
Università degli Studi di Napoli Federico II
Dottorato di Ricerca in

Ingegneria Strutturale, Geotecnica e Rischio Sismico

Thesis for the Degree of Doctor of Philosophy

Design, development and implementation of
methodologies for real-time analysis

and modeling of seismic data for
Earthquake Early Warning Systems

by
Valeria Longobardi

Advisor: Prof. Aldo Zollo

Co-advisor: Dr. Simona Colombelli

Scuola Politecnica e delle Scienze di Base

Dipartimento d Strutture per l’Ingegneria e l’Architettura



 
 

   
 
 

La borsa di dottorato è stata cofinanziata con risorse del 
Programma Operativo Nazionale Ricerca e Innovazione 2014-2020, risorse FSE REACT-EU 

Azione IV.4 “Dottorati e contratti di ricerca su tematiche dell’innovazione” 
e Azione IV.5 “Dottorati su tematiche Green” 



 

 

 

 

 

 

"I boschi su le cime 
de le montagne crollansi, e le mura 

de le cittadi popolose, e i templi  
ondeggiano perfino, allor che scuoti 

tu col tridente flebile la terra, 
e gran fracasso s'ode e molto pianto 

per ogni strada." 
 

Inno a Nettuno (vv. 142-148) 



Design, development and implementation of

methodologies for real-time analysis

and modeling of seismic data for
Earthquake Early Warning Systems

Ph.D. Thesis presented
for the fulfillment of the Degree of Doctor of Philosophy
in Ingegneria Strutturale, Geotecnica e Rischio Sismico

by

Valeria Longobardi

February 2025

Approved as to style and content by

Prof. Aldo Zollo, Advisor

Dr. Simona Colombelli, Co-advisor

Università degli Studi di Napoli Federico II
Ph.D. Program in Ingegneria Strutturale, Geotecnica e Rischio Sismico
XXXVII cycle - Coordinator: Prof. Iunio Iervolino

www.dist.unina.it/dottorati-di-ricerca/dottorati



 i 

Abstract 
This PhD thesis is developed within the framework of Earthquake Early Warning (EEW), 

a research topic that investigates the feasibility of issuing rapid alerts to mitigate the 

impact of earthquake striking target sites. The work addresses various aspects of EEW, 

focusing on the analysis of early P-wave signals and the development of on-site 

algorithms for earthquake intensity estimation. The main motivation is to improve the 

timeliness and accuracy of alerts using data from individual stations and short time 

windows. 

The original contribution of this research is the development of an on-site EEW software 

package, tested on datasets from various tectonic environments, including the Campi 

Flegrei area.  

Moreover, the analysis of early P-wave displacement growth led to the discovery of a 

global scaling relationship between the P-wave growth rate and the final earthquake 

magnitude, offering new opportunities for rapid magnitude estimation. These findings 

also have implications for earthquake nucleation studies, suggesting that the early portion 

of the P-wave signals could provide crucial information on the nucleation stage and non-

radiative processes preceding dynamic rupture propagation. 

Keywords: Earthquake Early Warning, earthquake source observations, magnitude 

estimation, earthquake rupture physics. 
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Sintesi in lingua italiana 
Questa tesi di dottorato si inserisce nel campo del Earthquake Early Warning (EEW), una 

disciplina scientifica che studia la fattibilità di emettere avvisi rapidi per mitigare 

l’impatto dei terremoti a siti di interesse. Il lavoro affronta vari aspetti dell’EEW, con 

particolare attenzione all’analisi dei primi secondi di segnale delle onde P e allo sviluppo 

di algoritmi on-site per la stima dei parametri di sorgente e dell'intensità del terremoto. 

La motivazione principale è quella di migliorare la tempestività e l'accuratezza degli 

allarmi, utilizzando dati provenienti da stazioni individuali e finestre temporali brevi. 

Il contributo originale di questa ricerca consiste nello sviluppo di un pacchetto software 

per l’EEW on-site, testato su dataset provenienti da vari ambienti tettonici, tra cui i Campi 

Flegrei. 

Inoltre, l'analisi della crescita iniziale dell’ampiezza delle onde P ha portato alla scoperta 

di una relazione di scaling globale tra la velocità di crescita dell’ampiezza delle onde P e 

la magnitudo finale del terremoto, aprendo nuove prospettive per la stima rapida della 

magnitudo. Questi risultati hanno anche implicazioni per lo studio della nucleazione del 

terremoto, suggerendo che la fase iniziale delle onde P potrebbe fornire informazioni 

cruciali sullo stadio di nucleazione e sui processi non-radiativi che precedono la 

propagazione dinamica della rottura. 

Parole chiave: Earthquake Early Warning, osservazioni sulla sorgente sismica, stima 

della magnitudo, fisica della rottura del terremoto.  
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Introduction  
This thesis work developed in the framework of Earthquake Early Warning (EEW), e.g. 

the field of Earthquake Science that explore the scientific and technological feasibility of 

issuing a rapid alert from the analysis of early earthquake signals to mitigate the impact 

of late arriving, strong shaking waves. EEW systems are designed to this scope. 

This study addresses various aspects of earthquake early warning (EEW), with a 

particular focus on methods for analyzing seismic waveforms—especially early P-wave 

signals. The main applications center on on-site EEW algorithms, which use data from 

individual stations and brief time windows to predict expected shaking intensity and 

source parameters. The work also explores the physics of earthquake rupture, examining 

its connection to the eventual earthquake size and the potential use of rapid magnitude-

estimation modules in EEW systems. 

The main outcome of this research is an on-site EEW software package for both real-time 

and retrospective analysis, developed in collaboration with TME Srl, an industrial partner 

in the frame of an industrial doctorate (Dottorato Industriale). The industrial doctorate is 

a specialized doctoral program designed to bridge the gap between academia and industry, 

and it is conducted collaboratively by the university and an external company, in our case 

the company TME srl. Under this scheme the doctoral research project directly aligned 

with the company’s R&D goals, while also fulfilling the academic requirements set by 

the university. 

Given the wide array of topics encompassed by Earthquake Early Warning (EEW), this 

thesis is organized into three main parts, each addressing a distinct aspect of the field. 

 

Part 1 describes the fundamental principles of EEW and its practical implementations. 

• Chapter 1 offers a detailed explanation of the parameters used in contemporary 

EEW methodologies, with special attention to early seismic signal observations 

and their relation to earthquake nucleation. 
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• Chapter 2 provides a comprehensive overview of the current global status of 

EEW systems, followed by a discussion of the two system approaches: source-

based and impact-based. These configurations are examined in terms of their 

design features, operational goals, and the contexts in which they are typically 

employed. 

 

Part 2 focuses on the application of on-site EEW algorithms to real-world earthquake 

scenarios. 

• Chapter 3 describes the implementation of the on-site Alert Level system 

(SAVE) across several seismically active regions worldwide. This chapter 

presents test results from notable events such as the 2023 Turkey-Syria earthquake 

doublet, the Md 4.2 Campi Flegrei earthquake, and a large earthquake dataset in 

California. 

• Chapter 4 highlights the next generation of P-wave-based on-site warning 

systems, with particular emphasis on the P-Alert system. The chapter examines 

the system’s performance through analyses of a Californian earthquake database, 

shedding light on its robustness, accuracy, and potential for wider deployment. 

 

Part 3 explores emerging perspectives for EEW by investigating the first few seconds of 

P-wave arrivals. 

• Chapter 5 showcases insights derived from an innovative global seismic catalog, 

focusing on early P-wave displacement growth rates—those observed in less than 

one second. The discussion addresses the significance of these short-timescale 
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observations for both earthquake rupture physics and rapid magnitude estimation. 

It also evaluates how these findings can advance future EEW applications by 

improving alert accuracy and lead time. 

By progressing from foundational EEW concepts to innovative research on early P-wave 

processing and modelling, this thesis aims to bridge theoretical groundwork with practical 

applications, ultimately contributing to more effective and timely earthquake early 

warning systems. 
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PART 1 – PRINCIPLES OF EARTHQUAKE EARLY 
WARNING 

CHAPTER 

1 Physical grounds of Earthquake Early Warning 
Earthquake Early Warning (EEW) is about the fast delivery of alerts announcing the 

impending ground shaking due to an earthquake which has already nucleated. Since an 

EEW is issued only when the earthquake rupture has already started, the warning time is 

defined as the difference between the first earthquake detection/characterization and the 

occurrence of strong ground shaking at the user’s site. Therefore, the time scale of EEW 

spans from few seconds to several tens of seconds after the earthquake beginning. The 

concept of EEW dates back to 1868 following an earthquake on the Hayward Fault in 

California, when J.D Cooper (Cooper, 1868) proposed a system that could transmit a 

warning to the city of San Francisco through telegraph cables which were far away from 

the city: anytime an earthquake would have struck, the warnings sent via cables could 

have been used to ring an alarm bell in the city.  

Although the concept is quite immediate, the implementation is more difficult. Given the 

limited amount of time for an EEW system to be effective, the earthquake has to be 

characterized in terms of location and magnitude in a rapid and reliable way using few 

seconds of the available early seismic signal. This also poses challenging questions on 

earthquake physics, concerning the possibility of estimating the final earthquake 

magnitude from the first few seconds of recorded signals. The worldwide development 

of different types of instruments (including near fault accelerometers, borehole and strain 

rate sensors, fiber optic cables) recording high resolution signals have paved the way to 

refined analysis issuing questions about the physics of the earthquake rupture. Providing 

answers to the complex debate about the earthquake determinism will provide new 

perspective not only for future EEW applications but also for understanding the physical 

nature of the earthquake nucleation. 
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1.1 A basic grasp of seismology: the Representation Theorem  

In order to discuss the basic concepts of EEW it is useful to start from the seismic signal 

and the physics behind its representation. Let us recall that the equations governing the 

propagation of seismic waves within the Earth, far from the source zone, are linear 

differential equations with constant coefficients. This is a consequence of the reasonable 

assumption of elastic behavior in these regions. However, it should be noted that the 

energy accumulated near the source, because of tectonic processes, is only partially used 

for seismic radiation. A significant portion of this energy is spent in fracturing processes 

at the source, which cannot be considered elastic. Nevertheless, when considering 

everything that occurs outside the source zone, it is reasonable to treat the Earth as a linear 

and stationary filter, with stationarity clearly limited to the duration of seismic wave 

propagation. 

In other words, considering also the effect of the measuring apparatus, the seismogram 

recorded at the Earth's surface can be viewed as the output of a chain of filters (assumed 

to be linear and time-invariant) that modify the shape and amplitude of the signal (input) 

emitted by the seismic source. The relationship between the input and output of a chain 

of filters, if all the filters are linear and time-invariant, is expressed through the operation 

of convolution. Describing the chain of filters—comprising the Earth and the measuring 

instrument—by two functions of time, P(t) and I(t), and denoting the source function by 

S(t), the seismogram u(t) is given by: 

 𝑢(𝑡) = 𝑆(𝑡) ∗ 𝑃(𝑡) ∗ 𝐼(𝑡)	 (1) 

in the time domain 𝑡, or, by using the convolution theorem as: 

 𝑢(𝜔) = 𝑆(𝜔)𝑃(𝜔)𝐼(𝜔)	 (2) 

In the frequency domain 𝜔. Equations (1) and (2) generally represent the relationship 

between the seismogram and the various effects that contribute to its composition. In 

principle, if the function 𝑃 is known in the time or the frequency domain, and if the 

instrumental response 𝐼 is known, it is possible to use equations XX and XX to directly 

determine the function 𝑆 from the seismograms, which represents the time variation of 

the seismic source. Seismic sources are spatially extended, and seismograms are recorded 

at various points on the Earth's surface. Consequently, formula (1) needs to be modified 

to include spatial coordinates, as it follows: 
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 𝑢(𝒙, 𝑡) = 	S(𝛏, t) ∗ G(𝐱, 𝛏, t) ∗ I(𝐱, t)	 (3) 

Where the vector 𝑥 represents the coordinate position of the receiver and the vector ξ 

represents the coordinate position of the portion of the source being considered. In 

equation (3), the term 𝐺(𝑥,𝜉,𝑡) , the elastodynamic Green function, generally accounts for 

wave propagation effects, including, for example, anelastic attenuation and site effects. 

The elastodynamic Green's function can be calculated by solving the wave equation once 

the distribution of elastic/anelastic properties of the propagation medium is known. 

For earthquake early warning purposes, the portion of the signal related to the P-wave, 

uP(xR,t), at a given site xR  is used to give an estimate of the impact of the more damaging 

(and slower propagating) S-waves since the two phases are related to the same seismic 

source (as it is shown in equation (3)). In the next paragraph, we described the parameters 

and the methods that links the early P-wave content to the late S-wave content expected 

at a certain location. 

1.2 The scaling between the early P-wave and the S-wave 

An earthquake excites both P and S waves. The S wave carries the major destructive 

energy, and the smaller- amplitude P wave precedes the S wave by the time typically 

equal to the 60% of the S-wave travel time to the station. The initial portion of the P wave, 

despite its small and nondestructive amplitude, carries the information of the earthquake 

size, and a good determination of the earthquake size from the P wave provides 

information about the strength of shaking being brought by the following S wave. Indeed, 

in the early development of EEW methods, many authors (e.g (Kanamori, 2005) (Wu and 

Kanamori, 2005c), (Olson and Allen, 2005), (Zollo et al., 2006)) put their efforts into 

exploring the feasibility of the fast characterization of the earthquake source from the 

analysis of the parameters associated to few seconds of the P-wave signals. These 

parameters depend either on the P-wave amplitude or on the P-wave frequency content. 

Their combination is nowadays largely used in EEW systems (see chapter 2). 

 

1.2.1 The early P-wave amplitude: Pa, Pv, Pd  

Empirically derived relations and theoretical arguments show that the peak ground-

motion amplitudes (Peak Ground Acceleration PGA, Peak Ground Velocity PGV and 

Peak Ground Displacement PGD) correlate with the amplitude of the initial motions such 
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as P-peak acceleration Pa, P-peak velocity Pv, and P-peak of displacement Pd 

((Kanamori, 2005), (Wu and Kanamori, 2008)). To get the aforementioned parameters, 

the acceleration signals are integrated to velocity and displacement.  Eventually, a high-

pass filter with cut-off frequency of 0.075 Hz is applied on the displacement to remove 

the low-frequency drift (baseline) that might affect the signal after the last integration. 

Generally, for a nearby small event, Pa can be large but the PGA and PGV are small. Pa 

is usually determined by a very-high-frequency wave with short duration which does not 

have a high-damage potential. In contrast, Pv and Pd contain more long-period energy 

than Pa and correlate well with PGA and PGV. Pd correlates well with the Peak Ground 

Motion parameters (Wu and Kanamori, 2005c). As an amplitude parameter, the peak 

amplitude of the initial P-wave displacement, Pd, reflects the attenuation relationship of 

the ground motion with distance. This hypothesis paved the way to the calibration of 

empirical scaling laws that linked the early P-wave amplitude to a rapid magnitude 

characterization. As example, Wu and Zao (2006) investigated the attenuation of Pd with 

hypocentral distance R in Southern California, resulting in the following type of scaling 

law: 

 log(Pd) = A + B ∙ M + C ∙ logR	 (4) 

Where M is the event magnitude. Similar results were also found for other regions of the 

world, such as Italy and Taiwan ((Zollo et al., 2006), (Wu, 2003)). The equation (4) was 

used to define a measure of magnitude, called “Pd magnitude”. In many studies 

((Kanamori, 2005), (Wu and Kanamori, 2008), (Allen and Kanamori, 2003)), the 

maximum time window explored to evaluate the earthquake magnitude, and the expected 

Peak Ground Motion was set to three seconds since the detection of the P-wave on the 

seismogram, to keep short the warning time.  

An obvious trade-off exists between the duration of the initial motion and the reliability 

of magnitude/ground-shaking prediction. Below Mw 5.5-6.0, a couple of seconds of P-

wave data would contain nearly the entire history of fault rupture and a scaling relation. 

Above Mw 5.5-6.0 a saturation effect was observed when equation (4) was used to 

evaluate the “Pd magnitude” (Wu and Zhao, 2006). Zollo et al (2006) proposed a 

combination of both the early P- and S-wave to get a more robust magnitude estimation. 

Particularly, they retrieved the magnitude dependence of early P-  
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Figure 1.2.1: Correlation between low-pass filtered peak ground motion value and moment-magnitude. 
The panels show the logarithm of peak ground displacement normalized at a reference distance of 10 km 
as a function of Mw in time windows of (left) 2 sec length from the first P-arrival and (middle) 1- and (right) 
2- sec from the first S-arrivals (from (Zollo et al., 2006)). 

and S- peak amplitudes by correcting the equation (4) for the distance effect, normalizing 

to a reference distance of R=10 km. Due to the uncertainty in the identification of the first 

P arrival time, only the 2-sec window were considered while both 1-sec and 2-sec 

windows were used for S-waves (see Figure 1.2.1). Lancieri and Zollo (Lancieri and 

Zollo, 2008) further developed and refined these concepts. 

Considering the discussions of Zollo et al. (2006), one of the hypotheses that causatively 

links the early peak amplitude parameters to the final earthquake size might be explained 

as it follows. The peak ground displacement depends on the relatively high frequency 

content of the signal. Since the receivers are usually not in the immediate proximity of 

the rupturing fault and that the rupture directivity is averaged by the azimuthal locations 

of the recording stations, the seismic radiation can be assimilated to the far-field content 

of a point source. In this first approximation, the radiated P-wave predicts a ground 

motion u(t) at a distance r can be written as (Aki and Richards, 2009): 

 
𝑢(𝑡) =

𝐴!"

4𝜋𝜌𝑟𝛼# 𝑀̇$(𝑡 −
𝑟
𝛼) 

(5) 

Where 𝛼 is the P-wave velocity, 𝜌 is the medium density, 𝐴!" describes radiation angular 

dependence. 𝑀̇$ is the moment rate that scales with the average slip-rate. The slip-rate is 

controlled by the stress drop ∆𝜎 and the length of the slipping fault area (Kostrov, 1964). 

As a consequence, in a probabilistic sense, earthquake that fractures with higher dynamic 

stress drop and/or active surface at their initiation, have an increased probability of 

propagating to larger distances and radiate larger wave amplitudes, as seen from the peak 
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ground motion in the early portion of near-source P and S-signals in various studies ((Wu 

and Zhao, 2006), (Wu and Zhao, 2006), (Wu and Kanamori, 2005c)) 

1.2.2 The early P-wave characteristic period: 𝝉𝒄 and 𝛕𝐩𝐦𝐚𝐱  

To determine the size of an earthquake, it is important to determine whether the event’s 

slip motion has stopped or is still growing, which is generally reflected in the period of 

the initial motion. Small and large events yield short- and long-period initial motions, 

respectively. However, the slip motion is in general complex, and even a large event often 

begins with a small, short-period motion, followed by a long-period motion. 

Consequently, it is important to define the average period during the first motion. 

Kanamori (2005) modified the method that was first proposed by Nakamura (1988) to 

measure the parameter  𝜏%, representing the average period of the initial portion of the P-

wave ((Kanamori, 2005)(Nakamura, 1988)). The mathematical details of the 𝜏% 

evaluation are presented in Box 1.2.1. The difference in the method proposed by 

Kanamori (2005) with respect to the method of Nakamura (1988) relies on the fact that 

for the 𝜏% evaluation a short window of P-wave signal is being used (usually up to 3 

seconds after the first P-wave detection).  

Figure 1.2.2: The waveforms of the beginning of close-in displacement records of earthquakes with 
magnitudes from 2.8 to 8. The amplitudes are in arbitrary scale. The first 3 s is indicated by two dash-dot 
lines (from (Kanamori, 2005)). 
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The method was successfully applied to real earthquakes data (some waveforms examples 

from Kanamori (2005) are presented in Figure 1.2.2), proving that the 𝜏% parameter scales 

 Box 1.2.1:  𝝉𝒄 and 𝝉𝒎𝒂𝒙𝑷  measurement 

Average P-wave period 𝝉𝒄 

We consider the ground-motion displacement u(t) and velocity 𝑢̇(𝑡) from the vertical 

component record and evaluate the ratio r: 

𝑟 = ∫ ,̇!(/)1/"#
#
∫ ,!(/)1/"#
#

     (I) 

Usually, 𝜏$ is set at 3 seconds after the onset of P-wave. Using Parseval’s theorem, 

𝑟 =
23! ∫ 4!|,6(4)|!14$

#
∫ |,6(4)|!14$
#

= 4𝜋7〈𝑓7〉  (II) 

Where 𝑢[(𝑓) is the frequency spectrum of u(t) and 〈𝑓7〉 is the weighted average of 𝑓7. 

Hence, 

𝜏% =
8

9〈4!〉
= 8

√=
    (III) 

Predominant P-wave period 𝝉𝒎𝒂𝒙𝑷  

Let us consider Xi the smoothed ground velocity squared at time i obtained as: 

𝑋> = 	𝛼𝑋>?8 + 𝑥>7    (IV) 

where xi is the recorded ground velocity at time i and alpha is a smoothing constant, and 

Di the smoothed velocity derivative squared obtained as: 

𝐷> = 𝛼𝐷>?8 + ^𝑑𝑥 𝑑𝑡` a
>

7
  (V) 

Thus, the predominant period is determined in real-time as: 

𝜏>" = 2𝜋c𝑋> 𝐷>⁄     (VI) 
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with the event magnitude and keeps increasing even for earthquakes with magnitude M>7 

having no saturation effects (Wu and Kanamori, 2005a). 

For the EEWS application, if 𝜏% < 1 sec, the event has already ended or is not likely to 

grow beyond M > 6. If 𝜏% > 1 sec, it is likely to grow, but how large it will eventually 

become cannot be determined by the 𝜏% paramter. In this sense, this method provides a 

threshold warning. 

The average or characteristic period 𝜏% as described above is evaluated in a fixed P-wave 

time window. Allen and Kanamori (2003) suggested a method which measures the 

predominant period 𝜏@ (Allen and Kanamori, 2003). The predominant period is 

determined continually in real time from the vertical component of the recording sensor 

and is defined through a recursive relation. The mathematical detail of 𝜏@ evaluation is 

provided in Box 1.2.1.  

Figure 1.2.3: Example of waveforms and 𝜏%&'( evaluations. Left side: waveform of a M 4.6 earthquake in 
southern California recorded at station GSC, 74 km from the epicentre. Panel (a) shows the raw vertical 
component waveform recorded by a broadband velocity sensor. Panel (b) shows ten seconds of the velocity 
waveform after low-pass filtering at 3 Hz. The P-wave trigger time is shown by the vertical line. Panel (c) 
shows 𝜏%(𝑡) trace calculated in a recursive fashion from the waveform in panel b. Right side: waveform of 
the M w 8.3 Tokachi-oki earthquake, recorded at station HKD112, 71 km from the epicentre. Panel (d) 
shows the raw vertical component waveform recorded on an accelerometer. Panel (e) shows ten seconds 
of the raw acceleration waveform. The P-wave trigger is shown by the vertical line. Panel (f) shows ten 
seconds of the velocity waveform determined from the acceleration recording using recursive relations 
only. It has also been low-pass filtered at 3 Hz. Panel (g) 𝜏%(𝑡)  trace calculated in a recursive fashion 
from the waveform in panel f (from (Olson and Allen, 2005)). 
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Allen and Kanamori (2003) and Olson and Allen (2005) retrieved log-scaling 

relationships of the predominant period with the earthquake magnitude for different world 

data such as Japan, Taiwan and Southern California. Particularly, Allen and Kanamori 

(2003) found two scaling relations of the logarithm of τpmax with respect to two different 

magnitude range (M<5 and M>5). In fact, the higher frequency content of smaller 

magnitude earthquakes is measurable within a shorter time period after the P- wave arrival 

(see left side of Figure 1.2.3) than the low-frequency energy of larger events (see right 

side of Figure 1.2.3). Correspondingly, the magnitude of smaller events can be 

determined more rapidly than that of larger events. This also means that the τpmax method 

is underlying a threshold method, because the minimum time window of available signal 

(as example 1 second) is to be considered as a minimum magnitude estimate.  

The evidence for a scaling relation between the early P-wave amplitude and frequency 

with the final magnitude for EEW purposes has paved the way for the scientifical debate 

on whether the first few seconds of P-wave are informative on the physics of the rupture 

process.  Much of the discussion has focused on the time-domain characteristics of the P-

wave. ((Colombelli et al., 2014),(Meier et al., 2016),(Melgar and Hayes, 2019), (Trugman 

et al., 2019)) 

1.3 The short-term P-wave as an insight into the earthquake 
nucleation  

1.3.1 Overview of different seismological observations 

In the previous paragraph, a summary of the physics and the methods of the early P-wave 

parameters has been presented. These parameters are largely adopted for EEW systems 

to characterize the earthquake source as fast as possible. However, whichever parameter 

is adopted (Px, 𝜏%, 𝜏EFG" ), the scaling with magnitude is generally evident and robust up 

to magnitude 6.0–6.5, while a poor correlation is observed for larger magnitudes. The 

saturation is a well-known problem and has been extensively discussed in the literature 

((Kanamori, 2005), (Zollo et al., 2006), (Lancieri and Zollo (2008)), (Rydelek et al., 

2007)). To avoid the arising of the saturation effect, different authors started to analyze 

the behavior of the P-wave amplitude at longer time windows. Colombelli et al. (2012) 

observed that when the Pd is measured at each time step on the available records starting 

from the P-wave arrival, the saturation effect disappears for higher magnitude. The 
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approach follows the physics behind equation (4), where the logarithm of Pd is updated 

 Box 1.3.1: The Logarithm of P-peak displacement versus time (LPDT) curve 

 

Figure 1.3.1 The figure shows an example of waveform processing and LPDT curve computation for the 
2011-07-25 M6.3 event recorded at the station MYG009 (distance 114 km). The figure shows: (a) 
acceleration [cm s–2]; (b) velocity [cm s–1]; (c) displacement [cm]; (d) absolute value of displacement 
[cm]; (e) LPDT curve [cm]. In all panels, time is referred to the time of the first sampling of records. 
Panels (a), (b) and (c) also show the peak amplitude values. The tick grey vertical line in panel a shows 
the manual P-wave arrival time identification. (from (Colombelli et al., 2020)). 

We here describe how to evaluate the Logarithm of P-peak displacement versus time 

(LPDT) curve upon the discussion provided by Colombelli et al. (2014). At each station, 

(1) the acceleration waveform is integrated twice to get the displacement (panel a, b, c 

of Figure 1.3.1); (2) the displacement is filtered with high-pass cutoff frequency of 

0.075 Hz; (3) the absolute value of the displacement is evaluated (panel d of Figure 

1.3.1).; (4) starting from the P-wave on set, the P-peak of displacement Pd is measured 

in an expanding time window with step equal to the signal time step; (5) finally, the 

logarithm of Pd is corrected by the distance through the approach described in paragraph 

1.2.1 equation (4). The resulting LPD is plotted versus time vector (panel e of Figure 

1.3.1) 
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at each time step on the seismograms (Colombelli et al., 2012).  Colombelli et al. (2014) 

analyzed a set of Japanese earthquakes spanning a range of MJMA (magnitude 

measurement by the Japanese Meteorological Agency) going from 4 to 9. For each event, 

the logarithm of Pd versus the P-wave Time Window is measured to obtain the Logarithm 

of the P-peak of displacement versus Time (LPDT) curve (see box 1.3.1). It is observed 

that each curve progressively increases with time until a final, stable value is reached. 

This stable value is called Plateau Level (PL hereinafter). PL shows a scaling with the 

magnitude (Colombelli and Zollo, 2015) and the time at which it is reached corresponds 

to the half duration of the apparent source time function by approximating it as an 

isosceles-triangular function (Zollo et al., 2022). Alongside this result, it is also observed 

that the initial slope of the LPDT curves shows a magnitude-dependency (Colombelli et 

al., 2014). Particularly, as it is shown in Figure 1.3.2, the steepest values of slope are 

typical of the smallest events (small magnitude values), while the gentlest values of the 

initial slope are typical of the biggest event (big magnitude values). This peculiar behavior 

 

Figure 1.3.2: Examples of LPdT curves for different magnitudes in a common distance range. The figure 
shows examples of average LPdT curves, for two different classes of magnitude, obtained using all the 
available data within a common distance range, between 20 and 50 km. Events in the magnitude range 
between 4 and 5 are shown with blue-shade colours, while larger events (in the magnitude range between 
6 and 7.2) are shown with yellow- red shade colours. Panels (a) and (b) show the curves with their proper 
time scale, while in panel (c) the curves are plotted on the same time scale, to better illustrate the 
differences, in both shape and time scale, among the magnitude classes. In all panels, the amplitudes of 
LPdT curves are plotted as they are, without corrections for the distance effect. The effect of the initial 
slope decreasing with magnitude is rather evident, even in a common distance range.  
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is already evident at very short time scales, in the order of few seconds of the P-wave 

signal (as it is shown in panel a and b of Figure 1.3.2). It is observed that at least one order 

of magnitude separates the class of class of small magnitudes (M~4) from the class of big 

magnitudes (M~7) (Colombelli et al., 2020). 

For this reason, it was proposed that the initial slope of the LPDT curves could be a 

parameter for a fast magnitude characterization. We give a physical interpretation of the 

slope parameter and from where its behavior might arise in the next paragraph. In a more 

qualitative way, Colombelli et al. (2020) argued that the parameters controlling the shape 

of the LPDT curve (that are PL and the initial slope) could be related to the earthquake 

source model of Sato & Hirasawa (SATO and HIRASAWA, 1973) in the sense that they 

might be informative of the initial bending (the slope) of the modelled near-triangular 

source time functions towards the final peak (PL). This is a first step of interpretation that 

underlies a differentiation in the earthquake rupture beginning. Indeed, according to 

model c-d) and e-f of Figure 1.3.3, the LPDT curves, and their initial slope in particular, 

might indicate that it is possible to predict the final earthquake size from the first stage of 

the rupture initiation, suggesting a deterministic behavior of the earthquake beginning.  

Other studies ((Melgar and Hayes, 2019), (Meier et al., 2016), (Meier et al., 2017), 

(Trugman et al., 2019)) performed similar analysis but obtained rather different results.  

Figure 1.3.3: Sketch of the relationship between STF and LPdT curves. The figure shows a conceptual 
scheme of the relationship between the STFs (as obtained from the Sato & Hirasawa 1973 model) and the 
corresponding LPdT curves, for two different models. Panels (a, b) show the case of ruptures with the same 
nucleation, for which the initial slope is the same for all magnitudes and the events become distinguishable 
at the peak of the STFs, which corresponds to the plateau level of LPdT curves. Panels (c, d) show the case 
of a completely predictable magnitude model, for which the STFs have a different beginning and the 
corresponding LPdT curves show a distinguishable slope, even at the initial part. In this case, the initial 
slope of STFs decreases with magnitude. Panels (e, f) show the third case of a predictable magnitude model, 
for which the initial slope of the STFs increases with magnitude (from (Colombelli et al., 2020)) 
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Melgar & Hayes (2019) considered the Source Time Functions (STFs) of moderate-to-

large earthquake (Vallée and Douet, 2016) and HR-GNSS data in order to argue the 

deterministic behavior in the rupture process. They measured the “moment acceleration” 

that is the growth rate of the STFs over the first 20 seconds starting at the earthquake’s 

origin time. In their study, in the very early stage of rupture (between origin time and the 

first 2 seconds of STFs), only a weak determinism between moment acceleration and final 

magnitude is observed. Interestingly, in the intermediate stage (2-20 seconds of STFs) a 

proportional scaling of moment acceleration with magnitude was found: the bigger the 

magnitude the bigger the value of PGD grows with time. This result could underly a 

model like the one represented in panel e of Figure 1.3.3, where the magnitude 

characterization is still possible before the STF has reaches its peak. Indeed, they 

suggested an interpretation where the initial phase of rupture is rather chaotic followed 

by a transition to a self-similar pulse.  

Meier et al. (2016) examined the near-source peak displacement measurements, including 

the Japanese records and Southern Californian records with magnitude higher than 4. The 

pgd(t) static was obtained by separating the whole dataset into magnitude bins. The results 

showed that on average small and large earthquakes would follow the same amplitude 

growth and that the large events would start neither more nor less impulsively at their 

beginning (e.g the model of panel a of Figure 1.3.3). Meier et al. (2017) focused on the 

STFs of large earthquakes. The STFs were grouped by magnitude with a nearest-neighbor 

approach. For each point in time, the median was evaluated among the STFs falling within 

the same group. It is shown that the STFs grow linearly until the peak moment rate is 

reached and then start decaying with a similar rate. Moreover, the average growth rate 

does not vary significantly with magnitude. Trugman et al. (2019) also showed that the 

time evolution of Pd on a Japanese dataset of earthquakes with M4.5-9 suggests a 

universal pattern growth. To overcome the non-deterministic nature of rupture that these 

studies support for EEW purposes, it was suggested that the saturation affecting the 

log10Pd-M might provide the basis for a Bayesian approach. The earthquake magnitude 

can be estimate from a posterior probability obtained by the set of Pd measurements in 

the form of (Trugman et al., 2019): 

 𝑃(𝑀|𝑙𝑜𝑔8$𝑃1 , 𝑇𝑊) ∝ P(𝑙𝑜𝑔8$𝑃1 , 𝑇𝑊|𝑀)P(M)	 (6) 
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Where P(𝑙𝑜𝑔8$𝑃1 , 𝑇𝑊|𝑀) is the likelihood function of 𝑙𝑜𝑔8$𝑃1 in the considered Time 

Window TW for a given magnitude M; P(M) is the prior magnitude distribution and 

𝑃(𝑀|𝑙𝑜𝑔8$𝑃1 , 𝑇𝑊) is the posterior magnitude distribution. 

1.3.2 The measure of the P-wave growth rate and its physical 
interpretations  

The scaling of P-wave onset with the final earthquake size is so far contradictory. 

However, the differences that have arisen (we discussed them in paragraph 1.3.1) could 

be explained in terms of: (1) different type of data analyzed (strong motion, broadband, 

HR-GNSS); (2) different time scale of observation (from the first few seconds of P-wave 

onset to the tens of seconds of STFs). The question about whether the earthquake final 

size predictability could imply that the earthquake rupture has a deterministic behavior is 

still complicated to answer. The main reason for that comes from the fact that it is very 

challenging to map a process (the earthquake nucleation) that is linked to the aseismic, 

not-radiative phase of the physical phenomenon. A great opportunity to connect the 

observations from the early P-wave amplitude and its growth with the nucleation phase 

in which rupture loads comes from the laboratory experiments and the numerical 

modelling.  

Many theoretical works have improved the understanding of rupture nucleation 

((Dieterich, 1979), (Uenishi and Rice, 2003), (Rubin and Ampuero, 2005)). Indeed, it is 

known that the seismic rupture begins with a process of quasi-static slip accumulation 

over a limited region of the seismic fault. On this region, where the rupture starts loading, 

the slip slowly accumulates until reaching a critical threshold, beyond which the rupture 

becomes unstable and starts to propagate. Numerical modelling of the quasi-static phase 

is focused on developing constitutive laws for fault slip. A standard form of the 

constitutive law is (Rubin and Ampuero, 2005): 

 𝜏
𝜎 = 𝑓∗ + a ∙ ln

𝑉
𝑉∗ + b ∙ ln

𝑉∗𝜃
𝐷%

	 (7) 

where 𝜏 is the frictional strength, 𝜎 is the normal stress, V is the sliding velocity, 𝜃 is the 

state variable (with units of time), 𝐷% is a characteristic sliding distance for the evolution 

of 𝜃, f* and V* are reference values of the friction and velocity, a is a parameter that 

characterizes the increase in strength depending on the increase of velocity, b is a 

parameter is a parameter that reflects the increase in strength depending on an increase of 
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the total area. Equation (7) makes clear that this process is governed by slip velocity as 

well as stress drop and characteristic lengths (such as Dc).  

Through laboratory experiments researchers have been able to characterize the nucleation 

phase dynamics. Latour (2013) showed that the evolution of the rupture propagation is 

divided into three stages, each of them characterized by a different slope in the curve 

representing the logarithm of the rupture velocity versus the logarithm of the rupture 

length (Figure 1.3.4). These stages are named quasi-static stage, acceleration stage and 

dynamic propagation stage. In the first quasi-static stage the log-log scale between the 

rupture velocity and the rupture length has slope equal to 1, which indicates a linear 

dependence of the two parameters (Latour et al., 2013). During the quasi-static stage, the 

rupture grows exponentially as: 

 
𝐿 = 𝐿$𝑒

/?/#
/) 									t < 𝑡$ (8) 

where L0 is the length of the rupture at the end of the quasi-static phase and t0 is defined 

as the instant of the transition between the quasi-static and the acceleration phase; tc is a 

characteristic time defined by tc = L0/Vr0 where Vr0 is the velocity at time t=t0. Time t0=0 

is arbitrarily defined as the last instant of exponential growth (quasi-static phase) and the 

beginning of the second phase (acceleration phase). The acceleration phase is 

characterized by slopes between rupture velocity and rupture length higher than 1. This 

Figure 1.3.4: Rupture velocity as a function of rupture length obtained from high-speed videos for 45 slip 
events (each curve represents a single rupture event). Changes in slope allow to distinguish different stages of 
dynamic rupture. The organization of the curves indicates a dependence with the initial normal stress 
(represented by color code) (from (Latour et al., 2013)) 
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means in the acceleration stage the rupture velocity grows like a power of the rupture 

length. The solution to this kind of differential equation is: 

 𝐿 = 	
𝐿$

(1 − (𝑛 − 1)(𝑡 − 𝑡$)𝑡%
)
8

I?8
							t > 0 (9) 

In the equation (9), the rupture length L diverges at t0+tf where 𝑡4 = 𝑡% (𝑛 − 1)⁄ . 

Equations (8) and (9) indicate that the rupture is defined by the nucleation length L0. In 

laboratory it is supported that L0 is equal to the critical length Lc which is related to the 

frictional parameters (Campillo and Ionescu, 1997): 

 𝐿% = β
𝜇𝐷%

𝜎$(𝑓J − 𝑓1)
	 (10) 

where fs and fd are the static and dynamic friction coefficients, Dc is the critical weakening 

distance, 𝜇 is the shear modulus, and β is a nondimensional coefficient. The characteristic 

time tc of the nucleation phase defines both the quasi-static phase (as shown in equation 

(8)) and the acceleration stage (as shown in equation (9)). The results obtained in 

laboratory experiments particularly show that the acceleration stage of the rupture is very 

well defined and relatively short, controlled by the critical length that ends the quasi-static 

phase when particular conditions are reached. Latour (2013) proposed that tc is 

represented as a ratio depending mostly on Dc and the difference between fs, the static 

friction coefficient, and fd, the dynamic friction coefficient as it follows: 

 
𝑡% =

𝑘𝜇
𝑝$

𝐷%
𝑓J − 𝑓1

	 (11) 

To extrapolate Dc from equation (11) and to discussion its implications to the natural 

conditions, Colombelli et al. (2020) have given a first qualitative analysis that links the 

observed scaling of the initial growth rate of displacement with the earthquake final size 

with the laboratory observations. The growth rate is measured as the slope on the LPDT 

curve (see paragraph 1.3.1). So, it can be written as: 

 𝜕𝐿𝑃𝐷𝑇 𝜕𝑡 ∝ 𝛿𝑣̇ 𝛿𝑣⁄⁄ 	 (12) 

Equation (12) expresses the ratio between the slip acceleration and the slip velocity. 

Therefore, the initial growth rate of displacement measured as the slope of the LPDT has 

the physical dimension of the inverse of time. Having in mind the theoretical and 
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modelled concepts of the earthquake nucleation, the initial growth rate of the 

displacement expressed as the slope of the LPDT curves could relate to a characteristic 

time during the initial stage of the earthquake rupture. Indeed, using equation (11), with 

tc = 1/SLPd, Colombelli et al. (2020) found reasonable values Dc varying from 0.1m to 1 

m for events spanning a magnitude range from 4 to 9. In this interpretation, the initial 

growth rate of the early P-wave displacement might reflect the footprint of the 

acceleration stage of the earthquake nucleation preceding the full dynamic propagation, 

as observed for laboratory experiments. 

New interpretations suggest that variations in the physical fracture parameters (such as 

stress drop/slip velocity and/or rupture velocity) during the initial phase of the radiative 

process may be the mechanisms that distinguish small earthquakes from large ones. This 

topic will be addressed in greater detail later in the thesis (Chapter 5) 

The observed slope decrease with magnitude can be related to the effect of variable 

dynamic stress drop and/or rupture velocity in the initial stage of the rupture of small and 

large earthquakes, possibly triggered by the acceleration phase during the quasi-static 

rupture nucleation. Indeed, based on the dynamic-consistent model for an expanding 

shear circular crack of Sato & Hirasawa (1973), the relation between the early P radiated 

displacement pulse Ω"(𝑡) , the dynamic stress drop (𝜏K) and the rupture velocity (𝑣L) 

during the rupture growth phase can be written as: (Boatwright, 1980): 

 
Ω"(𝑡) =

2𝜋Δ𝑣M𝑣L7

(1 − 𝜁7)7 𝑡
7 ≈

2𝜋𝑣L#𝜏K
𝜇	(1 − 𝜁7)7 𝑡

7	 (13) 

 

where Δ𝑣Mis peak slip velocity, 𝜇 the rigidity at the source region and 𝜁 = N*
N+
sin 𝜃 is the 

P-wave apparent Mach number (Boatwright, 1980), with 𝜃 being the angle between the 

ray take-off direction and the normal to the circular fault. The term including the apparent 

Mach number accounts for rupture directivity, depending on the receiver view angle and 

the rupture to wave velocity ratio. In (13) the relation between the peak slip velocity and 

dynamic stress drop is inferred from the dynamic models of a propagating shear crack by 

Kostrov (Kostrov, 1964) and Dahlen (Dahlen, 1974). 

Averaging over 𝜃, eq (13) changes to: 

 
Ω%(𝑡) ≈

2𝜋	𝐶(𝑣L)𝜏K
𝜇	 𝑡7 (14) 

where the rupture velocity factor  
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𝐶(𝑣L) =
𝜋
2

𝑣L# �2 − ^
𝑣L
𝑣"
a
7
�

�1 − ^𝑣L𝑣"
a
7
�
#
7
	 (15) 

 

shows an exponential increase with 𝑣L. According to eq (14), both the rupture velocity 

and/or dynamic stress drop control the rise of the radiated P pulse displacement and 

therefore its initial slope. 

 

An example of the effect of a varying rupture velocity with magnitude on LPDT curves 

and slope by assuming a Sato and Hirasawa (1973) kinematic source model of a circular 

shear crack is presented in Chapter 5. Synthetic tests support the idea that a decreasing 

value of rupture velocity with magnitude could be responsible for the observed decrease 

of the initial slope of P-wave displacement. Additional constraints provided by more 

complex and realistic numerical simulations are necessary to understand in which 

physical conditions and how these two parameters may play a role during the initial stage 

of the rupture propagation.  

 

1.4 The open debate of the earthquake rupture behavior: the 
earthquake nucleation models 

The different observations coming either from laboratory experiments or from the 

analysis on the early signals of real earthquakes data are rooted in the models describing 

the earthquake nucleation phase. These models were proposed and discussed by Ellsworth 

and Beroza (1995) and Beroza and Ellsworth (1996). In their studies ((Ellsworth and 

Beroza, 1995), (Beroza and Ellsworth, 1996)), they denoted the nucleation phase as the 

difference between the first arriving P-wave and the observed sudden increase in growth 

of the velocity seismograms. They also defined the beginning of the linear increase in 

ground velocity as the breakaway phase. They evaluated the size and the duration of the 

defined seismic nucleation phase for 48 earthquakes with magnitudes ranging from 1.1 to 

8.1. They found the size and the duration of the nucleation phase showed a scaling with 

the total seismic moment of the events. The characteristics of seismic nucleation allowed 

two possible interpretations that were summarized into two physical models, the cascade 

model and the preslip model. Both two models are still widely discussed for the relevant 

implications that would carry on the earthquake determinism debate.  
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Figure 1.4.1: Preslip and cascade model sketch. In the pre-slip model an episode of slow, aseismic slip 
precedes dynamic rupture and establishes the dimensions of the nucleation zone. In the cascade model 
there is no activity before the mainshock begins. The seismic nucleation phase is generated either when 
slip in the aseismic nucleation zone accelerates to dynamic rupture velocity (preslip model panel A) or 
when spontaneous failure triggers a series of triggered subevents (cascade model panel B) ((Ellsworth and 
Beroza, 1995)). 

According to the cascade model (Panel B of Figure 1.4.1), earthquakes begin abruptly 

and there is no difference between the beginnings of large and small events. A large 

earthquake happens when a smaller earthquake can trigger a cascade of events of 

increasingly larger slip. In this model view, seismic nucleation is an accumulation of 

smaller events that leads to the largest subevent of the earthquake. The breakaway phase 

is represented by the first large slip event of the cascade. In the cascade model, any 

observable scaling between source parameters during the seismic nucleation and the 

source parameters for the entire earthquake might arise only if the last jump in subevent 

size also characterizes the final size of the earthquake. 

According to the preslip model (Panel A of Figure 1.4.1), the beginnings of large and 

small earthquakes are different. In this model view, failure starts aseismically in a region 

which represents the pre-slip zone. This pre-slip zone gradually becomes larger and larger 
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and the slip within this region increases until it reaches a critical size. Following the 

preslip model, the nucleation phase represents the last stage of the failure process within 

the preslip zone, whereas the breakaway phase is generated as soon as the rupture 

breaches the preslip zone and begins to propagate along the seismic fault. 

In the pre-slip model, any observable scaling of the source parameters related to the 

nucleation are controlled with the final earthquake size is controlled by the critical length 

of the preslip zone. Indeed, any existing scaling between the nucleation phase and the 

final stage of the earthquake is explainable if it is considered that the final size of the 

earthquake is determined by the slip amplitude when the breakaway stage begins. In 

simple words, according to the preslip model, an earthquake becomes large because the 

“push” at its beginning is large. 

If the cascade model is correct like some observations seem to point out (see paragraph 

1.3.1), the outlook for the short-term earthquake prediction is unpromising. To predict 

large earthquakes that are the most interesting target of the Earthquake Early Warning, 

one would have to predict the small event that initiates the cascade together with the 

conditions that leads to the cascade triggering on the fault. On the other hand, if the pre-

slip model is correct as other observations seem to show (in paragraph 1.3.1), the short-

term earthquake prediction is more feasible, because earthquakes would be preceded by 

precursory slip episode having different initial size which would lead to different final 

size.  

Until now, there is still no definitive evidence on which model is the right one to describe 

the earthquake nucleation and to state whether the earthquake rupture has a deterministic 

behavior or not. We presented a summary of contradictory results from a wide range of 

data showing that the answer remains unclear. Putting a closure to the long debate on 

earthquake nucleation and its implication relative to the final earthquake size would not 

only mean a great success in understanding the earthquake physics but would also 

represent a milestone for the Earthquake Early Warning future developments.   
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CHAPTER 

2 Implementation of Earthquake Early Warning 

2.1 Earthquake Early Warning Systems around the world 

In this paragraph, we present a brief description of the status of EEW systems around the 

world following the overviews by Allen and Melgar (2019) who reviewed the worldwide 

status of EEW and Clinton et al. (2016) who reviewed EEW state of art in Europe. 

Following their scheme presented in Figure 2.1.1 we can divide the characteristics of 

EEW systems into three categories: systems deploying public alerts; systems deploying 

limited alerts to selected users and systems under construction and real-time testing. 

Mexico’s system SASMEX (Aranda et al., 1995) issues alert through radio receivers 

mostly located in schools and offices in multiple cities. Particularly, in Mexico City the 

alert makes 12.000 sirens sound so that most residents can hear and act. The alert is 

triggered when two stations detect an earthquake and estimate the likely magnitude to be 

significant. The threshold for alert issuing is set at M>5 for two stations as far as 300 km 

from Southern Mexican coast. The national EEW system in Japan is managed by the 

Japan Meteorological Agency (JMA). Alerts are issued through different channels: from 

cell phones to radio and TV. The JMA intensity level set as threshold is 5-lower. Before 

Figure 2.1.1: Status of EEW systems around the globe. Purple diamonds represent systems that deliver 
public alerts; red circles represent systems that deliver alerts to a limited number of users; blue stars 
represent systems under real-time testing. The map shows the earthquake hazard in peak ground 
acceleration with 10% probability of exceedance in 50 years. (from Allen & Melgar (2019)) 
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the 2011 M9.1 Tohoku-Oki earthquake, the JMA system used a source point algorithm 

to locate and estimate magnitude, based on the first few seconds of P-waves. This massive 

earthquake caused significant shaking over a much larger area than predicted by EEW 

algorithms, as the expected magnitude saturated around M~8. The great Tohoku-Oki 

earthquake effectively re-opened the discussion among the scientific community about 

EEW effectiveness in case of large events. Since then, great efforts were applied to 

improve the system reliability which is now moving towards impact-based algorithm 

(Kodera et al., 2018a). We will discuss both approaches later in this chapter.  

China’s Earthquake Early Warning (EEW) efforts are primarily driven by the China 

Earthquake Administration (CEA) and various research institutions. Over the past decade, 

they have deployed increasingly dense seismic networks in quake-prone areas such as 

Sichuan and Yunnan, working to reduce detection times and improve alert accuracy (Peng 

et al., 2022). Several pilot EEW systems are now in place, utilizing real-time data and 

advanced algorithms to estimate magnitude and epicenter location (Peng et al., 2021). 

Ongoing research focuses on refining detection strategies, enhancing sensor coverage, 

and ensuring system redundancy to better protect urban centers and critical infrastructure 

across the country (Liu and Liu, 2024) . 

In South Korea, public alerts are issued by the Korean Meteorological Administration in 

the form of text messages sent to cell phones for earthquakes with magnitude M>4. 

Earthquakes characterization is assessed through ElarmS point source algorithm (Sheen 

et al., 2017).  

Taiwan uses three EEW systems. All of them are P-wave-based system to predict the 

coming peak shaking (Hsu et al., 2018; Wu et al., 2019).  

On the West Coast of United States, the EEW system ShakeAlert is fully operational 

(Kohler et al., 2020). The system combines EPIC point source algorithm (Chung et al., 

2019) and finite fault detector FINDER algorithm (Böse et al., 2018) to estimate 

magnitude, location and expected shaking intensity. Additionally, the MyShake app 

(Kong et al., 2016) has been sending alerts to users since its first public lunch in 2019. 

Started as a project at University of California, Berkeley, MyShake is also collecting 
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waveforms recorded by smartphone that could be used to predict peak ground shaking 

using accelerometers built in cell phones (Patel and Allen, 2022). 

In Europe, different countries have now systems that issue alerts to a limited number of 

users or facilities (Clinton et al., 2016).  

In Italy, PRESTo, a source-based algorithm is running for the Irpinia Region with the 

goal of issuing alerts in Naples and surrounding areas (Satriano, Elia, et al., 2011). 

Recently, the regional approach to early warning has been extended to include real-time 

estimation of the Potential Damage Zone (PDZ) i.e the area where the expected shaking 

intensity is higher than a threshold. The PDZ is obtained by the real-time mapping of 

observed and predicted P-peak displacement amplitudes (Zollo et. al, 2023). Together 

with the network system PRESTo, an on-site algorithm (SAVE) is also running on the 

stations of the Irpinia Seismic Network (ISNet) (Caruso et al., 2017). SAVE provides 

real-time information about the expected shaking at the sites where the stations are 

located. We discuss SAVE algorithm, presenting several applications in Chapter 3. 

Furthermore, ISNet is associated with the European platform CREW, the Testing Centre 

for Early Warning and Rapid Source Characterization, where the performance of Early 

Warning software is evaluated and compared. 

In Switzerland, the Virtual Seismologist (VS) algorithm (Cua and Heaton, 2007) has been 

operating as a test system since 2008. VS is a network-based Bayesian approach to EEW. 

The VS magnitude relationships are derived using a Southern Californian dataset 

augmented with strong motion from Next Generation Attenuation Relationships (NGA). 

A key advantage of this method is that the station magnitude estimates are evolutionary 

(using the entire waveform available at a given time and not just the first few seconds). 

This means that source parameter estimates are updated with new data every second even 

if no new P-wave detections have been recorded. 

Romania is also using PRESTo together with its own event validation approach to send 

alerts to a nuclear research facility (Clinton et al., 2016).  

In Turkey, Istanbul has a warning system that issue alerts when acceleration exceeds a 

threshold at three stations of the network across the city, called Istanbul earthquake Early 

Warning (IEEW). After triggered by an earthquake, each station will process the 

streaming strong motion to yield the spectral accelerations at specific periods and will 
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send these parameters in the form of SMS messages to the main data center through 

available network service (Erdik et al., 2003).  

2.2 Earthquake Early Warning Configurations 

Depending on the deployment of the seismic networks, it is possible to distinguish two 

configurations for EEW systems: the network-based systems and the stand-alone, on-site 

systems. A variant of the on-site configuration is the barrier system, in which a barrier-

shaped seismic network is deployed between the source region and the target site to be 

protected. The main difference between the network and the on-site (with barrier variant) 

EEWS is to be found in the time interval available to issue an alert soon after the rapid 

detection and characterization of the on-going earthquake due to the fact that the 

monitoring network is located the source region of earthquakes, while the onsite system 

is located at the target site to protect. 

2.2.1 Network systems  

In a network system, seismic stations are deployed near active faults (Figure 2.2.1). In 

this configuration, the information carried within the first P-wave arrival is used to rapidly 

estimate earthquake magnitude and location. The fast characterization of earthquake 

source is then used to make predictions of the expected damage in areas far from event 

epicenter using regional empirical attenuation relations or ground motion prediction 

equations (GMPE). The available time to issue an alert in this configuration goes from 

few seconds for those areas close to event epicenter to several tens of seconds for farther 

areas. 

 

Figure 2.2.1: Regional EEWS scheme 
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The lead-time, that is the time between the arrival of damaging seismic waves at the target 

and the time of first issued alert, is here defined as: 

 ∆𝑡L = 𝑡O,/F=QK/ − (𝑡!R + tKSFT)	 (16) 

where ∆𝑡L is the theoretical lead-time, 𝑡O,/F=QK/ = 𝑡M + 𝑇J (𝑡M	origin time, 𝑇J wave 

propagation time) is the S-wave arrival time to the target and 𝑡!R = 𝑡M + 𝑇"SFJ/(𝑇"SFJ/ P-

wave propagation time at the last station considered for the analysis) is the time of first 

alert, which can be issued taking into account the analysis of one or more P-wave signals 

recorded at seismic stations of the network. In the definition of the theoretical lead-time, 

it is also added the time for data acquisition and elaboration (tKSFT), which is usually of 

few seconds, depending on the communication speed, latency of the data transmission 

and computing time efficiency of the real time algorithms. In a network-based EEW 

configuration, the S- waves generally arrive at the area located really close to event 

epicenter before the alert is issued. This area is called blind zone and its radius is evaluated 

as it follows: 

 𝑅UV = 𝑉J(𝑡!R + tKSFT − 𝑡M) (17) 

where VS is the average S-wave velocity in the medium. The extension of the blind zone 

depends on the seismic network density, on the number of seismic stations used to issue 

the first alert, on the time required for signals acquisition and elaboration and on the 

earthquake depth. 

 

2.2.1.1 Source-based approach 

The implementation of EEW has known a great acceleration thanks to the digitalization 

of seismic instruments and communications to issue alerts. The algorithms which have 

been developed in EEW systems worldwide can be summarized into two big categories: 

source-based algorithms and wavefield-based algorithms. The former uses the 

information coming from the propagation of P- and S- waves (typically the first few 

seconds) to estimate source parameters (origin time, location and magnitude). The source 

characterization is required to obtain the expected ground shaking at the site of interest. 

The expected ground shaking is evaluated through an appropriate Ground Motion 

Prediction Equation (GMPE) that link source parameters to the peak ground motion and 
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that includes ground motion propagation models. The wavefield-based algorithms are 

completely different from source-based approaches because they do not ground on the 

earthquake source characterization. They make use of the observation of the impending 

strong shaking to predict shaking at other locations. In this sense, the wavefield-based 

 Box 2.2.1: RTLoc 

It is assumed that a seismic network has known sets of operational and nonoperational 

stations. When an earthquake strikes, P-wave arrivals will become available from some 

operational stations. We consider N operational stations (𝑆$…𝑆W), a gridded search 

volume V containing the network and the earthquake source regions, and the travel 

times from each station to each grid point (𝑖, 𝑗, 𝑘) in V computed for a given velocity 

model. According to the Equal Differential Time (EDT) approach, if the hypocenter 

(𝑖, 𝑗, 𝑘) is exactly determined, the difference between calculated travel times ttn and ttm 

from the hypocenter to two stations Sn and Sm is equal to the difference between the 

observed travel times tn and tm at the same stations: 

(𝑡𝑡E − 𝑡𝑡I)>,X,Y = 𝑡E − 𝑡I; 						𝑚 ≠ 𝑛 

For a constant velocity model, the above equation defines a 3D hyperbolic surface 

whose symmetry axis cross stations Sn and Sm. Giving N triggering, 𝑁(𝑁 − 1) 2⁄  

surfaces can be drawn and the hypocenter will be located in the small region having the 

maximum number of EDT surfaces crossings. If we take into account the not-yet-

triggered stations and we consider 𝑡I = 𝑡IMZ the time at which the n-th station is 

triggered, the EDT surface is bounded by the inequality: 

(𝑡𝑡S − 𝑡𝑡I)>,X,Y ≥ 0; 															𝑙 ≠ 𝑛 

where Sl is the not-yet-triggered station and ttl is its calculated travel time. As the current 

time tnow progresses, the hypocentral volume is more and more constrained around the 

actual earthquake location, bounded by the information that not-yet-triggered station 

can only have observed 𝑡S > 𝑡IMZ. This leads to the following inequality satisfied by 

EDT surface: 

(𝑡𝑡S − 𝑡𝑡I)>,X,Y ≥ 𝑡IMZ − 𝑡I 
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approach is not sensitive to earthquake detection or uncertainties coming from location 

and magnitude estimation since it is completely data driven. 

The techniques for fast real-time earthquake location are mostly based on a probabilistic 

approach, where both the stations that already recorded the event and the stations that still 

have not received the signal are used to obtain the earthquake hypocenter. In the box 2.2.1 

the concept of the real-time location (RTLoc) is briefly described (Satriano et al., 2008).  

The magnitude characterization in real-time for EEW purposes is still a matter of great 

debate in the seismological community. In recent years, the fast magnitude estimation 

from early seismic signals has opened the way to the possibility of a deterministic 

behavior of the earthquake rupture ((Colombelli et al., 2014),(Colombelli et al., 2020)) 

that has been extensively discussed in Chapter 1. In operating EEW systems around the 

world, the magnitude estimation is performed through modules that link the early P-peak 

amplitude or frequency to the earthquake final size, such as PRESTo regional system 

(Satriano et al., 2011) and the EPIC algorithm in U.S ShakeAlert (Chung et al., 2019).  

Nakamura, (1988) proposed the measure of a predominant frequency from the first P-

wave train. Since then, the method has been extensively applied in EEW showing that the 

predominat period 𝜏EFG"  parameter scales with magnitude regardless of epicentral 

distances up to few hundred kilometers (Allen and Kanamori, 2003). Alternatively, to 

𝜏EFG" , a similar characterist time parameter that scales with magnitude is the average 

period of the P-wave signal 𝜏% (Wu and Kanamori, 2005b). Although the measure of 𝜏% 

parameter is scattered around the magnitude, the scaling with the earthquake final size is 

preserved for different region of the world, making its use appealing in source-based 

approaches. We provided a mathematical description of 𝜏EFG"  and 𝜏% in the box 1.2.1. The 

τ[\]^  and τ_ approaches that we described for rapid magnitude estimation are largely 

implemented in EEW systems.  

However, they underly the point-source approximation. The point-source approximation 

is valid until a certain range of magnitude (from small to moderate) (Aki and Richards, 

2009) depending on the signal frequency content and distance of the observer. Above this 

physical threshold, the rupture complexity cannot be recovered completely because it 

affects signal amplitude, frequency and duration such that the point-source approximation 

cannot describe the radiated signal complexity. Moreover, the use of a signal time window 

too short as compared to the one related to the magnitude related rupture length could 
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lead to a saturation in magnitude estimation, which might result in a failure of the 

designed EEW system. 

Indeed, EEW algorithms that measure the rupture extent in real-time have recently been 

developed and their advantages become clear at the occurrence of great events. It is 

worthy to mention the Finite-Fault Rupture Detector (FinDer) (Böse et al., 2018), which 

is a module for line-source parameters estimation implemented the U.S. ShakeAlert. 

FinDer determines earthquake rupture extent from the observed distribution of near-

source high-frequency motions. Based on template matching methodology, FinDer 

determines line-source models from the real-time recorded PGA at a dense network 

around the epicenter, very rapidly and continuously updates these parameters during the 

fault rupture development. The application of a finite-fault detector improves the 

accuracy of the magnitude estimation and consequently, the accuracy of ground motion 

parameters. 

Figure 2.2.2: Relationship between peak initial three-second displacement amplitude (Pd) and peak ground 
velocity (PGV) for 780 records with the epicentral distances less than 30 km for Japan (black triangles), 
southern California (red solid circles) and Taiwan (blue diamonds). Solid line indicates the least squares 
fit and the two dashed lines show the range of one standard deviation. 
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The prediction of the expected Peak Ground Motion (e.g PGA, PGV, PGD) is performed 

through the use of empirical attenuation relationships or Ground Motion Prediction 

Equations (GMPE). The simplest form of the GMPE is: 

 𝑙𝑜𝑔𝑃𝐺𝑋 = 𝐴 + 𝐵𝑀 + 𝐶𝑙𝑜𝑔𝑅	 (18) 

where X=Acceleration, Velocity, Displacement; coefficient A, B, and C are locally 

calibrated; M and R are the magnitude and the hypocentral distance evaluated through 

EEW approaches described in previous paragraphs. More complex shaped GMPE are 

proposed in literature, including higher order terms in magnitude, depth dependency and 

site amplification terms (Douglas, 2018). 

 
2.2.1.2 Wavefield-based approach 

As an alternative to source-based methods, another approach has recently been 

developed, which does not require earthquake source parameters estimation to predict the 

impending ground motion. This approach is solely based on the propagation of wavefield 

and predicts the expected ground motion directly from the observed ground motion in 

real-time. For this reason, this kind of approach is referred to as “wavefield-based 

method” or “ground motion-based method”. The wavefield-based method for EEW has 

been successfully tested in Japan and California ((Kodera et al., 2018b) (Cochran et al., 

2019)). In Italy and in Turkey, the wavefield-based approach has been tested using P-

wave information: M and R are determined in real-time to interpolate the GMPE at nodes 

where instruments are not deployed ((Zollo et al., 2023), (Rea et al., 2024)). Especially 

for large earthquakes, the wavefield-based approach has been proved to be particularly 

suitable, because it skips rupture duration and length estimation, which for high energetic 

events could lead to poor resolution using the standard empirical relationships of source-

based methods. The propagation of local undamped motion (PLUM) method (Hoshiba, 

2013) has been implemented in JMA’s EEW system since 2018. As a wavefield-based 

approach, PLUM predicts seismic intensities directly from observed real-time seismic 

intensities near the target site. The basic principle of PLUM is that under the assumption 

of plane wave propagation, the maximum amplitude between the prediction and the 

observation point is preserved when the distance between the former and the latter is 

sufficiently short compared to the hypocentral distance. Following this approximation, 

seismic intensities are predicted by (Kodera et al., 2018b):  
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 𝐼@=K1
(Y) = max

>∈a*
�𝐼𝑟	MTJ

(>) − 𝐹$
(>)� + 𝐹$

(Y) (19) 

where 𝐼@=K1
(Y)  is the predicted seismic intensity at the prediction point k, 𝐼=	MTJ

(>)  is the 

observed real-time intensity at point i, 𝐹$
(>) and 𝐹$

(Y) are the site amplification factors 

converted into seismic intensity. 𝐶L denotes a circular area centered on the prediction 

point (as in Figure 2.2.3). The predicted intensity is obtained as the maximum of the 

observed seismic intensity in 𝐶L. The radius R of the circular area can be evaluated either 

in an empirical way or by considering the spatial density of the seismic network. The 

prediction points of the PLUM method consist in about 4200 sites displaced all over Japan 

where seismic-intensity meters are located.  

The warning times from the PLUM method are usually shorter than the warning times 

from source-based algorithms. The main reason is that the PLUM algorithm does not use 

the P-wave information available before S-waves.  

On this matter, the evolutionary shaking-forecast-based EEW method (Quake-Up) 

proposed by Zollo et al. 2023 (Zollo et al 2023) has shown that a P-wave based early 

shake map is feasible and increases the available warning times with respect to other 

ground motion-based approaches. The core of Quake-Up is the mapping of the real-time 

evolutionary Potential Damage Zone (an area of expected strong ground shaking), using 

the information coming from the onset P-waves. The early shake map is updated while 

Figure 2.2.3: Schematic diagram of the ground-motion prediction (GMP) process in the propagation of 
local undamped motion (PLUM) method. The diamond indicates a prediction point, and the inverted 
triangles represent observation stations (from (Kodera et al., 2018)).  
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the P-time window of the recorded signal is expanding. Moreover, the evaluation of the 

ground motion is performed considering both the recording sites, where the P-wave 

arrivals are available, and the “virtual nodes”, points of the gridded 3D space around event 

location which are not instrumented. Particularly, the expected Peak Ground Velocity at 

the recording site at time t is obtained through: 

 𝑙𝑜𝑔𝑃𝐺𝑉G/ = 𝐷G ∙ 𝑙𝑜𝑔𝑃G/ + 𝐸G (20) 

where 𝐷G and 𝐸G are empirically estimated coefficients, 𝑃G/ is the P-peak at time t of x 

which stands for acceleration, velocity and displacement. The predicted 𝑃𝐺𝑉MIJ>/K/  is 

obtained as a weighted mean of the three estimated 𝑃𝐺𝑉G/. The prediction of PGV at the 

non-instrumented nodes of the grid map is obtained through a combination of the 

available information from recording sites and the interpolation using regional scaling 

relationships as it follows: 

 

𝑃𝐺𝑉/(𝑥, 𝑦) =
∑ � 1

𝜎MIJ>/K>	7 ∙ 𝑃𝐺𝑉MIJ>/K/	> (𝑥, 𝑦)� + 1
𝜎cd"e7 ∙ 𝑃𝐺𝑉cd"e(𝑥, 𝑦)W

>f8

∑ � 1
𝜎MIJ>/K>	7 �W

>f8 + 1
𝜎cd"e7

	 (21) 

where 𝑃𝐺𝑉MIJ>/K/	> (𝑥, 𝑦) is the PGV predicted at i-th network station from P-peak 

amplitudes, 𝑃𝐺𝑉cd"e(𝑥, 𝑦) is the PGV predicted by a regional GMPE, 𝜎MIJ>/K>	  and 𝜎cd"e7  

are the standard error related to the P-wave predicted PGV and the standard error related 

to the GMPE predicted PGV, respectively. The standard error for PGV of recording site 

takes into account the standard deviation of the PGV versus Px relation and the distance 

between the network node and the virtual node. The final output is the predicted PGV 

versus time at any location (x,y) around the earthquake source, which can be converted 

in instrumental intensity according to regional scaling laws.  

2.2.2 On-site systems 

In an on-site EEW system, a single sensor (or a small array of sensors) is usually deployed 

near a target to be secured during the earthquake occurrence (Figure 2.2.4). The stand-

alone design of on-site systems makes them suitable for sites located within several tens 

of km from active faults areas, at distances where typically extends the blind-zone of 

network-based EWS. In this configuration, the information carried by the early P-waves 

is used to predict the expected ground shaking at the target. Indeed, in an on-site 

configuration, the magnitude and the hypocentral measurements are usually not available. 
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The expected Peak Ground Motion is obtained through empirical scaling relations that 

link PGX to the peak amplitude of P-waves (Wu e Kanamori 2008, Zollo 2010). These 

empirical laws can be written as follows: 

 𝑙𝑜𝑔𝑃𝐺𝑋(𝑃𝑇𝑊) = 𝐴(𝑃𝑇𝑊) + 𝐵(𝑃𝑇𝑊)𝑙𝑜𝑔𝑃𝑥(𝑃𝑇𝑊)	 (22) 

where 𝑃𝑥 is P-peak of acceleration, velocity or displacement measured in the P-wave 

time window of length PTW; A and B are locally calibrated (e.g. taking into account 

regional variability as it is shown in Figure 2.2.2 from Wu e Kanamori (2008)).  

Finally, the expected Peak Ground Motion is converted into expected shaking intensity 

through regional laws that link PGX to seismic intensity (e.g. Modified Mercalli Intensity 

MMI) ((Faenza and Michelini, 2010), (Worden et al., 2012), (Bilal and Askan, 2014)). 

The lead-time for an on-site system design is evaluated as: 

 ∆𝑡L = 𝑡O,/F=QK/ − (𝑡",/F=QK/ + 𝑡KSFT) (23) 

where 𝑡",/F=QK/ =	 𝑡M + 𝑇" is the P-wave arrival time at the target; 𝑡O,/F=QK/ is the S-wave 

arrival time at the target and 𝑡KSFT is the latency/computational time that is generally 

assumed to be 3 sec, considering the minimum P-wave window length for the analysis. 

On one hand the on-site design decreases the radius of the blind zone because the alert is 

issued directly at the target; on the other hand, it increases the false alarm likelihood, 

because predictions are based on one (or very few) sensor.  

 

Figure 2.2.4: On-site EEWS scheme 
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However, the main factor which makes the two designs complementary is the lead-time. 

This parameter increases with the epicentral distance both for the regional and the on-site 

system. Regional systems are characterized by greater lead-times with respect to on-site 

systems at the same distance (see Figure 2.2.5). There is a trade-off between the amount 

of time required for alert issuing and the precision of earthquake parameters on which the 

declaration of an alert is based. Generally, the bigger the time required for data acquisition 

and earthquake characterization, the more precise the estimation is (and consequently the 

alert). It is also true that increasing time to get precise source estimates corresponds to an 

increase of blind zone radius. For this reason, a hybrid design is usually the preferred 

strategy, where a network configuration is joined by an on-site configuration that 

validates/invalidates the information evaluated from the former when an earthquake 

strikes in the monitored fault area.  

 

 

 

 

Figure 2.2.5: Comparison of warning times and lead-times for onsite and regional EEW approaches. The 
onsite warning time depends on the P	arrival time at the site and on a (generally) fixed analysis window 
(here set to 3 s). The regional warning time depends on the source-network geometry and on the algorithms 
employed and is generally of the order of a few seconds (e.g. 10 s). An onsite system can provide a warning 
to targets closer to the epicenter. (from (Satriano, Wu, et al., 2011)) 
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PART 2 – ON-SITE EARTHQUAKE EARLY 
WARNING: METHODS AND APPLICATIONS 

In the framework of fast characterization of the earthquake source, the on-site earthquake 

early warning systems represent the step that turns rapid algorithms for source parameters 

estimation into operational systems issuing alerts. As described in paragraph 2.2.2, an on-

site system can work with a single sensor and evaluate the expected shaking intensity 

from few seconds of signal at the site where the system is deployed. The on-site EEW 

systems are usually preferred over the regional systems when the target to be secured is 

close to an active fault area or when the target site falls within the radius of the blind zone 

of a regional system. In the blind zone (mentioned in paragraph 2.2), the most damaging 

S- or surface waves reach the target before any alert could be issued. Indeed, most of the 

algorithms in the on-site systems are implemented as P-wave based algorithms, meaning 

that the earthquake is rapidly characterized by looking solely at the P-wave phase of the 

signal. Moreover, every operation performed on the seismogram, from the detection to 

the alert issuing, is done at the site where the system is. This reduces eventual delays for 

warning declarations that might come from latencies in electromagnetic signal 

transmissions. In this part we describe two on-site systems, SAVE and P-Alert, and their 

application to different real earthquakes scenarios.  
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CHAPTER 

3 On-Site Alert Level System: SAVE 

3.1 SAVE theoretical concepts 

In this paragraph we describe the on-Site Alert Level system (SAVE, hereinafter) 

implemented by (Caruso et al., 2017). SAVE is a P-wave based on-site early warning 

system. SAVE processes the vertical component of accelerometers and (broadband) 

velocimeters. Through the measurement of P-peak amplitude and early P-wave frequency 

content SAVE predicts the expected ground shaking at the recording site and issues a 

local alert level together with a qualitative assessment of earthquake magnitude and 

source-to-receiver distance. The block diagram of SAVE is shown in Figure 3.1.1. In the 

following sections we focus on each single step of SAVE operations from the automatic 

detection of P-wave on records until the final outputs of the system. Herein after we 

describe in detail the following modules of the onsite EW system: (1) the automatic P-

wave picking, (2) the Data Quality Control, (3) the parameters estimates. 

Figure 3.1.1: block diagram of SAVE (from (Caruso et al., 2017)) 
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3.1.1 Automatic P-wave picking 

The P-wave picking algorithm implemented in SAVE is FilterPicker (FP hereinafter) by 

Lomax (Lomax et al., 2012). FP is optimized for EEW as it operates on data packets of 

different lengths and can declare a P-wave pick within few samples from the trigger. A 

mathematical description of FP is provided in box 3.1.1. 

Box 3.1.1: The FilterPicker Algorithm 

 The FilterPicker (FP hereinafter) operates on a discretized time- series signal y(i) with 

sample interval ΔT.  The FP algorithm makes use of decay constants for accu- 

mulating time-averaged statistics on the signal independently of the elapsed time since 

the start of the signal. For a statistic S = f (y), the time-averaged value Slong is given 

by: 

                   Slong (i)=Clong Slong (i-1)+(1-Clong)S(i)     (I) 

where S(i) is an instantaneous value of S and Clong :0≤ Clong <1 is a decay constant 

defined by 𝐶SMIQ = 1 −	∆𝑇 𝑇SMIQ⁄ where 𝑇SMIQ is a time-averaging scale. 

To perform the picking, the first step is to obtain a differential signal y’(i) as: 

𝑦g(𝑖) = 𝑦(𝑖) − 𝑦(𝑖 − 1)                  (II) 

In the next step, a set of filtered signals 𝑌I(𝑖) = 𝑌Ih"(𝑖) {n=0, Nband-1} are generated 

from y’(i) using two simple one-pole high-pass filters: 

𝑌Ii"8(𝑖) = 𝐶Ii"[𝑌Ii"8(𝑖 − 1) + 𝑦g(𝑖) − 𝑦g(𝑖 − 1)]	            (III) 

And 

𝑌Ii"7(𝑖) = 𝐶Ii"[𝑌Ii"7(𝑖 − 1) + 𝑌i"8(𝑖) − 𝑌i"8(𝑖 − 1)]    (IV) 

Followed by one simple one-pole low pass filter, 

𝑌Ih"(𝑖) = 𝑌Ih"(𝑖 − 1) + 𝐶Ih"[𝑌i"7(𝑖) − 𝑌i"7(𝑖 − 1)]  (V) 

With filter constants 𝐶Ii" = 𝜔I (𝜔I + Δ𝑇)⁄  and 𝐶Ih" = Δ𝑇 (𝜔I + ∆𝑇)⁄ , time constant 

𝜔I = 𝑇I 2𝜋⁄ , corner period 𝑇I = 2IΔT, 𝑦g(0), 𝑌Ii"8(0)   and 𝑌Ii"7(0) initialized to 

0. 
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Continue Box 3.1.1 

𝑁TFI1 is chosen so that 𝑇W,-./?8 = 2W,-./?8∆𝑇 is greater than the largest dominant 

period of the phase to be picked. In the following step, we construct an envelope En 

function for each band n: 

𝐸I(𝑖) = 𝑌I7(𝑖)     (VI) 

and a characteristic function 𝐹Ia(𝑖): 

𝐹Ia(𝑖) =
e.(>)?je.k(>?8)
jl(e.)k(>?8)

    (VII) 

Where < 𝐸I > (𝑖 − 1) and < 𝜎(𝐸I) > (𝑖 − 1) the time-averages up to sample i-1 of 

En and the standard-deviation of En respectively, are accumulated using the decay 

constant Clong of equation (I). In the final step, a single summary CF, 𝐹a(𝑖), is formed 

by setting 𝐹a(𝑖) = 𝑚𝑎𝑥{𝐹Ia(𝑖); 𝑛 = 0,𝑁TFI1 − 1}. A trigger is declared when 

𝐹a(𝑖) ≥ 𝑆8, where 𝑆8 is a predefined threshold and the corresponding trigger time ttrig 

is stored. Given a predefined time width Tup, a pick is declared if and when the integral 

of 𝐹a(𝑖), ∑ 𝐹a(𝑖)∆𝑇,@ , exceed the value S2*Tup within a window up from ttrig to 

ttrig+Tup.  

The threshold S2 is also predefined.  

FP has few parameters, all of which are not difficult to set and can easily adapted to 

the type of signal and to the phase to be picked.  
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3.1.2 Data Quality Control 

When a P-wave is detected, the waveform enters in a preprocessing module that removes 

the average and the linear trend and is integrated (once or twice depending on the type of 

waveform) to get displacement. After the preprocessing step, the signal goes through two 

quality controls. The first quality control is performed to assess whether to keep the signal 

or to discard it. The first quality control is based on the analysis of the Signal-to-Noise 

Ratio. Indeed, the waveform is automatically discarded if: 

 20 ∙ log ¡
𝑃1"mn

𝑃1	WopOe
¢ < 𝑆𝑁𝑅/q=KJqMS1 (24) 

where 𝑃1	WopOe  is the average value of displacement in a fixed pre-event window; 𝑃1"mn 

is the P-peak of displacement in the corresponding P-Time-Window, which for SAVE is 

1, 2, 3 seconds from P-wave arrival;  𝑆𝑁𝑅/q=KJqMS1 is the threshold which can be set 

according to users’ needs.  

When the signal is good enough to pass the quality control expressed in the inequality 

(24), a second quality control is performed to select the cut off frequency for the data 

filtering. Since acceleration waveforms are integrated once to get velocity and twice to 

get displacement, signals could be affected by low frequency drift.  This drift is removed 

with a high-pass filter.  

For each PTW, SAVE calculates the ratio 𝑃1"mn 𝑃N"mn⁄ , where 𝑃N"mn is the P-peak of 

velocity in the corresponding PTW. The waveform is declared as high quality when: 

 log	(
𝑃1"mn

𝑃N"mn
) 	≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ipci (25) 

where 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ipci is pre-determined. In fact, if velocity and displacement waveforms 

are correctly retrieved, they are expected to follow a similar decay law hence their ratio 

will vary in a pre-determined range. If inequality (25) is true, the signal is high-pass 

filtered at cut-off frequency of 0.075 Hz.  

If inequality (25) is not respected, the signal is high-pass filtered at cut-off frequency of 

1 Hz and a second inequality is checked. The signal is considered as low quality if: 

 𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑hon8 ≤ log	(
𝑃1"mn

𝑃N"mn
) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑hon7  (26) 
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Again, 𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑hon8  and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑hon7  are pre-determined. Should the waveform fail 

the second quality control, the signal is discarded. 

 

3.1.3 Parameter estimates 

The expected Peak Ground Velocity (𝑃𝐺𝑉ORre"mn) is estimated by SAVE in the 

corresponding P-wave time window (PTW) (1, 2, 3 seconds since P-arrival) and is 

obtained through a log-linear regression in the form of equation (22) in the paragraph 

2.2.2 where the P-peak of displacement Pd is updated at each P-time window. The 

coefficients in equation (22) are empirically calibrated for high- or low- quality data in 

each of the available PTW. The empirical regressions PGV vs Pd of Caruso et al. (2017) 

were calibrated on a dataset of Italian and Japanese earthquakes. 

The main output of SAVE is the shaking intensity expected to the site that is evaluated 

through scaling laws that link the measured PGV to MMI such as: 

 MMI = A + B ∙ log	(𝑃𝐺𝑉ORre"mn) (27) 

Where A and B are regional coefficients (for Italy A=5.11 and B=2.35 from Faenza and 

Michelini (2010)) 

Moreover, SAVE introduces a novelty in the final parameter estimates. Generally, for an 

on-site system, the expected shaking intensity is the only output which is required to 

eventually issue an alert (paragraph 2.2.2). Since SAVE has two quality controls, as 

described in the paragraph above, when the data is particularly good (that is high-quality 

waveform) SAVE can also provide a rough estimate of the event magnitude and the 

source-to-receiver distance. The magnitude estimate is obtained by measuring the 

characteristic period τ_ in each available PTW. The τ_ is converted to expected magnitude 

according to: 

 𝑀 =	𝐶"mn + 𝐷"mn ∙ log	(𝜏%"mn) 
(28) 

Where 𝐶"mn and 𝐷"mn are empirically calibrated in each available PTW= 1, 2, 3 seconds. 

Caruso et al. (2017) showed that the magnitude estimated by equation (28) is affected by 

a great uncertainty. For this reason, it has been chosen to provide a magnitude 

classification, rather than the dot magnitude value. The event is classified as: 
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¥

𝑆𝑀𝐴𝐿𝐿																	(𝑀 ≤ 3)
𝑀𝐸𝐷𝐼𝑈𝑀						(3 < 𝑀 ≤ 5)
𝑀𝑂𝐷𝐸𝑅𝐴𝑇𝐸	(5 < 𝑀 ≤ 7)
𝐿𝐴𝑅𝐺𝐸																		(𝑀 > 7)

 

The source-to-receiver distance is obtained through an empirical law that combines the 

P-peak of displacement Pd and the characteristic period 𝜏% which leads to: 

 log	(R) = 𝐸"mn + 𝐹"mn ∙ log(𝑃1"mn) + 𝐺"mn ∙ 𝑀s)
"mn (29) 

The coefficient 𝐸"mn, 𝐹"mn and 𝐺"mn are calibrated in each PTW. The mathematical 

details of how the equation (29) is derived are presented in the box 3.1.2.  

Box 3.1.2: Source-to-receiver distance empirical law 

Let us recall the general formulation of the GMPE: 

𝑙𝑜𝑔𝑃𝐺𝑉 = 𝐴 + 𝐵𝑀 + 𝐶𝑙𝑜𝑔𝑅   (I) 

Then the logarithmic distance from the earthquake source is: 

𝑙𝑜𝑔𝑅 = SMQ	("cr)
a

− U
a
𝑀 − R

a
    (II) 

In SAVE, the magnitude estimate is available from 𝜏% measurement, while 𝑙𝑜𝑔𝑃𝐺𝑉 

is obtained from: 

𝑙𝑜𝑔(𝑃𝐺𝑉ORre) = 𝑎 + 𝑏𝑙𝑜𝑔(𝑃1)   (III) 

Putting equation (III) into (II), the logarithmic distance in SAVE can be obtained as: 

𝑙𝑜𝑔𝑅ORre = F
a
+ T

a
𝑙𝑜𝑔𝑃1 −

U
a
𝑀s) −

R
a
  (IV) 

By imposing ^F?R
a
a = 𝐸, T

a
= 𝐹, − U

a
= 𝐺, we obtain: 

𝑙𝑜𝑔𝑅ORre = 𝐸 + 𝐹𝑙𝑜𝑔𝑃1 + 𝐺𝑀s)   (V) 

Which corresponds to the equation (14) in the text. 
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The uncertainty of the distance estimate by the equation (29) derives both from the errors 

coming from the equation (27) and the errors from the equation (28). Hence, SAVE 

provides a classification of source-to-receiver distance in the form of distance intervals: 

¬
𝑁𝐸𝐴𝑅																																										(𝑅 ≤ 50	𝑘𝑚)
𝐼𝑁𝑇𝐸𝑅𝑀𝐸𝐷𝐼𝐴𝑇𝐸	(50	𝑘𝑚 < 𝑅 < 150	𝑘𝑚)
𝐹𝐴𝑅																																												(𝑅 ≥ 150	𝑘𝑚)
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3.2 SAVE at Turkey 
3.2.1 Introduction of SAVE test to the 2023 Turkey doublet 

A devastating earthquake doublet occurred at the Eastern Anatolian Fault Zone (EAFZ) 

in Turkey on February 6th 2023. The first event was the Mw 7.8 earthquake that nucleated 

on a smaller structure called the Nurdağı-Pazarcık Fault (NPF) and then the rupture 

propagated toward the EAFZ where it spread bilaterally with a total rupture length of 

~350 km; about 9 hours later, a second event of Mw 7.6 struck in the same region with 

hypocenter on the Sürgü fault (SF) spreading bilaterally with a total rupture length ~160 

km (see Figure 3.2.1) (Melgar et al., 2023). Due to the significant shaking and the 

superimposition of the two strong earthquakes, the casualties were reported to be near the 

apocalypse (more than 50.000 deaths). The earthquake intensity was registered up to 10 

degrees. In many cities (such as Antakya in the southeast of Turkey) numerous buildings 

were destroyed to the ground with surrounding areas turning into ruins.  

 

Figure 3.2.1: Simplified map of the study region showing the focal mechanisms for both events in the 
earthquake doublet. Known and mapped fault surface traces are shown as dark grey lines. The East 
Anatolian (EAF) fault and Sürgü fault (SF) are labeled. The inferred Nurdağı-Pazarcık Fault (NPF) is 
labeled as well. The first 11 days of aftershocks are shown. The grey moment tensor is for the. M6.7 2020 
Doğanyol-Sivrice earthquake. (from (Melgar et al., 2023)) 
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Turkey is one of the most seismically active regions of the world. The majority of the 

observed seismicity is located on the Anatolian Plate, with two main fault systems called 

the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ). (Tan 

and Taymaz, 2006). The NAFZ was particularly active in the past three decades when a 

series of M+7 happened including the 1999 Kocaeli Earthquake (Mw 7.6), the 2011 Van 

Earthquake (Mw 7.2) and the 2020 Neon-Karlovasion Earthquake (Mw 7.0). In the same 

time period, the EAFZ was relatively quiescent. The strongest event registered on the 

EAFZ until February 2023 was the Mw 6.8 Doğanyol-Sivrice earthquake of January 2020 

(Melgar et al., 2020). Many authors believed that the EAFZ would be active throughout 

the twenty-first century and one or more destructive earthquakes might occur ((Nalbant 

et al., 2002), (Taymaz et al., 2021)). Particularly, Nalbant (2002) calculated the stress 

evolution along the fault zone due to both seismic and tectonic loading since 1822, 

identifying two areas of relevant seismic risk where a large event (M~8) might have 

occurred. One of these two areas involved the location where the first M 7.8 earthquake 

of the doublet struck in February 2023.  

Given the high seismic risk that characterizes Turkey, the country has invested research 

efforts in Earthquake Early Warning Systems. Although the city of Istanbul has an 

operative warning system which is based on a simple exceedance of acceleration 

threshold at three stations in the network, the alert distribution is still limited to just 

specific area and companies, such as the Istanbul Gas Distribution Company and the 

Marmaray Tube Tunnel (Clinton et al., 2016). In June 2021 Google’s Android Earthquake 

Alert System was announced in Turkey. The system proposed by the Google company 

should provide warnings to the millions of Android’s cellphone users at the occurrence 

of an earthquake higher than M 4.5 analyzing acceleration waveforms recorded by the 

built-in sensors in each cellphone. However, on February 6th 2023 hundreds of thousand 

people did not receive any warning (drop, cover and hold on) when the M 7.8 earthquake 

struck, raising questions about the reliability of such system (Clayton et al., 2023). In a 

retrospective analysis, Rea (2024) proved that an impact based EEWS would have issued 

an alert after 10-20 seconds from origin time with a threshold intensity MMI=IV, 

resulting in 95% of successful warnings with available lead-times up to 60 seconds (Rea 

et al., 2024). Within this framework, we tested SAVE on the earthquakes doublet in order 

to explore the feasibility of an on-site EEWS in the region.  



 60 

 
Box 3.3.1: The Source Time function of the Mw 7.8 earthquake and the Mw 7.6 

earthquake (Melgar et al. 2023)  

 

Figure 3.2.2: Top Panel: Source time functions for both ruptures. Bottom panel: RMS misfit as a function 
of maximum rupture speed vr

max allowed in the inversion for both events. For the Mw 7.6 authors 
distinguished between misfit for stations east or west of the hypocenter. Best fitting values are 3.2 km/s 
for the Mw 7.8 and 2.8 and 5.0 km/s for the Mw 7.6. (from (Melgar et al., 2023)) 

In Figure 3.2.2 top panel the source time function of the Mw 7.8 (in red) and the Mw 

7.6 (in blue) are shown. The STFs were evaluated by Melgar et al. (2023) following a 

linearized multi time-window kinematic inversion. In bottom panel, results concerning 

the rupture velocity are shown for both events. The RMS misfit from source inversion 

showed that the Mw 7.8 earthquake (in red) was characterized by an overall average 

velocity of 3.2 km/s; the Mw 7.6 showed a super-shear velocity which involved the west 

of the bilateral rupture and a sub-shear velocity which involved the east (Melgar et al., 

2023). It is worth to mention that when SAVE test was performed, the Moment Rates 

of Melgar et al. (2023) were the first proposed source time functions. However, later in 

literature other Moment Rate functions have been developed and published. 
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3.2.2 Off-line test on the Mw 7.8 earthquake of 6 February 2023 

In order to perform the off-line test for the Mw 7.8 earthquake (first event of the doublet) 

we acquired data from the Disaster and Emergency Management Presidency of Türkiye 

(AFAD). The dataset consisted of three-component acceleration waveforms of the strong 

motion network, recorded at stations located few kilometers up to about 600 kilometers 

from the event epicenter.  

Concerning the tuning phase of SAVE, we set the thresholds for data quality control used 

in Caruso et al (2017) and we also used the same logPGV vs logPd empirical scaling laws 

to evaluate the predicted PGV at the site. The expected shaking intensity is obtained 

through Bilal and Askan (2014) scaling law. The Bilal and Askan (2014) MMI versus 

logPGV relation was obtained from data of 14 moderate-to-large earthquakes that 

occurred in Turkey between 1976 and 2011, including the Mw 7.2 earthquake which was 

the biggest event available in the catalog at the time of the paper publication. The MMI 

versus PGV law was tailored on Turkey seismicity because it was observed that existing 

MMI vs PGV laws for other regions in the world (e.g. (Worden et al., 2012), (Faenza and 

Michelini, 2010)) did not fit Turkish data, resulting in either under- or overestimations 

(Bilal and Askan, 2014). 

In panel A of Figure 3.2.3, we show the results of the predicted PGV (and MMI) versus 

the observed PGV (and MMI) after 3 seconds since the P-wave arrival was automatically 

picked on the trace. The observed PGV is obtained from the horizontal components of 

velocity waveforms. Stations within 100 km of epicentral distance present the highest 

value of PGV (MMI), while stations further than 500 km show very low PGV amplitudes 

(MMI). However, we notice there is an overall underestimation of the expected PGV (as 

shown in histogram of panel B of Figure 3.2.3). The underestimation we observe might 

be explained in terms of rupture complexity. In Figure 3.2.2 of box 3.3.1, we reported the 

source time functions of both Turkish events obtained by Melgar (2023) through 

kinematic inversion. The source time function of the Mw 7.8 is represented with red color. 

In principle, we should expect an almost triangular-scalene-shaped function, from which 

we could infer the total energy release (total seismic moment) from the area underneath 

(Aki and Richards, 2009). However, for the Mw 7.8 earthquake the source time function 

is too complex to be represented by such a model. Indeed, there is a first energy release 

(the small triangular-shaped impulse preceding the biggest one in Figure 3.2.2) that is due 
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to the fact that the rupture of the Mw 7.8 first nucleated on a small fault segment on the 

west of the EAFZ, the NFP (Melgar et al., 2023). 

 
 

 
Figure 3.2.3: Panel A shows PGVpred versus PGVobs at each station using 3 seconds PTW. Markercolor 
follows epicentral distance. Secondary axis indicates MMIpred and MMIobs obtained from Bilal 2014 scaling 
law. Panel B shows the prediction error (MMIpred-MMIobs) as probability density function. The mean value 
and the standard deviation of the distribution are represented in top right corner.   

Performing a raw evaluation of the seismic moment of the first impulse of the Mw 7.8, 

we obtained that the energy release in the first ten seconds since rupture beginning 
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corresponds to an event of M~6. To obtain this estimate we roughly evaluate the seismic 

moment from the area underneath the first ten seconds of the source time function of 

Melgar et al. (2023) and used Kanamori (1977) (Kanamori, 1977) law for moment 

magnitude evaluation.  

 

Figure 3.2.4: Panel A shows the distribution of 𝜏0values using 3 seconds PTW as probability density 
function. The mean and the standard deviation of the distribution are represented in top right corner. Panel 
B shows the distribution of the moment magnitude using 3 seconds PTW obtained using the Caruso et al 
2017 Mw versus log(𝜏0) empirical law. The mean and the standard deviation of the distribution is reported 
in top left corner.  
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SAVE empirical relationships relate on the Pd parameter to get PGV estimates. This 

means that in the first three seconds since the P-wave arrival on the records, Pd could 

effectively be mapping the displacement associated with an event of Mw~6, resulting in 

the underestimation we see. This effect is even more evident when we look at the average 

τc and consequently, at the average point magnitude estimate provided by the system in 

3 seconds (see Figure 3.2.4). 

 

Figure 3.2.5: Lead time plot of the off-line test on the Mw 7.8 Turkish earthquake. The Lead Time is 
obtained as the difference between the PGV arrival and the P-wave arrival at the station minus 1 second 
required by the system to give a first MMI estimate. Grey points are single station lead times. Blue squares 
are averaged lead times in an observed epicentral distance bin (bin width = 100 km).  

In Figure 3.2.5 we show the lead time at the available stations. The lead time in SAVE is 

evaluated as the difference between the PGV arrival at the site and the P-time window 

required to get the MMI estimation, as: 

 𝐿𝑒𝑎𝑑	𝑇𝑖𝑚𝑒ORre = T(PGV) − (𝑇" + 𝑃𝑇𝑊) (30) 

In case of a large event like the Mw 7.8 Turkish earthquake, the PGV might be related 

mostly to surface waves which reach the sites of interest very late with respect to body 

waves. This could explain the higher lead times values that we observe in Figure 3.2.5. 

Although with an underestimation of the impact, we notice that on average, SAVE would 

have provided about 30 seconds of available lead time for sites located within 100 km 
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from the event epicenter and more than 100 seconds for sites located within 500 km from 

the event epicenter (the cyan squares in Figure 3.2.5).  

The off-line test we performed on the Mw 7.8 Turkish earthquake showed that SAVE 

could be integrated in an EEW system providing first simple alerts in very short time 

windows. However, in cases of events with M 6+ the P-wave window must be expanded. 

In a recent ongoing work (Ding et al., 2024) we evaluated that at last 10 seconds of the 

P-wave time window are needed to obtain reliable PGV predictions for the Turkey-Syria 

mainshock. In this case a proper strategy must be designed to automatically identify the 

optimal time window to be used for alert. 

SAVE is not able to properly catch the rupture complexity, however, the test demonstrates 

that it would have sent valid information about the incoming earthquake to a wide area 

which was effectively affected by severe damages.  
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3.2.3 Off-line test on the Mw 7.6 earthquake of 6 February 2023 

The Mw 7.6 earthquake (second event of the doublet) struck along the Sürgü fault about 

9 hours later since the origin time of the first Mw 7.8 earthquake. We performed the off-

line test of SAVE on the acceleration waveforms from AFAD database. As for the test in 

paragraph 3.2.2, for the tuning phase of the system we selected the same threshold values 

used in Caruso et al. (2017) for the data quality control and the Bilal 2014 MMI versus 

PGV scaling law to get the predicted MMI from the predicted PGV.  

 

Figure 3.2.6:Panel A shows PGVpred versus PGVobs at each station using 3 seconds PTW. Markercolor 
follows epicentral distance. Secondary axis indicates MMIpred and MMIobs obtained from Bilal and Askan 
(2014) scaling law. Panel B shows the prediction error (MMIpred-MMIobs) as probability density function. 
The mean value and the standard deviation of the distribution are represented in top right corner.   
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In Figure 3.2.6 we represent the result of the predicted PGV (MMI) versus the observed 

PGV (MMI). The general trend shows an underestimation of expected shaking intensity 

at the site (see panel B of Figure 3.2.6) after 3 seconds since P-wave arrival. However, 

the underestimation we observe for the off-line test of the Mw 7.6 earthquake is less 

severe than the underestimation we observe for the Mw 7.8 earthquake.  

Figure 3.2.7: Panel A shows the distribution of 𝜏0 values using 3 seconds PTW as probability density function. 
The mean and the standard deviation of the distribution are represented in top right corner. Panel B shows 
the distribution of the moment magnitude using 3 seconds PTW obtained using the Caruso et al 2017 Mw 
versus log(𝜏0) empirical law. The mean and the standard deviation of the distribution is reported in top left 
corner.  
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Figure 3.2.8: top panel: Intensity map for Mw 7.6 earthquake provided by USGS. Bottom panel: 
predicted intensity map obtained through SAVE using 3 seconds of signal after P-wave onset at each 
station (colored triangles). Colorbar follows intensity scale. 
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The fact that the underestimation effect is less heavy for the off-line test of the Mw 7.6 is 

even visible in Figure 3.2.7, showing the results of the point magnitude estimation in 3 

seconds PTW from τc measurements. On average, the system classification of the event 

magnitude was about Mw 6.4, placing the earthquake in the class of moderate events. For 

the Mw 7.6 earthquake, the source time function retrieved by Melgar (2023) with 

kinematic inversions is triangular-shaped (see Figure 3.2.2). The complexity of the 

rupture depends mostly on the different values retrieved for the rupture velocity (super-

shear towards the west and sub-shear towards the east in panel B of Figure 3.2.2). The 

underestimation in the prediction of both expected shaking intensity and the moment 

magnitude might be related to a saturation in the last available P-Time Window used for 

parameters estimation. In order to resolve the underestimation, we could extend the 

available time window to get more accurate parameter estimations, although other 

potential bias might enter in the final output evaluation such as the inclusion of S-waves 

in the time window for the sites very close to the event location. Indeed, the 3 seconds 

PTW corresponds to the source duration of an event of Mw~6, which is what the system 

is retrieving by using Pd and τc evaluated in the last PTW used by SAVE.  

Interestingly, in bottom panel of Figure 3.2.8 we plot the expected shaking intensity at 

each station after 3 seconds since P-wave arrival and we notice that from the values 

obtained by SAVE there is an elongation of the highest MMI first towards the west (with 

respect to the event location) where the rupture propagated faster (Melgar et al., 2023).  

Moreover, other observations arise from the comparison of SAVE predicted MMI map 

with the MMI map provided by USGS shakemap service: (1) at the closest city to event 

epicenter, Kahramanmars, the system correctly predicts severe shaking; (2) the contour 

of severe shaking of USGS map (top panel of Figure 3.2.8) shows a lobe which includes 

the city of Malatya and SAVE also obtains the same result (bottom panel of Figure 3.2.8); 

(3) SAVE predicted intensity at the site of Adana is slightly overestimated with respect 

to USGS result. Some of the differences in MMI values between the two representations 

might derive from the fact that USGS shakemap tool uses Worden (2012) MMI vs PGV 

scaling law to provide intensity estimates, while for this test of SAVE we used Bilal and 

Askan (2014) MMI vs PGV scaling law which is tailored on Turkey region. It is worth to 

notice (from Figure 3.2.8) that in just three seconds from the first P-wave pick, the system 

would have issued alerts for an event of MMI > 4 at stations falling in a circular ring of 

200 km from the event location. In the framework of EEW applications, this result is 

promising because SAVE could be coupled with existing regional systems in the region. 
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A fast alert providing expected shaking intensity could be sent at those areas where a 

strong shaking is expected. Until now, EEW systems in Turkey are issuing alerts just 

around Istanbul area (Clinton et al., 2016).  

Figure 3.2.9: Lead time plot of the off-line test on the Mw 7.6 Turkish earthquake. The Lead Time is 
obtained as the difference between the PGV arrival and the P-wave arrival at the station minus 1 second 
required by the system to give a first MMI estimate. Grey points are single station lead times. Blue 
squares are averaged lead times in an observed epicentral distance bin (bin width = 100 km).  

The lead times for the off-line test on the Mw 7.6 event are shown in Figure 3.2.9. The 

average values are compatible with the off-line test of paragraph 3.2.2 performed on the 

Mw 7.8 earthquake. Here SAVE would have provided about 30 seconds of available time 

before the PGV arrival at sites located within 150 km from the event epicenter and almost 

100 seconds before the PGV arrival at station located at 500 km from the event epicenter.  
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3.3 SAVE at California 
3.3.1 Introduction to SAVE test to California region 

In the western United States (Washington, Oregon and California), the ShakeAlert system 

is fully operational (Kohler et al., 2020), providing warning to users about shaking ahead 

of time when an earthquake occurs. As a regional EEW system, ShakeAlert is designed 

to detect earthquake arrivals at seismic stations ((Meier et al., 2019), (Chung et al., 2019)) 

and to characterize earthquake source parameters and the expected impact through 

dedicated algorithms such as EPIC ((Chung et al., 2019), (Kohler et al., 2020)) and FinDer 

(Böse et al., 2018). Peak ground motions are estimated using ground-motion prediction 

equations (GMPEs) (e.g. (Boore and Atkinson, 2008)). Modified Mercalli Intensity 

(MMI) is finally computed through regional equations that convert Peak Ground Velocity 

and Peak Ground Acceleration into MMI (Worden et al., 2012). The free earthquake 

smartphone app MyShake has also been delivering ShakeAlert-powered alerts in western 

U.S. since its public launch in 2019. Started as a citizen science project by the University 

of California at Berkeley in 2016, MyShake uses a neural network machine learning 

algorithm which is trained to distinguish between human activity and earthquake signals 

analyzing the waveforms recorded by the accelerometer built into each smartphone (Kong 

et al., 2016). Recently, Patel and Allen (Patel and Allen, 2022) have shown that MyShake 

waveforms can enhance resolution and shaking variability during earthquakes. Indeed, 

when accounting for proper site effect corrections, it is possible to build GMPEs (Marcou 

et al., 2024). 

The implementation of a system that can rely on single waveforms could help provide 

additional seconds of warning time in some circumstances. This is because network-based 

earthquake early warning systems such as the one in California require a few seconds to 

evaluate source characteristics. As a consequence, there are regions that might not receive 

an alert, especially at high intensity shaking locations close to the epicenter (Meier et al., 

2020). 

In this paragraph we show the results of the application of SAVE in California. California 

is characterized by onshore, shallow crustal earthquakes of small-to-moderate magnitude 

and has experienced big events not so far in the past (such as 1989 M 6.9 Loma Prieta 

earthquake). Moreover, a high level of off-shore seismicity occurs at the Mendocino triple 

junction, that includes thrust, normal, and strike-slip earthquakes.  
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In order to compare SAVE with existing regional system ShakeAlert, we assessed SAVE 

performance in terms of: 

Successful Alert (SA): MMIpred>MMIthreshold & MMIobs>MMIthreshold 

Successful No Alert (SNA): MMIpred≤MMIthreshold & MMIobs≤MMIthreshold 

False Alert (FA): MMIpred≥MMIthreshold & MMIobs<MMIthreshold 

Missed Alert (MA): MMIpred<MMIthreshold & MMIobs≥MMIthreshold 

Where MMIpred is the predicted intensity by SAVE, MMIobs is the observed intensity at 

the site and MMIthreshold is a user defined intensity threshold. The matrix scheme above is 

then used to quantify the system performance in terms of precision and recall.  

The “Precision” is defined as (Meier et al., 2020): 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑆𝐴

𝑆𝐴 + 𝐹𝐴	 
(31) 

Whereas the “Recall” is defined as: 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑆𝐴

𝑆𝐴 +𝑀𝐴	 (32) 

The Precision obtained from equation (31) is informative about the number of correct 

alerts that the system sent. The Recall obtained from equation (32) is informative about 

the number of alerts that the system should have been sent. These two metrics are standard 

metrics used in Machine Learning algorithms to assess the goodness of fit. Since the 

output is a category classification, they can be easily adapted to evaluate the performance 

of a threshold base system.    

 

3.3.2 Test on event data 

We run SAVE retrospectively on 113 earthquakes in California (Figure 3.3.1), spanning 

a magnitude range between 4 and 7 and shallow depths down to 35 km. The stations we 

used are included in the Northern and Southern California networks with seismic records 
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having epicentral distances between a few kilometers to 1000 km from the event 

locations. From Figure 3.3.2 to Figure 3.3.4 we compare the predicted PGV with the 

observed PGV in the three second P-time window for records having observed PGV 

higher than 0.1 cm/s which corresponds to the intensity level of MMI=2 (weak 

shaking)(Worden et al., 2012). Predicted PGV values are obtained using empirical scaling 

laws by Caruso (Caruso et al., 2017).  

 

Figure 3.3.1: Map of events. Circles represent event locations. Marker size indicates event magnitude; the 
color indicates event depth. Black triangles represent seismic stations used in this study. The histogram in 
bottom left corner shows the distribution of seismic records per distance from event epicenter.  

The underestimation of predicted PGV for events with magnitude between 5.5 and 6.5 is 

overcome when going from the 1 and 2 second window (as it is shown in red/magenta 

points of Figure 3.3.2 and Figure 3.3.3) to the 3 second window (red/magenta points of 

Figure 3.3.4). For events with magnitude higher than 6.5, PGV is still underestimated. 

This result is mostly due to the fact that the longest P-time window used in SAVE for 

PGV estimations (3 seconds) is still shorter than the average source duration for events 

with a magnitude greater than 6.5. The lead time is calculated as the difference between 

observed PGV time and one second PTW required to get first estimates. On average we 
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found values of 8-10 seconds at 50 km, 12-15 seconds at 100 km and 20-22 seconds at 

150 km (Figure 3.3.5). The prediction error on MMI is well distributed around zero value 

at all observed distance ranges (Figure 3.3.6). System performance using 3 second PTW 

is shown in Figure 3.3.7. The system precision goes from about 75% at lower intensity 

Figure 3.3.2: Predicted PGV versus observed PGV in 1 second PTW. Each point represents a measure 
from a single seismic record. Markers are colored according to event magnitude. Secondary x and y axis 
show the observed and predicted shaking intensity respectively (MMI obtained from (Worden et al., 2012)   
scaling law). Black solid line is the one-to-one PGV relation. 

Figure 3.3.3: Predicted PGV versus observed PGV in 2 seconds PTW. Each point represents a measure 
from a single seismic record. Markers are colored according to event magnitude. Secondary x and y axis 
show the observed and predicted shaking intensity respectively (MMI obtained from (Worden et al., 2012)   
scaling law). Black solid line is the one-to-one PGV relation. 
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thresholds to about 50% at higher intensity thresholds, whereas the recall value decreases 

from 80% at lower intensity thresholds to about 25% at higher intensities. 

Figure 3.3.5: Lead Time plot. The figure shows the lead time versus epicentral distance. Lead time is 
obtained as the difference between PGV time and the end of the 1 second PTW. Circles are single record 
lead times, colored by event magnitude. Darkgrey squares are averaged values of lead time in binned 
distance (bin width = 25 km). Black solid line is theoretical S-wave arrival. Theoretical S-wave arrival 
represents the minimum lead time since the PGV can be produced by later arrivals.  S-wave speed is 
computed as 60% of P-wave speed which is fixed at 6 km/s. 

Figure 3.3.4 Predicted PGV versus observed PGV in 3 seconds PTW. Each point represents a measure 
from a single seismic record. Markers are colored according to event magnitude. Secondary x and y axis 
show the observed and predicted shaking intensity respectively (MMI obtained from (Worden et al., 2012)   
scaling law). Black solid line is the one-to-one PGV relation. 
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Figure 3.3.6: Prediction error distribution using 3 second PTW. The figure shows the distribution of 
prediction error on shaking intensity for different ranges of distance to event epicenter: 0-25 km (cyan 
bars), 25-100 km (orange bars), 100 km and higher (grey bars). Mean and standard deviation of each 
distribution are shown in top right corner. 

 

Figure 3.3.7: Precision and recall bar plot for event dataset in 3 seconds PTW. Precision (top panel) and 
recall (bottom panel) variation relative to different MMI threshold values.  
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The empirical scaling relationship between predicted PGV and Pd for the original SAVE 

algorithm (Caruso et al., 2017) requires no recalibration when tested with event data in 

California. That might be explained in terms of the magnitude range of the events. The 

Caruso (2017) empirical PGV vs Pd laws were calibrated on Italian and Japanese events 

spanning the same magnitude range as used for our test (M 4-7 in Figure 3.3.1). The 

histogram tails we observe in Figure 3.3.6 for the event data test are mostly due to 

(automatic) picking errors. In particular, many of the underestimation cases are due to (1) 

the presence of a smaller event that is picked head of the main event, or (2) an early P-

pick declaration due to noise. The overestimation comes mostly from the inclusion of the 

S-waves in the PTW or is due to a bad phase identification (i.e picking glitches or S-

waves). In future applications we can be more selective on SNR and time window 

thresholds which control FP used in SAVE. Moreover, automatic pickers based on 

Machine Learning algorithms have been recently developed and trained for Northern 

California (Zhu and Beroza, 2018) (Meier et al., 2019) and could replace current picker 

in SAVE. Usually, these techniques work well with short time window snippets of the 

waveform (1-3 sec), but that might also mean losing seconds of warning time as the 

algorithm waits for picking confirmation.  

 

3.3.3 Test on continuous waveforms 

We additionally tested SAVE on continuous waveforms, running the algorithm on three 

different networks in Northern California. We analyzed waveforms of the strong motion 

seismic stations of the Berkeley Digital Seismic Network (BK), the USGS Northern 

California Seismic Network (NC) and the USGS National Strong-Motion Project (NP). 

(Figure 3.3.8). We present the results of the analysis for the first two months of 2022, the 

last ten days of October 2022, during which the M 5.1 Alum Rock earthquake struck, and 

the last ten days of December 2022, during which the M 6.4 Ferndale earthquake struck. 

In Figure 3.3.9 we summarize the system performance. We notice there is a scatter in the 

estimation of MMI (Table 3-1). One reason of this result may lie in the fact that only few 

moderate earthquakes (M 5.1 Alum Rock and M 6.4 Ferndale) struck in the selected 

window for the analysis. The Caruso et al. (2017) empirical PGV vs Pd law was not 

calibrated to get estimates from waveforms related to smaller earthquakes (having smaller 

values of P-peak of displacement). This effect is quite evident in first column and first 
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row of Figure 3.3.9, where most of the scatter in MMI for BK network is coming from 

the points at lower values of PGV (MMI).  

 

Figure 3.3.8: Map of the stations used for the continuous waveforms test. Red points are BK stations; blue 
points are NC stations; yellow points are NP stations.  

The calibration of a regional PGV vs Pd empirical law partially resolves the MMI scatter, 

as it is shown in the histogram of the second row of Figure 3.3.9 and in Table 3-1. The 

Californian-tailored law of PGV vs Pd allows us to rule out any possible effect in MMI 

estimation that may arise from regional differences such as magnitude range, depth range 

and tectonic settings of the earthquakes. This means that the scatter we still observe in the 

prediction error of MMI may depend on the characteristic noise level for each network 

(the case of NP network is particularly evident in Figure 3.3.9). Hence, we calibrate a 

network based PGV vs Pd empirical law which completely overcomes the scatter, as it is 

shown in the histogram of last row of Figure 3.3.9 and more quantitatively in the reduction 

of the standard deviations 𝜎∆ddp 	presented in Table 3-1 for each network with respect to 

the applied PGV vs Pd law. 
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Figure 3.3.9: Application to continuous waveforms in 3 second PTW. Lightgreen markers are Successful 
No-Alert; darkgreen markers are Successful Alert; yellow markers are Missed Alert; red markers are False 
Alert. The first three columns show the results of MMI prediction for each network. From first column to 
third: BK, NP and NC (plotted with circles, squares and diamonds respectively). Vertical and horizontal 
dashed line is the best MMI threshold for each network; black thick line is the one-to-one MMI line. Last 
column shows the distribution of prediction error on MMI for the three networks, represented in different 
colors. Rows show the results of different relation used to estimate MMI from predicted PGV. From first 
row to last: application of the Caruso 2017 PGV vs Pd empirical law, Northern California PGV vs Pd 
empirical law obtained in this paper, Network based PGV vs Pd empirical law obtained in this thesis. 

The off-line application of SAVE on California suggests that an operating on-site system 

could be coupled with the regional ShakeAlert system. Although there is still an open 

debate on the feasibility of characterizing earthquakes from the early stage of P-waves 

onset ((Meier et al., 2016) (Trugman et al., 2019) (Colombelli et al., 2020)), the predicted 

MMI, that is SAVE final output, allows to build a threshold system. Its performance 

shows a good agreement (see Figure 3.3.10) for MMI threshold values that ShakeAlert 

makes use of to issue an alert, in the range going from perceived light shaking to light 

damage (Kohler et al., 2020). The variation we observe both in precision and in recall is 

driven by the trade-off between False/Missed Alerts and MMI threshold. That is 

particularly evident for the off-line test on continuous waveforms. In fact, we can observe 

two borderline cases in Figure 3.3.10: BK network is shown to be quite stable in precision 
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at all MMI thresholds with no correction applied, while a tailored empirical law shows an 

improvement in recall at a higher MMI threshold.  In contrast, the NP network has a poor 

resolution in precision with Caruso et al. (2017) original law but a network-based 

calibration seems insufficient to improve the system response. The NP network was built 

to monitor earthquake shaking in densely populated areas, which is why many sensors 

are placed in man-made structures. The P-wave content might still be masked by the 

background noise indicating the need for high quality (quiet) installation sites for SAVE 

applications. Including uncertainties from GMPE and weighing PGA and PGV 

contributions in MMI evaluation is used for EEW systems (Saunders et al., 2020). 

Another path that can be explored is the introduction of single-station corrections.  

The dependence of SAVE performance on the setting of a MMI threshold poses a 

challenging question on how high the alerting threshold should be (Minson et al., 2019). 

For an operating on-site system in Northern California, we observe that a higher alerting 

threshold (MMI=5) would provide adequate percentage in precision and recall with 

reasonable warning times (Figure 3.3.5 and last column of Figure 3.3.10). In terms of a 

user-oriented system, this result makes SAVE a suitable on-site solution. Usually, high 

alerting thresholds mean low number of false alert and increased number of missed alerts; 

low alerting thresholds mean low number of missed alerts but, as a consequence, users 

tend to be over-alerted (Cochran and Husker, 2019). SAVE might provide a valid 

Figure 3.3.10: Precision, recall and lead time distribution at three Northern California seismic networks. 
Upper rows show precision at BK, NP, NC seismic networks; lower rows show recall at the same networks. 
Column indexing follows the type of calibration applied to empirical PGV vs Pd law. Extreme right panel 
shows the distribution of lead time for each network. For all three networks peak of distribution is between 
0 and 25 seconds since P-wave detection at the station. 
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compromise, issuing fast reliable alerts, that could be integrated with information coming 

from the regional EEWS ShakeAlert in Northern California.  

Table 3-1: Performance statistic for the continuous waveforms test using 3 seconds PTW and different 
calibration PGV vs Pd empirical laws to get expected MMI. 

PGV VS PD 
LAW 

NETW
ORK 	𝝁ΔMMI 𝝈ΔMMI MMITHRESHOLD TOTAL 

FA 
TOTAL 

MA 
CARUSO ET 

AL. 2017 BK -0.7081 0.8398 3 318 10 

    4 65 5 
    5 5 2 
 NP 0.4752 1.5537 3 165 79 
    4 195 12 
    5 213 2 
 NC 0.5134 0.449 3 1059 43 
    4 2452 133 
    5 390 3 

NORTHERN 
CALIFORNIA BK -0.6836 0.7917 3 42 325 

    4 10 64 
    5 5 8 
 NP 0.3413 1.1830 3 177 71 
    4 180 13 
    5 174 8 
 NC 0.31 0.40 3 1063 40 
    4 511 218 
    5 3 8 

NETWORK 
CALIBRATIO

N 
BK 0.4749 0.6721 3 178 1 

    4 116 49 
    5 14 3 
 NP -0.026 0.611 3 170 77 
    4 17 156 
    5 0 36 
 NC -0.002 0.366 3 1068 37 
    4 2 466 
    5 1 13 

 

The application of SAVE in California leads to interesting observations. We let the 

system run on earthquakes of different tectonic settings (Japan, Central Italy, Southern 

Italy, Turkey, California) and large magnitude range (around 3.5 and up to ~7.5). We 

showed (in paragraphs 3.2) that SAVE can be easily adapted and calibrated without any 

big computational effort. For future EEW implementations, SAVE could represent a 

powerful tool (e.g. it could be integrated in smartphone apps to issue fast alerts at users’ 

sites or it could be a seismic module for multidisciplinary risk mitigations platforms). 
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3.4 Implementation of the onsite EEWS SAVE at Campi 
Flegrei Caldera, Italy during the unrest crisis 

3.4.1 Volcanological setting, bradyseism and earthquake activity at 
Campi Flegrei Caldera 

The Campi Flegrei volcano (geographical location in Figure 3.4.1) is characterized by a 

nested caldera structure which is the consequence of two explosive eruptions, known as 

the Campanian ignimbrite (CI) and the Neapolitan yellow tuff (NYT) (Vitale and Isaia, 

2014). The volcanism has been fed by a complex magmatic system. This system includes 

a deep (8 km depth) and widespread reservoir (Zollo et al., 2008). Above the magmatic 

system, a hydrothermal system has developed and its presence is testified by soil 

degassing and fumarole. The caldera has been affected by short-term deformation 

episodes, known as bradyseismic events, which have been documented since 1950s (Del 

Gaudio et al., 2010). The two most rapid phases of ground uplift occurred in 1970-72 and 

in 1980-84 (Scarpa et al., 2022). A long subsidence phase followed between 1985-2005. 

Since 2005 a new monotonic uplift episode has started, with a particular acceleration in 

Figure 3.4.1: Location of the Campi Flegrei volcano. The caldera hosts almost one million of people living 
in the metropolitan area of Napoli. (this map has been taken from the web site page of INGV-Osservatorio 
Vesuviano sezione di Napoli link accessible at https://www.ov.ingv.it/index.php/monitoraggio-sismico-e-
vulcanico/campi-flegrei/campi-flegrei-storia-eruttiva?view=article&id=66:ubicazione-campi-
flegrei&catid=13:vulcani-della-campania) 
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seismicity from 2014 onwards (Bevilacqua et al., 2022). The cause of bradyseism is still 

under debate. One hypothesis is the intrusion of magma at shallower depths, causing 

changes in pressure and volume which lead to deformations (Kilburn et al., 2023); another 

hypothesis that could explain the phenomenon is the poroelastic response of the shallow 

hydrothermal system, behaving as a constrain for the fluid migration processes happening 

at depth (De Landro et al., 2017). 

Most of the seismicity associated with bradyseism occurs inland typically at shallow 

depths and small value of duration magnitude (Md<1). However, in the early 2023 there 

has been an increase of the average magnitude per month, with the occurrence of the 

Md=4.2 event at the end of September (Md=4.2), the highest duration magnitude since 

the beginning (in 2005) of the new bradyseismic crisis.  

3.4.2 Multi-Risk Impact-based Early Warning at Campi Flegrei 

The Campi Flegrei area is home to almost 1 million people. The sudden upwelling of the 

Pozzuoli area has caused damage and fracturing of houses and walls. In this context it is 

crucial to monitor the unrest phase of the volcano to support Civil Protection Authorities 

(CPAs) and first responders. The metropolitan area of Pozzuoli (in Figure 3.4.1) is one of 

the pilot sites of a 4-year long European innovation action under the Horizon Europe 

Framework Programme called “GeO and weather multi-risk impact Based Early warning 

and response systems supporting rapid deploYment of first respONders in EU and 

beyond” (GOBEYOND).  

GOBEYOND aims at revolutionizing Disaster Risk Management (DRM). The goal is to 

develop a Multi-Risk Impact-based Early Warning System (MR-IEWS) for geo and 

weather hazards. The MR-IEWS will integrate the latest advancements in observation 

Figure 3.4.2: MR-IEWS scheme which GOBEYOND aims at realizing (from webpage https://gobeyond-
project.eu/the-project/) 
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systems, real-time data, local layers, predictive algorithms and platforms for impact 

forecasting, to provide timely and accurate warnings that can turn into actionable 

decisions (scheme in Figure 3.4.2). The local demonstrations will focus on using the high-

resolution information available at local level to develop specific protocols of response 

actions to be triggered by the impact forecasting products of the MR-IEWS.  

The unrest crisis affecting the Campi Flegrei Caldera represents a legitimate scenario to 

test and validate on-site earthquake early warning algorithms, such as SAVE that has the 

potential to be the product of the MR-IEWS related to the earthquake forecasting. In next 

paragraph we present the preliminary results of a retrospective SAVE test on the Md 4.2 

event of September 2023. 

3.4.3 Off-line test on the Md 4.2 earthquake of 27 September 2023 

Retrospectively, we evaluated the performance of SAVE on one of the largest magnitude 

events recorded at Campi Flegrei in Sept, 27, 2023, through the off-line playback of 

recorded waveforms. Source parameters are reported in and the event location, evaluated 

by the Italian National Institute of Geophysics and Vulcanology (INGV), is represented 

in Figure 3.4.3. For the off-line test, we let SAVE algorithm run on the waveforms which 

recorded the event at the stations closest to the event epicenter.  

Figure 3.4.3: Event location from INGV bulletin page (link https://terremoti.ov.ingv.it/gossip/flegrei/). The 
red point indicates the earthquake. Yellow points are available seismic stations used for the test. 
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Table 3-2: INGV source parameters of the Campi Flegrei earthquake used for the off-line test.  

ORIGIN TIME 
(UTC) 

LAT LON DEPTH (KM) MAG 

2023/09/27 01:35:34 40.8192 14.1590 2.8 4.2±0.3 Md 

The results we show here are obtained from the analysis of the vertical component of the 

acceleration at the available stations of the INGV network. As described in paragraph 3.1, 

the system requires a tuning phase where the user set threshold levels for automatic 

picking and data quality control. For the off-line test of this event, we used the threshold 

values of the original paper (Caruso et al., 2017). 

In Figure 3.4.4 we represent the results of SAVE test in terms of predicted PGV and MMI. 

The predicted PGV is evaluated from Pd, using the empirical scaling laws obtained for 

Italy by Caruso et al. 2017 (Caruso et al., 2017). The expected shaking intensity at the 

site is evaluated from Faenza and Michelini relationship (Faenza and Michelini, 2010). 

The observed PGV is evaluated from the horizontal components of velocity. In one 

second PTW the expected MMI at the sites matches the observed MMI within the errors 

(panel A of Figure 3.4.4), although we already observe a systematic overestimation. The 

highest MMI values are retrieved for the closest stations to event epicenter (less than 2.5 

km). In one second since the first P-wave arrival, SAVE correctly predicts a maximum 

PGV value of 2 cm/s, corresponding to MMI around 5 (very light shaking). This result 

agrees with the shakemap evaluated by INGV retrospectively when the earthquake ended 

(for reference see https://terremoti.ingv.it/it/event/36299321). The seismic waveforms of 

the furthest stations (less than 8 km) that still pass through SAVE data quality control, 

show a predicted intensity which is two level smaller than the one obtained from the 

closest stations. Giving the fact that the maximum epicentral distance between the closest 

and the furthest station used in the off-line test is less than 10 km, the great decrease of 

predicted (and also observed) MMI is mostly related to attenuation effects due to volcanic 

rocks of the Campi Flegrei caldera (Iervolino et al., 2024). When we move to 2 and 3 

seconds PTWs, it is more evident that the system is overestimating the expected PGV 

(MMI). The overestimation is particularly clear in Panel B and C for stations at 5-8 km 

of distance from event epicenter. This is due to the inclusion in the corresponding PTW 

of secondary phase arrivals (i.e., S-waves), resulting in the overestimation of the P-peak 

of displacement, which, in turn, leads to the prediction of overestimated shaking values. 

https://terremoti.ingv.it/it/event/36299321
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Different strategies could overcome the issue of PGV (MMI) overestimation in the area 

Figure 3.4.4 Panel A: predicted PGV (MMI) versus observed PGV (MMI) using 1 second of P-Time 
Window. Panel B: predicted PGV (MMI) versus observed PGV (MMI) using 2 seconds of P-Time Window. 
Panel C: predicted PGV (MMI) versus observed PGV (MMI) using 3 seconds of P-Time Window. Points 
are colored following the observed source-to-station epicentral distance. Error bars represent the standard 
error of the corresponding PGV versus Pd relation from Caruso 2017 in each P-Time window. The black 
solid line in each panel is the one-to-one PGV line. 
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of interest as example: (a) refined methods for the real-time picking of the S-wave arrival 

or for the real-time separation of the P-phase from the S-phase such as polarization filters 

(Ross and Ben-Zion, 2014) might be implemented; (b) the PTWs used in the algorithm 

could be reduced to less than 1 second from P-wave arrival. This preliminary test showed 

that in future, we need to easily and rapidly move towards the (b) solution for SAVE 

implementation at Campi Flegrei. In order to apply the modifications, the empirical 

scaling laws of logPGV versus logPd need to be calibrated on the Campi Flegrei area and 

within shorter PTWs.  

In Figure 3.4.5 we show the results of the magnitude estimation provided by SAVE at 

single stations. The catalog magnitude evaluated by INGV in Table 3-2 is the duration 

magnitude. The duration magnitude is often preferred over other magnitude scales in 

volcanic settings like the Campi Flegrei caldera. The duration magnitude is evaluated by 

taking into account the total duration of an earthquake. The energy release is measured 

from the duration of the observed signal after applying a station correction to reduce site 

effects (Castello et al., 2007). For the event we used for the test, the moment magnitude 

was also evaluated using the time domain approach proposed by Zollo (2022) ((Zollo et 

al., 2022)(Nazeri and Zollo, 2023)). The seismic moment of the earthquake is measured 

from the corner time and the plateau level of the LPDT curves. Indeed, it has been proved 

that these two parameters are directly related with the duration and the peak of the 

modelled source time function. The moment magnitude obtained for this event is Mw 4.2. 

Single-station SAVE estimate of moment magnitude is evaluated through the parameter 

𝜏% on high quality data, as described in paragraph 3.1.2. Although single-station 

magnitude estimates of Figure 3.4.5 show a large variability, the average value is 𝑀s)=4.1 

with 𝜎d = 0.5	in PTW=3 seconds. Many factors could be affecting the value we obtain 

on the standard deviation: (1) the filter applied on single-station displacement with 

highpass cut-off frequency of 0.075 Hz (Allen and Kanamori, 2003) might not be 

appropriate for this kind of events; (2) the selected P-time windows might be too long, 

leading to the inclusion of S-wave content in the analyzed signal; (3) the frequency 

content of the signals might be modified by attenuation effects that SAVE is not taking 

into account. However, the final output of SAVE is given in the form of a broad 

magnitude classification (see paragraph 3.1.3) so for the test on the Campi Flegrei Md 

4.2 earthquake, SAVE correctly issues an alert for an expected medium (3 < 𝑀 ≤ 5) 

event at all the available stations. 
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Figure 3.4.5: Single-station estimated magnitude at the available stations in the different PTWs. The red 
dashed line is the average magnitude value. Error bars represent the standard error for the corresponding 
Mw versus 𝜏0 laws from Caurso 2017. Panel A: magnitude values in one second PTW; panel B: magnitude 
values in 2 seconds PTW; panel C: magnitude values in 3 seconds PTW.  
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Figure 3.4.6: SAVE graphical interface for the station COLB located at 900 meters from the event 
epicenter. At this station, the alert is issued for expected event of MMI=6, medium magnitude, nearby the 
site. The pulsing blue point on the map is the station location. In the bottom right the reference for intensity, 
magnitude and distance scales are represented. In bottom left the data stream of the signal is shown with 
the P-wave automatic pick marked with the vertical red line. 

An example of the graphical interface of SAVE for this test is shown in Figure 3.4.6 for 

the station COLB located at 900 meters from event epicenter.  

SAVE test for the Md 4.2 earthquake at Campi Flegrei shows us, on one hand, that the 

system needs to be carefully calibrated to address overestimation errors (by analyzing 

much shorter windows than those currently used) and, on the other hand, that it could be 

easily adapted into a multi-hazard platform for the seismic monitoring of the metropolitan 

area of Pozzuoli. 
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CHAPTER 

4 Next Generation of P-wave based on-site system: P-
Alert 

4.1 P-Alert theoretical concepts 

In this paragraph we describe a P-wave based on-site earthquake early warning system 

(P-Alert, hereinafter) developed by Colombelli et al. (2015). P-Alert methodology is 

straightforward and based on two key elements. The first one is the continuous 

measurement of the three peak amplitude parameters (which are the peak amplitude 

acceleration Pa, the peak amplitude velocity Pv and the peak amplitude displacement Pd) 

on the vertical component of a single ground motion recording. The second key element 

is the use of the three combined peak amplitudes at the site to obtain expected PGV at the 

same site. The use of the three peak amplitudes Pa, Pv, Pd makes the methodology more 

robust. The block diagram of P-Alert can be summarized into two parts: the first is an off-

line calibration of the system and the second is the signal analysis with eventual alert 

issuing.  

4.1.1 Calibration of PGV vs Px empirical laws and PGV threshold 
setting 

In P-Alert algorithm, the calibration of PGV vs Px empirical laws is made upstream. The 

three peak amplitude parameters Pa, Pv, Pd are evaluated off-line in a time window 

corresponding to the difference between the arrival time of S-waves (TS) and the arrival 

time of P-wave (TP). For each peak amplitude, the empirical scaling law is equal to (22) 

and the measurements should follow the relationship within the errors. The off-line 

calibration of the system makes it suitable for fast application in different regions of the 

world where the empirical scaling laws between PGV and Px are already available, such 

as Italy, Taiwan, Japan, western U.S and Turkey ((Zollo et al., 2010) (Colombelli et al., 

2015) (Rea et al., 2024)).  Depending on the user’s needs, a threshold PGV* can be set. 

The PGV* threshold would result in an interval around Px*, e.g. 𝑃G	h ≤ 𝑃G∗ ≤ 𝑃G	i where 

𝑃G	h and 𝑃G	i are the lowest and highest value around 𝑃G∗ when taking into account the 

standard deviation of PGV vs Px law, respectively. An example of the setting of PGV* 

and the consequent interval of Px can be appreciated in top panel of Figure 4.1.1. The 

threshold PGV* is linked to the expected shaking intensity, as described in paragraph 

2.2.1.1 and represents the level above which the system is calibrated to issue the alert. 
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Figure 4.1.1: Top panel: Data distribution and empirical relationships between Pd and PGV. The solid 
black line is the best fit line, the dashed lines are the standard error of regression. The vertical dashed 
lines correspond to the interval of Pd values around the Pd*, obtained by fixing a threshold PGV* on y-
axis. Bottom panel: example of Wd definition. The observed Pd parameter is compared to its threshold 
value and converted into a dimensionless variable, named Wd, which is equal to 0 in the region below the 
lower threshold to 1/3 in the region above the higher threshold and linearly increases between 0 and 1/3 
in the intermediate region. (from Colombelli et al., (2015)). 

 

4.1.2 Signal analysis: combination of peak acceleration, peak velocity, 
peak displacement 

After the calibration, the system can be applied on the vertical component of ground 

motion recordings. At each time along the seismogram, P-Alert measures Pa, Pv, Pd and 

associates them with a fuzzy variable Wx, defined as: 
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 𝑊G(𝑡) = 0 𝑃G < 𝑃G	h  

 𝑊G(𝑡) = 1 3⁄ [(𝑃G − 𝑃G	h) (𝑃G	i − 𝑃G	h)⁄ ] 𝑃G	h ≤ 𝑃G ≤ 𝑃G	i (33) 

 𝑊G(𝑡) = 1 3⁄  𝑃G > 𝑃G	i  

Where 𝑃G	h and 𝑃G	i are obtained from the PGV vs Px empirical law by fixing the 

threshold PGV*, as described in the previous paragraph. Wx(t) is computed at each time 

Figure 4.1.2 Example of P-Alert workflow on a seismogram. From top to bottom: acceleration (dashed lines 
represent Pa* interval), velocity (dashed lines represent Pv* interval), displacement (dashed lines represent 
Pd* interval), fuzzy variable Wa referred to acceleration, fuzzy variable Wv referred to velocity, fuzzy variable 
Wd referred to displacement, fuzzy variable Wt from the sum of Wa, Wv, Wd. The gray rotated triangle shows 
the threshold value Wt* used for warning declaration. (from Colombelli 2015)  
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and is locked at the corresponding value until a larger value is encountered. As a result, 

Wx(t) is a monotonically increasing stepladder-like function. Eventually the fuzzy 

variables are summed at each time step to get the fuzzy variable Wt, which is 

monotonically increasing from 0 to 1. The workflow of the scheme is presented in Figure 

4.1.2. 

4.1.3 System output: warning declaration 

As system output, four different alert levels can be defined based on a threshold set on 

Wt, denoted Wt* hereinafter (matrix scheme of Figure 4.1.3): successful alert (SA), 

successful no-alert (SNA), missed alert (MA) and false alert (FA). The overall 

performance of the system and its reliability is controlled by the threshold on PGV and 

the threshold Wt*. Indeed, by varying the threshold in PGV and Wt the user can decide 

how selective the system might be: a change in both the thresholds has the consequence 

of varying the number of alerts (particularly missed and false alarms), which makes P-

Alert extremely suitable for any kind of user tolerance and needs.   

  

Figure 4.1.3 Alert definition scheme. Alert categories: successful no alarm (light green zone), successful 
alarm (dark green zone), missed alarm (red zone) and false alarm (yellow zone).  
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4.2 P-Alert at California 

In this paragraph we present the results of the application of P-Alert in California. We 

perform an off-line test of P-Alert on 300 Californian events spanning a catalog time 

window of 20 years (from 2003 to 2023) (see Figure 4.2.1). The magnitude range goes 

from small to moderate and the depth range goes from very shallow (few kilometers) to 

deeper values (about 40 kilometers). We used records of strong motion networks with 

stations locations involving both Southern and Northern California regions (as shown in 

Figure 4.2.1). In paragraph 4.1 we described P-Alert workflow which requires (1) a 

calibration phase and (2) the application of the retrieved empirical laws to run the system 

in the region of interest. The following sub-paragraphs are focused on the results of each 

of the P-Alert workflow phases. 

4.2.1 System calibration 

In order to calibrate the system in California, we split the dataset presented in Figure 4.2.1 

into two: one third of the available records are used for the later testing phase and two 

third of the available records are used for the training in the calibration phase. The dataset 

is divided with the constraint of maintaining the same data distribution for both the test 

and the train, as it is shown in Figure 4.2.2.  

Firstly, we manually picked P- and S- arrivals on the records and we retrieved the P-peak 

of acceleration Pa, P-peak of velocity Pv and P-peak of displacement Pd from the vertical 

component of the waveforms in a time window equal to TP-TS, with TP and TS being the 

P- and S-arrival respectively.  

Secondly, we evaluated the observed PGV from the horizontal components of velocity 

waveforms. We plot PGV versus Pa, Pv, Pd to get the empirical scaling laws of P-Alert in 

California (see Figure 4.2.3). Since the majority of points have low values of observed 

PGV, Pa, Pv and Pd, we adopted the approach used in Colombelli et al., (2015): we 

resampled PGV vs Px in 2D with a 0.5 cm/s step in PGV and 1 cm/sx (x=0,1,2 according 

to x being displacement, velocity or acceleration) step in Px. We obtained the coefficients 

of PGV vs Px laws on the resampled sets (see Figure 4.2.3). As described in paragraph 

4.1.1, the setting of a threshold for P-Alert is done during the calibration phase and it is 

thought to be user oriented. Once the scaling relations on which the system algorithm 

works are calibrated, the user can set a threshold in PGV which results in the interval 

values for Px that will trigger the system for eventual alert declaration. Here we set a 
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threshold value of PGV = 1.41 cm/s which corresponds to MMI=4 (light shaking) 

according to Worden 2012 intensity scale (Worden et al., 2012). 

 
Figure 4.2.1: Map of events whose waveforms are used to test P-Alert in California. Circles represent event 
locations. Marker size indicates event magnitude; the color indicates event depth. Black triangles represent 
seismic stations used for the analysis. 

 
Figure 4.2.2: Train and test dataset splitting. Panel A shows train dataset distribution of records with 
respect to magnitude and distance from event epicenter. Panel B shows test dataset distribution of records 
with respect to magnitude and distance from event epicenter.  
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Figure 4.2.3: Panel A represents the scaling of observed PGV versus Pa on train records. Panel B 
represents the scaling of observed PGV versus Pv. Panel C shows the scaling of observed PGV versus Pd. 
In each panel the black solid line is the PGV vs Px relation; black dashed lines are the ±𝑆𝐸 lines; the grey 
crosses are single values measured on each record; the cyan points are the 2D resampled dataset on which 
the fit is performed; the magenta square is the PGVthreshold here set at 1.41 cm/s and the dark blue dashed-
dotted lines correspond to the Px interval around the PGVthreshold. 
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In table Table 4-1 we reported the values of Px intervals that allow to build the fuzzy 

variables Wx. As described in paragraph 4.1.2, the fuzzy variables are step-wise functions 

that monitor the growth of acceleration, velocity and displacement. The combination of 

the three variables is the fuzzy variable Wt that takes into account any variation in the 

three physical parameters of the ground: when the variation in the peak is observed on 

the three of them, that is Wt is higher than a threshold wt*, the system is triggered for alert 

issuing. 

Table 4-1 Retrieved values for Pa, Pv, Pd to build the corresponding fuzzy variables. Low and High values 
take into account the standard errors coming from PGV versus Px relationships. Px(PGVthreshold) is the 
central value of PGV vs Px laws at PGVthreshold=1.41 cm/s in this study. 

 𝑷𝒙	𝑯𝑰𝑮𝑯 𝑷𝒙	𝑳𝑶𝑾 𝑷𝒙(𝑷𝑮𝑽𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) 

ACCELERATION (CM/S2) 55 1.7 9.6 

VELOCITY (CM/S) 1.5 0.1 0.4 

DISPLACEMENT (CM) 0.25 0.01 0.06 

To set a threshold for the fuzzy variable Wt, first we built the fuzzy variables Wa, Wv, Wd 

for each record of the train dataset. The fuzzy variable Wx has a zero value under a certain 

threshold in Px, has a linear growth (with known slope) depending on the Px interval 

relative to PGVthreshold and has a maximum value of 1 3⁄  when the upper Px value is 

reached. Here we slightly modified the approach described in paragraph 4.1.2 from 

Colombelli et al., (2015.) The maximum value for the fuzzy varialble Wx is declared as 

soon as the corresponding Px value is higher than Px(PGVtreshold) which is the central 

measure retrieved from the calibrated PGV vs Px laws (magenta squares of Figure 4.2.3). 

The reason of this choice relies on the fact that we want the system to be as fast as possible 

in triggering an event. We also noticed that the high Px measure on PGV vs Px plus its 

standard deviation and the central value on PGV vs Px relationship are of the same order 

of magnitude (Table 4-1). Indeed, from Figure 4.2.3 it is clear that the measures are well 

distributed around the PGV vs Px line with very few scattered points.  
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Figure 4.2.4: Calibration curves obtained from the train dataset. The darkgreen line represents the 
percentage of Successful Alerts and Successful No-Alerts with respect to the threshold wt*; the red line 
represents the percentage of False Alerts with respect to wt*; the yellow line represents the percentage of 
Missed Alerts with respect to wt*. Darkg rey triangle is the value of wt* which corresponds to 85% of 
SA+SNA; 20% of FA and about 5% of MA. 

Once we have let the algorithm run on each available records of the train dataset, we get 

the measures of Pa, Pv, Pd and their respective fuzzy variable Wa, Wv, Wd along the 

seismograms. The sum of Wa, Wv, Wd is the fuzzy variable Wt, that is monitored for 

potential alert issuing. According to how Wt is built, we let wt* vary in a range between 

0 (lowest feasible value) and 1 (highest feasible value). We count the number of 

Successful Alert, Successful No-Alert, Missed Alert and False Alert following the matrix 

scheme of Figure 4.1.3 here reported as it follows: 

Successful Alert (SA): Wt>wt* & PGVobs>PGVthreshold 

Successful No Alert (SNA): Wt≤wt* & PGVobs≤PGVthreshold 

False Alert (FA): Wt≥ wt* & PGVobs<PGVthreshold 

Missed Alert (MA): Wt<wt* & PGVobs≥PGVthreshold 

The result of the scheme above is shown in Figure 4.2.4 in the form of calibration curves. 

The calibration curves give quantitative information about the total number of SA, SNA, 

FA and MA. Figure 4.2.4 shows the dependence of the calibration curves on the threshold 
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Figure 4.2.5: Example of P-Alert application on the station KHMB record of the Mw 6.4 Ferndale 
earthquake happened on 2022/12/20 at 10:34:24 UTC. The epicentral distance is 70 km. On the left side 
of the figure from top to bottom it is represented the vertical component of acceleration; the vertical 
component of velocity; the vertical component of displacement. The time is relative to the beginning of the 
trace. The dashed red line marks the P-wave arrival. The dashed blue line marks the S-wave arrival. On 
the right side of the figure from top to bottom it is represented the fuzzy variable related to the peak 
acceleration Wa; the fuzzy variable related to the peak velocity Wv; the fuzzy variable related to the peak 
displacement Wd; the fuzzy variable Wt, sum of Wa, Wv, Wd. The magenta triangle marks the threshold 
wt* at which the system issues an alert, warning for expected PGV>1.41 cm/s (MMI>4). 

wt*. Moreover, from Figure 4.2.4 it is possible to explain the reason why P-Alert is a very 

user-friendly and user-oriented on-site system: the users could select the threshold wt* 

that best matches their needs/tolerance (e.g minimum number of FA, minimum number 

of MA or maximum number of SA+SNA), effectively deciding with the calibration 

curves how strict he wants to be. For the application of the system on the test dataset, we 

chose a threshold value wt*=0.5 corresponding to 85% of the sum of SA and SNA. The 

choice was driven by a trade-off between lower wt* thresholds which would results in 

high percentage of MA and FA and higher wt* thresholds which would be too strict as 

the algorithm waits for Pa, Pv, Pd to reach maximum levels to be triggered on Wt. 
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4.2.2 System testing 

Once we calibrated the system, we applied it on the test dataset of Figure 4.2.2. An 

example on one record is presented in Figure 4.2.5. We reported the P- and S-picks 

(dashed blue and red line respectively) to show that P-Alert was triggered when the P-

wave arrived at the station, warning for an event that was rightfully over the chosen PGV 

threshold of 1.41 cm/s (MMI=4). The S-wave content for stations close to event epicenter 

often corresponds to the PGV arrival at the same site. Moreover, from Figure 4.2.5 it is 

possible to see how the system is jointly monitoring acceleration, velocity and 

displacement through the corresponding fuzzy variables and it is declaring a warning as 

soon as the three of them are coherent with the calibrated threshold values.  

The lead time here is defined as: 

 𝐿𝑒𝑎𝑑	𝑇𝑖𝑚𝑒 = 𝑇(𝑃𝐺𝑉/q=KJqMS1) − 𝑇(𝑤/∗)	 (34) 

where 𝑇(𝑃𝐺𝑉/q=KJqMS1) is the time on the velocity waveform at which the observed PGV 

is equal to the threshold PGV, 𝑇(𝑤/∗) is the time at which the fuzzy variable Wt first 

reaches the threshold level wt*. From the definition of Lead Time in equation (34) and 

the scheme for alert classification in paragraph 4.2.1, only Successful and False Alert can 

be taken into account in the lead time analysis, because for both of them there has been a 

warning declaration coming from the fact that the fuzzy variable Wt has overcome the 

threshold. The plot of lead time for the test dataset is presented in Figure 4.2.6. The zero 

value means for that record the system triggered exactly at the arrival of PGV=1.41 cm/s 

at the site. On average we found that for stations at 100 km the available lead time is 

about 10 seconds. This result is comparable to the one obtained for SAVE in paragraph 

3.3.2. However, it is worth to mention that SAVE requires at least one second after the 

automatic picking of P-wave phase to issue an alert and the lead time SAVE can provide 

is based on the arrival of the PGV at the site. On the contrary, P-Alert does not require 

any P-phase identification (although it intrinsically uses the information coming from P-

wave), the alert is issued as soon as the threshold level is reached and the lead time refers 

to the arrival time of the threshold PGV (here PGV=1.41 cm/s), whereas the highest PGV 

might reach the recording station even later, effectively increasing the available time to 

take actions. This means that the Figure 4.2.6 shows the minimum available lead time for 

P-Alert, which seems to be in agreement to what SAVE could provide at the same 
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epicentral distances and for the same range of magnitude (see Figure 3.3.5 for 

comparisons). 

The system perfomance is shown in the pie chart of Figure 4.2.7. We evaluated the total 

number of Successful Alert, Successful No-Alert, Missed Alert and False Alert according 

to the scheme presented in the previous paragraph 4.2.1. We noticed that the percentage 

of SNA is above 86%. This result is expected, given the high number of records for event 

having magnitude smaller than 5. This subset of records populates most of the test dataset 

distribution also at distance greater than 50-100 km where it is feasible not to expect a 

PGV overcoming the chosen PGVthreshold=1.41 cm/s (MMI=4) (see Figure 4.2.2).  

Moreover, in the calibration phase of the system (see paragraph 4.2.1), we set a threshold 

in Wt which assured a percentage of overall success (SNA+SA) of 85% on the calibration 

curve, so the test is completely in agreement to what we observed previously. It is 

interesting to highlight the fact that the total number of SA is ten times bigger that the 

total number of MA+FA. Indeed, when we evaluated the precision and the recall for P-

Alert in the same way as we did for the application of SAVE, we obtained that for this 

application of P-Alert the precision is equal to 89% and the recall is equal to 98%.     

Figure 4.2.6: Lead time plot for the test dataset. The lead time is defined as the time at which the PGVthreshold 
is observed at the station and the time at which the fuzzy variable Wt first overcome the threshold wt* set 
to issue alerts. Marker colors follow event magnitude; marker types represent either False or Successful 
Alert. Darkgrey squares are averaged lead time values (bin width = 20 km). 

 
..  
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Figure 4.2.7: Pie chart of P-Alert performance. Successful Alerts (SA) (in darkgreen) refer to a threshold 
PGV value of 1.41 cm/s (corresponding to MMI=4 according to Worden et al. 2012 scaling law). The 
percentage of False Alerts (in red) is one order of magnitude smaller than the percentage of SA. The 
percentage of Missed Alerts (in yellow) is two orders of magnitude smaller than the percentage of SA.        

The performance of P-Alert shows that there is a change in the on-site systems 

performance when limited or unlimited P-time windows are taken into account. The 

application of two different on-site systems in the same tectonic setting and on the same 

events is useful to highlight the aforementioned difference. From Figure 3.3.7 in 

paragraph 3.3.2, we can observe that the values of recall and precision for SAVE system, 

which works on the same MMI threshold for alert issuing (MMI=4), never reach the 

values obtained by P-Alert which was set to work at the same MMI threshold for this test. 

SAVE uses a limited P-time window (PTW max = 3 seconds since P-arrival), while for 

P-Alert no limitation on time is imposed. This is the reason why we observed a substantial 

reduction of MA.  
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PART 3 – NEW PERSPECTIVES FOR 
EARTHQUAKE EARLY WARNING 

The EEW algorithms and their applications provide a great insight into the earthquake 

physics. The complete characterization of the earthquake source obtained from the 

analysis of few seconds of available seismic signals remains a very promising challenge. 

The greatest issue in the framework of further development of EEWS is to establish 

whether the earthquake rupture has an intrinsic differentiation in the way the process starts 

and propagates and whether this differentiation depends on the final earthquake size. In 

Part 1 and Part 2 we focused the discussion on the physical grounds behind the concept 

of EEW and the application of the on-site systems. However, we also highlighted how 

contradictory the observations about this delicate matter are until now and how the fast 

characterization of the final earthquake magnitude is still affected by many limitations. 

Therefore, in Part 3 of the discussion we put the attention on the ongoing debate about 

the earthquake nucleation behavior. We present the results of a global earthquake catalog 

showing that the earthquake rupture beginning is deterministic and final-size dependent, 

at least in a probabilistic sense. These results might have a significant place both in the 

debate on earthquake rupture physics and, particularly, in the EEW future applications 

since they could pave the way for a rapid magnitude estimation which is fundamental to 

take fast mitigation actions. 
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CHAPTER 

5 The deterministic behavior of earthquake rupture 
beginning and the early magnitude characterization 

In this chapter we present the results of the analysis of an unprecedent global seismic 

catalog to support the hypothesis of the deterministic behavior of the earthquake rupture 

beginning. The nucleation of earthquakes is still an open debate in the seismological 

community. The way earthquake ruptures grow and stop determines the final earthquake 

size which can be quantify by its magnitude. Small and large earthquakes develop in very 

different time scales: the former usually take few seconds to evolve on typical length 

scales of few kilometers; the latter can take hundreds of seconds to evolve on typical 

length scales of hundreds of kilometers. If the rupture process starts in the same way for 

small and large earthquakes, no deterministic prediction of the final size is feasible, until 

the process has finished. On the contrary, if the source mechanism starts differently from 

its early beginning, real-time proxies can be measured on seismic waves to discriminate 

the final event size. In this chapter we present the results of the analysis of the early P-

wave displacement performed on big number of waveforms of worldwide earthquakes 

spanning a wide range of magnitude and depth having locations involving different 

geological setting. We prove that the initial growth rate of P-wave displacement could be 

a proxy for the early magnitude estimation. Moreover, we discuss the implication that the 

results have with the physical parameters related to the earthquake source and its 

nucleation (e.g the stress drop and the rupture velocity). Lastly, we discuss about the 

impact that the feasibility of the early magnitude characterization (less than 1 seconds of 

P-wave signal) might have on future earthquake early warning systems implementation. 
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5.1 The analysis on a big worldwide earthquake catalog 

We analyzed 200 earthquakes with magnitude ranging from 4 to 9. For each event, we 

used either the acceleration waveforms or the velocity waveforms, depending on data 

availability. In previous studies ((Colombelli et al., 2014), (Colombelli and Zollo, 2015), 

(Nazeri et al., 2019), (Colombelli et al., 2020)) the preliminary dataset consisted of a 

smaller subset of events from a specific tectonic area of the world (e.g. Japan and Central 

Italy). In order to investigate globally on the physics behind the beginning of the 

earthquake rupture, we built a massive worldwide catalog consisting of 7000 thousand 

records of earthquakes from different tectonic areas and geological settings, including 

normal fault zones, strike-slip environments and subduction zones (Figure 5.1.1).  

 

Figure 5.1.1: Map of the events. The figure shows the epicentral position of the events used in this study 
(colored circles). The size of the circles is proportional to the earthquake magnitude and the color shows 
the event depth. Black triangles are the velocimeter sensors while magenta squares represent accelerometer 
sensors. The histogram in the middle shows the distribution of records in each magnitude bin. 

5.1.1 Evaluation of the LPDT curves and their initial slope 

We select the records within a 25 km wide circular crown that includes the closest stations 

to event epicenter. Depending on the available recording sensor (velocimeter or 

accelerometer) (see Figure 5.1.1) we perform a single or double integration of signal, 

respectively, to get displacement and we finally apply a high-pass Butterworth filter with 

cut-off frequency of 0.075Hz to remove possible baseline effects. We compute the 

logarithm of the peak of the absolute displacement starting from the P-arrival time at the 

station.  
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Figure 5.1.2: Computation of LPDT curves and slope measurement. Color represents two different 
magnitude values (cyan is Mw=4, red is Mw=7). Dotted lines show the LPDT curves at each station; thick 
lines show the averaged LPDT curve. The circle (corresponding to tMIN=0.05s) is the starting point for the 
slope evaluation. The diamond (tHALF) is the ending point for slope evaluation.   

We average the obtained LPDT curves by stations (dashed lines in Figure 5.1.2). The 

average is performed at each time step and the starting point of the single station curve 

corresponds to the P-wave arrival at the station. Finally, we get the final LPDT curve 

(thick line in Figure 5.1.2) whose points have a standard deviation coming from the 

average we performed on single station curves. We calculate the initial slope on the 

averaged LPDT curve in few steps. 

The first step is the fit of the observed LPDT curve with an exponential function in the 

following form: 

 LPDTvwx = LPDTwyz ^1 − e
?v v1{ a − LPDT$	 (35) 
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Where LPDT$ and LPDTwyz are the first and the last point of the curve respectively, t1 is 

a fit parameter that simply allows the function to bend towards the plateau level. The 

fitting procedure is used to avoid numerical noise caused by the discontinuity of observed 

curves. The fitting curve is just used to select the time window for the slope measurement 

on the observed LPDT curve. 

The second step is the curvature evaluation of the LPDTteo as: 

 
curvature = 	

|ygg|

(1 + (yg)7)# 7{
 (36) 

where y' and y'' are the numerical first and second derivative of the interpolated LPDT 

curve. The curvature is a mathematical tool to quantify how much the curve deviates from 

a linear behavior. The curvature of the LPDT curve is expected to increase towards a 

maximum, where the curve bends to the plateau level, and to decrease monotonically 

towards zero since the plateau level is a straight line. We then recognize the time tHALF on 

the curvature, corresponding to half of the time where the maximum of the curvature is 

reached.  

Finally, we evaluate the slope along the observed LPDT curve in the time interval 

between tMIN=0.05 s and tHALF. The choice of the starting point for the slope evaluation is 

done to account for errors in affect the manual picking of waveforms. The slope is 

obtained from the line that crosses the LPDT between tMIN and tHALF, using a weighted 

least-square fit which takes into account the standard deviation on each point of the 

observed LPDT. The slope can be expressed as it follows: 

 Slope = 	
LPDT(t|}~�) − LPDT(t���)

t|}~� − t���
	 (37) 

Throughout data processing and analysis, we aimed at minimizing artificial 

contaminations that could introduce bias into the results. We keep our method for the 

early P-wave slope evaluation as simple as possible, avoiding complex signal processing.  

One potential source of bias could stem from the high-pass filtering applied to the 

displacement data. However, we followed the approach outlined by Colombelli et al. 

(2020), who addressed this issue, demonstrating that the slope calculated from 
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displacement records derived from unfiltered acceleration and velocity data maintains the 

scaling trend with magnitude.  

Another potential bias could arise from geometric or anelastic attenuation of the radiated 

wavefield over distance. While Colombelli et al. (2020) showed that slope measurements 

from LPDT curves are only weakly affected by distance attenuation, for this analysis we 

selected records from a narrow circular zone (25 km wide) to minimize distance 

attenuation effects. 

Finally, the potential directivity effect is mitigated by averaging LPDT curves distributed 

azimuthally within the selected circular zone to evaluate the initial slope. 

 

5.2 The global scaling of the initial growth of LPDT curves 
with magnitude 

We show that the P-wave signals associated with large earthquakes typically begin with 

a slow initial amplitude growth in the first few seconds, while the P-wave signals radiated 

by small events are mainly characterized by a rapid amplitude increase, in a shorter time. 

When evaluated over a large spectrum of magnitudes and for different tectonic areas 

worldwide, the early part of the log-displacement vs. time curves measured along the P-

wave portion of stations in close-proximity distances (maximum distance difference of 

25 km between the closest and the furthest stations from event epicenter) show a clear 

decreasing linear trend with the earthquake magnitude (Figure 5.2.1 A). The time window 

in which this estimate is done is also depending on the final earthquake magnitude, with 

larger time windows being necessary to measure the initial slope for larger magnitude 

events (Figure 5.2.1 B). Given the variability and uncertainties of measurements, the 

observed standard error of the linear regressions, suggests an uncertainty of about one 

magnitude unit associated with the slope measurement obtained by averaging the values 

at the stations within a very narrow (25 km) circular ring starting from the nearest station 

to epicenter. 
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Figure 5.2.1: Initial Slope pf LPDT curves and related time.  (A) initial slope of LPDT curves as a function 
of magnitude. (B) the time at which LPDT curves reach half of the maximum of their curvature (tHALF) as a 
function of magnitude. In both panels grey dots are single slope and time measurements, while red squares 
are the average values for each magnitude bin (bin width = 1). The solid black line represents the best fit 
line, along with ±one-SE thin lines. The fit parameters and the SE values are shown at top left of the panel. 

To assess the statistical relevance of the empirical relationships we show in Figure 5.2.1, 

we perform a correlation t-test whose results are shown in Table 5-1. Particularly, we find 

a robust anti-correlation between the logarithm of the slope measures and the moment 

magnitude while a positive correlation is observed between the characteristic time-

window and the moment magnitude. The result is also confirmed by the small p-values.  

Table 5-1: Correlation t-test of slope versus magnitude and of tHALF versus magnitude. r is the Pearson 
correlation coefficient, t-value is obtained from a two-tailed t-test, p-value represents the significance level 
of null hypothesis that is “no linear correlation between variables of interest”  

 Log (Slope) vs magnitude tHALF vs magnitude 
r −0.6 0.7 

t-value −7.6 10.4 
p-value 9.6 ∙ 10?87 0.0 

Figure 5.2.1 shows that for a M = 4 earthquake the average value of the initial growth rate 

of displacement is about 20 s-1, while for a M = 9 the average value is about 2 s-1 (panel 

A). As for the time for slope measurement, we need approximately 0.2 s for M = 4 

earthquakes and about 1 s for M = 9 events (panel B). 
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5.2.1 The physical implications for the earthquake nucleation 

Having ruled out any possible effect of bias that leads to the results shown in Figure 5.2.1, 

we argue that the scaling trend of the initial P-wave growth rate (the LPDT initial slope) 

with magnitude can be explained in terms of the preparatory process of the earthquake 

rupture. Different authors ((Nielsen et al., 2010),(Latour et al., 2013)) explored the 

complexity of the preparatory process that evolves in the rupture propagation by 

performing laboratory experiments. Nielsen et al. (2010) showed that the rupture 

sequences are composed of an initial phase with nucleation and crack size increasing at a 

slow stable velocity of about 5% of shear wave velocity. When the crack reaches a critical 

length related to frictional parameters (e.g. critical slip weakening distance Dc), the 

rupture accelerates towards subsonic velocity and finally to supershear (Nielsen et al., 

2010). The time during which rupture accelerates towards the dynamic propagation is 

well-known and is strictly related to the final slip (Latour et al., 2013). Within this 

framework, the observed scaling of both slope and its characteristic time with magnitude 

could represent the footprint of the unstable acceleration phase that leads to dynamic 

propagation during the nucleation phase, supporting the hypothesis that earthquakes show 

a differentiation at the beginning of the rupture process.  

The inverse scaling trend of slope with magnitude might be numerically and physically 

explained by taking into account the effect of variable stress drop and/or rupture velocity 

in the beginning of the earthquake rupture. A theoretical discussion of this hypothesis is 

presented in paragraph 1.3.2. We find that both the rupture velocity and the dynamic stress 

drop control the steepness of the LPDT initial slope. In Figure 5.2.2 we used the Sato & 

Hirasawa (1973) quasi-dynamic model of a circular rupture at constant stress-drop and 

uniform rupture velocity to simulate the P-wave displacement recorded at the strong 

motion network that recorded the Mw 6.5 Central Italy earthquake in 2016. Three 

different magnitude (M 5,6 and 7) events have been simulated at the 50 stations located 

within 100 km of epicentral distance. To show the effect of a variable rupture velocity 

with magnitude, we set Vr=0.9vs for Mw 5, Vr=0.7 Vs for Mw 6 and Vr=0.5 for Mw 7. 

The larger rupture velocity produces faster initial rise of the displacement waveform for 

smaller magnitude events that is not observed when rupture velocity is taken constant 

with magnitude. More complex numerical simulations are necessary to further investigate 

how these parameters control the scaling of the initial growth rate of displacement that 

we observe in Figure 5.2.1. 
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Recently, Nielsen et al. (2024) has provided a detailed discussion about earthquake 

rupture physics through the finite difference numerical modelling. He has identified a 

scaling in the acceleration of rupture propagating from an initial crack. He has found that 

the rupture front tip location scales with the critical length of the crack in space and scales 

with the ratio between the crack length and the limiting rupture velocity in the subsonic 

regime in time. Consequently, he has argued that ruptures starting from a larger nucleation 

area will accelerate more slowly and that large nucleation can only take place on large 

faults. Within this framework, our results could be the link between the non-radiative part 

of the rupture process (the nucleation) and the far-field radiation. We argue that the 

scaling trends shown in Figure 5.2.1 could be purely related to the breakaway phase of 

the nucleation (as described by Nielsen et al. (2024)), that precedes the fully dynamic 

propagation. As we showed through preliminary synthetic tests (Figure 5.2.2), the 

physical parameters that control the amplitude and the rate of the far-field radiation (such 

as the velocity rupture) might be affected by an existing imprinting between the aseismic 

loading of the rupture (the nucleation phase) and its radiative phase. Our results confirm 

that, at least in a probabilistic sense, it is more likely that a small nucleation area will 

develop into a small earthquake rather than a big earthquake. The latter is more likely to 

be expected on a larger nucleation area which can break and host a major event. 

Moreover, the initial growth rate of the far-field displacement might be the footprint left 

by the non-radiative preparatory process, emerging on the seismic signals. 

Figure 5.2.2: Numerical simulations. The figure displays the S&H displacement pulse waveforms simulated 
at three stations of the network (panel A). The effect on waveforms of variable or constant rupture velocity 
with magnitude is clearly represented in panels B and C. 
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5.3 Future perspectives for earthquake early warning systems 

 In previous paragraphs we discussed about the principles and the applications of the 

Earthquake Early Warning Systems. Until now in the scientific literature, there is a 

fundamental assumption that is somehow implied for EEW: it is assumed that EEWS 

cannot predict the final earthquake size and can only observe the evolving moment 

release. This perspective arises from various factors we have illustrated throughout this 

work: (1) the parameters showing a scaling with the final earthquake size are very 

sensitive to the processing of data and to the time window of the signal being analyzed 

(paragraphs 1.2.1 and 1.2.2); as a consequence (2) the empirical scaling laws 

implemented in EEWS are characterized by a great variability that affects the magnitude 

estimation and the system performance (since extended time windows are required to get 

a stable magnitude measurement); most importantly (3) we have shown that the 

observations are too conflicting to definitively conclude that one model (the preslip or the 

cascade model described in paragraph 1.4) provides the correct description of the 

earthquake nucleation compared to the other. In this context, the results shown in 

paragraph 5.2 might represent a step forward not only in the understanding of the 

earthquake rupture beginning but also in building EEW approaches. Indeed, the global 

scaling trend observed between the initial growth rate of displacement and the final 

magnitude in Figure 5.2.1 could be implemented in future EEWS to get fast magnitude 

characterization in less than 1 second since the first P-wave detection. The results we 

showed are obtained in off-line mode, meaning that the initial growth rate of displacement 

was measured on a very short time window of the whole available P-wave signal on which 

the development of the displacement could be appreciated (we could build the complete 

LPDT curves and retrieve their plateau level but we focused on its earliest part instead). 

Besides the investigation on the earthquake rupture physics, the challenge that the 

retrieved empirical laws pose for EEW is their application to the real-time monitoring. 

Moreover, we concluded that the initial growth rate of displacement inversely scales with 

the final magnitude from an average we performed on a certain number of stations per 

event (although limited in space). In future applications for EEWS, and particularly for 

on-site EEWS, there is the need to move towards a single station approach and for this 

reason we need to explore whether it is feasible to get the fast magnitude characterization 

using the growth rate of displacement versus magnitude law with a single LPDT curve 

slope value rather than an average LPDT curve slope measurement. For a step in this 

direction, the use of AI methods can be greatly effective (Lara et al., 2023); another step 
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is represented by the next generation of P-wave based earthquake early warning systems 

(like P-Alert that we discussed in chapter 4) which have the great potential to provide an 

environment where the new methodology we proposed could be easily implemented. 

Indeed, these kinds of systems are free from being time window dependent since the P-

wave parameters are continuously measured. In paragraph 3.3 of Chapter 3 and in 

paragraph 4.2 of Chapter 4 we tested two different on-site algorithms on the same region 

(California) and we showed how the perfomance greatly improves when the system does 

not depend on a fixed PTW. 

The new interpretations of the earthquake rupture we discussed here can pave the way to 

a whole new chapter of the earthquake physics and consequently of the implementation 

of the earthquake early warning, improving systems that are working to mitigate the 

catastrophic effects earthquakes might have on people’s lives. 
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Conclusions 
The work presented in this thesis is divided into three interconnected parts, all centered 

on the topic of Earthquake Early Warning (EEW). By exploring the physical principles 

and methodologies of EEW systems, this study has tested these approaches on various 

seismic catalogs and examined the implications of earthquake rupture physics for EEW. 

In Part One, an overview of the physical foundations of EEW is provided, focusing on 

early P-wave parameters and their relationship with the nucleation phase of earthquake 

rupture. Part Two discusses the methodologies and applications of two on-site EEW 

systems, SAVE and P-Alert, highlighting their respective performance. Finally, Part 

Three addresses earthquake rupture physics, emphasizing its significance for the future 

development of EEW systems. 

The core contribution of this work lies in the extensive application of on-site EEW 

algorithms to a wide range of datasets from different tectonic environments, including the 

volcanic setting of the Campi Flegrei Caldera. This comprehensive analysis has facilitated 

a discussion on the performance of these systems, bringing to light their strengths and 

weaknesses. For instance, SAVE has demonstrated flexibility and ease of integration with 

existing network systems. However, its reliance on a fixed P-wave time window has 

highlighted limitations in its performance, underscoring the need for the next generation 

of P-wave-based on-site systems. 

Building on this, P-Alert was tested, for the first time since its conception in 2015, on a 

large Californian dataset. The results confirmed the significant potential of this system, 

which continuously measures early P-wave parameters and offers improved resolution in 

parameter estimation. P-alert overcomes the limitations of SAVE since it naturally 

considers an expanded P-wave time window, so to manage the possible occurrence of 

small and large earthquakes, and it bases the alert on the exceedance of a threshold in the 

predicted impact (PGV). The focus on on-site P-wave-based EEW systems has also 

provided a unique opportunity to investigate earthquake rupture behavior by analyzing 

the earliest portion of the radiated P-wave signals. Among the most noteworthy findings 

is the global scaling relationship between the initial growth rate of early P-wave 

displacement and the final earthquake magnitude. This result is confirmed and verified 

by a massive battery of tests for check-validation. This scaling, observed within an 

exceptionally short P-time window (less than one second), has two major implications: 
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• The growth rate of displacement may offer insights into the nucleation phase, 

possibly reflecting the footprint of the non-radiative processes that precede 

dynamic rupture propagation. 

• The empirical scaling relationship could be applied to rapidly characterize 

earthquake size in future EEW systems. 

Further research is needed to explore the connection between the growth rate of 

displacement and physical parameters governing earthquake rupture, such as rupture 

velocity and stress drop. 

This PhD thesis integrates different research topics, all linked to the central theme of 

Earthquake Early Warning. The work presented here offers a foundation for advancing 

existing methodologies and deepening our understanding of earthquake rupture physics. 
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APPENDIX A – A Python package for on-site 
earthquake early warning 

A.1 Python package for SAVE off-line and real-time testing 

For the development of the Python version of SAVE, the decision was made to follow the 

original scheme for on-site Early Warning proposed by Caruso et al. (2017), which was 

previously implemented in C++. This new Python version of the algorithm is designed to 

be user-friendly and includes additional features, such as: 

• Dual usage modes, for both offline testing on data and real-time applications; 

• The ability to adjust thresholds used by SAVE from an external text file: users can 

modify data quality control thresholds by editing specific lines in the provided 

text file, which the code automatically reads and updates. 

For offline data analyses, users can choose whether to test the algorithm with manual 

picks or with automatic filter picks. 

A.1.1 Code architecture 

 

Figure A.1.1: Block diagram of SAVE python code. The four modules are highlighted with different colored 
boxes: in green box the picker module; in blue the integration and first quality control module; in orange 
the second quality control and filter selection module; in violet the output parameters estimation module. 
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Figure A.1.1 shows the block diagram of the SAVE software developed in Python. The 

main modules are as follows: 

• Picking module (in green): Detects and extracts the P-wave arrival time from the 

station's vertical component. 

• Data integration and first quality control module (in blue): Integrates the 

acceleration data to obtain velocity and displacement, calculates the signal-to-

noise ratio, and compares it to a user-defined threshold. 

• Second quality control and filter selection module (in orange): Analyzes the 

quality of the peak velocity-to-peak displacement ratio within a user-defined 

tolerance range and applies a displacement filter. 

• Intensity, magnitude, and distance estimation module (in violet): This final 

module depends on the previous module, especially on the automatic filter 

selection. Depending on the selected filter, the system provides an intensity 

estimate, a magnitude and distance range (for high-quality data), or only an 

intensity estimate (for low-quality data). 

A.1.2 Code modules 

Below is a detailed description of each software module, specifying: Module objective; 

Algorithm description; Produced outputs. 

1. Automatic Picker 

Module Objective: Recognize the arrival time of the seismic P-phase when an event 

occurs by analyzing the station's vertical (Z) component. 

Algorithm Description: Starting from the waveform, a Characteristic Function (CF) 

is calculated. This function peaks when the signal's amplitude, measured within a short 

time window, is high compared to the characteristic amplitude measured within a longer 

window (background noise). The waveform is filtered across multiple frequency bands, 

each producing a CF. A seismic P-phase arrival is declared at time tpick when the CF in 

any frequency band exceeds a minimum threshold, and the CF’s average value 

subsequently remains above a second threshold for a sufficient period. 



 119 

Output: Arrival times of one or more possible seismic phases if detected in the input 

waveform. No output otherwise. 

2. Data Integration and Signal-to-Noise Ratio (SNR) 

Module Objective: Assess the quality of the displacement signal in the examined 

window by analyzing the signal-to-noise ratio. 

Algorithm Description: From the input signal, a first numerical integration of the 

waveform is performed to obtain velocity. In the analyzed window starting from the 

recognized seismic phase's arrival time, zero-crossing is applied, and the absolute peak 

velocity (Pv) is calculated. A second numerical integration then provides displacement. 

Zero-crossing is again applied, and the absolute peak displacement (Pd) is calculated. A 

2-second signal window is then isolated, starting at tpick−3 seconds, to measure 

background noise (PdNOISE). The SNR in decibels is calculated as Pd/ PdNOISE and is 

verified to be above a user-adjustable threshold. 

Output: Displacement waveform in the examined window, Pv and Pd if the SNR is 

adequate. No output otherwise. 

3. Pd/Pv Ratio and Automatic Displacement Filter Selection 

Module Objective: Filter displacement data based on the logarithmic Pd/Pv ratio 

within the examined window, providing necessary parameters for intensity, magnitude, 

and distance calculations. 

Algorithm Description: Using the Pd and Pv values from the previous module, the 

logarithmic ratio is calculated. If this is below a user-defined threshold, a 0.075–15 Hz 

bandpass filter is applied to displacement, the peak displacement Pd and the characteristic 

period τc are calculated. If the condition is unmet, a 1–20 Hz bandpass filter is applied 

for a second check on the ratio. If it falls within a tolerance range (threshold1 and 

threshold2), Pd is accepted; otherwise, the signal is rejected. 

Output: Pd and τc if the 0.075–15 Hz bandpass filter is applied. Pd if the 1–20 Hz 

bandpass filter is used. 
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4. Intensity, Magnitude, and Distance Estimation 

Module Objective: Estimate macroscopic intensity, expected magnitude range, and 

event distance. 

Algorithm Description: The algorithm uses Pd and, if available, τc. Based on the 

window duration (1, 2, or 3 seconds) from P-phase detection, the logarithmic Pd is used 

in corresponding formulas to estimate the maximum expected site velocity (PGV). This 

is converted into expected macroscopic intensity via Faenza & Michelini (2010) scaling 

laws. If τc is also available, its logarithm is used to estimate magnitude, and the 

combination of τc and Pd logarithms provides a distance estimate. 

Output: Macroscopic intensity value, expected magnitude and distance range. If data 

quality is low, only macroscopic intensity is provided. 

A.1.3 Input parameters 

User-adjustable input parameters are modifiable in two text files. The first configures the 

automatic picker, and the second configures the thresholds the SAVE algorithm depends 

on for data quality control. 

filterpicker_config.txt Text File In this file, user-adjustable parameters follow the 

FilterPicker nomenclature (Lomax et al., 2012): Filter window (in seconds), Long Term 

Window (in seconds), Threshold 1, Threshold 2, tUP Event (in seconds). 

Figure A.1.2: Example of file text for picker setting of SAVE python package 
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param_config.txt Text File This file allows users to adjust values for key parameters 

used in both offline and real-time versions of SAVE, including: SNR threshold; 

Log(Pd/Pv) threshold for high-quality data control; Upper threshold for low-quality data 

control; Lower threshold for low-quality data control; Maximum window duration after 

P-phase detection (1–3 seconds required). 

Figure A.1.3: Example of file text for thresholds setting of SAVE python package in off-line mode 

In offline mode, the last line allows users to choose between using automatic or manual 

picks (figure A.1.3) 

Figure A.1.4: Example of file text for thresholds setting of SAVE python package in real-time mode 

In real-time mode, the last two lines include Sensor and Logger information for unit 

conversion. 
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A.1.4 Output parameters 

Output parameters can be read from automatically generated text files. 

Offline Version: Output parameters are in files named SAVE_offline_0N_second.txt, 

with N from 1 to 3. Each file includes: STA (station code), PICKING_TIME (absolute 

pick time), INTENSITY (macroscopic intensity), MAG_RANGE (predicted magnitude 

range), MAG_VALUE (estimated magnitude), DISTANCE_RANGE (predicted distance 

range), DISTANCE_VALUE (estimated distance in km), SNR (SNR in the examined 

window), LOG_PD_PV (logarithmic Pd/Pv value), MODE (data quality: H = high, L = 

low, R = rejected), Pd (P-phase peak displacement in cm), Tc (P-phase characteristic 

period in seconds), PTW (examined window length in seconds) (in Figure A.1.5) 

Figure A.1.5: Example of file text for output parameters of SAVE python package in off-line mode 

 

Real-time Version: Parameters are in SAVE_INFO_ALERT.txt. The first three lines 

detail network, station, and component information, with the absolute P-phase pick time. 

Following lines include parameter estimates for each window, intensity, magnitude range, 

distance range, and data quality estimates. (Figure A.1.6) 

Figure A.1.6: Example of file text for output parameters of SAVE python package in real-time mode 
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A.2 Example tests on two Irpinia earthquakes 

In the following paragraphs, we provide two examples of offline performance of SAVE. 

We tested the algorithm on the two main events of the seismic sequences recorded and 

monitored by the ISNET network, which began on May 14, 2023, and May 29, 2023, 

with epicenters located in Capo di Giano (PZ) and Laviano (SA), respectively. 

A.2.1 Off-line test on event at Capo Di Giano (PZ), Italy 

The main event of May 14th, 2023 seismic sequence was located by the ISNET network 

in Capo di Giano (PZ). Table A-1 provides information on location and magnitude (more 

information available at http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi). 

Table A-1: Source parameters for the main event of the Capo di Giano (PZ) sequence on May 14, 2023 

For this event, we provide an offline test of the SAVE procedure at the station closest to 

the epicenter, VDS3. The epicentral distance estimated by ISNET is 8.3 km. The test was 

performed using the automatic picker FilterPicker. Table A-2 provides the selected 

parameters for the picker, and the figure (reference) shows the result of the application. 

The P-wave arrival is accurately estimated and consistent with manual picking. The figure 

is automatically generated by the automatic picker. 

Table A-2 - Parameters chosen for FilterPicker settings 

 

 

 

The thresholds used by the SAVE algorithm are described in Table A-3. The output 

information obtained using a maximum window of 3 seconds from the automatically 

recognized P arrival is provided in Table A-4. 

Table A-3 - Parameters chosen for SAVE settings 

SNR THRESHOLD 8 
Log(Pd/Pv) High quality threshold -0.2 
Log(Pd/Pv) Low quality upper bound threshold -0.9 
Log(Pd/Pv) Low quality lower bound threshold -1.8 

LAT LON DEPTH (KM) MW 
40.763 15.487 6.6 2.8 

Filter window (s) 1 
Long Term Window (s) 12 
Threshold 1 10 
Thresshold 2 10 
tUP Event 1 

http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi
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P-Time window (s) 3 
Offline performance picks Automatic 

 

Figure A.2.1: Automatic pick on the vertical component of VDS3 station for the event of Capo di Giano 
(PZ) 

 

Table A-4 - Output parameters obtained from the offline test of SAVE on the Capo di Giano (PZ) event 

 

 

A.2.2 Off-line test on event at Laviano (SA), Italy 

The main event of the sequence that began on May 29, 2023, was located by the ISNET 

network in Laviano (SA). Table A-5 provides information on location and magnitude. 

For this event, we conducted an offline test of SAVE at the station closest to the epicenter, 

VDS3, with an epicentral distance of 12.5 km. The offline test used the automatic picker, 

whose settings are described in Table 2. The thresholds on which SAVE operates are 

STA Picking +me Intensity Mag 
Range 

Mag 
Value 

Dist 
Range 

Dist 
Value(km) 

SNR Log(Pd/Pv) Mode Pd(cm) Tc(s) PTW(s) 

VDS 2023-05-
14T07:28:48.774002 

3.02 MEDIUM 3.11 NEAR 25.955 21.61 -1.40 H 0.0012 0.25 1 

VDS 2023-05-
14T07:28:48.774002 

3.24 MEDIUM 3.03 NEAR 23.004 23.81 -1.54 H 0.0016 0.236 2 

VDS 2023-05-
14T07:28:48.774002 

3.29 MEDIUM 3.03 NEAR 23.505 26.72 -1.43 H 0.0022 0.255 3 
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described in Table 4. Table A-6 shows the information obtained within a maximum 

window of 3 seconds from the detection of the P arrival. 

Table A-1: Source parameters for the main event of the Laviano (SA) sequence on May 29, 2023 

LAT LON DEPTH (KM) MW 
40.782 15.327 8.8 2.9 

 

 

Table A-6 - Output parameters obtained from the offline test of SAVE on the Laviano (SA) event 

 
 
 

 

 

 

 
  

STA Picking +me Intensity Mag 
Range 

Mag 
Value 

Dist 
Range 

Dist 
Value(km) 

SNR Log(Pd/Pv) Mode Pd(cm) Tc(s) PTW(s) 

VDS3 2023-05-
29T16:55:28.047001 

2.22 MEDIUM 3.23 NEAR 36.792 14.99 -1.31 H 0.0049 0.271 1 

VDS3 2023-05-
29T16:55:28.047001 

2.22 MEDIUM 3.07 NEAR 34.062 14.99 -1.31 H 0.0049 0.244 2 

VDS3 2023-05-
29T16:55:28.047001 

1.98 MEDIUM 3.1 NEAR 40.137 14.99 -1.31 H 0.00049 0.267 3 
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