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Abstract

This PhD thesis is developed within the framework of Earthquake Early Warning (EEW),
a research topic that investigates the feasibility of issuing rapid alerts to mitigate the
impact of earthquake striking target sites. The work addresses various aspects of EEW,
focusing on the analysis of early P-wave signals and the development of on-site
algorithms for earthquake intensity estimation. The main motivation is to improve the
timeliness and accuracy of alerts using data from individual stations and short time

windows.

The original contribution of this research is the development of an on-site EEW software
package, tested on datasets from various tectonic environments, including the Campi

Flegrei area.

Moreover, the analysis of early P-wave displacement growth led to the discovery of a
global scaling relationship between the P-wave growth rate and the final earthquake
magnitude, offering new opportunities for rapid magnitude estimation. These findings
also have implications for earthquake nucleation studies, suggesting that the early portion
of the P-wave signals could provide crucial information on the nucleation stage and non-

radiative processes preceding dynamic rupture propagation.

Keywords: Earthquake Early Warning, earthquake source observations, magnitude

estimation, earthquake rupture physics.



Sintesi in lingua italiana

Questa tesi di dottorato si inserisce nel campo del Earthquake Early Warning (EEW), una
disciplina scientifica che studia la fattibilita di emettere avvisi rapidi per mitigare
I’impatto dei terremoti a siti di interesse. Il lavoro affronta vari aspetti dell’EEW, con
particolare attenzione all’analisi dei primi secondi di segnale delle onde P e allo sviluppo
di algoritmi on-site per la stima dei parametri di sorgente e dell'intensita del terremoto.
La motivazione principale ¢ quella di migliorare la tempestivita e l'accuratezza degli

allarmi, utilizzando dati provenienti da stazioni individuali e finestre temporali brevi.

Il contributo originale di questa ricerca consiste nello sviluppo di un pacchetto software
per PEEW on-site, testato su dataset provenienti da vari ambienti tettonici, tra cui i Campi

Flegrei.

Inoltre, I'analisi della crescita iniziale dell’ampiezza delle onde P ha portato alla scoperta
di una relazione di scaling globale tra la velocita di crescita dell’ampiezza delle onde P e
la magnitudo finale del terremoto, aprendo nuove prospettive per la stima rapida della
magnitudo. Questi risultati hanno anche implicazioni per lo studio della nucleazione del
terremoto, suggerendo che la fase iniziale delle onde P potrebbe fornire informazioni
cruciali sullo stadio di nucleazione e sui processi non-radiativi che precedono la

propagazione dinamica della rottura.

Parole chiave: Earthquake Early Warning, osservazioni sulla sorgente sismica, stima

della magnitudo, fisica della rottura del terremoto.
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Panel B represents the scaling of observed PGV versus Py. Panel C shows the scaling of
observed PGV versus Pq4. In each panel the black solid line is the PGV vs Py relation;
black dashed lines are the +SE lines; the grey crosses are single values measured on each
record; the cyan points are the 2D resampled dataset on which the fit is performed; the
magenta square is the PGVureshold here set at 1.41 cm/s and the dark blue dashed-dotted

lines correspond to the Py interval around the PG Vinreshold. «veveeverveenieenienienenienienieenne. 96

Figure 4.2.4: Calibration curves obtained from the train dataset. The darkgreen line
represents the percentage of Successful Alerts and Successful No-Alerts with respect to
the threshold wt*; the red line represents the percentage of False Alerts with respect to

wt*; the yellow line represents the percentage of Missed Alerts with respect to wt*. Darkg
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rey triangle is the value of wt* which corresponds to 85% of SA+SNA; 20% of FA and
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Figure 4.2.5: Example of P-Alert application on the station KHMB record of the Mw 6.4
Ferndale earthquake happened on 2022/12/20 at 10:34:24 UTC. The epicentral distance
is 70 km. On the left side of the figure from top to bottom it is represented the vertical
component of acceleration; the vertical component of velocity; the vertical component of
displacement. The time is relative to the beginning of the trace. The dashed red line marks
the P-wave arrival. The dashed blue line marks the S-wave arrival. On the right side of
the figure from top to bottom it is represented the fuzzy variable related to the peak
acceleration Wa; the fuzzy variable related to the peak velocity Wv; the fuzzy variable
related to the peak displacement Wd; the fuzzy variable Wt, sum of Wa, Wv, Wd. The
magenta triangle marks the threshold wt* at which the system issues an alert, warning for

expected PGV>1.41 cm/s (MMIZ4). ....ccoiiiiiiiiiiieeeeeee et 99

Figure 4.2.6: Lead time plot for the test dataset. The lead time is defined as the time at
which the PGVinreshold 1S observed at the station and the time at which the fuzzy variable
Wt first overcome the threshold wt* set to issue alerts. Marker colors follow event
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Figure 4.2.7: Pie chart of P-Alert performance. Successful Alerts (SA) (in darkgreen)
refer to a threshold PGV value of 1.41 cm/s (corresponding to MMI=4 according to
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Figure 5.1.1: Map of the events. The figure shows the epicentral position of the events
used in this study (colored circles). The size of the circles is proportional to the earthquake
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(corresponding to tumn=0.05s) is the starting point for the slope evaluation. The diamond

(tuarr) is the ending point for slope evaluation. ...........ccceeeeveiieiieniiienienieeie e 106

Figure 5.2.1: Initial Slope pf LPDT curves and related time. (A) initial slope of LPDT
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Figure 5.2.2: Numerical simulations. The figure displays the S&H displacement pulse
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Introduction

This thesis work developed in the framework of Earthquake Early Warning (EEW), e.g.
the field of Earthquake Science that explore the scientific and technological feasibility of
issuing a rapid alert from the analysis of early earthquake signals to mitigate the impact

of late arriving, strong shaking waves. EEW systems are designed to this scope.

This study addresses various aspects of earthquake early warning (EEW), with a
particular focus on methods for analyzing seismic waveforms—especially early P-wave
signals. The main applications center on on-site EEW algorithms, which use data from
individual stations and brief time windows to predict expected shaking intensity and
source parameters. The work also explores the physics of earthquake rupture, examining
its connection to the eventual earthquake size and the potential use of rapid magnitude-

estimation modules in EEW systems.

The main outcome of this research is an on-site EEW software package for both real-time
and retrospective analysis, developed in collaboration with TME Srl, an industrial partner
in the frame of an industrial doctorate (Dottorato Industriale). The industrial doctorate is
a specialized doctoral program designed to bridge the gap between academia and industry,
and it is conducted collaboratively by the university and an external company, in our case
the company TME srl. Under this scheme the doctoral research project directly aligned
with the company’s R&D goals, while also fulfilling the academic requirements set by

the university.

Given the wide array of topics encompassed by Earthquake Early Warning (EEW), this

thesis is organized into three main parts, each addressing a distinct aspect of the field.

Part 1 describes the fundamental principles of EEW and its practical implementations.

o Chapter 1 offers a detailed explanation of the parameters used in contemporary
EEW methodologies, with special attention to early seismic signal observations

and their relation to earthquake nucleation.
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Chapter 2 provides a comprehensive overview of the current global status of
EEW systems, followed by a discussion of the two system approaches: source-
based and impact-based. These configurations are examined in terms of their
design features, operational goals, and the contexts in which they are typically

employed.

Part 2 focuses on the application of on-site EEW algorithms to real-world earthquake

scenarios.

Chapter 3 describes the implementation of the on-site Alert Level system
(SAVE) across several seismically active regions worldwide. This chapter
presents test results from notable events such as the 2023 Turkey-Syria earthquake
doublet, the Md 4.2 Campi Flegrei earthquake, and a large earthquake dataset in
California.

Chapter 4 highlights the next generation of P-wave-based on-site warning
systems, with particular emphasis on the P-Alert system. The chapter examines
the system’s performance through analyses of a Californian earthquake database,

shedding light on its robustness, accuracy, and potential for wider deployment.

Part 3 explores emerging perspectives for EEW by investigating the first few seconds of

P-wave arrivals.

Chapter 5 showcases insights derived from an innovative global seismic catalog,
focusing on early P-wave displacement growth rates—those observed in less than

one second. The discussion addresses the significance of these short-timescale
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observations for both earthquake rupture physics and rapid magnitude estimation.
It also evaluates how these findings can advance future EEW applications by

improving alert accuracy and lead time.

By progressing from foundational EEW concepts to innovative research on early P-wave
processing and modelling, this thesis aims to bridge theoretical groundwork with practical
applications, ultimately contributing to more effective and timely earthquake early

warning systems.
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PART 1 — PRINCIPLES OF EARTHQUAKE EARLY
WARNING

CHAPTER

1 Physical grounds of Earthquake Early Warning

Earthquake Early Warning (EEW) is about the fast delivery of alerts announcing the
impending ground shaking due to an earthquake which has already nucleated. Since an
EEW is issued only when the earthquake rupture has already started, the warning time is
defined as the difference between the first earthquake detection/characterization and the
occurrence of strong ground shaking at the user’s site. Therefore, the time scale of EEW
spans from few seconds to several tens of seconds after the earthquake beginning. The
concept of EEW dates back to 1868 following an earthquake on the Hayward Fault in
California, when J.D Cooper (Cooper, 1868) proposed a system that could transmit a
warning to the city of San Francisco through telegraph cables which were far away from
the city: anytime an earthquake would have struck, the warnings sent via cables could

have been used to ring an alarm bell in the city.

Although the concept is quite immediate, the implementation is more difficult. Given the
limited amount of time for an EEW system to be effective, the earthquake has to be
characterized in terms of location and magnitude in a rapid and reliable way using few
seconds of the available early seismic signal. This also poses challenging questions on
earthquake physics, concerning the possibility of estimating the final earthquake
magnitude from the first few seconds of recorded signals. The worldwide development
of different types of instruments (including near fault accelerometers, borehole and strain
rate sensors, fiber optic cables) recording high resolution signals have paved the way to
refined analysis issuing questions about the physics of the earthquake rupture. Providing
answers to the complex debate about the earthquake determinism will provide new
perspective not only for future EEW applications but also for understanding the physical

nature of the earthquake nucleation.
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1.1 A basic grasp of seismology: the Representation Theorem

In order to discuss the basic concepts of EEW it is useful to start from the seismic signal
and the physics behind its representation. Let us recall that the equations governing the
propagation of seismic waves within the Earth, far from the source zone, are linear
differential equations with constant coefficients. This is a consequence of the reasonable
assumption of elastic behavior in these regions. However, it should be noted that the
energy accumulated near the source, because of tectonic processes, is only partially used
for seismic radiation. A significant portion of this energy is spent in fracturing processes
at the source, which cannot be considered elastic. Nevertheless, when considering
everything that occurs outside the source zone, it is reasonable to treat the Earth as a linear
and stationary filter, with stationarity clearly limited to the duration of seismic wave

propagation.

In other words, considering also the effect of the measuring apparatus, the seismogram
recorded at the Earth's surface can be viewed as the output of a chain of filters (assumed
to be linear and time-invariant) that modify the shape and amplitude of the signal (input)
emitted by the seismic source. The relationship between the input and output of a chain
of filters, if all the filters are linear and time-invariant, is expressed through the operation
of convolution. Describing the chain of filters—comprising the Earth and the measuring
instrument—by two functions of time, P(t) and I(t), and denoting the source function by

S(t), the seismogram u(t) is given by:

u(t) =S) = P(t) *I(t) (1)
in the time domain t, or, by using the convolution theorem as:

u(w) = S(w)P(w)l(w) 2)

In the frequency domain w. Equations (1) and (2) generally represent the relationship
between the seismogram and the various effects that contribute to its composition. In
principle, if the function P is known in the time or the frequency domain, and if the
instrumental response [ is known, it is possible to use equations XX and XX to directly
determine the function S from the seismograms, which represents the time variation of
the seismic source. Seismic sources are spatially extended, and seismograms are recorded
at various points on the Earth's surface. Consequently, formula (1) needs to be modified

to include spatial coordinates, as it follows:
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u(x,t) = SEt) «G(x, & t) «I(x,t) 3)

Where the vector x represents the coordinate position of the receiver and the vector &
represents the coordinate position of the portion of the source being considered. In
equation (3), the term G(x,¢,t) , the elastodynamic Green function, generally accounts for
wave propagation effects, including, for example, anelastic attenuation and site effects.
The elastodynamic Green's function can be calculated by solving the wave equation once

the distribution of elastic/anelastic properties of the propagation medium is known.

For earthquake early warning purposes, the portion of the signal related to the P-wave,
up(xr 1), at a given site xXr is used to give an estimate of the impact of the more damaging
(and slower propagating) S-waves since the two phases are related to the same seismic
source (as it is shown in equation (3)). In the next paragraph, we described the parameters
and the methods that links the early P-wave content to the late S-wave content expected

at a certain location.

1.2 The scaling between the early P-wave and the S-wave

An earthquake excites both P and S waves. The S wave carries the major destructive
energy, and the smaller- amplitude P wave precedes the S wave by the time typically
equal to the 60% of the S-wave travel time to the station. The initial portion of the P wave,
despite its small and nondestructive amplitude, carries the information of the earthquake
size, and a good determination of the earthquake size from the P wave provides
information about the strength of shaking being brought by the following S wave. Indeed,
in the early development of EEW methods, many authors (e.g (Kanamori, 2005) (Wu and
Kanamori, 2005¢), (Olson and Allen, 2005), (Zollo et al., 2006)) put their efforts into
exploring the feasibility of the fast characterization of the earthquake source from the
analysis of the parameters associated to few seconds of the P-wave signals. These
parameters depend either on the P-wave amplitude or on the P-wave frequency content.

Their combination is nowadays largely used in EEW systems (see chapter 2).

1.2.1 The early P-wave amplitude: Pa, Pv, Pd

Empirically derived relations and theoretical arguments show that the peak ground-
motion amplitudes (Peak Ground Acceleration PGA, Peak Ground Velocity PGV and
Peak Ground Displacement PGD) correlate with the amplitude of the initial motions such
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as P-peak acceleration Pa, P-peak velocity Pv, and P-peak of displacement Pd
((Kanamori, 2005), (Wu and Kanamori, 2008)). To get the aforementioned parameters,
the acceleration signals are integrated to velocity and displacement. Eventually, a high-
pass filter with cut-off frequency of 0.075 Hz is applied on the displacement to remove
the low-frequency drift (baseline) that might affect the signal after the last integration.
Generally, for a nearby small event, Pa can be large but the PG4 and PGV are small. Pa
is usually determined by a very-high-frequency wave with short duration which does not
have a high-damage potential. In contrast, Pv and Pd contain more long-period energy
than Pa and correlate well with PGA and PGV. Pd correlates well with the Peak Ground
Motion parameters (Wu and Kanamori, 2005c). As an amplitude parameter, the peak
amplitude of the initial P-wave displacement, Pd, reflects the attenuation relationship of
the ground motion with distance. This hypothesis paved the way to the calibration of
empirical scaling laws that linked the early P-wave amplitude to a rapid magnitude
characterization. As example, Wu and Zao (2006) investigated the attenuation of Pd with
hypocentral distance R in Southern California, resulting in the following type of scaling

law:
log(Pd) =A+B-M+C-logR “)

Where M is the event magnitude. Similar results were also found for other regions of the
world, such as Italy and Taiwan ((Zollo et al., 2006), (Wu, 2003)). The equation (4) was
used to define a measure of magnitude, called “Pd magnitude”. In many studies
((Kanamori, 2005), (Wu and Kanamori, 2008), (Allen and Kanamori, 2003)), the
maximum time window explored to evaluate the earthquake magnitude, and the expected
Peak Ground Motion was set to three seconds since the detection of the P-wave on the

seismogram, to keep short the warning time.

An obvious trade-off exists between the duration of the initial motion and the reliability
of magnitude/ground-shaking prediction. Below Mw 5.5-6.0, a couple of seconds of P-
wave data would contain nearly the entire history of fault rupture and a scaling relation.
Above Mw 5.5-6.0 a saturation effect was observed when equation (4) was used to
evaluate the “Pd magnitude” (Wu and Zhao, 2006). Zollo et al (2006) proposed a
combination of both the early P- and S-wave to get a more robust magnitude estimation.

Particularly, they retrieved the magnitude dependence of early P-
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Figure 1.2.1: Correlation between low-pass filtered peak ground motion value and moment-magnitude.
The panels show the logarithm of peak ground displacement normalized at a reference distance of 10 km
as a function of Mw in time windows of (left) 2 sec length from the first P-arrival and (middle) I1- and (right)
2- sec from the first S-arrivals (from (Zollo et al., 2006)).

and S- peak amplitudes by correcting the equation (4) for the distance effect, normalizing
to a reference distance of R=10 km. Due to the uncertainty in the identification of the first
P arrival time, only the 2-sec window were considered while both 1-sec and 2-sec
windows were used for S-waves (see Figure 1.2.1). Lancieri and Zollo (Lancieri and

Zollo, 2008) further developed and refined these concepts.

Considering the discussions of Zollo et al. (2006), one of the hypotheses that causatively
links the early peak amplitude parameters to the final earthquake size might be explained
as it follows. The peak ground displacement depends on the relatively high frequency
content of the signal. Since the receivers are usually not in the immediate proximity of
the rupturing fault and that the rupture directivity is averaged by the azimuthal locations
of the recording stations, the seismic radiation can be assimilated to the far-field content
of a point source. In this first approximation, the radiated P-wave predicts a ground

motion u(t) at a distance r can be written as (Aki and Richards, 2009):

FP

— 7L ¢)
u(®) = My(t - )

dmpra’

Where a is the P-wave velocity, p is the medium density, A”? describes radiation angular
dependence. M, is the moment rate that scales with the average slip-rate. The slip-rate is
controlled by the stress drop Ao and the length of the slipping fault area (Kostrov, 1964).
As a consequence, in a probabilistic sense, earthquake that fractures with higher dynamic
stress drop and/or active surface at their initiation, have an increased probability of

propagating to larger distances and radiate larger wave amplitudes, as seen from the peak
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ground motion in the early portion of near-source P and S-signals in various studies ((Wu

and Zhao, 2006), (Wu and Zhao, 2006), (Wu and Kanamori, 2005c))

1.2.2 The early P-wave characteristic period: 7, and tp'?*

To determine the size of an earthquake, it is important to determine whether the event’s
slip motion has stopped or is still growing, which is generally reflected in the period of
the initial motion. Small and large events yield short- and long-period initial motions,
respectively. However, the slip motion is in general complex, and even a large event often
begins with a small, short-period motion, followed by a long-period motion.
Consequently, it is important to define the average period during the first motion.
Kanamori (2005) modified the method that was first proposed by Nakamura (1988) to
measure the parameter 7., representing the average period of the initial portion of the P-
wave ((Kanamori, 2005)(Nakamura, 1988)). The mathematical details of the 7,
evaluation are presented in Box 1.2.1. The difference in the method proposed by
Kanamori (2005) with respect to the method of Nakamura (1988) relies on the fact that
for the 7, evaluation a short window of P-wave signal is being used (usually up to 3
seconds after the first P-wave detection).

onset

Tokachi-Oki, M,,=8.0

Chi-Chi, M,=7.6

Miyagi-Oki, M,,=7.0

Miyagi, M,=6.0
N. Hollywood, M, =4.2

Compton, M,=4.0

| \
San Marino, M,=2.8 =——’—,“"‘/\/\f-w’\~"“"

b ! 1
0 8 12 16 20

Time, sec

Figure 1.2.2: The waveforms of the beginning of close-in displacement records of earthquakes with
magnitudes from 2.8 to 8. The amplitudes are in arbitrary scale. The first 3 s is indicated by two dash-dot
lines (from (Kanamori, 2005)).
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The method was successfully applied to real earthquakes data (some waveforms examples

from Kanamori (2005) are presented in Figure 1.2.2), proving that the T, parameter scales

Box 1.2.1: T, and ¥, ,, measurement
Average P-wave period T,

We consider the ground-motion displacement u(2) and velocity 1(t) from the vertical

component record and evaluate the ratio 7:

70 .
[P utmade

C[Puz(nae

@

Usually, 7, is set at 3 seconds after the onset of P-wave. Using Parseval’s theorem,

_ am? [ P lag)Par
Iy lacn2ar

= 4n*(f?) (1D

Where @(f) is the frequency spectrum of u(z) and (f?2) is the weighted average of f2.

Hence,

1 1
T, = ﬁ = ﬁ (HI)

Predominant P-wave period t¥,,,,
Let us consider .X; the smoothed ground velocity squared at time i obtained as:
Xi = O(Xl-_l ar xiz (IV)

where x;1s the recorded ground velocity at time i and alpha is a smoothing constant, and

D; the smoothed velocity derivative squared obtained as:

D, = aD;_, + (dx/dt)

2
i

V)

Thus, the predominant period is determined in real-time as:

TLP = Zﬂw/Xi/Di (VI)
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with the event magnitude and keeps increasing even for earthquakes with magnitude M>7

having no saturation effects (Wu and Kanamori, 2005a).

Acceleration

Velocity
--

Velocity

32 34 36 38 40 42
Time (s)

Figure 1.2.3: Example of waveforms and t5*** evaluations. Left side: waveform of a M 4.6 earthquake in

southern California recorded at station GSC, 74 km from the epicentre. Panel (a) shows the raw vertical
component waveform recorded by a broadband velocity sensor. Panel (b) shows ten seconds of the velocity
waveform after low-pass filtering at 3 Hz. The P-wave trigger time is shown by the vertical line. Panel (c)
shows T, (t) trace calculated in a recursive fashion from the waveform in panel b. Right side: waveform of
the M w 8.3 Tokachi-oki earthquake, recorded at station HKD112, 71 km from the epicentre. Panel (d)
shows the raw vertical component waveform recorded on an accelerometer. Panel (e) shows ten seconds
of the raw acceleration waveform. The P-wave trigger is shown by the vertical line. Panel (f) shows ten
seconds of the velocity waveform determined from the acceleration recording using recursive relations
only. It has also been low-pass filtered at 3 Hz. Panel (g) T,(t) trace calculated in a recursive fashion
from the waveform in panel f (from (Olson and Allen, 2005)).

For the EEWS application, if 7, < 1 sec, the event has already ended or is not likely to
grow beyond M > 6. If T, > 1 sec, it is likely to grow, but how large it will eventually
become cannot be determined by the 7, paramter. In this sense, this method provides a

threshold warning.

The average or characteristic period 7. as described above is evaluated in a fixed P-wave
time window. Allen and Kanamori (2003) suggested a method which measures the
predominant period 7, (Allen and Kanamori, 2003). The predominant period is
determined continually in real time from the vertical component of the recording sensor

and is defined through a recursive relation. The mathematical detail of 7,, evaluation is

provided in Box 1.2.1.
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Allen and Kanamori (2003) and Olson and Allen (2005) retrieved log-scaling
relationships of the predominant period with the earthquake magnitude for different world
data such as Japan, Taiwan and Southern California. Particularly, Allen and Kanamori
(2003) found two scaling relations of the logarithm of T'®* with respect to two different
magnitude range (M<5 and M>5). In fact, the higher frequency content of smaller
magnitude earthquakes is measurable within a shorter time period after the P- wave arrival
(see left side of Figure 1.2.3) than the low-frequency energy of larger events (see right
side of Figure 1.2.3). Correspondingly, the magnitude of smaller events can be
determined more rapidly than that of larger events. This also means that the T}'** method
is underlying a threshold method, because the minimum time window of available signal

(as example 1 second) is to be considered as a minimum magnitude estimate.

The evidence for a scaling relation between the early P-wave amplitude and frequency
with the final magnitude for EEW purposes has paved the way for the scientifical debate
on whether the first few seconds of P-wave are informative on the physics of the rupture
process. Much of the discussion has focused on the time-domain characteristics of the P-
wave. ((Colombelli et al., 2014),(Meier et al., 2016),(Melgar and Hayes, 2019), (Trugman
et al., 2019))

1.3 The short-term P-wave as an insight into the earthquake
nucleation

1.3.1 Overview of different seismological observations

In the previous paragraph, a summary of the physics and the methods of the early P-wave
parameters has been presented. These parameters are largely adopted for EEW systems
to characterize the earthquake source as fast as possible. However, whichever parameter
is adopted (Px, 7., 75 4x), the scaling with magnitude is generally evident and robust up
to magnitude 6.0-6.5, while a poor correlation is observed for larger magnitudes. The
saturation is a well-known problem and has been extensively discussed in the literature
((Kanamori, 2005), (Zollo et al., 2006), (Lancieri and Zollo (2008)), (Rydelek et al.,
2007)). To avoid the arising of the saturation effect, different authors started to analyze
the behavior of the P-wave amplitude at longer time windows. Colombelli et al. (2012)
observed that when the Pd is measured at each time step on the available records starting

from the P-wave arrival, the saturation effect disappears for higher magnitude. The
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Box 1.3.1: The Logarithm of P-peak displacement versus time (LPDT) curve

®
&

Acc. [cm/s?]

Time [s]

Figure 1.3.1 The figure shows an example of waveform processing and LPDT curve computation for the
2011-07-25 M6.3 event recorded at the station MYG009 (distance 114 km). The figure shows: (a)
acceleration [cm s7°]; (b) velocity [ecm s7]; (c) displacement [cm]; (d) absolute value of displacement
[em]; (e) LPDT curve [cm]. In all panels, time is referred to the time of the first sampling of records.
Panels (a), (b) and (c) also show the peak amplitude values. The tick grey vertical line in panel a shows
the manual P-wave arrival time identification. (from (Colombelli et al., 2020)).

We here describe how to evaluate the Logarithm of P-peak displacement versus time
(LPDT) curve upon the discussion provided by Colombelli et al. (2014). At each station,
(1) the acceleration waveform is integrated twice to get the displacement (panel a, b, ¢
of Figure 1.3.1); (2) the displacement is filtered with high-pass cutoff frequency of
0.075 Hz; (3) the absolute value of the displacement is evaluated (panel d of Figure
1.3.1).; (4) starting from the P-wave on set, the P-peak of displacement Pd is measured
in an expanding time window with step equal to the signal time step; (5) finally, the
logarithm of Pd is corrected by the distance through the approach described in paragraph
1.2.1 equation (4). The resulting LPD is plotted versus time vector (panel e of Figure
1.3.1)

approach follows the physics behind equation (4), where the logarithm of Pd is updated
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at each time step on the seismograms (Colombelli et al., 2012). Colombelli et al. (2014)

analyzed a set of Japanese earthquakes spanning a range of Mjva (magnitude
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Figure 1.3.2: Examples of LPdT curves for different magnitudes in a common distance range. The figure
shows examples of average LPdT curves, for two different classes of magnitude, obtained using all the
available data within a common distance range, between 20 and 50 km. Events in the magnitude range
between 4 and 5 are shown with blue-shade colours, while larger events (in the magnitude range between
6 and 7.2) are shown with yellow- red shade colours. Panels (a) and (b) show the curves with their proper
time scale, while in panel (c) the curves are plotted on the same time scale, to better illustrate the
differences, in both shape and time scale, among the magnitude classes. In all panels, the amplitudes of
LPdT curves are plotted as they are, without corrections for the distance effect. The effect of the initial
slope decreasing with magnitude is rather evident, even in a common distance range.

measurement by the Japanese Meteorological Agency) going from 4 to 9. For each event,
the logarithm of Pd versus the P-wave Time Window is measured to obtain the Logarithm
of the P-peak of displacement versus Time (LPDT) curve (see box 1.3.1). It is observed
that each curve progressively increases with time until a final, stable value is reached.
This stable value is called Plateau Level (PL hereinafter). PL shows a scaling with the
magnitude (Colombelli and Zollo, 2015) and the time at which it is reached corresponds
to the half duration of the apparent source time function by approximating it as an
isosceles-triangular function (Zollo et al., 2022). Alongside this result, it is also observed
that the initial slope of the LPDT curves shows a magnitude-dependency (Colombelli et
al., 2014). Particularly, as it is shown in Figure 1.3.2, the steepest values of slope are
typical of the smallest events (small magnitude values), while the gentlest values of the

initial slope are typical of the biggest event (big magnitude values). This peculiar behavior
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is already evident at very short time scales, in the order of few seconds of the P-wave
signal (as it is shown in panel a and b of Figure 1.3.2). It is observed that at least one order
of magnitude separates the class of class of small magnitudes (M~4) from the class of big

magnitudes (M~7) (Colombelli et al., 2020).

For this reason, it was proposed that the initial slope of the LPDT curves could be a
parameter for a fast magnitude characterization. We give a physical interpretation of the
slope parameter and from where its behavior might arise in the next paragraph. In a more
qualitative way, Colombelli et al. (2020) argued that the parameters controlling the shape
of the LPDT curve (that are PL and the initial slope) could be related to the earthquake
source model of Sato & Hirasawa (SATO and HIRASAWA, 1973) in the sense that they
might be informative of the initial bending (the slope) of the modelled near-triangular
source time functions towards the final peak (PL). This is a first step of interpretation that
underlies a differentiation in the earthquake rupture beginning. Indeed, according to
model c-d) and e-f of Figure 1.3.3, the LPDT curves, and their initial slope in particular,
might indicate that it is possible to predict the final earthquake size from the first stage of

the rupture initiation, suggesting a deterministic behavior of the earthquake beginning.
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Figure 1.3.3: Sketch of the relationship between STF and LPdT curves. The figure shows a conceptual
scheme of the relationship between the STFs (as obtained from the Sato & Hirasawa 1973 model) and the
corresponding LPAT curves, for two different models. Panels (a, b) show the case of ruptures with the same
nucleation, for which the initial slope is the same for all magnitudes and the events become distinguishable
at the peak of the STFs, which corresponds to the plateau level of LPdT curves. Panels (c, d) show the case
of a completely predictable magnitude model, for which the STFs have a different beginning and the
corresponding LPdT curves show a distinguishable slope, even at the initial part. In this case, the initial
slope of STF’s decreases with magnitude. Panels (e, f) show the third case of a predictable magnitude model,
for which the initial slope of the STF’s increases with magnitude (from (Colombelli et al., 2020))

Time Time Time

Other studies ((Melgar and Hayes, 2019), (Meier et al., 2016), (Meier et al., 2017),

(Trugman et al., 2019)) performed similar analysis but obtained rather different results.
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Melgar & Hayes (2019) considered the Source Time Functions (STFs) of moderate-to-
large earthquake (Vallée and Douet, 2016) and HR-GNSS data in order to argue the
deterministic behavior in the rupture process. They measured the “moment acceleration”
that is the growth rate of the STFs over the first 20 seconds starting at the earthquake’s
origin time. In their study, in the very early stage of rupture (between origin time and the
first 2 seconds of STFs), only a weak determinism between moment acceleration and final
magnitude is observed. Interestingly, in the intermediate stage (2-20 seconds of STFs) a
proportional scaling of moment acceleration with magnitude was found: the bigger the
magnitude the bigger the value of PGD grows with time. This result could underly a
model like the one represented in panel e of Figure 1.3.3, where the magnitude
characterization is still possible before the STF has reaches its peak. Indeed, they
suggested an interpretation where the initial phase of rupture is rather chaotic followed

by a transition to a self-similar pulse.

Meier et al. (2016) examined the near-source peak displacement measurements, including
the Japanese records and Southern Californian records with magnitude higher than 4. The
pgd(t) static was obtained by separating the whole dataset into magnitude bins. The results
showed that on average small and large earthquakes would follow the same amplitude
growth and that the large events would start neither more nor less impulsively at their
beginning (e.g the model of panel a of Figure 1.3.3). Meier et al. (2017) focused on the
STFs of large earthquakes. The STFs were grouped by magnitude with a nearest-neighbor
approach. For each point in time, the median was evaluated among the STFs falling within
the same group. It is shown that the STFs grow linearly until the peak moment rate is
reached and then start decaying with a similar rate. Moreover, the average growth rate
does not vary significantly with magnitude. Trugman et al. (2019) also showed that the
time evolution of Pd on a Japanese dataset of earthquakes with M4.5-9 suggests a
universal pattern growth. To overcome the non-deterministic nature of rupture that these
studies support for EEW purposes, it was suggested that the saturation affecting the
log10Pd-M might provide the basis for a Bayesian approach. The earthquake magnitude
can be estimate from a posterior probability obtained by the set of Pd measurements in

the form of (Trugman et al., 2019):

P(M|log,oPy, TW) o« P(log,oPg, TW|M)P(M) (6)
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Where P(log,oPy, TW|M) is the likelihood function of log,yP; in the considered Time
Window TW for a given magnitude M; P(M) is the prior magnitude distribution and
P(M|log,oPy, TW) is the posterior magnitude distribution.

1.3.2 The measure of the P-wave growth rate and its physical
interpretations
The scaling of P-wave onset with the final earthquake size is so far contradictory.
However, the differences that have arisen (we discussed them in paragraph 1.3.1) could
be explained in terms of: (1) different type of data analyzed (strong motion, broadband,
HR-GNSS); (2) different time scale of observation (from the first few seconds of P-wave
onset to the tens of seconds of STFs). The question about whether the earthquake final
size predictability could imply that the earthquake rupture has a deterministic behavior is
still complicated to answer. The main reason for that comes from the fact that it is very
challenging to map a process (the earthquake nucleation) that is linked to the aseismic,
not-radiative phase of the physical phenomenon. A great opportunity to connect the
observations from the early P-wave amplitude and its growth with the nucleation phase
in which rupture loads comes from the laboratory experiments and the numerical

modelling.

Many theoretical works have improved the understanding of rupture nucleation
((Dieterich, 1979), (Uenishi and Rice, 2003), (Rubin and Ampuero, 2005)). Indeed, it is
known that the seismic rupture begins with a process of quasi-static slip accumulation
over a limited region of the seismic fault. On this region, where the rupture starts loading,
the slip slowly accumulates until reaching a critical threshold, beyond which the rupture
becomes unstable and starts to propagate. Numerical modelling of the quasi-static phase
is focused on developing constitutive laws for fault slip. A standard form of the
constitutive law is (Rubin and Ampuero, 2005):

C e ftalnrtbInl )
a_f a-Inz nDC

where 7 is the frictional strength, ¢ is the normal stress, V is the sliding velocity, 8 is the
state variable (with units of time), D, is a characteristic sliding distance for the evolution
of 8, f* and V* are reference values of the friction and velocity, a is a parameter that
characterizes the increase in strength depending on the increase of velocity, b is a

parameter is a parameter that reflects the increase in strength depending on an increase of
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the total area. Equation (7) makes clear that this process is governed by slip velocity as

well as stress drop and characteristic lengths (such as D).

Through laboratory experiments researchers have been able to characterize the nucleation
phase dynamics. Latour (2013) showed that the evolution of the rupture propagation is
divided into three stages, each of them characterized by a different slope in the curve
representing the logarithm of the rupture velocity versus the logarithm of the rupture
length (Figure 1.3.4). These stages are named quasi-static stage, acceleration stage and
dynamic propagation stage. In the first quasi-static stage the log-log scale between the
rupture velocity and the rupture length has slope equal to 1, which indicates a linear
dependence of the two parameters (Latour et al., 2013). During the quasi-static stage, the

rupture grows exponentially as:
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Figure 1.3.4: Rupture velocity as a function of rupture length obtained from high-speed videos for 45 slip
events (each curve represents a single rupture event). Changes in slope allow to distinguish different stages of
dynamic rupture. The organization of the curves indicates a dependence with the initial normal stress
(represented by color code) (from (Latour et al., 2013))

where Lo is the length of the rupture at the end of the quasi-static phase and to is defined

as the instant of the transition between the quasi-static and the acceleration phase; tc is a
characteristic time defined by tc = Lo/Vro where Vry is the velocity at time t=to. Time to=0

is arbitrarily defined as the last instant of exponential growth (quasi-static phase) and the

beginning of the second phase (acceleration phase). The acceleration phase is

characterized by slopes between rupture velocity and rupture length higher than 1. This

31



means in the acceleration stage the rupture velocity grows like a power of the rupture
length. The solution to this kind of differential equation is:
Lo

L:(l_(n—l)(t—to))ﬁ t>0 9)
tC

In the equation (9), the rupture length L diverges at tot+t; where t; = t./(n — 1).
Equations (8) and (9) indicate that the rupture is defined by the nucleation length L. In
laboratory it is supported that Lo is equal to the critical length Lc which is related to the
frictional parameters (Campillo and Ionescu, 1997):

uD,

e = Pt T "
where f; and fq are the static and dynamic friction coefficients, D¢ is the critical weakening
distance, u is the shear modulus, and 3 is a nondimensional coefficient. The characteristic
time tc of the nucleation phase defines both the quasi-static phase (as shown in equation
(8)) and the acceleration stage (as shown in equation (9)). The results obtained in
laboratory experiments particularly show that the acceleration stage of the rupture is very
well defined and relatively short, controlled by the critical length that ends the quasi-static
phase when particular conditions are reached. Latour (2013) proposed that tc is
represented as a ratio depending mostly on Dc and the difference between f, the static

friction coefficient, and fgy, the dynamic friction coefficient as it follows:

oot De (11)
© pofs—fa

To extrapolate Dc from equation (11) and to discussion its implications to the natural

conditions, Colombelli et al. (2020) have given a first qualitative analysis that links the
observed scaling of the initial growth rate of displacement with the earthquake final size
with the laboratory observations. The growth rate is measured as the slope on the LPDT

curve (see paragraph 1.3.1). So, it can be written as:
OLPDT /0t « §v/8v (12)

Equation (12) expresses the ratio between the slip acceleration and the slip velocity.
Therefore, the initial growth rate of displacement measured as the slope of the LPDT has

the physical dimension of the inverse of time. Having in mind the theoretical and
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modelled concepts of the earthquake nucleation, the initial growth rate of the
displacement expressed as the slope of the LPDT curves could relate to a characteristic
time during the initial stage of the earthquake rupture. Indeed, using equation (11), with
te = 1/SLPq, Colombelli et al. (2020) found reasonable values D, varying from 0.1m to 1
m for events spanning a magnitude range from 4 to 9. In this interpretation, the initial
growth rate of the early P-wave displacement might reflect the footprint of the
acceleration stage of the earthquake nucleation preceding the full dynamic propagation,

as observed for laboratory experiments.

New interpretations suggest that variations in the physical fracture parameters (such as
stress drop/slip velocity and/or rupture velocity) during the initial phase of the radiative
process may be the mechanisms that distinguish small earthquakes from large ones. This

topic will be addressed in greater detail later in the thesis (Chapter 5)

The observed slope decrease with magnitude can be related to the effect of variable
dynamic stress drop and/or rupture velocity in the initial stage of the rupture of small and
large earthquakes, possibly triggered by the acceleration phase during the quasi-static
rupture nucleation. Indeed, based on the dynamic-consistent model for an expanding
shear circular crack of Sato & Hirasawa (1973), the relation between the early P radiated
displacement pulse Qp(t) , the dynamic stress drop () and the rupture velocity (vg)
during the rupture growth phase can be written as: (Boatwright, 1980):

2 3
2nAv,vg 2 2VRT,

(13)
a—¢y" “pa-ort

Qp(t) =

where Av,is peak slip velocity, u the rigidity at the source region and { = Z—R sin @ is the
i

P-wave apparent Mach number (Boatwright, 1980), with 8 being the angle between the
ray take-off direction and the normal to the circular fault. The term including the apparent
Mach number accounts for rupture directivity, depending on the receiver view angle and
the rupture to wave velocity ratio. In (13) the relation between the peak slip velocity and
dynamic stress drop is inferred from the dynamic models of a propagating shear crack by
Kostrov (Kostrov, 1964) and Dahlen (Dahlen, 1974).

Averaging over 6, eq (13) changes to:

0,() ~ LR (14

where the rupture velocity factor
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shows an exponential increase with v. According to eq (14), both the rupture velocity

(15

C(vg) =

NI
N W

and/or dynamic stress drop control the rise of the radiated P pulse displacement and

therefore its initial slope.

An example of the effect of a varying rupture velocity with magnitude on LPDT curves
and slope by assuming a Sato and Hirasawa (1973) kinematic source model of a circular
shear crack is presented in Chapter 5. Synthetic tests support the idea that a decreasing
value of rupture velocity with magnitude could be responsible for the observed decrease
of the initial slope of P-wave displacement. Additional constraints provided by more
complex and realistic numerical simulations are necessary to understand in which
physical conditions and how these two parameters may play a role during the initial stage

of the rupture propagation.

1.4 The open debate of the earthquake rupture behavior: the
earthquake nucleation models

The different observations coming either from laboratory experiments or from the
analysis on the early signals of real earthquakes data are rooted in the models describing
the earthquake nucleation phase. These models were proposed and discussed by Ellsworth
and Beroza (1995) and Beroza and Ellsworth (1996). In their studies ((Ellsworth and
Beroza, 1995), (Beroza and Ellsworth, 1996)), they denoted the nucleation phase as the
difference between the first arriving P-wave and the observed sudden increase in growth
of the velocity seismograms. They also defined the beginning of the linear increase in
ground velocity as the breakaway phase. They evaluated the size and the duration of the
defined seismic nucleation phase for 48 earthquakes with magnitudes ranging from 1.1 to
8.1. They found the size and the duration of the nucleation phase showed a scaling with
the total seismic moment of the events. The characteristics of seismic nucleation allowed
two possible interpretations that were summarized into two physical models, the cascade
model and the preslip model. Both two models are still widely discussed for the relevant

implications that would carry on the earthquake determinism debate.
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Figure 1.4.1: Preslip and cascade model sketch. In the pre-slip model an episode of slow, aseismic slip
precedes dynamic rupture and establishes the dimensions of the nucleation zone. In the cascade model
there is no activity before the mainshock begins. The seismic nucleation phase is generated either when
slip in the aseismic nucleation zone accelerates to dynamic rupture velocity (preslip model panel A) or
when spontaneous failure triggers a series of triggered subevents (cascade model panel B) ((Ellsworth and
Beroza, 1995)).

According to the cascade model (Panel B of Figure 1.4.1), earthquakes begin abruptly
and there is no difference between the beginnings of large and small events. A large
earthquake happens when a smaller earthquake can trigger a cascade of events of
increasingly larger slip. In this model view, seismic nucleation is an accumulation of
smaller events that leads to the largest subevent of the earthquake. The breakaway phase
is represented by the first large slip event of the cascade. In the cascade model, any
observable scaling between source parameters during the seismic nucleation and the
source parameters for the entire earthquake might arise only if the last jump in subevent

size also characterizes the final size of the earthquake.

According to the preslip model (Panel A of Figure 1.4.1), the beginnings of large and
small earthquakes are different. In this model view, failure starts aseismically in a region

which represents the pre-slip zone. This pre-slip zone gradually becomes larger and larger
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and the slip within this region increases until it reaches a critical size. Following the
preslip model, the nucleation phase represents the last stage of the failure process within
the preslip zone, whereas the breakaway phase is generated as soon as the rupture

breaches the preslip zone and begins to propagate along the seismic fault.

In the pre-slip model, any observable scaling of the source parameters related to the
nucleation are controlled with the final earthquake size is controlled by the critical length
of the preslip zone. Indeed, any existing scaling between the nucleation phase and the
final stage of the earthquake is explainable if it is considered that the final size of the
earthquake is determined by the slip amplitude when the breakaway stage begins. In
simple words, according to the preslip model, an earthquake becomes large because the

“push” at its beginning is large.

If the cascade model is correct like some observations seem to point out (see paragraph
1.3.1), the outlook for the short-term earthquake prediction is unpromising. To predict
large earthquakes that are the most interesting target of the Earthquake Early Warning,
one would have to predict the small event that initiates the cascade together with the
conditions that leads to the cascade triggering on the fault. On the other hand, if the pre-
slip model is correct as other observations seem to show (in paragraph 1.3.1), the short-
term earthquake prediction is more feasible, because earthquakes would be preceded by
precursory slip episode having different initial size which would lead to different final

size.

Until now, there is still no definitive evidence on which model is the right one to describe
the earthquake nucleation and to state whether the earthquake rupture has a deterministic
behavior or not. We presented a summary of contradictory results from a wide range of
data showing that the answer remains unclear. Putting a closure to the long debate on
earthquake nucleation and its implication relative to the final earthquake size would not
only mean a great success in understanding the earthquake physics but would also

represent a milestone for the Earthquake Early Warning future developments.

36



CHAPTER

2 Implementation of Earthquake Early Warning
2.1 Earthquake Early Warning Systems around the world

In this paragraph, we present a brief description of the status of EEW systems around the
world following the overviews by Allen and Melgar (2019) who reviewed the worldwide
status of EEW and Clinton et al. (2016) who reviewed EEW state of art in Europe.
Following their scheme presented in Figure 2.1.1 we can divide the characteristics of
EEW systems into three categories: systems deploying public alerts; systems deploying

limited alerts to selected users and systems under construction and real-time testing.

Mexico’s system SASMEX (Aranda et al., 1995) issues alert through radio receivers
mostly located in schools and offices in multiple cities. Particularly, in Mexico City the
alert makes 12.000 sirens sound so that most residents can hear and act. The alert is
triggered when two stations detect an earthquake and estimate the likely magnitude to be
significant. The threshold for alert issuing is set at M>5 for two stations as far as 300 km

from Southern Mexican coast. The national EEW system in Japan is managed by the
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Figure 2.1.1: Status of EEW systems around the globe. Purple diamonds represent systems that deliver
public alerts; red circles represent systems that deliver alerts to a limited number of users; blue stars
represent systems under real-time testing. The map shows the earthquake hazard in peak ground
acceleration with 10% probability of exceedance in 50 years. (from Allen & Melgar (2019))

Japan Meteorological Agency (JMA). Alerts are issued through different channels: from
cell phones to radio and TV. The JMA intensity level set as threshold is 5-lower. Before
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the 2011 M9.1 Tohoku-Oki earthquake, the JMA system used a source point algorithm
to locate and estimate magnitude, based on the first few seconds of P-waves. This massive
earthquake caused significant shaking over a much larger area than predicted by EEW
algorithms, as the expected magnitude saturated around M~8. The great Tohoku-Oki
earthquake effectively re-opened the discussion among the scientific community about
EEW effectiveness in case of large events. Since then, great efforts were applied to
improve the system reliability which is now moving towards impact-based algorithm

(Kodera et al., 2018a). We will discuss both approaches later in this chapter.

China’s Earthquake Early Warning (EEW) efforts are primarily driven by the China
Earthquake Administration (CEA) and various research institutions. Over the past decade,
they have deployed increasingly dense seismic networks in quake-prone areas such as
Sichuan and Yunnan, working to reduce detection times and improve alert accuracy (Peng
et al., 2022). Several pilot EEW systems are now in place, utilizing real-time data and
advanced algorithms to estimate magnitude and epicenter location (Peng et al., 2021).
Ongoing research focuses on refining detection strategies, enhancing sensor coverage,
and ensuring system redundancy to better protect urban centers and critical infrastructure

across the country (Liu and Liu, 2024) .

In South Korea, public alerts are issued by the Korean Meteorological Administration in
the form of text messages sent to cell phones for earthquakes with magnitude M>4.
Earthquakes characterization is assessed through ElarmS point source algorithm (Sheen

etal., 2017).

Taiwan uses three EEW systems. All of them are P-wave-based system to predict the

coming peak shaking (Hsu et al., 2018; Wu et al., 2019).

On the West Coast of United States, the EEW system ShakeAlert is fully operational
(Kohler et al., 2020). The system combines EPIC point source algorithm (Chung et al.,
2019) and finite fault detector FINDER algorithm (Bose et al., 2018) to estimate
magnitude, location and expected shaking intensity. Additionally, the MyShake app
(Kong et al., 2016) has been sending alerts to users since its first public lunch in 2019.
Started as a project at University of California, Berkeley, MyShake is also collecting
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waveforms recorded by smartphone that could be used to predict peak ground shaking

using accelerometers built in cell phones (Patel and Allen, 2022).

In Europe, different countries have now systems that issue alerts to a limited number of

users or facilities (Clinton et al., 2016).

In Italy, PRESTo, a source-based algorithm is running for the Irpinia Region with the
goal of issuing alerts in Naples and surrounding areas (Satriano, Elia, et al., 2011).
Recently, the regional approach to early warning has been extended to include real-time
estimation of the Potential Damage Zone (PDZ) i.e the area where the expected shaking
intensity is higher than a threshold. The PDZ is obtained by the real-time mapping of
observed and predicted P-peak displacement amplitudes (Zollo et. al, 2023). Together
with the network system PRESTo, an on-site algorithm (SAVE) is also running on the
stations of the Irpinia Seismic Network (ISNet) (Caruso et al., 2017). SAVE provides
real-time information about the expected shaking at the sites where the stations are
located. We discuss SAVE algorithm, presenting several applications in Chapter 3.
Furthermore, ISNet is associated with the European platform CREW, the Testing Centre
for Early Warning and Rapid Source Characterization, where the performance of Early

Warning software is evaluated and compared.

In Switzerland, the Virtual Seismologist (VS) algorithm (Cua and Heaton, 2007) has been
operating as a test system since 2008. VS is a network-based Bayesian approach to EEW.
The VS magnitude relationships are derived using a Southern Californian dataset
augmented with strong motion from Next Generation Attenuation Relationships (NGA).
A key advantage of this method is that the station magnitude estimates are evolutionary
(using the entire waveform available at a given time and not just the first few seconds).
This means that source parameter estimates are updated with new data every second even

if no new P-wave detections have been recorded.

Romania is also using PRESTo together with its own event validation approach to send

alerts to a nuclear research facility (Clinton et al., 2016).

In Turkey, Istanbul has a warning system that issue alerts when acceleration exceeds a
threshold at three stations of the network across the city, called Istanbul earthquake Early
Warning (IEEW). After triggered by an earthquake, each station will process the

streaming strong motion to yield the spectral accelerations at specific periods and will
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send these parameters in the form of SMS messages to the main data center through

available network service (Erdik et al., 2003).

2.2 Earthquake Early Warning Configurations

Depending on the deployment of the seismic networks, it is possible to distinguish two
configurations for EEW systems: the network-based systems and the stand-alone, on-site
systems. A variant of the on-site configuration is the barrier system, in which a barrier-
shaped seismic network is deployed between the source region and the target site to be
protected. The main difference between the network and the on-site (with barrier variant)
EEWS is to be found in the time interval available to issue an alert soon after the rapid
detection and characterization of the on-going earthquake due to the fact that the
monitoring network is located the source region of earthquakes, while the onsite system

is located at the target site to protect.

2.2.1 Network systems

In a network system, seismic stations are deployed near active faults (Figure 2.2.1). In
this configuration, the information carried within the first P-wave arrival is used to rapidly
estimate earthquake magnitude and location. The fast characterization of earthquake
source is then used to make predictions of the expected damage in areas far from event
epicenter using regional empirical attenuation relations or ground motion prediction
equations (GMPE). The available time to issue an alert in this configuration goes from
few seconds for those areas close to event epicenter to several tens of seconds for farther

arcas.

REGIONAL SYSTEM |

Figure 2.2.1: Regional EEWS scheme
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The lead-time, that is the time between the arrival of damaging seismic waves at the target

and the time of first issued alert, is here defined as:

AtR = tS,target - (tFA + telab) (16)

where Atg is the theoretical lead-time, tgiqrger = to + Ts (t, origin time, Ty wave

propagation time) is the S-wave arrival time to the target and tz, = t, + T (T St P-
wave propagation time at the last station considered for the analysis) is the time of first
alert, which can be issued taking into account the analysis of one or more P-wave signals
recorded at seismic stations of the network. In the definition of the theoretical lead-time,
it is also added the time for data acquisition and elaboration (t,;,j), which is usually of
few seconds, depending on the communication speed, latency of the data transmission
and computing time efficiency of the real time algorithms. In a network-based EEW
configuration, the S- waves generally arrive at the area located really close to event
epicenter before the alert is issued. This area is called b/ind zone and its radius is evaluated

as it follows:
RBZ = Vs(tFA + telab - to) (17)

where Vsis the average S-wave velocity in the medium. The extension of the blind zone
depends on the seismic network density, on the number of seismic stations used to issue
the first alert, on the time required for signals acquisition and elaboration and on the

earthquake depth.

2.2.1.1 Source-based approach

The implementation of EEW has known a great acceleration thanks to the digitalization
of seismic instruments and communications to issue alerts. The algorithms which have
been developed in EEW systems worldwide can be summarized into two big categories:
source-based algorithms and wavefield-based algorithms. The former uses the
information coming from the propagation of P- and S- waves (typically the first few
seconds) to estimate source parameters (origin time, location and magnitude). The source
characterization is required to obtain the expected ground shaking at the site of interest.
The expected ground shaking is evaluated through an appropriate Ground Motion

Prediction Equation (GMPE) that link source parameters to the peak ground motion and
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Box 2.2.1: RTLoc

It is assumed that a seismic network has known sets of operational and nonoperational
stations. When an earthquake strikes, P-wave arrivals will become available from some
operational stations. We consider N operational stations (S; ...Sy), a gridded search
volume V containing the network and the earthquake source regions, and the travel
times from each station to each grid point (i, j, k) in V computed for a given velocity
model. According to the Equal Differential Time (EDT) approach, if the hypocenter
(i, ], k) 1s exactly determined, the difference between calculated travel times #, and #t,
from the hypocenter to two stations S, and S, is equal to the difference between the

observed travel times tn and tm at the same stations:
(ttm = ttn)i,j,k =tm — tw; m*n

For a constant velocity model, the above equation defines a 3D hyperbolic surface
whose symmetry axis cross stations S, and S,. Giving N triggering, N(N — 1)/2
surfaces can be drawn and the hypocenter will be located in the small region having the
maximum number of EDT surfaces crossings. If we take into account the not-yet-
triggered stations and we consider t, = t,,,, the time at which the n-th station is

triggered, the EDT surface is bounded by the inequality:
(ttl — ttn)i,j,k = 0; l+n

where Si is the not-yet-triggered station and #7; is its calculated travel time. As the current
time tnow progresses, the hypocentral volume is more and more constrained around the
actual earthquake location, bounded by the information that not-yet-triggered station
can only have observed t; > t,,,,. This leads to the following inequality satisfied by

EDT surface:

(ttl - ttn)i,j,k = tnow - tn

that includes ground motion propagation models. The wavefield-based algorithms are
completely different from source-based approaches because they do not ground on the
earthquake source characterization. They make use of the observation of the impending

strong shaking to predict shaking at other locations. In this sense, the wavefield-based
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approach is not sensitive to earthquake detection or uncertainties coming from location

and magnitude estimation since it is completely data driven.

The techniques for fast real-time earthquake location are mostly based on a probabilistic
approach, where both the stations that already recorded the event and the stations that still
have not received the signal are used to obtain the earthquake hypocenter. In the box 2.2.1

the concept of the real-time location (RTLoc) is briefly described (Satriano et al., 2008).

The magnitude characterization in real-time for EEW purposes is still a matter of great
debate in the seismological community. In recent years, the fast magnitude estimation
from early seismic signals has opened the way to the possibility of a deterministic
behavior of the earthquake rupture ((Colombelli et al., 2014),(Colombelli et al., 2020))
that has been extensively discussed in Chapter 1. In operating EEW systems around the
world, the magnitude estimation is performed through modules that link the early P-peak
amplitude or frequency to the earthquake final size, such as PRESTo regional system

(Satriano et al., 2011) and the EPIC algorithm in U.S ShakeAlert (Chung et al., 2019).

Nakamura, (1988) proposed the measure of a predominant frequency from the first P-
wave train. Since then, the method has been extensively applied in EEW showing that the
predominat period tk,,, parameter scales with magnitude regardless of epicentral
distances up to few hundred kilometers (Allen and Kanamori, 2003). Alternatively, to
7P 4x» @ similar characterist time parameter that scales with magnitude is the average
period of the P-wave signal 7. (Wu and Kanamori, 2005b). Although the measure of ..
parameter is scattered around the magnitude, the scaling with the earthquake final size is
preserved for different region of the world, making its use appealing in source-based
approaches. We provided a mathematical description of 75, and 7. in the box 1.2.1. The
T8 ax and T, approaches that we described for rapid magnitude estimation are largely

implemented in EEW systems.

However, they underly the point-source approximation. The point-source approximation
is valid until a certain range of magnitude (from small to moderate) (Aki and Richards,
2009) depending on the signal frequency content and distance of the observer. Above this
physical threshold, the rupture complexity cannot be recovered completely because it
affects signal amplitude, frequency and duration such that the point-source approximation
cannot describe the radiated signal complexity. Moreover, the use of a signal time window

too short as compared to the one related to the magnitude related rupture length could
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lead to a saturation in magnitude estimation, which might result in a failure of the

designed EEW system.
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Figure 2.2.2: Relationship between peak initial three-second displacement amplitude (Pd) and peak ground
velocity (PGV) for 780 records with the epicentral distances less than 30 km for Japan (black triangles),
southern California (red solid circles) and Taiwan (blue diamonds). Solid line indicates the least squares
fit and the two dashed lines show the range of one standard deviation.

Indeed, EEW algorithms that measure the rupture extent in real-time have recently been
developed and their advantages become clear at the occurrence of great events. It is
worthy to mention the Finite-Fault Rupture Detector (FinDer) (Bose et al., 2018), which
is a module for line-source parameters estimation implemented the U.S. ShakeAlert.
FinDer determines earthquake rupture extent from the observed distribution of near-
source high-frequency motions. Based on template matching methodology, FinDer
determines line-source models from the real-time recorded PGA at a dense network
around the epicenter, very rapidly and continuously updates these parameters during the
fault rupture development. The application of a finite-fault detector improves the
accuracy of the magnitude estimation and consequently, the accuracy of ground motion

parameters.
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The prediction of the expected Peak Ground Motion (e.g PGA, PGV, PGD) is performed
through the use of empirical attenuation relationships or Ground Motion Prediction

Equations (GMPE). The simplest form of the GMPE is:
logPGX = A + BM + ClogR (18)

where X=Acceleration, Velocity, Displacement; coefficient A, B, and C are locally
calibrated; M and R are the magnitude and the hypocentral distance evaluated through
EEW approaches described in previous paragraphs. More complex shaped GMPE are
proposed in literature, including higher order terms in magnitude, depth dependency and

site amplification terms (Douglas, 2018).

2.2.1.2 Wavefield-based approach

As an alternative to source-based methods, another approach has recently been
developed, which does not require earthquake source parameters estimation to predict the
impending ground motion. This approach is solely based on the propagation of wavefield
and predicts the expected ground motion directly from the observed ground motion in

3

real-time. For this reason, this kind of approach is referred to as “wavefield-based
method” or “ground motion-based method”. The wavefield-based method for EEW has
been successfully tested in Japan and California ((Kodera et al., 2018b) (Cochran et al.,
2019)). In Italy and in Turkey, the wavefield-based approach has been tested using P-
wave information: M and R are determined in real-time to interpolate the GMPE at nodes
where instruments are not deployed ((Zollo et al., 2023), (Rea et al., 2024)). Especially
for large earthquakes, the wavefield-based approach has been proved to be particularly
suitable, because it skips rupture duration and length estimation, which for high energetic
events could lead to poor resolution using the standard empirical relationships of source-
based methods. The propagation of local undamped motion (PLUM) method (Hoshiba,
2013) has been implemented in JMA’s EEW system since 2018. As a wavefield-based
approach, PLUM predicts seismic intensities directly from observed real-time seismic
intensities near the target site. The basic principle of PLUM is that under the assumption
of plane wave propagation, the maximum amplitude between the prediction and the
observation point is preserved when the distance between the former and the latter is
sufficiently short compared to the hypocentral distance. Following this approximation,

seismic intensities are predicted by (Kodera et al., 2018b):
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Figure 2.2.3: Schematic diagram of the ground-motion prediction (GMP) process in the propagation of
local undamped motion (PLUM) method. The diamond indicates a prediction point, and the inverted
triangles represent observation stations (from (Kodera et al., 2018)).
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where I;’;)ed is the predicted seismic intensity at the prediction point £, Ir(igbs is the

observed real-time intensity at point i, Fo(i) and Fo(k) are the site amplification factors
converted into seismic intensity. Cr denotes a circular area centered on the prediction
point (as in Figure 2.2.3). The predicted intensity is obtained as the maximum of the
observed seismic intensity in Cr. The radius R of the circular area can be evaluated either
in an empirical way or by considering the spatial density of the seismic network. The
prediction points of the PLUM method consist in about 4200 sites displaced all over Japan

where seismic-intensity meters are located.

The warning times from the PLUM method are usually shorter than the warning times
from source-based algorithms. The main reason is that the PLUM algorithm does not use

the P-wave information available before S-waves.

On this matter, the evolutionary shaking-forecast-based EEW method (Quake-Up)
proposed by Zollo et al. 2023 (Zollo et al 2023) has shown that a P-wave based early
shake map is feasible and increases the available warning times with respect to other
ground motion-based approaches. The core of Quake-Up is the mapping of the real-time
evolutionary Potential Damage Zone (an area of expected strong ground shaking), using

the information coming from the onset P-waves. The early shake map is updated while
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the P-time window of the recorded signal is expanding. Moreover, the evaluation of the
ground motion is performed considering both the recording sites, where the P-wave
arrivals are available, and the “virtual nodes”, points of the gridded 3D space around event
location which are not instrumented. Particularly, the expected Peak Ground Velocity at

the recording site at time ¢ is obtained through:
logPGVt = D, - logP! + E, (20)

where D, and E, are empirically estimated coefficients, Pf is the P-peak at time ¢ of x
which stands for acceleration, velocity and displacement. The predicted PGV}, g;ze is
obtained as a weighted mean of the three estimated PGV,f. The prediction of PGV at the
non-instrumented nodes of the grid map is obtained through a combination of the
available information from recording sites and the interpolation using regional scaling

relationships as it follows:

1 i 1
Iiv=1 lo_i 2 | PGVotnlsite(x' y)l + o2 ' PGVGMPE(x' y)
PGVt(x, y) — onsite GMPE (21)

N 1 1

= lo-(ir%sitel OGmPE

where PGV}l (x,y) is the PGV predicted at i-th network station from P-peak
amplitudes, PGV pg (x,y) is the PGV predicted by a regional GMPE, 6., ;.. and 62y pg
are the standard error related to the P-wave predicted PGV and the standard error related
to the GMPE predicted PGV, respectively. The standard error for PGV of recording site
takes into account the standard deviation of the PGV versus Px relation and the distance
between the network node and the virtual node. The final output is the predicted PGV
versus time at any location (x,y) around the earthquake source, which can be converted

in instrumental intensity according to regional scaling laws.

2.2.2 On-site systems

In an on-site EEW system, a single sensor (or a small array of sensors) is usually deployed
near a target to be secured during the earthquake occurrence (Figure 2.2.4). The stand-
alone design of on-site systems makes them suitable for sites located within several tens
of km from active faults areas, at distances where typically extends the blind-zone of
network-based EWS. In this configuration, the information carried by the early P-waves
is used to predict the expected ground shaking at the target. Indeed, in an on-site

configuration, the magnitude and the hypocentral measurements are usually not available.
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Figure 2.2.4: On-site EEWS scheme

The expected Peak Ground Motion is obtained through empirical scaling relations that
link PGX to the peak amplitude of P-waves (Wu e Kanamori 2008, Zollo 2010). These

empirical laws can be written as follows:
logPGX(PTW) = A(PTW) + B(PTW)logPx(PTW) (22)

where Px is P-peak of acceleration, velocity or displacement measured in the P-wave
time window of length PTW; A and B are locally calibrated (e.g. taking into account

regional variability as it is shown in Figure 2.2.2 from Wu e Kanamori (2008)).

Finally, the expected Peak Ground Motion is converted into expected shaking intensity
through regional laws that link PGX to seismic intensity (e.g. Modified Mercalli Intensity
MMI) ((Faenza and Michelini, 2010), (Worden et al., 2012), (Bilal and Askan, 2014)).

The lead-time for an on-site system design is evaluated as:

AtR = tS,target - (tP,target + telab) (23)

where tp targer = to + Tp is the P-wave arrival time at the target; tg 1qrge: 1 the S-wave
arrival time at the target and t,;,; is the latency/computational time that is generally
assumed to be 3 sec, considering the minimum P-wave window length for the analysis.
On one hand the on-site design decreases the radius of the blind zone because the alert is
issued directly at the target; on the other hand, it increases the false alarm likelihood,

because predictions are based on one (or very few) sensor.
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Figure 2.2.5: Comparison of warning times and lead-times for onsite and regional EEW approaches. The
onsite warning time depends on the P arrival time at the site and on a (generally) fixed analysis window
(here set to 3 s). The regional warning time depends on the source-network geometry and on the algorithms
employed and is generally of the order of a few seconds (e.g. 10 s). An onsite system can provide a warning
to targets closer to the epicenter. (from (Satriano, Wu, et al., 2011))

However, the main factor which makes the two designs complementary is the lead-time.
This parameter increases with the epicentral distance both for the regional and the on-site
system. Regional systems are characterized by greater lead-times with respect to on-site
systems at the same distance (see Figure 2.2.5). There is a trade-off between the amount
of time required for alert issuing and the precision of earthquake parameters on which the
declaration of an alert is based. Generally, the bigger the time required for data acquisition
and earthquake characterization, the more precise the estimation is (and consequently the
alert). It is also true that increasing time to get precise source estimates corresponds to an
increase of blind zone radius. For this reason, a hybrid design is usually the preferred
strategy, where a network configuration is joined by an on-site configuration that
validates/invalidates the information evaluated from the former when an earthquake

strikes in the monitored fault area.
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PART 2 - ON-SITE EARTHQUAKE EARLY
WARNING: METHODS AND APPLICATIONS

In the framework of fast characterization of the earthquake source, the on-site earthquake
early warning systems represent the step that turns rapid algorithms for source parameters
estimation into operational systems issuing alerts. As described in paragraph 2.2.2, an on-
site system can work with a single sensor and evaluate the expected shaking intensity
from few seconds of signal at the site where the system is deployed. The on-site EEW
systems are usually preferred over the regional systems when the target to be secured is
close to an active fault area or when the target site falls within the radius of the blind zone
of a regional system. In the blind zone (mentioned in paragraph 2.2), the most damaging
S- or surface waves reach the target before any alert could be issued. Indeed, most of the
algorithms in the on-site systems are implemented as P-wave based algorithms, meaning
that the earthquake is rapidly characterized by looking solely at the P-wave phase of the
signal. Moreover, every operation performed on the seismogram, from the detection to
the alert issuing, is done at the site where the system is. This reduces eventual delays for
warning declarations that might come from Ilatencies in electromagnetic signal
transmissions. In this part we describe two on-site systems, SAVE and P-Alert, and their

application to different real earthquakes scenarios.
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CHAPTER

3 On-Site Alert Level System: SAVE
3.1 SAVE theoretical concepts

In this paragraph we describe the on-Site Alert Level system (SAVE, hereinafter)
implemented by (Caruso et al., 2017). SAVE is a P-wave based on-site early warning
system. SAVE processes the vertical component of accelerometers and (broadband)
velocimeters. Through the measurement of P-peak amplitude and early P-wave frequency
content SAVE predicts the expected ground shaking at the recording site and issues a
local alert level together with a qualitative assessment of earthquake magnitude and
source-to-receiver distance. The block diagram of SAVE is shown in Figure 3.1.1. In the
following sections we focus on each single step of SAVE operations from the automatic

detection of P-wave on records until the final outputs of the system. Herein after we

Input data from
one or more co-
located sensors

| Pick

Second
quality
control

Automatic
filter
selection

| Data processing

h 0.075 HZ Yes
Parameter estimates: iz i
» Intensity (Pd)
» Alert Level (Pd, z.) \\4
» Magnitude Range (z.) Parameter estimates:
» Distance Range (Pd,z,) > Intensity (Pd)
Warning A 4
notification No
Estimates

Figure 3.1.1: block diagram of SAVE (from (Caruso et al., 2017))

describe in detail the following modules of the onsite EW system: (1) the automatic P-

wave picking, (2) the Data Quality Control, (3) the parameters estimates.
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3.1.1 Automatic P-wave picking

The P-wave picking algorithm implemented in SAVE is FilterPicker (FP hereinafter) by
Lomax (Lomax et al., 2012). FP is optimized for EEW as it operates on data packets of
different lengths and can declare a P-wave pick within few samples from the trigger. A

mathematical description of FP is provided in box 3.1.1.

Box 3.1.1: The FilterPicker Algorithm

The FilterPicker (FP hereinafter) operates on a discretized time- series signal y(i) with
sample interval AT. The FP algorithm makes use of decay constants for accu-
mulating time-averaged statistics on the signal independently of the elapsed time since
the start of the signal. For a statistic S = f'(y), the time-averaged value Singis given

by:
Slong (1) = Clong Slong (1_ 1 ) +( 1 -Clong)S(l) (I)

where S(i) is an instantaneous value of S and C,,,:0< C,, <1 is a decay constant

defined by Cjpg = 1 — AT /Tjpongwhere Ty is a time-averaging scale.
To perform the picking, the first step is to obtain a differential signal y’(i) as:

y' (@) =y@ —-y@i—-1) (ID)

In the next step, a set of filtered signals Y, (i) = Y,LF (i) {n=0, Npana-1} are generated

from y’(i) using two simple one-pole high-pass filters:

i@ =GP -D +y' @) —y' (= 1) (11D
And

VHP2(D) = CHP[YIP2(i — 1) + VPP (@) — YPPL( = D] (V)
Followed by one simple one-pole low pass filter,

P = VPG = 1) + CEP [P () - VI - )] (V)

With filter constants CXF = w,,/(w, + AT) and CL¥ = AT /(w,, + AT), time constant
wy, = T,/2m, corner period T,, = 2"AT, y'(0), YP1(0) and Y'F2(0) initialized to
0.
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Continue Box 3.1.1

Npana 18 chosen so that Ty, 4 = 2Nband=1AT ig greater than the largest dominant
period of the phase to be picked. In the following step, we construct an envelope Ex

function for each band n:
E, (1) = YZ (1) (VI)
and a characteristic function EC (i):

C(7) = En)=<En>(i-1)
E (@) = <o (Ep)>(i-1) (VID

Where < E,, > (i — 1) and < d(E,,) > (i — 1) the time-averages up to sample i-/ of
E. and the standard-deviation of E, respectively, are accumulated using the decay
constant Cong of equation (I). In the final step, a single summary CF, F€ (i), is formed
by setting FC(i) = max{Ef(i);n = 0, Npgnq — 1}. A trigger is declared when
FC¢(i) = S;, where S is a predefined threshold and the corresponding trigger time tirig
is stored. Given a predefined time width Typ, a pick is declared if and when the integral

of FE(i), Yup FE(D)AT, exceed the value S»*Tu, within a window up from tuig to

ttrig+Tup-
The threshold S is also predefined.

FP has few parameters, all of which are not difficult to set and can easily adapted to

the type of signal and to the phase to be picked.
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3.1.2 Data Quality Control

When a P-wave is detected, the waveform enters in a preprocessing module that removes
the average and the linear trend and is integrated (once or twice depending on the type of
waveform) to get displacement. After the preprocessing step, the signal goes through two
quality controls. The first quality control is performed to assess whether to keep the signal
or to discard it. The first quality control is based on the analysis of the Signal-to-Noise

Ratio. Indeed, the waveform is automatically discarded if:

PTW

24
20 10g< d ) < SNR¢preshola 9

d NOISE

where P, yo;sk is the average value of displacement in a fixed pre-event window; PY™W

is the P-peak of displacement in the corresponding P-Time-Window, which for SAVE is
1, 2, 3 seconds from P-wave arrival; SNR;p;esnoia 1S the threshold which can be set

according to users’ needs.

When the signal is good enough to pass the quality control expressed in the inequality
(24), a second quality control is performed to select the cut off frequency for the data
filtering. Since acceleration waveforms are integrated once to get velocity and twice to
get displacement, signals could be affected by low frequency drift. This drift is removed

with a high-pass filter.

For each PTW, SAVE calculates the ratio PY™™ /PF™, where PY™ is the P-peak of

velocity in the corresponding PTW. The waveform is declared as high quality when:

PTW
log (P‘;W) < thresholdy gy

v

(25)

where thresholdy;qy is pre-determined. In fact, if velocity and displacement waveforms
are correctly retrieved, they are expected to follow a similar decay law hence their ratio
will vary in a pre-determined range. If inequality (25) is true, the signal is high-pass

filtered at cut-off frequency of 0.075 Hz.

If inequality (25) is not respected, the signal is high-pass filtered at cut-off frequency of

1 Hz and a second inequality is checked. The signal is considered as low quality if:

PTW

tresholdlyy, < log (P‘;W) < threshold?,y, (26)
v
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Again, treshold},y, and threshold?,,, are pre-determined. Should the waveform fail

the second quality control, the signal is discarded.

3.1.3 Parameter estimates

The expected Peak Ground Velocity (PGVEEY) is estimated by SAVE in the
corresponding P-wave time window (PTW) (1, 2, 3 seconds since P-arrival) and is
obtained through a log-linear regression in the form of equation (22) in the paragraph
2.2.2 where the P-peak of displacement P, is updated at each P-time window. The
coefficients in equation (22) are empirically calibrated for high- or low- quality data in
each of the available PTW. The empirical regressions PGV vs Pd of Caruso et al. (2017)

were calibrated on a dataset of Italian and Japanese earthquakes.

The main output of SAVE is the shaking intensity expected to the site that is evaluated
through scaling laws that link the measured PGV to MMI such as:

MMI = A + B - log (PGVELY, (27)

Where A and B are regional coefficients (for Italy A=5.11 and B=2.35 from Faenza and
Michelini (2010))

Moreover, SAVE introduces a novelty in the final parameter estimates. Generally, for an
on-site system, the expected shaking intensity is the only output which is required to
eventually issue an alert (paragraph 2.2.2). Since SAVE has two quality controls, as
described in the paragraph above, when the data is particularly good (that is high-quality
waveform) SAVE can also provide a rough estimate of the event magnitude and the
source-to-receiver distance. The magnitude estimate is obtained by measuring the
characteristic period T, in each available PTW. The t. is converted to expected magnitude

according to:

M = CP™W 4+ DPTVW .Jog (zP™W) (28)

Where CF™W and DPTW are empirically calibrated in each available PTW= 1, 2, 3 seconds.
Caruso et al. (2017) showed that the magnitude estimated by equation (28) is affected by
a great uncertainty. For this reason, it has been chosen to provide a magnitude

classification, rather than the dot magnitude value. The event is classified as:
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SMALL (M < 3)
MEDIUM (3<M <5)
MODERATE (5 <M < 7)
LARGE (M >7)

The source-to-receiver distance is obtained through an empirical law that combines the

P-peak of displacement P4 and the characteristic period . which leads to:

log (R) = EFTW 4 FPTW . log(Pé’TW) + GPTW . M‘LI_’CTW (29)

The coefficient EFT™W, FPTW and GP™ are calibrated in each PTW. The mathematical

details of how the equation (29) is derived are presented in the box 3.1.2.

Box 3.1.2: Source-to-receiver distance empirical law
Let us recall the general formulation of the GMPE:
logPGV = A+ BM + ClogR D

Then the logarithmic distance from the earthquake source is:

longw—gM—g (1D

In SAVE, the magnitude estimate is available from 7, measurement, while logPGV

1s obtained from:
log(PGVSAYE) = a + blog(Py,) (110)

Putting equation (III) into (II), the logarithmic distance in SAVE can be obtained as:

b B A
logRSWVE — % +=logPy — =M, — - (IV)
2 2 a—A b B 2
By imposing (T) =E,-=F —-= G, we obtain:
logR**VE = E + FlogP; + GM,, (V)

Which corresponds to the equation (14) in the text.
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The uncertainty of the distance estimate by the equation (29) derives both from the errors
coming from the equation (27) and the errors from the equation (28). Hence, SAVE

provides a classification of source-to-receiver distance in the form of distance intervals:

NEAR (R < 50 km)
INTERMEDIATE (50 km < R < 150 km)
FAR (R > 150 km)
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3.2 SAVE at Turkey
3.2.1 Introduction of SAVE test to the 2023 Turkey doublet

A devastating earthquake doublet occurred at the Eastern Anatolian Fault Zone (EAFZ)
in Turkey on February 6th 2023. The first event was the Mw 7.8 earthquake that nucleated
on a smaller structure called the Nurdagi-Pazarcik Fault (NPF) and then the rupture
propagated toward the EAFZ where it spread bilaterally with a total rupture length of
~350 km; about 9 hours later, a second event of Mw 7.6 struck in the same region with
hypocenter on the Siirgii fault (SF) spreading bilaterally with a total rupture length ~160
km (see Figure 3.2.1) (Melgar et al., 2023). Due to the significant shaking and the
superimposition of the two strong earthquakes, the casualties were reported to be near the
apocalypse (more than 50.000 deaths). The earthquake intensity was registered up to 10
degrees. In many cities (such as Antakya in the southeast of Turkey) numerous buildings

were destroyed to the ground with surrounding areas turning into ruins.
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Figure 3.2.1: Simplified map of the study region showing the focal mechanisms for both events in the
earthquake doublet. Known and mapped fault surface traces are shown as dark grey lines. The East
Anatolian (EAF) fault and Siirgii fault (SF) are labeled. The inferred Nurdagi-Pazarcik Fault (NPF) is
labeled as well. The first 11 days of aftershocks are shown. The grey moment tensor is for the. M6.7 2020
Doganyol-Sivrice earthquake. (from (Melgar et al., 2023))
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Turkey is one of the most seismically active regions of the world. The majority of the
observed seismicity is located on the Anatolian Plate, with two main fault systems called
the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ). (Tan
and Taymaz, 2006). The NAFZ was particularly active in the past three decades when a
series of M+7 happened including the 1999 Kocaeli Earthquake (Mw 7.6), the 2011 Van
Earthquake (Mw 7.2) and the 2020 Neon-Karlovasion Earthquake (Mw 7.0). In the same
time period, the EAFZ was relatively quiescent. The strongest event registered on the
EAFZ until February 2023 was the Mw 6.8 Doganyol-Sivrice earthquake of January 2020
(Melgar et al., 2020). Many authors believed that the EAFZ would be active throughout
the twenty-first century and one or more destructive earthquakes might occur ((Nalbant
et al., 2002), (Taymaz et al., 2021)). Particularly, Nalbant (2002) calculated the stress
evolution along the fault zone due to both seismic and tectonic loading since 1822,
identifying two areas of relevant seismic risk where a large event (M~8) might have
occurred. One of these two areas involved the location where the first M 7.8 earthquake

of the doublet struck in February 2023.

Given the high seismic risk that characterizes Turkey, the country has invested research
efforts in Earthquake Early Warning Systems. Although the city of Istanbul has an
operative warning system which is based on a simple exceedance of acceleration
threshold at three stations in the network, the alert distribution is still limited to just
specific area and companies, such as the Istanbul Gas Distribution Company and the
Marmaray Tube Tunnel (Clinton et al., 2016). In June 2021 Google’s Android Earthquake
Alert System was announced in Turkey. The system proposed by the Google company
should provide warnings to the millions of Android’s cellphone users at the occurrence
of an earthquake higher than M 4.5 analyzing acceleration waveforms recorded by the
built-in sensors in each cellphone. However, on February 6™ 2023 hundreds of thousand
people did not receive any warning (drop, cover and hold on) when the M 7.8 earthquake
struck, raising questions about the reliability of such system (Clayton et al., 2023). In a
retrospective analysis, Rea (2024) proved that an impact based EEWS would have issued
an alert after 10-20 seconds from origin time with a threshold intensity MMI=IV,
resulting in 95% of successful warnings with available lead-times up to 60 seconds (Rea
et al., 2024). Within this framework, we tested SAVE on the earthquakes doublet in order
to explore the feasibility of an on-site EEWS in the region.
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Box 3.3.1: The Source Time function of the Mw 7.8 earthquake and the Mw 7.6
earthquake (Melgar et al. 2023)

w

M, 7.6

N
101° Nm/s

M,7.8

T

—

0 30 60
Seconds after OT

RMS

3 4 5 6
v'#X(km/s)

Figure 3.2.2: Top Panel: Source time functions for both ruptures. Bottom panel: RMS misfit as a function

of maximum rupture speed v""* allowed in the inversion for both events. For the Mw 7.6 authors

distinguished between misfit for stations east or west of the hypocenter. Best fitting values are 3.2 km/s
for the Mw 7.8 and 2.8 and 5.0 km/s for the Mw 7.6. (from (Melgar et al., 2023))

In Figure 3.2.2 top panel the source time function of the Mw 7.8 (in red) and the Mw
7.6 (in blue) are shown. The STFs were evaluated by Melgar et al. (2023) following a
linearized multi time-window kinematic inversion. In bottom panel, results concerning
the rupture velocity are shown for both events. The RMS misfit from source inversion
showed that the Mw 7.8 earthquake (in red) was characterized by an overall average
velocity of 3.2 km/s; the Mw 7.6 showed a super-shear velocity which involved the west
of the bilateral rupture and a sub-shear velocity which involved the east (Melgar et al.,
2023). It is worth to mention that when SAVE test was performed, the Moment Rates
of Melgar et al. (2023) were the first proposed source time functions. However, later in

literature other Moment Rate functions have been developed and published.
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3.2.2 Off-line test on the Mw 7.8 earthquake of 6 February 2023

In order to perform the off-line test for the Mw 7.8 earthquake (first event of the doublet)
we acquired data from the Disaster and Emergency Management Presidency of Tiirkiye
(AFAD). The dataset consisted of three-component acceleration waveforms of the strong
motion network, recorded at stations located few kilometers up to about 600 kilometers

from the event epicenter.

Concerning the tuning phase of SAVE, we set the thresholds for data quality control used
in Caruso et al (2017) and we also used the same logPGV vs logPd empirical scaling laws
to evaluate the predicted PGV at the site. The expected shaking intensity is obtained
through Bilal and Askan (2014) scaling law. The Bilal and Askan (2014) MMI versus
logPGV relation was obtained from data of 14 moderate-to-large earthquakes that
occurred in Turkey between 1976 and 2011, including the Mw 7.2 earthquake which was
the biggest event available in the catalog at the time of the paper publication. The MMI
versus PGV law was tailored on Turkey seismicity because it was observed that existing
MMI vs PGV laws for other regions in the world (e.g. (Worden et al., 2012), (Faenza and
Michelini, 2010)) did not fit Turkish data, resulting in either under- or overestimations

(Bilal and Askan, 2014).

In panel A of Figure 3.2.3, we show the results of the predicted PGV (and MMI) versus
the observed PGV (and MMI) after 3 seconds since the P-wave arrival was automatically
picked on the trace. The observed PGV is obtained from the horizontal components of
velocity waveforms. Stations within 100 km of epicentral distance present the highest
value of PGV (MMI), while stations further than 500 km show very low PGV amplitudes
(MMI). However, we notice there is an overall underestimation of the expected PGV (as
shown in histogram of panel B of Figure 3.2.3). The underestimation we observe might
be explained in terms of rupture complexity. In Figure 3.2.2 of box 3.3.1, we reported the
source time functions of both Turkish events obtained by Melgar (2023) through
kinematic inversion. The source time function of the Mw 7.8 is represented with red color.
In principle, we should expect an almost triangular-scalene-shaped function, from which
we could infer the total energy release (total seismic moment) from the area underneath
(Aki and Richards, 2009). However, for the Mw 7.8 earthquake the source time function
is too complex to be represented by such a model. Indeed, there is a first energy release

(the small triangular-shaped impulse preceding the biggest one in Figure 3.2.2) that is due
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to the fact that the rupture of the Mw 7.8 first nucleated on a small fault segment on the

west of the EAFZ, the NFP (Melgar et al., 2023).

A MMlops
2 3 4 5 6 8 9 10
1024 10
9
» 500
[ ]
-8
101 4
2 7 .
§ i E
R/ £ X
2 100 [% = - g
Q E -
> o
o w
a 5
-a
10714
100
-3
. - 2
10! 102
PGV,ps (cm/s)
B
B .:-4.66,0:1.89
0.20 A
0.15 -
R
a)
o
0.10 A
0.05 A
0.00
-9 -8 -7 -6 -5 -4 -3 -2 -1
AMMI

Figure 3.2.3: Panel A shows PGVprea versus PGVoss at each station using 3 seconds PTW. Markercolor
follows epicentral distance. Secondary axis indicates MMIprea and MMIobs obtained from Bilal 2014 scaling
law. Panel B shows the prediction error (MMIyrea-MMlobs) as probability density function. The mean value
and the standard deviation of the distribution are represented in top right corner.

Performing a raw evaluation of the seismic moment of the first impulse of the Mw 7.8,

we obtained that the energy release in the first ten seconds since rupture beginning
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corresponds to an event of M~6. To obtain this estimate we roughly evaluate the seismic
moment from the area underneath the first ten seconds of the source time function of
Melgar et al. (2023) and used Kanamori (1977) (Kanamori, 1977) law for moment

magnitude evaluation.
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Figure 3.2.4: Panel A shows the distribution of t.values using 3 seconds PTW as probability density
function. The mean and the standard deviation of the distribution are represented in top right corner. Panel
B shows the distribution of the moment magnitude using 3 seconds PTW obtained using the Caruso et al

2017 Mw versus log(t.) empirical law. The mean and the standard deviation of the distribution is reported
in top left corner.

63



SAVE empirical relationships relate on the Pq parameter to get PGV estimates. This
means that in the first three seconds since the P-wave arrival on the records, P4 could
effectively be mapping the displacement associated with an event of Mw~6, resulting in
the underestimation we see. This effect is even more evident when we look at the average
T, and consequently, at the average point magnitude estimate provided by the system in

3 seconds (see Figure 3.2.4).
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Figure 3.2.5: Lead time plot of the off-line test on the Mw 7.8 Turkish earthquake. The Lead Time is
obtained as the difference between the PGV arrival and the P-wave arrival at the station minus 1 second
required by the system to give a first MMI estimate. Grey points are single station lead times. Blue squares
are averaged lead times in an observed epicentral distance bin (bin width = 100 km).

In Figure 3.2.5 we show the lead time at the available stations. The lead time in SAVE is
evaluated as the difference between the PGV arrival at the site and the P-time window

required to get the MMI estimation, as:
Lead Timeg,yr = T(PGV) — (Tp + PTW) (30)

In case of a large event like the Mw 7.8 Turkish earthquake, the PGV might be related
mostly to surface waves which reach the sites of interest very late with respect to body
waves. This could explain the higher lead times values that we observe in Figure 3.2.5.
Although with an underestimation of the impact, we notice that on average, SAVE would

have provided about 30 seconds of available lead time for sites located within 100 km
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from the event epicenter and more than 100 seconds for sites located within 500 km from

the event epicenter (the cyan squares in Figure 3.2.5).

The off-line test we performed on the Mw 7.8 Turkish earthquake showed that SAVE
could be integrated in an EEW system providing first simple alerts in very short time
windows. However, in cases of events with M 6+ the P-wave window must be expanded.
In a recent ongoing work (Ding et al., 2024) we evaluated that at last 10 seconds of the
P-wave time window are needed to obtain reliable PGV predictions for the Turkey-Syria
mainshock. In this case a proper strategy must be designed to automatically identify the

optimal time window to be used for alert.

SAVE is not able to properly catch the rupture complexity, however, the test demonstrates
that it would have sent valid information about the incoming earthquake to a wide area

which was effectively affected by severe damages.
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3.2.3 Off-line test on the Mw 7.6 earthquake of 6 February 2023

The Mw 7.6 earthquake (second event of the doublet) struck along the Siirgii fault about
9 hours later since the origin time of the first Mw 7.8 earthquake. We performed the off-
line test of SAVE on the acceleration waveforms from AFAD database. As for the test in
paragraph 3.2.2, for the tuning phase of the system we selected the same threshold values
used in Caruso et al. (2017) for the data quality control and the Bilal 2014 MMI versus
PGYV scaling law to get the predicted MMI from the predicted PGV.
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Figure 3.2.6:Panel A shows PGVprea versus PGVoss at each station using 3 seconds PTW. Markercolor
follows epicentral distance. Secondary axis indicates MMIprea and MMIops obtained from Bilal and Askan
(2014) scaling law. Panel B shows the prediction error (MMIprea-MMlobs) as probability density function.
The mean value and the standard deviation of the distribution are represented in top right corner.
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In Figure 3.2.6 we represent the result of the predicted PGV (MMI) versus the observed
PGV (MMI). The general trend shows an underestimation of expected shaking intensity
at the site (see panel B of Figure 3.2.6) after 3 seconds since P-wave arrival. However,
the underestimation we observe for the off-line test of the Mw 7.6 earthquake is less

severe than the underestimation we observe for the Mw 7.8 earthquake.
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Figure 3.2.7: Panel A shows the distribution of T, values using 3 seconds PTW as probability density function.
The mean and the standard deviation of the distribution are represented in top right corner. Panel B shows
the distribution of the moment magnitude using 3 seconds PTW obtained using the Caruso et al 2017 Mw

versus log(t.) empirical law. The mean and the standard deviation of the distribution is reported in top left
corner.
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The fact that the underestimation effect is less heavy for the off-line test of the Mw 7.6 is
even visible in Figure 3.2.7, showing the results of the point magnitude estimation in 3
seconds PTW from t. measurements. On average, the system classification of the event
magnitude was about Mw 6.4, placing the earthquake in the class of moderate events. For
the Mw 7.6 earthquake, the source time function retrieved by Melgar (2023) with
kinematic inversions is triangular-shaped (see Figure 3.2.2). The complexity of the
rupture depends mostly on the different values retrieved for the rupture velocity (super-
shear towards the west and sub-shear towards the east in panel B of Figure 3.2.2). The
underestimation in the prediction of both expected shaking intensity and the moment
magnitude might be related to a saturation in the last available P-Time Window used for
parameters estimation. In order to resolve the underestimation, we could extend the
available time window to get more accurate parameter estimations, although other
potential bias might enter in the final output evaluation such as the inclusion of S-waves
in the time window for the sites very close to the event location. Indeed, the 3 seconds
PTW corresponds to the source duration of an event of Mw~6, which is what the system

is retrieving by using Pd and t. evaluated in the last PTW used by SAVE.

Interestingly, in bottom panel of Figure 3.2.8 we plot the expected shaking intensity at
each station after 3 seconds since P-wave arrival and we notice that from the values
obtained by SAVE there is an elongation of the highest MMI first towards the west (with
respect to the event location) where the rupture propagated faster (Melgar et al., 2023).
Moreover, other observations arise from the comparison of SAVE predicted MMI map
with the MMI map provided by USGS shakemap service: (1) at the closest city to event
epicenter, Kahramanmars, the system correctly predicts severe shaking; (2) the contour
of severe shaking of USGS map (top panel of Figure 3.2.8) shows a lobe which includes
the city of Malatya and SAVE also obtains the same result (bottom panel of Figure 3.2.8);
(3) SAVE predicted intensity at the site of Adana is slightly overestimated with respect
to USGS result. Some of the differences in MMI values between the two representations
might derive from the fact that USGS shakemap tool uses Worden (2012) MMI vs PGV
scaling law to provide intensity estimates, while for this test of SAVE we used Bilal and
Askan (2014) MMI vs PGV scaling law which is tailored on Turkey region. It is worth to
notice (from Figure 3.2.8) that in just three seconds from the first P-wave pick, the system
would have issued alerts for an event of MMI > 4 at stations falling in a circular ring of
200 km from the event location. In the framework of EEW applications, this result is

promising because SAVE could be coupled with existing regional systems in the region.
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A fast alert providing expected shaking intensity could be sent at those areas where a
strong shaking is expected. Until now, EEW systems in Turkey are issuing alerts just

around Istanbul area (Clinton et al., 2016).
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Figure 3.2.9: Lead time plot of the off-line test on the Mw 7.6 Turkish earthquake. The Lead Time is
obtained as the difference between the PGV arrival and the P-wave arrival at the station minus 1 second
required by the system to give a first MMI estimate. Grey points are single station lead times. Blue
squares are averaged lead times in an observed epicentral distance bin (bin width = 100 km).

The lead times for the off-line test on the Mw 7.6 event are shown in Figure 3.2.9. The
average values are compatible with the off-line test of paragraph 3.2.2 performed on the
Mw 7.8 earthquake. Here SAVE would have provided about 30 seconds of available time
before the PGV arrival at sites located within 150 km from the event epicenter and almost

100 seconds before the PGV arrival at station located at 500 km from the event epicenter.
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3.3 SAVE at California
3.3.1 Introduction to SAVE test to California region

In the western United States (Washington, Oregon and California), the ShakeAlert system
is fully operational (Kohler et al., 2020), providing warning to users about shaking ahead
of time when an earthquake occurs. As a regional EEW system, ShakeAlert is designed
to detect earthquake arrivals at seismic stations ((Meier et al., 2019), (Chung et al., 2019))
and to characterize earthquake source parameters and the expected impact through
dedicated algorithms such as EPIC ((Chung et al., 2019), (Kohler et al., 2020)) and FinDer
(Bose et al., 2018). Peak ground motions are estimated using ground-motion prediction
equations (GMPEs) (e.g. (Boore and Atkinson, 2008)). Modified Mercalli Intensity
(MMI) is finally computed through regional equations that convert Peak Ground Velocity
and Peak Ground Acceleration into MMI (Worden et al., 2012). The free earthquake
smartphone app MyShake has also been delivering ShakeAlert-powered alerts in western
U.S. since its public launch in 2019. Started as a citizen science project by the University
of California at Berkeley in 2016, MyShake uses a neural network machine learning
algorithm which is trained to distinguish between human activity and earthquake signals
analyzing the waveforms recorded by the accelerometer built into each smartphone (Kong
et al., 2016). Recently, Patel and Allen (Patel and Allen, 2022) have shown that MyShake
waveforms can enhance resolution and shaking variability during earthquakes. Indeed,
when accounting for proper site effect corrections, it is possible to build GMPEs (Marcou

et al., 2024).

The implementation of a system that can rely on single waveforms could help provide
additional seconds of warning time in some circumstances. This is because network-based
earthquake early warning systems such as the one in California require a few seconds to
evaluate source characteristics. As a consequence, there are regions that might not receive
an alert, especially at high intensity shaking locations close to the epicenter (Meier et al.,

2020).

In this paragraph we show the results of the application of SAVE in California. California
is characterized by onshore, shallow crustal earthquakes of small-to-moderate magnitude
and has experienced big events not so far in the past (such as 1989 M 6.9 Loma Prieta
earthquake). Moreover, a high level of off-shore seismicity occurs at the Mendocino triple

junction, that includes thrust, normal, and strike-slip earthquakes.
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In order to compare SAVE with existing regional system ShakeAlert, we assessed SAVE

performance in terms of:
Successful Alert (SA): MMIpree>MMlinreshold & MMIgbs™>MMlinreshold
Successful No Alert (SNA): MMIprea <MMlinreshold & MMIops<MMlinreshold
False Alert (FA): MMIprea=MMlinreshold & MMIobs<MM lhreshold
Missed Alert (MA): MMIpred<MMlihreshold & MMIobs=MMlinreshold

Where MMlIeq is the predicted intensity by SAVE, MMl is the observed intensity at
the site and MMlinreshold is a user defined intensity threshold. The matrix scheme above is

then used to quantify the system performance in terms of precision and recall.

The “Precision” is defined as (Meier et al., 2020):

Precision = 54 (31)
recision = SATFA
Whereas the “Recall” is defined as:
Recall = 54
CCA = A+ MA (32)

The Precision obtained from equation (31) is informative about the number of correct
alerts that the system sent. The Recall obtained from equation (32) is informative about
the number of alerts that the system should have been sent. These two metrics are standard
metrics used in Machine Learning algorithms to assess the goodness of fit. Since the
output is a category classification, they can be easily adapted to evaluate the performance

of a threshold base system.

3.3.2 Test on event data

We run SAVE retrospectively on 113 earthquakes in California (Figure 3.3.1), spanning
a magnitude range between 4 and 7 and shallow depths down to 35 km. The stations we

used are included in the Northern and Southern California networks with seismic records
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having epicentral distances between a few kilometers to 1000 km from the event
locations. From Figure 3.3.2 to Figure 3.3.4 we compare the predicted PGV with the
observed PGV in the three second P-time window for records having observed PGV
higher than 0.1 cm/s which corresponds to the intensity level of MMI=2 (weak
shaking)(Worden et al., 2012). Predicted PGV values are obtained using empirical scaling
laws by Caruso (Caruso et al., 2017).
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Figure 3.3.1: Map of events. Circles represent event locations. Marker size indicates event magnitude, the
color indicates event depth. Black triangles represent seismic stations used in this study. The histogram in
bottom left corner shows the distribution of seismic records per distance from event epicenter.

The underestimation of predicted PGV for events with magnitude between 5.5 and 6.5 is
overcome when going from the 1 and 2 second window (as it is shown in red/magenta
points of Figure 3.3.2 and Figure 3.3.3) to the 3 second window (red/magenta points of
Figure 3.3.4). For events with magnitude higher than 6.5, PGV is still underestimated.
This result is mostly due to the fact that the longest P-time window used in SAVE for
PGV estimations (3 seconds) is still shorter than the average source duration for events
with a magnitude greater than 6.5. The lead time is calculated as the difference between

observed PGV time and one second PTW required to get first estimates. On average we
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Figure 3.3.2: Predicted PGV versus observed PGV in I second PTW. Each point represents a measure
from a single seismic record. Markers are colored according to event magnitude. Secondary x and y axis
show the observed and predicted shaking intensity respectively (MMI obtained from (Worden et al., 2012)
scaling law). Black solid line is the one-to-one PGV relation.
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Figure 3.3.3: Predicted PGV versus observed PGV in 2 seconds PTW. Each point represents a measure
from a single seismic record. Markers are colored according to event magnitude. Secondary x and y axis
show the observed and predicted shaking intensity respectively (MMI obtained from (Worden et al., 2012)
scaling law). Black solid line is the one-to-one PGV relation.

found values of 8-10 seconds at 50 km, 12-15 seconds at 100 km and 20-22 seconds at
150 km (Figure 3.3.5). The prediction error on MMI is well distributed around zero value
at all observed distance ranges (Figure 3.3.6). System performance using 3 second PTW

is shown in Figure 3.3.7. The system precision goes from about 75% at lower intensity
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Figure 3.3.4 Predicted PGV versus observed PGV in 3 seconds PTW. Each point represents a measure
from a single seismic record. Markers are colored according to event magnitude. Secondary x and y axis
show the observed and predicted shaking intensity respectively (MMI obtained from (Worden et al., 2012)
scaling law). Black solid line is the one-to-one PGV relation.

thresholds to about 50% at higher intensity thresholds, whereas the recall value decreases

from 80% at lower intensity thresholds to about 25% at higher intensities.
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Figure 3.3.5: Lead Time plot. The figure shows the lead time versus epicentral distance. Lead time is
obtained as the difference between PGV time and the end of the 1 second PTW. Circles are single record
lead times, colored by event magnitude. Darkgrey squares are averaged values of lead time in binned
distance (bin width = 25 km). Black solid line is theoretical S-wave arrival. Theoretical S-wave arrival
represents the minimum lead time since the PGV can be produced by later arrivals. S-wave speed is
computed as 60% of P-wave speed which is fixed at 6 km/s.
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Figure 3.3.6: Prediction error distribution using 3 second PTW. The figure shows the distribution of
prediction error on shaking intensity for different ranges of distance to event epicenter: 0-25 km (cyan
bars), 25-100 km (orange bars), 100 km and higher (grey bars). Mean and standard deviation of each
distribution are shown in top right corner.
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Figure 3.3.7: Precision and recall bar plot for event dataset in 3 seconds PTW. Precision (top panel) and
recall (bottom panel) variation relative to different MMI threshold values.
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The empirical scaling relationship between predicted PGV and Pd for the original SAVE
algorithm (Caruso et al., 2017) requires no recalibration when tested with event data in
California. That might be explained in terms of the magnitude range of the events. The
Caruso (2017) empirical PGV vs Pd laws were calibrated on Italian and Japanese events
spanning the same magnitude range as used for our test (M 4-7 in Figure 3.3.1). The
histogram tails we observe in Figure 3.3.6 for the event data test are mostly due to
(automatic) picking errors. In particular, many of the underestimation cases are due to (1)
the presence of a smaller event that is picked head of the main event, or (2) an early P-
pick declaration due to noise. The overestimation comes mostly from the inclusion of the
S-waves in the PTW or is due to a bad phase identification (i.e picking glitches or S-
waves). In future applications we can be more selective on SNR and time window
thresholds which control FP used in SAVE. Moreover, automatic pickers based on
Machine Learning algorithms have been recently developed and trained for Northern
California (Zhu and Beroza, 2018) (Meier et al., 2019) and could replace current picker
in SAVE. Usually, these techniques work well with short time window snippets of the
waveform (1-3 sec), but that might also mean losing seconds of warning time as the

algorithm waits for picking confirmation.

3.3.3 Test on continuous waveforms

We additionally tested SAVE on continuous waveforms, running the algorithm on three
different networks in Northern California. We analyzed waveforms of the strong motion
seismic stations of the Berkeley Digital Seismic Network (BK), the USGS Northern
California Seismic Network (NC) and the USGS National Strong-Motion Project (NP).
(Figure 3.3.8). We present the results of the analysis for the first two months of 2022, the
last ten days of October 2022, during which the M 5.1 Alum Rock earthquake struck, and
the last ten days of December 2022, during which the M 6.4 Ferndale earthquake struck.
In Figure 3.3.9 we summarize the system performance. We notice there is a scatter in the
estimation of MMI (Table 3-1). One reason of this result may lie in the fact that only few
moderate earthquakes (M 5.1 Alum Rock and M 6.4 Ferndale) struck in the selected
window for the analysis. The Caruso et al. (2017) empirical PGV vs Pd law was not
calibrated to get estimates from waveforms related to smaller earthquakes (having smaller

values of P-peak of displacement). This effect is quite evident in first column and first
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row of Figure 3.3.9, where most of the scatter in MMI for BK network is coming from

the points at lower values of PGV (MMI).
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Figure 3.3.8: Map of the stations used for the continuous waveforms test. Red points are BK stations; blue
points are NC stations, yellow points are NP stations.

The calibration of a regional PGV vs Pd empirical law partially resolves the MMI scatter,
as it is shown in the histogram of the second row of Figure 3.3.9 and in Table 3-1. The
Californian-tailored law of PGV vs Pd allows us to rule out any possible effect in MMI
estimation that may arise from regional differences such as magnitude range, depth range
and tectonic settings of the earthquakes. This means that the scatter we still observe in the
prediction error of MMI may depend on the characteristic noise level for each network
(the case of NP network is particularly evident in Figure 3.3.9). Hence, we calibrate a
network based PGV vs Pd empirical law which completely overcomes the scatter, as it is
shown in the histogram of last row of Figure 3.3.9 and more quantitatively in the reduction
of the standard deviations gy, presented in Table 3-1 for each network with respect to

the applied PGV vs Pd law.
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Figure 3.3.9: Application to continuous waveforms in 3 second PTW. Lightgreen markers are Successful
No-Alert; darkgreen markers are Successful Alert; yellow markers are Missed Alert; red markers are False
Alert. The first three columns show the results of MMI prediction for each network. From first column to
third: BK, NP and NC (plotted with circles, squares and diamonds respectively). Vertical and horizontal
dashed line is the best MMI threshold for each network; black thick line is the one-to-one MMI line. Last
column shows the distribution of prediction error on MMI for the three networks, represented in different
colors. Rows show the results of different relation used to estimate MMI from predicted PGV. From first
row fto last: application of the Caruso 2017 PGV vs Pd empirical law, Northern California PGV vs Pd
empirical law obtained in this paper, Network based PGV vs Pd empirical law obtained in this thesis.

The off-line application of SAVE on California suggests that an operating on-site system
could be coupled with the regional ShakeAlert system. Although there is still an open
debate on the feasibility of characterizing earthquakes from the early stage of P-waves
onset ((Meier et al., 2016) (Trugman et al., 2019) (Colombelli et al., 2020)), the predicted
MMI, that is SAVE final output, allows to build a threshold system. Its performance
shows a good agreement (see Figure 3.3.10) for MMI threshold values that ShakeAlert
makes use of to issue an alert, in the range going from perceived light shaking to light
damage (Kohler et al., 2020). The variation we observe both in precision and in recall is
driven by the trade-off between False/Missed Alerts and MMI threshold. That is
particularly evident for the off-line test on continuous waveforms. In fact, we can observe

two borderline cases in Figure 3.3.10: BK network is shown to be quite stable in precision
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Figure 3.3.10: Precision, recall and lead time distribution at three Northern California seismic networks.
Upper rows show precision at BK, NP, NC seismic networks, lower rows show recall at the same networks.
Column indexing follows the type of calibration applied to empirical PGV vs Pd law. Extreme right panel
shows the distribution of lead time for each network. For all three networks peak of distribution is between
0 and 25 seconds since P-wave detection at the station.

at all MMI thresholds with no correction applied, while a tailored empirical law shows an
improvement in recall at a higher MMI threshold. In contrast, the NP network has a poor
resolution in precision with Caruso et al. (2017) original law but a network-based
calibration seems insufficient to improve the system response. The NP network was built
to monitor earthquake shaking in densely populated areas, which is why many sensors
are placed in man-made structures. The P-wave content might still be masked by the
background noise indicating the need for high quality (quiet) installation sites for SAVE
applications. Including uncertainties from GMPE and weighing PGA and PGV
contributions in MMI evaluation is used for EEW systems (Saunders et al., 2020).

Another path that can be explored is the introduction of single-station corrections.

The dependence of SAVE performance on the setting of a MMI threshold poses a
challenging question on how high the alerting threshold should be (Minson et al., 2019).
For an operating on-site system in Northern California, we observe that a higher alerting
threshold (MMI=5) would provide adequate percentage in precision and recall with
reasonable warning times (Figure 3.3.5 and last column of Figure 3.3.10). In terms of a
user-oriented system, this result makes SAVE a suitable on-site solution. Usually, high
alerting thresholds mean low number of false alert and increased number of missed alerts;
low alerting thresholds mean low number of missed alerts but, as a consequence, users

tend to be over-alerted (Cochran and Husker, 2019). SAVE might provide a valid
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compromise, issuing fast reliable alerts, that could be integrated with information coming

from the regional EEWS ShakeAlert in Northern California.

Table 3-1: Performance statistic for the continuous waveforms test using 3 seconds PTW and different

calibration PGV vs P4 empirical laws to get expected MMI.

PGV VS Pp NETW TOTAL | TOTAL
LAW ORK HAammi O AMMI MMITHRESHOLD FA MA
CARUSO ET
AL. 2017 BK -0.7081 0.8398 3 318 10
4 65 5
5 5 2
NP 0.4752 1.5537 3 165 79
4 195 12
5 213 2
NC 0.5134 0.449 3 1059 43
4 2452 133
5 390 3
NORTHERN
CALIFORNIA BK -0.6836 0.7917 3 42 325
4 10 64
5 5 8
NP 0.3413 1.1830 3 177 71
4 180 13
5 174 8
NC 0.31 0.40 3 1063 40
4 511 218
5 3 8
NETWORK
CALIBRATIO BK 0.4749 0.6721 3 178 1
N
4 116 49
5 14 3
NP -0.026 0.611 3 170 77
4 17 156
5 0 36
NC -0.002 0.366 3 1068 37
4 2 466
5 1 13

The application of SAVE in California leads to interesting observations. We let the

system run on earthquakes of different tectonic settings (Japan, Central Italy, Southern

Italy, Turkey, California) and large magnitude range (around 3.5 and up to ~7.5). We

showed (in paragraphs 3.2) that SAVE can be easily adapted and calibrated without any

big computational effort. For future EEW implementations, SAVE could represent a

powerful tool (e.g. it could be integrated in smartphone apps to issue fast alerts at users’

sites or it could be a seismic module for multidisciplinary risk mitigations platforms).
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3.4 Implementation of the onsite EEWS SAVE at Campi
Flegrei Caldera, Italy during the unrest crisis

3.4.1 Volcanological setting, bradyseism and earthquake activity at
Campi Flegrei Caldera

The Campi Flegrei volcano (geographical location in Figure 3.4.1) is characterized by a
nested caldera structure which is the consequence of two explosive eruptions, known as

the Campanian ignimbrite (CI) and the Neapolitan yellow tuff (NYT) (Vitale and Isaia,

2014). The volcanism has been fed by a complex magmatic system. This system includes

. ITAEIA
. =

Monte
di Procida

Golfo di
NETolol|

Figure 3.4.1: Location of the Campi Flegrei volcano. The caldera hosts almost one million of people living
in the metropolitan area of Napoli. (this map has been taken from the web site page of INGV-Osservatorio
Vesuviano sezione di Napoli link accessible at https://www.ov.ingv.it/index.php/monitoraggio-sismico-e-
vulcanico/campi-flegrei/campi-flegrei-storia-eruttiva?view=article&id=66:ubicazione-campi-
flegrei&catid=13:vulcani-della-campania)

a deep (8 km depth) and widespread reservoir (Zollo et al., 2008). Above the magmatic
system, a hydrothermal system has developed and its presence is testified by soil
degassing and fumarole. The caldera has been affected by short-term deformation
episodes, known as bradyseismic events, which have been documented since 1950s (Del
Gaudio et al., 2010). The two most rapid phases of ground uplift occurred in 1970-72 and
in 1980-84 (Scarpa et al., 2022). A long subsidence phase followed between 1985-2005.

Since 2005 a new monotonic uplift episode has started, with a particular acceleration in
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seismicity from 2014 onwards (Bevilacqua et al., 2022). The cause of bradyseism is still
under debate. One hypothesis is the intrusion of magma at shallower depths, causing
changes in pressure and volume which lead to deformations (Kilburn et al., 2023); another
hypothesis that could explain the phenomenon is the poroelastic response of the shallow
hydrothermal system, behaving as a constrain for the fluid migration processes happening

at depth (De Landro et al., 2017).

Most of the seismicity associated with bradyseism occurs inland typically at shallow
depths and small value of duration magnitude (Md<1). However, in the early 2023 there
has been an increase of the average magnitude per month, with the occurrence of the
Md=4.2 event at the end of September (Md=4.2), the highest duration magnitude since

the beginning (in 2005) of the new bradyseismic crisis.

3.4.2 Multi-Risk Impact-based Early Warning at Campi Flegrei

The Campi Flegrei area is home to almost 1 million people. The sudden upwelling of the
Pozzuoli area has caused damage and fracturing of houses and walls. In this context it is
crucial to monitor the unrest phase of the volcano to support Civil Protection Authorities
(CPAs) and first responders. The metropolitan area of Pozzuoli (in Figure 3.4.1) is one of
the pilot sites of a 4-year long European innovation action under the Horizon Europe
Framework Programme called “GeO and weather multi-risk impact Based Early warning
and response systems supporting rapid deploYment of first respONders in EU and
beyond” (GOBEYOND).

Forecavision: Hazards Multi-hazard Multi-risk

Data evaluation Impact-based Impact-based

Detection, monitoring, Use of algorithms Inclusion of local Site-specific

and analysis from to provide exposure and warnings at

inputs such as NWP products such as vulnerability data to vulnerable locations.

models, seismographic Flood depths and estimate the possible Connection with self-
@ networks. @ Shakemaps. @ impacts in a situational ® protection protocols.

context.

Figure 3.4.2: MR-IEWS scheme which GOBEYOND aims at realizing (from webpage https.//gobeyond-
project.eu/the-project/)

GOBEYOND aims at revolutionizing Disaster Risk Management (DRM). The goal is to
develop a Multi-Risk Impact-based Early Warning System (MR-IEWS) for geo and

weather hazards. The MR-IEWS will integrate the latest advancements in observation
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systems, real-time data, local layers, predictive algorithms and platforms for impact
forecasting, to provide timely and accurate warnings that can turn into actionable
decisions (scheme in Figure 3.4.2). The local demonstrations will focus on using the high-
resolution information available at local level to develop specific protocols of response

actions to be triggered by the impact forecasting products of the MR-IEWS.

The unrest crisis affecting the Campi Flegrei Caldera represents a legitimate scenario to
test and validate on-site earthquake early warning algorithms, such as SAVE that has the
potential to be the product of the MR-IEWS related to the earthquake forecasting. In next
paragraph we present the preliminary results of a retrospective SAVE test on the Md 4.2
event of September 2023.

3.4.3 Off-line test on the Md 4.2 earthquake of 27 September 2023

Retrospectively, we evaluated the performance of SAVE on one of the largest magnitude
events recorded at Campi Flegrei in Sept, 27, 2023, through the off-line playback of
recorded waveforms. Source parameters are reported in and the event location, evaluated
by the Italian National Institute of Geophysics and Vulcanology (INGV), is represented
in Figure 3.4.3. For the off-line test, we let SAVE algorithm run on the waveforms which

recorded the event at the stations closest to the event epicenter.

Figure 3.4.3: Event location from INGV bulletin page (link https://terremoti.ov.ingv.it/gossip/flegrei/). The
red point indicates the earthquake. Yellow points are available seismic stations used for the test.
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Table 3-2: INGV source parameters of the Campi Flegrei earthquake used for the off-line test.

ORIGIN TIME LAT LON DEPTH (KM) MAG
(UTC)
2023/09/27 01:35:34 40.8192 14.1590 28 42403 Md

The results we show here are obtained from the analysis of the vertical component of the
acceleration at the available stations of the INGV network. As described in paragraph 3.1,
the system requires a tuning phase where the user set threshold levels for automatic
picking and data quality control. For the off-line test of this event, we used the threshold
values of the original paper (Caruso et al., 2017).

In Figure 3.4.4 we represent the results of SAVE test in terms of predicted PGV and MMI.
The predicted PGV is evaluated from Pd, using the empirical scaling laws obtained for
Italy by Caruso et al. 2017 (Caruso et al., 2017). The expected shaking intensity at the
site is evaluated from Faenza and Michelini relationship (Faenza and Michelini, 2010).
The observed PGV is evaluated from the horizontal components of velocity. In one
second PTW the expected MMI at the sites matches the observed MMI within the errors
(panel A of Figure 3.4.4), although we already observe a systematic overestimation. The
highest MMI values are retrieved for the closest stations to event epicenter (less than 2.5
km). In one second since the first P-wave arrival, SAVE correctly predicts a maximum
PGV value of 2 cm/s, corresponding to MMI around 5 (very light shaking). This result
agrees with the shakemap evaluated by INGV retrospectively when the earthquake ended

(for reference see https://terremoti.ingv.it/it/event/36299321). The seismic waveforms of

the furthest stations (less than 8 km) that still pass through SAVE data quality control,
show a predicted intensity which is two level smaller than the one obtained from the
closest stations. Giving the fact that the maximum epicentral distance between the closest
and the furthest station used in the off-line test is less than 10 km, the great decrease of
predicted (and also observed) MMI is mostly related to attenuation effects due to volcanic
rocks of the Campi Flegrei caldera (Iervolino et al., 2024). When we move to 2 and 3
seconds PTWs, it is more evident that the system is overestimating the expected PGV
(MMI). The overestimation is particularly clear in Panel B and C for stations at 5-8 km
of distance from event epicenter. This is due to the inclusion in the corresponding PTW
of secondary phase arrivals (i.e., S-waves), resulting in the overestimation of the P-peak

of displacement, which, in turn, leads to the prediction of overestimated shaking values.
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Figure 3.4.4 Panel A: predicted PGV (MMI) versus observed PGV (MMI) using 1 second of P-Time
Window. Panel B: predicted PGV (MMI) versus observed PGV (MM]I) using 2 seconds of P-Time Window.
Panel C: predicted PGV (MMI) versus observed PGV (MMI) using 3 seconds of P-Time Window. Points
are colored following the observed source-to-station epicentral distance. Error bars represent the standard
error of the corresponding PGV versus Pd relation from Caruso 2017 in each P-Time window. The black
solid line in each panel is the one-to-one PGV line.

Different strategies could overcome the issue of PGV (MMI) overestimation in the area
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of interest as example: (a) refined methods for the real-time picking of the S-wave arrival
or for the real-time separation of the P-phase from the S-phase such as polarization filters
(Ross and Ben-Zion, 2014) might be implemented; (b) the PTWs used in the algorithm
could be reduced to less than 1 second from P-wave arrival. This preliminary test showed
that in future, we need to easily and rapidly move towards the (b) solution for SAVE
implementation at Campi Flegrei. In order to apply the modifications, the empirical
scaling laws of logPGV versus logPd need to be calibrated on the Campi Flegrei area and

within shorter PTWs.

In Figure 3.4.5 we show the results of the magnitude estimation provided by SAVE at
single stations. The catalog magnitude evaluated by INGV in Table 3-2 is the duration
magnitude. The duration magnitude is often preferred over other magnitude scales in
volcanic settings like the Campi Flegrei caldera. The duration magnitude is evaluated by
taking into account the total duration of an earthquake. The energy release is measured
from the duration of the observed signal after applying a station correction to reduce site
effects (Castello et al., 2007). For the event we used for the test, the moment magnitude
was also evaluated using the time domain approach proposed by Zollo (2022) ((Zollo et
al., 2022)(Nazeri and Zollo, 2023)). The seismic moment of the earthquake is measured
from the corner time and the plateau level of the LPDT curves. Indeed, it has been proved
that these two parameters are directly related with the duration and the peak of the
modelled source time function. The moment magnitude obtained for this event is Mw 4.2.
Single-station SAVE estimate of moment magnitude is evaluated through the parameter
7. on high quality data, as described in paragraph 3.1.2. Although single-station
magnitude estimates of Figure 3.4.5 show a large variability, the average value is M, =4.1
with g, = 0.5 in PTW=3 seconds. Many factors could be affecting the value we obtain
on the standard deviation: (1) the filter applied on single-station displacement with
highpass cut-off frequency of 0.075 Hz (Allen and Kanamori, 2003) might not be
appropriate for this kind of events; (2) the selected P-time windows might be too long,
leading to the inclusion of S-wave content in the analyzed signal; (3) the frequency
content of the signals might be modified by attenuation effects that SAVE is not taking
into account. However, the final output of SAVE is given in the form of a broad
magnitude classification (see paragraph 3.1.3) so for the test on the Campi Flegrei Md
4.2 earthquake, SAVE correctly issues an alert for an expected medium (3 < M < 5)

event at all the available stations.
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Figure 3.4.5: Single-station estimated magnitude at the available stations in the different PTWs. The red
dashed line is the average magnitude value. Error bars represent the standard error for the corresponding
Mw versus T, laws from Caurso 2017. Panel A: magnitude values in one second PTW, panel B: magnitude
values in 2 seconds PTW; panel C: magnitude values in 3 seconds PTW.
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Figure 3.4.6: SAVE graphical interface for the station COLB located at 900 meters from the event
epicenter. At this station, the alert is issued for expected event of MMI=6, medium magnitude, nearby the
site. The pulsing blue point on the map is the station location. In the bottom right the reference for intensity,
magnitude and distance scales are represented. In bottom left the data stream of the signal is shown with
the P-wave automatic pick marked with the vertical red line.

An example of the graphical interface of SAVE for this test is shown in Figure 3.4.6 for

the station COLB located at 900 meters from event epicenter.

SAVE test for the Md 4.2 earthquake at Campi Flegrei shows us, on one hand, that the
system needs to be carefully calibrated to address overestimation errors (by analyzing
much shorter windows than those currently used) and, on the other hand, that it could be
easily adapted into a multi-hazard platform for the seismic monitoring of the metropolitan

area of Pozzuoli.
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CHAPTER

4 Next Generation of P-wave based on-site system: P-
Alert

4.1 P-Alert theoretical concepts

In this paragraph we describe a P-wave based on-site earthquake early warning system
(P-Alert, hereinafter) developed by Colombelli et al. (2015). P-Alert methodology is
straightforward and based on two key elements. The first one is the continuous
measurement of the three peak amplitude parameters (which are the peak amplitude
acceleration Py, the peak amplitude velocity Py and the peak amplitude displacement Pq)
on the vertical component of a single ground motion recording. The second key element
is the use of the three combined peak amplitudes at the site to obtain expected PGV at the
same site. The use of the three peak amplitudes P., Py, P4 makes the methodology more
robust. The block diagram of P-Alert can be summarized into two parts: the first is an off-
line calibration of the system and the second is the signal analysis with eventual alert

issuing.

4.1.1 Calibration of PGV vs Px empirical laws and PGV threshold
setting

In P-Alert algorithm, the calibration of PGV vs Px empirical laws is made upstream. The
three peak amplitude parameters P., Py, P4 are evaluated off-line in a time window
corresponding to the difference between the arrival time of S-waves (Ts) and the arrival
time of P-wave (Tp). For each peak amplitude, the empirical scaling law is equal to (22)
and the measurements should follow the relationship within the errors. The off-line
calibration of the system makes it suitable for fast application in different regions of the
world where the empirical scaling laws between PGV and Px are already available, such
as Italy, Taiwan, Japan, western U.S and Turkey ((Zollo et al., 2010) (Colombelli et al.,
2015) (Rea et al., 2024)). Depending on the user’s needs, a threshold PGV* can be set.
The PGV* threshold would result in an interval around Px*, e.g. P, ; < Py < P,y where
P, and P, y are the lowest and highest value around P; when taking into account the
standard deviation of PGV vs Px law, respectively. An example of the setting of PGV*
and the consequent interval of Px can be appreciated in top panel of Figure 4.1.1. The
threshold PGV* is linked to the expected shaking intensity, as described in paragraph

2.2.1.1 and represents the level above which the system is calibrated to issue the alert.
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Figure 4.1.1: Top panel: Data distribution and empirical relationships between Pg and PGV. The solid

black line is the best fit line, the dashed lines are the standard error of regression. The vertical dashed
lines correspond to the interval of Pd values around the Pd*, obtained by fixing a threshold PGV* on y-
axis. Bottom panel: example of W definition. The observed Pj parameter is compared to its threshold

value and converted into a dimensionless variable, named W, which is equal to 0 in the region below the

lower threshold to 1/3 in the region above the higher threshold and linearly increases between 0 and 1/3
in the intermediate region. (from Colombelli et al., (2015)).

4.1.2 Signal analysis: combination of peak acceleration, peak velocity,
peak displacement

After the calibration, the system can be applied on the vertical component of ground
motion recordings. At each time along the seismogram, P-Alert measures P, Py, Pq and

associates them with a fuzzy variable Wx, defined as:
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Figure 4.1.2 Example of P-Alert workflow on a seismogram. From top to bottom: acceleration (dashed lines
represent Pa* interval), velocity (dashed lines represent Pv* interval), displacement (dashed lines represent
Pd* interval), fuzzy variable Wa referred to acceleration, fuzzy variable Wv referred to velocity, fuzzy variable
Wd referred to displacement, fuzzy variable Wt from the sum of Wa, Wv, Wd. The gray rotated triangle shows
the threshold value Wt* used for warning declaration. (from Colombelli 2015)
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W, (t) =0 P <Py
We(t) = 1/3[(Py — Py 1)/ (Pey — Py1)] Py < P < Py (53)
W, (t) =1/3 Pe>Pyy

Where P, ; and P,y are obtained from the PGV vs Px empirical law by fixing the
threshold PGV*, as described in the previous paragraph. Wx(t) is computed at each time
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and is locked at the corresponding value until a larger value is encountered. As a result,
Wx(t) is a monotonically increasing stepladder-like function. Eventually the fuzzy
variables are summed at each time step to get the fuzzy variable Wt, which is
monotonically increasing from 0 to 1. The workflow of the scheme is presented in Figure

4.1.2.

4.1.3 System output: warning declaration

As system output, four different alert levels can be defined based on a threshold set on
Wt, denoted Wt* hereinafter (matrix scheme of Figure 4.1.3): successful alert (SA),
successful no-alert (SNA), missed alert (MA) and false alert (FA). The overall
performance of the system and its reliability is controlled by the threshold on PGV and
the threshold Wt*. Indeed, by varying the threshold in PGV and Wt the user can decide
how selective the system might be: a change in both the thresholds has the consequence
of varying the number of alerts (particularly missed and false alarms), which makes P-

Alert extremely suitable for any kind of user tolerance and needs.

PGV
Missed Successfull
Alarms Alarms
PGV*
Successful False
No-Alarms Alarms
Wt* Wit >

Figure 4.1.3 Alert definition scheme. Alert categories: successful no alarm (light green zone), successful
alarm (dark green zone), missed alarm (red zone) and false alarm (yellow zone).
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4.2 P-Alert at California

In this paragraph we present the results of the application of P-Alert in California. We
perform an off-line test of P-Alert on 300 Californian events spanning a catalog time
window of 20 years (from 2003 to 2023) (see Figure 4.2.1). The magnitude range goes
from small to moderate and the depth range goes from very shallow (few kilometers) to
deeper values (about 40 kilometers). We used records of strong motion networks with
stations locations involving both Southern and Northern California regions (as shown in
Figure 4.2.1). In paragraph 4.1 we described P-Alert workflow which requires (1) a
calibration phase and (2) the application of the retrieved empirical laws to run the system
in the region of interest. The following sub-paragraphs are focused on the results of each

of the P-Alert workflow phases.

4.2.1 System calibration

In order to calibrate the system in California, we split the dataset presented in Figure 4.2.1
into two: one third of the available records are used for the later testing phase and two
third of the available records are used for the training in the calibration phase. The dataset
is divided with the constraint of maintaining the same data distribution for both the test

and the train, as it is shown in Figure 4.2.2.

Firstly, we manually picked P- and S- arrivals on the records and we retrieved the P-peak
of acceleration P., P-peak of velocity Py and P-peak of displacement P4 from the vertical
component of the waveforms in a time window equal to Tp-Ts, with Tp and Ts being the

P- and S-arrival respectively.

Secondly, we evaluated the observed PGV from the horizontal components of velocity
waveforms. We plot PGV versus Pa, Py, P4 to get the empirical scaling laws of P-Alert in
California (see Figure 4.2.3). Since the majority of points have low values of observed
PGV, P,, Py and P4, we adopted the approach used in Colombelli et al., (2015): we
resampled PGV vs Py in 2D with a 0.5 cm/s step in PGV and 1 cm/s* (x=0,1,2 according
to x being displacement, velocity or acceleration) step in Px. We obtained the coefficients
of PGV vs Px laws on the resampled sets (see Figure 4.2.3). As described in paragraph
4.1.1, the setting of a threshold for P-Alert is done during the calibration phase and it is
thought to be user oriented. Once the scaling relations on which the system algorithm
works are calibrated, the user can set a threshold in PGV which results in the interval

values for Px that will trigger the system for eventual alert declaration. Here we set a
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threshold value of PGV = 1.41 cm/s which corresponds to MMI=4 (light shaking)
according to Worden 2012 intensity scale (Worden et al., 2012).
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Figure 4.2.1: Map of events whose waveforms are used to test P-Alert in California. Circles represent event
locations. Marker size indicates event magnitude, the color indicates event depth. Black triangles represent

seismic stations used for the analysis.
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Figure 4.2.2: Train and test dataset splitting. Panel A shows train dataset distribution of records with
respect to magnitude and distance from event epicenter. Panel B shows test dataset distribution of records
with respect to magnitude and distance from event epicenter.
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Figure 4.2.3: Panel A represents the scaling of observed PGV versus P. on train records. Panel B
represents the scaling of observed PGV versus Py. Panel C shows the scaling of observed PGV versus Pa.
In each panel the black solid line is the PGV vs Px relation; black dashed lines are the +SE lines, the grey
crosses are single values measured on each record; the cyan points are the 2D resampled dataset on which
the fit is performed; the magenta square is the PGVinreshola here set at 1.41 cm/s and the dark blue dashed-

dotted lines correspond to the Pxinterval around the PGVinreshold.
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In table Table 4-1 we reported the values of Px intervals that allow to build the fuzzy
variables Wx. As described in paragraph 4.1.2, the fuzzy variables are step-wise functions
that monitor the growth of acceleration, velocity and displacement. The combination of
the three variables is the fuzzy variable W that takes into account any variation in the
three physical parameters of the ground: when the variation in the peak is observed on
the three of them, that is W is higher than a threshold w¢*, the system is triggered for alert
issuing.

Table 4-1 Retrieved values for Pa, Py, Pato build the corresponding fuzzy variables. Low and High values

take into account the standard errors coming from PGV versus Px relationships. Px(PGVinreshoid) is the
central value of PGV vs Py laws at PGVinreshoia=1.41 cm/s in this study.

Py nign Py Low P (PGV threshola)
ACCELERATION (CM/S?) 55 1.7 9.6
VELOCITY (CM/S) 1.5 0.1 0.4
DISPLACEMENT (CM) 0.25 0.01 0.06

To set a threshold for the fuzzy variable Wy, first we built the fuzzy variables Wa, Wy, Wq
for each record of the train dataset. The fuzzy variable Wy has a zero value under a certain
threshold in Py, has a linear growth (with known slope) depending on the Py interval
relative to PGVinreshold and has a maximum value of 1/3 when the upper Py value is
reached. Here we slightly modified the approach described in paragraph 4.1.2 from
Colombelli et al., (2015.) The maximum value for the fuzzy varialble Wy is declared as
soon as the corresponding Py value is higher than Px(PGVtreshold) Which is the central
measure retrieved from the calibrated PGV vs Py laws (magenta squares of Figure 4.2.3).
The reason of this choice relies on the fact that we want the system to be as fast as possible
in triggering an event. We also noticed that the high Px measure on PGV vs Px plus its
standard deviation and the central value on PGV vs Py relationship are of the same order
of magnitude (Table 4-1). Indeed, from Figure 4.2.3 it is clear that the measures are well

distributed around the PGV vs Py line with very few scattered points.
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Figure 4.2.4: Calibration curves obtained from the train dataset. The darkgreen line represents the
percentage of Successful Alerts and Successful No-Alerts with respect to the threshold wt*; the red line
represents the percentage of False Alerts with respect to wt*; the yellow line represents the percentage of
Missed Alerts with respect to wt*. Darkg rey triangle is the value of wt* which corresponds to 85% of
SA+SNA; 20% of FA and about 5% of MA.

Once we have let the algorithm run on each available records of the train dataset, we get
the measures of P,, Py, P4 and their respective fuzzy variable Wa, W, Wy along the
seismograms. The sum of Wa., Wy, Wy is the fuzzy variable W, that is monitored for
potential alert issuing. According to how W; is built, we let w¢* vary in a range between
0 (lowest feasible value) and 1 (highest feasible value). We count the number of
Successful Alert, Successful No-Alert, Missed Alert and False Alert following the matrix

scheme of Figure 4.1.3 here reported as it follows:
Successful Alert (SA): Wew™* & PGV obs>PGVinreshold
Successful No Alert (SNA): Wi w™* & PGV obs<PGVihreshold
False Alert (FA): W= wi* & PGV obs<PGV threshold
Missed Alert (MA): Wi<w* & PGV obs=PGV threshold

The result of the scheme above is shown in Figure 4.2.4 in the form of calibration curves.
The calibration curves give quantitative information about the total number of SA, SNA,

FA and MA. Figure 4.2.4 shows the dependence of the calibration curves on the threshold
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Figure 4.2.5: Example of P-Alert application on the station KHMB record of the Mw 6.4 Ferndale
earthquake happened on 2022/12/20 at 10:34:24 UTC. The epicentral distance is 70 km. On the left side
of the figure from top to bottom it is represented the vertical component of acceleration; the vertical
component of velocity, the vertical component of displacement. The time is relative to the beginning of the
trace. The dashed red line marks the P-wave arrival. The dashed blue line marks the S-wave arrival. On
the right side of the figure from top to bottom it is represented the fuzzy variable related to the peak
acceleration Wa; the fuzzy variable related to the peak velocity Wv, the fuzzy variable related to the peak
displacement Wd; the fuzzy variable Wt, sum of Wa, Wv, Wd. The magenta triangle marks the threshold
wt* at which the system issues an alert, warning for expected PGV>1.41 cm/s (MMI>4).

wt*. Moreover, from Figure 4.2.4 it is possible to explain the reason why P-Alert is a very
user-friendly and user-oriented on-site system: the users could select the threshold w¢*
that best matches their needs/tolerance (e.g minimum number of FA, minimum number
of MA or maximum number of SA+SNA), effectively deciding with the calibration
curves how strict he wants to be. For the application of the system on the test dataset, we
chose a threshold value wt*=0.5 corresponding to 85% of the sum of SA and SNA. The
choice was driven by a trade-off between lower wt* thresholds which would results in
high percentage of MA and FA and higher wt* thresholds which would be too strict as

the algorithm waits for P, Py, P4 to reach maximum levels to be triggered on W;.
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4.2.2 System testing

Once we calibrated the system, we applied it on the test dataset of Figure 4.2.2. An
example on one record is presented in Figure 4.2.5. We reported the P- and S-picks
(dashed blue and red line respectively) to show that P-Alert was triggered when the P-
wave arrived at the station, warning for an event that was rightfully over the chosen PGV
threshold of 1.41 cm/s (MMI=4). The S-wave content for stations close to event epicenter
often corresponds to the PGV arrival at the same site. Moreover, from Figure 4.2.5 it is
possible to see how the system is jointly monitoring acceleration, velocity and
displacement through the corresponding fuzzy variables and it is declaring a warning as

soon as the three of them are coherent with the calibrated threshold values.
The lead time here is defined as:
Lead Tlme = T(PGVthreshold) —_ T(W;) (34)

where T(PGVipreshoia) 1S the time on the velocity waveform at which the observed PGV
is equal to the threshold PGV, T (w;) is the time at which the fuzzy variable Wt first
reaches the threshold level wt*. From the definition of Lead Time in equation (34) and
the scheme for alert classification in paragraph 4.2.1, only Successful and False Alert can
be taken into account in the lead time analysis, because for both of them there has been a
warning declaration coming from the fact that the fuzzy variable Wt has overcome the
threshold. The plot of lead time for the test dataset is presented in Figure 4.2.6. The zero
value means for that record the system triggered exactly at the arrival of PGV=1.41 cm/s
at the site. On average we found that for stations at 100 km the available lead time is
about 10 seconds. This result is comparable to the one obtained for SAVE in paragraph
3.3.2. However, it is worth to mention that SAVE requires at least one second after the
automatic picking of P-wave phase to issue an alert and the lead time SAVE can provide
is based on the arrival of the PGV at the site. On the contrary, P-Alert does not require
any P-phase identification (although it intrinsically uses the information coming from P-
wave), the alert is issued as soon as the threshold level is reached and the lead time refers
to the arrival time of the threshold PGV (here PGV=1.41 cm/s), whereas the highest PGV
might reach the recording station even later, effectively increasing the available time to
take actions. This means that the Figure 4.2.6 shows the minimum available lead time for

P-Alert, which seems to be in agreement to what SAVE could provide at the same
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epicentral distances and for the same range of magnitude (see Figure 3.3.5 for

comparisons).
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Figure 4.2.6: Lead time plot for the test dataset. The lead time is defined as the time at which the PGVinreshold
is observed at the station and the time at which the fuzzy variable Wt first overcome the threshold wt* set
to issue alerts. Marker colors follow event magnitude; marker types represent either False or Successful
Alert. Darkgrey squares are averaged lead time values (bin width = 20 km).

The system perfomance is shown in the pie chart of Figure 4.2.7. We evaluated the total
number of Successful Alert, Successful No-Alert, Missed Alert and False Alert according
to the scheme presented in the previous paragraph 4.2.1. We noticed that the percentage
of SNA is above 86%. This result is expected, given the high number of records for event
having magnitude smaller than 5. This subset of records populates most of the test dataset
distribution also at distance greater than 50-100 km where it is feasible not to expect a
PGV overcoming the chosen PGVinesholt=1.41 cm/s (MMI=4) (see Figure 4.2.2).
Moreover, in the calibration phase of the system (see paragraph 4.2.1), we set a threshold
in Wt which assured a percentage of overall success (SNA+SA) of 85% on the calibration
curve, so the test is completely in agreement to what we observed previously. It is
interesting to highlight the fact that the total number of SA is ten times bigger that the
total number of MA+FA. Indeed, when we evaluated the precision and the recall for P-
Alert in the same way as we did for the application of SAVE, we obtained that for this
application of P-Alert the precision is equal to 89% and the recall is equal to 98%.
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Figure 4.2.7: Pie chart of P-Alert performance. Successful Alerts (SA) (in darkgreen) refer to a threshold
PGV value of 1.41 cm/s (corresponding to MMI=4 according to Worden et al. 2012 scaling law). The
percentage of False Alerts (in red) is one order of magnitude smaller than the percentage of SA. The
percentage of Missed Alerts (in yellow) is two orders of magnitude smaller than the percentage of SA.

The performance of P-Alert shows that there is a change in the on-site systems
performance when limited or unlimited P-time windows are taken into account. The
application of two different on-site systems in the same tectonic setting and on the same
events is useful to highlight the aforementioned difference. From Figure 3.3.7 in
paragraph 3.3.2, we can observe that the values of recall and precision for SAVE system,
which works on the same MMI threshold for alert issuing (MMI=4), never reach the
values obtained by P-Alert which was set to work at the same MMI threshold for this test.
SAVE uses a limited P-time window (PTW max = 3 seconds since P-arrival), while for
P-Alert no limitation on time is imposed. This is the reason why we observed a substantial

reduction of MA.
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PART 3 - NEW PERSPECTIVES FOR
EARTHQUAKE EARLY WARNING

The EEW algorithms and their applications provide a great insight into the earthquake
physics. The complete characterization of the earthquake source obtained from the
analysis of few seconds of available seismic signals remains a very promising challenge.
The greatest issue in the framework of further development of EEWS is to establish
whether the earthquake rupture has an intrinsic differentiation in the way the process starts
and propagates and whether this differentiation depends on the final earthquake size. In
Part 1 and Part 2 we focused the discussion on the physical grounds behind the concept
of EEW and the application of the on-site systems. However, we also highlighted how
contradictory the observations about this delicate matter are until now and how the fast
characterization of the final earthquake magnitude is still affected by many limitations.
Therefore, in Part 3 of the discussion we put the attention on the ongoing debate about
the earthquake nucleation behavior. We present the results of a global earthquake catalog
showing that the earthquake rupture beginning is deterministic and final-size dependent,
at least in a probabilistic sense. These results might have a significant place both in the
debate on earthquake rupture physics and, particularly, in the EEW future applications
since they could pave the way for a rapid magnitude estimation which is fundamental to

take fast mitigation actions.
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CHAPTER

5 The deterministic behavior of earthquake rupture
beginning and the early magnitude characterization

In this chapter we present the results of the analysis of an unprecedent global seismic
catalog to support the hypothesis of the deterministic behavior of the earthquake rupture
beginning. The nucleation of earthquakes is still an open debate in the seismological
community. The way earthquake ruptures grow and stop determines the final earthquake
size which can be quantify by its magnitude. Small and large earthquakes develop in very
different time scales: the former usually take few seconds to evolve on typical length
scales of few kilometers; the latter can take hundreds of seconds to evolve on typical
length scales of hundreds of kilometers. If the rupture process starts in the same way for
small and large earthquakes, no deterministic prediction of the final size is feasible, until
the process has finished. On the contrary, if the source mechanism starts differently from
its early beginning, real-time proxies can be measured on seismic waves to discriminate
the final event size. In this chapter we present the results of the analysis of the early P-
wave displacement performed on big number of waveforms of worldwide earthquakes
spanning a wide range of magnitude and depth having locations involving different
geological setting. We prove that the initial growth rate of P-wave displacement could be
a proxy for the early magnitude estimation. Moreover, we discuss the implication that the
results have with the physical parameters related to the earthquake source and its
nucleation (e.g the stress drop and the rupture velocity). Lastly, we discuss about the
impact that the feasibility of the early magnitude characterization (less than 1 seconds of

P-wave signal) might have on future earthquake early warning systems implementation.
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5.1 The analysis on a big worldwide earthquake catalog

We analyzed 200 earthquakes with magnitude ranging from 4 to 9. For each event, we
used either the acceleration waveforms or the velocity waveforms, depending on data
availability. In previous studies ((Colombelli et al., 2014), (Colombelli and Zollo, 2015),
(Nazeri et al., 2019), (Colombelli et al., 2020)) the preliminary dataset consisted of a
smaller subset of events from a specific tectonic area of the world (e.g. Japan and Central
Italy). In order to investigate globally on the physics behind the beginning of the
earthquake rupture, we built a massive worldwide catalog consisting of 7000 thousand
records of earthquakes from different tectonic areas and geological settings, including

normal fault zones, strike-slip environments and subduction zones (Figure 5.1.1).
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Figure 5.1.1: Map of the events. The figure shows the epicentral position of the events used in this study
(colored circles). The size of the circles is proportional to the earthquake magnitude and the color shows
the event depth. Black triangles are the velocimeter sensors while magenta squares represent accelerometer
sensors. The histogram in the middle shows the distribution of records in each magnitude bin.

5.1.1 Evaluation of the LPDT curves and their initial slope

We select the records within a 25 km wide circular crown that includes the closest stations
to event epicenter. Depending on the available recording sensor (velocimeter or
accelerometer) (see Figure 5.1.1) we perform a single or double integration of signal,
respectively, to get displacement and we finally apply a high-pass Butterworth filter with
cut-off frequency of 0.075Hz to remove possible baseline effects. We compute the
logarithm of the peak of the absolute displacement starting from the P-arrival time at the

station.
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Figure 5.1.2: Computation of LPDT curves and slope measurement. Color represents two different
magnitude values (cyan is Mw=4, red is Mw=7). Dotted lines show the LPDT curves at each station; thick
lines show the averaged LPDT curve. The circle (corresponding to tuin=0.05s) is the starting point for the
slope evaluation. The diamond (tnarr) is the ending point for slope evaluation.

We average the obtained LPDT curves by stations (dashed lines in Figure 5.1.2). The
average is performed at each time step and the starting point of the single station curve
corresponds to the P-wave arrival at the station. Finally, we get the final LPDT curve
(thick line in Figure 5.1.2) whose points have a standard deviation coming from the
average we performed on single station curves. We calculate the initial slope on the

averaged LPDT curve in few steps.

The first step is the fit of the observed LPDT curve with an exponential function in the

following form:

LPDT;eo = LPDToq (1 — € /t1) — LPDT, (33)
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Where LPDT, and LPDT,,4 are the first and the last point of the curve respectively, ti is
a fit parameter that simply allows the function to bend towards the plateau level. The
fitting procedure is used to avoid numerical noise caused by the discontinuity of observed
curves. The fitting curve is just used to select the time window for the slope measurement

on the observed LPDT curve.

The second step is the curvature evaluation of the LPD Ty, as:

rn
curvature = L (36)

1+
where y' and y" are the numerical first and second derivative of the interpolated LPDT
curve. The curvature is a mathematical tool to quantify how much the curve deviates from
a linear behavior. The curvature of the LPDT curve is expected to increase towards a
maximum, where the curve bends to the plateau level, and to decrease monotonically
towards zero since the plateau level is a straight line. We then recognize the time tuaLr on
the curvature, corresponding to half of the time where the maximum of the curvature is

reached.

Finally, we evaluate the slope along the observed LPDT curve in the time interval
between tmiv=0.05 s and tuaLr. The choice of the starting point for the slope evaluation is
done to account for errors in affect the manual picking of waveforms. The slope is
obtained from the line that crosses the LPDT between tmin and tuacr, using a weighted
least-square fit which takes into account the standard deviation on each point of the

observed LPDT. The slope can be expressed as it follows:

LPDT(tyarr) — LPDT (tmin) (37)

tHaLF — tMIN

Slope =

Throughout data processing and analysis, we aimed at minimizing artificial
contaminations that could introduce bias into the results. We keep our method for the

early P-wave slope evaluation as simple as possible, avoiding complex signal processing.

One potential source of bias could stem from the high-pass filtering applied to the
displacement data. However, we followed the approach outlined by Colombelli et al.

(2020), who addressed this issue, demonstrating that the slope calculated from
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displacement records derived from unfiltered acceleration and velocity data maintains the

scaling trend with magnitude.

Another potential bias could arise from geometric or anelastic attenuation of the radiated
wavefield over distance. While Colombelli et al. (2020) showed that slope measurements
from LPDT curves are only weakly affected by distance attenuation, for this analysis we
selected records from a narrow circular zone (25 km wide) to minimize distance

attenuation effects.

Finally, the potential directivity effect is mitigated by averaging LPDT curves distributed

azimuthally within the selected circular zone to evaluate the initial slope.

5.2 The global scaling of the initial growth of LPDT curves
with magnitude

We show that the P-wave signals associated with large earthquakes typically begin with
a slow initial amplitude growth in the first few seconds, while the P-wave signals radiated
by small events are mainly characterized by a rapid amplitude increase, in a shorter time.
When evaluated over a large spectrum of magnitudes and for different tectonic areas
worldwide, the early part of the log-displacement vs. time curves measured along the P-
wave portion of stations in close-proximity distances (maximum distance difference of
25 km between the closest and the furthest stations from event epicenter) show a clear
decreasing linear trend with the earthquake magnitude (Figure 5.2.1 A). The time window
in which this estimate is done is also depending on the final earthquake magnitude, with
larger time windows being necessary to measure the initial slope for larger magnitude
events (Figure 5.2.1 B). Given the variability and uncertainties of measurements, the
observed standard error of the linear regressions, suggests an uncertainty of about one
magnitude unit associated with the slope measurement obtained by averaging the values
at the stations within a very narrow (25 km) circular ring starting from the nearest station

to epicenter.
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Figure 5.2.1: Initial Slope pf LPDT curves and related time. (A) initial slope of LPDT curves as a function
of magnitude. (B) the time at which LPDT curves reach half of the maximum of their curvature (tnaLr) as a
function of magnitude. In both panels grey dots are single slope and time measurements, while red squares
are the average values for each magnitude bin (bin width = 1). The solid black line represents the best fit
line, along with +one-SE thin lines. The fit parameters and the SE values are shown at top left of the panel.

To assess the statistical relevance of the empirical relationships we show in Figure 5.2.1,
we perform a correlation t-test whose results are shown in Table 5-1. Particularly, we find
a robust anti-correlation between the logarithm of the slope measures and the moment
magnitude while a positive correlation is observed between the characteristic time-
window and the moment magnitude. The result is also confirmed by the small p-values.

Table 5-1: Correlation t-test of slope versus magnitude and of tnaLr versus magnitude. r is the Pearson

correlation coefficient, t-value is obtained from a two-tailed t-test, p-value represents the significance level
of null hypothesis that is “no linear correlation between variables of interest”

Log (Slope) vs magnitude tHaLF VS magnitude
r -0.6 0.7
t-value —-7.6 10.4
p-value 9.6-10712 0.0

Figure 5.2.1 shows that for a M = 4 earthquake the average value of the initial growth rate
of displacement is about 20 s*!, while for a M = 9 the average value is about 2 s (panel
A). As for the time for slope measurement, we need approximately 0.2 s for M = 4

earthquakes and about 1 s for M = 9 events (panel B).
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5.2.1 The physical implications for the earthquake nucleation

Having ruled out any possible effect of bias that leads to the results shown in Figure 5.2.1,
we argue that the scaling trend of the initial P-wave growth rate (the LPDT initial slope)
with magnitude can be explained in terms of the preparatory process of the earthquake
rupture. Different authors ((Nielsen et al., 2010),(Latour et al., 2013)) explored the
complexity of the preparatory process that evolves in the rupture propagation by
performing laboratory experiments. Nielsen et al. (2010) showed that the rupture
sequences are composed of an initial phase with nucleation and crack size increasing at a
slow stable velocity of about 5% of shear wave velocity. When the crack reaches a critical
length related to frictional parameters (e.g. critical slip weakening distance Dc), the
rupture accelerates towards subsonic velocity and finally to supershear (Nielsen et al.,
2010). The time during which rupture accelerates towards the dynamic propagation is
well-known and is strictly related to the final slip (Latour et al., 2013). Within this
framework, the observed scaling of both slope and its characteristic time with magnitude
could represent the footprint of the unstable acceleration phase that leads to dynamic
propagation during the nucleation phase, supporting the hypothesis that earthquakes show

a differentiation at the beginning of the rupture process.

The inverse scaling trend of slope with magnitude might be numerically and physically
explained by taking into account the effect of variable stress drop and/or rupture velocity
in the beginning of the earthquake rupture. A theoretical discussion of this hypothesis is
presented in paragraph 1.3.2. We find that both the rupture velocity and the dynamic stress
drop control the steepness of the LPDT initial slope. In Figure 5.2.2 we used the Sato &
Hirasawa (1973) quasi-dynamic model of a circular rupture at constant stress-drop and
uniform rupture velocity to simulate the P-wave displacement recorded at the strong
motion network that recorded the Mw 6.5 Central Italy earthquake in 2016. Three
different magnitude (M 5,6 and 7) events have been simulated at the 50 stations located
within 100 km of epicentral distance. To show the effect of a variable rupture velocity
with magnitude, we set Vr=0.9vs for Mw 5, Vr=0.7 Vs for Mw 6 and Vr=0.5 for Mw 7.
The larger rupture velocity produces faster initial rise of the displacement waveform for
smaller magnitude events that is not observed when rupture velocity is taken constant
with magnitude. More complex numerical simulations are necessary to further investigate
how these parameters control the scaling of the initial growth rate of displacement that

we observe in Figure 5.2.1.
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Figure 5.2.2: Numerical simulations. The figure displays the S&H displacement pulse waveforms simulated
at three stations of the network (panel A). The effect on waveforms of variable or constant rupture velocity
with magnitude is clearly represented in panels B and C.

Recently, Nielsen et al. (2024) has provided a detailed discussion about earthquake
rupture physics through the finite difference numerical modelling. He has identified a
scaling in the acceleration of rupture propagating from an initial crack. He has found that
the rupture front tip location scales with the critical length of the crack in space and scales
with the ratio between the crack length and the limiting rupture velocity in the subsonic
regime in time. Consequently, he has argued that ruptures starting from a larger nucleation
area will accelerate more slowly and that large nucleation can only take place on large
faults. Within this framework, our results could be the link between the non-radiative part
of the rupture process (the nucleation) and the far-field radiation. We argue that the
scaling trends shown in Figure 5.2.1 could be purely related to the breakaway phase of
the nucleation (as described by Nielsen et al. (2024)), that precedes the fully dynamic
propagation. As we showed through preliminary synthetic tests (Figure 5.2.2), the
physical parameters that control the amplitude and the rate of the far-field radiation (such
as the velocity rupture) might be affected by an existing imprinting between the aseismic
loading of the rupture (the nucleation phase) and its radiative phase. Our results confirm
that, at least in a probabilistic sense, it is more likely that a small nucleation area will
develop into a small earthquake rather than a big earthquake. The latter is more likely to
be expected on a larger nucleation area which can break and host a major event.
Moreover, the initial growth rate of the far-field displacement might be the footprint left

by the non-radiative preparatory process, emerging on the seismic signals.
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5.3 Future perspectives for earthquake early warning systems

In previous paragraphs we discussed about the principles and the applications of the
Earthquake Early Warning Systems. Until now in the scientific literature, there is a
fundamental assumption that is somehow implied for EEW: it is assumed that EEWS
cannot predict the final earthquake size and can only observe the evolving moment
release. This perspective arises from various factors we have illustrated throughout this
work: (1) the parameters showing a scaling with the final earthquake size are very
sensitive to the processing of data and to the time window of the signal being analyzed
(paragraphs 1.2.1 and 1.2.2); as a consequence (2) the empirical scaling laws
implemented in EEWS are characterized by a great variability that affects the magnitude
estimation and the system performance (since extended time windows are required to get
a stable magnitude measurement); most importantly (3) we have shown that the
observations are too conflicting to definitively conclude that one model (the preslip or the
cascade model described in paragraph 1.4) provides the correct description of the
earthquake nucleation compared to the other. In this context, the results shown in
paragraph 5.2 might represent a step forward not only in the understanding of the
earthquake rupture beginning but also in building EEW approaches. Indeed, the global
scaling trend observed between the initial growth rate of displacement and the final
magnitude in Figure 5.2.1 could be implemented in future EEWS to get fast magnitude
characterization in less than 1 second since the first P-wave detection. The results we
showed are obtained in off-line mode, meaning that the initial growth rate of displacement
was measured on a very short time window of the whole available P-wave signal on which
the development of the displacement could be appreciated (we could build the complete
LPDT curves and retrieve their plateau level but we focused on its earliest part instead).
Besides the investigation on the earthquake rupture physics, the challenge that the
retrieved empirical laws pose for EEW is their application to the real-time monitoring.
Moreover, we concluded that the initial growth rate of displacement inversely scales with
the final magnitude from an average we performed on a certain number of stations per
event (although limited in space). In future applications for EEWS, and particularly for
on-site EEWS, there is the need to move towards a single station approach and for this
reason we need to explore whether it is feasible to get the fast magnitude characterization
using the growth rate of displacement versus magnitude law with a single LPDT curve
slope value rather than an average LPDT curve slope measurement. For a step in this

direction, the use of AI methods can be greatly effective (Lara et al., 2023); another step
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is represented by the next generation of P-wave based earthquake early warning systems
(like P-Alert that we discussed in chapter 4) which have the great potential to provide an
environment where the new methodology we proposed could be easily implemented.
Indeed, these kinds of systems are free from being time window dependent since the P-
wave parameters are continuously measured. In paragraph 3.3 of Chapter 3 and in
paragraph 4.2 of Chapter 4 we tested two different on-site algorithms on the same region
(California) and we showed how the perfomance greatly improves when the system does

not depend on a fixed PTW.

The new interpretations of the earthquake rupture we discussed here can pave the way to
a whole new chapter of the earthquake physics and consequently of the implementation
of the earthquake early warning, improving systems that are working to mitigate the

catastrophic effects earthquakes might have on people’s lives.
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Conclusions

The work presented in this thesis is divided into three interconnected parts, all centered
on the topic of Earthquake Early Warning (EEW). By exploring the physical principles
and methodologies of EEW systems, this study has tested these approaches on various

seismic catalogs and examined the implications of earthquake rupture physics for EEW.

In Part One, an overview of the physical foundations of EEW is provided, focusing on
early P-wave parameters and their relationship with the nucleation phase of earthquake
rupture. Part Two discusses the methodologies and applications of two on-site EEW
systems, SAVE and P-Alert, highlighting their respective performance. Finally, Part
Three addresses earthquake rupture physics, emphasizing its significance for the future

development of EEW systems.

The core contribution of this work lies in the extensive application of on-site EEW
algorithms to a wide range of datasets from different tectonic environments, including the
volcanic setting of the Campi Flegrei Caldera. This comprehensive analysis has facilitated
a discussion on the performance of these systems, bringing to light their strengths and
weaknesses. For instance, SAVE has demonstrated flexibility and ease of integration with
existing network systems. However, its reliance on a fixed P-wave time window has
highlighted limitations in its performance, underscoring the need for the next generation

of P-wave-based on-site systems.

Building on this, P-Alert was tested, for the first time since its conception in 2015, on a
large Californian dataset. The results confirmed the significant potential of this system,
which continuously measures early P-wave parameters and offers improved resolution in
parameter estimation. P-alert overcomes the limitations of SAVE since it naturally
considers an expanded P-wave time window, so to manage the possible occurrence of
small and large earthquakes, and it bases the alert on the exceedance of a threshold in the
predicted impact (PGV). The focus on on-site P-wave-based EEW systems has also
provided a unique opportunity to investigate earthquake rupture behavior by analyzing
the earliest portion of the radiated P-wave signals. Among the most noteworthy findings
is the global scaling relationship between the initial growth rate of early P-wave
displacement and the final earthquake magnitude. This result is confirmed and verified
by a massive battery of tests for check-validation. This scaling, observed within an

exceptionally short P-time window (less than one second), has two major implications:
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e The growth rate of displacement may offer insights into the nucleation phase,
possibly reflecting the footprint of the non-radiative processes that precede

dynamic rupture propagation.

e The empirical scaling relationship could be applied to rapidly characterize

earthquake size in future EEW systems.

Further research is needed to explore the connection between the growth rate of
displacement and physical parameters governing earthquake rupture, such as rupture

velocity and stress drop.

This PhD thesis integrates different research topics, all linked to the central theme of
Earthquake Early Warning. The work presented here offers a foundation for advancing

existing methodologies and deepening our understanding of earthquake rupture physics.

115



116



APPENDIX A - A Python package for on-site
earthquake early warning
A.1 Python package for SAVE off-line and real-time testing

For the development of the Python version of SAVE, the decision was made to follow the
original scheme for on-site Early Warning proposed by Caruso et al. (2017), which was
previously implemented in C++. This new Python version of the algorithm is designed to

be user-friendly and includes additional features, such as:
e Dual usage modes, for both offline testing on data and real-time applications;

e The ability to adjust thresholds used by SAVE from an external text file: users can
modify data quality control thresholds by editing specific lines in the provided

text file, which the code automatically reads and updates.

For offline data analyses, users can choose whether to test the algorithm with manual

picks or with automatic filter picks.

A.1.1 Code architecture

Event detection and P-pick with
FilterPicker (Lomax et al. 2010)

| Integration and Pv evaluation in PTW |

I Integration and Pd evaluation in PTW |
SNR (P4/Pg4noise) @analysis.
‘ SNR >= threshold .
Signal rejected in PTW | rjm | log(P,/P,) <= threshold I I'Eil

Bandpass filter on Bandpass filter on
displacement (1-20 Hz) displacement (0.075-15 Hz)

P4/P, ratio>=threshold_1
P4/P, ratio <= threshold_2

3
Signal rejected in PTW I Intensity from P Intensity from P
Magnitude N/A Magnitude from 7,
Distance N/A Distance from P, and 7,

Figure A.1.1: Block diagram of SAVE python code. The four modules are highlighted with different colored
boxes: in green box the picker module; in blue the integration and first quality control module; in orange
the second quality control and filter selection module; in violet the output parameters estimation module.
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Figure A.1.1 shows the block diagram of the SAVE software developed in Python. The

main modules are as follows:

e Picking module (in green): Detects and extracts the P-wave arrival time from the

station's vertical component.

e Data integration and first quality control module (in blue): Integrates the
acceleration data to obtain velocity and displacement, calculates the signal-to-

noise ratio, and compares it to a user-defined threshold.

e Second quality control and filter selection module (in orange): Analyzes the
quality of the peak velocity-to-peak displacement ratio within a user-defined

tolerance range and applies a displacement filter.

¢ Intensity, magnitude, and distance estimation module (in violet): This final
module depends on the previous module, especially on the automatic filter
selection. Depending on the selected filter, the system provides an intensity
estimate, a magnitude and distance range (for high-quality data), or only an

intensity estimate (for low-quality data).

A.1.2 Code modules

Below is a detailed description of each software module, specifying: Module objective;

Algorithm description; Produced outputs.
1. Automatic Picker

Module Objective: Recognize the arrival time of the seismic P-phase when an event

occurs by analyzing the station's vertical (Z) component.

Algorithm Description: Starting from the waveform, a Characteristic Function (CF)
is calculated. This function peaks when the signal's amplitude, measured within a short
time window, is high compared to the characteristic amplitude measured within a longer
window (background noise). The waveform is filtered across multiple frequency bands,
each producing a CF. A seismic P-phase arrival is declared at time tpick when the CF in
any frequency band exceeds a minimum threshold, and the CF’s average value

subsequently remains above a second threshold for a sufficient period.
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Output: Arrival times of one or more possible seismic phases if detected in the input

waveform. No output otherwise.
2. Data Integration and Signal-to-Noise Ratio (SNR)

Module Objective: Assess the quality of the displacement signal in the examined

window by analyzing the signal-to-noise ratio.

Algorithm Description: From the input signal, a first numerical integration of the
waveform is performed to obtain velocity. In the analyzed window starting from the
recognized seismic phase's arrival time, zero-crossing is applied, and the absolute peak
velocity (Py) is calculated. A second numerical integration then provides displacement.
Zero-crossing is again applied, and the absolute peak displacement (Pq) is calculated. A
2-second signal window is then isolated, starting at t,ic—3 seconds, to measure
background noise (P4&NO'SE). The SNR in decibels is calculated as Pg/ PaNO'SE and is

verified to be above a user-adjustable threshold.

Output: Displacement waveform in the examined window, Py and Py if the SNR 1is

adequate. No output otherwise.
3. P4/Py Ratio and Automatic Displacement Filter Selection

Module Objective: Filter displacement data based on the logarithmic Pd/Pv ratio
within the examined window, providing necessary parameters for intensity, magnitude,

and distance calculations.

Algorithm Description: Using the P4 and Py values from the previous module, the
logarithmic ratio is calculated. If this is below a user-defined threshold, a 0.075-15 Hz
bandpass filter is applied to displacement, the peak displacement Pd and the characteristic
period tc are calculated. If the condition is unmet, a 1-20 Hz bandpass filter is applied
for a second check on the ratio. If it falls within a tolerance range (threshold; and

threshold»), Pd is accepted; otherwise, the signal is rejected.

Output: Pd and tc if the 0.075—15 Hz bandpass filter is applied. Pd if the 1-20 Hz

bandpass filter is used.
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4. Intensity, Magnitude, and Distance Estimation

Module Objective: Estimate macroscopic intensity, expected magnitude range, and

event distance.

Algorithm Description: The algorithm uses Pd and, if available, tc. Based on the
window duration (1, 2, or 3 seconds) from P-phase detection, the logarithmic Pd is used
in corresponding formulas to estimate the maximum expected site velocity (PGV). This
is converted into expected macroscopic intensity via Faenza & Michelini (2010) scaling
laws. If 1c is also available, its logarithm is used to estimate magnitude, and the

combination of tc and Pd logarithms provides a distance estimate.

Output: Macroscopic intensity value, expected magnitude and distance range. If data

quality is low, only macroscopic intensity is provided.

A.1.3 Input parameters

User-adjustable input parameters are modifiable in two text files. The first configures the
automatic picker, and the second configures the thresholds the SAVE algorithm depends

on for data quality control.

filterpicker_config.txt Text File In this file, user-adjustable parameters follow the
FilterPicker nomenclature (Lomax et al., 2012): Filter window (in seconds), Long Term
Window (in seconds), Threshold 1, Threshold 2, tUP Event (in seconds).

FILTER PICKER SETTING FOR SAVE (follows the scheme by Lomax et al. 2012)
JARNING: please only modify parameter of interest in the corrispondig line. Do not add or remove any lines

Filter window (in seconds)
il

Long Term Window (in seconds)
12.0

Threshold 1
10

Threshold 2
10

tUP Event (in seconds)
il

Figure A.1.2: Example of file text for picker setting of SAVE python package
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param_config.txt Text File This file allows users to adjust values for key parameters
used in both offline and real-time versions of SAVE, including: SNR threshold;
Log(Pd/Pv) threshold for high-quality data control; Upper threshold for low-quality data
control; Lower threshold for low-quality data control; Maximum window duration after

P-phase detection (1-3 seconds required).

PARAMTERS SETTING FOR SAVE
WARNING: please only modify parameter of interest in the corrispondig line. Do not add or remove any line.

SNR THRESHOLD
8

Log(Pd/Pv) HIGH QUALITY THRESHOLD
-0.2

Log(Pd/Pv) LOW QUALITY UPPER BOUND THRESHOLD
-0.9

Log(Pd/Pv) LOW QUALITY LOWER BOUND THRESHOLD
-1.8

P-TIME WINDOW (MIN 1 - MAX 3 SECONDS)
3

OFFLINE PERFORMANCE PICKS (Automatic/Manual)
Manual

Figure A.1.3: Example of file text for thresholds setting of SAVE python package in off-line mode

In offline mode, the last line allows users to choose between using automatic or manual

picks (figure A.1.3)

FARANTERS SETTING FOR SAVE
WARNING: please only modify parameter of interest in the corrispondig line. Do not add or remove any lines.

SNR THRESHOLD
14

Log(Pd/Pv) HIGH QUALITY THRESHOLD
-0.2

Log(Pd/Pv) LOW QUALITY UPPER BOUND THRESHOLD
-0.9
Log(Pd/Pv) LOW QUALITY LOWER BOUND THRESHOLD
1.8

P-TIME WINDOW (MIN 1 - MAX 3 SECONDS)
3

SENSOR OF THE STATION (user3 value for ISNET stations)
0.509

LOGGER OF THE STATION (user2 value for ISNET stations)
5.36e-07

Figure A.1.4: Example of file text for thresholds setting of SAVE python package in real-time mode

In real-time mode, the last two lines include Sensor and Logger information for unit

conversion.
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A.1.4 Output parameters

Output parameters can be read from automatically generated text files.

Offline Version: Output parameters are in files named SAVE offline ON_second.txt,
with N from 1 to 3. Each file includes: STA (station code), PICKING TIME (absolute
pick time), INTENSITY (macroscopic intensity), MAG_RANGE (predicted magnitude
range), MAG_VALUE (estimated magnitude), DISTANCE RANGE (predicted distance
range), DISTANCE VALUE (estimated distance in km), SNR (SNR in the examined
window), LOG_PD_PV (logarithmic Pd/Pv value), MODE (data quality: H = high, L =
low, R = rejected), Pd (P-phase peak displacement in cm), Tc (P-phase characteristic

period in seconds), PTW (examined window length in seconds) (in Figure A.1.5)

BTA PICKTNG_TINE INTENSITY MAG_RANGE MAG_VALUE DISTANCE RANGE DISTANCE VALUE SR LOG_PV_PD MODE Pd(cm) tc(s) PTH(s)
VDS3 2023-05-14T07: 28:48.8033547 3.0196461160504664 MEDIUM 3.11 NEAR 26.036 22.006638245598275 -1.4055457594573422 H 0.00124686289512 0.251 1.0

Figure A.1.5: Example of file text for output parameters of SAVE python package in off-line mode

Real-time Version: Parameters are in SAVE INFO ALERT.txt. The first three lines
detail network, station, and component information, with the absolute P-phase pick time.
Following lines include parameter estimates for each window, intensity, magnitude range,

distance range, and data quality estimates. (Figure A.1.6)

============ SAVE ALERT PARAMETERS =============
NETWORK IX STATION VDS3 CHANNEL HNZ
UTC PICKING TIME 2023-05-14T07:28:48.803354Z

== SAVE PARAMETERS ESTIMATES IN 1.0 SECONDS SINCE P-ARRIVAL
INTENSITY: 3.02 MAGNITUDE: MEDIUM DISTANCE: NEAR
Mode: H SNR: 22.00 Log Pd Pv: -1.40 Pd(cm): 0.0012 tc(s): ©.251 M: 3.11 R(km): 26.036

== SAVE PARAMETERS ESTIMATES IN 2.8 SECONDS SINCE P-ARRIVAL
INTENSITY: 3.24 MAGNITUDE: SMALL DISTANCE: NEAR
Mode: H SNR: 24.21 Log_Pd_Pv: -1.54 Pd(cm): 0.0016 tc(s): ©.221 M: 2.93 R(km): 21.917

== SAVE PARAMETERS ESTIMATES IN 3.0 SECONDS SINCE P-ARRIVAL
INTENSITY: 3.29 MAGNITUDE: MEDIUM DISTANCE: NEAR
Mode: H SNR: 27.12 Log Pd_Pv: -1.43 Pd(cm): 0.0022 tc(s): ©.255 M: 3.83 R(km): 23.508

Figure A.1.6: Example of file text for output parameters of SAVE python package in real-time mode
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A.2 Example tests on two Irpinia earthquakes

In the following paragraphs, we provide two examples of offline performance of SAVE.
We tested the algorithm on the two main events of the seismic sequences recorded and
monitored by the ISNET network, which began on May 14, 2023, and May 29, 2023,
with epicenters located in Capo di Giano (PZ) and Laviano (SA), respectively.

A.2.1 Off-line test on event at Capo Di Giano (PZ), Italy

The main event of May 14th, 2023 seismic sequence was located by the ISNET network
in Capo di Giano (PZ). Table A-1 provides information on location and magnitude (more

information available at http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi).

Table A-1: Source parameters for the main event of the Capo di Giano (PZ) sequence on May 14, 2023
LAT LON DEPTH (KM) MW

40.763 15.487 6.6 2.8

For this event, we provide an offline test of the SAVE procedure at the station closest to
the epicenter, VDS3. The epicentral distance estimated by ISNET is 8.3 km. The test was
performed using the automatic picker FilterPicker. Table A-2 provides the selected
parameters for the picker, and the figure (reference) shows the result of the application.
The P-wave arrival is accurately estimated and consistent with manual picking. The figure

is automatically generated by the automatic picker.

Table A-2 - Parameters chosen for FilterPicker settings

Filter window (s) \ 1
Long Term Window (s) \ 12
Threshold 1 10
Thresshold 2 10
tUP Event 1

The thresholds used by the SAVE algorithm are described in Table A-3. The output
information obtained using a maximum window of 3 seconds from the automatically

recognized P arrival is provided in Table A-4.

Table A-3 - Parameters chosen for SAVE settings

| SNR THRESHOLD
Log(Pd/Pv) High quality threshold

Log(Pd/Pv) Low quality upper bound threshold

Log(Pd/Pv) Low quality lower bound threshold
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Figure A.2.1: Automatic pick on the vertical component of VDS3 station for the event of Capo di Giano
(PZ)

Table A-4 - Output parameters obtained from the offline test of SAVE on the Capo di Giano (PZ) event

STA Picking time Intensity Mag Mag Dist Dist SNR | Log(Pd/Pv) | Mode | Pd(cm) | Tc(s) | PTW(s)
Range Value | Range | Value(km)

VDS 2023-05- 3.02 MEDIUM 3.11 NEAR 25.955 21.61 -1.40 H 0.0012 0.25 1
14707:28:48.774002

VDS 2023-05- 3.24 MEDIUM 3.03 NEAR 23.004 23.81 -1.54 H 0.0016 | 0.236 2
14707:28:48.774002

VDS 2023-05- 3.29 MEDIUM 3.03 NEAR 23.505 26.72 -1.43 H 0.0022 | 0.255 3
14707:28:48.774002

A.2.2 Off-line test on event at Laviano (SA), Italy

The main event of the sequence that began on May 29, 2023, was located by the ISNET
network in Laviano (SA). Table A-5 provides information on location and magnitude.
For this event, we conducted an offline test of SAVE at the station closest to the epicenter,
VDS3, with an epicentral distance of 12.5 km. The offline test used the automatic picker,
whose settings are described in Table 2. The thresholds on which SAVE operates are
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described in Table 4. Table A-6 shows the information obtained within a maximum

window of 3 seconds from the detection of the P arrival.

Table A-1: Source parameters for the main event of the Laviano (SA) sequence on May 29, 2023

LAT LON DEPTH (KM) MW
40.782 15.327 8.8 2.9

Table A-6 - Output parameters obtained from the offline test of SAVE on the Laviano (SA) event

STA Picking time Intensity Mag Mag Dist Dist SNR | Log(Pd/Pv) | Mode | Pd(cm) Tc(s) | PTW(s)
Range Value | Range | Value(km)

VDS3 2023-05- 2.22 MEDIUM 3.23 NEAR 36.792 14.99 -1.31 H 0.0049 0.271 1
29T16:55:28.047001

VvDS3 2023-05- 2.22 MEDIUM 3.07 NEAR 34.062 14.99 -1.31 H 0.0049 0.244 2
29T16:55:28.047001

VDS3 2023-05- 1.98 MEDIUM 3.1 NEAR 40.137 14.99 -1.31 H 0.00049 | 0.267 8
29T16:55:28.047001
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