing rods or cords) could be placed. The element
is then used in conjunction with the 4-node plane strain contin-
uum element of the rubber, to represent cord reinforced composite
materials. Serveral "layers" up to a maximum of 5 can be used
within this rebar element. Each layer is similar to a pair of opposite
edges, so that the thickness of the element is parallel to one of the
orthogonal edges (Figure 3.3). The element is integrated using a
numerical scheme based on Gauss quadrature. Each layer contains
two integration points.

In each FEM, the top and the bottom surfaces are modeled as
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1
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3

4

G.1

G.2

Thickness
Direction

Figure 3.3: Four-node Rebar Element.

Figure 3.4:Geometry and discretization of a FREI for 2D FEAs in MSC.Marc.

rigid lines and a contact "touch" type has been set between bearing
and supports with Coulomb friction coefficient of 𝜇𝑐 = 0.9. Thus, the
bearing could detach from the support to simulate the unbonded
configuration.

The geometry and discretization of one of the 2D FEMs in MSC.Marc
is shown in Figure 3.4.

3.1.2.3 FEAs validation
Experimental tests on samples of FREIs (Figure 3.5 (a)) were re-
produced in MSC.Marc, comparing the numerical output with the
experimental results to calibrate the FEMs.
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The bearings for this study were manufactured by Kirkhill Manu-
facturing Company, Downey, CA following Caltrans specifications
[129]. As per specifications, laminated pads were made by bonding
together elastomeric layers and fabric reinforcements. Each of the
tested bearings was cut from a pad of bigger dimensions. The sam-
ples were made by bonding 9 layers of neoprene to 8 layers of glass
fiber reinforcements. The FREIs for testing had a cubic shape with
dimensions of 50x50x50 mm (Figure 3.5 (a)).

The experimental tests on the bearings were performed in shear,
using a classic dual lap configuration, and a universal testing ma-
chine MTS 810 (Figure 3.5 (b)). The axial load was applied using
a hydraulic jack, and then the bolts of the testing rig were tight-
ened to retain the desired distance between the steel plates (i.e.,
compression load). Displacement controlled procedures were per-
formed up to a shear deformation amplitude of 50% (i.e., maximum
horizontal displacement of 25 mm). For the experimental tests, the
FRBs were not bonded to the plates of the testing rig and a variable
axial pressure in the range of 1.5 MPa to 6.5 MPa was applied to
the bearings to obtain the lateral force-displacement curves under
different axial loads.

In the FEAs used for this validation, the vertical displacement
obtained from each experimental test was first imposed to the upper
support; then, helding constant both the supports, each bearing is
sheared up to a horizontal displacement threshold of 25 mm.

Figure 3.6 shows the comparison between the horizontal force-
displacement curves obtained by experimental tests (solid lines)
and FEAs (marked lines). As clear from the plots, the FEAs are able
to capture with a good level of approximation the lateral response
of the bearings, including softening. This comparison confirms the
validity of the procedures and assumptions used for the analyses
of FREIs under axial and shear loads.
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(a) (b)

Figure 3.5: Samples of FREIs for FEAs validation: (a) tested sample, (b)
experimental shear tests.
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Figure 3.6: FEAs validation: experimental vs numerical tested bearings.
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3.2 Results: influence of geometric and
mechanical parameters on the peak
response

The typical response of a FREI under combined axial and shear
load is shown in Figures 3.7 (a) and 3.7 (b). As already discussed
in Section 1.2.1.1 when a bearing with a flexible reinforcement is
deformed in shear, as the marginal elastomeric layers detach from
the lower and the upper surfaces, no tensile stresses are generated
at the edges of the device. At peak horizontal load, the axial stress
in the layers of reinforcement substantially increases because of
the reduction of the effective area. This effect is less pronounced for
bearings with a large base (Figure 3.7 (b)), while for small bearings
(Figure 3.7 (a)); an increase of tensile stress up to 200% can be
expected in the fiber reinforcements.

In the range of secondary shape factor selected, the bearings are
all unstable and a peak (local maximum) can be identified in the
horizontal force-displacement curve.

Figure 3.8 shows two early average results on 𝐺 and 𝐾 from FEAs
on the lateral response peaks. Figure 3.8 (a) shows the effect
of the axial pressure on the peak shear deformation capacity of
bearings of different base (i.e. 𝑆2). An increase of axial pressure
leads to a reduction of the maximum shear deformation capacity
of the bearings. This effect is nonlinear with the applied load,
more for large compression loads and for bearings with smaller
𝑆2. Under shear loads, the overturning moment generated by the
second order effects becomes significant for large axial loads. As
result, the stability range of the bearing is reduced with increasing
axial loads. The peak shear stress capacity vs secondary shape
factor is plotted in Figure 3.8 (b) for the values of axial pressure in
the range of Table 3.1. Again, the shear capacity decreases as the
pressure increases while it clearly increases with greater 𝑆2. The
variation of the peak shear stress is nonlinear with the base of the
bearing. The slope of the curves is greater for small 𝑆2 values (i.e.
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Figure 3.7: Maximum principal value of stress: (a) 2𝑎 = 250 mm, (b) 2𝑎 = 400
mm.

𝑆2 ≤ 2.5) while it tends to decrease suggesting an horizontal line-up
for larger values (i.e. 𝑆2 > 2.5).

Figure 3.9 shows the peak shear strain and stress, against the
primary shape factor 𝑆1, for bearings with 2𝑎 = 300, 350, 400 mm.
From Figures 3.9 (a), 3.9 (b) and 3.9 (c) it can be seen how the
deformation capacity of the bearings is independent of the primary
shape factor for values of pressure in the range 3.5 ÷ 4.0 MPa. Both
the peak shear strain and stress are not affected by the primary
shape factor if 𝑆1 > 30.

However, if 𝑆1 < 30 the effect of the primary shape factor on
the peak shear response of the bearing changes with the vertical
pressure: if 𝜎𝑣 < 3.5 MPa, the deformation capacity increases for 𝑆1 <
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Figure 3.8: Lateral response peaks: (a) shear deformation vs axial pressure,
(b) shear capacity vs secondary shape factor.

10 decreases for higher values; if 𝜎𝑣 ≥ 3.5 MPa, the peak decreases
when the primary shape factor is less than 10 and increases for
higher values.

In both stress and strain trends, a concavity change of the curves
can be observed for bearings with 2𝑎 = 350 and 2𝑎 = 400 then bearings
with 2𝑎 = 300. Bearings with larger secondary shape factor show an
higher peak (in strain and stress) for smaller 𝑆1 values and then
a slight decrease followed by an 𝑆1 independent response when
𝑆1 > 30.

The influence of the shear modulus of the rubber on the shear
strain and stress capacity of the bearings with base sides 2𝑏 =

300, 350, 400 mm are plotted in Figure 3.10. As expected, the peak
shear strain increases with the shear modulus 𝐺𝑒 . For values of
axial pressure above 6.0 MPa, the increase in shear strain is almost
linear, while for smaller values of axial loads, even increasing if, the
response is concave down. For values of axial pressure larger than
6.0 MPa, increasing the shear modulus of the rubber substantially
increases the shear load capacity of the bearings. Figures 3.10 (d),
3.10 (e) and 3.10 (f) show that the peak shear stress capacity of a
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Figure 3.9: Peak shear stress - strain vs primary shape factor: (a), (d)
2𝑎 = 300 mm, (b), (e) 2𝑎 = 350 mm and (c), (f) 2𝑎 = 400.
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Figure 3.10: Peak shear stress - strain vs shear modulus of the rubber:
(a), (d) 2𝑎 = 300 mm, (b), (e) 2𝑎 = 350 mm and (c), (f) 2𝑎 = 400.

FREI always increases with increasing the shear modulus of the
rubber, almost independently of the secondary shape factor.

Finally, the influence of the bulk modulus of the rubber on the
horizontal response of a FREI is shown in Figure 3.11. The plots
indicate that the peak lateral response of a FREI is not affected by
the bulk modulus of the rubber: it only slightly change the peak
shear strain, while having no influence on the peak shear stress
capacity of these devices.
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Figure 3.11: Peak shear stress - strain vs bulk modulus of the rubber:
(a), (d) 2𝑎 = 300 mm, (b), (e) 2𝑎 = 350 mm and (c), (f) 2𝑎 = 400.
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3.3 Vertical displacements under com-
bined axial and shear loads: analyt-
ical vs numerical solutions

The buckling behavior of elastomeric bearings with rigid reinforce-
ment have been studied under combined tension and shear loads,
obtaining an analytical solution for the vertical displacement at the
top of such bearings under the same load conditions [130]. The
same solution has been used for bearings with rigid reinforcement
under compressive and shear loads [131].

The vertical stiffness of elastomeric bearings depends on the
horizontal deformation, decreasing accordingly with the lateral
load. The total vertical displacement 𝛿𝑡𝑣 can be divided into two
adding terms: the vertical displacement due to pure compression
𝛿𝑐𝑣 (i.e. under solely vertical load) and the vertical displacement due
to lateral deformation 𝛿𝑠𝑣 (i.e. under axial and shear load):

𝛿𝑡𝑣 = 𝛿
𝑐
𝑣 + 𝛿𝑠𝑣 (3.10)

In [131] the two displacements are calculated as follows:

𝛿𝑐𝑣 =
𝐹𝑣

𝐾𝑣

=
𝐹𝑣 · 𝑡𝑟
𝐸𝑐𝐴𝑐

(3.11a)

𝛿𝑠𝑣 =
𝜋𝐺𝑒𝐴𝑐

4𝐹𝑣,𝑐𝑟 0

(
𝜋 𝑓𝑣 − sin𝜋 𝑓𝑣
1 − cos𝜋 𝑓𝑣

)
𝛿2
𝐻

𝑡𝑟
(3.11b)

with the parameters:

• 𝐾𝑣 =
4𝐺𝑆21 (2𝑎)

𝑡𝑟
.

• 𝐹𝑣,𝑐𝑟 0 =
𝜋
𝐻

√
𝐸𝐼𝑠 ·𝐺𝑒𝐴𝑠 .

• 𝑓𝑣 = 𝐹𝑣/𝐹𝑐𝑟 0.

• 𝐸𝑐𝐼𝑠 = 4𝐺𝑒𝑆
2
1

(
2𝑎2
15

)
𝐻
𝑡𝑟

.

• 𝐺𝑒𝐴𝑠 = 𝐺2𝑎𝐻/𝑡𝑟
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Table 3.2: Variable parameters in the second set of FEMs for analytical/nu-
merical comparison.

2𝑎 𝐺𝑒 𝑡𝑒 𝐻 𝑡𝑓 𝐸𝑓 𝜈 𝑓 𝜎𝑣
[mm] [MPa] [mm] [mm] [mm] [MPa] [-] [MPa]
250 0.5 5 180 0.645 100000 0.1 2
300 0.7 10 4
350 0.9 15
400 1.1
450
500

obtained for a bearing with rigid reinforcement. In this thesis,
Equation 3.10 is applied to bearings with flexible reinforcement,
modifying the parameters in the two terms of Equations 3.11a
and 3.11b. The effective compressive modulus and the buckling
load are taken from Equations 2.3a and 2.20 respectively.

Further FEAs were conducted on the set of FEMs showed in
Table 3.2. The vertical displacements obtained from these models
were compared with those obtained from Equation 3.10 accounting
the flexibility of the reinforcement as said above. In each FEM, an
horizontal displacement at least equal to half of its base has been
imposed, to find out the axial deformation of the device at the peak
horizontal force.

Figures 3.12 and 3.13 show the analytical vs experimental re-
sults for 𝜎𝑣 = 2 MPa and 𝜎𝑣 = 4 MPa, respectively, for different values
of the shear modulus of the rubber and thickness of the elastomeric
layers. Each total vertical displacement is computed at the horizon-
tal displacement corresponding to the peak of the horizontal force,
i.e. prior instability.

Clearly, the vertical displacement of a FREI under horizontal load
increases with increasing axial loads (i.e., pressure). As expected,
increasing the thickness of the individual rubber layer, leads to an
increase in vertical displacement. The analytical and the numerical
results are in good agreement when the applied pressure is equal to
2 MPa, especially for 𝑡𝑒 = 5, 10 mm. Increasing the pressure to 4 MPa,
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the comparison is well calibrated when the thickness of the rubber
is greater than 10 mm, while it is more approximate when the
thickness decreases down to 5 mm. This is because Equation 2.3a
underestimates the compressive modulus of bearings with larger
elastomeric thicknesses. With this equation, the vertical stiffness
drops as 𝑡𝑒 increase, while from the FEMs the stiffness does not
decrease as quickly.
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Figure 3.12: Total vertical displacement under 𝜎𝑣 = 2 MPa at peak horizontal
displacement: (a) 𝐺 = 0.5 MPa, (b) 𝐺 = 0.7 MPa, (c) 𝐺 = 0.9 MPa and (d)
𝐺 = 1.1 MPa.
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Figure 3.13: Total vertical displacement under 𝜎𝑣 = 4 MPa at peak horizontal
displacement: (a) 𝐺 = 0.5 MPa, (b) 𝐺 = 0.7 MPa, (c) 𝐺 = 0.9 MPa and (d)
𝐺 = 1.1 MPa.
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CHAPTER 4

VARIATION OF THE VERTICAL RESPONSE OF
SQUARE-SHAPED FIBER REINFORCED

ELASTOMERIC ISOLATORS

Summary
This chapter introduces an analytical solution to derive the
vertical response parameters of the bearings as functions of
the horizontal displacement. The variations of the vertical
stiffness and the effective compressive modulus of square-
shaped FREIs are studied. The analytical results are then
validated through a comparison with the outcomes from a
parametric finite element analysis on FREIs with different
mechanical and geometric parameters
This chapter is based on the incoming paper [132] and con-
ference paper [133].

4.1 Background and motivations

As seen in Section 2.1, the analytical solutions for the vertical
response parameters of the FREIs, such as vertical stiffness and
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effective compressive modulus, have been proposed for bearings
under pure compression and no horizontal displacement. FREIs in
unbonded configuration subjected to axial and shear loads experi-
ence the rollover deformation as the marginal areas detach from
the supports (see Section 1.2.1.1). As the rollover deformation
reduces the loaded area, the vertical properties of the U-FREIs
depend on the horizontal deformation. Their variation has been
studied through finite element analyses [134] but no analytical
solutions accounting this variation are available. This chapter in-
troduces a closed-form solution for the vertical stiffness and the
effective compressive modulus of U-FREIs under combined axial
and shear loads, based on available analytical results on the vertical
compression of these bearings. The proposed analytical solutions
are applied to several square-shaped U-FREIs. A parametric finite
element analysis is then conducted to validate the analytical results,
proving how the proposed method could be used to account the
variation of the vertical response of U-FREIs under simultaneous
axial and shear loads.

4.2 Analytical solutions forU-FREIs un-
der pure compressive load: overview

4.2.1 Vertical Stiness and Eective Compressive
Modulus

As already stated in Section 2.1, the vertical stiffness of ealstomeric
bearings under a compressive load 𝐹𝑣 = 𝜎𝑣 ·𝐴𝑐 , can be obtained with
good accuracy using a linear elastic analysis. The generic i-th
elastomeric layer is seen as a spring with stiffness equal to:

𝐾𝑣,𝑖 =
𝐸𝑐,𝑖𝐴𝑐,𝑖

𝑡𝑒,𝑖
(4.1)

where the effective compressive modulus 𝐸𝑐,𝑖, i.e. the Young’s
modulus of the i-th elastomeric layers in between two reinforce-
ment sheets, take into account the influence of the reinforcement.
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The overall stiffness of the elastomeric bearing is then obtained
considering all the spring in series:

1
𝐾𝑣

=
∑︁
𝑖

1
𝐾𝑣,𝑖

=
∑︁
𝑖

𝑡𝑒,𝑖

𝐸𝑐,𝑖𝐴𝑐,𝑖

(4.2)

If the bearing is made by 𝑛 equally spaced elastomeric layers,
then 𝐸𝑐,𝑖 = 𝐸𝑐,𝑛 = 𝐸𝑐 , 𝐴𝑐,𝑖 = 𝐴𝑐,𝑛 = 𝐴𝑐 , 𝑡𝑒,𝑖 = 𝑡𝑒,𝑛 = 𝑡𝑒 and the vertical
stiffness of the FREI is:

1
𝐾𝑣

=

∑
𝑖 𝑡𝑒,𝑖

𝐸𝑐𝐴𝑐

=
𝑛 · 𝑡𝑒
𝐸𝑐𝐴𝑐

(4.3)

Recalling the definition of the total height of rubber (𝑡𝑟 =
∑

𝑖 𝑡𝑒,𝑖 = 𝑛 ·
𝑡𝑒 ), the vertical stiffness can be finally obtained using Equation 2.1.
In this equation the only unknown is the effective compressive
modulus. The Young’s modulus of the i-th elastomeric layer in
between two reinforcement sheets (i.e. of an equivalent elastic
spring), is clearly defined as:

𝐸𝑐,𝑖 =
𝜎𝑣,𝑖

𝜀𝑣,𝑖
=
𝜎𝑣,𝑖 · 𝑡𝑒,𝑖
𝛿𝑣,𝑖

(4.4)

where 𝛿𝑣,𝑖 is the compression of the i-th elastomeric layer (i.e.
𝑡𝑑𝑒 − 𝑡𝑒 , with 𝑡𝑑𝑒 the thickness of the generic elastomeric layer after
deformation). The effective compressive modulus of a bearing with 𝑛
equally spaced elastomeric layers can be obtained as for the vertical
stiffness considering all the spring (i.e. the rubber layers) in series:

𝐸𝑐 =

𝑛∑︁
𝑖

𝜎𝑣,𝑖

𝜀𝑣,𝑖
=

𝜎𝑣∑𝑛
𝑖 𝜀𝑣,𝑖

=
𝜎𝑣 · 𝑛 · 𝑡𝑒

𝛿𝑣
=
𝜎𝑣𝑡𝑟

𝛿𝑣
(4.5)

With the analytical methods, the effective compressive modulus
can be calculated with one of the solutions proposed in Section 2.1
and once 𝐸𝑐 is known, the vertical stiffness of the elastomeric
bearing can be consequently obtained.
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4.2.2 Axial deformation of a FREI under vertical
and lateral loads

In Section 3.3, the closed-form solution for the overall vertical
deformation of strip-shaped elastomeric bearings has been adapted
to an elastomeric bearing with flexible reinforcement using the
available analytical equation proposed for the buckling load of strip-
shaped FREIs.

A similar approach is herein proposed for a square-shaped FREI.
For the sake of semplicity, the equation for the total vertical dis-
placement is reported below:

𝛿𝑡𝑣 = 𝛿
𝑐
𝑣 + 𝛿𝑠𝑣 =

𝐹𝑣

𝐾𝑣

+ 𝜋𝐺𝑒𝐴𝑐

4𝐹𝑣,𝑐𝑟 0

[
𝜋 𝑓𝑣 − sin (𝜋 𝑓𝑣)
1 − cos(𝜋 𝑓𝑣)

]
𝛿2
𝐻

𝑡𝑟
(4.6)

The buckling load for square-shaped elastomeric bearings with
flexible reinforcement can be obtained solving the non-linear Equa-
tion 2.19 for 𝐹𝑣,𝑐𝑟 0. All the other geometric parameters of Equa-
tion 4.6 can be easely adapted to a square-shaped FREIs, as𝐴𝑐 = 4𝑎2
and 𝑡𝑟 = 𝑛 · 𝑡𝑒 .

4.3 Vertical stiness and eective com-
pressive modulus under axial and
shear loads: analytical solution

The vertical stiffness of U-FREIs under combined axial and shear
loads can be obtained as:

𝐾𝛿𝐻
𝑣 =

𝐹𝑣

𝛿𝑡𝑣
=

𝐹𝑣

𝛿𝑐𝑣 + 𝛿𝑠𝑣
(4.7)

where the notation on the total vertical displacement introduced
in Equation 4.6 has been used. Multiplying and dividing Equa-
tion 4.7 by the (greater than 0) displacement 𝛿𝑐𝑣 , the vertical stiff-
ness as a function of the horizontal displacement becomes:
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𝐾𝛿𝐻
𝑣 =

𝐹𝑣

𝛿𝑐𝑣

(
𝛿𝑐𝑣

𝛿𝑐𝑣 + 𝛿𝑠𝑣

)
= 𝐾𝑣 ·𝜓 (𝛿𝐻 ) (4.8)

Equation 4.8 shows how the vertical stiffness of a U-FREIs under
combined axial and shear loads can be obtained starting from the
vertical stiffness under pure compression through the function
𝜓 (𝛿𝐻 ). This function tunes the vertical response of the U-FREI
under combined axial and shear loads and is herein referred as
modulating function.

The modulating function depends on the horizontal displacement
via the vertical displacement 𝛿𝑠𝑣 and solely assumes values lower
than or equal to 1, as the denominator 𝛿𝑐𝑣 + 𝛿𝑠𝑣 is anyway greater
than or at least equal to the numerator 𝛿𝑐𝑣 . Two limits value of this
function can be immediately obtained as:

lim
𝛿𝐻→0

𝜓 (𝛿𝐻 ) = 1 (4.9a)

lim
𝛿𝐻→∞

𝜓 (𝛿𝐻 ) = 0 (4.9b)

Thus, the vertical stiffness under combined axial and shear loads
ranges from 0 to a maximum value equal to 𝐾𝑣. Using Equation 2.1,
the vertical stiffness 𝐾𝛿𝐻

𝑣 can be also written as:

𝐾𝛿𝐻
𝑣 =

𝐸𝑐𝐴𝑐

𝑡𝑟
·𝜓 (𝛿𝐻 ) (4.10)

A similar approach can be used for the effective compressive mod-
ulus under combined axial and shear loads. Using the definition
given in Equation 4.5, this modulus can be obtained considering
the total vertical displacement at the top of the bearing:

𝐸𝛿𝐻𝑐 =
𝐾
𝛿𝐻
𝑣 𝑡𝑟

𝐴𝑐

(4.11)

and with the definition of 𝐾𝛿𝐻
𝑣 given in Equation 4.10, the effective

compressive modulus under combined axial and shear loads takes
the form:
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𝐸𝛿𝐻𝑐 = 𝜓 (𝛿𝐻 ) · 𝐸𝑐 (4.12)

Equation 4.12 shows how the effective compressive modulus
under combined axial and shear loads can be obtained from the
effective compressive modulus under pure compression via the
function 𝜓 (𝛿𝐻 ), as indeed obtained for the vertical stiffness.

The analytical formulation of the function 𝜓 (𝛿𝐻 ) can be obtained
using the definition given in Equations 4.6 and 4.8:

𝜓 (𝛿𝐻 ) =
𝛿𝑐𝑣

𝛿𝑐𝑣 + 𝛿𝑠𝑣
=

1

1 + 𝜋𝐺𝑒𝐸𝑐𝐴
2
𝑐

4𝐹𝑣𝐹𝑣,𝑐𝑟0

[
𝜋 𝑓𝑣−sin (𝜋 𝑓𝑣)
1−cos(𝜋 𝑓𝑣)

]
𝛿2
𝐻

𝑡𝑟

(4.13)

Note how this expression verifies the two expected limits given by
Equation 4.9. With Equation 4.13, either the vertical stiffness or
the effective compressive modulus can be calculated at a generic
threshold of the horizontal displacement 𝛿𝐻 .

Considering that 𝑆1 = 𝑎/2𝑡𝑒 , 𝑆2 = 2𝑎/𝑡𝑟 and 𝜎𝑣 = 𝐹𝑣/𝐴𝑐 , Equa-
tion 4.13 could be arranged in the following form:

𝜓 (𝛿𝐻 ) =
1

1 + 𝜋 𝐺𝑒𝐸𝑐
𝐹𝑣𝐹𝑣,𝑐𝑟0

𝑆1𝑆
2
2𝐴𝑙,𝑒

[
𝜋 𝑓𝑣−sin (𝜋 𝑓𝑣)
1−cos(𝜋 𝑓𝑣)

]
𝛿2
𝐻

(4.14)

where 𝐴𝑙,𝑒 = 2𝑎 · 𝑡𝑒 is the lateral area of a single elastomeric layer.
Equation 4.14 shows how the geometric and mechanical variable
parameters of the bearing affects the shape of the modulating
function. Indeed:

lim
𝑆1,𝑆2→0

𝜓 (𝛿𝐻 ) = 0 (4.15a)

lim
𝑆1,𝑆2→∞

𝜓 (𝛿𝐻 ) = 1 (4.15b)

while:

lim
𝐸𝑐 ,𝐺𝑒→0

𝜓 (𝛿𝐻 ) = 0 (4.16a)
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lim
𝐸𝑐 ,𝐺𝑒→∞

𝜓 (𝛿𝐻 ) = 1 (4.16b)

lim
𝐹𝑣→0

𝜓 (𝛿𝐻 ) = 1 (4.16c)

lim
𝐹𝑣→∞

𝜓 (𝛿𝐻 ) = 0 (4.16d)

As the modulating function quantifies the reduction of the vertical
stiffness and the effective compressive modulus with the horizontal
deformation, a larger reduction of 𝜓 (𝛿𝐻 ) results in lower values of
the vertical response parameters of the bearings.

The vertical stiffness needs to be sufficiently higher than the
horizontal stiffness to avoid rocking motion and support the weight
of the structure [135]. Computing the vertical stiffness under
simultaneous vertical and horizontal loads with the modulating
function, a ratio of vertical to horizontal stiffnesses both functions
of the horizontal displacement could be obtained:

𝐾
𝛿𝐻
𝑣

𝐾
𝛿𝐻
𝐻

= 𝜓 (𝛿𝐻 ) ·
𝐾𝑣

𝐾
𝛿𝐻
𝐻

(4.17)

where 𝐾𝛿𝐻
𝐻

means a horizontal secant stiffness value at a generic
horizontal displacement threshold. Equation 4.17 shows how the
ratio of stiffnesses at a generic horizontal displacement 𝛿𝐻 can
be obtained through the modulating function starting from the
ratio between the vertical stiffness under pure compression and
the secant horizontal stiffness at the same horizontal displacement
level. Using the definition of vertical stiffness under solely vertical
load given in Equation 2.1, Equation 4.17 becomes:

𝐾
𝛿𝐻
𝑣

𝐾
𝛿𝐻
𝐻

= 𝜓 (𝛿𝐻 ) ·
𝐸𝑐 · 𝐴𝑐

𝑡𝑟 · 𝐾𝛿𝐻
𝐻

(4.18)

and recalling the definition of the secondary shape factor:

𝐾
𝛿𝐻
𝑣

𝐾
𝛿𝐻
𝐻

= 𝜓 (𝛿𝐻 ) ·
𝐸𝑐 · 2𝑎 · 𝑆2
𝐾
𝛿𝐻
𝐻

(4.19)

This ratio could be calculated with the analytical method using
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Equation 4.14 for the modulating function, one of Equations 2.4,
2.6 and 2.7, for the effective compressive modulus and one of the
different solutions proposed for the horizontal stiffness of U-FREIs
showed in Section 2.2.

4.3.1 Trends of the modulating function
In this section, Equation 4.14 is applied to square-shaped FREIs
using the following approach. For the effective compressive mod-
ulus under pure compression, either Equations 2.4, 2.6 and 2.7
are used, while Equation 2.19 are solved for the buckling load.
With this novel method, Equation 4.6 are adapted and used for
square-shaped U-FREIs. The three solutions for 𝐸𝑐 , allows to esti-
mate the differences between the assumption of compressible and
incompressible elastomeric layers.

Figures 4.1, 4.2 and 4.3 show the trends of the function 𝜓 (𝛿𝐻 )
with the shear strain 𝛾𝐻 = 𝛿𝐻/𝑡𝑟 using Equations 2.4a, 2.6 and 2.7
respectively. In each figure, a shear strain of 200% has been set
as maximum lateral deformation threshold, as this value approx-
imately corresponds to the full rollover of the U-FREIs [25]. The
figures show the dependence of the modulating function on the
main geometric and mechanical parameters of Equation 4.14: the
primary shape factor, the secondary shape factor and the aspect
ratio (Figures 4.1 (a), 4.2 (a) and 4.3 (a)), the shear modulus
(Figures 4.1 (b), 4.2 (b) and 4.3 (b)) and the vertical pressure
(Figures 4.1 (c), 4.2 (c) and 4.3 (c)).

In all these figures, the function 𝜓 (𝛿𝐻 ) decreases with increas-
ing values of shear strain, as expected. The dependence of the
modulating function on the horizontal displacement (shear strain)
is in line with the predicted limits given by Equation 4.9. The
analytical expression used for the effective compressive modulus
does not affect the shape of the modulating function, while the
variable geometric and mechanical parameters do. The limits given
by Equations 4.15 and 4.16 are respected as:

• the reduction of 𝜓 (𝛿𝐻 ) is greater for bearings with lower aspect
ratio, primary and secondary shape factor. It can be noted

70



Finite Element Analyses Section 4.4

how secondary shape factor lower than 2.5 return strongly
decreasing values, while greater values of 𝑆2 ensure a smoother
decrease. In Figures 4.1 (a), 4.2 (a) and 4.3 (a), at 𝛾𝐻 = 200%,
the modulating function decreases by 95% if 𝑆2 = 1, by 75% if
𝑆2 = 2, by 60% if and if 𝑆2 = 3 increases to 10, 𝜓 (𝛿𝐻 ) is reduced
by only 12%.

• the shear modulus slightly increases the capacity of the U-
FREIs and a lower reduction of the modulating function cor-
responds to increasing values of 𝐺𝑒 . However, the influence
of this parameters is very little compared to the geometric
ones. For example, for a bearing with 𝑆1 = 10 and 𝑆2 = 2.04, the
reduction of the modulating function at 𝛾𝐻 = 200% is 78% with
𝐺𝑒 = 0.3 MPa, while is 75% with 𝐺𝑒 = 2.1 MPa (Figures 4.1 (b),
4.2 (b) and 4.3 (b)).

• finally, lower values of 𝜎𝑣 are obtained for the same bearings
under increasing vertical pressure.

The most significant influence on the shape of the modulating
function is due to the geometric properties of the bearings. The
great influence of the primary shape factor on the vertical response
and of the secondary shape factor on the horizontal response of
U-FREIs have been already proved [136]. These parameters both
play a key role on the influence of the horizontal deformation on
the vertical response of the U-FREIs. However, the secondary
shape factor has a higher order and a greater influence on the
increasing/decreasing trend of the modulating function.

4.4 Finite Element Analyses

The analysis were performed as explained in Section 3.1 using
MSC.Marc as well. However, 3D FEAs were run in this case. The
specifications are shown below.
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Figure 4.1: Trends of function𝜓 (𝛿𝐻 ) with the shear strain: analytical results
using Equation 2.4a for 𝐸𝑐 varying the: (a) geometry, (b) shear modulus
and (c) vertical pressure.
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Figure 4.2: Trends of function𝜓 (𝛿𝐻 ) with the shear strain: analytical results
using Equation 2.6 for 𝐸𝑐 varying the: (a) geometry, (b) shear modulus
and (c) vertical pressure.
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Figure 4.3: Trends of function𝜓 (𝛿𝐻 ) with the shear strain: analytical results
using Equation 2.7 for 𝐸𝑐 varying the: (a) geometry, (b) shear modulus
and (c) vertical pressure.

4.4.1 Set of Finite Element Models
A parametric study is presented in this section. Finite element anal-
yses (FEAs) are carried out to a number of square-shaped U-FREIs
with variable geometric and mechanical parameters. The modulat-
ing function are obtained from these analyses and compared with
the analytical results of Section 4.3.1, in order to validate them.

Table 4.1 shows the set of square-shaped FREIs used for this
parametric study, with the main geometric and mechanical parame-
ters. A total number of 168 different FREIs are obtained considering
a combination of two geometric (base dimensions 2𝑎 and thickness
of the elastomeric layers 𝑡𝑒 ) and two mechanical parameters (shear
modulus 𝐺𝑒 of the elastomer and vertical applied pressure 𝜎𝑣). The
total height of the bearing 𝐻 , the bulk modulus of the rubber 𝐾, the
equivalent thickness of the fiber reinforcement 𝑡𝑓 and its Young’s
modulus 𝐸𝑓 are instead kept constant.

With the base sides and elastomeric layers thickness considered,
12 values of primary and secondary shape factors are obtained: 𝑆1
ranges from 5.0 to 62.5, while 𝑆2 ranges from 1.02 to 5.24. Finally,
five values of the aspect ratio 𝑅 from 1.00 to 5.00 are included.

Note how in the sets of Table 4.1 different values of the shear
modulus are considered if compared with Table 3.1. Combining
the parameters of the two table, a wider sets of shear modulus
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Table 4.1: Overview of the geometric and mechanical parameters used for
the parametric finite element study.

2𝑎 𝐻 𝑅 𝑡𝑒 𝑆
𝑡𝑒=2
1 𝑆

𝑡𝑒=5
1 𝑆

𝑡𝑒=2
2 𝑆

𝑡𝑒=5
2 𝐺𝑒 𝜎𝑣 𝐾 𝐸𝑓 𝑡𝑓

[mm] [mm] [-] [mm] [-] [-] [-] [-] [MPa] [MPa] [MPa] [MPa] [mm]
100

100

1.00 2.00 12.5 5.00 1.05 1.02 0.40 4.00

2000 70000 0.100

150 1.50 5.00 18.8 7.50 1.57 1.53 0.80 6.00
200 2.00 25.0 10.0 2.10 2.04 1.20 8.00
250 2.50 31.3 12.5 2.62 2.55
300 3.00 37.5 15.0 3.15 3.06
350 3.50 43.8 17.5 3.67 3.57
400 4.00 50.0 20.0 4.20 4.08
450 4.50 56.3 22.5 4.72 4.59
500 5.00 62.5 25.0 5.24 5.09

ranges from 0.4 to 1.2 can be obtained, and the results refer to
several rubber compounds.

4.4.2 FEAs specifications
In all the FEMs, at first the bearing is subjected to an increasing
vertical load up to the peak value (Table 5.1). Then, while keeping
the axial load constant, in a second stage, an horizontal displace-
ment is imposed on the top of the bearing up to a shear strain of
200% under displacement control. This value of lateral deformation
was found to approximately correspond to a complete roll-over of
unbonded FREIs [25].

The elastomer has been modeled using a compressible Neo-Hookean
hyperelastic material model while the fiber reinforcement with a
linear elastic isotropic material model, and the equations shown in
Section 3.1.2.1 hold in the current section too.

In FEMs, three-dimensional arbitrarily distorted brick with Her-
mann formulation element (element 84 in Marc [128]) has been
used for the elastomer. It is a eight-noded, isoparametric three-
dimensional brick element. Nodes 1, 2, 3, and 4 are corners of one
face, given in counterclockwise order when viewed from inside the
element. Node 5 is on the same edge as node 1, node 6 as node 2,
node 7 as node 3, and node 8 as node 4 Figure 4.4 (a).

This element uses trilinear interpolation functions based on the
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following type of displacement assumption and mapping from the
𝑥 − 𝑦 − 𝑧 space into a cube in the 𝜉, 𝜂, 𝜁 space:

𝑥 = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜂 + 𝑎3𝜁 + 𝑎4𝜉𝜂 + 𝑎5𝜁 𝜉 + 𝑎6𝜉𝜁 + 𝑎7𝜉𝜂𝜁 (4.20a)
𝜓 = 𝑏0 + 𝑏1𝜉 + 𝑏2𝜂 + 𝑏3𝜁 + 𝑏4𝜉𝜂 + 𝑏5𝜂𝜁 + 𝑏6𝜉𝜁 + 𝑏7𝜉𝜂𝜁 (4.20b)

Either the coordinate or function can be expressed in terms of
the nodal quantities 𝑥 =

∑8
𝑖=1 𝑥𝑖𝜙𝑖 by the integration functions:

𝜙1 =
1
8
(1 − 𝜉) (1 − 𝜂) (1 − 𝜁 ) 𝜙5 =

1
8
(1 − 𝜉) (1 − 𝜂) (1 + 𝜁 ) (4.21a)

𝜙2 =
1
8
(1 + 𝜉) (1 − 𝜂) (1 − 𝜁 ) 𝜙6 =

1
8
(1 + 𝜉) (1 − 𝜂) (1 + 𝜁 ) (4.21b)

𝜙3 =
1
8
(1 + 𝜉) (1 + 𝜂) (1 − 𝜁 ) 𝜙7 =

1
8
(1 + 𝜉) (1 + 𝜂) (1 + 𝜁 ) (4.21c)

𝜙4 =
1
8
(1 − 𝜉) (1 + 𝜂) (1 − 𝜁 ) 𝜙8 =

1
8
(1 − 𝜉) (1 + 𝜂) (1 + 𝜁 ) (4.21d)

There are three degrees of freedom associated with each node and
one extra node with a single degree of freedom (pressure) that uses
a mixed formulation for incompressible analysis (Figure 4.4 (b)).

The reinforcement has been modeled using an hollow, isopara-
metric 4-node membrane in which a single strain members such
as reinforcing rods or cords (that is, rebars) can be placed (element
147 in Marc [128]) (Figure 4.5). The element is then used in con-
junction with the 4-node membrane to represent cord reinforced
composite materials. It is assumed that several "layers" of rebars
are presented. The rebar layers are assumed to be placed on the
same spatial position as that of the element (although the rebar
direction is arbitrary and the thickness of the layers can be differ-
ent). The element is integrated using a numerical scheme based
on Gauss quadrature.

Figure 4.6 (a) shows a schematic geometry of the bearing whereas
Figure 4.6 (b) shows a view of a FEM used in this study.
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Figure 4.4: (a): Eight-node isoparametric element with extra node, (b):
Gaussian integration points.
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Figure 4.6: Square-shaped U-FREI: (a) schematic of the generic bearing,
(b) view of the 3D FEM in MSC.Marc.
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4.4.3 FEAs validation
A proper validation of the FEMs is herein proposed by comparing
experimental and numerical results, as done in Section 3.1.2.3.
Experimental tests were run by the authors on square-shaped bear-
ings with different properties and secondary shape factors between
1.0 and 3.0, i.e. a relevant range for lateral stability. Table 4.2
shows the main geometric and mechanical properties of the tested
bearings: bearings 𝑈𝑆1 and 𝑈𝑆2 are made of layers of neoprene and
fiberglass reinforcement and are manufactured following Caltrans
specifications [129]; bearings 𝐵1 – 𝐵3, 𝐵𝑏1, 𝐵𝑏2 are made of recycled
rubber and carbon fiber reinforcement. Bearings 𝐵1, 𝐵2 and 𝐵3 have
the same geometry but different compound; similarly, bearings
𝐵𝑏1 and 𝐵𝑏2 have the same geometry but different properties of the
rubber layers. Figure 4.7 (a) shows a picture of the RR-FREIs 𝐵1,
𝐵2 and 𝐵𝑏1 used for the experimental tests, while Figures 4.7 (b)
and 4.7 (c) the two samples 𝐵1 and 𝐵𝑏1 under test.

The shear tests were performed at the Department of Industrial
Engineering of the University of Naples Federico II using the test
frame shown in Figure 4.8 (a). The specimen is placed between
two steel plates. The vertical load is applied through the upper
plate, up to a maximum of 190 kN. The bottom plate can freely
slide sideways on roller bearings up to a maximum displacement
of 200 mm and a maximum horizontal force of 50 kN. The sample
bearing is subjected to simultaneous vertical and horizontal loading.
The acquisition system consists of a load cell both in the vertical
and horizontal direction, two LVDTs (Linear Variable Differential
Transformers) to measure the horizontal displacement and two
accelerometers at the base plate, used to measure the inertial force
of the base plate which has to be subtracted from the recorded
horizontal load.

The bearings were tested in unbonded configuration with the
quasi-static horizontal displacement protocol shown in Figure 4.8 (b)
and a strain rate of 1%/s up to a deformation 𝛾𝑚𝑎𝑥

𝐻
= 100%. During

testing, a constant vertical load of 18.8 kN was applied on the
bearings, with a of nominal axial pressure varying from 1.00 MPa
for 𝐵𝑏1 and 𝐵𝑏2 to 7.52 MPa for 𝑈𝑆1 (Table 4.2).
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(a)

(b) (c)

Figure 4.7: Experimental tests for FEAs validation: (a) RR-FREIs samples,
(b) sample 𝐵1 under test, (c) sample 𝐵𝑏1 under test.
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Figure 4.8: Experimental test specifications: (a) testing frame, (b) time-
history of the imposed horizontal displacement.

Table 4.2: Samples FREIs compared with numerical models for FEAs vali-
dation.

Tested bearing 2𝑎 = 2𝑏 = 𝐵 𝐻 𝑡𝑒 𝑆2 Elastomer Fabric 𝐺𝑒

[-] [mm] [mm] [mm] [MPa] [-] [-] [MPa]
𝑈𝑆1 50 50 6 1.00 Neoprene Glass 1.2
𝑈𝑆2 130 50 6 2.60 Neoprene Glass 1.2
𝐵1 70 60 5 1.17 Recycled Carbon 2.4
𝐵2 70 60 5 1.17 Recycled Carbon 2.0
𝐵3 70 60 5 1.17 Recycled Carbon 1.6
𝐵𝑏1 140 60 5 2.33 Recycled Carbon 0.8
𝐵𝑏2 140 60 5 2.33 Recycled Carbon 0.74

Figure 4.9 shows a good matching between experimental and nu-
merical results. In particular, the numerical models demonstrated
a good level of accuracy for both unstable (𝑈𝑆1, 𝐵1, 𝐵2, 𝐵3) and stable
response (𝑈𝑆2, 𝐵𝑏1, 𝐵𝑏2). Furthermore, it can be noted that the FEM
can predict, with satisfactory accuracy, the displacement at which
the unstable curves show a peak, which is one of the aims of this
study.

79



Chapter 4 Variation of the vertical response of square-shaped Fiber Reinforced Elastomeric
Isolators

0 20 40 60

/H [mm]

0.0

2.0

4.0

6.0

8.0

10.0

F
H

[k
N

] US1 EXP
US2 EXP
Bb1 EXP
Bb2 EXP
B1 EXP
B2 EXP
B3 EXP

US1 FEA
US2 FEA
Bb1 FEA
Bb2 FEA
B1 FEA
B2 FEA
B3 FEA

Samples - FEM

Figure 4.9: FEAs validation: experimental vs numerical tested bearings.

4.5 FEAs results

Figure 4.10 shows the trends of the modulating function with the
shear strain from FEAs, obtained reversing the Equation 4.8:

𝜓 (𝛿𝐻 ) =
𝐾
𝛿𝐻
𝑣

𝐾𝑣

(4.22)

The numerical trends agree with the analytical ones and the
modulating function always decreases with the shear strain. On
the influence of the geometric and mechanical parameters, once
again is proved how:

• 𝜓 (𝛿𝐻 ) reduces less with increasing primary and secondary
shape factors. These two parameters play the major role on
the trends of the modulating function as already seen with
Figures 4.1, 4.2 and 4.3.

• increasing shear modulus ensures a lower reduction of the
modulating function of bearings with the same geometry.
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Figures 4.1, 4.2, 4.3 and 4.10 show how the primary and the
secondary shape factors affect the trends of the modulating func-
tion. As said, both parameters have a great influence on 𝜓 (𝛿𝐻 ) and
consequently on the vertical stiffness and the effective compres-
sive modulus of U-FREIs under combined axial and shear loads.
However in Figure 4.10, comparing bearings with the same shear
modulus and secondary shape factor, but different primary shape
factor (i.e. Figure 4.10 (a) with Figure 4.10 (d), Figure 4.10 (b)
with Figure 4.10 (e) and Figure 4.10 (c) with Figure 4.10 (f)), it
appears that 𝑆1 has a minor influence compared to 𝑆2. This means
that decreasing (or increasing) the base side of the U-FREIs affects
the descendent (or ascendent) trend of 𝜓 (𝛿𝐻 ) more than increasing
(or decreasing) the thickness of the elastomeric layer.

Thus, the higher order of influence of the secondary shape factors
compared to the primary shape factor already obtained with the
analytical Equation 4.14 is confirmed by FEAs. Even though 𝑆1 is a
key parameter for the vertical response of the bearings under pure
compression, under combined axial and shear loads the vertical
parameters response of the U-FREIs are mainly controlled by the
secondary shape factor.

The roles of the primary and the secondary shape factor is further
shown in Table 4.3, where the average reduction of the modulating
function with the shear strain is highlighted. The percentage re-
ductions of both elastomeric thickness layers are similar. It is clear
how the modulating function decreases more when the secondary
shape factor is less or equal to 2.5 – 2.6, with a minimum reduc-
tion percentage of 70%; larger values of 𝑆2 ensure minor average
reduction of 𝜓 (𝛿𝐻 ).

4.6 Analytical - numerical comparison

For the sake of simplicity, Figure 4.10 shows the average numerical
trends on the 3 vertical pressure values of Table 4.1. A direct
analytical – numerical comparison on the modulating function of
bearings under 𝜎𝑣 = 4, 6, 8 MPa is shown in Figures 4.11, 4.12
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Figure 4.10: Numerical trends of the modulating function with the shear
strain: (a), (d) 𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8 MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.

Table 4.3: 𝜓 (𝛿𝐻 ) reduction from zero lateral displacement to full rollover
(average on the vertical pressure).

𝑆
𝑡𝑒=2
2 𝑆

𝑡𝑒=5
2 R 𝐺𝑒 = 0.4 MPa 𝐺𝑒 = 0.8 MPa 𝐺𝑒 = 1.2 MPa

𝑡𝑒 = 2 mm 𝑡𝑒 = 5 mm 𝑡𝑒 = 2 mm 𝑡𝑒 = 5 mm 𝑡𝑒 = 2 mm 𝑡𝑒 = 5 mm
1.02 1.05 1.00 88.1% 82.7% 93.1% 89.6% 94.0% 88.9%
1.53 1.57 1.50 87.1% 80.9% 93.6% 87.3% 89.2% 85.0%
2.04 2.10 2.00 82.7% 80.1% 89.3% 91.9% 86.6% 89.3%
2.55 2.62 2.50 81.1% 85.4% 75.2% 77.1% 70.2% 72.2%
3.06 3.15 3.00 56.7% 68.3% 58.3% 60.8% 51.2% 53.7%
3.57 3.67 3.50 53.5% 61.3% 42.2% 52.2% 35.8% 43.5%
4.08 4.20 4.00 44.4% 47.6% 35.6% 36.8% 25.3% 25.7%
4.59 4.72 4.50 37.7% 40.1% 26.3% 28.7% 15.4% 14.2%
5.09 5.24 5.00 32.3% 33.8% 23.1% 21.6% 11.1% 7.40%
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and 4.13. In Figure 4.11 the analytical values of𝜓 (𝛿𝐻 ) are obtained
using Equation 2.6 for 𝐸𝑐 , in Figure 4.12 Equation 2.7 are used
and Figure 4.13 uses Equation 2.4a.

These figures show a general good agreement between numerical
and analytical results. It can be noted that the matching is more
accurate for bearings with lower values of the shear modulus (see
Figures 4.11 (a), 4.11 (b) and 4.11 (c), Figures 4.12 (a), 4.12 (b)
and 4.12 (c) and Figures 4.13 (a), 4.13 (b) and 4.13 (c)) or for
lower secondary shape factors (see first curves from the bottom of
Figures 4.11, 4.12 and 4.13).

The numerical trends of the modulating function of bearings with
larger values of 𝐺𝑒 and 𝑆2 are stiffer at large shear strain compared
to the analytical ones. This is because the analytical formulation of
𝜓 (𝛿𝐻 ) does not consider the full rollover. This phenomenon increases
the vertical capacity of bearings at large horizontal displacement
and has a greater influence in bearings with larger values of shear
modulus and aspect ratio. Thus, some curves show a roughly
constant branch (see Figures 4.11 (f), 4.12 (f) and 4.13 (f)) starting
from 𝛾𝐻 = 150% (i.e. approximately the shear strain threshold where
half of the vertical sides of the bearings have become horizontal) or
a gently decreasing trend (see Figures 4.11 (e), 4.11 (g), 4.12 (e),
4.12 (g), 4.13 (e) and 4.13 (g)) for a combination of low vertical
pressure and larger shear modulus. However, it can be noted how
the analytical method returns safety predictions of the modulating
function, i.e. smaller values of the vertical response parameters of
the U-FREIs. Thus, Equations 4.10 and 4.11 could be safely used
in a design phase for a prediction of the vertical stiffness and the
effective compressive modulus of U-FREIs under axial and shear
loads.

For U-FREIs with smaller values of the secondary shape factor
(i.e. 𝑆2 ≤ 2.5), the maximum shear strain of each trends are lower
than 200% (see the first curves from the bottom of Figures 4.11,
4.12 and 4.13). These bearings are unstable, i.e. their lateral
responses show softening past the maximum stable shear strain
(see Section 2.3).

In a design phase, for this type of bearings, the vertical response
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parameters under combined axial and shear loads may be calcu-
lated up to the maximum stable shear strain. In the next chapters
it will be shown how to obtain these thresholds using the geo-
metric and mechanical known properties of the bearing, through
easy-to-use approximate formula or stability charts.

4.7 Eective compressivemodulus and
vertical stiness

Using Equations 4.10 and 4.12, the vertical stiffness and the
effective compressive modulus for bearings under axial and shear
loads can be obtained with the analytical method. Figures 4.14,
4.15 and 4.16 show the trends of 𝐸𝛿𝐻𝑐 using Equations 2.4a, 2.6
and 2.7 respectively. These figures show the average trends of 𝐸𝛿𝐻𝑐
on the vertical pressure thresholds of Table 4.1, as the compressive
load does not affects the shape of the modulating function (see
Section 4.6). In Figures 4.17, 4.18 and 4.19 the vertical stiffness
of the bearings under combined axial and shear loads obtained
from Equation 4.10 is shown, again considering an average value
of the vertical pressure.

The reductions of the vertical response parameters with the shear
strain clearly follow the same analytical trends of 𝜓 (𝛿𝐻 ) seen in Fig-
ures 4.1, 4.2 and 4.3, as both 𝐸

𝛿𝐻
𝑐 and 𝐾𝛿𝐻

𝑣 are obtained multiplying
constant values (𝐸𝑐 and 𝐸𝑐𝐴𝑐/𝑡𝑟 ) by the modulating function from
Equation 4.14.

The hypothesis of incompressible rubber returns greater values
of vertical response parameters (Figures 4.16 and 4.19) compared
to the compressible rubber results (Figures 4.15 and 4.16, Fig-
ures 4.18 and 4.19). Under this assumption, with smaller values
of the elastomeric layers thickness (i.e. greater 𝑆1) the values of
𝐸
𝛿𝐻
𝑐 and 𝐾

𝛿𝐻
𝑣 calculated with Equation 2.4a are strongly increasing,

being from 4.4 to 5.83 times greater than the same values obtained
with Equations 2.6 and 2.7; increasing the elastomeric layers thick-
ness (i.e. decreasing 𝑆1), the vertical response parameters under
the assumption of incompressible rubber are 3 ÷ 3.4 times greater
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𝐺𝑒 = 0.8 MPa
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Figure 4.11: Analytical - numerical comparison on trends of the modulating
function with the shear strain using Equation 2.6 for 𝐸𝑐 : (a), (d), (g) 𝜎𝑣 = 4
MPa, (b), (e), (h) 𝜎𝑣 = 6 MPa, (c), (f), (i) 𝜎𝑣 = 8 MPa.
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𝐺𝑒 = 0.4 MPa
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Figure 4.12: Analytical - numerical comparison on trends of the modulating
function with the shear strain using Equation 2.7 for 𝐸𝑐 : (a), (d), (g) 𝜎𝑣 = 4
MPa, (b), (e), (h) 𝜎𝑣 = 6 MPa, (c), (f), (i) 𝜎𝑣 = 8 MPa.
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𝐺𝑒 = 0.4 MPa
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Figure 4.13: Analytical - numerical comparison on trends of the modulating
function with the shear strain using Equation 2.4a for 𝐸𝑐 : (a), (d), (g)
𝜎𝑣 = 4 MPa, (b), (e), (h) 𝜎𝑣 = 6 MPa, (c), (f), (i) 𝜎𝑣 = 8 MPa.
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than 𝐸
𝛿𝐻
𝑐 and 𝐾

𝛿𝐻
𝑣 with compressible rubber. A thin incompress-

ible elastomeric layer under a compressive load expierences a very
little vertical deformation, showing a large vertical stiffness (see
Equation 4.1).

These figures highlight again the key role of the secondary shape
factor on the vertical response parameters of the U-FREIs under
axial and shear loads, as:

• if 𝑆2 ≤ 2.5, both the vertical stiffness and the effective compres-
sive modulus rapidly drop to zero. Around a shear strain of
50%, both these parameters are more than halved.

• As 𝑆2 increases, the vertical response parameters are less
affected by the lateral deformation of the bearing. Similar
values of 𝐸𝑐 and 𝐾𝑣 (i.e. under pure compression) are obtained
as 𝑆2 increases and the curves of each bearing are closer
comapred to the curves corresponding to lower values of the
secondary shape factor.

The numerical trends of 𝐸𝛿𝐻𝑐 and 𝐾
𝛿𝐻
𝑣 with the shear strain are

shown in Figures 4.20 and 4.21. Comparing analytical and nu-
merical trends it can be seen how:

• Equation 2.4a returns values of the vertical response param-
eters strongly greater than the numerical ones. Assuming
the rubber as incompressible, the vertical response of the
bearings is overestimated, especially for small values of the
thickness of the elastomeric layer (i.e. greater primary shape
factors).

• Equation 2.7 underestimates the vertical response of the
bearings in any case. The results obtained with 𝐸𝑐 given this
equation, can be interpreted as lower bounds of the vertical
response of the U-FREIs under axial and shear loads.

• Equation 2.6 provides closest values to numerical results,
altough understimated. The analytical predictions using this
formula, can be seen as a safety evaluation of the vertical
response parameters of the U-FREIs.
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𝑡𝑒 = 2 mm
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Figure 4.14: Analytical trends of 𝐸𝛿𝐻𝑐 using Equation 2.6 for 𝐸𝑐 .: (a), (d)
𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8 MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.

Based on these results, the proposed analytical method can be
used in a design phase to estimate the vertical response parameters
(namely the vertical stiffness and the effective compressive modulus)
of a U-FREI under combined axial and shear loads.
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𝑡𝑒 = 2 mm
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Figure 4.15: Analytical trends of 𝐸𝛿𝐻𝑐 using Equation 2.7 for 𝐸𝑐 .: (a), (d)
𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8 MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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𝑡𝑒 = 2 mm
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Figure 4.16: Analytical trends of 𝐸𝛿𝐻𝑐 using Equation 2.4a for 𝐸𝑐 .: (a), (d)
𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8 MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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𝑡𝑒 = 2 mm
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Figure 4.17: Analytical trends of 𝐾𝛿𝐻
𝑣 using Equation 2.6 for 𝐸𝑐 .: (a), (d)

𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8 MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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𝑡𝑒 = 2 mm
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Figure 4.18: Analytical trends of 𝐾𝑣𝛿𝐻 using Equation 2.7 for 𝐸𝑐 .: (a), (d)
𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8 MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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𝑡𝑒 = 2 mm
(a)

0% 25
%

50
%

75
%

10
0%

12
5%

15
0%

17
5%

20
0%

.H [%]

0

2000

4000

6000

8000

10000

K
v

[k
N

/
m

m
]

1.05
1.57
2.1

2.62
3.15
3.67

4.2
4.72
5.24

S2

(b)

0% 25
%

50
%

75
%

10
0%

12
5%

15
0%

17
5%

20
0%

.H [%]

0

2000

4000

6000

8000

10000

K
v

[k
N

/
m

m
]

(c)

0% 25
%

50
%

75
%

10
0%

12
5%

15
0%

17
5%

20
0%

.H [%]

0

2000

4000

6000

8000

10000

K
v

[k
N

/
m

m
]

𝑡𝑒 = 5 mm
(d)

0% 25
%

50
%

75
%

10
0%

12
5%

15
0%

17
5%

20
0%

.H [%]

0

500

1000

1500

2000

2500

3000

K
v

[k
N

/
m

m
]

1.02
1.53
2.04

2.55
3.06
3.57

4.08
4.59
5.09

S2

(e)

0% 25
%

50
%

75
%

10
0%

12
5%

15
0%

17
5%

20
0%

.H [%]

0

500

1000

1500

2000

2500

3000

K
v

[k
N

/
m

m
]

(f)

0% 25
%

50
%

75
%

10
0%

12
5%

15
0%

17
5%

20
0%

.H [%]

0

500

1000

1500

2000

2500

3000
K

v
[k

N
/
m

m
]

Figure 4.19: Analytical trends of 𝐾𝛿𝐻
𝑣 using Equation 2.4a for 𝐸𝑐 .: (a), (d)

𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8 MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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Figure 4.20: Numerical trends of 𝐸𝛿𝐻𝑐 : (a), (d) 𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8
MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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Figure 4.21: Numerical trends of 𝐾𝛿𝐻
𝑣 : (a), (d) 𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8

MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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CHAPTER 5

STABILITY OF SQUARE-SHAPED FIBER
REINFORCED ELASTOMERIC ISOLATORS

Summary
In this chapter the results from parametric finite element
analysis on square-shaped U-FREIs are presented. Buckling
under vertical load and stable/unstable horizontal response
of bearings in unbonded configuration were analyzed and
compared with analytical equations. Particular emphasis has
been placed on the key role of the secondary shape factor on
the stability of U-FREIs. This is underlined by easy-to-use
charts proposed.
This chapter is based on the journal paper [137].

5.1 Background and motivations

As forestall in Section 2.3.2.1, the lateral response of U-FREIs is
mainly controlled by the secondary shape factor 𝑆2. Depending on
the value of 𝑆2, the lateral response of a U-FREI can be stable or
unstable. When stable (Figure 5.1 (a), dash-dot line), the lateral
force-displacement curve of the bearing shows an almost linear
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Chapter 5 Stability of square-shaped Fiber Reinforced Elastomeric Isolators

range of deformations [34] up to a displacement equal to approxi-
mately 50% of the total height of the elastomeric layers ("Range 1",
Figure 5.1 (a), top bearing Figure 5.1 (b)); a second range of stable
softening with positive tangent stiffness ("Range 2", Figure 5.1 (a),
middle bearing in Figure 5.1 (b)); a third range goes from approxi-
mately when half of the originally vertical surfaces of the bearing
become horizontal up to full rollover and the stiffness of the bearing
sharply increases ("Range 3", Figure 5.1 (a), bottom bearing of Fig-
ure 5.1 (b)) [37]. When U-FREIs are unstable (Figure 5.1 (a), solid
line), the linear and the softening range of the bearing remain un-
changed, but instability could be reached in the middle part of the
curve, where the tangent horizontal stiffness decreases and could
become negative. The peak of lateral response of unstable bearings
is referred to as maximum displacement 𝛿𝐻,𝑚𝑎𝑥 ("Max" marker of
Figure 5.1 (a)), while the point corresponding to the full roll over of
the bearing is defined as the ultimate displacement 𝛿𝐻,𝑢𝑙𝑡 ("Ultimate"
marker of Figure 5.1 (a)).

Only approximate formulations are available to describe the com-
plex combined axial and shear response of U-FREIs (e.g., [23, 34,
36, 113]). Some of these studies suggest adopting a value of the
secondary shape factor 𝑆2 ≥ 2.5 as a rule of thumb to achieve a sta-
ble lateral response ([20, 116]). Nevertheless, as shown by others,
lower values of aspect ratio resulting in slender geometry are usu-
ally needed (1 ≤ 𝑆2 ≤ 2.5 ) for application of U-FREIs to lightweight
residential buildings due to limited mass ([62, 65, 66, 68]). This
poses as major threat, and an horizontal displacement threshold
must be known in order to prevent instability at the design stage.

5.2 Introduction

The analysis were performed as explained in Section 4.4 modeling
3D FEMs using MSC.Marc. The same material’s modeling and
element’s type shown in Sections 3.1.2.1 and 4.4.2 are used for
the set of FEMs herein reported.
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Figure 5.1: Stable vs unstable U-FREI: (a) horizontal force-displacement
response curve, (b) deformed FREI under axial and shear loads.

5.2.1 Set of Finite Element Models

For this study, a total number of 216 analyses were carried out
considering a combination of two geometrical (base dimensions
2𝑎 = 2𝑏 = 𝐵 and thickness of the elastomeric layers 𝑡𝑒 ) and two
mechanical parameters (shear modulus𝐺𝑒 of the rubber and vertical
applied pressure 𝜎𝑣). The values of the parameters for the analyses
are listed in Table 5.1, where also the primary and secondary
shape factor, as well as the aspect ratio considered, are shown.

Some parameters were kept constant in the analyses, such as
the total height of the bearing 𝐻 , the equivalent thickness of the
fiber reinforcement 𝑡𝑓 and its Young’s modulus 𝐸𝑓 .

In this study, an 𝐸𝑓 = 70 GPa was assumed as common value for
glass fiber fabrics. A preliminary sensitivity analysis demonstrated
how 𝐸𝑓 has a little influence on lateral response of FREIs. Indeed,
the horizontal load-displacement curve is not affected by changes
even doubling the value of this modulus, as shown in Figure 5.2.
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Chapter 5 Stability of square-shaped Fiber Reinforced Elastomeric Isolators

Table 5.1: Set of variable and constant parameters in FEAs for the stability
analyses of square-shaped FREIs.

2𝑎 𝐻 𝑅 𝑡𝑒 𝑆
𝑡𝑒=2
1 𝑆

𝑡𝑒=5
1 𝑆

𝑡𝑒=2
2 𝑆

𝑡𝑒=5
2 𝐺𝑒 𝜎𝑣 𝐾 𝐸𝑓 𝑡𝑓

[mm] [mm] [-] [mm] [-] [-] [-] [-] [MPa] [MPa] [MPa] [MPa] [mm]
100

100

1.00 2.00 12.5 5.00 1.05 1.02 0.40 2.00

2000 70000 0.100

150 1.50 5.00 18.8 7.50 1.57 1.53 0.80 4.00
200 2.00 25.0 10.0 2.10 2.04 1.20 6.00
250 2.50 31.3 12.5 2.62 2.55 8.00
300 3.00 37.5 15.0 3.15 3.06
350 3.50 43.8 17.5 3.67 3.57
400 4.00 50.0 20.0 4.20 4.08
450 4.50 56.3 22.5 4.72 4.59
500 5.00 62.5 25.0 5.24 5.09
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Figure 5.2: Comparison of the lateral response of different bearings with
𝐸𝑓 = 70 GPa and 𝐸𝑓 = 140 GPa: (a), (d) 𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8 MPa,
(c), (f) 𝐺𝑒 = 1.2 MPa.
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5.3 FEAs results

The results presented in this section will be divided into two parts:
vertical and horizontal behavior. In the first case, the buckling of
the square-shaped U-FREIs are studied, presenting an analytical
- numerical comparison. In the second case, the influence of the
main mechanical and geometric bearing’s properties on the stability
of the same set of square-shaped U-FREIs will be shown.

5.3.1 Vertical response: buckling
In this section, an analytical - numerical comparison on the buck-
ling loads of the square-shaped U-FREIs is shown. Equation 2.19
reported in Section 2.3.1 has been solved to get the analytical
buckling load 𝐹𝑎𝑛𝑣,𝑐𝑟 0; in FEAs, the buckling load 𝐹𝑛𝑢𝑚𝑣,𝑐𝑟 0

is obtained as
the vertical load where any horizontal displacement (however small)
different from zero would result in non-positive horizontal stiffness.

Figure 5.3 shows the buckling pressure values 𝜎𝑣,𝑐𝑟 0 = 𝐹𝑣,𝑐𝑟 0/𝐴𝑐

obtained by analytical equation (x axis) versus FEAs (y axis). The
results are accurate for larger values of 𝑡𝑒 (i.e. smaller values of
𝑆1), as the values of the ratio 𝜎𝑛𝑢𝑚𝑣,𝑐𝑟 0

/𝜎𝑎𝑛𝑣,𝑐𝑟 0 are closer to 1 (dotted lines
in each graph of Figure 5.3), especially for smaller values of 𝑆2.
The analytical solution tends to overestimate the buckling load as
𝑡𝑒 decreases (i.e. 𝑆1 increases). This is because in Section 2.3.1
the rubber is assumed as incompressible and this hypothesis has
been found to overestimate the vertical capacity of the bearing (see
Section 4.6).

The numerical buckling load is only slightly affected by the pri-
mary shape factor, while the secondary shape factor plays a major
role.

The deformed configuration obtained by using analytical formula-
tion and FEAs for two different values of 𝑆2 is shown in Figure 5.4.
As the axial pressure on a FREI does not exceed 10 ÷ 15 MPa, buck-
ling under pure compression seems to be a reasonable failure mode
only if 𝑆2 ≤ 2.5. It is worth noting that this result is based on the
tested material (i.e., shear modulus of the rubber) and primary
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Figure 5.3: Analytical vs numerical buckling pressures: (a), (d) 𝐺𝑒 = 0.4
MPa, (b), (e) 𝐺𝑒 = 0.8 MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.

shape factor. Under combined axial and lateral load, for a given
level of axial pressure, larger secondary shape factors are needed
to achieve a stable response due to influence of rollover. At the
same time, independently of 𝑆2, if the bearing is subjected to a ver-
tical pressure approaching 𝜎𝑣,𝑐𝑟 0, a very limited lateral displacement
capacity can be expected.
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Figure 5.4: Deformed bearing configuration at buckling load: a) adapted
from Tsai [33], b) 𝑡𝑒 = 2 mm, 𝐺𝑒 = 0.4 MPa, 𝑆2 = 1, b) 𝑡𝑒 = 2 mm, 𝐺𝑒 = 0.4 MPa,
𝑆2 = 4.

5.3.2 Horizontal response
The discussion of the horizontal behavior of the FEAs’ bearings is
divided in three classes:

Low 𝑆2: U-FREIs with a low secondary shape factor (𝑆2 ≤ 2 , i.e.
slender U-FREIs).

Medium 𝑆2: U-FREIs with a medium secondary shape factor (2 <

𝑆2 < 3.5).

Large 𝑆2: U-FREIs with a large secondary shape factor (𝑆2 ≥ 3.5 ,
i.e. thick U-FREIs).

Figure 5.5 shows the horizontal force-displacement curves of
the bearings within the ranges defined. Each spindle is limited by
boundary curves corresponding to the extreme values of each class.
A lower bound curve is obtained for a combination of maximum
vertical pressure and minimum 𝑆2; conversely, the upper bound
curve corresponds to the combination of minimum vertical pressure
and maximum 𝑆2 in the range. Using this enveloping method, it
was found that in the case of low and large secondary shape factors
range, the response is characterized by unstable and stable rollover,
respectively, while in the medium range of 𝑆2 case the relative
influence of different parameters may provide either response.

The following considerations can also be drawn:

• As already stated, the primary shape factor 𝑆1 does not play
a significant role on the lateral response of FREIs, as similar
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trends of achieved maximum values for limit curves can be
observed in both Figures 5.5 (a), 5.5 (b) and 5.5 (c) and
Figures 5.5 (d), 5.5 (e) and 5.5 (f), except for a slight increase
of lateral capacity with 𝑡𝑒 = 2 mm.

• The bearings with 𝑆2 ≥ 3.5 show a stable response for any value
of axial pressure. These bearings are stable (SU-FREIs), which
means adequate to provide a positive tangent stiffness during
roll-over.

• U-FREIs with 𝑆2 < 3.5 require further investigation to define
stability limits according to geometrical and mechanical pa-
rameters.

As an example of the U-FREIs pattern deformation, Figure 5.6
shows the lateral deformation pattern of a bearing with 𝑆2 = 4 by
contour plots of equivalent elastic strain at different deformation
levels up to complete roll-over. In this figure it can be seen how the
wider stability range of U-FREIs with 𝑆2 ≥ 3.5 comes from the greater
influence of the overlapping area compared to the rollover marginal
parts. These portions provide shear strenght only for shear strain
values higher than 150% (Figure 5.6 (a)).

5.3.2.1 Maximum stable shear strain
The stable/unstable response of U-FREIs is stated in this thesis
defining the maximum stable horizontal displacement as:

𝛿𝐻,𝑐𝑟 = min
[
𝛿𝐻,𝑚𝑎𝑥 ;𝛿𝐻,𝑢𝑙𝑡

]
(5.1)

corresponding to 𝛿𝐻,𝑚𝑎𝑥 for unstable bearings and to 𝛿𝐻,𝑢𝑙𝑡 for
stable bearings. Indeed unstable bearings shows a peak in the
horizontal force-displacement curve and the response is stable up
to the horizontal displacement threshold equal to 𝛿𝐻,𝑚𝑎𝑥 ; conversely,
SU-FREIs show positive horizontal tangent stiffness throughout the
horizontal deformation and the ultimate displacement correspond
to the full rollover. Accordingly, the maximum stable shear strain is
defined as:
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Figure 5.5: Horizontal force-displacement spindles: (a), (d) 𝐺𝑒 = 0.4 MPa,
(b), (e) 𝐺𝑒 = 0.8 MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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Figure 5.6:Horizontal pattern for an U-FREI with 𝑆2 = 4: (a) horizontal force-
displacement response curve, (b) equivalent elastic strain at (starting
from the top): 𝛾𝐻 = 40%, 𝛾𝐻 = 72%, 𝛾𝐻 = 120%, 𝛾𝐻 = 200%

𝛾𝐻,𝑐𝑟 = min
[
𝛾𝐻,𝑚𝑎𝑥 ;𝛾𝐻,𝑢𝑙𝑡

]
= min

[
𝛿𝐻,𝑚𝑎𝑥

𝑡𝑟
;
𝛿𝐻,𝑢𝑙𝑡

𝑡𝑟

]
(5.2)

Figure 5.7 shows the trend of 𝑆2 with 𝛾𝐻,𝑐𝑟 for the different variable
values of mechanical and geometric parameters in the FEAs. In
each figure, four curves are shown each for a different value of
vertical pressure.

These charts provide the secondary shape factor needed to tap
into a maximum stable shear strain threshold and can be read as
bearing stability ranges. Indeed, for each graphs:

• A vertical line starting from a given value of 𝛾𝐻,𝑐𝑟 intersects the
4 curves of each charts in the needed values of 𝑆2 to obtain a
stable response up to at least 𝛾𝐻,𝑐𝑟 .

• An horizontal line drawn from a given value of 𝑆2 provides the
maximum stable shear strain related to the vertical applied
pressure.
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The stability range of 𝛾𝐻,𝑐𝑟 in Figure 5.7 varies between a mini-
mum of 25% up to 200% and it is worth to point out the relative
influence of different parameters:

• An increase in vertical pressure reduces the bearing capacity.
This effect is more pronounced larger values of the thickness
of the elastomeric layer. For 𝑡𝑒 = 5 mm, an increase of vertical
pressure from 2 MPa to 8 MPa produces an average decrease
of 14.6% in maximum shear strain for different values of the
shear modulus.

• The displacement capacity of the bearing increases with the
shear modulus of the rubber. For fixed values of 𝜎𝑣 and 𝑡𝑒 ,
the same 𝛾𝐻,𝑐𝑟 can be reached with a lower 𝑆2 in case of a
larger modulus. For 𝑡𝑒 = 5 mm, an average decrease of demand
of 14.1% and 23.3% is obtained for 𝐺 = 0.8 MPa and 𝐺 = 1.2
MPa in comparison to 𝐺 = 0.4 MPa, respectively. The same
percentages reduce to 0.1% and 8.1% in case of 𝑡𝑒 = 2 mm.

• Reducing the thickness of the elastomeric layer, i.e. increasing
the primary shape factor, results in a moderate increase of
the bearing stability: with a given shear modulus and applied
vertical pressure, a lower 𝑆2 is required to obtain a target shear
strain. Reducing the thickness of the elastomeric layer from 5
to 2 mm, an average decrease in the secondary shape factor
demand equal to 20% and 9% for 𝐺 = 0.4 and 𝐺 = 1.2 MPa is
obtained, respectively.

From Figure 5.7 it can be noted that all curves 𝑆2(𝛾𝐻 ) tend to
provide a bilinear trend, where the first branch (i.e. 𝑆2 ≤ 2 ÷ 3)
is steeper due to a major influence of the geometry up to a point
representing a cusp. Generally, the coordinates of the cusp fall in
the range of 100% ≤ 𝛾𝐻,𝑐𝑟 ≤ 125% (x axis) and 2 ≤ 𝑆2 ≤ 3 (y axis). Beyond
the cusp, a limited increase of 𝑆2 would provide a significantly higher
stability limit. It can be noted that in the most unfavorable case
due to a combination of 𝐺 = 0.4 MPa and 𝜎𝑣 = 8 MPa, a minimum
𝑆2 = 3.5 is required to achieve stable response up to 𝛾𝐻,𝑐𝑟 = 200%;
this value tends to reduce to 2.5 in case of higher modulus of the
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Figure 5.7: 𝑆2 needed to achieve 𝛾𝐻𝑐𝑟 : (a), (d) 𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8
MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.

rubber and low-to-medium axial pressure, in agreement with the
previous experimental findings ([20, 35, 113]). This comparison
contributed to validate the numerical study and confirmed that the
lateral response of unbounded FREIs is significantly affected by
the secondary shape factor.

5.3.2.2 Expected maximum stable shear strain

In order to estimate the expected value of maximum shear strain
for a given geometry and loading condition (i.e. 𝜎𝑣,𝐺, 𝑆2, 𝑡𝑒 ), numer-
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Figure 5.8: Linear multiple regression: values of 𝛾𝐻,𝑐𝑟 with 𝜎𝑣,𝐺, 𝑆2, 𝑡𝑒 .

ical values in Figure 5.7 have been fitted with a multiple linear
regression:

𝛾
𝑒𝑥𝑝

𝐻,𝑐𝑟
= 𝛽0 + 𝛽𝜎𝑣 · 𝜎𝑣 + 𝛽𝐺𝑒

·𝐺𝑒 + 𝛽𝑆2 · 𝑆2 + 𝛽𝑡𝑒 · 𝑡𝑒 (5.3)

The coefficients of the regression model have been calibrated on
available discrete values and are given in Figure 5.8. The value of
𝑅2 is approximately equal to 90%, demonstrating how Equation 5.3
can be used with good accuracy for a preliminary estimate of 𝛾𝐻,𝑐𝑟

defined for positive values.
In Equation 5.3, the maximum limit of 𝛾𝑒𝑥𝑝

𝐻,𝑐𝑟
is set equal to 200%,

since a bearing whose mechanical properties guarantee stability
beyond this deformation level, can be considered stable up to com-
plete rollover; the lower limit is instead set equal to 0%, because a
bearing whose maximum stable deformation is negative would be
unstable under pure vertical load (i.e. buckling load).

As can be noted, all coefficients are positive unless 𝛽𝜎𝑣 and 𝛽𝑡𝑒 , i.e.
the stability range decreases while increasing 𝜎𝑣 and 𝑡𝑒 , respectively.
The regression model also confirms again that the thickness of the
elastomeric layer, i.e. the primary shape factor, is not significant
on the stability of the bearings whereas the secondary shape factor
has a key role.
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5.3.2.3 Simplified approach to predict maximum stable
shear strain

As said in Section 5.3.2.1, the data in Figure 5.7 can be inter-
polated with good approximation with bilinear trends. The single
branch can therefore be written in the form:

𝑆
(1)
2

(
𝛾𝐻,𝑐𝑟

)
= 𝑐1,1 + 𝑐1,2 · 𝛾𝐻,𝑐𝑟 (5.4a)

𝑆
(2)
2

(
𝛾𝐻,𝑐𝑟

)
= 𝑐2,1 + 𝑐2,2 · 𝛾𝐻,𝑐𝑟 (5.4b)

where the apices 1 and 2 stand for the single branch of the
generic bilinear trend. The constants 𝑐𝑖,2 are the slopes of the
branches, while 𝑐𝑖,1 represent the intersection of the branches with
the vertical axis. Fitting the FEAs results leads to the curves shown
in Figure 5.9.

However, an easy-to-use general method to assess the secondary
shape factor corresponding to a maximum stable shear strain
threshold is herein proposed, providing generic expressions for
the constants 𝑐𝑖, 𝑗 .

Consider the constant 𝑐1,1. This it the value of 𝑆2
(
𝛾𝐻,𝑐𝑟

)
where

the maximum stable shear strain is equal to zero, i.e. the bearing
is unstable under pure compression load. For generic values of
shear modulus 𝐺𝑒 and pressure 𝜎𝑣, the constant 𝑐1,1 stand for the
secondary shape factors of the bearings whose buckling pressures
are exactly 𝜎𝑣.

This constant can be analytically derived for each bearing invert-
ing Equation 2.19, i.e. obtaining the base side 2𝑎 = 2𝑏 of the bear-
ings whose buckling loads is equal to 𝐹𝑣,𝑐𝑟 0 = 𝜎𝑣 ·𝐴𝑐 = 𝜎𝑣 · 4𝑎2 = 𝜎𝑣 · 4𝑏2;
hence the secondary shape factor will be 𝑆2(0) = 2𝑎/𝑡𝑟 = 2𝑏/𝑡𝑟 . The
values for each 𝑡𝑒 , 𝐺𝑒 and 𝜎𝑣 are shown in Table 5.2.

The constant 𝑐1,2 is given by the ratio:

𝑐1,2 =
𝑆
(1)
2

(
𝛾
(1)
𝐻,𝑐𝑟

)
− 𝑆2(0)

𝛾
(1)
𝐻,𝑐𝑟

(𝜎𝑣,𝐺𝑒 , 𝑡𝑒)
=

𝑆
(1)
2

(
𝛾
(1)
𝐻,𝑐𝑟

)
− 𝑐1,1

𝛾
(1)
𝐻,𝑐𝑟

(𝜎𝑣,𝐺𝑒 , 𝑡𝑒)
(5.5)

110



FEAs results Section 5.3

where 𝑆 (1)2

(
𝛾
(1)
𝐻,𝑐𝑟

)
is the secondary shape factor related to a generic

point 𝛾 (1)
𝐻,𝑐𝑟

(𝜎𝑣,𝐺𝑒 , 𝑡𝑒) belonging to the first branch; they are both func-
tion of the vertical pressure, the shear modulus and the thickness
of the elastomeric layer.

Similarly, the constant 𝑐2,2 is given by the ratio:

𝑐2,2 =
𝑆
(2)
2 (200%) − 𝑆 (2)2

(
𝛾
(2)
𝐻,𝑐𝑟

)
200% − 𝛾 (2)

𝐻,𝑐𝑟
(𝜎𝑣,𝐺𝑒 , 𝑡𝑒)

(5.6)

being 𝑆 (2)2 (200%) the minimum secondary shape factor to achieve
full rollover and 𝛾 (2)

𝐻,𝑐𝑟
(𝜎𝑣,𝐺𝑒 , 𝑡𝑒) a point belonging to the second branch.

Note that the only unknowns are the value 𝑆 (1)2

(
𝛾
(1)
𝐻,𝑐𝑟

)
, the deforma-

tion 𝛾
(1)
𝐻,𝑐𝑟

(𝜎𝑣,𝐺𝑒 , 𝑡𝑒) and 𝑆
(2)
2 (200%).

For simplicity and for the sake of safety, it can be considered
𝑆
(1)
2

(
𝛾
(1)
𝐻,𝑐𝑟

)
= 𝑆

(2)
2

(
𝛾
(2)
𝐻,𝑐𝑟

)
= 𝑆

(2)
2 (200%) and 𝛾

(1)
𝐻,𝑐𝑟

(𝜎𝑣,𝐺𝑒 , 𝑡𝑒) = 𝛾 (2)𝐻,𝑐𝑟
(𝜎𝑣,𝐺𝑒 , 𝑡𝑒) =

100% ÷ 150%. Indeed, Figure 5.9 shows how the second branch
always starts in this range, where the initial vertical faces of the
bearing gradually become horizontal and touching the supports.

The position made implies that the second branch has zero incli-
nation, or that the secondary shape factor at full rollover is equal
to that at 𝛾𝐻,𝑐𝑟 = 100 ÷ 150%. With these impositions the unknowns
are reduced to 1, i.e. the secondary shape factor at full rollover
𝑆
(2)
2 (200%). This parameter can be assumed through the safety val-

ues obtained from the FEAs and shown in Table 5.3.
In this way it is possible to completely solve the problem and

obtain the bilinear trends for each distribution of 𝑆2 − 𝛾𝐻,𝑐𝑟 . Fig-
ures 5.10 and 5.11 show the simplified bilinear trends for the FEAs
bearings, using 𝛾 (1)

𝐻,𝑐𝑟
(𝜎𝑣,𝐺𝑒 , 𝑡𝑒) = 𝛾 (2)𝐻,𝑐𝑟

(𝜎𝑣,𝐺𝑒 , 𝑡𝑒) = 100% and 𝛾 (1)
𝐻,𝑐𝑟

(𝜎𝑣,𝐺𝑒 , 𝑡𝑒) =
𝛾
(2)
𝐻,𝑐𝑟

(𝜎𝑣,𝐺𝑒 , 𝑡𝑒) = 150% respectively. As can be seen, in the first case,
the actual capacity of the bearings is underestimated in a strongly
safety evaluation of the stability ranges; in the second case, the
method returns closest results to the FEAs values.
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Figure 5.9: Bilinear trends of 𝑆2 vs 𝛾𝐻,𝑐𝑟 from FEAs data fitting: (a), (d)
𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8 MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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Table 5.2: Values of the constant 𝑐1,1 for the bearings considered in the
FEM

𝑡𝑒 𝐺𝑒 𝜎𝑣 𝑐𝑖,1 𝑆2(200%)
[mm] [MPa] [MPa] [-] [-]

2

0.4

2 0.52 3.5
4 0.772 3.5
6 0.968 3.5
8 1.14 3.5

0.8

2 0.358 2.5
4 0.529 2.5
6 0.668 2.5
8 0.786 3.0

1.2

2 0.292 2.5
4 0.422 2.5
6 0.534 2.5
8 0.632 2.5

5

0.4

2 0.82 3.5
4 1.22 3.5
6 1.53 3.5
8 1.79 3.5

0.8

2 0.57 2.5
4 0.83 2.5
6 1.05 2.5
8 1.24 3.0

1.2

2 0.46 2.5
4 0.664 2.5
6 0.84 2.5
8 0.998 2.5
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𝑡𝑒 = 5 mm
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Figure 5.10: Bilinear trends of 𝑆2 vs 𝛾𝐻,𝑐𝑟 with simplified approach using
𝛾
(1)
𝐻,𝑐𝑟

(𝜎𝑣,𝐺𝑒 , 𝑡𝑒 ) = 𝛾 (2)𝐻,𝑐𝑟
(𝜎𝑣,𝐺𝑒 , 𝑡𝑒 ) = 100%: (a), (d) 𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8

MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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Figure 5.11: Bilinear trends of 𝑆2 vs 𝛾𝐻,𝑐𝑟 with simplified approach using
𝛾
(1)
𝐻,𝑐𝑟

(𝜎𝑣,𝐺𝑒 , 𝑡𝑒 ) = 𝛾 (2)𝐻,𝑐𝑟
(𝜎𝑣,𝐺𝑒 , 𝑡𝑒 ) = 150%: (a), (d) 𝐺𝑒 = 0.4 MPa, (b), (e) 𝐺𝑒 = 0.8

MPa, (c), (f) 𝐺𝑒 = 1.2 MPa.
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Table 5.3: Suggested values of 𝑆 (2)2 (200%) for different compound and vertical
pressure

Compound Vertical Pressure 𝑆
(2)
2 (200%)

Soft (i.e. 𝐺 ≤ 0.4 MPa)
Low Range (i.e. 𝜎𝑣 ≤ 4 MPa) 3.5

Medium Range (i.e. 4 < 𝜎𝑣 < 8 MPa) 3.5
High (i.e. 𝜎𝑣 ≥ 8 MPa) 3.5

Medium (i.e. 0.4 < 𝐺 < 1.2 MPa)
Low Range (i.e. 𝜎𝑣 ≤ 4 MPa) 2.5
Medium (i.e. 4 < 𝜎𝑣 < 8 MPa) 2.5

High (i.e. 𝜎𝑣 ≥ 8 MPa) 3.0

Hard (i.e. 𝐺 ≥ 1.2 MPa)
Low Range (i.e. 𝜎𝑣 ≤ 4 MPa) 2.5
Medium (i.e. 4 < 𝜎𝑣 < 8 MPa) 2.5

High (i.e. 𝜎𝑣 ≥ 8 MPa) 2.5
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CHAPTER 6

STABILITY OF RECTANGULAR-SHAPED FIBER
REINFORCED ELASTOMERIC ISOLATORS

UNDER BIDIRACTIONAL SHEAR LOADS

Summary
In this chapter the results from parametric finite element
analysis on rectangular-shaped U-FREIs are presented. The
bearings were subjected to combined axial and bidirectional
shear loads to evaluate the variation of the response with
the several different mechanical and geometric parameters
considered. Particular attention was given to the role of the
secondary shape factor for bearings simultaneously loaded
in two horizontal directions.
This chapter is based on the journal paper [138].

6.1 Background and motivations

In Chapter 5 the secondary shape factor has been shown to play a
key role on the stability of U-FREIs, according to literature results
too. The transition range between stable and unstable response cor-
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responds to a secondary shape factor in the range 2.5÷3.5 depending
on the shear modulus of the rubber and the vertical pressure.

However, these results were obtained for bearings loaded in shear
along their base. Shaking table investigations on FREIs recently
demonstrated that bidirectional motion can significantly affect the
stability of the base isolation system [24]. On the other hand, it
has been experimentally [20, 117, 120, 139] and numerically [140]
demonstrated that square-shaped bearings improve their response
when loaded along their diagonal, as the lateral stiffness at large
displacements increases, while the stiffness at small displacements
(𝛾𝐻 ≤ 1 [140]) remains almost unchanged. It can be argued that the
larger stability limit for square isolators is obtained when these are
loaded at an angle of 45° with their base [65], while for rectangular
bearings this angle is a function of the ratio between the base sides
and is not known a priori.

6.2 Introduction

The FEAs were performed as explained in Section 5.2. 3D full-
scale FEMs were used in this case too, using the same procedure,
elements’ type and materials modeling specified in Sections 3.1.2.1
and 4.4.2.

6.2.1 Set of Finite Element Models
Table 6.1 shows all the main variables considered in the parametric
FEMs, while a schematic of the geometry of the FREI (and the
definition of the variables) is shown in Figure 6.1.

A combination of the variables listed in Table 6.1 lead to a total
of 480 FEMs. For the base of the FREIs, four different dimensions
were considered along 𝑋 (2𝑎) and three along 𝑌 (2𝑏) (refer to Fig-
ure 6.1). As a result, square, rectangular and strip-shaped (i.e.
side ratio larger than 5) bearings were tested. Two different heights
of the bearings, and two thicknesses of the elastomeric layer were
considered leading to four values of total rubber height. Two vertical
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Table 6.1: Mechanical and geometric parameters considered for the current
set FEAs.

2𝑎 2𝑏 𝐻 𝑡𝑒 𝑡𝑟 𝑆2 𝜎𝑣 𝜗

[mm] [mm] [mm] [mm] [mm] [-] [MPa] [°]
200 400 100 10 95.7 From 2 0
300 800 200 20 98.1 1.02 4 30
400 1200 191 To 45
500 196 12.5 60

90

Table 6.2: Constant parameters defined for the current set of FEAs.

𝐺𝑒 𝐾 𝑡𝑓 𝐸𝑓 𝜈 𝑓
[MPa] [MPa] [mm] [MPa] [-]
1.00 2000 0.500 50000 0.100

pressure values were considered, corresponding to lightly loaded
(i.e. 𝜎𝑣 = 2 MPa) and medium loaded bearings (i.e. 𝜎𝑣 = 4 MPa).
Finally, five angles of horizontal loads 𝜗 were considered: 0° (the
imposed load is parallel to 𝑋 , i.e., parallel to the base with dimen-
sion of 2𝑎), 30°, 45°, 60° and 90° (the imposed load in parallel
to 𝑌 , i.e. parallel to the side of the bearing with a dimension of
2𝑏). The angles are counterclockwise, measured from the 𝑋 axis
(Figure 6.1).

Other parameters of the models were set as constant. These are
the shear modulus of the rubber, its bulk modulus, the equivalent
thickness of the fiber layer, its Young’s modulus and its Poisson’s
ratio (Table 6.2). The parameters of this table are chosen constant
as the main scope of the current parametric finite element analysis
is to investigate the influence of the different loading directions
on U-FREIs of different geometry, i.e. the geometric point of view.
However, further analyses could be conducted considering several
shear moduli values, or different types of reinforcement.

The size of the mesh used for the analyses was calibrated after a
sensitivity analysis, where the number of elements along the three
directions was varied (bearing base and height, Figure 6.2). The
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Figure 6.1: Rectangular U-FREI: geometric variable parameters and angles
for the horizontal load.

aspect ratio of a single brick element was chosen equal to 1, i.e.
the side of each element is 5 mm.

6.2.2 Labels’ definition
In this thesis, the following parameters are introduced: the horizon-
tal displacement base side 𝐵(𝜗), the secondary shape factor in the
horizontal displacement direction 𝑆𝜗2 , the maximum stable horizontal
displacement in the horizontal displacement direction 𝛿𝜗

𝐻,𝑐𝑟
and the

maximum stable shear strain in the horizontal displacement direction
𝛾𝜗
𝐻,𝑐𝑟

. Their definitions are given below (see also Figure 6.3):

𝐵(𝜗) =


2𝑎
cos𝜗 if 𝜗 ≤ arctan

(
2𝑏
2𝑎

)
2𝑏
sin𝜗 if 𝜗 > arctan

(
2𝑏
2𝑎

) (6.1a)

𝑆𝜗2 =
𝐵(𝜗)
𝑡𝑟


2𝑎

𝑡𝑟 cos𝜗 if 𝜗 ≤ arctan
(
2𝑏
2𝑎

)
2𝑏

𝑡𝑟 sin𝜗 if 𝜗 > arctan
(
2𝑏
2𝑎

) (6.1b)

𝛿𝜗𝐻,𝑐𝑟 = min
[
𝛿𝜗𝐻,𝑚𝑎𝑥 , 𝛿

𝜗
𝐻,𝑢𝑙𝑡

]
(6.1c)
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Figure 6.2: Sensitivity analysis: choice of mesh size.

𝛾𝜗𝐻,𝑐𝑟 = min
[
𝛾𝜗𝐻,𝑚𝑎𝑥 , 𝛾

𝜗
𝐻,𝑢𝑙𝑡

]
= min

[
𝛿𝜗
𝐻,𝑚𝑎𝑥

𝑡𝑟
,
𝛿𝜗
𝐻,𝑢𝑙𝑡

𝑡𝑟

]
(6.1d)

As intuition suggests, 𝐵(𝜗) is the size of the bearing along the
direction of the applied horizontal load, and 𝑆𝜗2 its ratio on the total
height of the rubber; Equations 6.1c and 6.1d follow directly from
the definitions of maximum stable horizontal displacement and
shear strain given in Section 5.3.2.1, conforming to the generic
horizontal load direction 𝜗. Clearly, when 𝜗 = 0° and 𝜗 = 90°, Equa-
tion 6.1 reduce to:

𝐵(0°) = 2𝑎 𝐵(90°) = 2𝑏 (6.2a)

𝑆0°2 =
2𝑎
𝑡𝑟

𝑆90°2 =
2𝑏
𝑡𝑟

(6.2b)

𝛿0°𝐻,𝑐𝑟 = min
[
𝛿0°𝐻,𝑚𝑎𝑥 , 𝛿

0°
𝐻,𝑢𝑙𝑡

]
𝛿90°𝐻,𝑐𝑟 = min

[
𝛿90°𝐻,𝑚𝑎𝑥 , 𝛿

90°
𝐻,𝑢𝑙𝑡

]
(6.2c)
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𝛾0°𝐻,𝑐𝑟 = min

[
𝛿0°
𝐻,𝑚𝑎𝑥

𝑡𝑟
,
𝛿0°
𝐻,𝑢𝑙𝑡

𝑡𝑟

]
𝛾90°𝐻,𝑐𝑟 = min

[
𝛿90°
𝐻,𝑚𝑎𝑥

𝑡𝑟
,
𝛿90°
𝐻,𝑢𝑙𝑡

𝑡𝑟

]
(6.2d)

that are the classic definitions of base side, secondary shape
factor and maximum stable horizontal displacement/shear strain.

6.3 FEAs Results

After the application of the vertical load, FREIs were then displaced
horizontally up to full-rollover in the generic 𝜗 direction. As seen
in Chapter 5, for unbonded bearings loaded along one of the base
side, full-rollover corresponds approximately to a displacement
level of 𝛿𝐻 = 2𝐻 (i.e. 𝛾𝐻 ≈ 200%). For U-FREIs loaded into two
horizontal directions the ultimate value of deformation depends on
the geometry of the device, and it is not known a priori.

6.3.1 Stability domain as function of 𝜸𝝑
𝑯,𝒄𝒓

For each bearing, either the maximum or ultimate shear strain was
derived applying the horizontal displacement with the angles listed
in Table 6.1.

Figure 6.4 shows the polar stability domains as a function of 𝛾𝜗
𝐻,𝑐𝑟

,
while Figure 6.5 show the corresponding planar stability domains
where the secondary shape factor 𝑆𝜗2 in the horiontal displacement
direction is given on secondary axes.

When the generic bearing is stable in any horizontal direction
up to the full rollover, the domain connects all the 𝛾𝜗

𝐻,𝑢𝑙𝑡
along each

horizontal loading direction, according to definition given in Equa-
tion 6.1d. If 𝛾𝜗

𝐻,𝑢𝑙𝑡
does not depend on the horizontal load direction

(e.g. bearings with polar symmetry, i.e. circular), the domain is a
circumference of radius 𝛾𝜗

𝐻,𝑢𝑙𝑡
= 𝛾𝐻,𝑢𝑙𝑡 . FEAs demonstrated that a sta-

ble response along both 𝑋 (2𝑎) and 𝑌 (2𝑏) results in stable response
in any direction of loading.

In all the other cases, the stability limit tends to show a transition
between a minimum value (corresponding to loading the bearings
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Figure 6.3: Parameters’ label definition: (a) horizontal displacement base
side, (b) secondary shape factor in the horizontal displacement direction
and (c) maximum stable horizontal displacement in the horizontal dis-
placement direction.
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along their smaller side) and a maximum value (corresponding to
loading the devices along their bigger side).

When loading along X (0°) or Y (90°), the influence of the out
of plane dimension of the bearing on its displacement capacity
is negligible. This confirms that 2D models are sufficient for the
analysis of unbonded FREIs when these are loaded along their
base.

In general, the stability range decreases with increasing vertical
pressure, in line with results from Chapters 3 and 5. The maximum
stable shear strain thresholds of unstable bearings decrease on
average by 5.90% and 9.37% from 𝜎𝑣 = 2 MPa to 𝜎𝑣 = 4 MPa, for
𝑡𝑒 = 10 mm and 𝑡𝑒 = 20 mm respectively. Nevertheless, an increasing
vertical load has a positive effect on the stability of larger bearings
with large secondary shape factor (i.e. 𝑆2 ≥ 3, see Figures 6.4 (g)
and 6.5 (j), circular markers) since the horizontal deformation
results in a smaller reduction of the contact area compared to more
slender bearings and the vertical stiffness of the bearing is less
affected by the vertical pressure.

In Figure 6.5, two types of information are given: the stability
limit in the loading direction and the stability limit angle of a generig
bearing. Respectively:

• A generic straight line from the origin of the primary axes of
these figures to the point of the domain provides the stability
limit of the bearing in the loaded direction. The length of this
segment is the maximum stable shear strain in the loading
direction while its inclination corresponds to 𝜗. Similarly, a
straight line from the origin of the secondary axis to the 𝑆𝜗2
curve gives the corresponding secondary shape factor in the
direction 𝜗.

• The stability limit angle can be obtained from the plots as
rectangular bearings may have two very different secondary
shape factors along 𝑋 (𝑆0°2 = 2𝑎/𝑡𝑟 ) and 𝑌 (𝑆90°2 = 2𝑏/𝑡𝑟 . The
bearing could be stable in one of its main directions (e.g. 90°)
and unstable along the other (e.g. 0°) and the transition
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between stable and unstable response could occur at an angle
that is function of the ratio 2𝑏/2𝑎 = 𝑏/𝑎.

In Figure 6.6 (a) an example of the response of a stable (square
marker) and of an unstable (diamond marker) bearing is given. The
dashed line defines the direction 𝜗 = 30°: the stability limit for the
unstable bearing (2𝑎x2𝑏x𝐻x𝑡𝑒x𝜎𝑣 = 200x400x200x10x4) is 𝛾30°

𝐻,𝑐𝑟
= 0.51

with a secondary shape factor 𝑆30°2 = 1.21, while for the stable bearing
(2𝑎x2𝑏x𝐻x𝑡𝑒x𝜎𝑣 = 400x400x100x10x4) is 𝛾30°

𝐻,𝑐𝑟
= 2.00 and 𝑆30°2 = 4.80.

When 𝜗 = 60°, the unstable bearing provides 𝛾60°
𝐻,𝑐𝑟

= 2.10 and 𝑆60°2 = 2.10
while the stable gives 𝛾60°

𝐻,𝑐𝑟
= 2.00 and 𝑆60°2 = 4.80.

Figure 6.6 (b) shows the stability domain of a bearing which is sta-
ble along 𝑌 and unstable along 𝑌 (2𝑎x2𝑏x𝐻x𝑡𝑒x𝜎𝑣 = 200x400x100x10x4).
In this case the transition between the stability limit angle is be-
tween 𝜗 = 60° (𝑆60°2 = 4.08) and 𝜗 = 45° (𝑆45°2 = 4.08).

The behavior of stable bearings is highlighted in Figure 6.7,
where all the secondary shape factors of all the bearings that reach
full rollover are plotted. Connecting the minimum values of 𝑆𝜗2 ,
an envelope of unstable bearings is obtained. Any point outside
this domain represents a stable bearing that can deform up to full
rollover in any direction. The instability envelopes at 𝜎𝑣 = 4 MPa
are larger than those at 𝜎𝑣 = 2 MPa. To obtain a stable response, a
larger 𝑆𝜗2 in the generic direction is needed as the vertical pressure
increases. However, in the range of vertical pressure considered in
this thesis, once again it is noted how the transition between stable
and unstable behavior occurs in the range 2.5 ≤ 𝑆𝜗2 .

6.3.2 Horizontal stiness
Figure 6.8 show the lateral secant stiffness of each bearing at 𝛾𝜗

𝐻,𝑐𝑟
,

with respect to the angle of the imposed lateral displacement. In
these figures, the secondary shape factors 𝑆𝜗2 of the bearings are
plotted in gray. Combining the information from the two types of
curves, the lateral stiffness with respect to the secondary shape
factor of the bearing can be obtained.

The lateral secant stiffness at 𝛿𝐻 (or 𝛾𝐻 = 𝛿𝐻/𝑡𝑟 ) is defined as the
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Figure 6.4: Polar stability domain 𝛾𝜗
𝐻,𝑐𝑟

: (a), (d), (g), (j) 2𝑏 = 400 mm, (b),
(e), (h), (k) 2𝑏 = 800 mm, (c), (f), (i), (l) 2𝑏 = 1200 mm; (a), (b), (c),
(g), (h), (i) 𝜎𝑣 = 2 MPa, (d), (e), (f), (j), (k), (l) 𝜎𝑣 = 4 MPa.
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𝑡𝑒 = 20 mm
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Figure 6.5: Planar stability domain 𝛾𝜗
𝐻,𝑐𝑟

: (a), (d), (g), (j) 2𝑏 = 400 mm, (b),
(e), (h), (k) 2𝑏 = 800 mm, (c), (f), (i), (l) 2𝑏 = 1200 mm; (a), (b), (c),
(g), (h), (i) 𝜎𝑣 = 2 MPa, (d), (e), (f), (j), (k), (l) 𝜎𝑣 = 4 MPa.
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Figure 6.6: Use of stability domain: (a) stability ranges and (b) stability
limit angle.
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Figure 6.7: 𝑆𝜗2 for all stable bearings: instability envelop
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slope of the secant line to the lateral force – displacement curve at
the same horizontal threshold:

𝐾
𝛿𝐻
𝐻

=
𝐹
𝛿𝐻
𝐻

𝛿𝐻
(6.3)

In Figure 6.8 the lateral secant stiffness has been obtained
applied this equation to the output numerical horizontal force -
displacement curves.

The lateral secant stiffness at the maximum stable shear strain
tends to decrease as the applied vertical load increases. From 𝜎𝑣 = 2
MPa to 𝜎𝑣 = 4 MPa an average decrease of the secant stiffness equal
to 1.23% and 7.15% for 𝑡𝑒 = 10 mm and 𝑡𝑒 = 20 mm respectively was
found.

Stable bearings loaded along their base reach full rollover around
a shear strain of 150 to 200%, and this is generally not the case
when the bearings are loaded in a generic horizontal direction given
by 𝜗. Due to a partial rollover, stable bearings loaded along a generic
direction show a lower horizontal secant stiffness than those loaded
along their base.

6.3.3 Full Rollover
As introduced in Section 6.1, in previous research work it was
found that the stability range of a bearing increases when these are
loaded in a generic direction. To provide clear indications of this
phenomenon, Figure 6.9 show the ultimate shear strain (𝛾𝜗

𝐻,𝑢𝑙𝑡
) for

all the stable bearings while Figure 6.10 show the deformed shape
at full rollover of a square- (Figure 6.10 (a)) and a rectangular-
(Figure 6.10 (a)) shaped FREI.

The displacements where the rotation of the vertical faces begins
at the onset of roll-over are shown with black markers, whereas the
full rollover is depicted with gray markers. Starting from the smaller
base side, when FREIs are loaded in a generic direction, their
stable range increases with increasing secondary shape factor in
the horizontal displacement direction. This is more pronounced for
bearings with similar base dimensions (i.e. base/width ratio close
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𝜎𝑣 = 2 MPa, 𝑡𝑒 = 10 mm
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𝜎𝑣 = 4 MPa, 𝑡𝑒 = 10 mm
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𝜎𝑣 = 2 MPa, 𝑡𝑒 = 20 mm
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𝜎𝑣 = 4 MPa, 𝑡𝑒 = 20 mm
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Figure 6.8: Lateral secant stiffness at maximum stable shear strain vs 𝜗
and 𝑆𝜗2 : (a) 2𝑏 = 400 mm, (b) 2𝑏 = 800 mm, (c) 2𝑏 = 1200 mm, (d) 2𝑏 = 400
mm, (e) 2𝑏 = 800 mm, (f) 2𝑏 = 1200 mm, (g) 2𝑏 = 400 mm, (h) 2𝑏 = 800 mm,
(i) 2𝑏 = 1200 mm, (j) 2𝑏 = 400 mm, (k) 2𝑏 = 800 mm, (l) 2𝑏 = 1200 mm.
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to 1, Figure 6.10 (a), refer also to Figures 6.9 (a), 6.9 (d), 6.9 (g)
and 6.9 (j) for additional details) then strip-shaped (Figure 6.10 (b),
Figures 6.9 (c), 6.9 (f), 6.9 (i) and 6.9 (l)). For bearings with a base
to width ratio close to 1 (e.g. square shape), the application of a
shear strain in a generic direction does not reduce their deformation
capacity.

6.4 Simplified formula for the stability
range of bidirectional shear loaded
U-FREIs

In Section 2.3.2, an easy-to-use design formula for the determi-
nation of the peak displacement (i.e. 𝛿𝐻,𝑐𝑟 = 𝛿𝐻,𝑚𝑎𝑥 ) in the lateral
response of the FREIs was shown. According to this simplified
approach, a local maximum in the force displacement response
curve can be found for an horizontal displacement equal to half of
the base of the bearing in the loaded direction (i.e. 𝛿𝐻,𝑚𝑎𝑥 = 𝑎 ∨ 𝑏).
With this simplified approach the detached area is 𝐴𝑑 = 2𝑏 · 𝛿2𝑎

𝐻

(Figure 6.12 (a)).
Based on this result, in this thesis a similar approach is proposed

for the peak displacement of a force-displacement response curve of
a FREI loaded in a generic horizontal direction. The maximum sta-
ble horizontal displacement of the bearing in the direction defined
by 𝜗 can be approximately calculated as half of the corresponding
dimension 𝐵(𝜗):

𝛿𝜗𝐻,𝑚𝑎𝑥 =
𝐵(𝜗)
2

=


𝑎

cos𝜗 if 𝜗 ≤ arctan
(
2𝑏
2𝑎

)
𝑏

sin𝜗 if 𝜗 > arctan
(
2𝑏
2𝑎

) (6.4)

Figure 6.11 shows the comparison on maximum shear strain
as obtained from FEAs and by Equation 6.4. In this figure the
determination coefficient (𝑅2), the mean percent error (PE%), the
standard deviation (𝜎) and the variance (𝜎2) are also shown and
calculated as follow:
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Figure 6.9: Ultimate behavior of stable bearings: (a) 2𝑏 = 400 mm, (b)
2𝑏 = 800 mm, (c) 2𝑏 = 1200 mm, (d) 2𝑏 = 400 mm, (e) 2𝑏 = 800 mm, (f)
2𝑏 = 1200 mm, (g) 2𝑏 = 400 mm, (h) 2𝑏 = 800 mm, (i) 2𝑏 = 1200 mm, (j)
2𝑏 = 400 mm, (k) 2𝑏 = 800 mm, (l) 2𝑏 = 1200 mm.
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Figure 6.10: U-FREIs at full rollover for each horizontal loading direction:
(a) square-shaped and (a) rectangular-shaped.
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𝑅2 = 1 −

∑𝑛
𝑖=1

(
𝛾𝑛𝑢𝑚
𝐻,𝑚𝑎𝑥,𝑖

− 𝛾𝑎𝑛
𝐻,𝑚𝑎𝑥,𝑖

)2
∑𝑛

𝑖=1𝑛
(
𝛾𝑛𝑢𝑚
𝐻,𝑚𝑎𝑥,𝑖

− 1
𝑛

∑𝑛
𝑖=1 𝛾

𝑛𝑢𝑚
𝐻,𝑚𝑎𝑥,𝑖

)2 (6.5a)

PE% =
1
𝑛

𝑛∑︁
𝑖=1


(
𝛾𝑛𝑢𝑚
𝐻,𝑚𝑎𝑥,𝑖

− 𝛾𝑎𝑛
𝐻,𝑚𝑎𝑥,𝑖

)
𝛾𝑎𝑛
𝐻,𝑚𝑎𝑥,𝑖

· 100
 (6.5b)

𝜎 =

√√√
1
𝑛

𝑛∑︁
𝑖=1

[
𝛾𝑛𝑢𝑚
𝐻,𝑚𝑎𝑥,𝑖

𝛾𝑎𝑛
𝐻,𝑚𝑎𝑥,𝑖

−
(
1
𝑛

𝑛∑︁
𝑖=1

𝛾𝑛𝑢𝑚
𝐻,𝑚𝑎𝑥,𝑖
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)]2
(6.5d)

A good agreement is found between numerical and analytical
values. The minimum coefficient of determination is equal to 0.77,
the maximum standard deviation is 0.176, the maximum variance
is around 3% and the percent error is less than 15%. Figure 6.11
confirms that this formula can be applied for a preliminary assess-
ment of the displacement capacity of unstable bearings in either
direction of loading (i.e. for bearings with a secondary shape factor
smaller than 2.5, 3).

With the proposed approach, the detached area becomes (Fig-
ure 6.12 (b)):

𝐴𝑑

(
𝛿𝜗𝐻

)
=

(
𝛿𝜗
𝐻

)2
sin (2𝜗) if 𝛿𝜗𝐻 < 2𝑎 cos𝜗 (6.6a)

𝐴𝑑

(
𝛿𝜗𝐻

)
= 2𝑎

(
𝛿𝜗
𝐻

sin𝜗
− 𝑎 cot𝜗

)
if 2𝑎 cos𝜗 ≤ 𝛿𝜗𝐻 ≤ 2𝑏 sin𝜗 (6.6b)

𝐴𝑑

(
𝛿𝜗𝐻

)
= −csc𝜗 sec𝜗

2

[
2𝑎2 + 2𝑏2 +

(
𝛿𝜗𝐻

)2
− 4𝑎𝛿𝜗𝐻 cos𝜗+

2
(
𝑎2 + 𝑏2

)
cos (2𝜗) − 4𝑏𝛿𝜗𝐻 sin𝜗

]
if 𝛿𝜗𝐻 > 2𝑏 sin𝜗

(6.6c)
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Figure 6.11: Maximum stable shear strain: analytical (𝛾𝑎𝑛
𝐻,𝑚𝑎𝑥

) - numerical
comparison (𝛾𝑎𝑛

𝐻,𝑚𝑎𝑥
): (a) 𝜎𝑣 = 2 MPa and 𝑡𝑒 = 10 mm, (b) 𝜎𝑣 = 2 MPa and

𝑡𝑒 = 10 mm, (c) 𝜎𝑣 = 2 MPa and 𝑡𝑒 = 10 mm, (d) 𝜎𝑣 = 4 MPa and 𝑡𝑒 = 10 mm.

137



Chapter 6 Stability of rectangular-shaped Fiber Reinforced Elastomeric Isolators under
bidiractional shear loads

dH
ϑ

2a

2b

2a

2b
d2a

H

b)a)

Overlap
Area

Detached
Area

dH
ϑ

2a

2b

2a

2b
d2a

H

b)a)

Overlap
Area

Detached
Area

Figure 6.12: Overlapping and detached areas: (a) horizontal displacement
along the base side 2𝑎 and (b) horizontal displacement along a base side
in the direction 𝜗.
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Modified FREIs





CHAPTER 7

TUNING THE HORIZONTAL RESPONSE OF
UNBONDED FIBER REINFORCED ELASTOMERIC

ISOLATORS

Summary
A simple strategy to tune the horizontal stability of U-FREIs is
shown in this chapter. Results of experimental tests on scaled
modified U-FREIs show the improvement introduced on the
horizontal response of the bearings. The same bearings tested
experimentally were then modeled with finite elements soft-
ware and the results of these analyses confirm the benefits
of the modification.
Part of the informations of this chapter are based on the
journal papers [141, 142] and conference paper [143].

7.1 Background and motivations

It is well known that the frequency of an elastomeric isolator de-
pends on the applied vertical load ([12, 112]). While research studies
have confirmed that U-FREIs are a viable base isolation strategy
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for residential buildings, including N-EB, in seismic-prone areas
of developing countries [66, 68], due to a limited mass of such
buildings, FREIs for these applications need to be slender, with a
secondary shape factor slightly higher than 1.00. These types of
FREIs would be unstable [65].

An ideal rubber-based device should be flexible and stable even
under large lateral deformations. In addition, it should show hard-
ening under large displacements. Hardening is needed to contain
the deformation of the isolation layer within design limits and to
prevent damage to the bearings.

For this reason, research work has been dedicated to identify
strategies to improve the response of FREIs by modifying their
geometry. As result, a variety of geometries have been tested, most
of which have been obtained by creating vertical holes in FREIs, and
the modified bearings were named MU-FREIs (Modified Unbonded
Fiber Reinforced Elastomeric Isolators) [144–147]. Vertical holes
led to an increase of the vertical pressure on the bearings, and
a reduction of the horizontal stiffness. An elastomeric bearing
modified with vertical holes, therefore, would be subjected to higher
pressure providing a lower frequency to the isolation system. This,
combined with the reduction of the horizontal stiffness, increases
the efficiency of the isolation system.

However the introduction of vertical holes does not change the
shape of the lateral response of the bearing. Therefore, an unstable
bearing would remain unstable even when modified. Slender MU-
FREIs would still have a narrow stability range.

In this thesis a novel geometry modification to the FREIs is pro-
posed with the aim of obtaining:

i A controlled reduction of the horizontal stiffness.

ii A wider range of stable response in the range of nominal shear
strain of interest.

iii Hardening under large lateral deformations prior to rollover

via experimental and numerical approach.
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7.2 FEAs blind prediction

A blind prediction of the response of modified FREIs with horizontal
holes was first performed using finite element analysis. An un-
bonded strip-shaped FREI with different layouts of holes in the
longitudinal direction was modeled with planar 2D FEMs using
MSC.Marc, following the same procedure shown in Section 3.1.2.
Holes were introduced deleting elements of the elastomer and fiber-
reinforcement mesh.

Four bearing configurations were modeled: one unmodified bear-
ing (as a control FEMs) and three FREIs with an increasing number
of square-shaped holes from 1 to 3. Each hole has a side equal to
30 mm and is placed at half height of the bearing (Figure 7.1).

Each FREI has a width of 2𝑎 = 400 mm and a height of 𝐻 = 180 mm,
giving a width-to-height aspect ratio of 2.22. It comprises 36 rubber
layers, each one having a thickness 𝑡𝑒 = 5 mm. The primary shape
factor of each pad is 𝑆1 = 𝑎/𝑡 = 40, while the secondary shape factor
is 𝑆2 = 2𝑎/𝑡𝑟 = 2.24. The shear and bulk moduli of the elastomer
were set to 𝐺𝑒 = 0.69 MPa and 𝐾 = 2000 MPa respectively. Each fiber
reinforcement layer has an equivalent thickness of 𝑡𝑓 = 0.05 mm. The
elastic modulus and the Poisson’s ratio for the fiber reinforcement
material were set to 𝐸𝑓 = 70000 MPa and 𝜈 𝑓 = 0.2 respectively.

Each FREI were prior subjected to five different levels of vertical
pressure: 1.5, 2, 2.5, 3, 3.5 and 4 MPa; then, an horizontal dis-
placement up to at least 200 mm (i.e. 𝛾𝐻 = 112%) has been applied.

As a verification of the model with no holes the vertical stiffness
of the bearing obtained with FEA is compared against the solution
from Equation 2.5, following a similar procedure of ref. [134].
With these results, a preliminar sensitivity analysis was conducted
(Figure 7.2) with respect to the number of elements along the
base and the height of the bearing. The relative percentage error
between analytical and numerical results on vertical stiffness (i.e.
1 − 𝐾𝑎𝑛

𝑣 /𝐾𝑛𝑢𝑚
𝑣 ) showed that 200 and 143 elements along the base

and height of the bearing respectively, were enough to capture the
global response of the FREIs with good accuracy.
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Figure 7.1: Schematic of the FREIs for the blind prediction (dimensions are
in mm).

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

N. of elements along the base

0%

5%

10%

15%

20%

R
el
at

iv
e
er
ro

r
=

1
!

K
a
n

v

K
n
u
m

v

71
107
143
179
215

Increasing along H
Decreasing along H
Optimal

N. elements along H - Variation

Figure 7.2: Sensitivity analysis of the FEAs blind prediction.

144



FEAs blind prediction Section 7.2

7.2.1 Blind prediction results
Figure 7.3 shows the horizontal curves response of the 4 configu-
rations of bearings and for the different values of vertical pressure
in the range 1.5 ÷ 4 MPa. From this curves it can be deduced that:

• The presence of the holes decreases the initial lateral stiffness
for each and all the values of vertical pressure.

• All bearings show a softening behavior. However, the bearing
with 2 holes softens up to a shear strain 𝛾𝐻 = 73% and then it
shows hardening.

The FREI with 2 holes thus exhibits desirable horizontal response
under any of the vertical pressure value in the considered range. A
focus on this bearing’s horizontal response up to full rollover for the
values of the vertical pressure in the range 1.5 ÷ 4 MPa is given in
Figure 7.4. There are no peaks in the horizontal force-displacement
response curves of these modified bearings (Figure 7.4 (a)); the
behavior is stable in the considered shear strain range, i.e. the
tangent horizontal stiffness, although decreasing, is greater than
zero throughout the deformation range (Figure 7.4 (b)).

The vertical and secant horizontal stiffnesses of the 4 configu-
rations of FREIs are shown in Figure 7.5. From this figure it can
be seen how the vertical stiffness of the bearing decreases with
the number of holes (Figure 7.5 (a)), as does the horizontal secant
stiffness at 𝛾𝐻 = 100% (Figure 7.5 (b)), as expected; however, their
ratio, although decreasing, shows a minimum value of around 500
(Figure 7.5 (c)). The ratio of vertical and horizontal stiffness must
be high enough to avoid rocking motions of the structure [112] and
the modifications appear to achieve this goal.

In an effort to understand what causes the hardening, Figure 7.6
plots the deformed configurations of the 4 bearings at the lowest
compression stress of 1.5 MPa and increasing amplitudes. This
figure shows that the hardening could be caused by a large shear
deformation of the holes that causes them to essentially close
with increasing horizontal displacement. However, according to
the considered configurations of holes, the hardening response
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could depend on the percentage of removed rubber area and on
the distance between two adjacent holes. In the first case with
one central holes, the percentage of removed area is rather low
(≈ 1%) and the lateral response curve seems to be not affected by
the geometric modification; in the second case, reducing the space
between two adjacent holes (from 130 mm to 95 mm) the shape of
the lateral response curve does not change, even though the peak
shear force are clearly reduced.

7.3 Experimental tests on modified U-
FREIs

The results obtained with the FEAs blind prediction shown in Sec-
tion 7.2.1 demonstrated how modification of the FREIs’ geometry
can potentially bring out improvements in their horizontal response.
A wider stability range could be obtained in U-FREIs with horizontal
holes.

Starting from these considerations, a number of modified FREIs
samples were experimentally tested with the aim of investigating
the actual changes to the response of a bearing when modified. The
same bearings tested are then modeled with finite element software
for further investigation of their response.

7.3.1 Description of the tested samples
The bearings tested in this study were manufactured by Kirkhill
Manufacturing Company, Downey, CA following Caltrans specifica-
tions, as already described in Section 3.1.2.3. A total of 8 bearings
were tested. Table 7.1 gives an overview of the main geometric
characteristics of the bearings. In this table, 𝑉 = 𝐴𝑐 · 𝐻 is the vol-
ume of the bearing; Ø is the diameter of the single hole; 𝑉ℎ𝑜𝑙𝑒𝑠 is the
total volume of the holes (i.e. total removed volume); 𝑉ℎ𝑜𝑙𝑒𝑠/𝑉 is the
total percentage removed volume. Figure 7.7 shows a layout of the
tested bearings. Two types of modifications are studied:
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Figure 7.3: Curve response of the 4 modified configurations: (a) 𝜎𝑣 = 1.5
MPa, (b) 𝜎𝑣 = 2 MPa, (c) 𝜎𝑣 = 2.5 MPa, (d) 𝜎𝑣 = 3 MPa, (e) 𝜎𝑣 = 3.5 MPa, (f)
𝜎𝑣 = 4 MPa
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Figure 7.4: Horizontal response of modified FREI with two holes: (a) force-
displacement curves, (b) tangent horizontal stiffness.

• The first four rows of Table 7.1 refer to bearings with the same
geometry (2𝑎 = 130 mm, 2𝑏 = 60 mm and 𝐻 = 52 mm) and a total
number of holes ranging from 0 (unmodified control bearing)
to 20 (Figure 7.7 (a)).

• The last four rows of Table 7.1 refer to bearings with 12 holes
and variable base side 2𝑎, ranging from 130 mm to 70 mm
(Figure 7.7 (b)).

With the first type of modification, the effect of a variable number
of holes on a given geometry can be determined. The second type
of tests highlights the effect of a fixed set of holes on bearings of
different geometries.

The holes were made along the side 2𝑏 of each bearing (Figure 7.7).
The spacing of the holes along both the vertical and the horizontal
direction is constant and equal to 13 mm and 12 mm, respectively
(Figure 7.7). As clear from Table 7.1, the percentage of removed
volume 𝑉ℎ𝑜𝑙𝑒𝑠 ranges from 1.67% to 9.32% of the total volume of the
bearing.

The holes are of circular shape with 6 mm diameter and they are
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Figure 7.5: Stiffness of the 4 configurations: (a) Vertical stiffness under
pure compression, (b) Horizontal stiffness at 𝛾𝐻 = 100%, (c) Ratio of vertical
and horizontal stiffness.
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Table 7.1: Description of the tested samples.

N. test Modifies 2𝑎 2𝑏 𝐴 𝐻 𝑉 n. holes Ø holes 𝑉ℎ𝑜𝑙𝑒𝑠 𝑉ℎ𝑜𝑙𝑒𝑠/𝑉 Name 𝐹𝑣 𝜎𝑣
[-] [-] [mm] [mm] [𝑚𝑚2] [mm] [𝑚𝑚3] [-] [mm] [𝑚𝑚3] [%] [-] [kN] [MPa]
1 Unmodified 130 60 7800 52 405600 0 6 0 0.00% 130x60 U

18.8

2.41
2 4 holes Ø6 130 60 7800 52 405600 4 6 67856 1.67% 130x60 4H 2.41
3 12 holes Ø6 130 60 7800 52 405600 12 6 20357 5.02% 130x60 12H 2.41
4 20 holes Ø6 130 60 7800 52 405600 2 6 33929 8.37% 130x60 20H 2.41
5 12 holes Ø6 130 60 7800 52 405600 12 6 20357 5.02% 130x60 12H 2.41
6 12 holes Ø6 110 60 6600 52 343200 12 6 20357 5.93% 110x60 12H 2.85
7 12 holes Ø6 90 60 5400 52 280800 12 6 20357 7.25% 90x60 12H 3.48
8 12 holes Ø6 70 60 4200 52 218400 12 6 20357 9.32% 70x60 12H 4.48

130x60 U 130x60 4H 130x60 12H 130x60 20H

130 65 65 53 53

12 12

41 41

a)

130x60 12H 110x60 12H 90x60 12H 70x60 12H

43 43 33 33 23 23

60 b)

Figure 7.7: Schematic of the tested bearings: (a) FREIs with variable
number of holes, (b) FREIs with variable base side 2𝑎.

made using a drill press while clamping the sample between two
steel plates for alignment (Figure 7.8 (a)). A closer look to the holes
pattern of a modified samples is shown in Figure 7.8 (b) for the
bearing 130x60 12H.

7.3.2 Description of the experimental tests
The shear tests were performed at the Department of Industrial
Engineering of the University of Naples Federico II using the test
frame already shown in Figure 4.8 (a).

Each bearings were tested in unbonded configuration, using
the same quasi-static lateral displacement protocol seen in Sec-
tion 4.4.3, Figure 4.8 (b). A strain rate of 1%/s up to a deformation
𝛾𝑚𝑎𝑥
𝐻

= 100% was thus imposed to each FREI.
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(a) (b)

Figure 7.8: FREI’s modification: (a) drill press for the holes pattern, (b)
130x60 12H sample.

A constant vertical load of 18.8 kN was applied on the bearings,
resulting in a nominal axial pressure (i.e., the ratio of the applied
vertical force to the gross area 2𝑎 x 2𝑏) varying from 2.41 MPa for
130x60 U to 4.48 MPa for 70x60 12H (see Table 7.1).

An horizontal displacement was imposed on the bearings in the
direction orthogonal to the holes, i.e. along the side 2𝑎 (Figure 7.9).
This means that the secondary shape factor of the bearings is
defined as 𝑆2 = 2𝑎/𝑡𝑟 .

7.3.3 Experimental test results: 1st type of modi-
fication

For the first set of experimental tests (i.e. test #1 to #4 of Table 7.1),
bearings with the same geometry and a variable number of holes
from 0 (control bearing 130x60 U ) to 20 (130x60 20H ) were tested.
The secondary shape factor for such bearings is 𝑆2 = 2.6.
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Figure 7.9: Holed U-FREI under test.

Figure 7.10 shows the deformed shape of the bearings during
testing, with each column depicting different steps:

• Column 1 - full vertical load and zero lateral displacement;

• Column 2 - full vertical load and a shear deformation of 50%;

• Column 3 - full vertical load and shear deformation of 100%.

The four rows of Figure 7.10 (a-d) show the first four bearings
described in Table 7.1 (i.e. row a: no modification, row d: 20 holes).
As intuition suggests, larger vertical deformation corresponds to
a larger number of holes. Nevertheless, the deformation is still
negligible because of the very low volume of the rubber removed
by drilling. All of the samples show the onset of a stable roll-over
deformation well before 𝛾𝐻 = 50%.

Figure 7.11 shows the horizontal force-displacement curves
obtained from this first set of the experimental tests. The most
noticeable effect of the holes is the reduction of the peak horizontal
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load in the force displacement response. Consequently, the secant
lateral stiffness at peak horizontal load is reduced, as shown in
Table 7.2.

As clear from Figure 7.11, sample 130x60 U (solid line) shows
an almost linear initial response with large horizontal stiffness.
As the displacement increases past the initial deformation, the
bearing shows softening and a peak of the response for a lateral
deformation of 45 mm (𝛾𝐻,𝑐𝑟 ≈ 86%). A similar result is obtained for
the sample with one column of holes (130x60 4H, dashed line). The
curve differs very little from the one of the unmodified 130x60 U,
which is not surprising considering the low percentage of removed
volume (1.67%, see Table 7.1). For 130x60 4H, the lateral secant
stiffness differs less than 7% from that of the unmodified sample
(Table 7.2). This bearing, compared to the bearing with no holes,
shows a modest increase of the stability range.

Increasing the number of holes, the lateral response of the sample
changes significantly. For the bearings 130x60 12H (dotted line)
and 130x60 20H (dashed-dotted line) there is no local maximum
of the lateral force response, and these bearings show a stable
response up to 𝛾𝐻 = 100%. Compared to the unmodified sample, for
the bearings with 12 and 20 holes, the lateral stiffness is largely
reduced. In general, the reduction of stiffness is approximately
proportional to the volume of removed rubber from the sample
(Table 7.2).

Figure 7.12 shows the trend of tangent lateral stiffness of the
tested bearings. As expected, the stiffness always decreases with an
increasing lateral displacement. The graph clearly shows how the
stiffness of the 130x60 U (Figure 7.12 (a)) and that of 130x60 4H
(Figure 7.12 (b)) become equal to zero around a shear deformation
of 90% and the overall response is unstable.

The stability range matches what was previously found for medi-
um/soft compound square and rectangular bearings (see Chap-
ters 5 and 6). Samples 130x60 12H (Figure 7.12 (c)) and 130x60
20H (Figure 7.12 (d)) however, show a positive tangent lateral
stiffness throughout the entire range of imposed deformation.

What these results show is that an unstable bearing can be
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Figure 7.10: Tested samples at 1) 𝛾𝐻 = 0% with full compression, 2) 𝛾𝐻 = 50%
and 3) 𝛾𝐻 = 100%; a) 130x60 U, b) 130x60 4H, c) 130x60 12H, d) 130x60
20H.
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Table 7.2: Horizontal secant stiffness at different imposed deformations,
for bearings with variable number of holes

𝛿𝐻
130x60 U 130x60 4H 130x60 12H 130x60 20H

𝐾𝐻 𝐾𝐻 1 − %𝐾130𝑥60 𝑈
𝐻

𝐾𝐻 1 − %𝐾130𝑥60 𝑈
𝐻

𝐾𝐻 1 − %𝐾130𝑥60 𝑈
𝐻

[mm] [N/mm] [N/mm] [%] [N/mm] [%] [N/mm] [%]
5.0 192 181 5.5% 156 18.5% 119 38.1%
10 157 149 4.8% 123 21.5% 85.6 45.3%
15 134 126 6.1% 103 23.5% 75.1 44.2%
20 121 113 6.3% 87.8 27.3% 67.1 44.4%
25 110 103 6.8% 79.9 27.7% 58.0 47.5%
30 101 94.7 6.5% 72.0 28.9% 53.4 47.3%
35 93.7 87.3 6.9% 66.3 29.2% 50.7 45.9%
40 87.3 82.3 5.7% 62.8 28.1% 48.4 44.6%
45 80.2 77.4 3.5% 60.0 25.2% 46.6 41.9%
50 71.7 69.4 3.1% 58.5 18.3% 44.1 38.5%
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Figure 7.11: Horizontal force displacement response curve of samples with
variable number of holes.
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modified, by drilling horizontal holes, to achieve a stable response
in the range of shear strain of interest. From these tests it was
found that if the volume of removed rubber is less than 5% of the
volume of the bearing, the modification of the response is negligible
(Figure 7.12 (b)).

Figure 7.12 also shows how, for small imposed displacements,
the tangent stiffness of the bearings is not modified by the holes (see
Figures 7.12 (c) and 7.12 (d)), with the effects of the modification
becoming apparent for shear strain larger than 10%.

7.3.4 Experimental test results: 2nd type of modi-
fication

The second set of experimental tests (i.e. test #5 to #8 in Table 7.1)
was performed on bearings with a total of 12 holes (3 columns of
4 holes) and a variable geometry. Different base dimensions, 2𝑎,
in the direction of the horizontal displacement were tested (from
70 to 130 mm) to study the influence of the same modification on
rectangular bearings with different base/depth ratios.

Modifying the base of the bearings, the secondary shape factor
decreases from 2.6 (130x60 12H ) to 2.2 (110x60 12H ), 1.8 (90x60
12H ) and 1.4 (70x60 12H ). The percentage of removed volume is
always greater than 5%, reaching a maximum of 9.32% (Table 7.1).

Figure 7.13 shows the bearings under test in the three load con-
ditions described in Section 7.3.3: 1. pure compression, 2. 𝛾𝐻 = 50%
and 3. 𝛾𝐻 = 100%. This figure shows how these bearings exhibit a
large lateral bulging (column 1, pure compression) as the base of
the device decreases. The same figure shows how the rollover of
the bearing changes as the base of the bearing and the loaded
area decrease. For 𝛾𝐻 = 50%, 130x60 12H bearing shows a rollover
deformation; while bearings 90x60 12H and 70x60 12H do not
detach from the horizontal supports.

Figure 7.14 shows the lateral force-displacement curves of the
bearings from which it is clear how a reduction of the base of the
bearing causes a noticeable reduction of the peak lateral force (see
Table 7.3). Based on findings from Section 5.3.2.1, an unstable
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Figure 7.12: Tangent horizontal stiffness vs imposed displacement for bear-
ings with variable number of holes: (a) 130x60 U, (b) 130x60 4H, (c)
130x60 12H, (d) 130x60 20H.
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a)

b)

c)

d)

1) 2) 3)

Figure 7.13: Tested samples at 1) 𝛾𝐻 = 0% with full compression, 2) 𝛾𝐻 = 50%
and 3) 𝛾𝐻 = 100%; a) 130x60 12, b) 110x60 12H, c) 90x60 12H, d) 70x60
12H.
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Table 7.3: Horizontal secant stiffness at different imposed deformations,
for bearings with variable base side 2𝑎

𝛿𝐻
130x60 12 110x60 12H 90x60 12H 70x60 12H

𝐾𝐻 𝐾𝐻 1 − %𝐾130𝑥60 12𝐻
𝐻

𝐾𝐻 1 − %𝐾130𝑥60 12𝐻
𝐻

𝐾𝐻 1 − %𝐾130𝑥60 12𝐻
𝐻

5.0 156 119 24.0% 88.4 43.5% 51.0 67.4%
10 123 82.0 33.3% 57.2 53.5% 30.2 75.5%
15 103 64.9 36.8% 43.2 58.0% 21.1 79.5%
20 87.8 55.2 37.1% 36.6 58.3% 19.0 78.3%
25 79.9 49.4 38.2% 34.0 57.4% 18.4 77.0%
30 72.0 43.9 39.0% 33.0 54.2% 16.9 76.5%
35 66.3 40.5 38.9% 32.7 50.7% 16.0 75.9%
40 62.8 38.6 38.6% 33.2 47.2% 15.2 75.8%
45 60.0 38.5 35.8% 33.0 45.0% 14.2 76.4%
50 58.5 39.4 32.7% 31.8 45.8% 13.4 77.1%

response is expected for bearings with no holes, especially for those
with a secondary shape factor lower than 2.0. Because of the
horizontal holes, as depicted in Figure 7.14, none of the bearings
shows a peak in the lateral response curve, remaining stable for
the entire range of imposed deformations.

Figure 7.15 shows the trends of lateral tangent stiffness of the
bearings against imposed displacement. It is worth mentioning that
the tangent stiffness of the 70x60 12H bearing (Figure 7.15 (d)) is
quite low at large lateral displacements due to a secondary shape
factor 𝑆70𝑥602 = 1.4.

This states that the improvement in the lateral response of the
bearing with horizontal holes is a function of both the percentage
of removed volume and the secondary shape factor of the device.
From Figures 7.12 and 7.15 it is clear that the most significant
improvement in the response of the bearing is obtained for a re-
moved volume of around 5%, while negligible modifications to the
lateral response of the device are obtained if the removed volume is
less than 2% or more than 9% of the volume of the device.
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Figure 7.14: Horizontal force displacement response curve of samples with
variable base side 2𝑎.

7.4 Experimental tests - Finite Element
Analysis comparison

This section shows the results of finite element analysis on the
FREIs’ samples seen in Sections 7.3.3 and 7.3.4. The experimental-
numerical comparison is intended to confirm the effectiveness of
the proposed changes and to deepen the details of the response of
the modified FREIs.

7.4.1 FEAs specifications
3D FEAs were performed using MSC.Marc, using the same pro-
cedure described in Section 3.1 for material’s modeling and load
condition. Details of all the parameters used for the materials
modeling in FEAs are defined in Table 7.4, where 𝐶1 has been
set as per specification considering how this constant is equal to
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Figure 7.15: Tangent horizontal stiffness vs imposed displacement for bear-
ings with variable base side 2𝑎: (a) 130x60 12H, (b) 110x60 12H, (c)
90x60 12H, (d) 70x60 12H.
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Table 7.4: Parameters of the FEMs on modified FREIs.

𝐶1 𝐾 𝐸𝑓 𝜈 𝑓 𝑡𝑓
[MPa] [MPa] [MPa] [-] [mm]
0.750 2000 70000 0.1 1

half of the initial shear modulus of the rubber (i.e. shear mod-
ulus at a maximum threshold of shear strain equal to 25%, see
Section 3.1.2.1).

The elasomeric layers were modeled using a three-dimentional,
isoparametric, 4+1-node, low-order, tetrahedron element (element
157 in Marc [128]). Each element presents an additional pressure
degree of freedom at each of the four corner nodes (Figure 7.16 (a)).

This element is written for incompressible or nearly incompress-
ible three-dimensional applications. The shape function for the
center node is a bubble function. Therefore, the displacements
and the coordinates for the element are linearly distributed along
the element boundaries. The stiffness of this element is formed
using four Gaussian integration points. The degrees of freedom of
the center node are condensed out on the element level before the
assembly of the global matrix.

Figure 7.16 (b) shows a view of a 3D FEM used for FEAs of holed
FREIs.

7.4.2 FEAs results: 1st type of modification
Figure 7.17 (a) shows the horizontal force-displacement curves
obtained from FEAs. In general, a good agreement was found
between numerical and experimental results (see Figure 7.17 (b)).
From Tables 7.2 and 7.5 it is evident that experimental tests
and FEAs give the same values of horizontal stiffness for all of
the tested bearings. Compared to the unmodified bearing, for
bearings with 4, 12 and 20 holes, FEAs show an average reduction
in secant horizontal stiffness of 6.2%, 26% and 47% respectively.
From experimental results, with respect to the unmodified bearing
(130x60 U ), the reductions of stiffness were found to be 5.5%, 25%
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(a)
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Figure 7.16: FEAs modeling of holed FREIs: (a) 4+1-node tetrahedron
element, (b) FEMs of 130x60 12H FREI.

and 44% for bearings 130x60 4H, 130x60 12H and 130x60 20H
respectively (refer to Table 7.2).

If compared to the control bearing 130x60 U, bearings 130x60
12H and 130x60 20H show a clear improvement of the stable
range (see Figure 7.17 (a)). Figure 7.18 confirms that the lateral
tangent stiffness of bearings with 12 (Figure 7.18 (c)) and 20
holes (Figure 7.18 (d)) remain positive, while bearings 130x60 U
(Figure 7.18 (a)) and 130x60 4H (Figure 7.18 (b)) show a softening
response starting from 𝛾𝐻 = 90%.

7.4.3 FEAs results: 2nd type of modification
Figure 7.19 (a) shows the force-displacement curves obtained from
the numerical analysis for bearings with 12 holes and base side 2𝑎
varying from 130 to 70 mm. In Figure 7.19 (b) the same curves are
plotted against the corresponding experimental ones for a direct
comparison. A very good agreement was found between numerical
and experimental values (see Table 7.6).

When compared to sample 130x60 12H, bearings 110x60 12H,
90x60 12H and 70x60 12H show an average reduction of the secant
stiffness of 42%, 57% and 79% respectively. For the same bearings,
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Figure 7.17: Horizontal force displacement response curve of samples with
variable number of holes: (a) FEAs, (b) Experimental vs FEAs.

Table 7.5: Lateral secant stiffness at different imposed displacements for
FREIs with variable number of holes (FEA).

𝛿𝐻
130x60 12H 110x60 12H 90x60 12H 70x60 12H

𝐾𝐻 𝐾𝐻 1 − %𝐾130𝑥60 𝑈
𝐻

𝐾𝐻 1 − %𝐾130𝑥60 𝑈
𝐻

𝐾𝐻 1 − %𝐾130𝑥60 𝑈
𝐻

5.0 171 160 6.5% 143 16.5% 85.4 50.1%
10 157 146 7.2% 116 26.4% 77.5 50.7%
15 140 128 8.5% 101 27.6% 70.4 49.7%
20 122 105 14.4% 89.4 27.0% 63.0 48.5%
25 111 101 8.8% 77.8 29.8% 56.0 49.5%
30 102 97.7 4.3% 73.1 28.4% 54.0 47.1%
35 94.1 91.9 2.3% 67.6 28.2% 51.0 45.8%
40 86.3 84.8 1.7% 63.2 26.7% 48.2 44.1%
45 79.5 76.9 3.3% 57.8 27.3% 45.3 43.0%
50 72.7 69.4 4.6% 56.8 21.9% 45.5 37.5%
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Figure 7.18: Tangent horizontal stiffness vs imposed displacement for bear-
ings with variable number of holes (FEAs): (a) 130x60 U, (b) 130x60 4H,
(c) 130x60 12H, (d) 130x60 20H.
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Figure 7.19: Horizontal force displacement response curve of samples with
variable base side 2𝑎: (a) FEAs, (b) Experimental vs FEAs.

experimental tests showed a reduction of 35%, 51% and 76% (refer
to Table 7.3).

Figure 7.20 shows the trends of tangent lateral stiffness of bear-
ings with different base dimensions. Numerical analyses confirm
the effectiveness of the proposed modification. The best hardening
at large displacements is obtained for the 110x60 12H bearing
(Figure 7.20 (b)), corresponding to a removed volume of 6%. For
the 70x60 12H bearing (Figure 7.20 (d)) the stiffness tends to
become constant at large displacements. This is in agreement with
the experimental findings (Figure 7.15 (d)).

7.4.4 FEAs results: stress distribution in the bear-
ings

In order to provide an insight into local stress-strain behavior of
perforated bearings, Figures 7.21 and 7.22 show the Von Mises
stress contours at three levels of lateral deformations (as done for
the experimental tests). For each specimen:

• Column 1 corresponds to the full application of the axial load
without any imposed lateral deformation;
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Figure 7.20: Tangent horizontal stiffness vs imposed displacement for bear-
ings with variable base side 2𝑎 (FEAs): (a) 130x60 12H, (b) 110x60 12H,
(c) 90x60 12H, (d) 70x60 12H.
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Table 7.6: Horizontal secant stiffness at different imposed deformations,
for bearings with variable base side 2𝑎 (FEA).

𝛿𝐻
130x60 12 110x60 12H 90x60 12H 70x60 12H

𝐾𝐻 𝐾𝐻 1 − %𝐾130𝑥60 12𝐻
𝐻

𝐾𝐻 1 − %𝐾130𝑥60 12𝐻
𝐻

𝐾𝐻 1 − %𝐾130𝑥60 12𝐻
𝐻

5 143 120 16.0% 86.2 39.6% 41.1 71.2%
10 130 86.5 33.4% 57.3 55.8% 32.9 74.7%
15 118 70.3 40.6% 44.8 62.2% 23.2 80.4%
20 103 57.8 43.7% 36.9 64.1% 18.2 82.3%
25 94.6 50.1 47.0% 35.1 62.9% 17.4 81.7%
30 89.0 44.4 50.1% 34.8 60.9% 16.2 81.8%
35 83.5 41.4 50.5% 34.7 58.5% 16.3 80.5%
40 79.8 39.7 50.3% 33.0 58.7% 14.5 81.9%
45 74.0 40.1 45.8% 32.9 55.5% 13.6 81.7%
50 70.2 39.8 43.2% 32.8 53.3% 13.4 80.9%

• Column 2 corresponds to a shear deformation of 50%.

• Column 3 corresponds to a shear deformation of 100%.

Each row in Figure 7.21 shows bearings with variable number
of holes (row a: 130x60 U, row d: 130x60 20H ), while the rows in
Figure 7.22 show bearings with variable geometry (row a: 130x60
12H, row d: 70x60 12H ).

As clear from Figures 7.21 and 7.22 (column 1) the holes modify
the stress distribution in the device under pure compression, with
the bearing becoming mostly unloaded in its central area, while an
increase of stress is measured in the lateral regions of the device.
For a shear strain of 𝛾𝐻 = 50%, the holes begin to collapse under the
imposed loads (column 2). At this stage, the central holes of the
different bearings are completely collapsed, while the external ones
are largely deformed. This is because, under a lateral deformation,
due to the rollover of the device, the vertical pressure in the center
of the bearing increases.

Under large lateral displacements, all of the holes of the bearing
tend to collapse due to the imposed deformation. The friction
generated at the edges of the collapsed voids is responsible for the
hardening response of the bearing under large lateral displacements
(see Figure 7.14 110x60 12H and Figure 7.22 column 3 row b).
In bearings with a low secondary shape factor (i.e. 𝑆70𝑥402 = 1.4,
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1) 2) 3)

a)

b)

c)

d)

[ ]MPa

Figure 7.21:Equivalent Von Mises stresses: 1) 𝛾𝐻 = 0% with full compression,
2) 𝛾𝐻 = 50% and 3) 𝛾𝐻 = 100%; a) 130x60 U, b) 130x60 4H, c) 130x60 12H,
d) 130x60 20H.

Figure 7.22 column 3 row d, 70x60 12H ) the core of the device
is significantly loaded is compression. In this case the holes close
to the edge of the bearing fall within the area of the bearing that
detaches from the top and bottom supports, which is stress free.
For this reason, the deformation of these holes does not produce a
hardening response.

The analysis of the stress distribution confirms that the position
of the holes within a bearing is important and that the holes must
be arranged in such a way that, when these are deformed, for the
entire range of imposed displacement, the friction generated at the
edges of the collapsed holes creates the desired hardening.

Based on FEAs results on 70x60 12H, it appears that horizontal
holes should be placed within the overlapping area of the bearing,
i.e. the part of the device which is constantly loaded in compression
during the roll-over deformation.
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1) 2) 3)

a)

b)

c)
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[ ]MPa

Figure 7.22:Equivalent Von Mises stresses: 1) 𝛾𝐻 = 0% with full compression,
2) 𝛾𝐻 = 50% and 3) 𝛾𝐻 = 100%; a) 130x60 12H, b) 110x60 12H, c) 90x60 12H,
d) 70x60 12H.

7.5 Parametric finite element analysis

7.5.1 Configurations
In Section 7.4.4 it has been demonstrated how geometry of the
holes within the elastomeric layers may significantly affect the
lateral response of the modified U-FREI. The modification in the
horizontal response (namely, a wider range of stable response and
hardening) depends on several parameters including the size of the
single hole, the clear distance between two adjacent holes, as well
as mechanical parameters of the bearings (i.e. shear modulus of
the rubber and vertical pressure).

In this section, a parametric finite element analysis (FEA) is
conducted on the set of nominal base geometry showed in the
previous section, i.e. 130x60, 110x60, 90x60 and 70x60 (mm x
mm). For each of them, 18 different configurations of holes are
considered by varying (Figure 7.23):

171



Chapter 7 Tuning the horizontal response of Unbonded Fiber Reinforced Elastomeric Isolators

1. The total number of holes: from 2 to 12 total holes.

2. The size of each hole: two diameter values are used, 𝐷1 = 3
mm and 𝐷2 = 7 mm (i.e. small and large circular holes).

3. The disposition of the holes: smaller holes (i.e. 𝐷1 = 3 mm)
are placed within the thinner elastomeric layers, while larger
holes (i.e. 𝐷2 = 7 mm) are placed within the thickest rubber
layers.

4. The distance between two adjacent holes: three clear distances
between two adjacent holes are considered for each value of the
diameter of the holes. For smaller holes 𝛥11 = 𝐷1, 𝛥11 = 2𝐷1 and
𝛥13 = 10𝐷1 while for larger holes 𝛥21 = 𝐷2, 𝛥22 = 2𝐷2 and 𝛥32 = 5𝐷2.
For the modified U-FREI with nominal base geometry 70x60,
the distances 𝛥13 = 10𝐷1 and 𝛥32 = 5𝐷2 haven’t been considered
as they would exceed the base dimension of the bearing.

The first two variations, applied on bearings with variable geom-
etry, result in several percentages of removed volume. As can be
seen from Table 7.7, the percentage of removed rubber ranges from
0.21% to 12.7%.

With the second two configurations, the parametric finite element
analysis aims to clarify the influence of the layout of the holes
on the response of each modified U-FREI. To accounting also the
mechanical properties involved, two values of the shear modulus, i.e.
𝐺𝑒 = 0.5 MPa and 𝐺𝑒 = 1 MPa, and two values of the vertical pressure,
𝜎𝑣 = 2 MPa and 𝜎𝑣 = 4 MPa, are considered for each configuration.
Table 7.8 summarizes the variable parameters of parametric finite
element analysis. A combination of the parameters shown in this
table, leads to a total of 264 FEMs.

7.5.2 Results
The stable/unstable response of each modified FREI is firstly moni-
tored using the normalized response parameters maximum stable
horizontal displacement and horizontal secant stiffness. The maxi-
mum stable horizontal displacement is defined in Section 5.3.2.1
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Table 7.7: : Percentages of removed volumes for each FEMs.

2𝑎 2𝑏 𝑡𝑟 𝑉𝑟 n. holes 𝐷ℎ𝑜𝑙𝑒𝑠 Dist. two holes Name 𝑉ℎ𝑜𝑙𝑒𝑠 𝑉ℎ𝑜𝑙𝑒𝑠/𝑉𝑟
[mm] [mm] [mm] [𝑚𝑚3] [-] [mm] [mm] [-] [𝑚𝑚3] [%]

130 60 52 405600

2 3 D, 2D, 10D 130x60 2H (D-2D-10D) 848 0.21%
3 3 D, 2D, 10D 130x60 3H (D-2D-10D) 1272 0.31%
4 7 D, 2D, 5D 130x60 4H (D-2D-5D) 9236 2.28%
6 7 D, 2D, 5D 130x60 6H (D-2D-5D) 13854 3.42%
9 3 D, 2D, 10D 130x60 9H (D-2D-10D) 3817 0.94%

12 7 D, 2D, 5D 130x60 12H (D-2D-5D) 27709 6.83%

110 60 52 343200

2 3 D, 2D, 10D 110x60 2H (D-2D-10D) 848 0.25%
3 3 D, 2D, 10D 110x60 3H (D-2D-10D) 1272 0.37%
4 7 D, 2D, 5D 110x60 4H (D-2D-5D) 9236 2.69%
6 7 D, 2D, 5D 110x60 6H (D-2D-5D) 13854 4.04%
9 3 D, 2D, 10D 110x60 9H (D-2D-10D) 3817 1.11%

12 7 D, 2D, 5D 110x60 12H (D-2D-5D) 27709 8.07%

90 60 52 280800

2 3 D, 2D, 10D 90x60 2H (D-2D-10D) 848 0.30%
3 3 D, 2D, 10D 90x60 3H (D-2D-10D) 1272 0.45%
4 7 D, 2D, 5D 90x60 4H (D-2D-5D) 9236 3.29%
6 7 D, 2D, 5D 90x60 6H (D-2D-5D) 13854 4.93%
9 3 D, 2D, 10D 90x60 9H (D-2D-10D) 3817 1.36%

12 7 D, 2D, 5D 90x60 12H (D-2D-5D) 27709 9.87%

70 60 52 218400

2 3 D, 2D 70x60 2H (D-2D) 848 0.39%
3 3 D, 2D 70x60 3H (D-2D) 1272 0.58%
4 7 D, 2D 70x60 4H (D-2D) 9236 4.23%
6 7 D, 2D 70x60 6H (D-2D) 13854 6.34%
9 3 D, 2D 70x60 9H (D-2D) 3817 1.75%

12 7 D, 2D 70x60 12H (D-2D) 27709 12.7%

Table 7.8:Set of FEMs: parametric finite element analysis of holed U-FREIs.

Bearing n. holes Diameter of the holes Dist holes 𝐺𝑒 𝜎𝑣
[-] [-] [mm] [mm] [MPa] [MPa]

130x60, 110x60, 90x60

2 3 𝐷1 0.5 2
3 7 2𝐷1 1.0 4
4 10𝐷1
6 𝐷2
9 2𝐷2

12 5𝐷2

70x60

2 3 𝐷1 0.5 2
3 7 2𝐷1 1.0 4
4 𝐷2
6 2𝐷2
9

12
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Figure 7.23: Schematic of the different configurations used in the paramet-
ric finite element analysis: (a) 𝐷ℎ𝑜𝑙𝑒𝑠 = 3 mm, (b) 𝐷ℎ𝑜𝑙𝑒𝑠 = 7 mm
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as the minimum between the maximum and the ultimate displace-
ment. These parameters have been obtained for each modified
U-FREI (𝛿𝑚𝑜𝑑

𝐻,𝑐𝑟
and 𝐾𝑚𝑜𝑑

𝐻
) and compared with the corresponding max-

imum stable displacement and secant stiffness of the unmodified
bearing of the set (𝛿𝑈

𝐻,𝑐𝑟
and 𝐾𝑈

𝐻
).

In Figure 7.24 the ratios 𝛿𝑚𝑜𝑑
𝐻,𝑐𝑟

/𝛿𝑈
𝐻,𝑐𝑟

(in percentage) are plotted
with respect to each configuration of holes applied to bearing 70x60
(7.24 (a) to 7.24 (d)), 90x60 (7.24 (e) to 7.24 (h)), 110x60 (7.24 (i)
to 7.24 (l)) and 130x60 (7.24 (m) to 7.24 (p)). In these column
charts, black bins indicated a reduction of the stability range of
the considered configuration against the unmodified bearing, while
grey bins quantify the increasing percentage of the maximum stable
horizontal displacement achieved with the same modification.

From these graphs the following information can be deduced:

i reduction of 100% of the stability range are related to modified
bearings which experience buckling (i.e. instability under
pure compression). The combination of shear modulus and
removed volume of rubber (i.e. decreasing of the vertical
capacity of the single bearing) makes the bearing buckles
under the applied vertical load. This phenomenon mostly
occurs for lower values of the shear modulus (Figures 7.24 (a),
7.24 (f), 7.24 (i), 7.24 (j) and 7.24 (n)) or larger vertical
pressure (Figures 7.24 (d), 7.24 (h) and 7.24 (l)) and is related
to the size of the holes (only for 𝐷 = 7 mm) and to the clear
distance between two adjacent holes (it occurs mostly for 𝛥 = 𝐷

and 𝛥 = 2𝐷, see for example Figures 7.24 (a), 7.24 (d), 7.24 (e)
and 7.24 (f)).

ii some configurations of holes appear to not to change the stabil-
ity range of the bearings, and the maximum stable horizontal
displacement remains the same after the modification (see
Figures 7.24 (b) and 7.24 (g)).

iii a proper combination of size and positioning of the holes, with
suitable shear modulus and vertical pressure, can improve
the U-FREI response. An extension of the stability range by
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at least 50% is obtained due to the holes in several cases (see
Figures 7.24 (h), 7.24 (k), 7.24 (m), 7.24 (o) and 7.24 (p)).

Buckling under vertical load is mainly controlled by the clear dis-
tance between two adjacent holes. Closer large holes cause a stress
increase in the marginal portion of the bearing (Figures 7.26 (a)
and 7.26 (b)) that tends to collapse when sheared; if the distance
between two adjacent holes increases, the central area is loaded
as the marginal portions (Figure 7.26 (c)) and the bearing is more
stable. For soft bearings under larger values of vertical pressure,
the minimum clear distance between two adjacent holes to prevent
buckling appears to be 𝛿 = 5𝐷.

In Figure 7.27 examples of improving modification are shown in
terms of Von Mises stress distribution. Bearings initially unstable
(i.e. 110x60 with 𝐺𝑒 = 1 MPa under both 𝜎𝑣 = 2 and 𝜎𝑣 = 4 MPa) be-
come stable up to full rollover with the corresponding configuration
of holes. The lateral force – displacement response curves of those
bearings show how a reduction in the horizontal stiffness clearly
follows the modification for lateral displacement less than 50 ÷ 75
mm (i.e. 𝛾𝐻 ≈ 150% ÷ 150%); beyond this threshold, the originally
vertical faces increasingly becoming horizontal up to full rollover
and the horizontal stiffness gradually increases.

The results from Figure 7.24 match what shown in the Sec-
tion 7.4: an extension of the stability range of the bearings is more
likely with larger values of the shear modulus and lightly loaded
bearings (cf. Figures 7.18 (d) and 7.24 (m), Figures 7.20 (b)
and 7.24 (m)).

The focus on the horizontal stiffness is shown in Figure 7.25
where the ratios between horizontal secant stiffnesses of modified
and unmodified bearings are shown. For modified U-FREIs stable
up to full rollover, these ratios are evaluated at 𝛾𝐻 = 100% of shear
strain, while for unstable modified bearings at maximum stable
shear strain. These plots show how the modifications reduce the
horizontal stiffness of the bearings, as expected. The reduction ap-
pears to be proportional to the removed volume, i.e. an approximate
decreasing trend can be found from left to right of each graph.
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Figure 7.24: Ratio of maximum stable horizontal displacements of modified
and unmodified bearings: 7.24 (a) to 7.24 (d) 70x60, 7.24 (e) to 7.24 (h)
90x60, 7.24 (i) to 7.24 (l) 110x60 and 7.24 (m) to 7.24 (p) 130x60.
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Figure 7.25: Ratio of horizontal stiffness of modified and unmodified bear-
ings: 7.25 (a) to 7.25 (d) 70x60, 7.25 (e) to 7.25 (h) 90x60, 7.25 (i)
to 7.25 (l) 110x60 and 7.25 (m) to 7.25 (p) 130x60.
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Parametric finite element analysis Section 7.5

0 0.6 1.1 1.7 2.3 2.9 3.4 4.0 4.6 5.1 5.7 0 0.8 1.7 2.5 3.3 4.2 5.0 5.8 6.7 7.5 8.3

0 0.9 1.8 2.6 3.5 4.4 5.3 6.1 7.0 7.9 8.8

Figure 7.26: Vector plot of maximum principal value of stress for bearing
130x60 under full compression. Clear distance between two adjacent
holes equal to: (a) D, (b) 2D and (c) 5D.
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Chapter 7 Tuning the horizontal response of Unbonded Fiber Reinforced Elastomeric Isolators

(a)
110x60 6H D 110x60 12H 2D

-0.9 1.6 3.6 5.6 7.5 9.5 11.5 13.5 15.5 17.4 19.4

0 1.2 2.4 3.5 4.7 5.9 7.0 8.2 9.4 10.6 11.7

(b)

110x60 12H 10D

0 2.2 4.4 6.7 8.9 11.1 13.3 15.5 17.8 20.0 22.2

Figure 7.27: Comparison between modified and unmodified bearings: mod-
ification that ensure full rollover to prior unstable bearing: (a) 110x60
6H D, 110x60 12H 2D, (b) 110x60 12H 5D.
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CHAPTER 8

CONCLUSIONS & OUTLOOK

8.1 Final comments

The main topic of this thesis was the stability of Unbonded Fiber
Reinforced Elastomeric Isolators (U-FREIs) under combined vertical
and horizontal loads. The investigation was conducted through
three approaches:

1. Analytical: updated analytical solutions for the response pa-
rameters of U-FREIs under combined axial and shear loads
are proposed.

2. Numerical: a large number of both 2D and 3D finite element
analyses on FREIs of different shapes have been carried out.

3. Experimental: experimental tests on samples of U-FREIs in
different configurations have been conducted.

Through the analytical approach it was firstly seen how to fit the
analytical solutions obtained for elastomeric bearings with rigid
reinforcements to bearings with flexible reinforcement. An analyti-
cal equation was proposed for the total vertical displacement 𝛿𝑡𝑣 at
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Chapter 8 Conclusions & Outlook

the top of an U-FREI subjected to combined axial and shear loads,
starting from existing solutions. Divide the vertical displacement
into two rates due to the vertical load (𝛿𝑐𝑣 ) and horizontal displace-
ment (𝛿𝑠𝑣 ), respectively, brought results in line with the expected
displacement values.

Analytical equations for the vertical stiffness 𝐾𝑣 and the effective
compressive modulus 𝐸𝑐 of an U-FREI under simultaneous vertical
and horizontal loads have been introduced. The solutions reported
in this thesis allow to deduce the decreasing trend of these parame-
ters with the horizontal displacement. With the proposed approach,
both 𝐾𝑣 and 𝐸𝑐 can be obtained starting from the values under pure
compression, through the function of the horizontal displacement
𝜓 (𝛿𝐻 ).

Futhermore, simple analytical equation initially proposed for
SREIs, has been extended to derive the maximum stable horizontal
displacement of an U-FREIs under axial and bidirectional shear
load. As a first estimate, this displacement can be seen as half of
the side in the direction of the imposed horizontal displacement
(i.e. combination of the two shear displacement).

With the numerical approach the stability of a large number of
different-shaped FREIs with several combinations of geometric and
mechanical parameters have been studied. A total number of 5024
finite element analyses have included strip-shaped, rectangular-
shaped and square-shaped U-FREIs.

Finite element analyses of elastomeric devices are quite challeng-
ing for the well known issues with inelastic stress strain response
of rubber-base devices. Thus, all the finite element analyses sets
were prior adequately calibrated using results from experimental
tests on FREIs’ samples. A number of FREIs with different materi-
als and geometries were tested, and the numerical-experimental
comparisons have shown good accuracy of the FEMs.

Through the FEAs the influence of the secondary shape factor 𝑆2
on the stability of an U-FREIs was specially studied. FEAs show
how this parameter rules the stability of U-FREIs as its variation
greatly affects the lateral response of the bearing. A stable response
of an U-FREIs can be expected for minimum values of 𝑆2 in the
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Furher developments Section 8.2

range 2.5 to 3.5, depending also on the shear modulus of the rubber
𝐺𝑒 and the applied vertical pressure 𝜎𝑣 These results were achieved
both for unidirectional and bidirectional shear loaded bearings.

Based on the results from FEAs, easy-to-use stability charts were
proposed. These charts allow to derive the secondary shape factor
required for a stable response up to a fixed threshold of shear strain.
The stability charts have been proposed for both square-shaped,
rectangular-shaped and strip-shaped U-FREIs, loaded in a generic
horizontal direction.

Finally, a simple strategy to tune the horizontal response of U-
FREI has been introduced. Modifying the geometry of bearings
through horizontal holes along one of the base sides, the horizontal
force-displcaement response curve can be modified. It has been
seen how this modified geometry can lead unstable bearings to a
stable response up to full rollover, avoiding unstable ranges in the
lateral response. Experimental tests and finite element analyses on
U-FREIs samples with different holes configurations have shown
encouraging results.

8.2 Furher developments

This thesis presented preliminary results on the vertical and hori-
zontal response of U-FREIs under combined axial and shear loads.
Several results are obtained with simplified hypotheses, with the
aim of provide easy-to-use outcomes, with a minimum number of
involved parameters. Thus, constant values of the shear modulus
have been considered in the FEAs, reproducing the secant shear
modulus approach of a design phase. The results may be extended
accounting the complex, rate-dependent response of different rub-
ber compounds.

Also, experimental tests computing the variation of the vertical
stiffness of U-FREIs under combined axial and shear loads may be
conducted to validate the analytical – numerical outcomes of this
work.

The proposed modification to improve the lateral response of U-

183



FREIs under combined axial and shear loads needs to be extended
considering bearings loaded in different horizontal direction or
different orientations of the holes, i.e. holes parallel to the direction
of the horizontal displacement.

Finally, the hysteretic response of the U-FREIs may be addressed.
Further investigations are needed to study the response of modified
U-FREIs under hysteretic horizontal loads, or bidirectional quasi-
static and hysteretic shear loads. An experimental campaign on U-
FREIs with different elastomeric compounds and variable geometry
could also help to shed some lights on the coupled axial-shear
response of these devices.
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