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Abstract 

Current practice for seismic risk assessment typically considers that structural 

damage can only occur in a single seismic event. However, neglecting that 

earthquakes occur in clusters, both in space and in time, can lead to an 

underestimation of both seismic hazard and structural vulnerability. Indeed, past 

research has shown that neglecting aftershocks (seismic events following the 

mainshock in a sequence), can lead to non-negligible differences in the assessment 

of seismic hazard. From the point of view of structural vulnerability, the necessity 

of considering the effects of seismic sequences has also been highlighted by recent 

seismic events, such as the seismic sequences in Christchurch (2010-2011), in 

Emilia-Romagna (2012) and in central Italy (2016-2017), to name a few. These 

events showed that at least part of the seismic damage documented on the building 

heritage was due to the cumulative effect of multiple shocks clustered closely in 

time. Therefore, this thesis focuses on two components of seismic risk, i.e., the 

seismic hazard and structural vulnerability, and on how to treat them in order to 

account for sequence effects. 

In the context of seismic hazard, the thesis applies the Sequence-Based 

Probabilistic Seismic Hazard Analysis procedure to the United Kingdom. This part 

has been developed in collaboration with the firm Ove Arup and Partners London 

with the objectives of developing national hazard maps taking into account the 

effects of seismic sequences and investigating the effects of aftershocks in the 

assessment of seismic hazard.  

At the same time, regarding seismic vulnerability, the thesis addresses various 

issues in the estimation of state-dependent fragility curves, which are fragility 

models that allow for the possibility that a structure may have already been 

damaged by previous shocks. Initially, the assessment of state-dependent fragilities 

is addressed using back-to-back incremental dynamic analysis applied to individual 

structures belonging to classes of reinforced concrete and masonry buildings. In 

one case, state-dependent fragilities have been evaluated for a masonry building as 

part of the collaboration with the firm Arup Italy. On the other hand, the evaluation 

for building classes has been carried out within the European research project 

RISE (Real-time earthquake rIsk reduction for a reSilient Europe). These evaluations have 

allowed touching some critical points that characterize the estimation of state-

dependent fragilities such as: the limitation of computational costs, the choice of 

the intensity measure, the definition of engineering demand parameters, and limit 

states. 

Finally, in order to reduce the computational cost of the methodology for 

state-dependent fragility assessment, a simplified method applicable to first-mode 

dominated reinforced concrete structures is presented, based on nonlinear static 



 
 

analysis and on a new proposed predictive model, which allows predicting the 

distribution of capacity curve parameters for already damaged structures.  

 

Keywords: seismic sequences, aftershocks, state-dependent fragilities, sequence-

based seismic reliability; damage accumulation. 

 

  



 
 

Sintesi in lingua italiana 

Nella pratica corrente di valutazione del rischio sismico si assume generalmente 

che il danno strutturale sia causato da singoli eventi sismici. Tuttavia, trascurare 

che in realtà i terremoti si verifichino raggruppati nello spazio e nel tempo può 

portare ad una sostanziale sottostima sia della pericolosità sismica che della 

vulnerabilità strutturale. La ricerca in tale ambito ha, infatti, dimostrato che non 

considerare le repliche sismiche (eventi sismici che seguono la scossa principale) 

può portare anche a differenze significative nella valutazione della pericolosità 

sismica. Per quanto riguarda la vulnerabilità strutturale, la necessità di considerare 

gli effetti delle sequenze è stata evidenziata anche da recenti eventi sismici, quali le 

sequenze di Christchurch (2010-2011), dell’Emilia-Romagna (2012) e dell’Italia 

Centrale (2016-2017), per citarne alcune. Questi eventi hanno mostrato che 

almeno parte dei danni sismici osservati sul patrimonio edilizio era dovuto 

all'effetto cumulato di scosse che si sono susseguite in breve tempo. 

La presente tesi si focalizza pertanto su due delle componenti del rischio, cioè 

la pericolosità sismica e la vulnerabilità strutturale, e su come trattarle per tener 

conto del verificarsi di sequenze sismiche.  

Nell’ambito della pericolosità sismica, la presente tesi applica la procedura di 

Sequence-Based Probabilistic Seismic Hazard Analysis al Regno Unito. Tale parte, è stata 

sviluppata in collaborazione con Ove Arup and Partners London con l’obiettivo di 

sviluppare mappe di pericolosità della nazione che tengano conto degli effetti delle 

sequenze sismiche, nonché di indagare gli effetti dell’inclusione delle scosse 

secondarie nella valutazione della pericolosità simica.  

Parallelamente nell’ambito della vulnerabilità sismica, la tesi affronta da 

diversi punti di vista la stima delle fragilità stato-dipendenti, modelli di fragilità che 

consentono di tener conto del fatto che l’evento sismico possa colpire una 

struttura che si trova in condizioni non intatte, già danneggiata da eventi 

precedenti. Inizialmente, è stato affrontato il calcolo delle fragilità stato-dipendenti 

mediante il metodo rigoroso dell’analisi dinamica incrementale back-to-back 

applicato a singole strutture appartenenti a classi di edifici in cemento armato e 

muratura. Nel dettaglio, le fragilità stato-dipendenti sono state valutate per un 

edificio in muratura nell’ambito della collaborazione con Arup Italia. La 

valutazione per classi di edifici è stata, invece, condotta nell’ambito del progetto di 

ricerca Europeo RISE (Real-time earthquake rIsk reduction for a reSilient Europe). Tali 

valutazioni hanno consentito di affrontare alcuni punti critici della stima delle 

fragilità stato-dipendenti quali: la limitazione dell’onere computazionale, la scelta 

della misura di intensità, la definizione di un adeguato parametro ingegneristico di 

domanda e degli stati limite. 

Nell’ottica di ridurre l’onere computazionale della metodologia rigorosa di 

valutazione delle fragilità stato-dipendenti, viene infine presentato un metodo 



 
 

semplificato applicabile alle strutture in cemento armato il cui comportamento è 

dominato dal primo modo di vibrare. Tale metodo è basato sull’analisi statica non 

lineare e su un modello predittivo appositamente sviluppato che consente di 

prevedere la distribuzione dei parametri che definiscono la curva di capacità di 

strutture già danneggiate.  

Parole chiave: Sequenze sismiche, fragilità stato-dipendenti, affidabilità sismica 

basata sulle sequenze; cumulo del danno. 
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1.1. Background and motivation 

Current practice of seismic-risk assessment only considers the occurrence of single 

seismic events, both from the point of view of seismic hazard, i.e., through the 

application of Probabilistic Seismic Hazard Analysis (PSHA; Cornel, 1968); and 

from the point of view of structural vulnerability assessment, which does not take 

the issue of damage accumulation into account; i.e., each seismic event finds the 

structure in its intact condition, with no consideration of any possible damage 

caused by earlier earthquakes. However, the assumption that the risk to the built 

environment arises exclusively from single earthquakes is refused by the very 

nature of seismic events, which actually occur in time-space clusters (mainshock-

aftershocks sequences). Moreover, past disasters have clearly demonstrated that 

aftershocks often cause additional damage to buildings and infrastructure, 

exacerbating the harm caused by the main earthquake. Recent seismic events, 

including the sequences in Christchurch in 2010-2011 and Emilia-Romagna in 

2012, as well as the earthquakes in central Italy in 2016-2017, have highlighted the 

potential pitfalls of the current approach and indicate a clear need to revisit how 

seismic-risk assessment is carried out. 

This thesis concentrates on two of the components of risk referred to above: 

seismic hazard and structural vulnerability, with the focus on elements that enable 

the classical risk-assessment framework to be extended to cover the issue of 

seismic sequences.  

1.1.1. Sequence-Based Seismic Risk Analysis (Probabilistic Seismic 

Risk Analysis that accounts for earthquake sequences) 

Seismic risk can be defined as the probability that a pre-defined level of losses 

(expressed in terms of human lives, economic assets or cultural value) is exceeded 

due to the occurrence of earthquakes within a reference time-period. The risk can 

be estimated at different territorial levels. i.e., global, regional or site-specific. Loss 

can therefore encompass a single structure, a city, or an entire area.  

Seismic risk is a function of three components: seismic hazard; seismic 

vulnerability and exposure. The first of these is represented by the frequency and the 

intensity of the seismic events occurring in a particular territory and calculates the 

probability that a fixed seismic-intensity threshold at the site of interest is exceeded 

over a certain period of time. The second element, seismic vulnerability, is the 

physical environment’s susceptibility to sustaining damage due to seismic events 

of a given magnitude. It is represented by the probability that a certain level of 

damage occurs during an event with a set intensity, defined by an intensity measure 

( IM ). Finally, exposure takes into account the location, quality and quantity of 

assets and activities that may be affected, both directly and indirectly, by seismic 
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events and refers to the probability that a set amount of economic loss is exceeded 

at a set damage level. 

The best current practice for seismic-loss assessment relies on the 

Performance-Based Earthquake Engineering framework (PBEE; Cornell and 

Krawinkler, 2000; Krawinkler and Miranda, 2004), which was developed by the 

Pacific Earthquake Engineering Research (PEER) Center. The framework was 

designed to improve the decision-making in relation to the seismic performances 

of facilities. Consequently, the assumed decision variable ( DV ) can cover costs, 

number of casualties, or the duration of any industry downtime. Any other DVs  

of primary interest to decision-makers can be also taken into account. The risk- 

assessment procedure has four stages, as seen in Figure 1.1: 1) hazard analysis (i.e., 

quantifying the frequency and intensity of earthquakes and ground motions); 2) 

structural analysis (which aims to determine the structural-response parameters); 

3) damage analysis (i.e., the quantification of damage states and their relationship 

to response parameters); and 4) loss analysis (the evaluation of financial losses, 

downtime and casualties, as well as the consequences for owners and society).  

 
Figure 1.1 Overview of the PEER seismic-loss assessment methodology (adapted from Krawinkler, 

2005). 

The main advantage of this approach is the opportunity it provides to 

compartmentalize the different phases of assessing seismic risk by separating them 

into discipline-specific contributions (engineering seismology, structural 

engineering, cost analyses, decision making). Despite this division, the four 

independent stages are linked through interfacing output variables: Intensity 

Measures ( IMs ), Engineering Demand Parameters ( EDPs ) and Damage 

Measures ( DMs ). The first step is the hazard analysis, which determines the 

annual rate of exceedance of a ground motion intensity measure at a site of 

interest. This is achieved with the PSHA (Cornell, 1968), the fundamentals of 

which are described in what follows.  
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The structural analysis aims to compute a vector of EDPs , i.e., the structural-

response parameters that can be related to the damage caused to structural and 

non-structural components, as well as to the contents of the structure. An example 

of an appropriate EDP  is the interstorey drift, although it is possible to use any 

other structural parameter that enables investigators to control for the 

evolutionary state of the structural damage up to the point of collapse. The 

relationship between EDPs  and IMs  is typically identified via non-linear dynamic 

analyses (NLDAs) and their outputs. This is often referred to as Probabilistic 

Seismic Demand Analysis (PSDA; Shome and Cornell, 2006), and is the 

conditional probability that the EDP  will exceed a specified threshold value, 

DSedp , assuming that the IM  is equal to a particular value im ; 

DSP EDP edp IM im =   . The integration of this probability over the hazard 

curve provides the mean annual frequency of exceedance of the EDP .  

The DM  interfacing variable can be introduced to relate EDPs  to the 

relevant DVs . This facilitates the computation of DVs  from EDPs . In the 

damage analysis phase, EDPs  are related to DMs  of the building’s components 

(structural, non-structural or contents). A DM  is defined for each constituent of 

interest and describes the extent of the damage caused during an earthquake. The 

output of the damage analysis is the relationship between EDPs  and DMs , and 

expresses the probability of being in a certain damage state dm, given that the EDP  

is equal to a given value, DSedp
DSP DM dm EDP edp= =   . Such relationships are 

generally computed using analytical/numerical modeling, laboratory testing or 

field experience. 

The aim of the fourth stage, the loss analysis, is to estimate the exceedance 

frequency of various performance levels. Performance can be parameterized via 

one or more DVs , which are defined at the system or building level. If the 

relationships 
DSP DM dm EDP edp= =    for all the relevant damage states of all 

the relevant components are known, the DVs  of interest can be evaluated either 

directly or using cost functions that relate the damage states to costs. 

The entire procedure, which forms the basis of the performance assessment, 

can be summarized in the following triple integral, which computes the mean 

annual frequency (MAF, ) of exceeding of a DV  threshold (Yeo and Cornell, 

2005): 

( DV ) G( DV DM ) dG( DM EDP ) dG( EDP IM ) |d ( IM )| =    ∣ ∣ ∣ . (1.1) 

In Eq.(1.1) ( IM )  is the mean annual rate of exceeding a given IM  level; 

( )G( X Y ) P X x|Y y=  =∣  is the complementary cumulative distribution 
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function (CCDF) of X given Y ; and dG( X Y )∣  and d ( IM )  are the 

differentials of G( X Y )∣  and ( IM ) . The key assumption of the entire 

procedure is the conditional independence of DV and DM from IM  and of 

DV  from EDP . This implies that intermediate variables, i.e., EDP  and DM , 

used to relate IM  to DV , have been chosen to ensure that the conditioning 

information is not “carried forward”. As an example, EDPs  should be selected 

so that DMs  (and DVs ) do not vary with intensity, once EDP  has been 

specified. Similarly, IMs should be chosen to ensure that, once it is given, the 

dynamic response is not also influenced by other ground motion characteristics, 

e.g., magnitude or source-to-site distance. 

In its classical formulation, seismic-risk analysis does not take into account 

the fact that earthquakes occur in spatio-temporal clusters (mainshock-aftershocks 

sequences) and that a structure can be hit by multiple subsequent events. The 

formulation of the PEER Center’s PBEE framework employs PSHA in the 

hazard-analysis phase. Meanwhile, a convenient time-invariant representation of 

the failure probability is assumed for the vulnerability assessment. In effect, 

therefore, only intact structures are considered in risk evaluation, it being assumed 

that enough time will elapse until the next event for stakeholders to restore a 

damaged structure to its initial state. 

Consequently, changes are required to this classical seismic-risk assessment 

to ensure that its evaluations of seismic hazard and structural vulnerability take the 

occurrence of earthquake sequences into account. One way of doing this would 

be to employ the so-called Sequence-Based Probabilistic Seismic Hazard Analysis 

(SPSHA, Iervolino et al., 2014) to account the effects of aftershocks in long-term 

hazard. SPSHA is a well-established procedure that, in analytical terms, combines 

the classical PSHA and the aftershock probabilistic seismic-hazard analysis 

(APSHA, Yeo and Cornell, 2009a), producing a seismic-hazard integral that 

accounts for mainshock-aftershocks seismic sequences. More details on the 

SPSHA are set out in the following paragraphs. 

The occurrence of mainshock-aftershock sequences should also be 

considered in the assessment of seismic vulnerability. This would take into account 

the fact that structural failure may be caused not only by a single shock but also 

due to damage accumulated over multiple seismic events. Indeed, earthquakes are 

known to be clustered in both space and time, meaning that repairs may not be 

possible between shocks. This can be made by computing the state-dependent 

fragility curves, assuming the simplest form of dependency between damage 

increments for which structural vulnerability, given the features of a particular 

earthquake, depends on (only) the state of the structure at the time of the shock 

(Iervolino et al., 2016).  
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The main concepts at the hearth of both classical probabilistic seismic hazard 

analysis and SPSHA, as well as the methods employed to assess vulnerability, are 

set out in the following sections. 

1.1.2. Objectives of the thesis 

The main objective of this thesis is to comprehensively deal with the issue of 

including the effects of seismic sequences in seismic risk analysis. This is 

approached having regard to two complementary elements: 1) seismic hazard and 

2) structural vulnerability.  

The inclusion of seismic sequences in any assessment of the first element can 

be achieved with the SPSHA, which is a well-established procedure first presented 

by Iervolino et al. (2014) and widely used in the case of Italy (Iervolino et al., 2018; 

Chioccarelli et al., 2021). Consequently, this part of the thesis examines its 

application to another country, i.e. the United Kingdom (UK), in order to: 1) 

develop the national seismic-hazard maps of the country that take into account 

the effects of seismic sequences, and 2) quantify the increments in the UK’s 

seismic hazard as a result of the aftershocks. This part of the thesis was carried out 

in collaboration with the firm Ove Arup and Partners London. 

The inclusion of seismic sequences in the context of the second 

complementary element - structural vulnerability - is possible through the use of 

state-dependent fragility curves that allow taking into account the damage-

accumulation process that occurs due to multiple seismic events after the 

mainshock. This part of the thesis has several objectives. First of all, the 

assessment of state-dependent fragility curves of individual structures belonging 

to classes of reinforced concrete (RC) and masonry buildings which is conducted 

via the rigorous procedure of back-to-back incremental dynamic analysis (IDA). 

In one case, thanks to the collaboration with the firm Arup Italy, the state-

dependent fragility functions were evaluated for a case-study building 

representative of the masonry terraced houses common in an area near Groningen 

in the north of the Netherlands. This type of structure (in this location) was chosen 

because commercial gas production in the region means that such buildings 

experience earthquakes and have been studied widely in recent years as a result. 

On the other hand, the state-dependent fragilities were assessed for existing Italian 

building classes. The structures under consideration, i.e., existing residential RC 

and masonry buildings in Italy, are taken from the outcomes of the SERA project 

(Seismology and Earthquake Engineering Research Infrastructure Alliance for 

Europe). The current assessment has also been conducted within the ongoing 

European research project RISE (Real-time earthquake rIsk reduction for a 

reSilient Europe). These assessments have allowed dealing with the main issues 

concerning the assessment of state-dependent fragilities such as: the limitation of 
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computational costs, the choice of the intensity measure, the definition of 

engineering demand parameters and limit states. 

Finally, a simplified method for the assessment of state-dependent fragilities 

based on non-linear static (also known as pushover) analysis is presented. This was 

developed to lower the computational costs compared to the classic, more 

rigorous approach, enabling the evaluation of state-dependent fragilities in first-

mode dominated reinforced concrete (RC) structures. This simplified method also 

required the development of a predictive model for evaluating the central tendency 

and record-to-record variability of constant-ductility residual displacements of 

bilinear single-degree-of-freedom systems (SDOFs) that degrade in strength and 

stiffness under cyclic loading.  

1.1.3. Organization of the thesis 

This thesis is structured such that the remainder of Chapter 1 provides an 

overview of the main concepts behind the extension of the classical seismic-risk 

assessment to also cover the issue of seismic sequences. More specifically, the 

essential elements of the PSHA and SPSHA are briefly described in relation to 

seismic hazard. Then, with respect to structural vulnerability, are introduced the 

analytical methods for the assessment of the fragility curves for both intact 

structures (i.e., structure-specific fragility curves) and already-damaged structures 

(i.e., state-dependent fragility curves). 

The rest of the thesis is organized as follows. Chapter 2 presents a national-

scale application of PSHA and SPSHA to the UK, with hazard maps of the country 

produced for three IMs  and four return periods. A comparison of the results of 

the two methodologies informs an assessment of the seismic-hazard damage 

increments caused by aftershocks. The work in this part of the thesis was 

developed in collaboration with the firm Ove Arup and Partners London. 

Chapter 3 deals with the evaluation of the structure-specific and state-

dependent seismic fragility functions of the Dutch unreinforced masonry (URM) 

building representative of the masonry terraced houses located in the northern 

region of the Netherlands, near Groningen. The fragilities of the intact structure 

are first assessed via Cloud Analysis, analyzing the three-dimensional model 

developed with LS-DYNA finite element software. Subsequently, the assessment 

of state-dependent fragilities is conducted using two equivalent, inelastic, SDoF 

systems, each of which represents a direction of the structure and whose definition 

is based on the pushover curves obtained from the analysis of the original model. 

The work in this part of the thesis has been developed in collaboration with Arup 

Italy. 

Chapter 4 presents the analytical assessment via back-to-back IDA of the 

structural vulnerability models for Italian building classes, which are one of the 
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outcomes of the RISE project. The structures under consideration are taken from 

the SERA project and relate to existing residential RC and masonry Italian 

buildings. Two issues affecting the assessment of fragility functions are also 

addressed, i.e., the choice of the IM and the identification of the number of 

ground motion records to execute the NLDAs. 

Chapter 5 introduces the predictive model used for evaluating the central 

tendency and record-to-record variability of constant-ductility residual 

displacements of bilinear SDoF systems that exhibit strength and stiffness 

degradation under cyclic loading. This is typically observed in RC structures with 

predominantly flexural behavior. Some of the model’s applications are also 

presented with particular attention paid to its use in the probabilistic prediction of 

the post-earthquake pushover curve of a damaged structure. This is the heart of 

the simplified methodology developed in the thesis for estimating state-dependent 

seismic fragility functions (introduced in the following chapter). Meanwhile, 

Chapter 6 outlines this simplified approach, which is based on nonlinear static 

analyses and the predictive model described in Chapter 5. After introducing the 

stages of the methodology, the simplified method is compared to the rigorous one, 

i.e., the back-to-back Incremental Dynamic Analysis (IDA), through the 

application to a case study.  

Finally, the important contributions and findings of the study are summarized 

and discussed in the last part of the thesis. 

1.2. Classical and Sequence-Based Probabilistic Seismic Hazard 

Analysis 

The classical PSHA was first formulated in the milestone work by Cornell, (1968). 

Its goal is to estimate the average number of mainshocks per unit-time (often one 

year) that cause an IM  threshold im  at a site of interest to be exceeded (i.e., the 

exceedance rate). This rate, indicated herein as λ im ,E , is time-invariant and defines 

the homogenous Poisson process (HPP) regulating the occurrence of earthquakes 

that cause the im  to be exceeded over time. So, for a single seismic source zone 

affecting the site, λ im ,E  is computed as per Eq. (1.2) (Kramer, 1996): 

( )λ P[ ]
E ,max E ,max

E E
E ,min E ,min

r m

im ,E E E E M ,R
r m

IM > im|M = m,R = r, f m,r dm dr . =       (1.2). 

In this equation, E  is the rate of mainshocks with a magnitude equal to or greater 

than the minimum ( E,minm ) deemed possible for the seismic source and it is 

calibrated based on a de-clustered catalog. The term 

 P E E EIM > im|M = m,R = r, , which is obtained with a ground motion 



 CHAPTER 1 39 

 
prediction equation (GMPE), represents the conditional probability that the im  

is exceeded due to a mainshock with a magnitude equal to m  and a source-to-site 

distance equal to r . This probability also depends on  , which allows additional 

parameters such as local soil site conditions and the rupture mechanism of the 

source to be taken into account.  

The joint probability density function (PDF) of the mainshock magnitude ( )EM  

and distance ( )ER  is ( )
E EM ,Rf m,r . Assuming that EM  and ER  are stochastically 

independent random variables (RVs), this is calculated as 

( ) ( ) ( )
E E E EM ,R M Rf m,r f m f r=  , where ( )

EMf m  and ( )
ERf r  are the marginal 

distributions of the magnitude and distance of the mainshocks, respectively. The 

former is defined between E,minm  and the maximum considered for the source, 

E,maxm . It is generally described using a truncated exponential distribution derived 

from the Gutenberg-Richter (GR) relationship (Gutenberg and Richter, 1944). 

The distribution of the latter, which is defined as being between E,minr  and E,maxr , 

generally only depends on the geometry of the source and the position of the site 

with respect to the source itself.  

In the case of multiple seismic sources, say s  in number, the calculation is 

conducted one source at a time and the results are added up: 
1

s

im,E im,E,i

i

 
=

= . 

The SPSHA enables account to be taken of the effect of aftershocks (i.e., 

ignoring foreshocks). It uses the same input as the PSHA, that is, the rate of 

mainshocks from a de-clustered catalog. A non-homogenous Poisson process 

(NHPP) is used to model the occurrence of aftershocks, conditional to 

mainshock’s magnitude and location. In these hypotheses, the main outcome of 

the SPSHA is the average number of seismic sequences that, in the unit of time, 

cause at least one exceedance of im  at the site. This rate, referred to here as λ im , 

defines the HPP process regulating the occurrence of both mainshocks, and 

subsequent aftershocks, that lead to the exceedance of im  over time. This is 

calculated with Eq. (1.3): 

 

( ) ( )

( )
0 P[ >i ] m r

λ ν 1 P
E ,max E ,max

E ,min E ,min

r mA ,max

A|m A A A A A A M ,R |M ,R A A A AA A E E

r mA ,min A ,min

E E

r m

im E E E E

r m

E N , T IM m|M m ,R r , f m ,r |m,r d d

M ,R

IM im|M = m,R = r ,

e f m,r dm dr .





 −   = =    


=  −  




  
    




 

 (1.3) 
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The ( )A  subscript in this equation denotes terms pertaining to aftershocks. 

 P E E EIM im|M = m,R =r ,  is equal to  1 P E E EIM > im|M = m,R = r ,−

. The exponential term represents the probability that none of the aftershocks, 

triggered by a mainshock with magnitude EM = m  and a distance ER = r  (strictly 

speaking, it should be location, not distance), causes the exceedance of im  

between 0t =  (i.e., the occurrence time of the mainshock) and the duration of 

the sequence, AT .  A A A A A AP IM im |M m ,R r , = =  is obtained with the 

GMPE and is the probability that im  is exceeded given an aftershock with a 

magnitude A AM m=  and a source-to-site distance A AR r= . The term 

A A E EM ,R |M ,Rf  is the joint PDF of the magnitude and distance of aftershocks and it 

is conditional on the features of the mainshock (i.e., magnitude and location) 

occurring at the source. Assuming that AM  and AR  are conditionally independent 

RVs, this function is 
A A E E A E A E EM ,R |M ,R M |M R |M ,Rf f f=  , where 

A EM |Mf  is the 

conditional distribution of the aftershocks’ magnitude (i.e., following the GR) and 

A E ER |M ,Rf  is the conditional distribution of the site’s distance to the aftershocks. 

The magnitude distribution of the aftershocks is bounded by a minimum 

magnitude A,minm  and m  (i.e., the mainshock’s magnitude). The location of 

aftershocks with respect to the site depends on the location and magnitude of the 

mainshock. The distribution of the aftershocks’ distance is bounded within A,minr  

and A,maxr , which are the minimum and maximum values possible for AR , 

respectively. ( )0A|m AE N , T    is the expected number of aftershocks with a 

magnitude between A,minm  and m , generated by a mainshock with a magnitude 

EM m= , in AT . This is computed according to Yeo and Cornell (2009): 

( )
( )

( )
1-1-10 10

0
-1

A,mina+b m-m a
pp

A|m A A

-
E N , T c - T c ,

p



   =   +   
 (1.4) 

where c  and p  are the parameters of the modified Omori law, which models the 

temporal decay of the rate of aftershocks, and a  and b  define the GR relationship 

for the aftershocks.  

The hazard curve for PSHA and SPSHA, respectively, are obtained by 

calculating Eq. (1.2) and Eq. (1.3) for different im  values within a range of interest.  
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1.3. Fragility curves of intact structures and state-dependent fragility 

curves 

A structure-specific, seismic fragility function defines the conditional probability 

that a structure will fail to meet some performance objective if the ground-shaking 

intensity measure ( )IM  is at a specific level im . This failure is often referred to 

as the exceedance of a limit- or damage-state ( )DS  and traditionally relates to an 

intact structure that experiences a single seismic event. In the simplest of cases, 

fragility can be defined using an appropriate measure of the structural response 

( )EDP , and a threshold value thereof, DSedp . The exceedance of this threshold 

is taken to signify the structure’s transition from its initial state (intact conditions) 

to the generic DS , as expressed by Eq. (1.5):  

DSP f IM im P DS IM im P EDP edp IM im= = = =  =         . (1.5) 

If seismic reliability calculations are expected to account for seismic 

sequences, it is necessary to evaluate the probability that an already-damaged 

structure transits in a single seismic event from one DS , say ADS , to another 

more severe one, BDS . A state-dependent fragility function will provide that 

probability, conditional upon the occurrence of a shaking intensity im  during one 

of the shocks in the cluster. This can be expressed as 

B A ADS DS
P EDP edp DS IM im   =
  . In this case, 

B ADS DS
edp  denotes the EDP  

threshold for BDS  when the structure is in the damage condition identified in 

ADS  Meanwhile, the state-dependent fragility can simply be denoted as 

B AP DS DS IM im =   .  

The following paragraphs describe the analytical methods for the estimation 

of the fragility functions of the intact structures and the state-dependent fragility 

curves. 

1.3.1. Analysis methodologies 

This section describes the state-of-the-art of the analytical methods used to 

estimate fragility functions. Such methodologies in PBEE typically consist of 

subjecting the numerical model of the structure to NLDAs, collecting the 

structural response to a suite of accelerograms. The analytical methodologies used 

in these fragility calculations can be classified according to the type of fragility 

functions they are able to estimate, i.e., structure-specific fragility curves for intact 

structures or state-dependent fragility curves. There are alternative procedures 
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available in the literature for characterizing the relationship between an EDP  and 

an IM  and for assessing the fragility curves of intact structures. More specifically, 

common NLDAs methods in earthquake-engineering research are: Incremental 

Dynamic Analysis (IDA; Vamvatsikos and Cornell 2001, 2004); Multiple Stripe 

Analysis (MSA, Jalayer and Cornell, 2008), and Cloud Analysis (CA, Jalayer et al., 

2015, 2017).  

In relation to the assessment of state-dependent fragility curves, the extended 

version of IDA, referred to as back-to-back IDA (Luco et al., 2004; Ryu et al., 2011; 

Goda, 2012; Ruiz-García, 2012; Raghunandan et al., 2015; Goda, 2015) is 

described in what follows. Also introduced are the simplified pushover analysis-

based procedures for the simplified estimation of state-dependent fragilities. 

1.3.2. Methodologies for assessing structure-specific seismic fragility 

1.3.2.1. Incremental dynamic analysis 

IDA is a type of NLDA developed to investigate the dynamic behavior of 

structures at different levels of seismic intensity, covering the entire range of 

structural behavior, from elastic to non-linear, and ultimately, to collapse 

(Vamvatsikos and Cornell, 2001, 2004). The procedure involves performing 

multiple NLDAs using a suite of accelerograms. Each record of the set is 

progressively scaled in amplitude to increasing levels of shaking intensity in order 

to cover a broad range of IM  levels. The structural response, expressed in terms 

of an EDP , is registered at each IM  level for each acceleration record. This 

produces a continuous EDP IM−  relationship, termed as IDA curve or dynamic 

pushover.  

Some assumptions form the basis of this procedure: 

▪ The sufficiency of the IM  chosen to represent the seismic intensity. This 

leads to the assumption that the EDP  random variable conditioned on the 

IM  is independent of other ground motion features, i.e., the magnitude 

and source-to-site distance (e.g., Luco and Cornell, 2007). 

▪ The scaling robustness of the IM . The assumption here is that the use of 

scaled records does not introduce bias into the distribution of the structural 

response obtained from the analyses (Iervolino and Cornell, 2005). 

An example of an IDA is reported in Figure 1.2a.  
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Figure 1.2 Dynamic analysis methods for the assessment of fragility curves: 50 IDA curves of an 

SDoF oscillator with 16, 50 and 84% fractile curves and EDP threshold (a); example of an MSA 

obtained for five IM levels (b); logarithmic-scale scatter plot of the EDP-IM responses obtained via 

CA and the corresponding least-squares regression line (c).  

Ensuring parallelism with the non-linear static analysis reveals that each IDA 

curve has a distinct linear elastic region, which terminates at the occurrence of the 

first non-linearity. Subsequently, the curves develop in a non-monotonic manner, 

i.e., swinging back and forth, representing increases and decreases in the rate of 

damage accumulation. The final horizontal branch of each IDA curves denotes 

the onset of dynamic instability, which is a phenomenon that consists of 

unrestricted deformations growth for small IM  increments. Consequently, IDA 

flat-lines correspond to a structure’s side-sway collapse of the structure. 

As shown in Figure 1.2a, a common way of summarizing IDA results for an 

entire set of records is to calculate and plot the 16, 50, and 84% fractile IDA curves 

of the EDP  given IM , or vice-versa (Vamvatsikos and Cornell, 2004). This 

corresponds to the mean plus/minus one standard deviation of a Gaussian 

distribution.  

The analytical derivation of the fragility curves typically involves fitting a 

parametric-probability model to the results of an IDA. The model generally 

chosen is lognormal, although other types can also be used (i.e., the gamma 

distribution). Two alternative approaches can be employed to assess fragility from 

the IDA results: the IM-based and the EDP-based. In both cases, an EDP threshold, 

DSedp , can be defined, so that its exceedance will be tantamount to failure (see Eq. 

(1.5)). The IM-based method entails finding the intersections of the IDA curves, 

DSim , with the vertical line passing through the threshold DSedp  value (Figure 

1.2a). These DSim values can be regarded as realizations of a RV, DSIM , which is 

the seismic intensity to which the ground motion must be scaled for the structure 

to achieve the DS . The fragility function can then be considered as the probability 

of DSIM  being equal or lower than the level of seismic intensity that may occur at 

IM

EDP
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(a) 

D
edp

S
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IM
EDP

EDP response per record
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(

)
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the site, i.e.,    DSP DS|I M im P IM im= =  . Assuming that DSIM  follows a 

lognormal distribution, the fragility function can be estimated according to Eq. 

(1.6):  

    ( )

( )

( )

1

2

1

ln

1
ln

1
ln

1

DS
n

DS ,i

i
n

DS ,i

i

P DS|I M im P IM im ( im )

im
n

im
n

 



 

=

=




= =  =  −  


= 



 =  −  −





 (1.6) 

where   and   are the parameter estimates (median and logarithmic standard 

deviation) of the assumed lognormal distribution of DSIM , DS,iim  is the realization 

of the RV coming from to the i-th record; and ( )   is the standard Gaussian 

(cumulative) function.  

Of course, it is not necessary to adopt a parametric model for IM-based 

fragility; in fact, a non-parametric representation can be obtained directly from the 

sample of DSIM values, according to Eq. (1.7):  

  ( )
1

1
f ,i

n

im im
i

P f |IM im n I−


=

= =   (1.7) 

where ( )f ,iim im
I


 is an indicator function that returns 1 if f ,iim im or 0 if 

f ,iim im . 

Structural fragility can also be calculated using the EDP-based approach 

which is suitable for both the IDA and the MSA. The next paragraph describes 

employing this approach to assess structural fragilities. 

1.3.2.2. Multiple-stripe analysis 

Multiple Stripe Analysis is a NLDA methodology suitable for performance-based 

assessments considering a wide range of ground motion intensities and multiple 

performance objectives, ranging from the onset of damage through to global 

collapse (Jalayer and Cornell, 2008).  

Similar to IDA, MSA calculates the EDP-response of a structure at various, 

increasing levels of the seismic intensity. The main difference between the two 

procedures is that MSA provides the opportunity to use different suites of records 

for each IM  level. Consequently, MSA can only produce the same results as IDA 

only if the same set of records is employed at different intensity levels. 
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The record selection for MSA is carried out by selecting suites of records that 

reflect the site-specific seismic hazard at each IM  level in order to render the 

seismic structural demand hazard consistent (Lin et al., 2013a, 2013b; Jayaram et 

al., 2011). This ensures that the spectral shapes of the selected records are 

compatible with the expected spectral shapes for a given intensity measure. An 

example of MSA’s results is contained in Figure 1.2(b), in which the EDP  

responses have been obtained for five IM  levels. 

Structural fragility can be computed in MSA by adopting the EDP-based 

approach, which can be used when the EDP  responses are obtained at discrete 

(fixed) IM  levels. When these EDP  responses are plotted against the 

corresponding IM  values, they are disposed in horizontal stripes (e.g., Figure 

1.2b), one for each of the levels of shaking intensity under consideration.  

Counting the fraction of records in each stripe that cause the limit state 

threshold, DSedp , to be exceeded enables the fragility parameters   and   to be 

obtained via the maximum-likelihood method described in Baker (2015) and 

reported in Eq.(1.8): 

( )

( )
( )

1

ln
ln ln Φ

ln
ln 1 Φ

u j

j
jj,

j

j

imn
{ , } argmax qq

im
n q

 


 







=

   −    =  +    
       

  −   + −  − 



 +



   

 (1.8) 

where u  is the number of IM  levels considered (i.e., the number of stripes, with 

each stripe containing responses from n  records), and jq  is the number of failures 

observed at the stripe corresponding to jIM im=  (Figure 1.2b). In this 

formulation, cases of non-convergent analysis (or collapse cases), say jc  in 

number, are also counted in 
j

q . This means that they are accounted for, despite 

the potential absence of a meaningful EDP  value. It should be noted that, in cases 

where the observed numbers of failures 
j

q  remain excessively low when the 

stripes overall are considered, the maximum-likelihood estimates implied in Eq. 

(1.8) can experience numerical problems. A viable alternative for considering 

fragility, consistent with the EDP-based approach, is the three-parameter-per-

intensity model adopted by Shome and Cornell (2000). 
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1.3.2.3. Cloud analysis 

Cloud analysis gets its name from its use of a set of unscaled records chosen to 

cover a vast range of intensity values. In this way, typically only a single record 

corresponds to each IM  level resulting in a “cloud” of points in the EDP IM−  

plane. An example is the scatter plot in Figure 1.2(c).  

To estimate the statistical properties of the cloud data, a conventional linear 

regression, where homoscedastic Gaussian residuals are assumed, is applied to the 

data in the logarithmic scale. This equates to fitting a power-law curve to the cloud 

data in the arithmetic scale. 

Consequently, the cloud method enables the obtention of a probabilistic 

relationship between an EDP  and IM  that predicts the conditional median of 

EDP  for a given level of IM , denoted as EDP|IM : 

 ( ) ( )ln ln lnIMEDP IM a b IM = + ∣  (1.9) 

where lna  and b  are constant coefficients that are estimated from linear 

regression. The conditional logarithmic standard deviation of EDP  given IM , 

βEDP|IM can be estimated as: 

 ( )( ) ( )
2

1

ln ln 2EDP

N

i

M

b

i|I iEDP a IM N
=

= −  −  (1.10) 

where iEDP  and iIM represent the corresponding cloud data for the i -th record 

in the set and N is the number of records. 

Generally, in relation to ultimate limit states, some of the records selected 

may induce structural collapse, resulting in very large EDP  values. In these cases, 

the displacement demand values obtained from NLDAs are unreliable but known 

to exceed a certain limiting value. Including these records and their corresponding 

EDPs  in simple CA would thus be of questionable validity. Consequently, to 

correctly treat the results of the nonlinear dynamic analyses, a different procedure 

can be undertaken when estimating the probability of failure. This involves 

explicitly considering the collapse cases, partitioning the cloud data into two parts: 

NoC , which refers to the records for the structure does not collapse and; C , 

corresponding to the records inducing the collapse (Jalayer and Cornell, 2008). In 

this case, the structural fragility for a prescribed limit state, i.e., DS , can be set out 

using the Total Probability Theorem: 

 

 ( )
 
1DS DS

DS

P EDP edp IM im P EDP edp IM im,NoC P C|IM im

P EDP edp IM im,C P C|IM im

 = =  =  − = +      
+  =  =  

 (1.11) 
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where 
DSP EDP edp IM im,NoC =    is the conditional probability that the 

EDP  is greater than the threshold DSedp  given that the collapse has not taken 

place. This probability can be described using a lognormal distribution (Jalayer and 

Cornell, 2008; Jalayer et al., 2017) as reported in Eq. (1.12): 

( )l
Φ

n
Φ

nl
b

aEDP|IM ,NoC

EDP|I N

D

M , oC EDP|

S

IM ,NoC

P EDP edp IM im, No
a IM

C
 




 = 

  
 = = 

  
   

  (1.12) 

where EDP|IM ,NoC  and EDP|IM ,NoC  are the conditional median and standard 

deviation of the logarithm of the EDP , evaluated based on the portion of NoC  

data.  

DSP EDP edp IM im,C =    is the conditional probability that the EDP  is 

greater than the threshold DSedp  given that the collapse has taken place. This term 

is therefore equal to unity. Meanwhile,  P C|IM im=  is the probability of 

collapse and can be evaluated using logistic regression (a.k.a., logit) as a function 

of IM as reported in the following, where 0  and 1  are the parameters of the 

logistic regression. 

  
( )0 1

1

1
ln IM

P C|IM
e

 − + 
=

+
. (1.13) 

1.3.3. Methodologies for assessing state-dependent seismic fragility 

1.3.3.1. Back-to-back Incremental Dynamic Analysis (back-to-back IDA) 

As already discussed, one way of estimating a state-dependent version of a fragility 

function analytically is to use an IDA variant known by some authors as back-to-

back IDA ( Luco et al., 2004; Ryu et al., 2011; Goda, 2012; Ruiz-García, 2012; 

Raghunandan et al., 2015; Goda, 2015). This extension of IDA is intended to 

produce a probabilistic description of the seismic response for structures already 

damaged by an initial seismic event, meaning that, before repairs are possible, they 

are susceptible to the effects of subsequent events, including mainshock-

aftershock sequences.  

In back-to-back IDA, the structural model is first subjected to a set of records 

hitting the structure in its intact (or initial) state, each scaled in amplitude to the 

lowest im  value that results in 
ADSEDP edp= . At the end of each run, a different 

realization of the structure is produced, which can be viewed as having made the 

transition to ADS . Then, each damaged incarnation of the structure is subjected 

to a second set of accelerograms that represents a subsequent event of the same 
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cluster. Similar to the traditional IDA, the second set of records is scaled to 

progressively increasing im  levels until 
B ADS DS

EDP edp=  is verified for the 

damaged structure, at an intensity of the shock which can be noted as 
BDS ,iim  for 

the i-th succession of base accelerations. As the results for the traditional fragility 

case obtained with an IDA, these intensity values can be used in the manner shown 

in Eq. (1.6) to estimate the parameters of a lognormal model of the state-

dependent fragility. 

Figure 1.3 contains an example of back-to-back IDA curves wherein, at an 

intensity of zero, the curves start from a residual EDP  value that the damaged 

structure has inherited from the initial event. Therefore, like a traditional IDA, the 

end result of the back-to-back version is a set of continuous EDP IM−  curves. 

The difference is that these curves no longer describe the seismic behavior of the 

original structure, but that of the structure that has been subjected to a specific 

damaged state.  

 

Figure 1.3 Example of back-to-back IDA curves for the assessment of state-dependent fragilities. 

1.3.3.2. Pushover-Based Fragility 

The classical rigorous methods for assessing state-dependent fragility functions 

usually require significant computational effort, and certainly more than that 

needed to investigate fragility curves for intact structures. Consequently, it was 

crucial to develop simplified, less time-consuming approaches, which are often 

based on the non-linear static, or pushover, analysis. An example of these methods 

is the static approach introduced by Luco et al., (2004), which enables the 

quantification of the residual capacity of mainshock-damaged structures. Unlike 

the dynamic method based on back-to-back IDA; the static methodology is based 

on the application of the SPO2IDA tool to the pushover curve of the damaged 

IM

EDP

Back-to-Back IDA 

edpDS  |DS
Residual displacement 

curve 

B A



 CHAPTER 1 49 

 
structure. SPO2IDA was first introduced by Vamvatsikos and Cornell, (2006) and 

represents a simple and effective link between IDA curves and Nonlinear Static 

Analysis. This spreadsheet tool comprises a set of analytical equations for 

predicting the median value and variability of the maximum seismic response of 

SDoF systems with various quadrilinear backbone curves. These equations use the 

parameters defining the pushover curve and the natural vibration period to 

estimate the 16, 50, and 84% fractile IDA curves. Although the method was 

developed for intact structures, attempts have been made to extend it to the case 

of damaged structures, as in the work by Luco et al., (2004), or Bazzurro et al., 

(2004). In the latter study, the SPO2IDA algorithm was used to evaluate the 

residual capacity of a damaged structure at a certain damage state The authors 

demonstrated that the calculation of the median value of the residual capacity of 

the structure in each damage state and the capacity of the intact structure can be 

exploited to identify a tagging criterion of the damage state reached by the 

structure following the main seismic event.  
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Abstract 

 

This study was carried out in collaboration with the firm Ove Arup and Partners. 

From this chapter is derived the following paper:  

− Orlacchio M., Cito P., Polidoro B., Villani M., Iervolino I. (2021), “Sequence based hazard maps 

for the United Kingdom” (Under review). 

The current practice of probabilistic seismic hazard analysis (PSHA) does not take 

into account that earthquakes actually occur in time-space clusters. The input for 

PSHA is based on de-clustered seismic catalogs, used to characterize only the 

mainshocks, that is, the largest magnitude events within each cluster. However, 

the so-called sequence-based PSHA (SPSHA; Iervolino et al., 2014), allows us 

including the effect of aftershocks in hazard analysis, that is, the events following 

the mainshock, still conveniently resourcing from de-clustered catalogs. In the 

United Kingdom (UK), the seismic source model developed for the national 

seismic hazard assessment has been recently updated by the British Geological 

Survey (BGS; British Geological Survey, 2020). In this study, the source model 

developed by the BGS (one directly derived from it, in fact) is used to implement 

SPSHA in the UK. The calibration of the model for the occurrence of aftershocks, 

that is, the modified Omori’s law, is fitted on a few sequences and under some 

simplifying assumptions. The results, represented by hazard maps for selected 

spectral ordinates and exceedance return periods of interest for structural 

engineering, are compared to the PSHA counterparts to discuss the increase in the 

design seismic actions when the effects of aftershocks are considered. The maps 

show that, based on the modeling of aftershock sequences considered in the study, 

in the UK this increase can be up to 14%, at least for the spectral ordinates and 

exceedance return periods herein investigated. The discussed maps are provided 

as supplemental material to this paper. 

Keywords: seismic hazard, seismic sequences, aftershocks, hazard increments. 

2.1. Introduction 

In the United Kingdom (UK), design seismic actions for structural design are 

based on probabilistic seismic hazard analysis (PSHA; McGuire, 2004). For a given 

ground motion intensity measure ( )IM , PSHA allows to computing the rate of 

seismic events causing exceedance of a selected threshold at the site of interest. In 

the classical PSHA, the rate of exceedance is time-invariant and defines the 

homogenous Poisson process (HPP) describing the occurrence of earthquakes 

causing exceedance of the ground motion threshold over time (Cornell, 1968).  
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Although earthquakes typically occur in spatio-temporal clusters, classical 

PSHA complies with the HPP assumption of earthquakes occurrence considering 

only the largest magnitude event within each cluster, conventionally recognized as 

the mainshock, while (the effects of) the other events in the cluster are neglected. 

To achieve this, seismicity parameters for the definition of the input models used 

for PSHA are derived from a catalog in which foreshocks and aftershocks, that is, 

the earthquakes preceding and following the mainshock, respectively, are 

preliminarily removed using de-clustering techniques (e.g., Gardner and Knopoff, 

1974). 

For short-term risk management purposes, Yeo and Cornell (2009) develop 

aftershock PSHA (APSHA), which provides the probability that aftershocks, in a 

given time interval, cause exceedance of a ground motion IM  value at the site of 

interest. In the framework of APSHA, occurrence of aftershocks in time is 

characterized by means of a nonhomogeneous Poisson process (NHPP), 

conditional to the occurrence of a mainshock of given magnitude and location, 

and whose rate is modeled according to the modified Omori law (Utsu, 1961). 

(Although, in principle, other models describing aftershock occurrence can be 

embedded in SPHSA in lieu of the modified Omori law.) 

Iervolino et al. (2014) show that it is possible to include the effects of 

aftershocks in long-term hazard assessment avoiding the violation of the HPP 

hypothesis and possible catalog incompleteness with respect to aftershocks, using 

the so-called sequence-based PSHA (i.e., SPSHA). Acknowledging that 

mainshock-aftershocks sequences occur at the same rate as the mainshocks, 

SPSHA combines PSHA and APSHA resulting in a relatively easy-to-implement 

hazard integral, which allows computing the rate of mainshock-aftershock 

sequences causing exceedance of a given IM  threshold at the site. Because 

SPSHA models the occurrence of aftershocks by means of the modified Omori 

law, it neglects foreshocks that, although can also possibly contribute to hazard, 

are generally considered of minor relevance to structural engineering with respect 

to aftershocks (Yeo and Cornell, 2009). 

Before proceeding any further, it is to note that there are other approaches 

that allow accounting for earthquake clusters in seismic hazard analysis (e.g., 

Zhang et al., 2018, 2021; Papadopoulos et al., 2021; Marzocchi and Taroni, 2014). 

One of these approaches, which is often assumed as a benchmark by 

seismologists, is the one referred to as epidemic-type aftershock sequences (ETAS; 

Ogata, 1988). However, Wang et al. (2021), considering a point source model, 

recently discussed that the differences in hazard results between SPSHA and 

ETAS-based seismic hazard analysis are of limited relevance, if any, for earthquake 

engineering purposes. 
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Recently, the British Geological Survey (BGS, British Geological Survey, 

2020) has developed new PSHA-based hazard maps for the UK. The study 

presented herein, similar to what was done in Iervolino et al. (2018) and 

Chioccarelli et al. (2021) for Italy, aims to investigate the implications, on the 

definition of design seismic actions in the UK, stemming from including seismic 

sequences in hazard analysis. To do so, the SPSHA procedure is developed at the 

national scale, using a simplified, yet validated, version of the BGS source model 

where the validation consists of comparing the PSHA results against the official 

BGS counterpart. The parameters of the modified Omori law, required by SPSHA, 

are calibrated based on a few sequences (because of a general paucity of aftershock 

data in the UK) from a catalog developed for the UK (Villani et al., 2020).  

The SPSHA results for the entire country are presented by hazard maps in 

terms of (5% damped) spectral (pseudo) accelerations at three vibration periods, 

as the IMs , and for four exceedance return periods ( )rT  of structural design 

interest. Subsequently, SPSHA results are compared to those from PSHA, 

implemented using the simplified hazard model, to discuss the effects of 

aftershocks on design seismic actions in the UK.  

The paper is structured such that the essentials of SPSHA are recalled, first. 

Then, the source model is introduced followed by the calibration of the modified 

Omori law for the UK. After presenting the hazard maps, the hazard increases 

due to aftershocks countrywide are discussed by comparing SPSHA results to the 

PSHA counterpart. Moreover, considering three sites in the UK exposed to 

comparatively low, mid and high seismic hazard, the aftershock effects are 

explored with reference to a wide range of spectral periods and return periods, 

using uniform hazard spectra (UHS). A simple sensitivity analysis of the 

parameters of the modified Omori law precedes some final remarks that close the 

study. 

2.2.  Classical and Sequence-Based Probabilistic Seismic Hazard 

Analysis 

Classical PSHA provides the average number of mainshocks per unit-time (often 

in one year) causing exceedance of a IM  threshold ( )im  at the site of interest; i.e., 

the exceedance rate, λ im ,E . This is time-invariant and defines the HPP regulating 

the occurrence of earthquakes causing exceedance of im  over time. Classically, 

λ im ,E  is computed using Eq.(2.1); i.e., the hazard integral, which is herein written 

considering a single seismic source zone affecting the site (e.g., Kramer, 1996): 
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( )λ P[ ]
E ,max E ,max

E E
E ,min E ,min

r m

im ,E E E E M ,R
r m

IM > im|M = m,R = r, f m,r dm dr . =       (2.1)

The subscript, E, is added in order to distinguish the rate im,E  from the rate evaluated 

using SPSHA, to follow. In the equation, E  is the rate of mainshocks with magnitude 

equal to or larger than the minimum ( E,minm ) deemed possible for the source and it is 

calibrated based on a de-clustered catalog. The ( )
E EM ,Rf m,r  term is the joint probability 

density function (PDF) of the mainshock magnitude ( )EM  and source-to-site distance 

( )ER . Assuming that EM  and ER  are stochastically independent random variables, it is 

( ) ( ) ( )
E E E EM ,R M Rf m,r f m f r=  , where ( )

EMf m  and ( )
ERf r  are the marginal 

distributions of magnitude and distance of mainshocks, respectively. The distribution of 

magnitude is defined between E,minm  and the maximum magnitude considered for the 

source, E,maxm , and is generally described by a truncated exponential distribution derived 

by the Gutenberg-Richter (GR) relationship (Gutenberg and Richter, 1944). The 

distribution of the distance, which is defined between E,minr  and E,maxr , generally only 

depends on the geometry of the source and the position of the site with respect to the 

source itself. The term  P E E EIM > im|M = m,R = r, , provided by a ground motion 

prediction equation (GMPE), represents the conditional probability that im  is exceeded 

due to a mainshock with magnitude equal to m  and source-to-site distance equal to r . 

This probability also depends on  , which allows us to account for additional parameters 

such as local soil site conditions, rupture mechanism of the source and/or others. 

Considering multiple sources only entails the summation of im,E  referring to each source.  

SPSHA allows us to account for the effect of aftershocks (i.e., neglecting 

foreshocks) in the hazard assessment, using the same input as in the case of PSHA, 

that is, the rate of mainshocks from a de-clustered catalog, and modelling the 

occurrence of aftershocks using a NHPP, conditional to the mainshock magnitude 

and location. In these hypotheses, the main result of SPSHA is the average number 

of seismic sequences that causes at least one exceedance of im  at the site in the 

unit time. This rate, herein referred to as λ im , defines the HPP process regulating 

the occurrence of mainshocks, and following aftershocks, that cause exceedance 

of im  over time, and it is computed via Eq. (2.2):
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 
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                                                                                                          (2.2) 

In the equation, the ( )A  subscript denotes terms pertaining to aftershocks. 

 P E E EIM im|M = m,R =r ,  is equal to  1 P E E EIM > im|M = m,R = r ,−

, whereas the exponential term represents the probability that none of the 

aftershocks, triggered by the mainshock with magnitude EM = m  and distance 

ER = r  (strictly speaking, it should be location rather than distance), causes 

exceedance of im  between 0t =  (i.e., the occurrence time of the mainshock) and 

the duration of the sequence, AT .  A A A A A AP IM im |M m ,R r , = = , which 

is provided by the GMPE, is the probability that im  is exceeded given an 

aftershock of magnitude A AM m=  and source to site distance A AR r= . The term 

A A E EM ,R |M ,Rf  is the joint PDF of magnitude and distance of aftershocks, which is 

conditional on the features of the mainshock (i.e., magnitude and location) 

occurring on the source. Assuming that AM  and AR  are conditionally 

independent random variables, it is 
A A E E A E A E EM ,R |M ,R M |M R |M ,Rf f f=  , where 

A EM |Mf  is the conditional distribution of aftershocks magnitude (i.e., following the 

GR) and 
A E ER |M ,Rf  is the conditional distribution of the distance of the site to 

aftershocks. The magnitude distribution of the aftershocks is bounded by a 

minimum magnitude A,minm  and m  (i.e., the mainshock magnitude). The location 

of aftershocks with respect to the site depends on the location and magnitude of 

the mainshock. The distribution of the aftershocks distance is bounded within 

A,minr  and A,maxr , which are the minimum and maximum values possible for AR , 

respectively. ( )0A|m AE N , T    is the expected number of aftershocks, with 

magnitude between A,minm  and m , generated by a mainshock with magnitude 

EM m= , in AT , and it is computed according to Yeo and Cornell (2009): 

( )
( )

( )
1-1-10 10

0
-1

A,mina+b m-m a
pp

A|m A A

-
E N , T c - T c ,

p



   =   +   
 (2.3) 
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where c  and p  are the parameters of the modified Omori law, which in fact 

models the temporal decay of the aftershocks rate, whereas a  and b  define the 

GR relationship for aftershocks.  

Computing Eq. (2.1) and Eq. (2.2) for different im values in a range of 

interest provides the hazard curve for PSHA and SPSHA, respectively. Hazard 

curves for different spectral ordinates, in turn, allow retrieving the UHS, i.e., the 

spectra whose ordinates (when considered individually) have the same exceedance 

return period, for the site of interest. Hereafter, the spectral ordinates of PSHA 

and SPHA-based UHS ordinates will be indicated as PSHAsa  and SPSHAsa , 

respectively. Obviously, it is λ λim im ,E  for any im value; thus SPSHA PSHAsa sa . 

2.3. Source Model and GMPE 

2.3.1. BGS logic tree 

Both PSHA and SPSHA presented in this work were implemented by using the 

source model recently updated by the BGS. The PSHA study of the BGS features 

a complex logic tree, consisting of several branches. In each branch, the source 

model is based on 22 seismic source zones, whose geometry and ID are shown in 

Figure 2.1 (together with five sites of interest that will be considered later). The 

source model is defined on the basis of the current understanding of seismicity in 

the UK, taking also into account the surrounding areas which are considered to 

have some impact on the seismic hazard of the country; i.e., the Viking Graben 

(VIKI), the Normandy (NORM) and the Belgium-Pas de Calais region (PASC). 

For each zone, the expected magnitude frequency distribution of the earthquakes 

follows a GR relationship, with minimum magnitude equal to 3.0. The 

uncertainties affecting the seismicity parameters of the zones are taken into 

account using of 100 branches of the logic tree, varying in terms of maximum 

magnitude, b −  value and annual rate of mainshocks with (moment) magnitude 

equal to or larger than 3.0, ( )ν 3 0E M . . More specifically, according to the logic 

tree, four maximum magnitude (i.e., 6.5, 6.7, 6.9 and 7.1) and 25 couples of the 

b −  values and ( )ν 3 0E M .  are identified for each source zone.  

Considering the mean of the 25 ( )ν 3 0E M .  values, which is also provided 

by the BGS for each source zone, one can observe that the lowest ( )ν 3 0E M .  

is 0.0037 events per year for the zone named BALA, whereas the largest rate 1.12 

events per year, is for the MMCW zone. It is worth noting that seismicity for two 

zones; i.e., MMCW and MENA, is defined using a bi-partite GR magnitude 

distribution (British Geological Survey, 2020). The first GR distribution models 

the occurrence of mainshocks in the range of magnitude between 3.0 and 4.5, 
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while the other applies between 4.5 and E,maxm . Both BALA and MMCW zones 

are located at the westward side of the UK; in the remaining part of the country, 

the rate of earthquakes with magnitude equal to or larger than 3.0 is within 0.1 and 

0.47 events per year. 

 

Figure 2.1 The seismic source model used in this study with zone names and location of five sites. 

The logic tree implemented by the BGS also accounts for the uncertainty 

affecting the hypocentral depth considering four possible values; i.e., 5 km, 10 km, 

15 km and 20 km. Strike-slip is the dominant rupture mechanism for all the seismic 

sources.  

The BGS study follows the same multi-GMPE approach used in Tromans et 

al. (2019), which considers five GMPEs: Atkinson and Boore (2006, 2011), 

Rietbrock et al. (2013), Bindi et al. (2014), Boore et al. (2014) and Cauzzi et al. 

(2015). These populate the logic tree with different weights. Bindi et al. (2014) and 

Boore et al. (2014) are given the largest weight, 0.3; Cauzzi et al. (2015) is given 

0.2, whereas 0.1 is assumed for Atkinson and Boore (2006, 2011) and Rietbrock 

et al. (2013). To account for both the effects of elastic amplification due to shear 

wave velocity structure and near-surface attenuation specific for the UK, the host-

to-target adjustments (Cotton et al., 2006; Atik et al., 2014) are applied to each of 

the five GMPEs. The adjustment factors were developed considering rock site 
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conditions and three values of the target spectral decay parameter: 0.016 s, 0.027 

s, and 0.047 s.  

2.3.2. Simplified source model 

In this study, the BGS seismic hazard model was adopted for developing both 

PSHA and SPSHA, yet with some simplifications aimed at avoiding the 

implementation of the full logic tree. More specifically, for each seismic zone, the 

GR relationship was defined by considering the weighted mean values (over the 

25 values in the BGS study) of ( )ν 3 0E M .  and b . The maximum magnitude 

was set equal to 6.5 for all the sources, which corresponds to the value of the 

branch with the largest weight.  

Among the two GMPEs with the highest weight in the BGS work, the one 

of Bindi et al. (2014) was selected and used to compute both 

 P E E EIM im|M = m,R = r ,  and  P A A A A AIM > im|M m ,R r ,= =  in Eq. 

(2.1) and Eq. (2.2). This GMPE adopts the Joyner-Boore distance or JBR  (Joyner 

and Boore, 1981) up to 300 km. In the analyses, assuming a uniform distribution 

for earthquakes epicenters (both mainshocks and aftershocks), the epicentral 

distance ( )EPIR  was converted to JBR  according to Eq. (2.4), which is given by 

(Montaldo et al., 2005).  

3 5525 0 8845JB EPIR . . R .= +                                                                             (2.4) 

The selected GMPE has a magnitude range of applicability between 4.0 and 7.6; 

therefore, to avoid extrapolation, earthquakes with magnitude lower than 4.0 were 

not considered in the hazard assessment (also considering that earthquakes with 

magnitude lower than 4.0 are typically not of interest to earthquake engineering). 

Consequently, for each source, ( )ν 3 0E M . , (i.e., that provided by the BGS) was 

reduced, according to the GR, to exclude earthquakes with magnitude less than 

4.0, which is, therefore, the minimum magnitude considered herein for both 

PSHA and SPSHA (this is also in agreement with the PSHA analyses carried out 

by the BGS). Similarly, portions of sources at distances larger than 300 km were 

not considered in the analyses. The predominant strike-slip style was attributed via 

terms provided by Bindi et al. (2014) for that rupture mechanism. summarizes all 

the source characteristics finally considered. 
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Table 2.1 Mainshocks seismicity parameters of seismic zones considered (MENA and MMCW 

zones are reported twice because of their bi-partite GR).  

Zone mE,min
 mE,max

 b -value 
( )ν 4 0E M .  

 [events per year] 

CORN 4.0 6.5 1.03 5.60E-03 

RHEN 4.0 6.5 1.00 5.00E-03 

WCHA 4.0 6.5 0.99 1.33E-02 

DOVE 4.0 6.5 1.00 6.00E-03 

SLPT 4.0 6.5 0.97 1.82E-02 

EANG 4.0 6.5 0.99 1.13E-02 

MMCE 4.0 6.5 0.96 7.68E-03 

PENN 4.0 6.5 0.94 2.64E-02 

MMCW1 4.0 4.5 1.01 1.17E-02 

MMCW2 4.5 6.5 1.02 9.71E-02 

MENA1 4.0 4.5 1.01 6.84E-03 

MENA2 4.5 6.5 1.00 3.16E-02 

EISB 4.0 6.5 0.99 8.19E-03 

CUMF 4.0 6.5 1.02 5.73E-03 

BALA 4.0 6.5 1.00 3.70E-04 

SC1M 4.0 6.5 1.01 1.95E-03 

SC34 4.0 6.5 1.00 1.20E-02 

SC78 4.0 6.5 0.99 1.84E-02 

SC9 4.0 6.5 1.04 1.55E-02 

ESCO 4.0 6.5 1.00 1.50E-02 

IREL 4.0 6.5 1.01 2.93E-03 

VIKI 4.0 6.5 1.01 4.59E-02 

NORM 4.0 6.5 0.86 5.11E-02 

PASC 4.0 6.5 1.00 1.90E-02 

The PSHA and SPSHA discussed in the following were developed assuming 

the average shear-wave velocity of the upper 30 m equal to 800 m/s (i.e., rock site 

conditions) at all sites. Moreover, the GMPE was corrected to account for the 

host-to-target adjustment, considering the median value of spectral decay 

parameter equal to 0.027 s, which is the value corresponding to the branch with 

the largest weight in the logic tree defined by the BGS. The adjustment factors 

developed by the BGS for the GMPE of Bindi et al. (2014) and used in this study 

are equal to 1.24, 1.19 and 1.06 for peak ground acceleration ( )PGA , 

( )0 2sSa T .=  and ( )1 0sSa T .= , respectively; i.e., the IMs  considered for the 

hazard maps discussed in the following. The adjustments do not depend on 

magnitude and source-to-site distance and apply to the mean of the GMPE; i.e., 

they correspond to a so-called linear effect. Therefore, herein the adjustment 

factors are applied directly modifying a-posteriori the ordinates of the unadjusted 
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UHS of interest as discussed in Iervolino (2016), which has been shown to be a 

rigorous procedure in case of GMPEs with linear effects.  

2.3.3. Validation 

The simplifications to the BGS source model do not affect the results concerning 

the aftershocks effect on the hazard assessment (to follow), as PSHA and SPSHA 

are performed using the same input data. However, the results of PSHA 

conducted via the simplified source model for the sites of Cardiff, Dover, 

Edinburgh and London (see Figure 2.1 for the location of the sites), are compared 

to those obtained within the BGS study (Mosca et al., 2022). Figure 2.2 shows the 

comparisons in terms of UHS and hazard curves for the four sites. Panels (a) and 

(b) describe the UHS computed by the BGS and those developed in this study, for 

the return periods of 475 years (yr) and 2475 yr, respectively. The second row of 

Figure 2.2 shows the hazard curves in terms of PGA  (Figure 2.2c) and spectral 

(pseudo) accelerations ( )Sa  corresponding to the vibration period ( )T  equal to 

0.2 s (Figure 2.2d) and 1.0 s (Figure 2.2e) evaluated for the four sites. 

 
Figure 2.2 Comparison of the results obtained in the study by means of PSHA to the BGS 

counterparts in terms of UHS with 475yrrT =  (a) and 2475yrrT =  (b), and hazard curves for 

PGA  (c), ( )0 2sSa T .=  (d) and ( )1 0sSa T .=  (e) for the sites of Cardiff, Dover, Edinburgh and 

London.  

The figure shows that the results obtained using the simplified input model 

are in good agreement with those obtained considering the full logic tree, even if 

some differences can be found. To measure them, the absolute differences 

between the spectral ordinates obtained in this study and those from the BGS 
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work were quantified for 17 spectral ordinates, in a range of vibration periods 

between 0 s and 3.0 s. For example, considering 475yrrT = , which is a typical 

return period in structural design, those differences, on average, are equal to 

0.0027 g, 2.23e-04 g, 0.0012 g and 0.0011 g for Cardiff, Dover, Edinburgh and 

London, respectively.  

2.3.4. Aftershock occurrence model 

The parameters  a,b,c , p in Eq. (2.3), required for SPSHA, are typically calibrated 

empirically via data from multiple aftershocks sequences for the region of interest; 

e.g., Reasenberg and Jones (1989) for California and Lolli and Gasperini (2003), 

for Italy. For the UK, there are no specific studies available. To overcome this 

issue, two earthquake catalogs were preliminarily investigated. One is that 

provided by the BGS, which includes 73 mainshock-aftershocks sequences 

occurring in the whole UK and the surrounding areas. The second one is that of 

Villani et al. (2020), containing 213 earthquakes attributed to 48 mainshock-

aftershocks sequences occurring within 300 km from Anglesey, North Wales; see 

Villani et al. (2020) for a map of the events. 

The  a ,c , p  parameters were estimated, for each sequence, using the 

maximum likelihood method (e.g., Ogata, 1983; Utsu and Ogata, 1995). However, 

convergence issues have arisen for the short sequences; i.e., those with less than 

five aftershocks, which are 71 and 44 in the BGS catalog and the Villani et al. 

(2020) catalog, respectively. Moreover, there is no sufficient information about the 

events occurring in the two remaining in the BGS catalogue, and therefore they 

were neglected. Thus, only the four sequences from the catalog of Villani et al. 

(2020) were considered for calibrating the parameters of the modified Omori law. 

For the selected sequences, Table 2.2 shows the ID according to the considered 

catalog, the event name, the date and time of the mainshock, latitude and longitude 

of the epicenter of the mainshock, the mainshock magnitude, the minimum 

magnitude of aftershocks and the number of aftershocks in each sequence aftN .  

For each sequence, the  a ,c , p  parameters were calibrated by setting the b −

value equal to one (Helmstetter, 2003). The mean values, which are used for the 

SPSHA, are 1 71a .=− , 0 002c .=  and 0 68p .= . To qualitatively assess the 

goodness-of-fit of these parameters, Figure 2.3 represents the ratio of the 

cumulative number of aftershocks within each sequence, ( )AN t , as a function of 

the time t  elapsed since the mainshock (expressed in days), to the term 

( )
10 A ,mina b m m+ −

; i.e., the aftershock productivity of each sequence.  
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Table 2.2 List of sequences detected in the earthquake catalog having a number of aftershocks 

greater than five. 

Seq. ID Event name Date Time Lat Long EM m=  A,minm  aftN  

155 Caernarvon 19-06-1903 10:40 53.03° -4.28° 4.60 2 14 

200 Caernarvon 12-12-1940 21:20 53.03° -4.18° 4.40 2 7 

313 Lleyn Peninsula 19-07-1984 6:56 52.96° -4.28° 5.00 2 22 

515 Manchester 21-10-2002 11:42 53.48° -2.20° 2.90 2 51 

 

Figure 2.3 Representation of the four sequences detected for the UK. The smooth curve represents 

the modified Omori formula obtained using the mean values of the parameters a,c , p  . 

It is worth noting that, generally, the uncertainty of  a ,c , p  may also be 

quantified (e.g., Ogata, 1978; Kutoyantis, 1982); but the discussed paucity of data 

would require to adopt other approaches, such as multi-model inference methods 

(e.g., Zhang and Shields, 2018), yet this is considered of secondary importance and 

it is left out of the scopes of the study. Moreover, the small dataset of sequences 

has led to a relatively simple calibration. In other words, the considered aftershock 

sequences are those assumed to be complete above the minimum aftershock 

magnitude assumed in SPSHA, which is 4 0A,minm .= ; i.e., the minimum magnitude 

of the considered GMPE. 

To complete the characterization of the aftershocks in the framework of 

SPSHA, a model for aftershocks location is needed, which in turn serves to 

compute 
A E ER |M ,Rf  in Eq. (2.2). Similar to previous studies (Iervolino et al., 2014, 

2018; Chioccarelli et al., 2021), it was assumed that aftershocks may occur, with 

the same probability, within a circular area, centered on the mainshock location, 
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whose size, AS , expressed in squared kilometers, depends on the magnitude of 

the mainshock according to the model of Utsu (1970): 

4 110m .

AS .−=  (2.5) 

Alternative models for the shape of the area enclosing aftershocks can be found 

in literature (e.g., Kanamori and Anderson, 1975) and could be equivalently used 

in SPSHA. An interesting approach is that of Zhuang et al. (2002), who model the 

probability distribution of aftershocks location with a bell-shape decay from the 

mainshock location, yet they discuss that such a model relies on the same 

understanding at the basis of that given by Utsu (1970).  

Thus, it is expected that selecting an alternative model for the shape of the 

area enclosing aftershocks does not significantly affect the results. Finally, for the 

hazard analyses the duration of the aftershock sequence, AT , was assumed 

arbitrarily equal to 90 days from the occurrence of the mainshock, although, in 

principle, this duration could be mainshock-magnitude-dependent. This 

assumption is consistent with the other studies applying SPSHA (Iervolino et al., 

2018; Chioccarelli et al., 2021); nevertheless, it has been observed that the Omori 

law’s parameters calibrated for the UK renders the results of hazard analysis 

slightly more dependent on AT  than the previous studies. (See Sensitivity 

analysis section). 

2.4. Analysis and Results 

The analyses were carried out through the REASSESS software (Chioccarelli et 

al., 2019), in which the simplified source model for the UK was implemented (and 

made available for eventual further studies). PSHA and SPSHA hazard curves, in 

terms of PGA , ( )0 2sSa T .=  and ( )1 0sSa T .= , were computed for more than 

four thousand sites across all the country, which are the nodes of a regular grid 

spacing 0.250° and 0.125° longitude and latitude, respectively. 

2.4.1. Hazard maps 

PSHA and SPSHA results for any site in the UK are represented in Figure 2.4 for 

PGA , and in Figure 2.5 and Figure 2.6 for ( )0 2sSa T .=  and ( )1 0sSa T .= , 

respectively. In each figure, the top panels, from (a) to (d), show the ground 

motion intensity measure that the figure refers with exceedance return period from 

95yrs to 2475yrs according to PSHA; those at the bottom, from (e) to (h), 

represent the results when mainshock-aftershock sequences are taken into account 

in SPSHA.  
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Figure 2.4  Maps of PGA  on rock with 95yrrT = , 475yrrT = , 1100yrrT = and 2475yrrT = , 

from left to right, obtained using PSHA (panels a-d) and SPSHA (panels e-h). 

Looking at the figures, it can be observed that, for each spectral and 

exceedance return period, sites with the highest hazard are located in the western 

UK; i.e., in the area enclosing the seismic zones EISB, MENA, BALA and 

MMCW. This area also includes the sites exposed to the largest sequence-based 

seismic hazard, according to the bottom panels. This is somehow expected, as the 

more frequent and stronger (in terms of magnitude) the mainshocks the larger the 

number of expected aftershocks. The largest PGA  which is exceeded once every 

2475 yr (on average) due to mainshocks-aftershocks sequences is equal to 0.272 g; 

for the same return period, the largest values for ( )0 2sSa T .=  and ( )1 0sSa T .=  

across the country are 0.564 g and 0.061 g, respectively. The sites with the lowest 

hazard are enclosed by the ESCO zone in the north-eastern area of the UK. For 

example, in the proximity of Aberdeen (2.1° W, 57.16° N), a PGA value of 0.012 

g is exceeded, on average, once every 2475 yr, even considering the aftershock 

effects; for the same return period, the lowest ground motion intensity at the same 

site is equal to 0.022 g for ( )0 2sSa T .=  and 0.008 g for ( )1 0sSa T .= . The south-

east area of the UK is exposed to relatively moderate seismic hazard. For example, 

at the site of Norwich (1.30° E, 52.63° N), the largest PGA , ( )0 2sSa T .=  and 
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( )1 0sSa T .=  for 2475yrrT =  using SPSHA, are equal to 0.031 g, 0.0606 g and 

0.013 g, respectively. 

 
Figure 2.5 Maps of ( )0 2sSa T .=  on rock with 95yrrT = , 475yrrT = , 1100yrrT = and 

2475yrrT = ,  from left to right, obtained using PSHA (panels a-d) and SPSHA (panels e-h).  
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Figure 2.6 Maps of ( )1 0sSa T .=  on rock with 95yrrT = , 475yrrT = , 1100yrrT = and 

2475yrrT = ,  from left to right, obtained using PSHA (panels a-d) and SPSHA (panels e-h). 

It appears that the hazard increase due to aftershocks is not the same across 

the country. This is not unexpected, as the magnitude and number of aftershocks 

increase with seismic hazard due to mainshocks (see also Iervolino et al., 2018; 

Chioccarelli et al., 2021). Moreover, results reveal that aftershock effect varies with 

the exceedance return period and spectral ordinate, as discussed in the following. 

To analyze quantitatively the results, Figure 2.7 shows the distributions of the 

differences between SPSHA and PSHA results across the country, computed at 

each site as SPSHA PSHAsa sa− ; dividing this difference by PSHAsa  gives the relative 

hazard increases due to aftershocks, relatively to PSHA results; i.e., 

( )SPSHA PSHA PSHAsa sa sa− . In both the figures, the top, middle and bottom rows 

refer to PGA , ( )0 2sSa T .=  and ( )1 0sSa T .= , respectively; in each row, panels 

from left to right show the difference for exceedance return periods from 95 yr to 

2475 yr. 
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Figure 2.7 Absolute differences between SPSHA and PSHA results in terms of PGA  (top), 

( )0 2sSa T .=  (middle) and ( )1 0sSa T .=  (bottom),  with 95yrrT = , 475yrrT = , 1100yrrT = and 

2475yrrT = , from left to right. 
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Figure 2.8 Relative differences between SPSHA and PSHA results in terms of PGA  (top), 

( )0 2sSa T .=  (middle) and ( )1 0sSa T .=  (bottom),  with 95yrrT = , 475yrrT = , 1100yrrT = and 

2475yrrT = , from left to right. 

As already mentioned, for each spectral ordinate and exceedance return 

period, it can be observed that aftershocks effect tends to increase (decrease) the 

seismic hazard increase (decrease) according to classical PSHA, in both absolute 

and relative terms. Looking at the figures vertically, it is found that, for each return 

period, the trend of the differences is the same as that of hazard results with the 

vibration period, which depends on the GMPE; i.e., it is comparatively larger at 

the low vibration periods. In fact, according to the maps, the maximum differences 

over the whole country are observed for ( )0 2sSa T .= , whereas the lowest are 

recorded for ( )1 0sSa T .= ; differences in terms of PGA  are in an intermediate 
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situation. On average over the country, the absolute difference ranges from 3.88E-

04 g, for 95yrrT = , to 0.005 g, for 2475yrrT = , for PGA , whereas they are 

3.77E-04 g and 0.004 g for 95yrrT =  and 2475yrrT = , respectively, for 

( )0 2sSa T .= ; for ( )1 0sSa T .= , increments are very low, being about 0.001 g, 

on average, for the largest return period (see Table 2.3, Table 2.4 and Table 2.5).  

 Table 2.3 Average and maximum difference, in absolute and relative terms, of SPSHA results with 

respect to PSHA counterparts for PGA  . 

 yrrT  
PGA  

95 475 1100 2475 

Average percentage difference [%] 10.2 10.7 10.8 10.9 

Average absolute difference [g] 3.88E-04 0.0016 0.0030 0.0051 

Maximum percentage difference [%] 10.9 12.2 13.2 13.8 

Maximum absolute difference [g] 0.001 0.010 0.020 0.033 

Table 2.4 Average and maximum difference, in absolute and relative terms, of SPSHA results with 

respect to PSHA counterparts for ( )0 2sSa T .= . 

 yrrT  
( )0 2sSa T .=  

95 475 1100 2475 

Average percentage difference [%] 3.2 2.9 2.7 2.4 

Average absolute difference [g] 3.77E-04 0.0015 0.0026 0.0041 

Maximum percentage difference [%] 10.8 12.2 13.5 13.8 

Maximum absolute difference [g] 0.003 0.022 0.043 0.069 

Table 2.5 Average and maximum difference, in absolute and relative terms, of SPSHA results with 

respect to PSHA counterparts for ( )1 0sSa T .= . 

 yrrT  
( )1 0sSa T .=  

95 475 1100 2475 

Average percentage difference [%] 9.2 9.6 9.1 8.3 

Average absolute difference [g] 1.18E-04 4.99E-04 8.52E-04 0.0013 

Maximum percentage difference [%] 9.8 9.9 10.0 9.9 

Maximum absolute difference [g] 2.72E-04 0.002 0.003 0.006 

Considering the ensemble of the return periods discussed so far, the average 

relative increments over the country are within 10.2% and 10.9% for PGA , 2.4% 

and 3.2% for ( )0 2sSa T .= , and 8.3% and 9.6% for ( )1 0sSa T .= . For each 

spectral ordinate, one can observe that absolute differences tend to increase with 

the increasing return period. However, the largest increment over the country, in 

absolute terms, is well below 0.1 g. Looking at the map in Figure 2.7, it is found 

that, in the proximity of the high hazardous MENA zone, the difference between 

SPSHA and PSHA results, in terms of ( )0 2sSa T .=  with 2475yrrT = , is equal 
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to 0.069 g. Given the spectral ordinate, the trend of the relative increments as a 

function of the return period is non-monotonic. The largest percentage difference 

is found for 2475yrrT =  in the case of PGA  (North England) and ( )0 2sSa T .=  

(northwest Wales), being about 13.8% in both the cases, whereas, for 

( )1 0sSa T .= , it is about 10% (western Scotland) for 1100yrrT = . In order to 

summarize the results represented in Figure 2.7 and Figure 2.8, the average and 

maximum differences, in both absolute and relative terms, are given in Table 2.3, 

Table 2.4 and Table 2.5 for each spectral and exceedance return period.  

To close this section, the aftershock effects on design seismic actions 

discussed so far are briefly compared to those estimated for Italy by Iervolino et 

al. (2018). Due to the larger seismic hazard, it is expected that aftershock effects 

in Italy (see Figure 2 and Figure 3 in Iervolino et al., 2018) are more significant, 

both in relative and absolute terms, than those for the UK. For example, 

considering PGA  and the largest return period ( )2475yrrT = , for the most 

hazardous sites, the relative increment in Italy (about 28%) can be even twice that 

found for the UK (about 14%). Still with reference to PGA  and 2475yrrT = , the 

largest absolute difference between SPSHA and PSHA results are equal to 0.116g 

and 0.033g for Italy and the UK, respectively. Such a difference is also related to 

the fact that, for the same return period, spectral accelerations according to PSHA 

for the UK are lower than the Italian counterpart, yet by a larger ratio. More 

precisely, in the most hazardous areas of Italy PGA for 2475yrrT =  (about 0.6 g) 

is almost three time the largest PGA (for the same return period) for the UK 

(about 0.25 g). 

2.4.2. Site-specific hazard Analysis 

In the previous section, it has been shown that aftershock effects on design seismic 

actions depend on the seismic hazard of the site, the spectral and exceedance 

return period. Now, SPSHA and PSHA results are discussed in more detail for the 

sites of Edinburgh (3.19° W, 55.95° N), Cardiff (3.18° W, 51.49° N) and Llangefni 

(4.31° W, 53.25° N). They were selected because representative of comparatively 

low, medium and high hazard level across the country according to PSHA, 

respectively. The location of the considered sites is shown in Figure 2.1. The aim 

is to (i) investigate the increase in seismic hazard due to aftershocks with respect 

to an interval of spectral and return periods larger than those considered in the 

previous section, and (ii) to give insights on the differences between PSHA- and 

SPSHA-based hazard results.  

PSHA and SPSHA results for the sites are compared in Figure 2.9.  
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Figure 2.9 Results of hazard analysis for the three sites of interest: hazard curves in terms of PGA

, ( )0 2sSa T .=  and ( )1 0sSa T .=  for the site of Edinburgh (a), Cardiff (b) and Llangefni (c) , UHS 

with 95yrrT = , 475yrrT = , 1100yrrT = and 2475yrrT =  for the site of Edinburgh (d), Cardiff 

(e) and Llangefni (f); relative hazard increase as function of the spectral period, for four 
rT  values, 

for the site of Edinburgh (g), Cardiff (h) and Llangefni (i); relative hazard increase as function of 
rT  

in terms of PGA , ( )0 2sSa T .=  and ( )1 0sSa T .=  for the site of Edinburgh (l), Cardiff (m) and 

Llangefni(n).  

The columns of Figure 2.9, each referring to a site, are ordered following the 

increasing seismic hazard, from left to right. Panels from (a) to (c) represent the 
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hazard curves in terms of PGA , ( )0 2sSa T .=  and ( )1 0sSa T .=  according to 

PSHA (grey lines) and SPSHA (black lines). Panels from (d) to (f) show the UHS 

obtained from PSHA (grey lines) and SPSHA (black lines) for the return periods 

considered before. The spectral ordinates were computed considering 24 natural 

vibration periods, which are those used in the GMPE of Bindi et al. (2014). Based 

on these UHS, the relative hazard increments, as defined in the previous section, 

are represented in panels from (g) to (i), for each ( )Sa T  and exceedance return 

period. In addition, the effect of aftershocks on the hazard, in terms of PGA , 

( )0 2sSa T .=  and ( )1 0sSa T .= , as a function of return period from 50 yr to 

10000 yr is shown in panels from (l) to (n). 

Looking at the figure, it can be observed that the largest hazard increases are 

for the low-to-mid vibration periods (i.e., lower than 0.3 s), independently on the 

seismic hazard of the site and the considered exceedance return period. At each 

site, the largest relative differences are for the vibration period equal to 0.1 s, and 

all return periods: more specifically, they are 13.6%, 14.6% and 16% for 

Edinburgh, Cardiff and Llangefni, respectively. Panels from (g) to (i) also show 

that, considering the long vibration periods (i.e., larger than 1.0 s), the hazard 

increments at each site are lower than those found at the short periods and is 

almost constant: in fact, considering the return periods from 95 yr to 2475yr, they 

range from about 7.5% to 10% for both Edinburgh and Cardiff, whereas they are 

around 9% for any return period in the case of Llangefni. This reveals that the 

contribution of aftershocks to seismic hazard tends to decrease with the increasing 

of the spectral period, independently of the seismic hazard of the site and the 

exceedance return period; see as Iervolino et al. (2018) and Chioccarelli et al., 

(2021) for a discussion on this issue. 

Panels from (g) to (i) confirm that the relative increment in the design seismic 

actions due to aftershocks, with respect to PSHA results, does not monotonically 

increase with the return period. For example, back to ( )1 0sSa T .= , it can be 

observed that the largest difference is found for 475yrrT =  in the case of 

Edinburgh, whereas it is 2475yrrT =  for the other two sites. Thus, one may be 

interested in exploring the trend of the hazard increment in a range of return 

periods wider than that considered so far. To do this, one should look at panels 

from (l) to (n). They reveal that, at each site, the increments increase in a very 

limited range of return periods, and tend to flatten out at rT  values larger than 

4000 yr (and up to the largest herein considered) in the case of PGA and 

( )0 2sSa T .= , whereas, for ( )1 0sSa T .= , they monotonically decrease for return 

periods from 2000 yr onwards. This is expected from the disaggregation of 



 CHAPTER 2 76 

 
sequence-based seismic hazard (i.e., Chioccarelli et al., 2018), according to which 

the contribution of aftershocks to hazard as a function of rT  is not the same at 

the different vibration periods. For Edinburgh, the maximum increments for 

PGA , ( )0 2sSa T .=  and ( )1 0sSa T .=  are about 10.5%, 11.9% and 9.9%, 

respectively. They occur at different return periods, being 9980yrrT =  for PGA, 

470 yrrT =  ( )0 2sSa T .=  and 360 yrrT =  for ( )1 0sSa T .= . Considering the 

site of Cardiff, the maximum increases in terms of PGA , ( )0 2sSa T .=  and 

( )1 0sSa T .=  are equal to 12.3%, 12.5% and 9.6% and they occur at return 

periods of 9990 yr, 9690 yr and 170 yr, respectively. Finally, for Llangefni, the 

maximum percentage difference between SPSHA and PSHA results in terms of 

PGA  is equal to 13.1% and it is observed for 4060yrrT = ; in the case of 

( )0 2sSa T .= , the largest difference is similar to that for PGA, being equal to 

13.6%, but it is found for 1720yrrT = ; looking at the trend for ( )1 0sSa T .= , the 

peak, which is equal to 9.6%, occurs at 1830yrrT = . 

2.5. Sensitivity analysis 

Because the paucity of seismic sequences leads to a simplified calibration of the 

modified Omori law parameters, this section deals with some sensitivity analysis 

of the results to such parameters, that is,  , ,a c p  and AT .  

First, the 2475 yr UHS derived via the SPSHA based on the mean parameters, 

 1.71, 0.0023, 0.68= − = =a c p , (i.e., those pictured in panels from (d) to (f) of 

Figure 2.9) are compared to those obtained by using 

 1.66, 0.0295, 0.93a c p= − = = , that is, the parameters for Italy by Lolli and 

Gasperini (2003), a country of a generally larger seismic hazard than the UK. The 

comparison is given in Figure 2.10 where it appears that the differences are limited.  

Moreover, even if not given here for the sake of brevity, the four sets of 

parameters obtained from each of the four seismic sequences considered, were 

also used to derive the UHS for the same sites and same return period just 

discussed. The found differences are in the order of 10%-15% with respect to the 

spectra obtained with the parameters obtained pooling all the sequences together. 

Finally, still considering the 2475 yr UHS for the sites of Edinburgh, Cardiff 

and Llangefni, Figure 2.11 shows the sensitivity of the relative hazard increase, 

with respect to PSHA results, to the AT  interval assumed in the analysis. It is 

shown that to vary AT  from 90 to 365 days does not significantly affect the 

results. 
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Figure 2.10 Comparison of UHS with 2475yr=rT  obtained from hazard analysis conducted 

using the mean parameters calibrated for the UK and those for Italy by Lolli and Gasperini (2003) 

for the site of Edinburgh (a), Cardiff (b) and Llangefni (c). 

 

Figure 2.11 Comparison of UHS with 2475yr=rT  obtained from hazard analysis conducted 

using the mean parameters calibrated for the UK with 90 =AT  days and 365 =AT  days for the 

site of Edinburgh (a), Cardiff (b) and Llangefni (c). 

2.6. Conclusions 

For reasons mainly related to the ease of calibration and use, implied by the 

homogeneous Poisson process assumption for earthquake occurrence and the 

limited completeness of information about foreshocks and aftershocks in seismic 

catalogs, classical PSHA only considers mainshocks in determining the rate of 

seismic events that exceed a ground motion intensity at a site of interest. However, 

sequence-based probabilistic seismic hazard analysis allows us to account for the 

effect of aftershock in the hazard assessment keeping the same advantages of 

PSHA. In fact, SPSHA still resources from a de-clustered catalog and assumes the 

homogeneous Poisson process assumption for the occurrence of mainshock-

aftershocks sequences. Finally, SPSHA relies on an analytical formulation that is 

relatively easy to implement. Moreover, literature recently discussed that it is in 

good agreement with other seismic sequences modeling approaches, generally 

more cumbersome in calibration and simulation.  
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In the presented study, SPSHA was applied to investigate the hazard increase 

due to aftershocks in the UK, using the recent source model from the BGS. The 

parameters of the modified Omori law, which is used to model aftershock 

occurrence, were calibrated in a simplified manner based on four seismic 

sequences occurred in the UK (no more than that due to paucity of quality data), 

assumed to be complete in the magnitude range of interest. A very simple 

sensitivity analysis was carried out to assess the effect of the modified Omori law 

parameters on the results. It was verified that using parameters for a high-

seismicity country such as Italy, does not lead to relevant differences in the hazard 

results.  

Considering four exceedance return periods of interest to structural 

engineering within 95 yr and 2475 yr, hazard maps, in terms of PGA , 

( )0 2sSa T .=  and ( )1 0sSa T .= , resulting from SPSHA were computed for rock 

site conditions, and compared to the PSHA counterparts based on the same source 

model and GMPE. Moreover, with reference to three sites, the PSHA and SPSHA 

results, for exceedance return periods up to 10000 yr and 24 spectral ordinates, 

were compared and discussed in greater detail to give further insights about the 

aftershock implications. Finally, the aftershock effects estimated for the UK were 

briefly compared to a previous SPSHA study for Italy, a relatively larger seismic 

hazard country. Some remarks that can be drawn from the results are listed in the 

following. 

− For each spectral and return period, the hazard increase tends to be more 

relevant in the areas covering most of Wales, North Central England and 

western Scotland. 

− For a given spectral ordinate, the largest percentage increase due to 

aftershocks over the country has a non-monotonic trend with the return 

period; the largest value across the country, equal to 10%, was found at 

1100yrrT =  for ( )1 0sSa T .= , while, for PGA  and ( )0 2sSa T .= , it is 14% 

at 2475yrrT = .  

− For a given spectral ordinate, the maximum absolute differences between 

SPSHA and PSHA results over the country monotonically increase with 

return period (in the range considered). Nationwide, for 2475yrrT = , the 

largest difference between SPSHA and PSHA are equal to 0.033 g, 0.069 g 

and 0.006 g in the case of PGA , ( )0 2sSa T .=  and ( )1 0sSa T .= , 

respectively.  
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− On average across the country, the absolute differences, in the case of 

2475yrrT = , are equal to 0.0051 g, 0.0041 g and 0.0013 g for PGA , 

( )0 2sSa T .=  and ( )1 0sSa T .= , respectively.  

− Considering the range of return periods between 95 yr and 2475 yr, the largest 

average percentage differences are equal to 11% in the case of PGA, 3% for 

( )0 2sSa T .= , and 10% for ( )1 0sSa T .= ; they were found at 2475yrrT =

, 95yrrT =  and 475yrrT = , respectively. 

− The analysis for specific sites revealed that the aftershock effects are more 

significant at vibration periods lower than 0.3 s, and tend to decrease for 

those larger, becoming almost constant from 1.0 s onwards. The largest 

relative difference between SPSHA and PSHA results was found at 0.1 s for 

all sites. With reference to Llangefni, which is the site characterized by the 

highest seismic hazard countrywide, the return period for which the largest 

hazard increase is found significantly varies among the different spectral 

ordinates, being equal to 4060 yr, 1720 yr and 1830 yr for PGA , 

( )0 2sSa T .=  and ( )1 0sSa T .= , respectively. 

− In the most hazardous sites of the UK, the hazard percentage increments of 

SPSHA results with respect to PSHA are about a half than those found in 

the most hazardous areas of Italy, although in Italy the larger spectral 

acceleration associated to a given return period can be three times larger than 

the analogous one in the UK. 
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3 

Evaluation of state-dependent seismic fragilities for 

specific buildings: Dutch unreinforced masonry. 
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Abstract 

This study was carried out in collaboration with Arup Italy. 

This chapter deals with the assessment of state-dependent fragility curves of a 

case-study structure representative of the unreinforced masonry (URM) buildings 

(specifically terraced houses) in the Groningen region of the Netherlands. This is 

an area where the seismicity induced by gas-extraction practices makes it essential 

to develop an understanding of the risks that are the result.  

A three-dimensional model of the structure was developed in collaboration 

with Arup Italy using the LS-DYNA finite element software. This was employed 

to analyze the building via the Cloud Analysis procedure to assess the fragilities of 

the intact structure at different damage states. Subsequently, to limit the typical 

computational effort involved in assessing state-dependent fragilities, two single-

degree-of-freedom (SDoF) systems representing the structural behavior in the 

building’s two main directions were developed and analyzed using back-to-back 

Incremental Dynamic Analysis (IDA).  

Keywords: sequence-based seismic reliability, back-to-back IDA, SDoF systems, 

unreinforced masonry. 

3.1. Introduction 

The evaluation of the seismic performance of unreinforced masonry (URM) 

structures is a popular topic of discussion globally. In the Netherlands in recent 

years, some regions began to experience seismic events because of the reservoir 

depletion caused by commercial gas-extraction processes (Vlek, 2019). These 

began in 1963 and have triggered shallow earthquakes since the early 1990s, with 

the highest moment magnitude equal to 3.6 experienced near Huizinge on 16 

August 2012. The induced seismicity had a wide impact on the built environment 

which was mainly composed of URM buildings that were not designed to sustain 

seismic loading. These structures presented in fact specific characteristics such as 

very slender walls, limited cooperation between the walls and floors, and the use 

of cavity walls that are often connected by weak and corroded ties. 

This phenomenon triggered a global research program involving many Dutch 

and international universities, knowledge institutions, and recognized experts. The 

primary goals of the program were to assess the hazard and risk resulting from gas 

extraction-induced seismicity and then develop risk-mitigation strategies. In this 

context, the exploration and production company Nederlandse Aardolie 

Maatschappij (NAM) contracted Arup to: 1) conduct a study to define a preventive 
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structural-upgrade strategy for existing buildings in the Groningen region of the 

Netherlands, with the goal of reducing the damage caused by the induced 

seismicity, and 2) verify whether the structures conform with the requirements set 

out in the standard National Practice Guidelines 9998 (NAM, 2018).  

This chapter considers the assessment of state-dependent fragility functions 

of a structure representing the terraced house typology built widely in the 

Groningen area from 1960-1980 and which was affected the most by the gas 

extraction-induced seismicity referred to above.  

A three-dimensional (3D) finite element model of the structure was 

constructed in a collaboration with Arup Italy. This was then analyzed using the 

LS-DYNA finite element software via Cloud Analysis methodology (Jalayer et al., 

2015, 2017). Subsequently, the assessment of state-dependent fragility curves was 

conducted using the single-degree-of-freedom (SDoF) approximation of the 

structure. Two equivalent SDoF (ESDoF) systems were defined based on the 

static and dynamic pushover curves obtained for the two principal directions of 

the original 3D structural model. These SDoFs were subjected to back-to-back 

Incremental Dynamic Analysis (IDA) procedure ( Luco et al., 2004; Ryu et al., 

2011; Goda, 2012; Ruiz-García, 2012; Raghunandan et al., 2015; Goda, 2015) to 

obtain the state-dependent fragilities. Some concluding remarks can be found at 

the end of this chapter. 

3.2. Prototype building 

The prototype building was based on the real terraced houses built in large 

numbers in the Groningen region (north-east Netherlands) from 1960-1980.  

In more detail, the case-study structure represents a two-unit terraced house 

with two stories, large window openings to the front and rear, and all the other 

construction features that are typical of the buildings in the Groningen area. The 

structure is composed of: 1) external masonry cavity walls formed by calcium 

silicate (CaSi) inner leaf with a load-bearing function and a clay brick outer leaf 

connected by masonry metal wall ties; 2) load-bearing internal walls and party walls 

formed of CaSi; 3) reinforced concrete slabs; 4) a timber roof; and 5) shallow 

foundations. Some of the construction details typical of these terraced houses are 

set out in Figure 3.1 (for further information on this structural typology, see 

Graziotti et al., 2017).  

The building is 12.5 m long, 7.80 m wide and 8.80 m high. The height includes 

a 1.0 m underground section (distance from the laying surface to the ground floor). 

Each unit of the structure has an extension, as is common for this type of building. 

This has approximate dimensions of 3.70 m x 2.20 m x 3.50 m. Figure 3.2 portrays 

different views of this model house. 
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Figure 3.1 Characteristics of the case-study building. 

 

Figure 3.2 Views of the terraced house case-study. 

The structure is composed of four walls in the X-direction and five walls in the Y-

direction. Their geometric features are shown in Figure 3.3 and Figure 3.4, 

respectively. Figure 3.3 shows the X-direction’s four walls. Panels (a) and (b) 

correspond to the two external walls and panels (c) and (d) to the two internal 

ones. Figure 3.4 shows the five walls in the Y-direction. Panels (a) and (b) 

correspond to the two external walls, panel (c) shows the wall separating the two 

units of the structure, and panel (d) represents the internal wall of each unit. The 

openings of each wall are also reported in Figure 3.3 and Figure 3.4.  

(a) (b)

X
Y Z

X
Y

Z



 CHAPTER 3 89 

 

 

Figure 3.3 Geometry of the walls disposed along the X-direction: frontal wall (a), back wall (b) and 

internal walls (c-d). 

 

Figure 3.4 Geometry of the walls disposed along the Y-direction: external walls (a-b); unit partition 

wall (c), and internal wall of each unit(d). 

It should be noted that, after the study commissioned by NAM (Arup, 2013),  

the structure was modeled taking into account reinforcement measures designed 

by Arup to ensure compliance with the standard National Practice Guidelines 

(NPR) 9998. 
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3.3. Finite Element Modelling approach 

A 3D finite element model of the structure was produced in collaboration with 

Arup Italy using LS-DYNA, which is a versatile finite element analysis program 

adopted for seismic analyses, among many other applications. The program is used 

widely by Arup due to its capacities to both model components of buildings, soils 

and soil-structure interaction and due to quick solutions for large, complex models 

on multi-processor distributed-memory computer platforms. 

To model the URM walls, a user material model for the shell elements 

(*MAT_SHELL_MASONRY) was developed and implemented by Arup in LS-

DYNA. This is not part of the standard LS-DYNA release. The material model is 

used with a relatively coarse mesh and adopts a homogenized representation of 

the brick-mortar conglomerate. It takes into account the orientation of horizontal 

and vertical mortar joints and the difference in their stress-strain behavior based 

on the interlocking of units. The response and failure modes taken into account 

are: 1) the non-linear compressive response and toe-crushing; 2) cyclic bed-joint 

crack opening/closing and sliding; 3) the head-joint opening combined with bed-

joint sliding; and 4) the interlocking pattern of bricks, which causes an anisotropic 

response to shear loading. The material model is described in detail in the study 

by Sturt et al. (2018), which also reports the procedure for validating the material. 

A testing campaign was carried out in 2015 to characterize the CaSi masonry 

typically that is typical of the load-bearing inner leaf of modern Dutch cavity wall 

systems. These experiments were performed at TU Delf in the Netherlands 

(Messali et al., 2017) and at EUCENTRE in Italy (Graziotti et al., 2017). The 

testing included in-plane and out-plane tests on wall specimens and full-scale 

shaking table tests of URM houses.  

Figure 3.5 shows different views of the 3D finite element model developed 

in LS_DYNA. It also shows the coordinate system considered, which was set by 

placing the X-axis along the larger structure’s dimension and Y-axis along the 

transverse direction. 
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Figure 3.5 Views of the three-dimensional finite element model of the case-study’s terraced house.  

3.4. Modal (Eigenvalue) Analysis 

In the first step, modal analysis was performed by calculating the first 20 modes 

of the building. Structures built with the configuration described in the previous 

paragraphs generally exhibit two very different seismic behaviors in the two 

principal directions. These structures are more flexible and vulnerable in the 

longitudinal direction, i.e., the X-direction (Graziotti et al., 2017). This was 

confirmed by the modal analysis, with the first mode showing in-plane 

deformations in the weak direction and the activation of the larger part of the mass 

of the structure in the X-direction (participating mass equal to 57.67 %). Hereafter, 

this is therefore referred to as the first mode, with a period of natural vibration, 1T

, equal to 0.20 s. 

In the Y-direction, the first major mode was mode 17, with participating mass 

of 22.90%. The other modes were generally local and concentrated in the roof of 

the structure. Table 3.1 shows the period of natural vibration and the effective 

mass and participating mass in the X- and Y-directions. 

Table 3.1 Modes of the case-study building. 

  X-direction Y-direction 

Mode Period [s] Eff. Mass [kg] Partic. [%]  Eff. Mass [kg] Partic. [%]  

1 0.199 1.45E+05 57.65% 2.80E+02 0.11% 

2 0.175 1.55E+01 0.01% 2.51E+03 1.00% 

3 0.175 7.34E+01 0.02% 3.29E+03 1.31% 

4 0.174 4.97E+01 0.02% 4.82E+00 0.00% 

5 0.174 3.05E+01 0.02% 1.32E+03 0.53% 

6 0.165 2.82E+02 0.11% 7.67E+03 3.05% 

7 0.161 1.45E+01 0.00% 1.86E+03 0.74% 
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Table 3.1 (Continued)  Modes of the case-study building. 

  X-direction Y-direction 

Mode Period [s] Eff. Mass [kg] Partic. [%]  Eff. Mass [kg] Partic. [%]  

8 0.161 3.04E+03 1.22% 1.80E+02 0.07% 

9 0.159 4.46E+02 0.17% 5.62E+02 0.23% 

10 0.114 5.59E+03 2.23% 6.48E+03 2.58% 

11 0.113 1.93E+03 0.77% 2.93E+04 11.66% 

12 0.113 1.45E+03 0.58% 2.74E+02 0.11% 

13 0.111 2.23E+02 0.09% 1.98E+03 0.79% 

14 0.111 9.70E+02 0.38% 2.81E+02 0.11% 

15 0.110 6.45E+02 0.26% 2.82E-01 0.00% 

16 0.105 1.54E+04 6.13% 2.80E+04 11.14% 

17 0.102 1.32E+04 5.25% 5.75E+04 22.90% 

18 0.094 7.40E+02 0.30% 4.52E+02 0.18% 

19 0.087 2.72E+01 0.01% 4.56E+00 0.00% 

20 0.086 1.60E+01 0.00% 1.38E+01 0.00% 

3.5. Non-linear static (pushover) analysis 

A non-linear static analysis was carried out by applying in the perpendicular 

directions of the structure (X and Y) two load patterns in both positive and 

negative orientations of the seismic loads and recording the static nonlinear 

response. The inverse triangular and uniform (mass-proportional) force 

distributions were used for the analysis. The first type of distribution is typically 

similar and represents the forces produced by the dominant mode of vibration. 

Meanwhile, the uniform distribution represents a possible soft-storey mechanism 

where the response is controlled by the ground-level story. These distributions can 

be taken as the upper and lower boundaries of the actual response of the dynamic 

analyses. Generally, the real failure mode is predicted by one of these distributions. 

Table 3.2 shows the lateral-load proportions. 

Table 3.2 Lateral-load proportions. 

 Mass Floor [kg] Uniform Distribution Triangular Distribution 

Second floor 73043 1.00 1.00 

First floor 87827 1.20 0.52 

 

 Subsequently, in addition to the static pushover analyses performed applying 

the two force distributions in the X- and Y-directions; the cyclic pushover 

assessments were executed using the loading protocol relating to the displacement 

shown in Figure 3.6 and defined according to the Protocol ISO 16670. This 

protocol concerns displacement cycles grouped in phases at displacement levels 
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that increase incrementally. The protocol has two displacement patterns. The first 

one consists of five single, fully reversed cycles at displacements of 1.25%, 2.50%, 

5.0%, 7.5% and 10% of the ultimate displacement. The second pattern has three 

fully reversed cycles of equal amplitude, at displacements of 20%, 40 %, 60%, 

80%, 100% and 120% of the ultimate displacement. The ultimate displacement is 

assumed equal to 0.04 m. 

 
Figure 3.6 Loading protocol for the cyclic pushover analyses. 

The results of the static and cyclic pushover analyses obtained for the two force-

distribution types are reported in Figure 3.7 in terms of the base shear, bV , and 

the displacement of the control point, i.e., the barycenter of the top floor. Panels 

(a) and (b) represent the results obtained applying the uniform distribution of 

forces whereas panels (c) and (d) refer to the application of the triangular force 

distribution. The figure also shows several characteristic points individuated on 

the static pushover curves: 1) the point of maximum base shear (point A in the 

positive direction of the load and A’ in the negative direction); 2) the point of a 

20% reduction in the base shear (point B in the load’s positive direction and B’ in 

its negative direction); and 3) the point of a 50% reduction in the base shear (point 

C in the positive direction of the load and C’ in the negative direction). The values 

of the points’ coordinates in terms of base shear, bV , and displacement of the top 

floor,  , are set out in Table 3.3 and in Table 3.4 for the uniform and triangular 

force-distributions, respectively. 
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Figure 3.7 Results of the static and cyclic pushover analyses performed by applying the uniform 

distribution of forces in the X direction (a) and the Y direction (b). Results of the static and cyclic 

pushover analyses performed by applying the triangular distribution of forces in the X direction (c) 

and the Y direction (d). 

Table 3.3 Coordinates of the characteristic points relating to the uniform distribution of forces. 

 Direction X Direction Y 

   Disp m    bV kN    Disp m    bV kN  

A 0.005 295.6 0.003 807.6 

B 0.015 236.5 0.006 646.09 

C 0.046 147.8 - 403.8 

A’ -0.007 -386.8 -0.002 -796.4 

B’ -0.012 -309.4 -0.006 -637.1 

C’ -0.029 -193.4 -0.159 -398.2 

Table 3.4 Coordinates of the characteristic points relating to the triangular distribution of forces. 

 Direction X Direction Y 

   Disp m    bV kN    Disp m    bV kN  

A 0.005 264.5 0.003 769.3 

B 0.008 211.6 0.006 615.4 

C 0.031 132.3 - 384.6 

A’ -0.005 -318.9 -0.003 -770.6 

B’ -0.009 -255.1 -0.014 -616.5 

C’ -0.021 -159.5 -0.147 -385.3 

3.6. Assessment of seismic fragilities using the 3D finite element 

model 

There are several procedures to conduct a nonlinear dynamic analysis (NLDA) for 

the purpose of collecting the data required to estimate the fragility functions. One 
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of these methods is Cloud Analysis, which was used in this study to assess of the 

fragility curves of the case-study’s system. The cloud data encompass pairs of 

ground motion intensity measure ( IM ) and its corresponding structural response, 

generally expressed using an engineering demand parameter ( EDP ). The statistical 

properties of the cloud data can be estimated by applying a conventional linear 

regression (using least squares) to the data on the natural logarithmic scale, which 

is the standard basis for the underlying log-normal distribution model (Jalayer et 

al., 2015, 2017). 

Consequently, the cloud method enables the identification of a probabilistic 

relationship between an EDP  and IM . This predicts the conditional median of 

EDP  for a given level of IM  denoted as EDP|IM : 

( ) ( )ln ln lnIMEDP IM a b IM = + ∣  (3.1) 

where lna  and b  are constant coefficients that are estimated from the linear regression. 

The conditional logarithmic standard deviation of the EDP  given IM , βEDP|IM, can be 

estimated as: 

( )( ) ( )
2

1

2
N

b

i iEDP|IM

i

ln EDP ln a IM N
=

= −  −  (3.2) 

where iEDP  and iIM  are the corresponding cloud data for the i -th record in the set 

and N is the number of records. 

A structure-specific seismic fragility function defines the conditional 

probability that the structure, given a certain IM  level, im , fails to meet some 

performance objective. This failure is often termed the exceedance of a limit or 

damage state, DS , that can be defined using a threshold value of engineering 

demand parameter, DSedp . The fragility function can therefore be written as 

DSP EDP edp IM im =   , or sometimes simply written as  P DS|IM im= . 

This probability in the case of a Cloud Analysis can be described using a lognormal 

distribution (Jalayer and Cornell, 2008; Jalayer et al., 2017) , as reported in Eq. (3.3)

: 

( )
Φ Φ

b

aEDP|IM

EDP|IM EDP

DS

|IM

P EDP edp IM im
ln a IMln

  
 =  

  
 = =

  
   

. (3.3) 

For ultimate limit states in general, structural collapse can be induced by some 

of the selected records, resulting in very large EDP  values. In these cases, the 

displacement demands from NLDAs are unreliable, being known to exceed a 

particular limiting value. A different procedure can, however, be utilized to 
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estimate the probability of failure. This involves the explicit consideration of 

collapse cases, dividing the cloud data into two parts: NoC , referring to the 

records where the structure does not collapse; and C , where it does (Jalayer and 

Cornell, 2008). The structural fragility for a prescribed limit state can be written 

using the Total Probability Theorem: 

 ( )
 
1DS DS

DS

P EDP edp IM im P EDP edp IM im,NoC P C|IM im

P EDP edp IM im,C P C|IM im

 = =  =  − = +      
+  =  =  

 (3.4) 

where 
DSP EDP edp IM im,NoC =    is the conditional probability that EDP  is 

greater than the threshold DSedp  given that the collapse has not taken place. This 

probability can be described using a lognormal distribution (Jalayer and Cornell, 

2008; Jalayer et al., 2017) as reported in Eq. (3.3), but the conditional median and 

standard deviation of the logarithm of EDP  are evaluated considering the portion 

of NoC  data, i.e. EDP|IM ,NoC  and EDP|IM ,NoC .  

DSP EDP edp IM im,C =    is the conditional probability that the EDP  is 

greater than the threshold DSedp , given that the collapse has occurred. This term 

is thus equal to unity. As reported in the following,  P C|IM im=  is the 

probability of collapse, which can be evaluated using logistic regression (a.k.a., 

logit) as a function of IM : 

 
( )0 1

1

1
ln IM

P C|IM
e

 − + 
=

+
 (3.5) 

where 0  and 1  are the parameters of the logistic regression. 

3.6.1. Choosing the Engineering Demand Parameter (EDP) and 

defining the limit states  

State-of-the-art analytical methods for estimating fragility functions rely on 

subjecting the structure to NLSAs to collect the building’s responses to a suite of 

accelerograms. The choice of EDP  is therefore crucial. The EDP  is synthetic 

measure of the structural response and can be used to determine if a structure has 

failed to meet a particular performance objective. Commonly used EDPs  for 

structures include drift/deformation quantities, which are generally among the 

better indicators of damage.  

For masonry structures, both the choice of an EDP  that represents the 

global building performance and the relative definitions given to suitable limit 

states are still open issues (Mouyiannou et al., 2014; Lagomarsino and Cattari, 
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2015; Kappos and Papanikolaou, 2016). This is because achieving a local limit 

condition would not be an adequate representation of the overall damage 

sustained by the building. Indeed, the lack of proper connections between 

orthogonal walls, and between walls and floors, is quite common in existing 

masonry buildings and can facilitate the activation of local failure modes. Early 

local damage modes may prevent the development of a global building response 

governed by the in-plane behavior of masonry walls and the floor in-plane 

stiffness. In this case, only the global behavior of the structure is investigated 

assuming that the upgrade measures, designed by Arup (Arup, 2013) ensured 

compliance with the standard NPR guidelines. This enables the development of 

global building response to prevent local failures. 

 The choice of the EDP  and the quantification of the limit states for the 

fragility curves assessment were based on the Italian Guidelines and Technical 

Instructions of the Council for National Research, (CNR), specially, CNR-DT 

212/2013 (CNR, 2013). These guidelines provide suggestions for the 3D 

modelling of a structure and the use of non-linear dynamic analyses as the analysis 

methodology. In this case-study, the limit states were defined using a multiscale 

approach that considers 1) the exceedance of a predetermined level of drift in a 

certain number of elements (piers and spandrels); 2) the inter-storey drift in the 

individual walls or the achievement of predefined levels of deformation in the slabs 

(if flexible); and 3) the global response evaluated on the capacity curve of the 

structure. The definitions of damage (SLD), serviceability (SLS) and near collapse (SLC) 

limit states in the multiscale approach are described in brief below. 

As non-linear continuous modeling was adopted to assess the level of drift 

achieved by each element during the dynamic analyses, the piers and spandrels of 

each masonry wall are defined a-posteriori according to Parisi and Augenti, (2015).  

3.6.1.1. Limit state of damage (SLD) 

In the multiscale approach, the variable of the limit state of damage, SLDY , for 

masonry buildings is defined as per Eq. (3.6): 

( )SLD SLD,S SLD,M SLD,GY max Y ,Y ,Y=  (3.6) 

where: SLD ,SY  is the limit state variable defined at the level of the structural 

element,  based on the cumulative damage to the piers and spandrels (see Eq. (3.8)

); SLD,MY  is the maximum value of the D C  (demand over capacity) ratio in terms 

of the interstorey drift, meaning that, at the macro-element level, this control can 

be significant in relation to the damage to non-structural elements; and SLD,GY  is 

the ratio between the maximum displacement of a control point during the time-



 CHAPTER 3 98 

 
history analysis and the displacement corresponding to the attainment of the 

maximum base shear evaluated on the pushover curve, which is obtained using 

the same control point.  

The limit state variable defined at the level of the structural element, SLD ,SY , is 

defined as: 

( )1
SLD,S SLD,S SLD,M

SLD

Y max , .


=   . (3.7) 

SLD  is a threshold, representing the maximum cumulative damage allowed for 

the SLD, assumed in this case to be 3.0%. This threshold prevents the SLD from 

being reached when only one element (pier or spandrel) achieves the maximum 

drift; and 
SLD,S and 

SLD,P represent the cumulative damage caused to the 

spandrels and piers, respectively. This cumulative damage is evaluated as the 

percentage of spandrels/piers of the buildings that achieved a certain level of 

damage, as defined by element drift limits (level 4 for spandrels and level 3 for 

piers). These are contained in CNR-DT 212/2013 (CNR, 2013), and are also set 

out in Table 3.5 and Table 3.6 for the piers and spandrels, respectively. For the 

purposes of the current assessment, consideration was given to the minimum drift-

range values and the shear-failure mode for the piers, i.e., corresponding to drift 

limits of 0.25% and 0.8% for the piers and spandrels, respectively. 

Table 3.5 Range of drift for piers at different damage levels and different failure modes CNR-DT 

212/2013. 

 Drift [%] 

Damage level 3 4 5 

Flexural 0.4÷0.8 0.8÷1.2 1.2÷1.8 

Shear 0.25÷0.4 0.4÷0.6 0.6÷0.9 

Table 3.6 Ranges of drift for spandrels at different damage levels according to CNR-DT 212/2013. 

 Drift [%] 

Damage level 3 4 5 

 0.4÷0.6 0.8÷1.2 1.8÷2.2 

Therefore, 
SLD,S and 

SLD,P  in Eq.(3.7) are evaluated in Eq. (3.8)as: 
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 (3.8) 

where: SN  is the number of spandrels in the building; jA  represents the resistant 

areas of the piers; and H  is a dummy variable that returns 0 for j jD C  and 1 

for j jD C . Meanwhile, SLD,MY  is defined as in Eq. (3.9): 

0 2

p p

SLD,M

SLD,M

Y
. %

 


= =  (3.9) 

in which p  is the maximum interstory drift and the threshold, SLD,M , is assumed 

to be 0.2 % according to CNR-DT 212/2013. 

3.6.1.2. Limit state of serviceability (SLS) 

In the serviceability limit state, a variable measuring the spread of damage in a 

construction is defined, i.e., SLSY . This is directly related to the possibility that the 

damage can be repairable. In the case of masonry buildings (unlike for RC 

constructions), it is not necessary to represent the damage and related repair costs 

of non-structural elements, as their prevalence is marginal (essentially being almost 

all structural walls). However, it seems to be appropriate to assign different weights 

to the damage caused to the vertical piers and horizontal spandrels, since the latter 

are decidedly less significant and more easily repairable (as they are not 

fundamental for carrying vertical loads). Furthermore, in relation to the piers, it is 

also necessary to attribute weights commensurate with the corresponding resistant 

areas. Therefore, SLSY  is evaluated as follows: 

( )
1 1

1 1

1 1

P Sn n ji
P i P ji j

SLS
i ,SLS j ,SLS

SLS

SLC

DD
w c w c

Y C C

when Y

 


= =

   
 + −     =        

   (3.10) 

where SLS  is a threshold of the conventional global cost of repair operations, 

assumed in this case to be 0.6. The coefficient P  expresses the weight of the 

masonry piers on the total economic value of the structural elements of the 

building and was assumed equal 0.8. These sums are extended to all the piers Pn  
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and the spandrels Sn  of the structure. The conventional repair-cost function, 

( )i i ,SLSc D C , is shown in Figure 3.8. 

 
Figure 3.8 Plot of the conventional repair cost function in Eq. (3.10). 

Moreover, the weights associated with the repair costs of the piers are evaluated 

in Eq. (3.10) as i k

k

A A , where iA  is the resistant area of the i -th pier. The 

weights, jw , of the repair costs for the spandrels are equal to 1 Sn . Finally, the 

variable SLCY  controls the attainment of the collapse-prevention limit state, which 

is defined in the next paragraph. This control assumes that SLS can never succeed 

the SLC, and is required because certain collapse mechanisms, e.g., weak-storey, 

do not lead to a significant spread of damage in a building and the cost function 

does not increase beyond a particular value. 

The weighted sum appearing in Eq. (3.10), i.e., the numerator of SLSY , is also 

known as the conventional global cost of repair. 

3.6.1.3. Limit state of near collapse (SLC) 

Similar to the SLD, in the near-collapse limit state, the variable SLCY  is defined as: 

( )SLC SLC ,S SLC ,M SLC ,GY max Y ,Y ,Y=  (3.11) 

in which 
1 1

3 0
SLC ,S SLC ,P SLC ,P

SLC

Y
. %

= =  . In this case, 
SLC ,P  is evaluated 

as per Eq. (3.8). It is assumed that the maximum capacity of the piers is reached 

at the damage level 5, corresponding to a drift of 0.6%, as reported in Table 3.5 

for the shear-failure mode. The threshold, SLC , represents the maximum 

cumulative damage allowed in the SLC and is assumed to be 3.0%. The limit state 
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variable associated with the macro elements, SLC ,MY , is defined as in the SLD, 

with an assumption made that the limit threshold of the inter-story drift is 0.6%. 

Finally, the limit state variable associated with the global response of the 

building, SLC ,GY , is the ratio between the maximum displacement of a control 

point during the time-history analysis and the displacement corresponding to a 

percentage degradation equal to 40% of the structure’s global base shear (60% of 

the maximum base shear). 

3.6.2. Record selection for the Cloud Analysis 

A set of 40 records was selected from the NGA-West2 database to execute the 

NDLAs. As the real-life structures upon which ours was modeled are subjected to 

earthquakes due to gas extraction, the record selection was conducted without any 

special regard being paid to the fault style, but instead only to the avoidance of the 

effects of impulsive earthquakes and in consideration of soil category B. This is 

based on the Eurocode 8 classification (CEN, 2004), and is characterized by a 

shear-waves velocity ranging from 360 m/s and 800 m/s in the top 30 m (Vs,30).  

Other selection criteria related to the execution of the Cloud Analysis 

procedure were also taken into account (Jalayer et al., 2015, 2017). Reducing errors 

in any estimation of the regression slope in this type of investigation requires a set 

of records covering a vast range of intensity values. This was achieved using as 

reference intensity measure the pseudo-acceleration at the natural vibration period 

of the first mode of the structure in the X-direction: 1 0 20T . s= , i.e., ( )1Sa T . The 

records were selected giving due consideration to increasing values of ( )1Sa T , 

evaluated considering the component H1 and covering a range of accelerations 

between 0.008g and 1.33g. 

 It is also important to ensure that a significant portion of the records, 

generally more than the 30%, has an EDP  close to the value of the adopted limit 

state. This guarantees that there are enough data points in the region under 

consideration. Since different limit states were of interest, the final selection 

criterion was met by choosing records with increasing ( )1Sa T  values; with account 

taken of constant increments of pseudo-acceleration.  

Finally, selecting too many records (commonly more than 10%) from the 

same seismic event should be avoided in order to reduce the potential correlation 

between the EDP  values assessed for different records. 

The main characteristics of the records used to execute the NLDAs are set 

out in Table 3.7. In particular, the following are reported: the RSN identification 

number; the name and year of the seismic event; the name of the recording station; 
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the moment magnitude of the event, wM ; the Joyner & Boore distance or JBR  

(Joyner and Boore, 1981); and the shear-waves velocity in the top 30 m (Vs,30).  

Table 3.7 Characteristics of the selected records. 

RSN 
Event 

Name 
Year 

Station 

Name 
wM  

 JBR  

[km]  

30s ,V  

[m/s]  
 

32 "Parkfield" 1966 "San Luis Obispo" 6.19 63.34 493.5 

40 "Borrego Mtn" 1968 "San Onofre - So Cal Edison" 6.63 129.11 442.88 

41 "Lytle Creek" 1970 "Castaic - Old Ridge Route" 5.33 103.23 450.28 

55 "San Fernando" 1971 "Buena Vista - Taft" 6.61 111.37 385.69 

76 "San Fernando" 1971 "Maricopa Array #3" 6.61 109.01 441.25 

81 "San Fernando" 1971 "Pearblossom Pump" 6.61 35.54 529.09 

132 "Friuli_ Italy-02" 1976 "Forgaria Cornino" 5.91 14.65 412.37 

230 "Mammoth Lakes-01" 1980 "Convict Creek" 6.06 1.1 382.12 

236 "Mammoth Lakes-03" 1980 "Convict Creek" 5.91 2.67 382.12 

288 "Irpinia_ Italy-01" 1980 "Brienza" 6.9 22.54 561.04 

290 "Irpinia_ Italy-01" 1980 "Mercato San Severino" 6.9 29.79 428.57 

304 "Irpinia_ Italy-02" 1980 "Tricarico" 6.2 64.36 496.46 

413 "Coalinga-05" 1983 "Skunk Hollow" 5.77 7.27 480.32 

434 "Borah Peak_ ID-01" 1983 
"ANL-767 Reactor Plant 

(Bsmt)" 
6.88 100.22 445.66 

435 "Borah Peak_ ID-01" 1983 "ANL-768 Power Plant (Bsmt)" 6.88 100.22 445.66 

481 "Lazio-Abruzzo_ Italy" 1984 "Roccamonfina" 5.8 45.47 475.1 

513 "N. Palm Springs" 1986 "Anza Fire Station" 6.06 42.17 360.45 

546 "Chalfant Valley-01" 1986 "Lake Crowley - Shehorn Res." 5.77 24.37 456.83 

548 "Chalfant Valley-02" 1986 "Benton" 6.19 21.55 370.94 

572 "Taiwan SMART1(45)" 1986 "SMART1 E02" 7.3 51.35 671.52 

587 "New Zealand-02" 1987 "Matahina Dam" 6.6 16.09 551.3 

590 "Whittier Narrows-01" 1987 "Altadena - Eaton Canyon" 5.99 8.72 375.16 

592 "Whittier Narrows-01" 1987 "Arcadia - Campus Dr" 5.99 4.53 367.53 

753 "Loma Prieta" 1989 "Corralitos" 6.93 0.16 462.24 

763 "Loma Prieta" 1989 "Gilroy - Gavilan Coll." 6.93 9.19 729.65 

815 "Griva_ Greece" 1990 "Kilkis" 6.1 26.75 454.56 

816 "Georgia_ USSR" 1991 "Ambralauri" 6.2 63.53 399.61 

819 "Georgia_ USSR" 1991 "Oni" 6.2 42.19 392.67 

823 "Roermond_ Netherlands" 1992 "OLF" 5.3 80.67 483.02 

824 "Roermond_ Netherlands" 1992 "WBS" 5.3 100.81 525.95 

897 "Landers" 1992 "Twentynine Palms" 7.28 41.43 635.01 

954 "Northridge-01" 1994 "Big Tujunga_ Angeles Nat F" 6.69 19.1 550.11 

1041 "Northridge-01" 1994 "Mt Wilson - CIT Seis Sta" 6.69 35.53 680.37 

1125 "Kozani_ Greece-01" 1995 "Kastoria" 6.4 47.79 579.4 

1126 "Kozani_ Greece-01" 1995 "Kozani" 6.4 14.13 649.67 

1137 "Dinar_ Turkey" 1995 "Burdur" 6.4 35.59 468.44 

1612 "Duzce_ Turkey" 1999 "Lamont 1059" 7.14 4.17 551.3 

2619 "Chi-Chi_ Taiwan-03" 1999 "TCU067" 6.2 27.66 433.63 

4491 "L'Aquila_ Italy" 2009 "Ortucchio" 6.3 35.07 388.01 

4893 "Chuetsu-oki_ Japan" 2007 "Toyotsu Nakano" 6.8 61.16 561.59 
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Figure 3.9; Figure 3.10 and Figure 3.11 show the spectra for each component 

of the records used to conduct the NLDAs in the LS-DYNA program. The H1 

component of each record was applied in the X-direction of the structure and the 

components H2 and V in the Y- and Z-directions, respectively (see Figure 3.5). 

 
Figure 3.9 Spectra of the ground motions components H1 applied in the X-direction of the 

structure. 

 
Figure 3.10 Spectra of the ground motions components H2 applied in the Y-direction of the 

structure. 
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Figure 3.11 Spectra of the ground motions components V applied in the Z-direction of the 

structure. 

3.6.3. Intensity Measure 

Intensity measure had to be chosen before conducting the analytical estimation of 

the fragility curves of the intact structure. Three IMs  were investigated: 1) the 

first-mode spectral acceleration, ( )1Sa T , evaluated on the component H1 applied 

in the X-direction of the structure during the execution of the NLDAs; 2) 

( )1 GM
Sa T , which is the geometric mean of the spectral accelerations ( )1Sa T  

evaluated using the components H1 and H2 applied in the X- and Y-directions of 

the structure, respectively , when performing the NLDAs; 3) the average spectral 

acceleration, ( )1 2 20avgSa T ,T , ,T  (Baker and Cornell, 2006), evaluated using H1 

and with consideration given to 20 equally spaced periods in a range between 0.01s 

and 0.20 s. 

The process of selecting the intensity measure for the execution of Cloud 

Analysis and the assessment of fragility curves of the structures was based on the 

concepts of sufficiency and efficiency, which have strict ties to the accuracy of 

structural-performance assessment (Luco 2002; Luco and Cornell 2007; Padgett 

et al. 2007). In fact, a sufficient IM  renders the structural response conditionally 

independent, given the selected intensity measure, of the other earthquake 

characteristics involved in the seismic-hazard assessment at the construction site 

(i.e., magnitude and source-to-site distance). Meanwhile, an efficient IM  leads to 

relatively little variability in the structural response given the IM . In the context 

of the Cloud Analysis, the efficiency of an IM  can be measured by the standard 

error of the regression analysis, EDP|IM . Consequently, the most efficient IM

produces the lowest EDP|IM  value.  
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On the other hand, establishing the IM’s sufficiency requires an investigation 

of the effectiveness of the ground motion (GM) characteristics as further 

regression variables (in addition to IM ). In other words, as regression variables, 

the GM features result in very little improvement to the regression prediction if 

the IM  is sufficient. Any enhancement can be judged by the reduction in the 

dispersion of the regression residuals and/or the statistical significance of the 

regression coefficients corresponding to the GM characteristics (Jalayer, 2003). 

 In this study, the sufficiency was evaluated using a simplified statistical 

approach based on linear regression to measure the effectiveness of the GM 

characteristics as additional regression variables. This method requires a regression 

of the dependent variable, EDP , versus the independent variable, IM . 

Subsequently, plotting the residuals of the regression versus the GM characteristics 

enables a second linear regression to be performed. By highlighting any significant 

data trends, this approach facilitates the investigation of the potential dependence 

of EDP  on the other GM characteristics. The significance of the trend can be 

measured by testing the hypothesis that the slope of the second linear regression 

is zero. This can be evaluated using the p-value, with a hypothesis rejected if this 

is lower than a set value (e.g., 0.05; 0.01) and IM  is insufficient. 

Next, the dependence of the structural response conditional on the three 

IMs  was tested with respect to the moment magnitude ( wM ), Joyner & Boore 

distance ( JBR ), and the 5–95% significant duration ( 5 95%D − ). The standard 

residuals from the first linear regression were plotted against the moment 

magnitudes, the logarithm of distances and the logarithm of the 5–95% significant 

durations. A standard linear regression was then carried out. The statistical 

significance of the regression estimate was quantified using a p-value, and a value 

lower than 0.05 for any of the three parameters is considered to be a 

demonstration of the statistical significance between the residuals and that 

parameter.  

It is common to check the dependence of an IM  with respect to magnitude 

and distance (Luco and Cornell, 2007). In this study, however, the dependence on 

a measure of the ground shaking duration was also considered. The decision to do 

so was based on the evidence from previous research that the response of URM 

buildings (and other strength- and stiffness-degrading structures) is dependent on 

the length of any strong ground-shaking (Bommer et al., 2004). The interval related 

to 5–95% of the total Arias Intensity (Arias, 1970) of the record (the so-called 5–

95% significant duration 5 95%D − ) was selected as the preferred duration parameter. 
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3.6.4. Results of the Cloud Analysis  

This section describes the assessment of the fragility curves, performed using the 

Cloud Analysis approach. The NLDAs were conducted by applying the three 

components of each record (H1, H2 and V) in the three directions of the structure, 

X, Y and Z (shown in Figure 3.2), respectively and recording the structural 

response.  

 The fragility curves were evaluated for the three damage states SLD, SLS and 

SLC, with single fragilities defined for the entire structure. It was assumed that the 

structural response was the maximum value of the damage state variables in the 

X- and the Y-directions for each record. It is worth recalling that the definition of 

the limit states (described in the previous paragraphs) exclusively considers the in-

plane structural response and assumes the shear-failure mode for the piers. Each 

damage state is considered to have been achieved when the variables SLDY , SLSY  

and SLCY  have a value equal to 1.0. 

Table 3.8 reports the data for each record  used to evaluate the fragility curves, 

i.e., the values for each record of the damage state variables SLDY , SLSY  and SLCY  

as well as three IMs , ( )1Sa T ; ( )1 GM
Sa T  and avgSa . Moreover, , as described 

above, the magnitude, wM , the Joyner & Boore distance, JBR  and the significant 

duration of the ground motions, 5 95%D − , were used to check the sufficiency of the 

IM . 

Table 3.8 Data for assessing the fragility function and checking the sufficiency of the intensity 

measure. 

RSN  

( )1Sa T  

  g  

( )1 GM
Sa T  

  g  

avgSa  

  g  

SLDY  

  −  

SLSY  

  −  

SLCY  

  −  

wM  

  −  

JBR  

  km  

5 95%D −
 

  s  

32 0.035 0.036 0.021 0.339 0.058 0.075 6.19 63.34 17.84 

40 0.097 0.111 0.059 5.898 0.120 0.547 6.63 129.11 28.00 

41 0.050 0.061 0.036 0.809 0.104 0.034 5.33 103.23 9.18 

55 0.028 0.034 0.018 3.549 0.062 0.586 6.61 111.37 20.435 

76 0.022 0.021 0.014 7.366 0.057 0.571 6.61 109.01 22.85 

81 0.256 0.281 0.248 3.514 1.667 1.190 6.61 35.54 13.73 

132 0.574 0.605 0.486 5.864 0.832 0.601 5.91 14.65 4.495 

230 1.334 1.102 0.832 23.403 1.094 15.476 6.06 1.10 9.185 

236 0.616 0.593 0.408 12.468 1.667 2.381 5.91 2.67 6.30 

288 0.760 0.668 0.518 8.507 0.711 0.970 6.9 22.54 10.3124 

290 0.409 0.442 0.170 4.839 0.419 0.527 6.9 29.79 26.7061 
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Table 3.8 (Continued) Data for assessing the fragility function and checking the sufficiency of the 

intensity measure. 

RSN  

( )1Sa T  

  g  

( )1 GM
Sa T  

  g  

avgSa  

  g  

SLDY  

  −  

SLSY  

  −  

SLCY  

  −  

wM  

  −  

JBR  

  km  

5 95%D −
 

  s  

304 0.038 0.045 0.034 8.904 0.067 0.298 6.2 64.36 18.9341 

413 0.892 0.837 0.604 14.558 1.667 2.381 5.77 7.27 5.265 

434 0.091 0.082 0.049 0.566 0.087 0.088 6.88 100.22 15.88 

435 0.081 0.098 0.069 0.853 0.101 0.184 6.88 100.22 15.56 

481 0.098 0.098 0.058 2.211 0.123 0.230 5.8 45.47 12.5562 

513 0.287 0.192 0.200 2.224 0.265 0.146 6.06 42.17 5.845 

546 0.172 0.136 0.096 2.807 0.139 0.278 5.77 24.37 14.595 

548 0.672 0.505 0.461 9.094 1.667 1.272 6.19 21.55 16.645 

572 0.334 0.384 0.238 20.987 1.667 2.493 7.3 51.35 12.42 

587 0.476 0.572 0.454 27.768 1.667 7.143 6.6 16.09 6.4 

590 0.635 0.481 0.485 6.068 1.667 2.381 5.99 8.72 4.49 

592 0.774 0.599 0.535 17.246 1.667 5.952 5.99 4.53 3.08 

753 1.024 1.026 0.953 27.768 1.667 15.476 6.93 0.16 6.86 

763 0.832 0.973 0.738 23.080 1.667 8.333 6.93 9.19 5 

815 0.090 0.115 0.082 1.294 0.095 0.190 6.1 26.75 11.03 

816 0.034 0.034 0.023 1.190 0.059 0.209 6.2 63.53 16.263 

819 0.322 0.193 0.132 1.419 0.348 0.210 6.2 42.19 11.4036 

823 0.008 0.009 0.007 0.310 0.0426 0.1034 5.3 80.67 9.8532 

824 0.011 0.012 0.009 0.123 0.053 0.022 5.3 100.81 13.9216 

897 0.217 0.190 0.149 14.433 0.181 0.898 7.28 41.43 30.7 

954 0.557 0.611 0.342 5.537 0.691 0.513 6.69 19.1 10.72 

1041 0.839 0.628 0.391 2.605 0.685 0.511 6.69 35.53 8.84 

1125 0.043 0.037 0.028 0.836 0.067 0.104 6.4 47.79 15.765 

1126 0.723 0.595 0.389 3.178 0.607 0.650 6.4 14.13 6.45 

1137 0.155 0.120 0.068 4.182 0.214 0.468 6.4 35.59 16.37 

1612 0.502 0.554 0.280 26.579 1.667 3.570 7.14 4.17 14.09 

2619 0.456 0.454 0.325 16.321 1.667 2.735 6.2 27.66 6.585 

4491 0.173 0.127 0.086 3.296 0.185 0.658 6.3 35.07 9.775 

4893 0.373 0.282 0.308 17.246 1.667 8.333 6.8 61.16 8.91 

Table 3.9 and Table 3.10 show the results of the Cloud Analysis and the sufficiency 

check for the SLD and SLC, respectively. In detail, the following are reported: the 

coefficients a  and b , estimated from the linear regression in Eq. (3.1); the 
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conditional logarithmic standard deviation of EDP  given IM , βEDP|IM (see 

Eq.(3.2)); the p value− ; and the slopes,  , of the linear regressions obtained for 

the sufficiency check of the three alternative IMs  against the magnitude, wM , the 

distance, JBR , and the significant duration of ground motions, 5 95%D − . 

Table 3.9 Results of the Cloud Analysis and the sufficiency check performed for the damage limit 

state (SLD). 

IM  a  b  EDP|IM  
p value−  

( )wM  

p value−  

( )JBR  

p value−  

( )5 95%D −  wM  
JBR  

5 95%D −
 

( )1Sa T  2.60 0.73 0.94 0.04 0.59 0.32 0.65 -0.08 0.30 

( )1 GM
Sa T  2.74 0.79 0.91 0.06 0.71 0.27 0.59 -0.06 0.34 

avgSa  3.09 0.84 0.88 0.05 0.81 0.14 0.62 -0.04 0.45 

Table 3.10 Results of the Cloud Analysis and the sufficiency check performed for the near collapse 

limit state (SLC). 

IM  a  b  EDP|IM  
p value−  

( )wM  

p value−  

( )JBR  

p value−  

( )5 95%D −  wM  
JBR  

5 95%D −
 

( )1Sa T  1.05 0.90 1.06 0.12 0.08 0.87 0.50 -0.21 -0.05 

( )1 GM
Sa T  1.20 0.96 1.03 0.17 0.11 0.91 0.44 -0.19 -0.04 

avgSa  1.66 1.04 0.96 0.16 0.20 0.70 0.45 -0.15 0.12 

In relation to the assessment of the fragility curve for the SLS, the definition of 

the damage state variable SLSY  in Eq. (3.10) required verification that the SLS 

would never succeed the SLC. Therefore, if the first term in Eq. (3.10) is greater 

than 1.0; SLSY  assumes a limit value 1 0 6 1 67SLSY . .= = . To account for these 

extreme cases, the approach in Jalayer and Cornell (2008) and governed by the Eq. 

(3.4), was adopted. Table 3.11 sets out the results of Cloud Analysis for the SLS 

for the NoC  data (the cases where the structure does not experience the collapse, 

i.e., 1 67SLSY . ). In detail, the following are reported: the coefficients a  and b , 

estimated from the linear regression in Eq. (3.1); the conditional logarithmic 

standard deviation of EDP  given IM , βEDP|IM (see Eq.(3.2)); the p value− ; and 

the slopes,  , of the linear regressions performed for the IM  sufficiency checks 

against the magnitude, wM , the distance, JBR , and the significant duration of the 

ground motions, 5 95%D −  . 
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Table 3.11 Results of the Cloud Analysis and the sufficiency check performed for the serviceability 

limit state (SLS). 

IM  a  b  EDP|IM  
p value−  

( )wM  

p value−  

( )JBR  

p value−  

( )5 95%D −  wM  
JBR  

5 95%D −
 

( )1Sa T  -

0.32 
0.70 0.27 0.60 0.35 0.49 -0.23 -0.16 -0.24 

( )1 GM
Sa T  -

0.18 
0.75 0.28 0.99 0.47 0.58 0.00 -0.12 -0.19 

avgSa  0.21 0.81 0.30 0.44 0.44 0.62 -0.34 -0.13 -0.17 

The results summarized in Table 3.9, Table 3.10 and Table 3.11 reveal that 

the most efficient of the sufficient intensity measures for SLD and SLC is the 

average spectral acceleration, avgSa ; for the SLS, it is the first-mode spectral-

acceleration, ( )1Sa T . However, the avgSa  IM  was chosen to represent all three 

damage states, because it was also found to be sufficient for the SLS. 

Figure 3.12 shows the linear regressions that take into account the IM  

selected for the three damage states. 

 

Figure 3.12 Linear regressions of the cloud data for SLD (a); SLS (b) and SLC (c). 

Figure 3.13 contains an example of the sufficiency check conducted for the 

intensity measure, avgSa , and the SLC. The figure shows the scatter plots of the 

regressions residuals versus the moment magnitude, ( wM ), the Joyner & Boore 

distance, ( JBR ), and the 5–95% significant duration, ( 5 95%D − ). The p-values are 

also reported. 
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Figure 3.13 Sufficiency check for the case of SLC and the intensity measure avgSa in relation to the 

moment magnitude, wM  (a), the Joyner & Boore distance, JBR  (b), and of the 5–95% significant 

duration, 5 95%D −  (c). 

Finally, the fragility curves of the structure were evaluated according to Eq. (3.3) 

for the SLD and SLC, with the results shown in Figure 3.14a. The medians, 

EDP|IM , and the standard deviations, EDP|IM , which define the fragility curve for 

the SLD and SLC, are reported in Table 3.12. 

Table 3.12 Medians and standard deviations defining the fragility curve for the damage states SLD 

and SLC. 

Damage state 
Median 

 [g]EDP|IM  

Standard deviation 

 [g]EDP|IM  

SLD 0.025 1.051 

SLC 0.204 0.920 

The fragility curve for the SLS was evaluated according to Eq. (3.4). Figure 3.14b 

shows this curve, 1SLSP Y IM im =   , and all the components contributing to 

its assessment, namely: the probability of collapse,  P C|IM im= , evaluated 

using the logistic regression; and the conditional probability that SLSY  is greater 

than 1.0 given that the collapse has not taken place, 1SLSP Y IM im,Noc =   , 

assessed via a linear regression of the Noc  cloud data.  

It should be noted that the probability of collapse,  P C|IM im= , in Figure 

3.14b does not coincide with the fragility curves, 1SLCP Y IM im =   , in Figure 

3.14a. This is because they were evaluated by taking into account different EDPs

and using different distribution models, i.e., the logit in the first case and the 

lognormal in the second one. 
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Figure 3.14 Fragility curves of the case-study structure for the SLD and SLC (a), and the fragility 

curve evaluated for the SLS and its components, according to Eq. (3.4) (b). 

3.7. Assessment of state-dependent seismic fragility curves 

If seismic-reliability calculations are expected to account for multiple earthquakes 

and damage accumulation, it becomes important to evaluate the probability that 

an already-damaged structure will make the transition from one damage state, iDS

, to another that is more severe, jDS . This probability is defined by the state-

dependent fragility function 
jDS iP EDP edp DS IM im   =

 
 and represents the 

probability that the structure will achieve jDS  conditional on the occurrence of a 

shaking intensity im , and that the structure has already been found in iDS . Here, 

the state-dependent fragility functions are simply written as

j iP DS DS IM im  =
  . 

The evaluation of the state-dependent fragility curves was conducted using 

the procedure referred to as back-to-back IDA (Luco et al., 2004; Ryu et al., 2011; 

Goda, 2012; Ruiz-García, 2012; Raghunandan et al., 2015; Goda, 2015). This 

requires a structure to be subjected to numerous NLDAs. The main disadvantage 

of the procedure is its high computational cost, particularly for the 3D structures. 

Therefore, in order to reduce the analysis time, a simplified procedure for 

analytical fragility estimation is used, that is based on non-linear static analysis. 

This requires the definition of a surrogate structure in the form of an inelastic 

equivalent single-degree-of-freedom (ESDoF) system, whose definition is based 

on the pushover curve of the original model. Two systems were defined and 

calibrated to reproduce the static and cyclic behavior of the 3D model in the two 
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main directions (see Figure 3.7). The systems were analyzed using back-to-back 

IDA to assess the state-dependent fragility curves. Meanwhile, the fragility curves 

of the intact structure were evaluated via IDA to ensure a consistent comparison 

was possible (IDA, Vamvatsikos and Cornell, 2001, 2004).  

The structure-specific and state-dependent fragility curves were obtained by 

applying the IM-based approach (Vamvatsikos and Cornell, 2001) to the IDA 

curves and the back-to-back IDA curves, respectively. So, for the former, the IM-

based method entailed identifying the intersections of the IDA curves, DS iim , with 

the vertical line passing through the EDP threshold that defines the attainment of 

the damage state. These DS iim  values can be viewed as realizations of a random 

variable (RV), 
iDSIM , which is the seismic intensity to which the ground motion 

needs to be scaled for the structure to achieve iDS . The fragility function can then 

be defined as the probability that 
iDSIM  is equal or lower than the level of seismic 

intensity possibly occurring at the site, i.e.,  
ii DSP DS |I M im P IM im = =   . 

Assuming that 
iDSIM  follows a lognormal distribution, the fragility function can 

be estimated according to Eq. (3.12):  

  ( )

( )

( )

1

2

1

ln

1
ln

1
ln

1

ii DS
n

DSi , j

j

n

DSi , j

j

P DS |I M im P IM im ( im )

im
n

im
n

 



 
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 = =  =  −    


= 



 =  −  −





 (3.12) 

where   and   are the parameter estimates (median and logarithmic standard deviation) 

of the assumed lognormal distribution of 
iDSIM ; DS iim  is the realization of the RV 

coming from to the j-th record; and ( )   is the standard Gaussian (cumulative) function.  

3.7.1. Calibration of the equivalent SDoF oscillators 

The conversion to the ESDoF models involved defining the characteristics of the 

SDoF oscillators (e.g., the equivalent mass, *m , and the vibration period, 
*T ) and 

backbones parameters. Also characterized was the hysteretic behavior in the 

structure’s two horizontal directions. 

Two SDoFs, each representative of a direction of the structure, were 

calibrated based on the structural response shown in Figure 3.7. The backbone 

curves of the two ESDoF oscillators were obtained from the pushover curves of 
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the original 3D structure scaled down by the corresponding modal participation 

factors   (Fajfar, 2000; 1 00.=  for the pushover curves obtained using a 

uniform force distribution and 1 23.=  in case of the triangular force 

distribution) and defining a multi-linear approximation of the resulting curves, as 

reported in Figure 3.15 for the latter distribution type. As the application of the 

triangular force distribution produced the lowest force and displacement values in 

both the X and Y-directions ( F*, *  coordinates), its resulting pushover curves 

were used to define the capacity curves of the two SDoF systems. 

The mass, *m , the period, 
*T , and the force and displacement values at the 

points defining the linearized backbone curves of the ESDoFs are reported in 

Table 3.13 and Table 3.14 for the X and Y-directions, respectively. It can be seen 

that the structure had an asymmetric static response in both directions; therefore, 

the positive and negative directions of the load are specified using signs plus and 

minus in the subscript, respectively (e.g., *

i ,X
F +  and *

i ,XF − ). 

Table 3.13 Characteristics of the equivalent SDOF system representing the X direction of the 

structure. 

Direction X 

 

*

X
F +  

 kN  

*

X
 +  

 m  

*

X
F −  

 kN  

*

X
 −  

 m  

*m  

 kg  

*T  

 s  

1 206.76 0.0029 -240.06 -0.0026 118713 0.239 

2 142.05 0.0088 -133.570 -0.017   

3 96.09 0.0293 -81.681 -0.047   

4 26.84 0.1200 -31.341 -0.127   

Table 3.14 Characteristics of the equivalent SDOF system representing the Y direction of the 

structure. 

 

 

 

Direction Y 

 

*

Y
F +  

 kN  

*

Y
 +  

 m  

*

Y
F −  

 kN  

*

Y
 −  

 m  

*m  

 kg  

*T  

 s  

1 603.39 0.0021 -626.49 -0.0021 118713 0.126 

2 492.04 0.0051 -517.21 -0.007   

3 404.27 0.0321 -418.31 -0.033   

4 405.75 0.1410 -423.42 -0.114   
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Figure 3.15 Definition of the backbone curves of the two SDoF systems representing the behavior 

of the entire structure in the X (a) and Y (b) direction. 

In addition to the backbone curves, the hysteretic behavior assigned to each 

ESDoF system to execute the NLDAs was also calibrated based on the results of 

the cyclic pushovers shown in Figure 3.7. The two ESDoF systems were analyzed 

using the OpenSees platform (Open System for Earthquake Engineering Simulation, 

McKenna, 2011), meaning that each hysteresis was defined using a selection of the 

hysteresis rules available in the OpenSees material library. To reproduce the 

hysteretic behavior shown in the X-direction (Figure 3.7c), a hysteresis was defined 

as a combination of the flag-shaped hysteretic rule (Christopoulos et al., 2008) and 

a pinched load-deformation response with strength and stiffness degradation 

under cyclic loading (i.e., pinching4 Material in the OpenSees library). On the other 

hand, only the pinching4 Material was used for the Y-direction and calibrated to 

reproduce the behavior shown in Figure 3.7d. 

 Figure 3.16 reports the comparison between the hysteretic behavior of the 

3D model (panels (a) and (c)) and the responses of the two ESDoF systems to the 

loading protocol shown in Figure 3.6 (panels (b) and (d)).  
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Figure 3.16 Comparison of the hysteretic behavior obtained by analyzing the three-dimensional 

structure (a) and the hysteretic law defined using the OpenSees platform (b) for the X- direction. 

Comparison of the hysteretic behavior obtained by analyzing the three-dimensional structure (c) and 

the hysteretic law defined using the OpenSees platform (d) for the Y- direction. 

3.7.2. Fragility assessment 

The assessment of the fragility curves of the intact structure and of the state-

dependent fragility curves were conducted via IDA and back-to-back IDA, 

respectively. The same set of 30 records selected from the NESS dataset (Pacor et 

al., 2018) was used for both the IDA and the first and the second phases of the 

back-to-back IDA. All these analyses (IDA and back-to-back IDA) were 

performed using the OpenSees platform (Open System for Earthquake 

Engineering Simulation; McKenna, 2011) via a recent version of the DYANAS 

software (Baltzopoulos et al. 2018).  

The fragility curves were assessed taking into account four damage states, 

from 1DS  to 4DS , defined in accordance with the study of Graziotti et al. (2017). 

In generally very good agreement with the literature (Lagomarsino and Cattari, 

2015), this detects the global drifts corresponding to the different performance 

levels identified on the basis of a shaking-table test of a full-scale, representative 

specimen of a Dutch two-story terraced house in the Netherlands. Damage state 
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1DS  was defined as the maximum level of displacement that can be achieved 

without causing any visible damage; 2DS  refers to the maximum displacement 

level achieved that causes only minor/slight structural damage, i.e., it could be 

easily repaired for a possible immediate occupancy; 3DS  relates to moderate 

structural damage (observed in all the piers of the structure) that could be viewed 

as a life-safety limit state; and 4DS  references a collapse prevention damage state. 

The values of maximum displacement, i* , that represent the attainment of the 

i-th damage state in the case-study structure and for all the performance levels 

considered are reported in Table 3.15.  

Table 3.15 Values of maximum displacement representing the attainment of the four damage 

states. 

 
1*

m


 
 

2*
m


 
 

3*
m


 
 

4*
m


 

0.0031 0.0047 0.015 0.047 

The assessment of the fragility curves and the state-dependent fragility 

curves were conducted for the entire structure considering, for each record and 

the i-th damage state, the minimum value of DS iim  producing the achievement of 

the considered damage state in one of the two directions of the structure. The 

resulting medians,  , and standard deviations,  , defining the parametric fragility 

curves (see Eq.(3.12)) for the four damage states are reported in Table 3.16. The 

IM  used for the assessments was the average spectral acceleration 

( )1 2 20avgSa T ,T , ,T  , which was evaluated taking into account 20 equally spaced 

periods in a range between 0.01s and 0.2s.  

The fragility curves of the intact structure are shown in panel (a) of Figure 3.17. 

Table 3.16 Median,  , and logarithmic standard deviation,  , defining the structure’s fragility 

curves (IM in g). 

MEDIAN   SIGMA   

1DS  
2DS  3DS  

4DS  
1DS  

2DS  3DS  
4DS  

0.14 0.18 0.29 0.51 0.38 0.34 0.46 0.69 

The state-dependent fragility curves were estimated by means of the back-to-

back IDA, using a set of 30 records to represent the first damaging shock of the 

cluster, scaled to produce maximum displacements of 0.0031 m, 0.0047 m and 

0.015 m corresponding to the attainment of 1DS , 2DS  and 3DS , respectively. 
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Thereafter, the same 30 subsequent-shock accelerograms per the initial shock were 

applied for a total of nine-hundred curves.  

Table 3.17 contains the values for the median,  , and logarithmic standard 

deviation,  , defining the lognormal distribution obtained with Eq. (3.12), i.e., 

the structure’s parametric state-dependent fragility curves. The first column in the 

table sets out the initial damage state, while the the rest of the rows represent the 

final damage states. 

Panels (b), (c) and (d) in Figure 3.17 show the structure’s state-dependent 

fragility curves, evaluated with the results of the Back-to-Back IDA and assuming 

a lognormal distribution. Each of the three panels in Figure 3.17 shows the curves 

obtained when considering all the possible transitions between damage states 

(from a damage state i  to a damage state j  ) assuming the i -th initial damage 

state. Panel (b) shows curves obtained when 1DS  is taken to be the initial damage 

state, while panel (c) and (d) do so for the cases where 2DS  and 3DS , 

respectively, represent the initial damage. The fragility functions in each panel, 

which were assessed by assuming that the structure was initially in an intact 

condition, are also reported as reference to show the increases in fragility caused 

by the first shock. 

Table 3.17 Median,  , and logarithmic standard deviation,  , defining the state-dependent 

fragility curves of the two SDoF systems ( IM in g). 

MEDIAN   SIGMA   

 2DS  3DS  4DS  2DS  3DS  4DS  

1DS  0.06 0.21 0.46 1.20 1.23 0.80 

2DS  - 0.20 0.45 - 1.23 0.78 

3DS  - - 0.44 - 
 

- 0.79 
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Figure 3.17 Structure-specific and state-dependent fragility curves of the case-study structure. 

Fragility curves of the intact structure (a); state-dependent fragility curves evaluated by treating 1DS  

as the initial damage state (b); state-dependent fragility curves evaluated by treating 2DS  as the initial 

damage state (c); state-dependent fragility curves evaluated by treating 3DS  as the initial damage 

state (d). 

3.8. Conclusions 

Central to the discussion in this chapter has been the assessment of the fragility 

and state-dependent fragility curves of the case-study’s model 3D structure, which 

is representative of the URM terraced houses in the Groningen region of the 

Netherlands. This type of building has been the subject of extensive research 

because of the seismicity induced by commercial gas extraction in the area. 

In a first step, the structure-specific fragilities were evaluated by analyzing a 

3D finite element model developed in collaboration with Arup Italy using the LS-

DYNA software. The assessment was conducted using the Cloud Analysis, taking 

into account three damage states defined according to the Italian Guidelines and 

Technical Instructions of the National Research Council (CNR-DT 212/2013). 

Subsequently, to limit the computational costs of assessing the state-

dependent fragility curves, two SDoF systems representing the structural behavior 

in the model’s two main directions were calibrated and analyzed using the back-
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to-back Incremental Dynamic Analysis. This assessment took into account four 

damage states available in the previous literature, which are defined based on the 

outcomes of a shaking-table test of a full-scale specimen of the type of structure 

modeled in this case study. 
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Abstract 

From this chapter was derived the paper:  

− Orlacchio M., Chioccarelli E., Baltzopoulos G., Iervolino I. (2021), “State-dependent seismic 

fragility functions for Italian reinforced concrete structures: preliminary results.” Proceedings of the 

31st European Safety and Reliability Conference (ESREL), 19-23 September 2021, Angers, 

France. 

The present chapter deals with the analytical assessment of structural vulnerability 

models for Italian building classes that constitutes one of the results of the 

ongoing research project RISE (Real-time earthquake rIsk reduction for a 

reSilient Europe). The structures under consideration are taken from the 

outcomes of the SERA project (Seismology and Earthquake Engineering 

Research Infrastructure Alliance for Europe) and refer to existing reinforced 

concrete and masonry residential Italian buildings.  

State-dependent fragility curves are evaluated via back-to-back incremental 

dynamic analyses using equivalent-single-degree-of-freedom systems. The analyses 

consider four damage states, identified by transient maximum inelastic 

displacement thresholds defined on the system’s backbone curve, and are 

performed with the DYANAS software. Such fragilities are required to calculate 

the seismic structural reliability when it is possible for structural failure to be 

reached progressively, i.e., due to the cumulative effect of multiple earthquakes.  

Keywords: sequence-based seismic reliability, back-to-back IDA, damage 

accumulation, SDOF systems, reinforced concrete, masonry. 

4.1. Introduction 

One of the challenges facing the ongoing research project RISE (Real-time 

earthquake rIsk reduction for a reSilient Europe) is accounting for earthquake sequences 

in short-term seismic risk assessment. This requires allowing for the fact that 

structural failure can occur not only due to a single seismic event but can also be 

reached progressively, due to damage accumulation in multiple earthquakes.  

Seismic fragility functions are surrogate structural models that provide a 

structure’s conditional probability of failure, given a certain level of seismic 

intensity in a single event. In this context, failure refers to a structure failing to 

meet some performance objective. An extension is represented by state-dependent 

fragility functions, that provide the probability that an already-damaged structure 

makes a transition from a damage state to another (worse) one, given the value of 

ground motion intensity. The evaluation of state-dependent fragility is a necessary 
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ingredient to account for damage accumulation in multiple events in risk 

assessment (e.g., Iervolino et al. 2016, Iervolino et al. 2020).  

Evaluation of structure-specific fragility functions can be made via non-linear 

dynamic analysis of a numerical model of the structure. Past research has suggested 

that the assessment of fragility functions representing structural typologies (or 

classes) can also be performed applying the same method to a limited number of 

structures, deemed representative of the entire class (e.g., Iervolino et al. 2007; 

Kazantzi and Vamvatsikos 2015). 

This chapter presents the computation of the state-dependent fragility 

functions for the Italian reinforced concrete (RC) and masonry residential 

structure classes as identified in the SERA (Seismology and Earthquake Engineering 

Research Infrastructure Alliance for Europe) research project. In fact, within the SERA 

project, the capacity curves of equivalent-single-degree-of-freedom (ESDoF) 

systems representative of different classes of the European buildings portfolio 

were developed together with the corresponding fragility functions (Romao et al. 

2019).  

Although, for each RC building typology, the SERA project provided a set 

of capacity curves (Romao et al. 2019), the average capacity curves of each set are 

herein assumed to be representative of the entire typology. On the other hand, for 

the Italian masonry classes, the SERA project provides single capacity curves 

representative of each class. 

 The state-dependent fragilities are evaluated via the so-called back-to-back 

Incremental Dynamic Analysis or back-to-back IDA (Goda 2012; Ryu et al. 2011).   

The chapter is structured as follows: first, the characteristics of the set of 

analyzed structures representative of the Italian RC and masonry buildings are 

described. Then, the methodology is outlined along with the definition of damage 

states used for the fragility assessment. The chosen intensity measure and the 

identification of the number of ground motion records for the execution of the 

nonlinear-dynamic analysis are also discussed. Finally, the results are presented, 

discussing the lognormal assumption for the state-dependent fragilities. 

4.2. RISE project structures 

European existing structural typologies were identified in accordance with the 

building taxonomy developed within SERA (Romao et al. 2019) on the basis of an 

updated version of the international standard (i.e., the GEM building taxonomy; 

Brzev et al. 2013). This taxonomy catalogues buildings considering four main 

characteristics: primary construction material (e.g., reinforced concrete, 

unreinforced masonry, steel, etc.); typology of the lateral load resisting system (e.g., 

wall, moment frame, infilled frame, etc.); height expressed in terms of number of 

stories and seismic capacity-related properties (e.g., ductility and/or design later 
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force), which depend on the evolution of seismic design in the country (e.g., 

Petruzzelli and Iervolino 2021); if available, information about the presence of 

structural irregularities is also provided. 

4.2.1. Italian RC structures 

The Italian RC existing structures analyzed in this study are represented by a set 

of eighteen infilled frame buildings, each representing a building class. The 

building classes are distinguished in terms of number of stories and level of seismic 

design. The buildings/classes considered have one to six stories and are also 

identified in terms of code level of seismic design, i.e., absent or low. Moreover, 

low-code structures are divided further, based on their design (lateral) base shear, 

which is either 5% or 10% of the building weight (i.e., the seismic coefficient). 

4.2.2. Italian masonry structures 

The Italian masonry structures portfolio is represented in this study by a set of 

fifteen wall masonry structures: in detail, ten unreinforced masonry (MUR) 

buildings and five confined masonry structures (MCF). The MUR structures are 

classified on the basis of the masonry material in rubble stone masonry (MUR-

STRUB); dressed stone masonry (MUR-STDRE) and masonry with clay bricks 

(MUR-CL99). All the MUR structures are no-ductile systems having at most five 

stories. More specifically, the set of ten unreinforced masonry buildings is 

composed of five MUR-STRUB structures having from one to five stories, two 

MUR-STDRE structures with number of stories equal to four and five, and three 

MUR-CL99 buildings having from three to five stories.  

Finally, the five confined masonry structures have low level of available 

ductility and from one to five stories. 

4.3. Methodology 

4.3.1. Capacity curves and damage states definition 

The structures described in the previous section are analyzed using equivalent 

single-degree-of-freedom systems or ESDoF (e.g., Suzuki and Iervolino 2019) 

characterized by piece-wise linear backbone curves and a pinched hysteretic 

behavior exhibiting degradation of strength and of (unloading and reloading) 

stiffness under cyclic loading. An example of the cyclic response of the analyzed 

systems is shown in Figure 4.1. 
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Figure 4.1 Example of backbone curve and cyclic response of an inelastic SDoF system with 

pinched hysteretic behavior and cyclic strength and stiffness degradation. 

A generic backbone curve is presented in panel (a) of Figure 4.2 in terms of 

displacements,  , and ratio of the reacting force over the mass of the structure, 

F m , along with the points identifying the capacity curve. Figure 4.2a also shows 

the damage state thresholds considered in this study. Four damage states are 

considered ranging from slight damage ( )1DS  to collapse ( )4DS ; all of them are 

defined according to the SERA project on the basis of Villar-Vega et al. (2017) 

and Lagomarsino and Giovinazzi (2006). 

The engineering demand parameter, EDP , adopted for the identification of the 

damage states is the (absolute value of the) maximum transient inelastic response 

in terms of displacement. Thus, in order to account for damage initiation in non-

structural elements, 1DS  is considered to have been reached when the maximum 

displacement equals or exceeds 75% of the displacement corresponding to the 

value of cF m , c , whereas the collapse corresponds to the ultimate displacement 

capacity of the structure, u . The definition of the intermediate damage states, that 

is, moderate damage 2DS  and extensive damage 3DS , follows closely the 

proposal originally presented by Lagomarsino and Giovinazzi, 2006). The 

thresholds of 2DS  and 3DS  are evenly spaced between the first and last damage 

state thresholds and are reached at the displacements equal to 0 50 0 33c u. .  +   

and 0 25 0 67c u. .  +  , respectively.  

The backbone curves of the eighteen RC structures considered here are 

shown in Figure 4.2b whereas those of the fifteen masonry structures are reported 

in Figure 4.2c (numerical values defining each curve are available at the data 

repository Romao et al. 2020). 

 

 δ 
F
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Figure 4.2 Example of capacity curve and definition of the four damage states used in the study (a); 

capacity curves of the analyzed reinforced concrete structures (b) capacity curves of the analyzed 

masonry structures. 

Each backbone of the RC structures (Figure 4.2b), is determined as an 

average of the backbones of a multitude of structures comprising that class. More 

specifically, each piece-wise linear backbone is defined by four points 

       ( )y y c c p p u u,F m , ,F m , ,F m , ,F m    – see Figure 4.2a – and the 

displacement-acceleration coordinates of each point on the representative curve is 

evaluated as the geometric mean of the corresponding points defining the capacity 

curves of the set. This geometric mean is obtained independently for the abscissa 

and the ordinate of each of the four points defining a representative average curve.  

Two subsets of curves can be identified in Figure 4.2b; they are representative 

of one-story and more-than-one-story (from two to six) RC buildings, respectively. 

More specifically, the curves with the highest values of F m  correspond to one-

story structures among which one has absent level of seismic design whereas the 

other two have low code level with design lateral force equal to 5.0% and 10.0% 

of the building weight, respectively. The one-story buildings have vibration 

periods of about 0.15s whereas the structures with more than one story have 

periods ranging from 0.29s to 0.88s.  

In Figure 4.2c are reported the capacity curves representative of the 

unreinforced masonry structures classes (solid lines) and those of the confined 

masonry buildings (dashed lines). The capacity curves for masonry structures, 

differently from the case of the RC systems, are already representative of each 

masonry structures class and are directly provided within the SERA project in 

terms of coordinates of the four points 

       ( )y y c c p p u u,F m , ,F m , ,F m , ,F m     entirely defining the backbone 

curves. Both the unreinforced masonry buildings and the confined masonry 

structures have periods of vibration between 0.13s and 0.69s. 

The state-dependent fragility curves were evaluated for the entire sets of 

eighteen RC structures and of fifteen masonry structures, whereas the choice of 

the intensity measure and the identification of the number of ground motion 
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records for the execution of the nonlinear-dynamic analyses were conducted 

considering two benchmark systems among those reported in Figure 4.2b for the 

RC structures and two benchmark systems among those reported in Figure 4.2c 

for masonry structure. In Figure 4.2b the backbone 1 (solid line) was selected to 

be representative of a one-story RC building, which has a vibration period; i.e., elT  

equal to 0.15s. On the other hand, backbone 2 (dashed line) is considered 

representative of taller RC structures and corresponds to a six-story building with 

elT  equal to 0.88s. In Figure 4.2c the backbone 1 (solid line) is representative of 

the unreinforced masonry buildings and has elT  equal to 0.69s. The backbone 2 

(dashed line) is representative of the confined masonry structures which has a 

vibration period equal to 0.13s. 

4.3.2. Fragility assessment 

In this study, fragility functions (i.e., for the undamaged structure) and state-

dependent fragility functions are evaluated using IDA (Vamvatsikos and Cornell 

2002) and back-to-back IDA, respectively. For a selected set of records, IDA 

collects the response of a non-linear undamaged structure to the records that are 

progressively scaled in amplitude to represent increasing levels of seismic intensity. 

The results of the procedure can be expressed using the IDA curves that represent 

the structural response via the selected EDP as a function of the intensity measure, 

IM .  

Back-to-back IDA is an extension of IDA, in which the structural model is 

first subjected to a set of records shaking the structure at its intact state, causing it 

to reach a damage state iDS . This is numerically simulated by having each record 

scaled in amplitude to the lowest IM  value that causes the structure to reach the 

EDP threshold for damage state iDS ; thus, each record produces a different 

realization of the now-damaged structural model, which can be considered to have 

made the transition to iDS . Subsequently, each damaged incarnation of the 

structural model (i.e., the ESDoF) is subjected to a second set of accelerograms. 

The records of the second set are scaled until the damaged structure reaches a 

more severe damage, say jDS , where j i . 

Applying the IM-based approach to the results of IDA (Vamvatsikos and 

Cornell 2001) and back-to-back IDA, fragility functions and state-dependent 

fragility functions are evaluated. This approach consists in finding the realizations 

of the random variable ( )DSIM  that is the seismic intensity leading the structure 

to equal or exceed a certain damage state threshold. Assuming that this random 
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variable follows a lognormal distribution, the fragility functions can be estimated 

according to Eq. (4.1): 

    ( )i DSP DS |IM im P IM im ln( im )  = =  = −   , (4.1) 

where  iP DS |IM im=  is the sought conditional probability that, given the 

intensity measure value, IM im= , the undamaged structure reaches or exceeds a 

certain damage state iDS , whereas   and   are the parameters (median and 

logarithmic standard deviation) of the assumed lognormal distribution, and ( )   

is the standard Gaussian (cumulative) function. 

Concerning the state-dependent fragility, two probability distribution models 

are investigated; i.e., the lognormal and the gamma distributions. The former is 

already defined in Eq. (1) whereas the cumulative density function of the latter is 

provided by Eq. (4.2): 

( )
1

0

1
d

im z

a b
j i a

P DS |DS IM im z e z
b a

−  = =       ,  (4.2) 

where j iP DS |DS IM im  =   is the probability that an already damaged 

structure transitions from a damage state iDS  to a more severe damage state jDS

, a  and b  are parameters, and ( )   is the Gamma function.1  

In this study, the same set of records selected within the NESS dataset (Pacor 

et al., 2018) is used for both the IDA and the first and the second phase of back-

to-back IDA. (The definition of the records set size is discussed in the following 

sections.) All the analyses (IDA and back-to-back IDA) are performed using the 

OpenSEES platform (Open System for Earthquake Engineering Simulation; 

McKenna, 2011) via a recent version of the DYANAS software (Baltzopoulos et 

al. 2018).  

4.3.3. Choice of the intensity measure 

In the assessment of structural response by means of dynamic analysis, the choice 

of the ground motion intensity measure is of primary importance. Traditionally, 

the IM  is selected on the basis of its characteristics of sufficiency and efficiency 

which are strictly tied to the accuracy of the structural performance assessment 

(Luco 2002; Luco and Cornell 2007; Padgett et al. 2007). In fact, a sufficient IM  

 
1 The parameters of both gaussian and gamma models depend on the initial damage state and the 

exceeded damage threshold. However, such a dependency is not explicitly reported in Eq. (4.1) and 
Eq. (4.22) for the sake of simplicity. 
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renders the structural response conditionally independent, given the selected 

intensity measure, of the other earthquake characteristics involved in the seismic 

hazard assessment for the construction site (i.e., magnitude and source-to-site 

distance), whereas an efficient IM  produces a relatively small variability in the 

structural response given the IM . The concepts of sufficiency and efficiency are 

used in this study to select the intensity measure for the execution of the IDA and 

back-to-back IDA. 

The IMs  known to allow an efficient prediction of the response of reinforced-

concrete structures, in terms of maximum roof- or interstory-displacement, 

generally include elastic response spectral values and somehow account for 

spectral shape (Eads et al. 2015; Bojórquez and Iervolino 2011). In this study, four 

IMs  were preliminarily considered as candidates: the elastic spectral acceleration 

at the period 0.3s; ( )0 3Sa T . s=  (in accordance with Romao et al. 2019), the 

elastic spectral acceleration at the vibration period of the undamaged system, 

( )elSa T , the geometric mean of spectral accelerations avgSa  (Baker and Cornell 

2006) and the NPI  intensity measure (Bojórquez and Iervolino, 2011). Hereafter, 

the geometric mean of spectral accelerations ( )1 2 23avgSa T ,T , ,T  is evaluated 

considering the twenty-three periods of the ground motion prediction equation of 

Bindi et al. (2011), defined in a range between 0.0s and 2.75s, according to Eq.(4.3)

: 

( ) ( ) ( )23
1 2 23 0 0s 2.75savgSa T ,T , ,T Sa . ... Sa=   . (4.3) 

The scalar intensity measure NPI  is also spectral-acceleration-based. In this case, 

it was defined using the same spectral ordinates considered for 

( )1 2 23avgSa T ,T , ,T , as shown in Eq.(4.4): 

( ) ( )
( )

( )
1 2 23

1 2 23

avg

NP el

el

Sa T ,T , ,T
I T ,T , ,T Sa T

Sa T


 

=   
 

, (4.4) 

where   is a parameter that, strictly speaking, requires structure-specific 

calibration, but is assumed equal to 0.4 in the following (Bojórquez and Iervolino, 

2011). It can be noted that ( )1 2 23avgSa T ,T , ,T  can be regarded as a special case 

of ( )1 2 23avgSa T ,T , ,T , for 1 = . 

Among the cited IMs , one had to be selected for computing fragility 

functions and state-dependent fragility function of all the analyzed buildings. To 

this aim, the four already mentioned benchmark systems are considered (see 

Figure 4.2b and Figure 4.2c).  
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As pertaining to sufficiency, past research has shown that intensity measures 

that account for spectral shape in a range of periods (i.e., avgSa  and NPI  among 

those considered here) seem to perform better than single-spectral-ordinate IMs  

at higher damage states. This can be intuitively attributed to the fact that a damaged 

structure’s stiffness is lower than what it was in intact conditions and, 

consequently, the range of vibration periods overall influencing the dynamic 

response increases.  

On the other hand, to have an indication of the efficiency of the four 

investigated intensity measures, the coefficient of variation of the DSIM , 
DSIMCOV

, is evaluated for increasing values of failure threshold, max . Figure 4.3 shows the 

values of 
DSIMCOV  assessed for the four different IMs  and the four benchmark 

systems (two representative of the RC structures and two representative of the 

masonry structures). 

 
Figure 4.3 

DSIMCOV as a function of max  evaluated for the four IMs for the first (a) and the second 

system (b) representative of the RC structures, the first (c) and the second (d) system representative 

of the masonry structures. 

The figure shows that avgSa  and NPI  are generally more efficient intensity 

measures than the single spectral ordinates (with the only exception for the 

backbone 2 of RC structures), as expected and confirms the findings of past 
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research, that IM efficiency is damage-state-dependent (Kazantzi and Vamvatsikos 

2015). For example, a previous work has indicated that the efficiency of NPI  with 

different   values (0.4 or 1) varies with damage state (Baltzopoulos et al., 2019). 

For the analyses, avgSa  was used as the IM  of choice, in other words NPI  with 

1 = . 

4.3.4. Number of records 

The issue addressed in this section concerns the identification of the number of 

ground motions used to perform dynamic analyses in other to balance the 

computational costs and the accuracy in fragility assessment. To this end, the 

statistical concept of estimation uncertainty (Iervolino, 2017; Baltzopoulos et al. 

2019) is applied to the estimates of the parameters defining the parametric fragility 

Eq. (4.1).  

The record sample size is selected trying to limit the estimation error of the 

two parameters   and   that define the fragility functions of the intact structures 

under the lognormal assumption. Although the gamma distribution is also 

contemplated as an alternative to the lognormal for the state-dependent fragilities, 

this consideration of estimation uncertainty is limited to the intact structures’ 

fragility and the lognormal model. The quantitative measure of the uncertainty in 

the fragility assessment used in this study, is the coefficients of variation 
,

COV


 

and COV


 evaluated for the estimators of the median   and of the standard 

deviation  , respectively. The coefficient of variation 
,

COV


 of a generic 

estimator   is defined as the square root of VAR  
   divided by E  

  , that is 

the ratio of the standard deviation and the expected value of  . The terms 

VAR  
   and E  

   can be substituted by their estimates obtained using a 

parametric resampling scheme proposed in Baltzopoulos et al., 2019. This 

procedure entails randomly sampling l  times (in this case 5000 times) from an 

assumed reference fragility model; i.e., the distribution of DSIM  defined by the 

results of IDA performed using the entire fifty-record set. This is repeated for a 

number of times, each time extracting different samples sizes N , varying from 

20 to 50. In this context, sample size ostensibly corresponds to the number of 

records used in dynamic analysis, and 
,

COV


 is approximated as:  
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 


. (4.5) 

This procedure is implemented for the two benchmark systems shown in Figure 

4.2b for RC structures and also for the two benchmark systems showed in Figure 

4.2c for masonry structures considering their fragilities to collapse (i.e., 4DS ). In 

Figure 4.4, the results obtained varying the size of the records set N  from 20 to 

50 are reported, in the panels (a) and (b) for the RC structures and in panels (c) 

and (d) for the masonry structures.  

 
Figure 4.4 Coefficient of variation for the estimators of the median COV


 (a) and the standard 

deviation COV


 (b) of the 4DS   fragility curve of RC structures against the number of records N

; coefficient of variation for the estimators of the median COV


 (c) and the standard deviation 

COV


 (d) of the 4DS   fragility curve of masonry structures against the number of records N . 

Through the described procedure, it is decided to use a number of records 

equal to 35 that allows maintaining COV


 between 10% and 15% for the four 

systems and COV


 below 10%. Moreover, Figure 4.4 also shows COV


 (Figure 
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4.4a-c) and COV


, (Figure 4.4b-d) evaluated for all the other RC and masonry 

structures using 35 records in order to verify that the associated coefficients of 

variation of the two estimators also adhere to these limitations.  

The defined set of 35 records is used for the execution of both IDA and 

back-to-back IDA.  

4.4. Results 

4.4.1. Reinforced concrete structures 

4.4.1.1. Classical curves 

Figure 4.5 and Figure 4.6 reports the fragility curves of the intact structures 

obtained analyzing via IDA the two benchmark systems shown in panel (b) of 

Figure 4.2. Each panel of Figure 4.5 and Figure 4.6 shows the comparison between 

the non-parametric fragility and the parametric fragility curve evaluated according 

to Eq.(4.1) for each arriving damage state; i.e. panel (a) refers to 1DS ; panel (b) to 

2DS ; panel (c) to 3DS  and panel (d) to 4DS . Figure 4.5 and Figure 4.6 show the 

good agreement between the assumed lognormal distribution and the results 

obtained from the analyses. 

 
Figure 4.5 Fragility curves evaluated for the benchmark system 1 of RC structures for the four 

damage states 1DS (a); 2DS  (b); 3DS  (c) and 4DS  (d). 
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Figure 4.6 Fragility curves evaluated for the benchmark system 2 of RC structures for the four 

damage states 1DS (a); 2DS  (b); 3DS  (c) and 4DS  (d). 

Figure 4.7 shows the fragility curves obtained analyzing the entire set of eighteen 

RC structures. Similarly to Figure 4.5 and Figure 4.6, each panel of Figure 4.7 

shows the fragility curves of the intact structures evaluated for each arriving 

damage state according to Eq.(4.1) (panel (a) for 1DS ; panel (b) for 2DS ; panel (c) 

for 3DS  and panel (d) for 4DS ).  

The values of median,  , and logarithmic standard deviation,  , defining 

the parametric fragilities of intact structures numbered from 1 to 18 are reported 

in Table 4.1. The table also shows for each structure the adopted code level of 

seismic design (absent or low); the height expressed in terms of number of stories 

( )H  and the design lateral force (0%, 5% or 10% of the building weight). As 

previously mentioned, the one-story buildings are always less fragile than the other 

RC structures for all damage states considered.  

P
[D

S
i|

 
]

S
a

a
vg

Saavg [g]

(a) (b)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

i=1 i=2

(c) (d)

i=3 i=4

DS4 arnon-p

DS4logn

DS3 arnon-p

DS3logn

DS2 arnon-p

DS2logn

DS1 arnon-p

DS1logn



 CHAPTER 4 137 

 

 
Figure 4.7 Fragility curves of RC structures evaluated for the four damage states 1DS (a); 2DS  (b); 

3DS  (c) and 4DS  (d). 

Table 4.1 Median   and logarithmic standard deviation   defining the fragility curves of RC 

intact structures ( IM in g). 

# 
Code 

Level 
H  

Lateral Force 

Coefficient (%) 

MEDIAN   SIGMA   

1DS  
2DS  3DS  

4DS  
1DS  

2DS  3DS  
4DS  

1 Absent 1 0.00 0.35 0.62 0.77 0.88 0.24 0.14 0.15 0.21 

2 Absent 2 0.00 0.18 0.35 0.46 0.51 0.21 0.24 0.28 0.31 

3 Absent 3 0.00 0.19 0.33 0.42 0.46 0.29 0.31 0.37 0.39 

4 Absent 4 0.00 0.21 0.33 0.42 0.45 0.35 0.38 0.44 0.45 

5 Absent 5 0.00 0.22 0.35 0.43 0.47 0.37 0.46 0.46 0.46 

6 Absent 6 0.00 0.25 0.37 0.46 0.48 0.43 0.47 0.48 0.46 

7 Low 1 5.00 0.38 0.64 0.76 0.90 0.23 0.12 0.11 0.17 

8 Low 2 5.00 0.18 0.35 0.45 0.51 0.21 0.24 0.28 0.31 

9 Low 3 5.00 0.17 0.31 0.40 0.43 0.28 0.31 0.35 0.37 

10 Low 4 5.00 0.18 0.29 0.36 0.39 0.34 0.36 0.39 0.43 

11 Low 5 5.00 0.17 0.27 0.34 0.37 0.27 0.29 0.32 0.36 

12 Low 6 5.00 0.18 0.28 0.35 0.37 0.40 0.43 0.45 0.47 

13 Low 1 10.00 0.37 0.63 0.76 0.91 0.24 0.13 0.11 0.18 

14 Low 2 10.00 0.19 0.36 0.47 0.52 0.22 0.25 0.28 0.31 

15 Low 3 10.00 0.19 0.36 0.46 0.52 0.28 0.30 0.34 0.37 

16 Low 4 10.00 0.18 0.33 0.41 0.46 0.35 0.35 0.36 0.41 

17 Low 5 10.00 0.17 0.31 0.40 0.46 0.35 0.37 0.42 0.45 

18 Low 6 10.00 0.19 0.31 0.38 0.42 0.38 0.42 0.45 0.45 

 

P
[D

S
i|

 
]

S
a

a
vg

Saavg [g]

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

(a)

i=1

(b)

i=2

(c)

i=3

(d)

i=4



 CHAPTER 4 138 

 
4.4.1.2. State-dependent fragility curves 

For the state-dependent fragilities, the assumption of a lognormal distribution or, 

alternatively, of a gamma distribution is investigated. Figure 4.8 shows the 

comparison between the non-parametric state-dependent fragilities (identified by 

the non-par subscript in the legend) and the parametric ones evaluated using the 

lognormal distribution (log subscript) for the benchmark system 1 of RC structures. 

Each panel of the figure shows the state-dependent fragility curves referring to 

different starting damage state and having the same final damage state; i.e. panel 

(a) refers to final damage state 2DS  whereas panel (b) refers to 3DS  and panel (c) 

to 4DS . Figure 4.9 shows the same results reported in Figure 4.8 but compares 

the non-parametric state-dependent fragilities with the parametric ones evaluated 

using the gamma distribution (gamma subscript). 

 
Figure 4.8 Comparison of the non-parametric and the parametric state-dependent fragility curves 

evaluated for the benchmark system 1 assuming the lognormal distribution and having different 

starting damage state and the same final state 2DS  (a), 3DS  (b) and 4DS  (c).  

 
Figure 4.9 Comparison of the non-parametric and the parametric state-dependent fragility curves 

evaluated for the benchmark system 1 assuming the gamma distribution and having different starting 

damage state and the same final state 2DS  (a), 3DS  (b) and 4DS  (c). 

The choice between the two possible distributions (lognormal and gamma) is 

conducted in terms of rates of failure, i.e., the rates of failure of the eighteen RC 

systems are calculated using the parametric state-dependent fragility curves 

evaluated using both the gamma and the lognormal distributions and are 

compared with the rates of failure obtained using the non-parametric state-
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dependent fragilities. The chosen distribution is the one best reproducing the rate 

results obtained using the non-parametric state-dependent fragilities. 

Within the performance-based earthquake engineering (PBEE) framework, 

the failure rate f  is the rate of earthquakes causing some undesired performance 

for the structure and in case of an already damaged structure can be computed as 

follow: 

 f j i imP DS |DS IM im d 
+

−
 =  =    (4.6) 

where j iP DS |DS IM im  =   is the state-dependent fragility curve and imd  

is the differential of the hazard curve, that is, the function providing the rate of 

exceedance of im  at the site of the construction, that is, im  from probabilistic 

seismic hazard analysis (PSHA; Cornell, 1968).  

For the assessment of the failure rates are considered three Italian sites, i.e., 

L’Aquila, Naples and Milan; representative of high, intermediate and low seismic 

hazards, respectively. The hazard analysis for the three sites is performed via the 

REASSES software (Chioccarelli et al., 2018) considering the seismic source 

model of Meletti et al. (2008) with magnitude rates taken from Barani et al. (2009). 

The ground motion prediction equation considered is Bindi et al. (2011), 

consistently with the intensity measure used to develop the state-dependent 

fragility curves, and are assumed soil conditions B (CEN, 2004) . 

Figure 4.10(a) shows the locations of the three sites considered and the 

seismogenic source zones of the model Meletti et al. (2008), whereas panel (b) 

provides the hazard curves computed via PSHA for the three sites in terms of 

avgSa .  

The failure rates of the eighteen RC structures at the three Italian sites are 

shown in Table 4.2, Table 4.3 and Table 4.. The tables differ in the state-dependent 

fragility curves used for the assessment of the failure rates, i.e., non-parametric 

state-dependent fragility curves (Table 4.2); parametric state-dependent fragility 

curves evaluated assuming the lognormal distribution (Table 4.3) or using the 

gamma distribution (Table 4.). 

Comparing the results obtained; it is found that modeling the state-dependent 

fragilities via a lognormal distribution provides failure rates closer to those 

obtained using the non-parametric results, for all the possible transitions between 

different damage states and considering the three levels of seismic hazard. 

Therefore, in this study the lognormal distribution was chosen to represent the 

state-dependent fragilities of RC structure classes.  
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Figure 4.10 Seismic sources zones and sites’ locations considered for the hazard analysis (a); annual 

exceedance rates of avgSa computed probabilistic seismic hazard analysis for the three sites (b). 

Table 4.5 collects the values of the median,  , and logarithmic standard 

deviation,  , defining lognormal distribution, Eq. (4.1); i.e., the parametric state-

dependent fragility curves for the eighteen RC structures. In the table, the fifth 

column gives the initial damage state wheres the damage state reported in the rest 

of the row represent the arrival damage states. 

 Figure 4.11 shows the state-dependent fragility curves obtained analyzing the 

entire set of eighteen RC structures via Back-to-Back IDA and assuming the 

lognormal distribution. Each panel of  Figure 4.11 shows the state-dependent 

fragility curves obtained considering a possible transition between damage states, 

i.e. from 1DS  to 2DS (panel a); from 1DS  to 3DS (panel b); from 1DS  to 4DS

(panel c); from 2DS  to 3DS (panel d); ); from 2DS  to 4DS (panel e) and from 

3DS  to 4DS (panel f). 

Table 4.2 Failure rates for the RC structures computed using the non-parametric state-dependent 

fragility curves. 

  L’AQUILA NAPLES MILAN 

# f  
2DS  3DS  

4DS  
2DS  3DS  

4DS  
2DS  3DS  

4DS  

1 

1DS  6.14E-04 3.15E-04 2.17E-04 2.56E-05 7.56E-06 4.16E-06 7.73E-09 1.36E-09 6.28E-10 

2DS  \ 3.21E-03 7.05E-04 \ 6.57E-04 4.75E-05 \ 1.54E-06 3.04E-08 

3DS  \ \ 6.23E-03 \ \ 2.22E-03 \ \ 2.80E-05 

2 

1DS  2.45E-03 1.23E-03 9.45E-04 3.41E-04 1.03E-04 6.59E-05 3.78E-07 6.33E-08 3.39E-08 

2DS  \ 7.62E-03 2.33E-03 \ 2.60E-03 3.82E-04 \ 1.40E-05 6.97E-07 

3DS  \ \ 9.13E-03 \ \ 3.42E-03 \ \ 2.15E-05 

3 

1DS  4.12E-03 1.77E-03 1.28E-03 9.25E-04 2.08E-04 1.20E-04 2.22E-06 1.92E-07 8.33E-08 

2DS  \ 9.06E-03 3.24E-03 \ 3.43E-03 6.91E-04 \ 2.40E-05 1.74E-06 

3DS  \ \ 2.13E-02 \ \ 1.01E-02 \ \ 9.24E-04 
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Table 4.2 (Continued) Failure rates for the RC structures computed using the non-parametric state-

dependent fragility curves. 

  L’AQUILA NAPLES MILAN 

# f  
2DS  3DS  

4DS  
2DS  3DS  

4DS  
2DS  3DS  

4DS  

4 

1DS  7.33E-03 2.38E-03 1.56E-03 2.52E-03 3.76E-04 1.80E-04 1.61E-05 5.33E-07 1.66E-07 

2DS  \ 1.11E-02 4.65E-03 \ 4.64E-03 1.28E-03 \ 4.54E-05 4.75E-06 

3DS  \ \ 1.85E-02 \ \ 8.98E-03 \ \ 3.10E-04 

5 

1DS  7.50E-03 2.38E-03 1.53E-03 2.70E-03 3.99E-04 1.79E-04 1.98E-05 6.50E-07 1.69E-07 

2DS  \ 1.06E-02 4.48E-03 \ 4.37E-03 1.23E-03 \ 3.94E-05 4.59E-06 

3DS  \ \ 1.30E-02 \ \ 5.86E-03 \ \ 7.26E-05 

6 

1DS  7.41E-03 2.49E-03 1.49E-03 2.64E-03 4.42E-04 1.72E-04 1.79E-05 7.96E-07 1.64E-07 

2DS  \ 1.01E-02 4.59E-03 \ 4.15E-03 1.29E-03 \ 3.87E-05 5.19E-06 

3DS  \ \ 1.57E-02 \ \ 7.48E-03 \ \ 1.89E-04 

7 

1DS  5.89E-04 3.13E-04 2.03E-04 2.46E-05 7.27E-06 3.51E-06 7.94E-09 1.27E-09 4.81E-10 

2DS  \ 3.54E-03 8.36E-04 \ 7.54E-04 6.63E-05 \ 1.79E-06 5.13E-08 

3DS  \ \ 5.55E-03 \ \ 1.66E-03 \ \ 7.75E-06 

8 

1DS  2.45E-03 1.26E-03 9.57E-04 3.41E-04 1.06E-04 6.67E-05 3.77E-07 6.62E-08 3.41E-08 

2DS  \ 8.93E-03 2.56E-03 \ 3.40E-03 4.52E-04 \ 2.94E-05 9.01E-07 

3DS  \ \ 1.39E-02 \ \ 6.25E-03 \ \ 1.20E-04 

9 

 

1DS  4.07E-03 1.90E-03 1.43E-03 8.89E-04 2.33E-04 1.43E-04 1.95E-06 2.25E-07 1.07E-07 

2DS  \ 9.83E-03 3.43E-03 \ 3.86E-03 7.50E-04 \ 2.96E-05 1.94E-06 

3DS  \ \ 1.35E-02 \ \ 6.04E-03 \ \ 7.26E-05 

10 

1DS  5.96E-03 2.52E-03 1.81E-03 1.75E-03 4.04E-04 2.29E-04 6.82E-06 5.65E-07 2.27E-07 

2DS  \ 1.29E-02 4.95E-03 \ 5.73E-03 1.44E-03 \ 9.32E-05 6.98E-06 

3DS  \ \ 1.77E-02 \ \ 8.52E-03 \ \ 1.90E-04 

11 

1DS  5.83E-03 2.73E-03 2.05E-03 1.71E-03 4.82E-04 2.96E-04 6.66E-06 7.90E-07 3.56E-07 

2DS  \ 1.16E-02 5.06E-03 \ 4.89E-03 1.45E-03 \ 4.72E-05 5.92E-06 

3DS  \ \ 3.28E-02 \ \ 1.65E-02 \ \ 1.58E-03 

12 

1DS  6.37E-03 3.02E-03 2.21E-03 2.06E-03 6.00E-04 3.44E-04 1.03E-05 1.25E-06 4.75E-07 

2DS  \ 1.10E-02 5.19E-03 \ 4.60E-03 1.51E-03 \ 4.03E-05 6.34E-06 

3DS  \ \ 1.86E-02 \ \ 9.09E-03 \ \ 1.56E-04 

13 

1DS  6.03E-04 3.16E-04 2.01E-04 2.58E-05 7.38E-06 3.48E-06 8.56E-09 1.30E-09 4.79E-10 

2DS  \ 3.36E-03 7.88E-04 \ 6.80E-04 5.84E-05 \ 1.46E-06 4.05E-08 

3DS  \ \ 4.82E-03 \ \ 1.25E-03 \ \ 3.75E-06 

14 

1DS  2.36E-03 1.20E-03 8.97E-04 3.19E-04 9.66E-05 5.94E-05 3.43E-07 5.78E-08 2.87E-08 

2DS  \ 8.51E-03 2.41E-03 \ 3.27E-03 4.28E-04 \ 3.20E-05 9.17E-07 

3DS  \ \ 1.08E-02 \ \ 4.39E-03 \ \ 4.62E-05 

15 

1DS  2.88E-03 1.36E-03 9.78E-04 4.94E-04 1.29E-04 7.33E-05 8.14E-07 9.33E-08 4.06E-08 

2DS  \ 7.56E-03 2.41E-03 \ 2.59E-03 4.09E-04 \ 1.42E-05 7.12E-07 

3DS  \ \ 1.11E-02 \ \ 4.65E-03 \ \ 6.08E-05 

16 

1DS  3.75E-03 1.83E-03 1.33E-03 7.91E-04 2.26E-04 1.30E-04 1.69E-06 2.22E-07 9.40E-08 

2DS  \ 8.43E-03 3.10E-03 \ 3.10E-03 6.43E-04 \ 2.06E-05 1.54E-06 

3DS  \ \ 1.18E-02 \ \ 5.14E-03 \ \ 6.00E-05 

17 

1DS  3.29E-03 1.78E-03 1.32E-03 6.45E-04 2.26E-04 1.32E-04 1.27E-06 2.30E-07 1.01E-07 

2DS  \ 8.85E-03 3.17E-03 \ 3.37E-03 6.97E-04 \ 2.78E-05 2.37E-06 

3DS  \ \ 2.10E-02 \ \ 9.90E-03 \ \ 8.84E-04 

18 1DS  4.34E-03 2.20E-03 1.72E-03 1.08E-03 3.40E-04 2.22E-04 3.25E-06 4.73E-07 2.43E-07 

 
2DS  \ 9.54E-03 4.19E-03 \ 3.80E-03 1.09E-03 \ 3.08E-05 3.87E-06 

3DS  \ \ 1.66E-02 \ \ 7.94E-03 \ \ 1.84E-04 
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Table 4.3 Failure rates for the RC structures computed using the parametric state-dependent 

fragility curves obtained using the lognormal distribution. 

  L’AQUILA NAPLES MILAN 

# f  
2DS  3DS  

4DS  
2DS  3DS  

4DS  
2DS  3DS  

4DS  

1 

1DS  6.15E-04 3.19E-04 2.22E-04 2.59E-05 8.28E-06 4.93E-06 7.99E-09 1.72E-09 9.76E-10 

2DS  \ 3.23E-03 6.98E-04 \ 6.79E-04 4.53E-05 \ 1.79E-06 2.76E-08 

3DS  \ \ 5.86E-03 \ \ 1.94E-03 \ \ 1.36E-05 

2 

1DS  2.46E-03 1.24E-03 9.52E-04 3.54E-04 1.08E-04 7.20E-05 4.42E-07 7.97E-08 4.80E-08 

2DS  \ 7.65E-03 2.33E-03 \ 2.63E-03 3.80E-04 \ 1.57E-05 6.80E-07 

3DS  \ \ 9.29E-03 \ \ 3.55E-03 \ \ 2.80E-05 

3 

1DS  4.13E-03 1.79E-03 1.31E-03 9.37E-04 2.29E-04 1.44E-04 2.44E-06 2.83E-07 1.61E-07 

2DS  \ 9.12E-03 3.25E-03 \ 3.47E-03 7.06E-04 \ 2.76E-05 2.04E-06 

3DS  \ \ 4.47E-02 \ \ 2.37E-02 \ \ 2.38E-03 

4 

1DS  7.28E-03 2.41E-03 1.60E-03 2.48E-03 4.09E-04 2.13E-04 1.50E-05 7.86E-07 3.18E-07 

2DS  \ 1.11E-02 4.70E-03 \ 4.68E-03 1.32E-03 \ 5.23E-05 6.14E-06 

3DS  \ \ 1.75E-02 \ \ 8.54E-03 \ \ 1.83E-04 

5 

1DS  7.44E-03 2.42E-03 1.57E-03 2.65E-03 4.38E-04 2.12E-04 1.94E-05 9.88E-07 3.29E-07 

2DS  \ 1.07E-02 4.54E-03 \ 4.48E-03 1.29E-03 \ 4.99E-05 6.35E-06 

3DS  \ \ 1.33E-02 \ \ 6.02E-03 \ \ 9.32E-05 

6 

1DS  7.42E-03 2.53E-03 1.52E-03 2.65E-03 4.84E-04 2.04E-04 1.98E-05 1.22E-06 3.15E-07 

2DS  \ 1.03E-02 4.69E-03 \ 4.29E-03 1.38E-03 \ 4.96E-05 7.58E-06 

3DS  \ \ 1.53E-02 \ \ 7.27E-03 \ \ 1.48E-04 

7 

1DS  5.86E-04 3.14E-04 2.08E-04 2.38E-05 7.44E-06 4.11E-06 7.18E-09 1.36E-09 7.06E-10 

2DS  \ 3.60E-03 8.26E-04 \ 8.10E-04 6.28E-05 \ 2.37E-06 4.62E-08 

3DS  \ \ 5.59E-03 \ \ 1.71E-03 \ \ 8.98E-06 

8 

1DS  2.46E-03 1.27E-03 9.66E-04 3.49E-04 1.12E-04 7.33E-05 4.21E-07 8.20E-08 4.87E-08 

2DS  \ 8.85E-03 2.55E-03 \ 3.35E-03 4.49E-04 \ 2.67E-05 9.01E-07 

3DS  \ \ 1.34E-02 \ \ 6.01E-03 \ \ 8.20E-05 

9 

 

1DS  4.08E-03 1.91E-03 1.47E-03 9.10E-04 2.51E-04 1.72E-04 2.26E-06 3.12E-07 2.03E-07 

2DS  \ 9.86E-03 3.43E-03 \ 3.87E-03 7.57E-04 \ 3.28E-05 2.17E-06 

3DS  \ \ 1.37E-02 \ \ 6.18E-03 \ \ 8.60E-05 

10 

1DS  5.97E-03 2.55E-03 1.85E-03 1.77E-03 4.35E-04 2.68E-04 7.55E-06 8.05E-07 4.31E-07 

2DS  \ 1.25E-02 4.92E-03 \ 5.51E-03 1.42E-03 \ 7.14E-05 6.84E-06 

3DS  \ \ 1.73E-02 \ \ 8.33E-03 \ \ 1.51E-04 

11 

1DS  5.86E-03 2.76E-03 2.10E-03 1.74E-03 5.14E-04 3.42E-04 7.83E-06 1.13E-06 6.61E-07 

2DS  \ 1.17E-02 5.08E-03 \ 4.94E-03 1.47E-03 \ 5.44E-05 6.96E-06 

3DS  \ \ 3.53E-02 \ \ 1.88E-02 \ \ 1.24E-03 

12 

1DS  6.40E-03 3.03E-03 2.25E-03 2.07E-03 6.29E-04 3.85E-04 1.20E-05 1.68E-06 7.99E-07 

2DS  \ 1.12E-02 5.25E-03 \ 4.70E-03 1.56E-03 \ 5.05E-05 8.03E-06 

3DS  \ \ 1.87E-02 \ \ 9.15E-03 \ \ 1.69E-04 

13 

1DS  6.00E-04 3.17E-04 2.06E-04 2.49E-05 7.56E-06 4.10E-06 7.63E-09 1.39E-09 7.12E-10 

2DS  \ 3.40E-03 7.80E-04 \ 7.18E-04 5.61E-05 \ 1.84E-06 3.86E-08 

3DS  \ \ 4.92E-03 \  1.35E-03 \ \ 5.54E-06 

14 

1DS  2.37E-03 1.20E-03 9.08E-04 3.28E-04 1.02E-04 6.61E-05 3.87E-07 7.14E-08 4.24E-08 

2DS  \ \ 2.39E-03 \ 3.14E-03 4.11E-04 \ 2.67E-05 8.20E-07 

3DS  \ \ 1.07E-02 \ \ 4.36E-03 \ \ 4.13E-05 

15 

1DS  2.88E-03 1.37E-03 1.00E-03 5.03E-04 1.41E-04 8.98E-05 8.86E-07 1.35E-07 7.96E-08 

2DS  \ 7.59E-03 2.42E-03 \ 2.62E-03 4.24E-04 \ 1.61E-05 8.84E-07 

3DS  \ \ 1.09E-02 \ \ 4.54E-03 \ 0.00E+00 5.03E-05 
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Table 4.3 (Continued) Failure rates for the RC structures computed using the parametric state-

dependent fragility curves obtained using the lognormal distribution. 

  L’AQUILA NAPLES MILAN 

# f  
2DS  3DS  

4DS  
2DS  3DS  

4DS  
2DS  3DS  

4DS  

16 

1DS  3.77E-03 1.86E-03 1.38E-03 8.18E-04 2.52E-04 1.63E-04 2.03E-06 3.48E-07 2.07E-07 

2DS  \ 8.44E-03 3.10E-03 \ 3.10E-03 6.55E-04 \ 2.26E-05 1.81E-06 

3DS  \ \ 1.19E-02 \ \ 5.21E-03 \ \ 7.23E-05 

17 

1DS  3.31E-03 1.83E-03 1.37E-03 6.72E-04 2.67E-04 1.68E-04 1.57E-06 4.43E-07 2.34E-07 

2DS  \ 8.84E-03 3.16E-03 \ 3.36E-03 6.99E-04 \ 2.80E-05 2.17E-06 

3DS  \ \ 2.19E-02 \ \ 1.12E-02 \ \ 4.75E-04 

18 

 

1DS  4.35E-03 2.23E-03 1.76E-03 1.10E-03 3.74E-04 2.60E-04 3.78E-06 7.38E-07 4.57E-07 

2DS  \ 9.63E-03 4.23E-03 \ 3.85E-03 1.13E-03 \ 3.82E-05 4.90E-06 

3DS  \ \ 1.64E-02 \ \ 7.85E-03 \ \ 1.53E-04 

 
Table 4.4 Failure rates for the RC structures computed using the parametric state-dependent 

fragility curves obtained using the gamma distribution. 

  L’AQUILA NAPLES MILAN 

# f  
2DS  3DS  

4DS  
2DS  3DS  

4DS  
2DS  3DS  

4DS  

1 

1DS  6.20E-04 3.34E-04 2.39E-04 2.67E-05 9.69E-06 6.46E-06 8.65E-09 2.41E-09 1.76E-09 

2DS  \ 3.77E-03 7.17E-04 \ 1.00E-03 5.28E-05 \ 6.35E-06 4.55E-08 

3DS  \ \ 6.73E-03 \ \ 2.52E-03 \ \ 4.62E-05 

2 

1DS  9.65E-03 3.06E-03 1.81E-03 4.08E-04 1.22E-04 8.57E-05 6.60E-07 1.12E-07 7.89E-08 

2DS  \ 1.78E-02 7.23E-03 \ 3.39E-03 4.64E-04 \ 4.29E-05 1.37E-06 

3DS  \ \ 2.44E-02 \ \ 6.00E-03 \ \ 1.84E-04 

3 

1DS  2.58E-03 1.28E-03 9.94E-04 1.08E-03 3.00E-04 2.24E-04 4.02E-06 6.30E-07 5.61E-07 

2DS  \ 8.81E-03 2.47E-03 \ 4.57E-03 9.26E-04 \ 8.87E-05 5.57E-06 

3DS  \ \ 1.32E-02 \ \ 1.04E-02 \ \ 5.93E-04 

4 

1DS  4.35E-03 1.95E-03 1.51E-03 2.95E-03 5.47E-04 3.30E-04 3.32E-05 2.04E-06 1.20E-06 

2DS  \ 1.08E-02 3.59E-03 \ 7.12E-03 2.02E-03 \ 2.66E-04 2.90E-05 

3DS  \ \ 2.10E-02 \ \ 1.23E-02 \ \ 7.21E-04 

5 

1DS  7.98E-03 2.65E-03 1.84E-03 3.40E-03 6.48E-04 3.43E-04 6.01E-05 3.61E-06 1.42E-06 

2DS  \ 1.52E-02 5.79E-03 \ 7.52E-03 2.23E-03 \ 3.27E-04 4.39E-05 

3DS  \ \ 2.43E-02 \ \ 1.06E-02 \ \ 6.42E-04 

6 

1DS  8.60E-03 2.78E-03 1.83E-03 4.04E-03 7.93E-04 3.45E-04 1.01E-04 6.09E-06 1.52E-06 

2DS  \ 1.58E-02 6.06E-03 \ 8.68E-03 2.93E-03 \ 4.90E-04 8.81E-05 

3DS  \ \ 2.14E-02 \ \ 1.23E-02 \ \ 8.46E-04 

7 

1DS  5.84E-04 3.17E-04 2.26E-04 2.37E-05 7.71E-06 5.50E-06 7.22E-09 1.47E-09 1.30E-09 

2DS  \ 4.46E-03 8.53E-04 \ 1.33E-03 7.44E-05 \ 1.16E-05 8.12E-08 

3DS  \ \ 7.24E-03 \ \ 2.75E-03 \ \ 4.99E-05 

8 

1DS  2.55E-03 1.30E-03 1.01E-03 3.90E-04 1.24E-04 8.79E-05 5.79E-07 1.12E-07 8.12E-08 

2DS  \ 1.02E-02 2.71E-03 \ 4.23E-03 5.47E-04 \ 7.64E-05 1.83E-06 

3DS  \ \ 1.57E-02 \ \ 7.35E-03 \ \ 2.26E-04 

9 

 

1DS  4.33E-03 2.04E-03 1.71E-03 1.06E-03 3.08E-04 2.74E-04 3.84E-06 5.83E-07 7.50E-07 

2DS  \ 1.16E-02 3.75E-03 \ 5.00E-03 9.61E-04 \ 9.96E-05 5.26E-06 

3DS  \ \ 2.29E-02 \ \ 1.15E-02 \ \ 6.79E-04 

10 

1DS  6.40E-03 2.77E-03 2.10E-03 2.06E-03 5.56E-04 3.95E-04 1.41E-05 1.79E-06 1.43E-06 

2DS  \ 1.49E-02 5.63E-03 \ 6.91E-03 1.89E-03 \ 2.15E-04 2.21E-05 

3DS  \ \ 2.22E-02 \ \ 1.11E-02 \ \ 5.17E-04 
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Table 4.4 (Continued) Failure rates for the RC structures computed using the parametric state-

dependent fragility curves obtained using the gamma distribution. 

  L’AQUILA NAPLES MILAN 

# f  
2DS  3DS  

4DS  
2DS  3DS  

4DS  
2DS  3DS  

4DS  

11 

1DS  6.42E-03 3.00E-03 2.41E-03 2.12E-03 6.60E-04 5.13E-04 1.72E-05 2.67E-06 2.42E-06 

2DS  \ 1.50E-02 5.89E-03 \ 6.97E-03 2.00E-03 \ 2.24E-04 2.36E-05 

3DS  \ \ 2.76E-02 \ \ 1.41E-02 \ \ 8.39E-04 

12 

1DS  7.15E-03 3.35E-03 2.54E-03 2.58E-03 8.30E-04 5.52E-04 3.14E-05 4.60E-06 2.65E-06 

2DS  \ 1.57E-02 6.62E-03 \ 7.41E-03 2.44E-03 \ 2.81E-04 4.08E-05 

3DS  \ \ 2.60E-02 \ \ 1.32E-02 \ \ 7.06E-04 

13 

1DS  5.98E-04 3.20E-04 2.25E-04 2.48E-05 7.88E-06 5.51E-06 7.71E-09 1.52E-09 1.32E-09 

2DS  \ 4.02E-03 8.06E-04 \ 1.08E-03 6.64E-05 \ 6.75E-06 6.67E-08 

3DS  \ \ 6.33E-03 \ \ 2.24E-03 \ \ 3.04E-05 

14 

1DS  2.46E-03 1.23E-03 9.53E-04 3.69E-04 1.13E-04 8.02E-05 5.41E-07 9.71E-08 7.27E-08 

2DS  \ 9.63E-03 2.51E-03 \ 3.96E-03 4.87E-04 \ 8.04E-05 1.59E-06 

3DS  \ \ 1.30E-02 \ \ 5.79E-03 \ \ 1.39E-04 

15 

1DS  3.04E-03 1.46E-03 1.17E-03 5.93E-04 1.76E-04 1.48E-04 1.51E-06 2.58E-07 3.06E-07 

2DS  \ 8.68E-03 2.66E-03 \ 3.33E-03 5.64E-04 \ 4.35E-05 2.34E-06 

3DS  \ \ 1.39E-02 \ \ 6.36E-03 \ \ 2.06E-04 

16 

1DS  4.05E-03 2.05E-03 1.63E-03 9.91E-04 3.47E-04 2.74E-04 3.91E-06 9.09E-07 9.22E-07 

2DS  \ 9.62E-03 3.42E-03 \ 3.87E-03 8.57E-04 \ 6.04E-05 4.86E-06 

3DS  \ \ 1.94E-02 \ \ 9.55E-03 \ \ 5.54E-04 

17 

1DS  3.58E-03 2.13E-03 1.67E-03 8.35E-04 4.21E-04 3.09E-04 3.28E-06 1.77E-06 1.35E-06 

2DS  \ 1.08E-02 3.63E-03 \ 4.62E-03 9.94E-04 \ 1.05E-04 7.75E-06 

3DS  \ \ 1.92E-02 \ \ 9.41E-03 \ \ 4.51E-04 

18 

1DS  4.75E-03 2.48E-03 2.04E-03 1.36E-03 5.14E-04 4.05E-04 8.61E-06 2.14E-06 1.84E-06 

2DS  \ 1.32E-02 5.18E-03 \ 6.05E-03 1.73E-03 \ 2.14E-04 2.34E-05 

3DS  \ \ 2.34E-02 \ \ 1.18E-02 \ \ 6.86E-04 

 

Figure 4.11 State-dependent fragility curves of RC structures. 
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Table 4.5 Median   and logarithmic standard deviation   defining the state-dependent fragility 

curves of RC structures ( IM in g). 

# Code Level H  
Lateral Force 

Coefficient (%) 
DS  

2DS  3DS  
4DS  

            

1 Absent 1 0.00 

1DS  0.55 0.18 0.72 0.20 0.85 0.25 

2DS  \ \ 0.28 0.45 0.57 0.35 

3DS  \ \ \ \ 0.22 0.63 

2 Absent 2 0.00 

1DS  0.30 0.28 0.42 0.29 0.49 0.32 

2DS  \ \ 0.16 0.49 0.33 0.41 

3DS  \ \ \ \ 0.15 0.53 

3 Absent 3 0.00 

1DS  0.23 0.38 0.37 0.36 0.44 0.40 

2DS  \ \ 0.15 0.54 0.28 0.48 

3DS  \ \ \ \ 0.10 1.55 

4 Absent 4 0.00 

1DS  0.17 0.51 0.32 0.43 0.41 0.44 

2DS  \ \ 0.14 0.62 0.23 0.54 

3DS  \ \ \ \ 0.11 0.74 

5 Absent 5 0.00 

1DS  0.18 0.58 0.33 0.47 0.42 0.45 

2DS  \ \ 0.14 0.63 0.24 0.57 

3DS  \ \ \ \ 0.13 0.69 

6 Absent 6 0.00 

1DS  0.18 0.59 0.33 0.49 0.42 0.46 

2DS  \ \ 0.15 0.66 0.24 0.60 

3DS  \ \ \ \ 0.12 0.76 

7 Low 1 5.00 

1DS  0.57 0.18 0.71 0.15 0.85 0.22 

2DS  \ \ 0.26 0.46 0.54 0.37 

3DS  \ \ \ \ 0.21 0.54 

8 Low 2 5.00 

1DS  0.30 0.27 0.42 0.29 0.48 0.32 

2DS  \ \ 0.15 0.56 0.31 0.42 

3DS  \ \ \ \ 0.12 0.64 

9 Low 3 5.00 

1DS  0.23 0.37 0.35 0.35 0.41 0.39 

2DS  \ \ 0.14 0.54 0.27 0.46 

3DS  \ \ \ \ 0.12 0.64 

10 Low 4 5.00 

1DS  0.19 0.44 0.31 0.40 0.38 0.43 

2DS  \ \ 0.13 0.64 0.23 0.54 

3DS  \ \ \ \ 0.10 0.67 

11 Low 5 5.00 

1DS  0.19 0.47 0.30 0.43 0.36 0.46 

2DS  \ \ 0.13 0.59 0.22 0.53 

3DS  \ \ \ \ 0.08 1.09 

12 Low 6 5.00 

1DS  0.19 0.53 0.29 0.47 0.35 0.46 

2DS  \ \ 0.13 0.60 0.22 0.55 

3DS  \ \ \ \ 0.09 0.65 

13 Low 1 10.00 

1DS  0.56 0.18 0.71 0.16 0.86 0.23 

2DS  \ \ 0.27 0.43 0.55 0.37 

3DS  \ \ \ \ 0.22 0.49 

14 Low 2 10.00 

1DS  0.30 0.27 0.43 0.29 0.50 0.32 

2DS  \ \ 0.17 0.60 0.33 0.44 

3DS  \ \ \ \ 0.14 0.56 

15 Low 3 10.00 

1DS  0.28 0.35 0.42 0.35 0.50 0.39 

2DS  \ \ 0.17 0.50 0.33 0.45 

3DS  \ \ \ \ 0.14 0.62 
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Table 4.5 (Continued) Median   and logarithmic standard deviation   defining the state-

dependent fragility curves of RC structures ( IM in g). 

# Code Level H  
Lateral Force 

Coefficient (%) 
DS  

2DS  3DS  
4DS  

            

16 Low 4 10.00 

1DS  0.24 0.39 0.36 0.39 0.44 0.43 

2DS  \ \ 0.16 0.53 0.29 0.48 

3DS  \ \ \ \ 0.14 0.68 

17 Low 5 10.00 

1DS  0.27 0.41 0.38 0.44 0.45 0.45 

2DS  \ \ 0.16 0.57 0.29 0.51 

3DS  \ \ \ \ 0.11 0.98 

18 Low 6 10.00 

1DS  0.23 0.46 0.34 0.45 0.40 0.47 

2DS  \ \ 0.15 0.62 0.25 0.54 

3DS  \ \ \ \ 0.11 0.72 

4.4.2. Masonry structures 

4.4.2.1. Classical curves 

Figure 4.12 and Figure 4.13 show the fragility curves of the intact structures 

obtained analyzing via IDA the two benchmark systems of masonry structures 

shown in panel (c) of Figure 4.2. Each panel of these figures represents the 

comparison between the non-parametric fragilities and the parametric fragility 

curves evaluated according to Eq.(4.1) for each arriving damage state; i.e. panel (a) 

refers to 1DS ; panel (b) to 2DS ; panel (c) to 3DS  and panel (d) to 4DS . Figure 

4.12 and Figure 4.13 show the good agreement between the lognormal distribution 

with the results obtained analyzing the masonry structures. 

In Figure 4.14 are reported the fragility curves obtained analyzing the entire 

set of fifteen masonry structures. Similarly to Figure 4.12 and Figure 4.13, each 

panel of Figure 4.14 shows the fragility curves of the intact structures evaluated 

for each arriving damage state using the lognormal distribution (Eq.(4.1)) i.e. panel 

(a) for 1DS ; panel (b) for 2DS ; panel (c) for 3DS  and panel (d) for 4DS .  

The values of median,  , and logarithmic standard deviation,  , defining 

the parametric fragilities of intact structures numbered from 1 to 15 are reported 

in Table 4.6. The table also reports for each structure the masonry material, i.e., 

rubble stone unreinforced masonry (STRUB); dressed stone unreinforced 

masonry (STDRE), clay brick unreinforced masonry (CL99) and confined 

masonry structures (MCF). In addition, the masonry structures are characterized 

by the level of available ductility (non-ductile or low) and the height expressed in 

terms of number of stories ( H ).  
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Figure 4.12 Fragility curves evaluated for the benchmark system 1 of masonry structures for the 

four damage states 1DS (a); 2DS  (b); 3DS  (c) and 4DS  (d). 

 
Figure 4.13 Fragility curves evaluated for the benchmark system 2 of masonry structures for the 

four damage states 1DS (a); 2DS  (b); 3DS  (c) and 4DS  (d). 
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Figure 4.14 Fragility curves of masonry structures evaluated for the four damage states 1DS (a); 

2DS  (b); 3DS  (c) and 4DS  (d). 

Table 4.6 Median   and logarithmic standard deviation   defining the state-dependent fragility 

curves of masonry structures ( IM in g). 

# Material 
Available 

Ductility 
H  

MEDIAN   SIGMA   

1DS  
2DS  3DS  

4DS  
1DS  

2DS  3DS  
4DS  

1 STRUB non-ductile 1 0.08 0.13 0.16 0.18 0.26 0.22 0.18 0.17 

2 STRUB non-ductile 2 0.06 0.10 0.13 0.16 0.21 0.25 0.28 0.30 

3 STRUB non-ductile 3 0.05 0.10 0.15 0.18 0.30 0.33 0.38 0.42 

4 STRUB non-ductile 4 0.05 0.11 0.15 0.19 0.37 0.42 0.45 0.47 

5 STRUB non-ductile 5 0.06 0.11 0.17 0.21 0.40 0.46 0.48 0.47 

6 CL99 non-ductile 3 0.06 0.11 0.15 0.19 0.33 0.34 0.40 0.43 

7 CL99 non-ductile 4 0.06 0.12 0.17 0.21 0.37 0.43 0.46 0.47 

8 CL99 non-ductile 5 0.06 0.13 0.18 0.23 0.41 0.46 0.47 0.48 

9 STDRE non-ductile 4 0.06 0.12 0.17 0.21 0.36 0.40 0.44 0.47 

10 STDRE non-ductile 5 0.06 0.12 0.18 0.22 0.41 0.46 0.47 0.47 

11 MCF low 1 0.15 0.22 0.27 0.31 0.25 0.20 0.18 0.18 

12 MCF low 2 0.11 0.20 0.26 0.31 0.21 0.22 0.24 0.26 

13 MCF low 3 0.09 0.18 0.25 0.31 0.27 0.31 0.35 0.41 

14 MCF low 4 0.09 0.19 0.27 0.34 0.34 0.38 0.43 0.46 

15 MCF low 5 0.09 0.19 0.28 0.35 0.37 0.46 0.46 0.47 
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4.4.2.2. State-dependent fragility curves 

For the state-dependent fragilities, the assumption of a lognormal distribution or, 

alternatively, of a gamma distribution is investigated also in the case of masonry 

structures. An example of comparison between the non-parametric state-

dependent fragilities (identified by the non-par subscript in the legend) and the 

parametric ones evaluated using the lognormal distribution (log subscript) is shown 

in Figure 4.15 for the benchmark system 1 of masonry structures. Each panel of 

the figure shows the state-dependent fragility curves referring to different starting 

state and having the same final state; i.e. panel (a) refers to 2DS , panel (b) refers 

to 3DS  and refers to 4DS .  Figure 4.16 shows the same results reported in Figure 

4.15 but compares the non-parametric state-dependent fragilities with the 

parametric ones evaluated using the gamma distribution (gamma subscript). 

 
Figure 4.15 Comparison of the non-parametric and the parametric state-dependent fragility curves 

evaluated for the benchmark system 1 of masonry structures assuming the lognormal distribution 

and having different starting damage state and the same final state 2DS  (a), 3DS  (b) and 4DS  (c).  

 
Figure 4.16 Comparison of the non-parametric and the parametric state-dependent fragility curves 

evaluated for the benchmark system 1 of masonry structures assuming the gamma distribution and 

having different starting damage state and the same final state 2DS  (a), 3DS  (b) and 4DS  (c). 

The choice between the two possible distributions (lognormal and gamma) to 

define the state-dependent fragility curves is conducted also in case of the masonry 

structures in terms of failure rates (see Eq. (4.6)). The failure rates of the fifteen 

masonry structures at the three Italian sites (L’Aquila, Naples and Milan) are 

evaluated using the hazard curves shown in Figure 4.10b. The results for the three 
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sites are shown in Table 4.7, Table 4.8 and in Table 4.9 in case failure rates 

evaluated using the non-parametric state-dependent fragilities, the parametric 

state-dependent fragilities obtained using the lognormal and the gamma 

distribution, respectively.  

Comparing the results obtained; it is found that modeling the state-dependent 

fragilities via a lognormal distribution provides failure rates closer to those 

obtained using the non-parametric results, for all the possible transitions between 

different damage states and considering the three levels of seismic hazard. 

Therefore, the lognormal distribution was chosen to represent the state-dependent 

fragilities also for masonry structures classes.  

 

Table 4.10 collects the values of the median,  , and logarithmic standard 

deviation,  , defining lognormal distribution, Eq. (4.1); i.e., the parametric state-

dependent fragility curves for the fifteen masonry structures. In the table, the fifth 

column gives the initial damage state where the damage states reported in the rest 

of the row represent the arrival damage states. 

Figure 4.17 shows the state-dependent fragility curves obtained analyzing the 

entire set of fifteen masonry structures via back-to-back IDA and assuming the 

lognormal distribution. Each panel of  Figure 4.17 shows the state-dependent 

fragility curves obtained considering a possible transition between damage states, 

i.e. from 1DS  to 2DS (panel a); from 1DS  to 3DS (panel b); from 1DS  to 4DS

(panel c); from 2DS  to 3DS (panel d); ); from 2DS  to 4DS (panel e) and from 

3DS  to 4DS (panel f). 

 

Figure 4.17 State-dependent fragility curves of masonry structures. 
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Table 4.7 Failure rates for the masonry structures computed using the non-parametric state-

dependent fragility curves 

  L’AQUILA NAPLES MILAN 

# f  
2DS  3DS  

4DS  
2DS  3DS  

4DS  
2DS  3DS  

4DS  

1 

1DS  1.35E-02 7.86E-03 6.00E-03 5.57E-03 2.40E-03 1.52E-03 3.75E-05 8.03E-06 3.52E-06 

2DS  \ 4.29E-02 1.81E-02 \ 2.42E-02 8.53E-03 \ 6.64E-04 9.42E-05 

3DS  \ \ 6.41E-02 \ \ 3.70E-02 \ \ 1.49E-03 

2 

1DS  3.20E-02 1.26E-02 8.64E-03 1.74E-02 5.07E-03 2.88E-03 3.23E-04 3.06E-05 1.15E-05 

2DS  \ 5.09E-02 2.30E-02 \ 2.91E-02 1.17E-02 \ 9.35E-04 1.61E-04 

3DS  \ \ 6.30E-02 \ \ 3.62E-02 \ \ 1.52E-03 

3 

1DS  2.38E-02 1.07E-02 7.18E-03 1.22E-02 4.06E-03 2.25E-03 1.76E-04 2.24E-05 8.39E-06 

2DS  \ 4.19E-02 1.82E-02 \ 2.35E-02 8.71E-03 \ 7.05E-04 1.04E-04 

3DS  \ \ 5.18E-02 \ \ 2.94E-02 \ \ 1.10E-03 

4 

1DS  2.65E-02 1.09E-02 7.06E-03 1.39E-02 4.27E-03 2.24E-03 2.27E-04 2.68E-05 8.77E-06 

2DS  \ 3.96E-02 1.80E-02 \ 2.20E-02 8.64E-03 \ 6.29E-04 1.09E-04 

3DS  \ \ 4.23E-02 \ 9.20E+01 2.36E-02 \ \ 7.76E-04 

5 

1DS  2.27E-02 9.69E-03 6.11E-03 1.15E-02 3.65E-03 1.81E-03 1.69E-04 2.10E-05 6.36E-06 

2DS  \ 3.45E-02 1.45E-02 \ 1.89E-02 6.54E-03 \ 4.86E-04 6.69E-05 

3DS  \ \ 4.02E-02 \ \ 2.22E-02 \ \ 8.47E-04 

6 

1DS  2.47E-02 1.04E-02 6.96E-03 1.27E-02 3.92E-03 2.16E-03 1.95E-04 2.17E-05 8.00E-06 

2DS  \ 4.01E-02 1.74E-02 \ 2.23E-02 8.22E-03 \ 6.38E-04 9.41E-05 

3DS  \ \ 4.54E-02 \ \ 2.56E-02 \ \ 8.28E-04 

7 

1DS  2.51E-02 9.88E-03 6.39E-03 1.30E-02 3.74E-03 1.93E-03 2.10E-04 2.19E-05 6.94E-06 

2DS  \ 3.59E-02 1.57E-02 \ 1.97E-02 7.26E-03 \ 5.37E-04 8.28E-05 

3DS  \ \ 4.05E-02 \ \ 2.25E-02 \ \ 7.41E-04 

8 

1DS  2.00E-02 8.62E-03 5.33E-03 9.84E-03 3.08E-03 1.46E-03 1.27E-04 1.58E-05 4.51E-06 

2DS  \ 3.22E-02 1.34E-02 \ 1.75E-02 5.91E-03 \ 4.38E-04 5.99E-05 

3DS  \ \ 3.41E-02 \ \ 1.87E-02 \ \ 5.29E-04 

9 

 

1DS  2.11E-02 9.29E-03 6.11E-03 1.05E-02 3.38E-03 1.79E-03 1.32E-04 1.77E-05 5.97E-06 

2DS  \ 3.58E-02 1.58E-02 \ 1.97E-02 7.28E-03 \ 4.99E-04 8.04E-05 

3DS  \ \ 3.92E-02 \ \ 2.16E-02 \ 
9.20E+0

1 
7.24E-04 

10 

1DS  2.23E-02 9.25E-03 5.73E-03 1.13E-02 3.42E-03 1.64E-03 1.63E-04 1.89E-05 5.45E-06 

2DS  \ 3.29E-02 1.41E-02 \ 1.79E-02 6.33E-03 \ 4.56E-04 6.53E-05 

3DS  \ \ 3.67E-02 \ \ 2.02E-02 \ \ 6.81E-04 

11 

1DS  1.08E-02 4.00E-03 2.72E-03 4.09E-03 7.77E-04 3.83E-04 2.51E-05 1.34E-06 4.05E-07 

2DS  \ 2.44E-02 1.07E-02 \ 1.26E-02 4.03E-03 \ 1.67E-04 2.18E-05 

3DS  \ \ 3.44E-02 \ 9.20E+01 1.89E-02 \ \ 3.86E-04 

12 

1DS  9.05E-03 3.96E-03 2.67E-03 3.07E-03 7.70E-04 3.89E-04 1.30E-05 1.27E-06 4.42E-07 

2DS  \ 2.37E-02 9.94E-03 \ 1.21E-02 3.75E-03 \ 1.82E-04 2.51E-05 

3DS  \ \ 3.23E-02 \ \ 1.76E-02 \ \ 3.94E-04 

13 

1DS  1.22E-02 4.85E-03 3.10E-03 4.99E-03 1.17E-03 5.60E-04 3.57E-05 2.80E-06 8.79E-07 

2DS  \ 2.34E-02 9.39E-03 \ 1.20E-02 3.51E-03 \ 1.90E-04 2.37E-05 

3DS  \ \ 2.89E-02 \ \ 1.55E-02 \ \ 3.30E-04 

14 

1DS  1.02E-02 4.30E-03 2.69E-03 3.89E-03 1.00E-03 4.60E-04 2.30E-05 2.31E-06 6.79E-07 

2DS  \ 2.04E-02 8.18E-03 \ 1.01E-02 2.92E-03 \ 1.47E-04 1.69E-05 

3DS  \ \ 2.23E-02 \ \ 1.14E-02 \ \ 2.11E-04 

15 

1DS  1.11E-02 4.32E-03 2.60E-03 4.45E-03 1.04E-03 4.46E-04 3.17E-05 2.60E-06 6.82E-07 

2DS  \ 1.89E-02 7.34E-03 \ 9.24E-03 2.56E-03 \ 1.41E-04 1.59E-05 

3DS  \ \ 2.02E-02 \ \ 1.02E-02 \ \ 1.88E-04 
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Table 4.8 Failure rates for the masonry structures computed using the parametric state-dependent 

fragility curves obtained using the lognormal distribution. 

  L’AQUILA NAPLES MILAN 

# f  
2DS  3DS  

4DS  
2DS  3DS  

4DS  
2DS  3DS  

4DS  

1 

1DS  1.34E-02 7.83E-03 5.99E-03 5.52E-03 2.38E-03 1.52E-03 3.47E-05 7.63E-06 3.57E-06 

2DS  \ 4.27E-02 1.80E-02 \ 2.41E-02 8.48E-03 \ 6.57E-04 9.09E-05 

3DS  \ \ 6.40E-02 \ \ 3.69E-02 \ \ 1.56E-03 

2 

1DS  3.20E-02 1.26E-02 8.67E-03 1.74E-02 5.09E-03 2.91E-03 3.27E-04 3.24E-05 1.25E-05 

2DS  \ 5.11E-02 2.31E-02 \ 2.92E-02 1.17E-02 \ 9.63E-04 1.69E-04 

3DS  \ \ 6.45E-02 \ \ 3.67E-02 \ \ 1.83E-03 

3 

1DS  2.38E-02 1.07E-02 7.26E-03 1.22E-02 4.10E-03 2.33E-03 1.78E-04 2.52E-05 1.07E-05 

2DS  \ 4.17E-02 1.83E-02 \ 2.34E-02 8.71E-03 \ 6.65E-04 1.09E-04 

3DS  \ \ 5.26E-02 \ \ 2.96E-02 \ \ 1.28E-03 

4 

1DS  2.65E-02 1.10E-02 7.19E-03 1.39E-02 4.33E-03 2.35E-03 2.42E-04 3.17E-05 1.22E-05 

2DS  \ 4.00E-02 1.82E-02 \ 2.22E-02 8.72E-03 \ 7.12E-04 1.22E-04 

3DS  \ \ 4.36E-02 \ \ 2.42E-02 \ \ 9.96E-04 

5 

1DS  2.29E-02 9.80E-03 6.25E-03 1.16E-02 3.74E-03 1.93E-03 1.86E-04 2.68E-05 9.37E-06 

2DS  \ 3.48E-02 1.46E-02 \ 1.90E-02 6.59E-03 \ 5.37E-04 7.81E-05 

3DS  \ \ 4.13E-02 \ \ 2.26E-02 \ \ 1.06E-03 

6 

1DS  2.47E-02 1.04E-02 7.00E-03 1.27E-02 3.94E-03 2.21E-03 2.02E-04 2.44E-05 1.02E-05 

2DS  \ 3.97E-02 1.75E-02 \ 2.21E-02 8.25E-03 \ 6.03E-04 1.02E-04 

3DS  \ \ 4.61E-02 \ \ 2.58E-02 \ \ 9.54E-04 

7 

1DS  2.52E-02 9.99E-03 6.47E-03 1.30E-02 3.82E-03 2.02E-03 2.27E-04 2.69E-05 9.78E-06 

2DS  \ 3.63E-02 1.58E-02 \ 1.99E-02 7.32E-03 \ 6.04E-04 9.34E-05 

3DS  \ \ 4.21E-02 \ \ 2.31E-02 \ \ 1.00E-03 

8 

1DS  2.01E-02 8.72E-03 5.45E-03 9.89E-03 3.17E-03 1.57E-03 1.40E-04 2.07E-05 6.88E-06 

2DS  \ 3.25E-02 1.35E-02 \ 1.75E-02 5.99E-03 \ 5.00E-04 7.01E-05 

3DS  \ \ 3.54E-02 \ \ 1.92E-02 \ \ 7.27E-04 

9 

 

1DS  2.12E-02 9.37E-03 6.19E-03 1.05E-02 3.44E-03 1.87E-03 1.45E-04 2.15E-05 8.33E-06 

2DS  \ 3.63E-02 1.59E-02 \ 1.99E-02 7.33E-03 \ 5.60E-04 8.89E-05 

3DS  \ \ 3.96E-02 \ \ 2.18E-02 \ \ 7.98E-04 

10 

1DS  2.25E-02 9.37E-03 5.85E-03 1.14E-02 3.51E-03 1.75E-03 1.81E-04 2.43E-05 8.05E-06 

2DS  \ 3.34E-02 1.43E-02 \ 1.81E-02 6.45E-03 \ 5.41E-04 7.92E-05 

3DS  \ \ 3.81E-02 \ \ 2.07E-02 \ \ 9.02E-04 

11 

1DS  1.07E-02 3.99E-03 2.72E-03 4.05E-03 7.68E-04 3.85E-04 2.28E-05 1.25E-06 4.16E-07 

2DS  \ 2.44E-02 1.07E-02 \ 1.26E-02 4.06E-03 \ 1.75E-04 2.35E-05 

3DS  \ \ 3.46E-02 \ \ 1.90E-02 \ \ 4.09E-04 

12 

1DS  9.05E-03 3.97E-03 2.68E-03 3.07E-03 7.88E-04 4.02E-04 1.31E-05 1.42E-06 5.16E-07 

2DS  \ 2.37E-02 9.93E-03 \ 1.21E-02 3.75E-03 \ 1.80E-04 2.47E-05 

3DS  \ \ 3.28E-02 \ \ 1.78E-02 \ \ 4.56E-04 

13 

1DS  1.22E-02 4.87E-03 3.14E-03 4.97E-03 1.19E-03 6.00E-04 3.61E-05 3.28E-06 1.24E-06 

2DS  \ 2.34E-02 9.38E-03 \ 1.20E-02 3.50E-03 \ 2.02E-04 2.39E-05 

3DS  \ \ 2.93E-02 \ \ 1.56E-02 \ \ 3.78E-04 

14 

1DS  1.03E-02 4.35E-03 2.74E-03 3.92E-03 1.06E-03 5.16E-04 2.58E-05 3.22E-06 1.16E-06 

2DS  \ 2.07E-02 8.25E-03 \ 1.03E-02 2.98E-03 \ 1.73E-04 2.07E-05 

3DS  \ \ 2.26E-02 \ \ 1.15E-02 \ \ 2.48E-04 

15 

1DS  1.12E-02 4.39E-03 2.66E-03 4.49E-03 1.12E-03 5.12E-04 3.62E-05 3.92E-06 1.24E-06 

2DS  \ 1.90E-02 7.41E-03 \ 9.26E-03 2.62E-03 \ 1.56E-04 1.89E-05 

3DS  \ \ 2.09E-02 \ \ 1.05E-02 \ \ 2.64E-04 
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Table 4.9 Failure rates for the masonry structures computed using the parametric state-dependent 

fragility curves obtained using the gamma distribution. 

  L’AQUILA NAPLES MILAN 

# f  
2DS  3DS  

4DS  
2DS  3DS  

4DS  
2DS  3DS  

4DS  

1 

1DS  1.33E-02 7.81E-03 6.02E-03 5.45E-03 2.37E-03 1.54E-03 3.38E-05 7.54E-06 3.73E-06 

2DS  \ 4.74E-02 1.83E-02 \ 2.65E-02 8.69E-03 \ 1.07E-03 1.06E-04 

3DS  \ \ 6.82E-02 \ \ 3.88E-02 \ \ 2.07E-03 

2 

1DS  3.34E-02 1.29E-02 8.88E-03 1.82E-02 5.32E-03 3.05E-03 4.10E-04 3.88E-05 1.51E-05 

2DS  \ 5.79E-02 2.51E-02 \ 3.27E-02 1.29E-02 \ 1.65E-03 2.70E-04 

3DS  \ \ 8.47E-02 \ \ 4.67E-02 \ \ 4.16E-03 

3 

1DS  2.49E-02 1.11E-02 7.80E-03 1.28E-02 4.38E-03 2.69E-03 2.34E-04 3.38E-05 1.89E-05 

2DS  \ 4.62E-02 2.01E-02 \ 2.57E-02 9.84E-03 \ 1.09E-03 1.97E-04 

3DS  \ \ 6.47E-02 \ \ 3.57E-02 \ \ 2.63E-03 

4 

1DS  2.88E-02 1.19E-02 8.21E-03 1.52E-02 4.96E-03 3.03E-03 3.87E-04 5.74E-05 3.19E-05 

2DS  \ 5.11E-02 2.22E-02 \ 2.79E-02 1.11E-02 \ 1.79E-03 3.53E-04 

3DS  \ \ 5.92E-02 \ \ 3.21E-02 \ \ 2.63E-03 

5 

1DS  2.58E-02 1.12E-02 7.55E-03 1.33E-02 4.64E-03 2.78E-03 3.63E-04 6.51E-05 3.47E-05 

2DS  \ 4.26E-02 1.79E-02 \ 2.31E-02 8.59E-03 \ 1.27E-03 2.46E-04 

3DS  \ \ 6.89E-02 \ \ 3.68E-02 \ \ 3.89E-03 

6 

1DS  2.62E-02 1.09E-02 7.58E-03 1.36E-02 4.29E-03 2.60E-03 2.89E-04 3.50E-05 1.90E-05 

2DS  \ 4.32E-02 1.96E-02 \ 2.39E-02 9.53E-03 \ 9.33E-04 2.02E-04 

3DS  \ \ 5.69E-02 \ \ 3.13E-02 \ \ 2.09E-03 

7 

1DS  2.80E-02 1.11E-02 7.54E-03 1.46E-02 4.56E-03 2.72E-03 4.09E-04 5.67E-05 2.92E-05 

2DS  \ 4.67E-02 1.93E-02 \ 2.53E-02 9.40E-03 \ 1.59E-03 2.79E-04 

3DS  \ \ 6.60E-02 \ \ 3.54E-02 \ \ 3.46E-03 

8 

1DS  2.24E-02 1.01E-02 6.68E-03 1.12E-02 4.04E-03 2.36E-03 2.62E-04 5.51E-05 2.85E-05 

2DS  \ 4.29E-02 1.72E-02 \ 2.31E-02 8.20E-03 \ 1.46E-03 2.61E-04 

3DS  \ \ 5.92E-02 \ \ 3.16E-02 \ \ 3.06E-03 

9 

 

1DS  2.27E-02 1.01E-02 6.99E-03 1.14E-02 3.95E-03 2.40E-03 2.22E-04 3.82E-05 2.10E-05 

2DS  \ 4.51E-02 1.91E-02 \ 2.45E-02 9.26E-03 \ 1.37E-03 2.47E-04 

3DS  \ \ 5.29E-02 \ \ 2.86E-02 \ \ 2.14E-03 

10 

1DS  2.56E-02 1.07E-02 7.07E-03 1.32E-02 4.37E-03 2.54E-03 3.69E-04 6.01E-05 3.04E-05 

2DS  \ 4.69E-02 1.88E-02 \ 2.52E-02 9.11E-03 \ 1.80E-03 3.22E-04 

3DS  \ \ 6.69E-02 \ \ 3.56E-02 \ \ 3.79E-03 

11 

1DS  1.07E-02 3.98E-03 2.74E-03 4.02E-03 7.64E-04 3.94E-04 2.34E-05 1.25E-06 4.45E-07 

2DS  \ 2.66E-02 1.13E-02 \ 1.38E-02 4.47E-03 \ 2.66E-04 3.36E-05 

3DS  \ \ 3.71E-02 \ \ 2.04E-02 \ \ 5.87E-04 

12 

1DS  9.11E-03 4.11E-03 2.77E-03 3.12E-03 8.69E-04 4.46E-04 1.40E-05 1.89E-06 6.94E-07 

2DS  \ 2.54E-02 1.07E-02 \ 1.31E-02 4.26E-03 \ 2.61E-04 4.23E-05 

3DS  \ \ 4.83E-02 \ \ 2.60E-02 \ \ 1.82E-03 

13 

1DS  1.26E-02 5.03E-03 3.37E-03 5.26E-03 1.30E-03 7.34E-04 4.73E-05 4.55E-06 2.42E-06 

2DS  \ 2.98E-02 1.06E-02 \ 1.56E-02 4.31E-03 \ 6.15E-04 5.58E-05 

3DS  \ \ 3.74E-02 \ \ 2.00E-02 \ \ 1.08E-03 

14 

1DS  1.09E-02 4.75E-03 3.12E-03 4.33E-03 1.31E-03 7.36E-04 4.00E-05 6.92E-06 3.67E-06 

2DS  \ 2.74E-02 1.02E-02 \ 1.41E-02 4.24E-03 \ 6.32E-04 8.14E-05 

3DS  \ \ 3.14E-02 \ \ 1.63E-02 \ \ 9.52E-04 

15 

1DS  1.25E-02 5.13E-03 3.34E-03 5.36E-03 1.58E-03 8.96E-04 7.82E-05 1.32E-05 7.14E-06 

2DS  \ 2.75E-02 9.71E-03 \ 1.41E-02 4.07E-03 \ 7.53E-04 1.00E-04 

3DS  \ \ 4.11E-02 \ \ 2.15E-02 \ \ 1.97E-03 
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Table 4.10 Median   and logarithmic standard deviation   defining the state-dependent fragility 

curves of masonry structures ( IM in g). 

# Materials 
Available 

Ductility 
H  DS  

2DS  3DS  
4DS  

            

1 STRUB non-ductile 1 

1DS  0.099 0.257 0.143 0.199 0.170 0.183 

2DS  \ \ 0.042 0.436 0.083 0.392 

3DS  \ \ \ \ 0.030 0.443 

2 STRUB non-ductile 2 

1DS  0.052 0.381 0.105 0.305 0.137 0.302 

2DS  \ \ 0.036 0.440 0.070 0.424 

3DS  \ \ \ \ 0.031 0.545 

3 STRUB non-ductile 3 

1DS  0.068 0.414 0.122 0.371 0.162 0.406 

2DS  \ \ 0.044 0.482 0.086 0.470 

3DS  \ \ \ \ 0.038 0.586 

4 STRUB non-ductile 4 

1DS  0.063 0.455 0.124 0.442 0.168 0.456 

2DS  \ \ 0.048 0.575 0.089 0.529 

3DS  \ \ \ \ 0.047 0.665 

5 

 

non-ductile 

 1DS  0.073 0.489 0.137 0.475 0.186 0.476 

STRUB 5 2DS  \ \ 0.054 0.581 0.106 0.542 

  3DS  \ \ \ \ 0.053 0.765 

6 CL99 non-ductile 3 

1DS  0.067 0.440 0.125 0.388 0.167 0.418 

2DS  \ \ 0.046 0.485 0.089 0.484 

3DS  \ \ \ \ 0.042 0.575 

7 CL99 non-ductile 4 

1DS  0.067 0.483 0.134 0.462 0.181 0.464 

2DS  \ \ 0.053 0.596 0.100 0.543 

3DS  \ \ \ \ 0.050 0.712 

8 CL99 non-ductile 5 

1DS  0.080 0.485 0.149 0.480 0.204 0.479 

2DS  \ \ 0.059 0.618 0.114 0.567 

3DS  \ \ \ \ 0.059 0.721 

9 STDRE non-ductile 4 

1DS  0.075 0.443 0.138 0.434 0.184 0.448 

2DS  \ \ 0.052 0.556 0.098 0.517 

3DS  \ \ \ \ 0.051 0.650 

10 STDRE non-ductile 5 

1DS  0.074 0.494 0.141 0.478 0.195 0.476 

2DS  \ \ 0.058 0.630 0.109 0.566 

3DS  \ \ \ \ 0.057 0.762 

11 MCF low 1 

1DS  0.119 0.328 0.220 0.208 0.272 0.189 

2DS  \ \ 0.065 0.364 0.120 0.340 

3DS  \ \ \ \ 0.050 0.418 

12 MCF low 2 

1DS  0.132 0.273 0.224 0.255 0.282 0.265 

2DS  \ \ 0.068 0.422 0.132 0.434 

3DS  \ \ \ \ 0.056 0.559 

13 MCF low 3 

1DS  0.112 0.389 0.205 0.348 0.271 0.382 

2DS  \ \ 0.072 0.504 0.141 0.472 

3DS  \ \ \ \ 0.063 0.587 

14 MCF low 4 

1DS  0.128 0.420 0.228 0.419 0.304 0.441 

2DS  \ \ 0.082 0.562 0.159 0.523 

3DS  \ \ \ \ 0.081 0.644 

15 MCF low 5 

1DS  0.125 0.476 0.233 0.465 0.315 0.472 

2DS  \ \ 0.090 0.601 0.177 0.572 

3DS  \ \ \ \ 0.093 0.743 
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4.5. Conclusions 

This study shows the results of the assessment of state-dependent fragility 

functions for Italian reinforced concrete and masonry structures taken from the 

outcomes of the SERA project. Fragility assessment was conducted via back-to-

back IDA of an ESDoF approximation of single structures, each representing a 

building class. In this context, two issues significantly affecting the assessment 

were addressed: the choice of the intensity measure and the identification of the 

number of ground motion records for the execution of nonlinear dynamic 

analyses. Based on a comparison of different intensity measures, it was confirmed 

that those entailing a geometric mean of spectral accelerations, that is, avgSa  and 

NPI , were to be preferred due to exhibiting greater efficiency than single-period 

spectral ordinates. In lack of a specific calibration of the NPI  intensity measure at 

this stage, avgSa  was selected for the state-dependent fragilities. As far as the 

number of records is concerned, a set of 35 ground motions was used as a 

compromise between computational costs and the precision in fragility 

assessment, based on the statistical inference concept of estimation uncertainty.  

The fragility curves for the intact structures and the state-dependent fragility 

curves were modeled assuming a lognormal distribution. 
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Abstract 

From this chapter was derived the paper:  

− Orlacchio M., Baltzopoulos G., Iervolino I. (2019), “Constant-ductility residual 

displacement ratios”, Proceedings of COMPDYN 2019, 7th ECCOMAS Thematic 

Conference on Computational Methods in Structural Dynamics and Earthquake 

Engineering, 24-26 June 2019, Crete, Greece. 

Structures subjected to large inelastic deformations during earthquakes can 

experience residual displacements, i.e., permanent deviations from the original 

geometric configuration that may reflect damage due to hysteretic energy 

dissipation. In fact, observed residual displacements play a fundamental role in 

determining the feasibility of post-earthquake repair operations, against the 

alternative of demolition and replacement. Furthermore, seismic risk studies often 

use analytically derived estimates of the peak inelastic and residual displacements 

as proxies for structural damage and remaining post-shock capacity, respectively, 

the latter being an important ingredient for the evaluation of structural reliability 

in the face of seismic sequences. This chapter presents a predictive model for 

evaluating the central tendency and record-to-record variability of constant-

ductility residual displacements of bilinear single-degree-of-freedom systems that 

exhibit strength and stiffness degradation under cyclic loading, such as typically 

observed in reinforced concrete structures with predominantly flexural behavior. 

In order to develop the model, systems with natural periods belonging to the 0.3 

s to 2.0 s range with post-yield hardening ratios ranging from 0 to 10%, were 

analyzed. The most influential variables are post-yielding hardening slope, ductility 

demand and the level of stiffness and/or strength deterioration caused by the 

ground shaking. The resulting equations provide the joint distribution of residual 

displacement, elongated period and loss of lateral resistance. This model can be 

used for the probabilistic definition of the post-earthquake pushover of a damaged 

system.  

Keywords: static pushover; cyclic degradation; sequence-based seismic reliability. 

5.1. Introduction 

The increased interest in the effects of earthquake sequences on structures 

(Iervolino et al., 2016, 2020) and the requirement to analytically evaluate 

retrofitting via seismic risk analysis, (Ramirez and Miranda, 2012; Ruiz-García and 

Aguilar, 2015) have stimulated a number of investigations into the issue of residual 

displacements. Thus, whereas the peak transient displacement of simple inelastic 

systems has been studied extensively for the last sixty years, (Veletsos and 



 CHAPTER 5 161 

 

 

Newmark, 1960; Ruiz-García and Miranda, 2003; Riddell, 2008) research in the 

residual displacement of such systems is gradually catching up. 

The magnitude of residual displacements can determine the technical and 

economic feasibility of repair operations of seismic damage. In fact, large residual 

displacements may lead to a decision to demolish a structure, rather than repair it, 

and often represent a variable that dominates expected economic losses at 

intermediate levels of ground motion intensity (Ramirez and Miranda, 2012). 

Furthermore, the consideration of residual displacements as a supplement to the 

peak deformation demand, allows for a more complete quantification of building 

performance under sequential seismic excitation (Ruiz-García and Miranda, 2004; 

Christopoulos and Pampanin, 2004; Uma et al., 2010). Sequential seismic loading, 

that is, multiple instances of base acceleration arriving in succession without 

allowing for intermediate repairs to the structure, can be the result of earthquake 

shocks occurring clustered in time and space, that is, a seismic sequence. In fact, 

residual displacements were found to be a proxy for the remaining capacity of 

structures that have already experienced one damaging shock during a sequence, 

to withstand further aftershocks (Bazzurro et al., 2004; Luco et al., 2004). 

According to the paradigm of performance-based earthquake engineering (PBEE, 

Cornell and Krawinkler, 2000) assessment of seismic structural reliability requires 

a probabilistic treatment of structural response. Past research has provided 

examples of such a probabilistic description of inelastic displacement demand for 

simple structural systems (Vamvatsikos and Cornell, 2006). However, in the case 

of residual displacements, there is scarcity of such models (Ruiz-García and 

Miranda, 2006; Liossatou, 2013). The objective of the present analytical study is to 

contribute to filling that gap by providing a predictive model aimed at 

probabilistically evaluating the residual displacement of simple yielding oscillators, 

while accounting for some of the parameters known to primarily affect its central 

tendency and variability. 

Several studies have been focused on identifying the parameters that 

primarily affect the residual displacements of single-degree-of-freedom (SDoF) 

inelastic structures subjected to earthquake ground motion. From the early studies 

on residual displacement, the post-yield stiffness ratio emerged as one of the most 

important parameters for the evaluation of permanent deformations of bilinear 

SDoF systems (Riddell and Newmark, 1979a, 1979b) and this was also confirmed 

by subsequent investigations (G. A. Macrae and Kawashima, 1997; Borzi et al., 

2001; Christopoulos et al., 2003; Ruiz-García and Miranda, 2006). Overall, it has 

been observed that bilinear oscillators with positive post-yield stiffness ratios 

generally exhibit smaller residual displacements than elastic–perfectly plastic 

systems. On the other hand, oscillators that exhibit negative stiffness after yield 

tend to undergo little reversal of inelastic deformation and thus exhibit larger 
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residual displacements than corresponding elastoplastic or hardening systems (G. 

A. Macrae and Kawashima, 1997). 

Other studies considered the importance of the hysteretic law, and 

investigated the impact of the shape of hysteresis loops on residual displacements 

among different models of cyclic behavior (Riddell and Newmark, 1979a, 1979b; 

Mahin and Bertero, 1981; Pampanin et al., 2003; Liossatou and Fardis, 2015; 

Christopoulos et al., 2003; Ruiz-García and Miranda, 2004, 2006). These studies 

pointed out that the unloading-reloading stiffness of the hysteretic model is one 

of the most influential parameters that determine residual displacements. In fact, 

it was observed that residual displacement demands for stiffness-degrading 

systems are, on average, smaller than their counterparts computed for elastoplastic 

systems with the same elastic dynamic properties and yield strength, especially if 

unloading from (and reloading to) the monotonic envelope passes through, or 

close-to, the origin (e.g., in the case of flag-shaped or pinched hysteresis loops). 

Generally speaking, past studies indicate that for vibration periods of the 

structure below 1.0 s, the central tendency of residual displacements (e.g., mean or 

median) exhibits some dependence on period (G. A. Macrae and Kawashima, 

1997; Ruiz-García and Miranda, 2004; Liossatou and Fardis, 2015), but this 

dependence does not persist for longer periods (Ruiz-García and Miranda, 2004; 

Liossatou and Fardis, 2015). However, residual displacements are also 

characterized by significant record-to-record variability (Mahin and Bertero, 1981; 

Ruiz-García and Miranda, 2004; Liossatou and Fardis, 2015; Christopoulos et al., 

2003), which also depends on the system’s period of natural vibration, being higher 

towards shorter periods (e.g., between 0.10 s and 0.5 s; Ruiz-García and Miranda, 

2004; Liossatou and Fardis, 2015). For SDoF systems with bilinear backbones, this 

dispersion tends to increase as positive post-yield stiffness approaches zero and/or 

when the system exhibits stiffness degradation (Ruiz-García and Miranda, 2004; 

Liossatou and Fardis, 2015 ). 

Although these observations were mostly made by investigating the residual 

displacements of SDoF systems under a constant-strength approach, that is, 

oscillators having the same ratio of elastic restoring force demand to yield strength 

(or strength ratio), a few studies also considered systems where ductility, is kept 

constant (G. A. Macrae and Kawashima, 1997; Borzi et al., 2001; Christopoulos et 

al., 2003; Madhu Girija and Gupta, 2020), the latter defined as the ratio of inelastic 

displacement demand to yield displacement, 
max y  = . This is termed the 

constant-ductility approach and is also adopted in the present study. Thus, this 

investigation is focused on the constant-ductility residual displacement ratio ( )C , 

defined as the ratio of residual to peak transient displacement, according to 

Eq.(5.1): 
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 res maxC  =  (5.1) 

where both the residual displacement, res , and peak transient displacement, max

, are considered preserving their sign. The choice of normalizing the residual 

displacement with the maximum inelastic displacement, which is also encountered 

in the literature (Ruiz-García and Miranda, 2004; Liossatou and Fardis, 2015; 

Madhu Girija and Gupta, 2020), as well as the constant-ductility approach, were 

motivated by the widespread use of inelastic displacement limits as thresholds for 

the definition of structural damage states in PBEE. In fact, it is common practice 

to define the transition of a structure from one damage state to another, during an 

earthquake shock, on the basis of crossing some transient displacement threshold 

(Georgios Baltzopoulos et al., 2017; Iervolino et al., 2018). In other words, the 

present study is oriented towards estimating residual displacements for a structure 

that can be considered to be in a certain damage state, after an earthquake. 

Therefore, the objective of this chapter is to present an analytical predictive 

model for the central tendency and related record-to-record variability of the 

residual displacement ratio for SDoF systems with bilinear backbones that follow 

evolutionary hysteretic laws. This is a step forward from a preliminary version of 

the model (Orlacchio et al., 2019) C   which was limited to the consideration of 

stiffness degradation due to peak-oriented hysteretic behavior. Going forward, the 

present chapter provides a more general set of equations that also account for 

cyclic strength degradation, which can be representative of the behavior of low-code 

reinforced concrete structures with flexure-dominated inelastic response. The C   

ratio is calculated for various combinations of input motion, natural vibration 

period and post-yielding hardening ratio, considering also different levels of 

strength degradation. The end result is a set of predictive equations for C   as a 

function of two other random variables (RVs): the elongated period (due to loss 

of stiffness), and the loss of lateral strength, both conditional on a given ductility 

demand. Thus, these equations effectively model the joint distribution of residual 

displacement, elongated period and strength degradation. As a consequence, this 

model allows for the probabilistic evaluation of enough parameters to define the 

post-shock pushover curve of the SDoF system, which reflects its state of seismic 

damage. In this sense, this constant-ductility approach could find application in 

the context of simplified estimation of seismic fragility characterizing the structure 

in its damaged state (Raghunandan et al., 2015; Bazzurro et al., 2004; Luco et al., 

2004). 

The remainder of this chapter follows this structure: first the analysis 

methodology is outlined describing the properties of the analyzed systems and the 

organization of the analyses used to collect the data set. The next two sections are 
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dedicated to the detailed description of the predictive model’s development and 

the numerical aspects of its practical implementation, such as the derivation of 

mean spectra for residual displacement ratios or the stochastic simulation of 

pushover curves characterizing the damaged system. Finally, an illustrative 

application is presented showing that the model can be used as a simplified tool 

to predict the residual displacements of a reinforced concrete multi-story frame. 

Some discussion and evaluation of the obtained results conclude the chapter. 

5.2. Scope and methodology 

5.2.1. Models considered for hysteretic behaviour  

The purpose of the present study is the development of a predictive model for the 

constant-ductility residual displacement ratio, C  , of simple inelastic systems that 

can be deemed to be representative of high- and low-code reinforced concrete 

structures with flexure dominated inelastic response. These structures consisted 

of yielding SDoF systems characterized by piece-wise linear monotonic pushovers 

and peak-oriented hysteretic behavior, potentially exhibiting cyclic strength 

degradation. The analytical model adopted for the numerical implementation of 

the hysteretic rule was the modified Ibarra-Medina-Krawinkler (IMK, Ibarra et al., 

2005; Lignos and Krawinkler, 2011) model. An example trilinear pushover, or 

backbone curve, is shown in Figure 5.1a using dimensionless  R,  coordinates, 

where yR F F=  is the strength ratio of the elastic force over the yield base shear 

of the system, and y  =  stands for the response-to-yield displacement ratio; 

i.e., the ductility.2  

The analyzed systems have backbone curves consisting of an elastic branch 

followed by a post-yield hardening segment, the latter defined by a hardening slope 

h  and ending at a capping point ductility c . 

 

 
2 The notation   is used herein to denote both maximum transient ductility demand due to base 

acceleration, 
max y  , and normalized displacement response under quasi-static loading y  , 

as per the typical convention in earthquake engineering literature. In all cases presented herein, the 

normalizing yield displacement y  is that of the intact structural system. 



 CHAPTER 5 165 

 

 

 

Figure 5.1 Peak-oriented modified IMK hysteretic model. Backbone curve and quasi-static cyclic 

response of an inelastic SDoF system without any cyclic strength degradation, shown in 

dimensionless  R, coordinates (a); quasi-static cyclic response that includes cyclic strength 

degradation (b). 

This hysteretic model allows for the investigation of two degradation modes, 

the first being the deterioration of reloading stiffness inherent in the peak-oriented 

model, where the direction of the loading path targets the maximum displacement 

on the opposite side, once the horizontal axis is intersected in each reloading cycle 

(Figure 5.1a). The second type of degradation considered is the cyclic deterioration 

of lateral strength, which involves the offset of the hardening branch towards the 

origin after each response half-cycle and the simultaneous deterioration of the 

hardening slope. The latter constitutes a case of cyclic strength degradation, so-

termed to distinguish it from in-cycle degradation, which occurs when ductility 

demand exceeds the capping point c  and the response follows the softening 

branch (FEMA P440A, 2009). Figure 5.1 displays the quasi-static cyclic response 

of two simple inelastic systems that behave according to the modified IMK peak-

oriented hysteretic model (Lignos, 2013) one of which corresponds to a case 

without cyclic strength degradation (Figure 5.1a) whereas the other does exhibit 

cyclic strength deterioration (Figure 5.1b). Although no ductility demands c   

are considered in this investigation, and therefore no in-cycle strength degradation 

ever comes into play in the development of the predictive model, a descending 

softening branch, defined by a post-capping slope c  and intercepting the zero-

strength axis at a fracture ductility, f , is still shown for the sake of completeness. 

In order to investigate the effect of strength degradation on residual 

displacement, three hysteretic rules were established, characterized by increasing 

degradation levels that will be hereafter conventionally referred to as cases of low-

, medium- and high-degradation. Although the labeling of these degradation levels 

is purely arbitrary, they were defined on a quantitative basis, according to the loss 

of lateral resistance following the numerical application of a specific loading 
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protocol. In this context, a normalized lateral strength degradation measure is 

defined, hereafter referred to as the strength loss, R  and defined according to Eq. 

(5.2):  

1
2

max max

max

F΄ F΄
R

F

+ −+
 = −


 (5.2) 

where ( )1 1max y hF F  =  +  −    is the maximum restoring force reached along 

the hardening branch of the initial backbone at ductility c   under static 

loading (i.e., in the absence of cyclic strength degradation) and 
max

F΄   represents 

the maximum force in the positive and negative loading directions, that can be 

reached at the same ductility on the deteriorated backbone after the system has 

been subjected to any cyclic loading; i.e., on the pushover of the damaged 

structure, as shown in Figure 5.2. On the same figure, it is worth noting that the 

evaluation of 
max

F΄ +  and maxF΄ −  is performed upon the backbones of the 

damaged structure that have been shifted from the initial point of equilibrium by 

the residual displacement res . The parameter maxF΄  is hereafter used to express 

the deteriorated lateral resistance at maximum ductility demand, evaluated as 

( )1 2max max max
F΄ F΄ F΄+ −=  + , which simplifies Eq. (5.2) to 1 max maxR F΄ F = − . 

 
Figure 5.2 Examples of an SDoF structure’s monotonic pushover (backbone) curve before and 

after the seismic damage. Intact-structure backbone (grey line) and post-shock backbone (dark line 

with pre-yield stiffness k΄ , intersecting the zero-force horizontal axis at res ) for a generic stiffness-

degrading system (a) and for a generic stiffness- and strength-degrading system (b). 

Using this definition of strength loss, the conventional labeling of the three 

degradation levels was calibrated so that R  would result approximately equal to 
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0.20, 0.30 and 0.40 for the low-, medium- and high-degradation levels, respectively, 

at the end of a displacement-controlled quasi-static cyclic loading, as shown in 

Figure 5.2. These values were obtained as an average from the application of the 

loading protocol to SDoF systems with hardening slopes spanning the entire range 

considered for the model. The loading protocol arbitrarily used for this definition 

consisted of performing two symmetric full cycles at each increasing ductility level

 2 3 4 5 6, , , , = . On the numerical side, this operation entails the calibration of 

the corresponding dimensionless cyclic degradation parameter   (for more 

details, the interested reader can consult Lignos and Krawinkler, 2011) of the 

modified IMK model as implemented in the OpenSees platform (Open System for 

Earthquake Engineering Simulation, McKenna, 2011) via the DYANAS software 

(Baltzopoulos et al., 2018). The parameter  , which normalizes a structure-

dependent reference hysteretic dissipation energy tE  according to 

( )t y yE F =  , was calibrated to take values equal to 163.6, 109.1 and 81.8 for 

the low-, medium- and high-degradation levels respectively. For the sake of 

brevity, the index DL is hereafter used assuming values of 0, 1, 2 and 3 in order to 

indicate: none, low, medium and high levels of degradation respectively, as 

reported in Figure 5.3. 

Overall, the SDoF systems considered in this study had eight different 

periods of natural vibration ranging from 0.3 to 2.0 s, i.e., 

 0 3 0 6 0 9 1 0 1 2 1 5 1 8 2 0T . s , . s , . s , . s , . s , . s , . s , . s= , eight distinct hardening stiffness 

ratios ranging from zero to ten percent of the elastic stiffness, 

 0 0 5 1 2 3 4 5 10h %, . %, %, %, %, %, %, % =  and four levels of strength degradation 

(none, low, medium and high, as discussed above). The combination of all of these 

variants led to a total of two-hundred and fifty-six inelastic SDoF systems used in 

the analyses that will be described in the following. Furthermore, for each SDoF 

structure, nine levels of ductility demand were considered, with values 

 1 5 2 3 4 5 6 7 8 9. , , , , , , , , = . All of these ductility values were set lower than the 

capping ductility c , so that no structure is subjected to in-cycle degradation by 

experiencing inelastic displacements into the softening branch. 
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Figure 5.3 Three conventional levels of strength degradation used in this study, defined on the basis 

of strength loss after a quasi-static cyclic loading protocol: low-degradation peak-oriented hysteretic 

rule (a); medium-degradation (b); high-degradation (c). 

5.2.2. Analysis methodology and input ground motions 

The predictive model for C   must account for record-to-record variability in 

terms of residual displacement, and the amount of stiffness and strength 

degradation. This can be seen in Figure 5.4, which compares the initial static 

pushover of two SDoF structures in pristine conditions with their pushover after 

having been brought to an arbitrary damage state by being subjected to a single 

base acceleration time-history (three examples are provided in the figure, each 

corresponding to a different accelerogram). The two SDoF structures are 

characterized by 1 0T . s=  and 2 0h . % =  while all three base accelerations are 

designed to cause the same ductility demand of 5 0. = . The comparison of the 

initial and the final damaged state produced by each earthquake shock exhibits 

variability in all three aforementioned parameters of residual displacement, post-

shock reloading stiffness and post-shock lateral resistance (where applicable - 

Figure 5.4b).  

 
Figure 5.4 Examples of an SDoF structure’s monotonic pushover (backbone) curve before and 

after the seismic damage in  R, coordinates. Post-shock backbones and residual displacements of 

an SDoF system with 1 0T . s=  and 2 0h . % = , evaluated for three different records scaled to cause 
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ductility demand 5 0. =  without strength degradation (a) and with a high level of strength 

degradation (b). 

In this light, a suite of one hundred single-horizontal-component earthquake 

ground motions was used in this study, selected from within the NESS dataset 

(Pacor et al., 2018). All one hundred records were recorded on firm soil at a 

closest-to-rupture-plane distance ranging from 0 km to 44.5 km and were 

produced by earthquakes with moment magnitude belonging to the 6.1-7.6 range. 

Furthermore, the selected records exhibit peak ground acceleration ranging from 

0.05 g to 1.40 g and are devoid of apparent pulse-like directivity effects.  

The analysis itself can be divided in two phases: the first phase consists of the 

execution of incremental dynamic analysis (IDA, Vamvatsikos and Cornell, 2001) 

using all one-hundred records in the aforementioned set. IDA involves 

performing multiple nonlinear dynamic analyses for each record, which is 

progressively scaled in amplitude to increasing levels of shaking intensity until a 

target ductility   is reached. A mass-proportional viscous damping ratio 

5 0. % =  was used for all time-history analyses. This procedure allows calculating, 

for each accelerogram, the minimum amplitude scale factor (SF; defined as the 

non-negative scalar multiplier of all acceleration values in a record) required to 

bring the response of the structural model to a fixed ductility demand. The various 

target ductility levels analyzed can be considered to represent response thresholds 

whose attainment defines a generic damage level for the structure. In this sense, 

the IDAs allow determining the SFs that constrain all of the records to bring a 

given SDoF structure to the same damage state, assuming that the implied 

mainshock earthquake hits the intact structure.  

The second phase consists of dynamic and static non-linear analyses for each 

record, SDoF structure, and ductility threshold, performed in sequence. During 

this procedure, dynamic analysis of the structure is performed for each ground 

motion, using a SF calculated in the previous IDA phase, leading to different 

numerical incarnations of the corresponding damage state. At the end of the 

acceleration history, the time needed for damping-out any remaining velocity of 

the mass is provided by zero-padding the end of the record; when the damaged 

system is at rest, the residual displacement res is recorded and static pushover analysis 

is performed, in both positive and negative loading direction. Therefore, for each 

SDoF system and fixed ductility demand, one-hundred manifestations of the 

damaged structure’s static pushover curve are obtained, representing the record-

to-record variability of res , degraded reloading stiffness k΄  and deteriorated 

lateral resistance at maximum ductility demand maxF΄ .  
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5.3. Predictive model for the residual displacement 

5.3.1. Residual displacement ratio, period elongation and strength 

degradation 

The analyses performed as part of this study, described in the preceding section, 

provided samples of residual displacement accompanied by the corresponding 

stiffness and strength degradation. The objective was to use this data for the 

development of a predictive model for res maxC  = , which can potentially 

employ the stiffness and strength degradation information as predictor variables, 

along with ductility, vibration period and hardening slope. 

In this model, the degradation of reloading stiffness is taken into account under 

the guise of period elongation; the reduction in reloading stiffness caused by the peak-

oriented hysteresis, causes the post-seismic-shock SDoF structure to exhibit an 

initial branch with slope k΄ k , which is apparent in Figure 5.2 and Figure 5.4, 

and consequently an elongated vibration period 2T΄ m k΄=   , where m  is 

the mass of the SDoF system. In this context, the variable chosen to quantify 

period elongation is the natural logarithm of the relative increase in period 

( )ln T , which is defined according to Eq. (5.3): 

( )ln ln
T΄ T

T
T

− 
 =  

 
, (5.3) 

where it is worth recalling that T  is the initial natural vibration period of the SDoF 

structure (i.e., prior to any earthquake-induced damage and loss of stiffness). 

Strength degradation on the other hand, is quantified using the variable ( )ln R , 

with R  given by Eq. (5.2) and calculated for all three degradation levels defined 

previously; i.e., low, medium and high. It is important to note that the few cases 

exhibiting 0 50R .  , that is, loss of lateral resistance exceeding fifty percent of 

the initial, were held to represent situations of incipient collapse and were not 

given further consideration.   

The starting point for defining the model is the relation that was observed 

between the ratio of residual to peak transient displacement res max   and 

( )ln T , for the simplest case where strength degradation is absent. In fact, it was 

observed that the ratio res max   exhibits persistently high negative linear 

correlation with ( )ln T , for varying T ,   and h (Orlacchio et al., 2019). More 

specifically, estimates of the correlation between ( )ln T  and res max  , indicated 

as ̂  and calculated based on the available dynamic analysis responses according 

to the classical definition for linear correlation (Draper and Smith, 1998) range 
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from 0 50.−  to 0 99.−  with 0 7ˆ .  for the majority of cases examined. The few 

cases for which the estimated correlation fell within the range 0 5 0 7ˆ. .−   −  

were characterized by high ductility demands of 7 0.  , and some of the longer 

periods of natural vibration considered; i.e., 1 8T . s . This is illustrated in Figure 

5.5a, where one should recall that both res  and max  preserve their sign in this 

formulation so that the ratio becomes negative when the two occur in opposite 

directions. In that panel, a scatter plot of the one hundred res max   responses 

against the corresponding ( )ln T  values is given along with the regression line 

of the former against the latter. 

Furthermore, it was observed that this level of (negative) correlation between 

res max   and ( )ln T  also persists in the case of SDoF systems exhibiting cyclic 

strength deterioration, for all three degradation levels considered (see Figure 5.5b). 

In fact, values of the estimated correlation coefficient between ( )ln T  and 

res max  of -0.93 and -0.88 characterize the cases reported in Figure 5.5a and 

Figure 5.5b, respectively. However, for the cases with strength degradation, a 

negative correlation was also observed between res max   and ( )ln R , across all 

T ,   and h  considered (see Figure 5.5c). The correlation coefficients between 

res max   and ( )ln R  range from -0.3 to -0.8 with 0 5ˆ .   for the majority of 

analyzed cases. The cases for which the correlation coefficient fell within the range 

0 3 0 5ˆ. .−   −  were characterized by ductility demands 6 0.   and periods of 

natural vibration 1 5T . s . Therefore, an increase of the deterioration parameter 

( )ln R  is generally associated with a decrease in the ratio of residual to peak 

transient displacement.  

 
Figure 5.5 Examples of regression of res max   against ( )ln T and against ( )ln R  highlighting 

their (negative) linear correlation. Are shown the case of a SDoF system with 1 0h . % = , 1 0T . s=  

and 5 0. =  without strength deterioration (a); the case of a SDoF system with 5 0h . % = , 
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1 2T . s=  and 4 0. =  with a medium level of strength deterioration (b); and the case of a SDoF 

system with 10 0h . % = , 1 2T . s=  and 4 0. =  with a high level of strength deterioration (c). 

Based on this observed linear trend, a linear model was adopted for the expected 

value of C   in case of absent strength degradation ( 0DL = ). The slope and 

intercept of the model are only functions of the ductility demand   and of the 

post-yield hardening ratio h . Thus, the model for C   without strength 

degradation is given by Eq. (5.4):  

( )

( ) ( ) ( )

1 1 0

1 1 2 3

1 1 2 3

1 2 3 4 5

ln

1

1 1
1 1 1

res max

C C C h

C C C h

C C C h C h C h

C T

b b b

c c c
d T d d d d T

 



     

  

   
      

 = =   + + 
 = +  − + 


= +  − +   −
=  +  − +  +   − +  −  

 (5.4) 

where 0  is a standard Normal random variable, 1  and 1  represent the slope 

and intercept of the model and   is the standard deviation of the regression 

residuals. As can be seen from the equation, 1  and 1  are expressed as linear 

combinations of various simple functions of   and h . The combination 

coefficients, C jb  and C jc  with  1 2 3j , ,= , are estimated by means of robust 

regression (Draper and Smith, 1998) of res max   against ( ) ln , hT ,   using 

iteratively re-weighted least squares with bisquare weighting. These coefficients are 

all reported in Table 5.1. The analytical form of the model for 1  and 1  was 

determined by performing preliminary fits of the basic linear model on the analysis 

results, separately for the various SDoF systems and ductility levels considered, 

and observing the variation of these two parameters with respect to  , h  and 

T  graphically.  

Regarding the dispersion around the mean,   was found to be non-

constant, varying with T ,   and h . Therefore,   was modelled by means of 

least-squares curve-fitting of an analytical expression to the regression residuals 

for the various T ,   and h  values. This expression, which contains model 

coefficients C jd   1 2 5j , , ...,= , is also included in Eq. (5.4). The coefficient 

estimates of the model for    are reported in Table 5.2. 

Figure 5.6 shows a plot of the models for the central tendency of res max 

(Figure 5.6a) and standard deviation   (Figure 5.6d) in case of absent strength 

degradation. The model shown in Figure 5.6a refers to the case of 0 0h . % =  and 

for the cases with 5 =  and 8 =  in Figure 5.6b and Figure 5.6c respectively, 
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whereas the plot in Figure 5.6d shows the model of standard deviation   for 

3 0h . % = . 

 
Figure 5.6 Central tendency and standard deviation of the model for the residual displacements in 

case of absent strength deterioration. Central tendency for 0 0h . % =  (a); central tendency for

0 0h . % =  and 5 =  (b); central tendency for 0 0h . % =  and 8 =  (c); standard deviation   

for 3 0h . % =  (d). 

On the base of the model shown in Eq. (5.4), the model for C   in case of 

1 2 3DL , ,=  was also defined including in the equation the variable ( )ln R  

which accounts for strength degradation. The model for C   accounting for 

strength degradation is shown in Eq. (5.5) : 

( ) ( )

( ) ( )

2

1 1 1 0

1 1 2 3

1 1 2 3
2

1 2 3 4

ln ln

1

1 1

1 1

res max

C C C h

C C C h

C C C h C

C R R

b b b

c c c

d T d d d

 



      

  

   

   

− = =   + +   + 

 = +  − + 


= +  − +   −
=  +  − +  +  −

,                          (5.5) 

where 0  is a standard Normal random variable and   is the standard deviation 

of the regression residuals. As can be seen from the equation, the model of the 

expected value of C   is composed of two parts, a linear part, that unlike the case 

of 0DL =  is function of the variable ( )ln R , and the second one which is 

function of ( )
2

ln R
−

 . Also in this case, 1  and 1  are expressed as linear 

combinations of various simple functions of   and h . The combination 

coefficients, C jb  and C jc  with  1 2 3j , ,=  and the coefficient 1  are estimated by 

means of robust regression (Draper and Smith, 1998) of res max   against 

( ) ln , hR ,   using iteratively re-weighted least squares with bisquare 
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weighting. The procedure was performed for each level of strength degradation 

separately, obtaining a set of coefficients for each DL. These coefficients are 

reported in Table 5.1.  

Also in the cases where cyclic strength degradation is present in the hysteretic 

loops,   was found to be non-constant, varying with  ,T  and h .   was 

modeled by means of least-squares curve-fitting of an analytical expression to the 

regression residuals for the various T ,   and h  values and the estimates of the 

coefficients C jd   1 2 5j , , ...,=  shown in Eq. (5.5) are reported in Table 5.2. 

Figure 5.7 shows an example of the model for the expected value of res max   and 

the model of standard deviation   for a system with 1 0 6h . %, = =  and , 

0 6T . s= considering medium level of strength degradation. 

 
Figure 5.7 Central tendency and standard deviation of the model for the residual displacements in 

case of medium strength deterioration. Central tendency for 1 0 6h . %, = =  and 0 6T . s= (a); 

standard deviation  in the case of 1 0h . %, =  (b). 

At this point, it should be highlighted that the predictor variables ( )ln T  

and ( )ln R  used in the regression model for the constant-ductility residual 

displacement ratios of Eq. (5.4) and Eq.(5.5) are also RVs for a given ductility 

demand  , due to record-to-record variability. However, it was observed that 

these two RVs, ( )ln T  and ( )ln R , are correlated for all DLs and T ,  , h  

ranges considered, as shown in Figure 5.8.  

Therefore, completeness of the model requires the definition of the joint 

distributions of C   and ( )ln R  and ( )ln T  in case of strength degradation, or 

that of C   and ( )ln T  in the case where strength degradation is absent. To this 

end, the correlation between ( )ln T  and ( )ln R  was studied and Mardia's test 

of multivariate normality (Mardia, 2019) was performed. In that test, the null 

2.0
1.5

T[s]

0.00 1.0

0.02

10

0.04
0.06

8

0.08

0.56

0.10

4

0.12

2 0.00μ

σ δ

-0.1
0.0

1.0

0.1
0.2
0.3
0.4
0.5

0.6
0.2 -3.5-3.0-2.5-2.0-1.5-0.2 -1.0-0.5

ln( )ΔR

ln(  )ΔT

re
s

m
ax

δ 
 /

 δ

(a) (b)

Single record               responseres maxδ   /  δ
res maxδ  /  δ from Equation (2.5)

Standard deviation of  the regression
σ

residuals

from Equation (2.5)



 CHAPTER 5 175 

 

 

hypothesis is that the RVs ( )ln R  and ( )ln T  are jointly Normal distributed, 

for given initial characteristics of the structure T , h  , DL  and for a fixed ductility 

demand  . The results showed that in almost all cases the null hypothesis could 

not be rejected at a 5% significance level. 

 
Figure 5.8 Examples of correlation between ( )ln T  and ( )ln R for an SDoF system with 

5 0h . % = , 0 3T . s=  and 6 0. =  in case of low level of strength deterioration (a); medium level 

of strength deterioration (b) and high level of strength deterioration (c). 

Based on this result, it was assumed that ( ) ( ) ln lnT , R   is a bivariate 

Gaussian variable, whose joint distribution can be completely defined knowing the 

marginal distributions of ( )ln T  and ( )ln R , and their correlation coefficient, 

( ) ( )ln lnT , R


 
. The plausibility of this bivariate normality assumption was verified by 

means of hypothesis testing, as mentioned above. Another assumption made was 

the conditional stochastic independence of ( ) ( ) ln lnT , R   from C  , given a 

fixed ductility demand  . The development of these additional segments of the 

model are presented in the following paragraphs. 

5.3.2. Regression model for period elongation  

The model for period elongation was defined starting from the case of absent 

strength degradation ( 0DL = ) and subsequently modelling the increments in 

terms of T  for the three levels 1 2 3DL , ,=  to add to the model of the central 

tendency of T for the case 0DL = .  

The marginal distribution of period elongation in case of 0DL =  was 

defined assuming a Lognormal model for T  and consequently a Gaussian model 

for ( )ln T . The functional form adopted for the expected value of T  stems 

from the observation of data trend of T  with the inelastic portion of the ductility 

demand, ( )1 − , for each pair of T  and h . Fitting of the model’s parameters 

to the data was performed via weighted least squares regression because of the 

ln( )= ln(Δ θ Δ βT R)+· single record response
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non-constant variance and the analytical form of the model in case of 0DL =  is 

reported in Eq. (5.6):  

1 2 1 2

1 2 3 4

1 2

T T h T h T

T T T

T ' T
T b b b b

T
d d T

    



−



 −  = = +   +   +    
 = + 

 (5.6) 

where T  is the mean of the Lognormal variable T  with standard deviation 

T  , which is estimated as the standard error of the regression residuals. The 

expected value of the model for period elongation in absence of strength 

degradation T  depends on h  and  . The coefficients T jb  with  1 4j , ...,=  

are provided in Table 5.3.   

An analytical expression was also proposed for expressing T   as a function 

only of T . Table 5.3 provides the values of the parameters T jd ,  1 2j ,= , 

appearing in Eq. (5.6) estimated from curve-fitting against the regression residuals 

for the level of strength degradation 0DL = .  

Figure 5.9 shows a graph of the model for period elongation, highlighting the 

dependence of its central tendency on h  and   (Figure 5.9a). Figure 5.9b and 

Figure 5.9c represent the expected value of the model for period elongation in 

absence of strength degradation in the cases of 0 03h . =  and 0 05h . = , 

respectively. 

 

Figure 5.9 Model for period elongation in case of no strength degradation. Model for the central 

tendency of period elongation (a); central tendency of period elongation in case of 0 03h . = (b); 

central tendency of period elongation in case of 0 05h . = (c). 

The marginal distribution of period elongation in the case of 1 2 3DL , ,=  

was defined by processing the data of each degradation level separately and 
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modeling the differences obtained between the data sets of 1 2 3DL , ,=  and the 

expected value of T  for 0DL =  shown in Eq. (5.6). Therefore in presence of 

strength degradation, the mean of the model for period elongation 
1 2 3DL , ,T =  can 

be evaluated by adding to the expected value evaluated for 0DL = , T , a 

quantity only function of   as shown in Eq. (5.7): 

2

1 2 3 5 6

1 2 3 1 2 1 2 3

DL , , T T

T DL , , T T DL , ,

T T b b

d d T




=

 = =

 =  + + 


= + 
. (5.7) 

In the case of  1 2 3DL , ,=  the standard deviation 1 2 3T DL , ,  =  is modeled as 

function only of the expected value of the model for period elongation 
1 2 3DL , ,T =

. Table 5.3 also provides the values of the parameters 5Tb ; 6Tb  and T jd , with

 1 2j ,= . Figure 5.10 shows the increments in terms of T  for the three levels 

1 2 3DL , ,=  in case of 0 0h . % = (Figure 5.10a); 2 0h . % = (Figure 5.10b) and 

5 0h . % = (Figure 5.10c).  

 
Figure 5.10 Increments in terms of T  for the three levels 1 2 3DL , ,=  in case of 0 0h . % = ( a); 

2 0h . % = ( b) and 5 0h . % = (c). 

Finally, it should be noted that the mean ( )ln T  and the standard deviation 

( )ln T



 characterizing the Gaussian model of ( )ln T  can be evaluated by the 

relationships in Eq. (5.8): 

( ) ( ) ( )

( ) ( ) ( )

2

1ln

22 2

ln

ln ln 1 2

ln 2 ln

T

TT

T T

T T

 

 





  =  −  +


= +  −  

  (5.8) 
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where 1  is a zero mean Normal random variable with standard deviation 
( )ln T




. Although Eq. (5.8) is written for absence of strength degradation it is also 

applicable in the case of 1 2 3DL , ,= . 

5.3.3. Regression model for strength loss 

The model for strength loss provides the R  parameter of the post-shock 

structure at a fixed ductility demand  , given initial characteristics of the structure 

T , h  and DL . The data showed a linear trend in log-space of R  with the 

ductility demand ( )1 − , for each pair of T  and h  and for each level of strength 

degradation. Therefore, the model for the central tendency of ( )ln R  is a linear 

equation as reported in Eq. (5.9): 

( ) ( )3 3 2

3 1 2
2

3 1 2 3 4

ln ln 1

R R h

R R h R R

R
b b
c c c T c T

   
 
 

  =  − + +


= + 
 = +  +  + 

 (5.9) 

The central tendency of ( )ln R  was found to exhibit some dependence on the 

initial period of natural vibration, T , and on the post-yield hardening ratio h . In 

Eq. (5.9) the coefficients R jb  with  1 2j ,=  and R jc  with  1 4j , ..,= , were 

evaluated by curve fitting of the results performed for each level of strength 

degradation using a weighted least squares regression because of the non-constant 

variance. Table 5.4 provides the values of the coefficients R jb  and R jc  that 

characterize the slope 3  and the intercept 3  of the model. The term 2  in Eq. 

(5.9) is a zero mean Gaussian variable with standard deviation 
( )ln R




, which is 

estimated as the standard error of the regression residual and was found to be 

dependent on the period of the intact structure and the ductility demand, as 

reported in Eq.(5.10): 

 ( ) ( ) ( )
22

1 2 3 4 5ln
1 1R R R R RR

d d T d T d d  


= +  +  +  − +  −  (5.10) 

Table 5.4 provides the values of the parameters R jd ,  1 2 5j , , ...,=  

appearing in Eq. (5.10), estimated from curve-fitting against the regression 

residuals. Examples of the models for the mean and standard deviation of 

( )ln R  are reported in Figure 5.11. Figure 5.11a shows the model for the mean 

of ( )ln R  for a system with hardening slope 0 01h . =  and low strength 
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deterioration level, while Figure 5.1d shows the model of 
( )ln R




for the same level 

of degradation. 

 

Figure 5.11 Model for strength reduction in case of low strength degradation level. Model for mean 

( )ln R  in case of 0 01h . =  (a); central tendency of strength reduction in case of 0 01h . = and 

0 6T . s=  (b); central tendency of strength reduction in case of 0 01h . = and 1 5T . s=  (c); model 

of standard deviation ( )ln R



 (d).  

Table 5.1 Coefficient estimates for mean of res max   in Eq. (5.4) and Eq.(5.5) . 

Mean of 
res max   

 
Coefficients C jb  Coefficients C jc  Coefficients j  

DL  DL  DL  

j  0 1 2 3 0 1 2 3 1 2 3 

1 -0.009 -0.004 0.003 0.009 -0.078 -0.129 -0.108 -0.094 0.159 0.106 0.081 

2 -0.277 -0.075 -0.083 -0.090 0.493 -0.049 -0.039 -0.033 - - - 

3 -0.378 0.041 0.03 0.030 -1.412 -0.374 -0.387 -0.411 - - - 

Table 5.2 Coefficient estimates for Standard deviation   in in Eq. (5.4) and Eq.(5.5) . 

 
Standard deviation 

  

Coefficients C jd  

j  0DL =  1DL =  2DL =  3DL =  

1 0.019 0.020 0.021 0.021 

2 0.009 0.029 0.028 0.027 

3 0.122 -0.149 -0.144 -0.149 

4 0.0478 -0.003 -0.003 -0.002 

5 0.018 - - - 
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Table 5.3 Coefficient estimates in Eq. (5.6) and Eq. (5.7). 

 Mean of ( )ln T  Standard deviation ( )ln T


  

 Coefficients T jb  Coefficients  T jd  

j  0DL =  1DL =  2DL =  3DL =  0DL =  1DL =  2DL =  3DL =  

1 -0.876 -0.876 -0.876 -0.876 0.023 0.005 0.005 0.013 

2 0.942 0.942 0.942 0.942 0.112 0.170 0.186 0.188 

3 -0.530 -0.530 -0.530 -0.530 - - - - 

4 0.833 0.832 0.832 0.832 - - - - 

5 - -0.004 0.003 0.0168 - - - - 

6 - 0.004 0.005 0.007 - - - - 

Table 5.4 Coefficient estimates in Eq. (5.9) and Eq.(5.10). 

Mean of ( )ln R  Standard deviation ( )ln R


  

 Coefficients R jb  Coefficients R jc  Coefficients  R jd  

 DL  DL  DL  

j  1 2 3 1 2 3 1 2 3 

1 1.128 1.118 1.095 -3.866 -3.460 -3.180 0.479 0.459 0.461 

2 1.615 1.432 1.237 -0.706 -0.644 -0.499 0.081 0.090 0.094 

3 - - - -0.432 -0.425 -0.424 -0.041 -0.043 -0.042 

4 - - - 0.095 0.096 0.102 0.004 0.0156 0.018 

5 - - - - - - -0.001 -0.003 -0.004 

5.3.4. Model for the correlation between stiffness and strength 

degradation 

In order to completely define the joint distribution of ( )ln T and ( )ln R , the 

definition of the covariance matrix   of the bivariate zero-mean Gaussian vector 

 1 2,   is needed as shown in Eq. (5.11): 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

ln ln ln ln ,ln
2

ln ln ln ln ln

T T R T R

T R T , R R

   

   
    

    

   
 =     

 (5.11) 

The covariance matrix is defined by the (estimated) standard deviations of the 

logarithms of period elongation 
( )ln T




 and strength loss 
( )ln R




 and their 

(estimated) correlation, 
( ) ( )ln ,lnT R


 

, with the standard deviations being already 

available from Eq. (5.8) and Eq. (5.10). In this case, the correlation coefficients 
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( ) ( )ln ,lnT R


 
 were modeled as a linear function of the ductility demand and 

hardening slope until a transition ductility t  is reached, as shown in Eq.(5.12). 

( ) ( ) ( )1 2 3ln ,ln
1 with  1.5h tT R

e e e    
 

= +  − +     (5.12) 

 In case of t  , 
( ) ( )ln ,lnT R


 

 varies only as function of h  and can be evaluated 

from Eq. (5.12) assuming t = . The value of t  differs by level of strength 

degradation, i.e., it is assumed equal to 7 for 1DL = ; 6 for 2DL =  and 5 for 

3DL = on the basis of data observation.  

The coefficients in Eq. (5.12) were defined by curve-fitting of the results 

performed separately for each level of strength degradation. Moreover, it was 

necessary to distinguish the fitting procedure of the model parameters into two 

separate cases 1 5sT .  and 1 5sT . . Figure 5.12 shows the model of 

( ) ( )ln ,lnT R


 
 evaluated for the case of medium strength degradation in case of 

1 5sT . (Figure 5.12a) and 1 5sT . (Figure 5.12b). Table 5.5 provides the values 

of the coefficients je   1 2 3j , ,=  in Eq. (5.12), evaluated for the three levels of 

strength degradation.  

 

Figure 5.12 Model for ( ) ( )ln ,lnT R


 
 in case of medium strength degradation for 1 5sT . (a) and 

1 5sT . (b). 

Table 5.5 Coefficient estimates for the ( ) ( )ln ,lnT R


   model of Eq. (5.12). 

Coefficients je  

 1DL =  2DL =  3DL =  

j  1 5T .  1 5T .  1 5T .  1 5T .  1 5T .  1 5T .  

1 0.564 0.5723 0.5858 0.5915 0.6093 0.6172 

2 0.03052 0.01749 0.04003 0.02266 0.04433 0.02578 

3 1.151 0.5893 0.8276 0.5968 0.6419 0.4105 

4 0.564 0.5723 0.5858 0.5915 0.6093 0.6172 
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5.4. Numerical implementation of the model 

5.4.1. Distribution of C   and residual displacement ratio spectra 

According to the previous sections, once the models for period elongation, 

strength deterioration and residual displacement have been completely defined, it 

is possible to estimate the joint distribution of ( ) ( ) ln ln res maxT , R ,   , given 

the ductility demand  , period T , hardening slope h  and the level of strength 

degradation DL. Although parametric models have been assumed for their 

marginal distributions, due to the complex functional dependence of res max   on 

the other two it is convenient to obtain their joint distribution via a Monte-Carlo 

sampling scheme. The first step in such a procedure, entails selecting fixed values 

of  , T , h , and DL, and then calculating the mean, ( )ln R , and the standard 

deviation, 
( )ln R




, conditional to these values from Eq. (5.9) and Eq. (5.10). 

Subsequently, at the i-th Monte Carlo replication, a random sample of 

( )ln iR x =  is extracted from a normal distribution having these parameters. At 

this point, given the marginal distribution of ( )ln T , which is another Gaussian 

function defined by the mean, ( )ln T , and the standard deviation, 
( )ln T




, 

evaluated from Eq. (5.8) it is possible to define the distribution of ( )ln T  

conditional on ( )ln iR x =  according to Eq.(5.13): 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

ln ln ln ln

2 2

ln ln lnln ln

E ln ln ln ln

1

i iT , R T R

T , R TT R

T R x T x R  

  

   

   

     = =  +   −     


= − 

 (5.13) 

where ( ) ( )E ln ln iT R x   =   represents the conditional mean of ( )ln T and 

( ) ( )ln lnT R


 
 the conditional standard deviation. Then, a value of ( )ln iT y =  is 

randomly sampled from the corresponding (also Normal) conditional distribution. 

Finally, the conditional mean and standard deviation of the ratio res max   is 

evaluated from Eq.(5.5) for the sampled vector of ( ) ( )   ln ln i iR , T x , y  =  

and a random sample of res max iz  =  is extracted from the corresponding 

Normal distribution, truncated between 2 −   and 2  . The C   value 

corresponding to the i-th sample is then simply ,i iC z = . 
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This procedure amounts to random sampling of a triplet of values 

( ) ( )   ln ln res max i i iR , T , x , y ,z   =  from their joint conditional 

distribution. By repeating the sampling procedure a number of times N , one can 

obtain a representation of the joint densities of these RVs in the form of relative 

frequency diagrams of the sampled values. An example of such a representation is 

reported in Figure 5.13, that was constructed using one million samples. The 

results of this Monte-Carlo procedure can then be used to approximate the 

statistics of residual displacement ratio, such as its mean value, according to Eq. 

(5.14): 

1

1
N

i

i

C N z

=

   (5.14) 

 

Figure 5.13 Monte-Carlo-based representation (relative frequency) of the joint distribution of period 

elongation and strength reduction (a), of period elongation and residual displacement (b), of strength 

reduction and residual displacement (c), for the case of ductility demand 4 0. = , post-yield 

hardening ratio 3 0h . % = , period of the initial structure 0 8T . s=  and medium level of strength 

degradation; Monte-Carlo-based representation of the marginal distribution of C  (d). 
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In the case of no strength degradation, the Monte-Carlo scheme degenerates into 

sampling a value ( )ln iT y = , from the marginal distribution of ( )ln T , and 

then directly sampling res max iz  =  from its conditional distribution. Monte-

Carlo is still useful in this case, for representing the marginal density of C   and 

calculating the mean C
, as shown in Figure 5.14. 

It is worth highlighting that, as shown in Figure 5.13c and Figure 5.14a, the record-

to-record variability of C   is such that residual displacement values near zero are 

still possible, with the left tail of the marginal distributions of C   being heavier. 

Another feature that is worth commenting is the slight distortion exhibited by the 

simulated joint distribution of period elongation and residual displacement ratio, 

shown in Figure 5.13b, towards the region of higher ( )ln T  values. This can be 

attributed to the contribution of the non-linear terms involving ( )ln R  in Eq. 

(5.9). For the same reason, there is a similar effect visible in the shape of the joint 

density of C   and ( )ln R  in Figure 5.13c.  

 
Figure 5.14 Monte-Carlo-based representation (relative frequency) of the marginal distribution of 

C   (a) and of the joint distribution of period elongation and residual displacement ratio (b), for the 

case of ductility demand 4 0. = , post-yield hardening ratio 3 0h . % =  and period of the initial 

structure 0 8T . s= . 

The validation of the predictive model was undertaken by comparing the results 

of the Monte-Carlo resampling scheme with the data used for the development of 

the predictive model. The validation was made calculating the 25th, 50th and the 

75th percentiles of residual displacement ratio for each combination of  , h , T

and DL and comparing the results from the resampling procedure with the 

corresponding percentiles estimated from the initial data set.  
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For sake of brevity, hereafter two examples of comparison are reported showing 

the good agreement of the model with the initial data set used. Figure 5.15 shows 

the results obtained for the case of absent strength degradation ( 0DL = ) and 

0 01h . % =  considering   between 1.5 and 9.0 and four natural vibration periods 

T  (i.e. 0.3, 0.9; 1.2; 1.8). Figure 5.16 shows the results obtained for the case of 

high strength degradation ( 3DL = ) and 0 02h . % =  for all the values of   from 

1.5 to 9.0 and four natural vibration periods T  (i.e. 0.3s, 0.9s; 1.2s; 1.8s). In both 

the figures the results obtained from the model are represented using black lines 

(dashed lines for 25th and 75th percentiles and solid line for the 50th percentile). On 

the other hand, the reference data are reported using a box plot representation in 

which the central mark indicates the median, and the top and the bottom edges of 

the box indicate the 25th and 75th percentiles, respectively. 

 

Figure 5.15 Comparison of the summary statistics in case of absent strength degradation and 

0 01h . % = for period equal to 0.3s (a); 0.9s (b); 1.2s (d) and 1.8s (d). 
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Figure 5.16 Comparison of the summary statistics in case of high level of strength degradation and 

0 02h . % = for period equal to 0.3s (a); 0.9s (b); 1.2s (d) and 1.8s (d). 

By repeating resampling procedure while varying   and T , one can also obtain 

mean C   spectra from the model, such as the ones shown in Figure 5.17. Figure 

5.17a highlights the fact that C
 is independent of period in the case of no cyclic 

strength degradation, which is in agreement with past studies (Ruiz-García and 

Miranda, 2004; Liossatou and Fardis, 2015; Madhu Girija and Gupta, 2020), 

despite some differences in the hysteretic laws considered then and now. 

Moreover, the obtained results have the same trend with  . Past studies using the 

constant-strength approach (Ruiz-García and Miranda, 2004; Liossatou and Fardis, 

2015) report that the mean residual displacement ratio tends to increase with 

increasing strength ratio (Ruiz-García and Miranda, 2004; Liossatou and Fardis, 

2015) until a saturation point is reached. A similar trend with   was found for the 

mean constant-ductility residual displacement ratio in the case of elastic-perfectly-

plastic oscillators (Madhu Girija and Gupta, 2020). However, in the present case 
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where peak-oriented and possibly strength-degrading hysteresis was examind, C
 

does not increase monotonically with increasing   in the range examined. This is 

attested to more clearly by Figure 5.17c,d which plots C
 as a function of  , at 

various periods. 

For systems without any strength deterioration (Figure 5.17c), it is possible 

to distinguish two regions in terms of ductility demand: for   below a value of 

around four C
 increases with increasing ductility, while for higher values of   

the trend is reversed, with C
 decreasing as ductility demand increases from four 

to nine. On the other hand, the introduction of strength loss modifies this trend 

(Figure 5.17d); although C
 still peaks at 4  , the subsequent downwards trend 

is not monotonic. These observations can be summed-up as a non-monotonic 

trend of C
 as a function of  , for both cases of strength degrading and non-

strength degrading systems. 

 

Figure 5.17 Mean C  spectra for various  , evaluated for 3 0h . % =  in case of no cyclic strength 

degradation ( 0DL = ) (a) and high strength degradation ( 3DL = ) (b); mean C   as a function of 

ductility demand in case of 0DL =  (c) and 3DL =  (d). 
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5.4.2. Simulation of the post-shock pushover curve 

The fact that the above procedure requires multiple samples of the random vector 

( ) ( ) ln ln res maxT , R ,    to be extracted, allows for an additional surrogate 

result of the model, which may be of interest to earthquake engineers. For each 

triplet of period elongation, strength loss and residual displacement sampled from 

the model, it is possible to univocally define the corresponding bilinear backbone 

curve of the SDoF oscillator at the end of the seismic excitation. This means that, 

apart from the residual displacement ratio, the Monte-Carlo procedure can also 

provide stochastic realizations of the post-shock pushover curve of the SDoF 

system, which is a probabilistic representation of the damaged state to which the 

simple structure has transitioned.  

In fact, after obtaining the corresponding residual displacement res , elongated 

period T'  and the deteriorated lateral resistance at maximum ductility demand 

maxF'  for each random vector ( ) ( ) ln ln res maxT , R ,   , it is possible to 

evaluate all the parameters defining the post-shock pushover curve as illustrated 

in Figure 5.18. This figure shows the coordinates of the points defining the initial 

and post-shock curve in the displacement-force plane, using the notation with 

primes for the parameters of the damaged system. 

 
Figure 5.18 Parameters defining the pushover curves; parameters for the definition of the intact 

structure’s pushover curve (a); and of the post-shock pushover curve (b).  
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 (5.15) 

The post-yield branch is defined by the hardening slope h' , the capping point 

displacements in the two directions,
c

'   and corresponding forces 
c

F '  . The 

hardening branch’s slope can be defined once the degradation due to cyclic 

strength deterioration is known, which is implicit in the hysteretic model (Lignos 

and Krawinkler, 2011). The capping points can be calculated as the intersection 

points of the damaged structure’s hardening branch and of the softening branch, 

the latter defined by the slope c , which is assumed to remain invariant, and the 

ultimate displacement f . At this point, it is worth recalling that the predictive 

model was developed considering only ductility demands that maintain structural 

response displacement along the hardening branch, without crossing into the 

softening branch where in-cycle strength degradation could occur. Therefore, the 

softening branch was included exclusively for keeping track of the capping points 

in the damaged state. The hardening slope and the coordinates of the capping 

points for the post-shock pushover are calculated according to Eq. (5.16), where 

c  and cF  are the displacement and the corresponding force at the capping point 

for the intact structure: 
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

 (5.16) 

An example of such definition of a set of pushovers, that represent different 

realizations of the damaged SDoF system, is given in Figure 5.19 for a case without 

strength deterioration and a case characterized by a medium level of strength 

degradation. This representation highlights the usefulness of the model, as the 

distribution of residual displacements is provided as a function of a set of RVs that 

have specific physical meaning for the SDoF structure that has been damaged by 

an earthquake shock. 
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Figure 5.19 Pushover curves corresponding to different realizations of the damaged structural 

system: a case of 7 0 6 0 2 0h . %, . , T . s = = =  and no strength deterioration (a) and medium 

strength degradation (b). 

5.5. Illustrative application on a RC frame structure 

This section provides an example application of the predictive model for constant 

ductility residual displacement ratio in the context of the seismic assessment of a 

reinforced concrete multi-story moment-resisting frame. The case-study structural 

system, shown in Figure 5.20a, is a fixed-base plane reinforced concrete frame 

representing an internal frame of a symmetric four-story building without masonry 

in-fills. The system exhibits first-mode dominated dynamic elastic response with a 

first-mode period of natural vibration 1T  equal to 0.53 s and flexure-dominated 

inelastic response of the constituent beams and columns (see Baltzopoulos et al., 

2015 for structural details). For the purposes of this application, an equivalent 

SDoF system was defined, based on a static nonlinear analysis that was carried out 

by applying a gradually increasing lateral force profile corresponding to the 

structure’s first-mode excitation to base acceleration. The nonlinear structural 

model built for the execution of nonlinear static and dynamic analyses adopted a 

lumped plasticity approach, using a multi-linear moment-plastic rotation relation 

and the modified IMK model without cyclic strength degradation for the 

definition of the hysteretic behavior.  

In this application, it is assumed that entry of the frame into a generic damage state 

occurs when the roof drift ratio (RDR) exceeds a threshold value of 0.01. The 

objective of the assessment is to determine, given that the structure has reached 

the damage state threshold in terms of RDR, the probability that the residual RDR 

will have exceeded a threshold value of 0.0033, which corresponds to rebar 

yielding having developed at all beam ends and the formation of a plastic 

mechanism for the structure. This assessment is first performed by employing the 

proposed predictive model via the pushover-based equivalent SDoF system and is 

the validated by means of dynamic analysis of the multiple-degree-of-freedom 

(MDoF) numerical model of the structure. 
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In order to obtain the data necessary for the application’s validation, the MDoF 

system was subjected to incremental dynamic analysis using as input a set of fifty 

acceleration records, none of which were included in the suite of records employed 

for the development of the model. For the execution of the IDA, the pseudo-

acceleration at the fundamental period of vibration ( )1aS T  was assumed as 

intensity measure. Similar to the methodology used to develop the predictive 

model and presented in the previous paragraphs, the IDA results were used to 

determine the scale factor needed for each record to bring the structure at assumed 

damage state threshold, i.e. a RDR of 0.01 (Figure 5.20b). Subsequently, the 

records thus scaled were used for the execution of dynamic analyses that were 

immediately followed by static non-linear analyses, again mimicking the previously 

described analysis methodology, resulting in different realizations of the damaged 

structure’s pushover to be obtained, as shown in Figure 5.20c.  

 

Figure 5.20 Basic information on the structure and analysis results. Case-study frame (a), IDA curves 

for the RC frame (b); pushover curves representing different realizations of the damaged system (c) 

and definition of the equivalent SDoF (d). 
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collected and the parameters defining the pushovers of the damaged system were 
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MDoF

res ,i totH  with  1 2 3 4i , , ,=  is the ratio of residual displacement at the i-th floor 

RDR

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

S
a 

(T
) 

[g
]

1

0.000 0.004 0.008 0.012 0.016

(b) Χ

Χ

Χ

ΧΧ

Χ
Χ
ΧΧ
Χ

ΧΧΧ
ΧΧΧ
ΧΧΧΧΧΧ

ΧΧΧΧ
ΧΧΧ
ΧΧΧ
ΧΧ

Χ

(a)  50 t

60 t

60 t

60 t

h=3.20 m

h=3.00 m

5.00 m 5.00 m 5.00 m

(d)(c )

h=3.00 m

h=3.00 m

H
  
=

1
2
.2

0
 m

1

2

3

4

to
t

-0.2 0.0 0.2-0.4 0.4
Roof Displacement [m]

-0.2 0.0 0.2 0.4-0.4

-400
-300
-200
-100

0
100
200
300
400

B
a
s
e 

sh
e
ar

 [
k
N

]

500

- 005

Intact  
Damaged

Intact  
Equivalent 

Linearization
SDoF

Individual 
IDA curve
Intersection 
with 
RDR=0.01



 CHAPTER 5 192 

 

 

to the total height of the structure whereas the residual inter-story drift MDoF

res , j jh  

at the j-th story is evaluated as ( )( )1

MDoF MDoF MDoF

res , j j res , j jres , j
h h 

−
 = − where jh  is the 

inter-story height and  1 2 3 4j , , ,= . It should be noted that the sign convention 

adopted for the figure is that MDoF

res ,i  is assumed positive when it occurs in the same 

direction as the corresponding maximum transient roof displacement. 

 

Figure 5.21 Cumulative values of residual inter-story drift ratios (a); residual roof drifts evaluated at 

each story(b).  

For the purposes of the simplified pushover-based assessment, the predictive 

model was applied for the equivalent SDoF system representative of the intact 

structure. The backbone of this equivalent SDoF oscillator was obtained by 

dividing the frame’s pushover force and roof displacement values by the first-

mode modal participation factor (Fajfar, 2000) 1 309.= and obtaining a multi-

linear approximation of the resulting curve, as reported in Figure 5.20d. In this 

multi-linear approximation, the nominal yield point of the equivalent SDoF system 

is taken to correspond to a RDR of 0.0033, i.e., the point of formation of a global 

plastic mechanism for the structure. Therefore, the damage state threshold 

considered for this application corresponds to a ductility demand of three. The 

mass *m , period 
*T  and hardening slope 

*

h of the equivalent SDoF are reported 

in Table 5.6. 

Table 5.6 Characteristics of the equivalent SDOF system. 

 s*T   ton*m  *

h  

0.774 147.13 0.017 

The mean and the standard deviation defining the distribution of the period 

elongation ( )ln T , from Eq.(5.6), the mean and standard deviation of the 

constant-ductility residual displacement ratioC  , obtained by means of Eq.(5.4) 
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and the Monte-Carlo simulation procedure, were compared with the estimates 

obtained from the analysis results of the MDoF model and are reported in Table 

5.7. In that table, the standard deviation of C  derived from the simulation is 

denoted as 
C

 .  

Table 5.7 Mean and standard deviation defining the distributions of the period elongation and of 

the constant-ductility residual displacement ratio. 

 ( )ln T  ( )ln T


  C   C
  

Predictive 

Model 
-0.615 0.154 0.190 0.102 

MDoF -0.761 0.153 0.209 0.127 

The cumulative distribution functions of percentile loss of stiffness, K , and 

residual RDR, 4

MDoF

res , totH , obtained by means of the predictive model and 

empirically using the analyses results are compared in Figure 5.22. In the same 

figure, x  represents a generic realization of the random variables K  and

4

MDoF

res , totH , while the percentile loss of stiffness is computed as 

( ) ( )
2

1K k' k k T T ' = − = − . 

 
Figure 5.22 Comparison of the cumulative distribution function of period elongation (a) and 

constant ductility residual displacement ratio (b). 
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determine the feasibility of repair operations. In this case, the simplified pushover-

based procedure that made use of the proposed predictive model, leads to an 
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procedure with the more rigorous analysis, which is also apparent from the 

comparison of the obtained response statistics. 

5.6. Discussion and conclusions 

The main purpose of this study was to present a predictive model for the central 

tendency and the related record-to-record variability of residual displacements for 

bilinear single-degree-of-freedom systems exhibiting stiffness and strength 

degradation. This model ultimately provides the probability distribution of the 

constant-ductility residual displacement ratio, C  , which is defined as the ratio of 

residual to peak transient displacement. In order to develop the model, a multitude 

of SDoF systems with different values of natural vibration period and post-

yielding hardening ratio and governed by the peak-oriented modified Ibarra-

Medina-Krawinkler hysteretic model, were subjected to nonlinear dynamic 

analyses. These dynamic runs were designed to hold the ductility demand 

constant at various predefined levels, by appropriately scaling the input motion.  

From the data obtained from these dynamic analyses, it was observed that 

the residual displacement never exceeded about a half of the corresponding peak 

inelastic displacement demand for all the cases considered and that this overall 

maximum residual displacement ratio tends to decrease with increasing levels of 

strength degradation. The results also confirmed that the main parameter affecting 

mean residual displacement is the post-yield hardening ratio, in agreement with 

previous studies (G. A. Macrae and Kawashima, 1997; Borzi et al., 2001; 

Christopoulos et al., 2003; Ruiz-García and Miranda, 2006). Other parameters 

whose influence was examined were the (initial) period of each SDoF oscillator 

and the level of ductility demand. Generally speaking, the period of the structure 

showed a limited influence on residual displacements within the 0.3s to 2.0s 

interval considered in this study. On the other hand, ductility demand was 

observed to have a more significant effect in each level of strength degradation. 

The proposed model suggests that the mean residual displacement ratio can 

be considered as a function of two random variables, elongated period and 

strength loss, that represent the effects of stiffness and strength degradation, and 

which were found to be correlated with each other. Therefore, a complete 

definition of the model also required the development of subsidiary models 

providing the marginal distributions of elongated period and strength loss, as well 

as their correlation. The functional form proposed for the mean constant-ductility 

residual displacement ratio also contains the ductility demand and post-yield 

hardening ratio as independent variables. The variance of the residual 

displacement ratios was found to be non-constant. For any level of strength 

degradation, the standard deviation of the ratio was modeled as a function of post-

yield hardening slope, period of the natural vibration and ductility demand. It was 
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also observed that central tendency of period elongation mainly depends on the 

post-yield hardening ratio and ductility demand, whereas the corresponding 

variance was modeled only as function of the expected value of the model. On the 

other hand, the central tendency of strength loss mainly depends on ductility 

demand, hardening slope and structural period whereas its variance only appears 

to depend on period and ductility demand. The correlation coefficient between 

period elongation and strength loss was found to be mainly affected by the initial 

period of the oscillator and the ductility demand. 

On a closing note, it should be highlighted that the complete proposed 

model, allowed to represent the joint distribution of the three random variables: 

residual displacement, period elongation and strength degradation, given ductility 

demand, initial period and hardening slope of the structure and the level of cyclic 

strength degradation. As shown in the paragraph concerning the numerical 

implementation of the model, this representation of their joint distribution can be 

achieved via a Monte-Carlo sampling scheme. This procedure can be used to 

derive pushover curves, considering uncertainties, characterizing a damaged 

structural system where the damage level is reflected by the ductility demand 

provoked by an earthquake shock.  
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Abstract 

From this chapter was derived the paper:  

− Orlacchio M., Baltzopoulos G., Iervolino I. (2020), “State-dependent seismic fragility via 

pushover analysis.” Proceedings of the 17th World Conference on Earthquake Engineering, 

17WCEE Sendai, Japan. 

Earthquakes are clustered in space and time. This means that structures in 

seismically active regions can be subjected to multiple consecutive instances of 

base acceleration, with insufficient in-between time for repair operations to take 

place. In such situations, buildings may experience degradation of their lateral-

force-resisting capacity due to damage accumulation. Consequently, the use of 

seismic fragility functions developed for the intact structure may not be enough, 

in the context of seismic risk assessment studies that consider the effect of seismic 

clusters. In these cases, one may employ state-dependent fragility curves, which 

are separate fragility functions assigned to the same structure, depending on 

distinct damage states that it may be brought to by prior shocks. 

State-of-the-art analytical estimation of structure-specific fragility entails the use 

of dynamic analysis of a numerical model of the structure, for example, 

incremental dynamic analysis (IDA), which can be computationally laborious, thus 

motivating the development of simplified, less time-consuming methods, often 

based on substituting the structural model by equivalent single-degree-of-freedom 

(SDOF) systems that can be defined via pushover analysis. In fact, existing 

procedures in the literature, such as back-to-back IDA, that can be used to 

estimate state-dependent fragility curves, tend to increase computational costs, 

rendering the development of simplified methodologies for this case a topical 

issue. 

In this context, this chapter presents a method for estimating state-dependent 

seismic fragility functions, based on pushover analysis and a predictive model for 

constant-ductility residual displacement ratio. The latter is defined as the residual-

to-peak-transient seismic displacement ratio of an equivalent SDOF structure. The 

residual displacement model, which considers yielding SDOF systems that exhibit 

stiffness and strength degradation, with natural periods between 0.3 s and 2.0 s 

and post-yield hardening ratios from 0 % to 10%, is outlined first. The model also 

estimates the joint probability distribution of normalized elongated period and 

strength degradation, for a given ductility demand. This information allows for a 

probabilistic evaluation of the pushover curve characterizing a damaged structural 

system, which is then used to obtain state-dependent fragility when damage states 

are defined via ductility demand thresholds. The state-dependent fragility curves 
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are estimated via IDA of SDOF oscillators with pushovers that were previously 

determined from the model. An illustrative application showcases the ability of the 

proposed methodology to provide state-dependent fragility estimates in an 

expedient manner.  

Keywords: sequence-based seismic reliability; damage accumulation; residual 

displacements. 

6.1. Introduction 

Seismic risk analysis, in its classical form, does not consider structural failure that 

is reached progressively due to damage accumulation in multiple events. This can 

be justified by considering that, for example, after some seismic event damages 

the structure of interest, enough time will elapse until the next earthquake for the 

stakeholders to repair it back to its initial state. However, earthquakes are known 

to be clustered in both space and time and this means that the necessary repair 

time between seismic shocks may not be available. One such typical case is that of 

short-term emergency management, during the aftershock sequence that follows 

an earthquake characterized as the mainshock. In that case, the possibility of 

aftershock-induced ground shaking exacerbating any damage caused by the main 

event must be taken into account in risk assessment (Iervolino et al., 2016, 2020). 

Fragility functions are well-established tools, used in seismic risk analyses to 

probabilistically quantify structural vulnerability (discussion to follow). 

Traditionally, one fragility per structure is assigned, assuming that earthquake-

induced shaking will find the structure in the absence of seismic damage. In order 

to extend the use of this tool to sequence-based risk assessment, the concept of a 

set of state-dependent seismic fragility functions must be introduced. State-

dependent fragilities provide a full picture of the seismic vulnerability of a structure 

in which damage can accumulate due to transitions across damage states ( )DSs . 

State-of-the-art analytical estimation of structure-specific fragility involves the use 

of dynamic analysis of a numerical model of the structure; e.g., incremental 

dynamic analysis (IDA, Vamvatsikos and Cornell, 2001, 2004). For the evaluation 

of state-dependent fragility curves, an extended version of IDA has been suggested 

in several studies (Luco et al., 2004; Ryu et al., 2011; Goda, 2012; Ruiz-García, 

2012; Raghunandan et al., 2015; Goda, 2015; Baltzopoulos et al., 2018), referred 

to as back-to-back IDA. The main disadvantage of deriving fragility functions based 

on nonlinear dynamic analysis is the high computational cost involved, which 

includes both the time investment required for effectively modelling nonlinear 

structural behavior and computer time needed to run multitudes of analyses and 

post-process the results. This has motivated the development of simplified 

procedures for analytical fragility estimation, based on static nonlinear analysis, 
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which is often termed pushover analysis. These methods make recourse to a 

surrogate structure in the form of an equivalent inelastic single-degree-of-freedom 

(SDOF) system, whose definition is based on the original structure’s pushover 

curve. One such example, used in the case of traditional fragility estimation, is the 

method proposed in Vamvatsikos and Cornell (2005), which has been recently 

streamlined into a dedicated software tool (G. Baltzopoulos et al., 2017). 

Herein a simplified pushover-based methodology is discussed, adapted 

specifically for the estimation of state-dependent fragility functions. While 

traditional fragility estimation requires a large number of non-linear runs, governed 

by the need for obtaining accurate estimates in the face of record-to-record 

variability of structural response (Iervolino, 2017; Baltzopoulos et al., 2019), this 

is even more so for state-dependent fragility, when the analysis should ostensibly 

represent all the possible effects, in terms of damage, of two consecutive 

earthquakes. Therefore, there is reason for exploring possible simplification in the 

latter case. In fact, in the case of sequential loading of the structure by consecutive 

instances of base-acceleration, without the possibility of intermediate remedial 

measures, the first shaking determines an intermediate damaged state of the 

structure, which will be called upon to sustain the second shock. This intermediate 

incarnation of the damaged structure is itself subject to some variability in terms 

of the fundamental dynamic structural properties, such as loss of stiffness and 

strength against lateral loads, and also residual displacements due to plastic 

deformation. In this context, a possible shortcut could be to account for the 

variability in structural properties of the damaged system via an analytical 

stochastic model, eschewing the need for dynamic runs representing the first 

shock, which brings the system to the damage state of interest. 

The present chapter discusses exactly such a simplification, by considering 

this variability in structural properties, at the given damage state, directly on the 

static pushover; i.e., on the backbone curve of the equivalent SDOF. This can be 

achieved by using a semi-empirical predictive model for constant-ductility residual 

displacement ratios presented in the previous chapter; this model provides the 

joint probability distribution of residual displacement and other parameters 

necessary for the definition of the post-(first-)shock static pushover of an inelastic 

SDOF system, conditional on the attainment of a specific displacement demand 

during that shock. Thus, in lieu of executing sequential dynamic runs in order to 

represent a succession of damaging events within a sequence, the damaged 

structural configuration is obtained via Monte-Carlo simulation and analyses are 

executed only to account for the second shock, further reducing the computational 

cost.  

The remainder of this chapter is organized as follows: first comes a 

discussion on the analytical derivation of fragility functions, both for the case of 
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an intact structure and for an already-damaged structure. Subsequently, the 

procedure for simulating the damaged structures’ pushovers is outlined, starting 

from a brief presentation of the residual displacement model and going on to 

describe the stochastic generation of backbone curves, given that the structure is 

in a specific damage state. Finally, the simplified methodology for state-dependent 

fragility derivation is illustrated via an application, whose results are then compared 

to those of a more rigorous procedure that involves sequential dynamic analysis. 

The chapter closes with some concluding remarks.  

6.2. State-dependent structure-specific seismic fragility 

A structure-specific seismic fragility function defines the conditional probability 

that, given a ground-shaking intensity measure ( )IM  is at a specific level ( )im , 

the structure fails to meet some performance objective. This failure is often termed 

exceedance of a limit- or damage-state and traditionally considers an intact structure 

that experiences a single seismic event. In the simplest of cases, fragility can be 

defined considering an appropriate measure of structural response, often termed 

an engineering demand parameter ( )EDP , and a threshold value thereof, DSedp , 

whose exceedance is taken to signify transition of the structure from its initial state 

to the generic damage state DS , as expressed by Eq. (6.1):  

 
DSP DS IM im P EDP edp IM im= =  =       (6.1) 

One of the possible strategies for fragility assessment, via dynamic analysis of 

a structure’s non-linear numerical model, is the so-called IM-based approach 

(Jalayer, 2003), which employs the results of IDA (Vamvatsikos and Cornell, 2001, 

2004). IDA scales a set of acceleration records to progressively higher im  values, 

for which the numerical model provides the corresponding EDP responses. For 

every record used, the obtained EDPs can be plotted against the corresponding 

im  level that the record had been scaled to – a graph that is usually designated as 

an IDA curve (Figure 6.1).  

The IM-based method entails finding the intersections of the IDA curves, 

DSim , with the vertical line passing through the threshold DSedp  value (Figure 6.1). 

These DSim  values can be regarded as realizations of a random variable (RV), 

DSIM , which is the seismic intensity to which one needs to scale the ground 

motion in order for the structure to reach damage state DS . It is common practice 

to assume that DSIM  follows a lognormal distribution (Jalayer and Cornell, 2003; 

G. Baltzopoulos et al., 2017), in which case the fragility function can be estimated 

according to Eq.(6.2):  
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where   and   are the parameter estimates (median and logarithmic standard 

deviation) of the assumed lognormal distribution of DSIM , DS,iim  is the realization 

of the RV coming from to the i-th record and ( )   is the standard Gaussian 

(cumulative) function.  

 

 
Figure 6.1 Example of IDA curves used for the evaluation of fragility curves for an intact structure 

(a); example of back-to-back IDA curves for the evaluation of state-dependent fragility curves (b); 

fragility curve estimation obtained by means of the IM-based approach (c). 

When seismic reliability calculations are expected to account for earthquake 

clusters, the need arises to evaluate the probability that an already-damaged 

structure transitions from one damage state, say ADS , to another more severe 

one, BDS , in one seismic event. A state-dependent fragility function will provide 

that probability, conditional on occurrence of a shaking intensity im during one 

of the shocks in the cluster, which can be expressed as 

B A ADS DS
P EDP edp DS IM im   =
  . In this case, the notation 

B ADS DS
edp  

denotes the EDP threshold for BDS  when the structure is already found in ADS  

and the state-dependent fragility can simply denoted as 
B AP DS DS IM im =  

. As already mentioned, one way of analytically estimating a state-dependent 

version of a fragility function, is my means of a variant of IDA, which is termed 

by some authors back-to-back IDA. In this type of dynamic analysis, the structural 

model is first subjected to a set of records hitting the structure at its intact (or 
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initial) state, each scaled in amplitude to the lowest im  value that results in 

ADSEDP edp= . At the end of each run, a different realization of the structure is 

produced, which can be considered to have made the transition to ADS . 

Subsequently, each damaged incarnation of the structure is subjected to a second 

set of accelerograms representing a subsequent event of the same cluster. These 

records of the second set are scaled to progressively increasing im  levels, similar 

to the traditional IDA procedure, until 
B ADS DS

EDP edp=  is verified for the 

damaged structure, at an intensity of the shock which can be noted as 
BDS ,iim  for 

the i-th succession of base accelerations. These intensity values can be used for 

the estimation of the parameters of a lognormal model for the state-dependent 

fragility, according to Eq.(6.2), in the same manner as in the case of traditional 

fragility. In Figure 6.1  an example of back-to-back IDA curves is provided, where 

it can be seen that at zero intensity, the curves start from a residual EDP value 

that the damaged structure has inherited from the first event.  

6.3. Simulating the static pushover of an earthquake-damaged 

structure 

6.3.1. Predictive model for constant-ductility residual displacement 

ratio 

As mentioned previously, this study introduces a further simplification in 

pushover-based state-dependent fragility assessment; i.e., apart from use on an 

equivalent SDOF substitute structure, in the form of analytical probabilistic 

definition of the possible pushover curves that characterize the structure that has 

been damaged by a previous shock. This can be achieved by random sampling of 

the parameters that define a set of pushover curves, which represent different 

realizations of the damaged system. In this case, the chosen parameters are the 

residual displacement res , the relative period elongation T , and the loss of 

lateral strength R  (to follow). The analytical arsenal for performing this 

simulation is provided by a predictive model for the constant-ductility residual 

displacement ratio, C  ,  developed by the same authors; a preliminary version of 

this model, limited to non-degrading systems, was presented in Orlacchio et al. 

(2019), while the complete model that includes cyclic strength degradation in the 

hysteresis is given in the previous chapter and it is also briefly recalled to follow.  

The constant-ductility residual displacement ratio is defined as 

res maxC  = , that is the ratio of residual displacement res  to peak transient 

displacement max , corresponding to a certain ductility  . Relative period 

elongation is a measure of the loss of lateral stiffness of the structure during 
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ground shaking and is defined as ( )T T΄ T T = − , where T'  is the elongated 

post-shock period and T  is the initial period of the SDOF structure. The 

elongated period is calculated as 2T΄ m k΄=   , where k'  is the post-shock 

reloading stiffness (Figure 6.2a). Finally, loss of lateral strength is defined as 

( )max max maxR F F΄ F = − , where ( )1 1max y hF F  =  +  −    is the restoring 

force reached along the hardening branch of the initial backbone when pushed at 

ductility   under static regime (i.e., in the absence of cyclic strength deterioration) 

, yF  and h  are, respectively, the yield force and hardening slope of the intact 

structure and maxF΄  represents the restoring force that can be reached at the same 

ductility on the backbone of the damaged SDOF system, when it exhibits cyclic 

strength degradation. As shown in Figure 6.2b, cyclic strength degradation entails 

a gradual offset of the force-displacement envelope towards the horizontal axis, 

due to progressive deterioration of structural elements. This is often modeled 

analytically by updating the backbone each time a hysteretic half-cycle is 

completed, with a reduction in resistance that is proportional to the dissipated 

energy (FEMA, 2009), by a factor that can be calibrated to represent a certain 

range of structural behavior, in terms of susceptibility deterioration phenomena. 

In this case, four deterioration levels are considered, termed as no degradation and 

low-, medium-, high-degradation cases, with the first being representative of 

modern code-conforming structural elements and the last of structural elements 

with poor dissipative characteristics. In analytical terms, these lateral strength 

degradation levels are represented by the dummy variable  0 1 2 3DL , , ,= , with  

0DL =  corresponding to no degradation, 3DL =  to high-degradation level etc. 
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Figure 6.2 Examples of an SDOF structure’s monotonic pushover (backbone) curve before and 

after incurring seismic damage (a); example of peak-oriented hysteresis at medium strength 

degradation level (b). 

For a given ductility demand, that can represent the threshold DSedp  of some 

DS , the parameters C  , T  and R  are RVs whose joint distribution is 

provided by the predictive model given in the previous chapter. For sake of 

brevity, hereafter the equations and figures given in the previous chapter will be 

used to briefly recall the model.  

In case of absent strength degradation 0DL = , only the joint distribution of 

C   and T  has to be evaluated by means the definition of the Lognormal 

marginal distribution of T , completely defined by Eq.(5.6), and the Gaussian 

distribution of  C   conditional to ( )ln T  expressed by Eq.(5.4). On the other 

hand, in presence of strength degradation ( )1 2 3DL , ,= , the joint distribution of 

the three random variables C  , T  and R  has to be evaluated. This distribution 

can be defined from the joint distribution of ( ) ( ) ln lnT , R   and the Gaussian 

distribution of C   conditional to ( )ln R  expressed by Eq.(5.5). 

( ) ( ) ln lnT , R   is a bivariate Gaussian variable and its joint distribution is 

defined using the marginal distribution of 1 2 3DL , ,T =  shown in Eq.(5.7); the 

marginal distribution of ( )ln R  provided by Eq.(5.9) and Eq.(5.10) and the 

covariance matrix with the correlation coefficient 
( ) ( )ln lnT , R


 

 in Eq. (5.12). 

The predictive model was developed considering the modified Ibarra-

Medina-Krawinkler (mIMK) hysteretic model (Lignos and Krawinkler, 2011) with 

peak-oriented response. The model’s range of applicability is for vibration periods 
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T  between 0.3 s and 2.0 s, post-yield hardening ratios h  ranging from 0 to 10% 

and ductility demands   along the hardening branch between 1.5 and 9.  

Examples of the model are given in Figure 5.7, Figure 5. 9 and Figure 5.11 of 

previous chapter where Figure 5.7, shows the model for the expected value of 

res max   and the model of standard deviation   in presence of strength 

deterioration, while Figure 5. 9 and Figure 5.11 show a graph of the mean of period 

elongation, ( )T  in case of absent strength degradation ( )0DL =  and the 

models for central tendency and standard deviation of ( )ln R  in the case of 

1DL =  (low stregth degradation level). 

6.3.2. Simulation of the damaged structure’s backbone curve  

A single realization of the pushover curve characterizing a damaged structural 

system, can be obtained by random sampling triplets of values for elongated 

period, strength degradation and residual displacement from their joint 

distribution, given ductility demand. In this context, the conditioning ductility 

demand   represents the threshold DSedp  that defines transition to the damage 

state under consideration. At this point, it should be noted that Eq.(5.4) and 

Eq.(5.5) implies that, given a certain ductility demand, the random vector 

( ) ( ) ln lnT , R  is conditionally independent of the residual displacement and 

follows a bivariate normal distribution. This means that a sample  x , y,z , of the 

random vector ( ) ( ) ln ln res maxT , R ,   , can be obtained by the following 

procedure: first, given   defining the DS , the level of strength deterioration and 

the characteristics of the initial structure T  and h , a random value of 

( )ln T x =  is extracted from a Gaussian distribution with mean ( )ln T  and 

standard deviation
( )ln T




 given by Eq.(5.8). Subsequently, a value of ( )ln R y =  

is randomly sampled from the conditional distribution of ( )ln R  given 

( )ln T x = , which is also a Gaussian with mean and standard deviation given by 

Eq. equation reference goes here: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

ln ln ln ln

2 2

ln ln lnln ln

E ln ln ln ln

1

T , R R T

T , R RR T

R T x R x T  

  

   

   

     = =  +   −     


= − 

     (6.3) 
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where ( ) ( )E ln lnR T x   =   represents the conditional mean of ( )ln R , 

( ) ( )ln lnR T


 
 its conditional standard deviation, ( )ln R  the marginal mean and 

( )ln R



 the standard deviation from Eq.(5.9) and Eq.(5.10); and 

( ) ( )ln lnT , R


 
 is 

from Eq.(5.11). Finally, by substituting ( ) ( )   ln lnT , R x, y  =  into Eq.(5.4) 

and Eq.(5.5) thus evaluating the conditional mean and standard deviation of the 

ratio res max  , a value of res max z  =  is randomly sampled from the 

corresponding normal distribution, which is, however, truncated between 2 −   

and 2  . 

From this random sample of ( ) ( ) ln ln res maxT x, R y, z  =  = = , it is 

straightforward to obtain the corresponding residual displacement res , elongated 

period T'  and maxF' , all of which were defined previously. From this triplet of 

parameters, it is then possible to univocally define the realization of the damaged 

system’s pushover curve by means of mechanical and geometric considerations. 

This is illustrated in Figure 6.3, where the coordinates of the points defining the 

initial and post-shock curve are given in the displacement-force plane. In the 

figure, the notation with primes represents the value of the corresponding 

parameter in the damaged system and the signed subscripts indicate the direction; 

e.g., y' +  and y' −  denote yield displacements of the post-shock backbone in the 

positive and negative direction, respectively. In fact, the elastic branch of the 

damaged system’s pushover can be determined by evaluating the yield force and 

displacement in both directions as reported in Eq.(6.4): 

( )
2

2

1
yh max

max max y res hy
y max max

y

y resy
y

F F ' T '
F ' F ' F '

F F T

F ' T '
'

F T


   



  







     
= −     −       

      
  =      

 .(6.4) 

On the other hand, the degradation of the hardening branch’s slope due to 

cyclic strength deterioration mode, which is implicit in the hysteretic model of 

Lignos and Krawinkler (2011), is given by Eq.(6.5) : 

resy ymax
h h

max yy

'FF '
'

F F '

 
 







 
 =   
 
 

 (6.5) 
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Figure 6.3 Parameters defining the pushover curves; parameters for the definition of the intact 

structure’s pushover curve (a); and the damaged structure’s pushover curve (b).  

Apart from h'  , the other parameters, which are needed to define the post-yield 

branch, are the capping point displacements in the two directions,
c

'   and 

corresponding forces 
c

F '  . These can be calculated as the intersection points of 

the damaged structure’s hardening branch of the and softening branch, whose 

slope is assumed to remain invariant, according to Eq.(6.6):  

( ) ( )

hy y yc c
u hc y

res c u c u resy y

c u c uc c

F ' ' ' F 'F F
' F ' '

' '

F ' F '

 
  

       

   

  

 

 

 

     
    = − + −     − −    
  =  − −  

. (6.6) 

6.4.  Simplified evaluation of state-dependent fragility curves 

 The SDOF structure’s backbone curves, sampled using the predictive model for 

C  , can be assumed to represent the pushover curves that correspond to different 

realizations of the structure, when that structure has transitioned to a certain 

damage state ADS  due to one shock within an earthquake cluster. Each 

realization has an asymmetric backbone due to the residual displacement res , 

exhibiting elongated period T'  and lateral resistance at yield and capping points 

in the two directions, '

y
F   and '

c
F 

.  

In order to estimate the state-dependent fragility of the damaged structure, 

which is already at ADS , each SDOF realization from Monte-Carlo simulation is 

subjected to incremental dynamic analysis, performed using a single record, 

randomly selected from a pool of available ground motions meant to simulate 

ground shaking due to a subsequent shock of the same cluster. The use of a single 
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record per realization of the structure has been used before in the past, in the 

context of accounting for model uncertainty in seismic risk analysis Franchin et 

al., (2018). The records used in this phase are scaled to increasing im  levels until 

the structural response of each realization reaches the threshold 
B ADS DS

edp  

defining the transition from damage state ADS  to BDS . The final result of this 

procedure is a set of IDA curves, which constitute a more expedient substitute of 

the back-to-back IDA curves, and that can be used to evaluate the state-dependent 

fragility via the IM-based approach. In other words, the intensity values 
BDS ,iim , 

causing the i-th simulated realization of the damaged system to reach 
B ADS DS

edp , 

can be used for the estimation of the parameters defining a lognormal model for 

the state-dependent fragility, according to Eq.(6.2). This simplified procedure for 

state-dependent seismic fragility estimation is showcased by means of an 

illustrative application, which follows. 

6.5. Illustrative application 

This paragraph presents an application of the simplified procedure for the 

estimation of state-dependent seismic fragility curves. The objective of this 

application is to evaluate the accuracy of the introduced simplified method by 

comparing the calculated state-dependent fragility curves with the corresponding 

curves obtained using a more rigorous method, such as back-to-back IDA. 

The application considers as case-study the structural system already 

presented in the previous chapter and hereafter briefly described. The system is a 

fixed-base four-storey plane reinforced concrete frame without masonry in-fills 

(Figure 6.4a). The structure geometry was defined so that the frame would exhibits 

a first-mode dominated dynamic elastic response with a first-mode period of 

natural vibration 1T  equal to 0.53 s and a flexural-dominated inelastic response 

(see Baltzopoulos et al., 2015 for structural details). The nonlinear structural model 

built for running nonlinear (static and dynamic) analyses adopted a lumped 

plasticity approach, using a piece-wise linear moment-rotation relation and the 

modified IMK model for the definition of the hysteretic behavior.  

For the purposes of this application, an equivalent SDoF system was defined, 

based on a static nonlinear analysis that was carried out by applying a gradually 

increasing lateral force profile corresponding to the structure’s first-mode 

excitation to base acceleration. The backbone of this equivalent SDoF oscillator 

was obtained by dividing the frame’s pushover force and roof displacement values 

by a first-mode modal participation factor (Fajfar, 2000) of 1 309.= and 

obtaining a multi-linear approximation of the resulting curve, as reported in Figure 

6.4b.  
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Figure 6.4 Basic information on the structure (a) and definition of the equivalent SDoF system (b). 

In this multi-linear approximation, the nominal yield point of the equivalent 

SDoF system is taken to correspond to a RDR of 0.0033, i.e., the point of 

formation of a global plastic mechanism for the structure with yielding limited to 

beam ends. The mass *m , period 
*T , hardening slope 

*

h  and all the other 

parameters defining the equivalent SDoF backbone curve are reported in Table 

6.1. 

Table 6.1 Characteristics of the equivalent SDoF system. 

 *T s   *m ton   yF kN   my   *

h −   mc   mu   c −  

0.774 147.13 304.81 0.031 0.017 0.147 0.244 -0.3 

Although in pushover-based based methods the inelastic SDoF system is used as 

a proxy for the actual structure, introducing an additional approximation, this 

illustrative example directly considers the SDoF system, to isolate the 

consequences of the proposed procedure from effects stemming from the multi- 

to single-DoF substitution. Therefore, both the simplified method and the back-

to-back IDA are conducted considering the equivalent SDoF system whose 

backbone is shown in Figure 6.4b. For the nonlinear dynamic analysis required by 

the procedure, the reference system is characterized by the modified IMK 

hysteretic model considered at first without strength degradation and then with a 

medium level of strength degradation, to test the effectiveness of the procedure in 

both cases. In order to showcase the simplified procedure, four damage states are 

arbitrarily defined, denoted from 1DS  to 4DS . The transition of the intact 

structure to damage state 1DS  is considered to occur when the structural response 

of the system exceeds the threshold 
1DSedp  defined by a seismic ductility demand 

 , equal to 2, which corresponds to 0 061 mmax . =  in this case. Along the same 

line, it is considered that the direct transition of the intact structure into 2DS , 

3DS  and 4DS occurs when   exceeds the value of 3, 4 and 8.3, respectively. The 
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last damage state corresponds to the collapse of the structure, i.e., a maximum 

inelastic displacement equal to 0.244 m. The four damage states are reported in 

Table 6.2 with the correspondent thresholds DSedp . 

Table 6.2 Damage states considered for the assessment of the state-dependent fragility curves. 

Damage state 1DS  
2DS  3DS  

4DS  

  2 3 4 8.3 

 mDSedp  0.061 0.092 0.122 0.244 

The threshold EDP values DSedp  used for the direct transition of the intact system 

into one of the four generic damage states (i.e., when the transition from intact to 

each DS  is due to a single earthquake shock) are also considered as threshold 

EDP  defining the transition of the already-damaged system. Although the exact 

value of the threshold displacement should take into account the nature of the 

DS and structural typology, the practice of using displacement demand alone to 

mark the exceedance of limit states on the pushover of the intact structure, is 

common in earthquake engineering (e.g., Ricci et al., 2018). 

For this application, the conditioning values of 2 =  and 3 = , i.e., 

1 0 061mDSedp .=  and 2 0 092mDSedp .=  , are used to simulate the sets of one-

hundred backbone curves, according to the sampling procedure previously 

described. In each set, the backbones represent one hundred possible realizations 

of the pushover of the structure having reached damage state 1DS  or 2DS . The 

backbone curves obtained from the predictive model for the cases of absent or 

medium level of strength degradation and for the two values of conditioning 

ductility are given in Figure 6.5. It is worth noting that in absence of strength 

degradation (Figure 6.5a-b) the backbone curves of the damaged structure differ 

among themselves only in residual displacement and elastic stiffness.  
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Figure 6.5 Backbone curves representing different realizations of the damaged structure in case of 

DL=0 and conditioning ductility equal to 2 (a); DL=0 and conditioning ductility equal to 3 (b); DL=2 

and conditioning ductility equal to 2 (c); DL=2 and conditioning ductility equal to 3 (d). 

Subsequently, for each set of one-hundred backbone each realization of the 

damaged system is subjected to IDA, using one record per extracted pushover, 

which is scaled upwards until the transition from the initial damage state ( 1DS  or 

2DS ) to a more severe one occurs. The IM  considered during IDA is the spectral 

acceleration at the period of the intact structure, Sa( T ) . These analyses were run 

using the OPENSees finite-element platform McKenna (2011), where a custom-

made version of the mIMK hysteretic model was implemented, which also allows 

for user-defined unloading stiffness. The IDA curves obtained in this manner are 

shown in Figure 6.6 where the 
iDSim points, obtained from their intersection with 

the DS iedp  lines, are shown as red crosses. At this point, these 
iDSim values of each  

DS iedp  can be used to estimate the parameters of a lognormal model for the state-

dependent fragility curves according to Eq. (6.2).  
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Figure 6.6 IDA curves obtained from the application of the simplified methodology in case of 

DL=0 and conditioning ductility equal to 2(a); DL=0 and conditioning ductility equal to 3 (b); 

DL=2 and conditioning ductility equal to 2 (c); DL=2 and conditioning ductility equal to 3 (d). 

In order to obtain some points of reference for comparing the results of this 

procedure, the same state-dependent fragilities were estimated by means of back-

to-back IDA, using a set of twenty records to represent the first damaging shock 

of the cluster, scaled so as to cause a ductility demand of two or three, and another 

20 subsequent-shock accelerograms per initial shock, for a total of four-hundred 

curves. Additionally, a twenty-record IDA was used to estimate the intact 

structure’s traditional fragility curves for the four damage states reported in Table 

6.2,  iP DS |IM im= . These runs were performed using an OPENSees user 

interface developed to streamline the back-to-back IDA Baltzopoulos et al., 

(2018).  

The resulting median and standard deviations defining the fragility curves 

for the intact structure in case of 0DL =  and of 2DL =  are reported in Table 

6. 3. The corresponding cumulative probability functions are shown in Figure 6.7 

in which the blue, green, orange and red solid lines refer to 1DS , 2DS , 3DS  and 

4DS  respectively.  
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Table 6. 3 Median   and logarithmic standard deviation   defining the fragility curves for the 

two intact structures ( IM in g). 

 MEDIAN   SIGMA   

DL  1DS  
2DS  3DS  

4DS  
1DS  

2DS  3DS  
4DS  

0 0.426 0.610 0.774 1.072 0.237 0.297 0.353 0.408 

2 0.430 0.610 0.767 1.082 0.240 0.295 0.3646 0.416 

Table 6.4 and Table 6.5 collect the values of the median,  , and logarithmic 

standard deviation,  , defining the parametric state-dependent fragility curves for 

the two systems evaluated by means of the simplified method and of back-to-back 

IDA procedure, respectively. In the tables, the second column gives the initial 

damage state whereas the damage states reported in the rest of the row represent 

the arrival damage states.  

Table 6.4 Median   and logarithmic standard deviation   defining the state-dependent fragility 

curves of the two intact structures evaluated using the simplified methodology ( IM in g). 

DL  DS  
2DS  3DS  

4DS  

            

0 
1DS  0.546 0.312 0.703 0.337 0.948 0.378 

2DS  \ \ 0.651 0.340 0.936 0.336 

2 
1DS  0.518 0.293 0.662 0.323 0.941 0.364 

2DS  \ \ 0.629 0.377 0.934 0.393 

Table 6.5 Median   and logarithmic standard deviation   defining the state-dependent fragility 

curves of the two intact structures evaluated using the back-to-back IDA ( IM in g). 

DL  DS  
2DS  3DS  

4DS  

            

0 
1DS  0.555 0.314 0.734 0.343 1.058 0.425 

2DS  \ \ 0.654 0.378 1.057 0.410 

2 
1DS  0.554 0.314 0.732 0.344 1.071 0.430 

2DS  \ \ 0.654 0.379 1.065 0.426 

 

The corresponding cumulative probability functions evaluated with the 

simplified procedure and the rigorous method of back-to-back IDA are shown in 

Figure 6.8 and Figure 6.9 for the case 0DL =  and in Figure 6.10 and Figure 6.11 

for the case 2DL = . Figure 6.8 and Figure 6.10  refer to the transitions having 

1DS  as initial damage state and 2DS (panel (a)), 3DS (panel (b)) and 4DS (panel 
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(a)) as final damage state. Figure 6.9  and Figure 6.11  refer to the transitions having 

2DS  as initial damage state and 3DS (panel (a)) and  4DS (panel (c)) as final 

damage state.  

The comparison shows that the simplified procedure provided state-dependent 

fragilities estimates which are similar to those coming from the more rigorous 

back-to-back IDA. For the transitions that does not have 4DS  as final damage 

state, the results of the simplified method are very close to those derived from the 

rigorous method, any slight difference can be explained by taking into account the 

concept of estimation uncertainty of the parameters defining the fragility due to 

the use of a reduced number of records in the assessment (Iervolino, 2017; 

Baltzopoulos et al. 2019). A larger difference is observable for the transitions 

having 4DS as final damage state, this is in accordance with other studies 

concerning the damage state of collapse (Zareian, 2006; Eads et al., 2013). 

On a side-note, the fragility functions of the intact structure serve as a 

reference, showcasing the characteristic shift-to-the-left of the state-dependent 

curves, due to the drop in median capacity caused by the transition to the first 

damage state ( 1DS  or 2DS ) due to the damage induced by the first shock. 

 

Figure 6.7 Fragility curves of intact structure evaluated at the four damage states by means of IDA 

evaluated in case of 0DL =  (a) and 2DL = (b). 

 

Figure 6.8 State-dependent fragility curves evaluated with the simplified methodology and the back-

to-back IDA approach conditioned to the damage state 1DS  and fragility curves of intact structure 

evaluated for the case with 0DL = .  
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Figure 6.9 State dependent fragility curves evaluated with the simplified methodology and the back-

to-back IDA approach conditioned to the damage state 2DS  and fragility curves of intact structure 

evaluated in case of 0DL = . 

 

Figure 6.10 State dependent fragility curves evaluated with the simplified methodology and the back-

to-back IDA approach conditioned to the damage state 1DS  and fragility curves of intact structure 

in case of 2DL = . 

 

Figure 6.11 State-dependent fragility curves evaluated with the simplified methodology and the 

back-to-back IDA approach conditioned to the damage state 2DS  and fragility curves of intact 

structure evaluated in case of 2DL = . 

Concerning the computational cost, the simplified procedure allowed to assess the 

state-dependent fragility curve for each transition probability defining only 100 

IDA curve rather than the 400 curves required by the back-to-back IDA. In terms 

of time, for each SDoF analyzed in this application the simplified procedure 

required 1.0 hour and 5.0 minutes rather than the about 2 hours (1.0 hour and 55 

minutes) required by the back-to-back IDA. 
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6.6. Conclusions 

The main objective of this chapter was to present a simplified pushover-based 

procedure aimed at the estimation of state-dependent seismic fragility curves. The 

proposed methodology uses a semi-empirical predictive model for constant-

ductility displacement ratios to obtain, through Monte-Carlo simulation, a set of 

realizations of the damaged structure’s pushover curve. The usefulness of this 

shortcut lies in the fact that, due to the record-to-record variability of structural 

response to strong earthquakes, a structure subjected to a single instance of base-

acceleration may fall under a generic damage state while exhibiting different 

permutations of basic dynamic properties, such as resistance to inertial load, 

stiffness and residual displacement. Such variability is typically accounted for via 

sequential runs to accelerogram couples that represent the alternation of two 

damaging shocks within an earthquake cluster, as in the case of back-to-back 

incremental dynamic analysis. In the simplified proposal, the first part of the 

sequential analysis is avoided, replaced by simulation of the principal 

characteristics of the equivalent SDOF system at a given damage state. The 

illustrative application presented as part of this chapter shows that the proposed 

methodology can represent a viable alternative to the more computationally 

intensive procedures, at least for regular structures for whom pushover-based 

procedures are a viable approximation. 

References 

Baltzopoulos, G., R. Baraschino, and I. Iervolino (2019), On the number of 

records for structural risk estimation in PBEE, Earthq. Eng. Struct. Dyn., 

48(5), 489–506. 

Baltzopoulos, G., R. Baraschino, I. Iervolino, and D. Vamvatsikos (2017), 

SPO2FRAG: software for seismic fragility assessment based on static 

pushover, Bull. Earthq. Eng., 15(10). 

Baltzopoulos, G., R. Baraschino, I. Iervolino, and D. Vamvatsikos (2018), 

Dynamic analysis of single-degree-of-freedom systems (DYANAS): a 

graphical user interface for OpenSees, Eng. Struct., 177, 395–408. 

Baltzopoulos, G., E. Chioccarelli, and I. Iervolino (2015), The displacement 

coefficient method in near-source conditions, Earthq. Eng. Struct. Dyn., 44(7), 

1015–1033. 

Eads, L., E. Miranda, H. Krawinkler, and D.G. Lignos (2013), An efficient method 

for estimating the collapse risk of structures in seismic regions, Earthq. Eng. 

Struct. Dyn, 42(1), 25–41. 



 CHAPTER 6 220 

 

 

Fajfar, P. (2000), A nonlinear analysis method for performance based seismic 

design., Earthq. Spectra, 16(3), 573–592. 

FEMA (2009), FEMA P440 - Effects of Strength and Stiffness Degradation on 

Seismic Response, Fema P440a, (June), 312. 

Franchin, P., L. Ragni, M. Rota, and A. Zona (2018), Modelling Uncertainties of 

Italian Code- Conforming Structures for the Purpose of Seismic Response 

Analysis, J. Earthq. Eng., 22(2), 28–53. 

Goda, K. (2012), Nonlinear response potential of Mainshock-Aftershock 

sequences from Japanese earthquakes, Bull. Seismol. Soc. Am., 102(5), 2139–

2156. 

—— (2015), Record selection for aftershock incremental dynamic analysis, Earthq. 

Eng. Struct. Dyn., 44, 1157–1162. 

Iervolino, I. (2017), Assessing uncertainty in estimation of seismic response for 

PBEE, Earthq. Eng. Struct. Dyn., 46(10), 1711–1723. 

Iervolino, I., E. Chioccarelli, and A. Suzuki (2020), Seismic damage accumulation 

in multiple mainshock-aftershock sequences, Earthq. Eng. Struct. Dyn. 

Iervolino, I., M. Giorgio, and E. Chioccarelli (2016), Markovian modeling of 

seismic damage accumulation, Earthq. Eng. Struct. Dyn., 45(3), 441–461. 

Jalayer, F. (2003), Direct Probabilistic Seismic Analysis : Implementing Non-

Linear Dynamic Assessments, Stanford University. 

Jalayer, F., and C.A. Cornell (2003), A Technical Framework for Probability-Based 

Demand and Capacity Factor Design (DCFD) Seismic Formats, PEER Rep. 

2003/8, 122. 

Lignos, D., and H. Krawinkler (2011), Deterioration modeling of steel 

components in support of collapse prediction of steel moment frames under 

earthquake loading, J. Struct. Eng., 137(11), 1291–1302. 

Luco, N., P. Bazzurro, and C.A. Cornell (2004), “Dynamic versus static 

computation of the residual capacity of a mainshock-damaged building to 

withstand an aftershock,” in: 13th World Conference on Earthquake Engineering, 

Vancouver, B.C., Canada August 1-6. 

McKenna, F. (2011), OpenSees: A framework for earthquake engineering 

simulation, Comput. Sci. Eng., 13(4), 58–66. 

Orlacchio, M., G. Baltzopoulos, and I. Iervolino (2019), Constant-ductility residual 



 CHAPTER 6 221 

 

 

displacement ratios, Proc. COMPDYN 2019, 7th ECCOMAS Themat. Conf. 

Comput. Methods Struct. Dyn. Earthq. Eng. Crete, Greece June, 24-26. 

Raghunandan, M., A.B. Liel, and N. Luco (2015), Aftershock collapse vulnerability 

assessment of reinforced concrete frame structures, Earthq. Eng. Struct. Dyn., 

44(3), 419–439. 

Ricci, P., V. Manfredi, F. Noto, M. Terrenzi, C. Petrone, F. Celano, M.T. De Risi, 

G. Camata, P. Franchin, G. Magliulo, A. Masi, F. Mollaioli, E. Spacone, and 

G.M. Verderame (2018), Modeling and Seismic Response Analysis of Italian 

Code-Conforming Reinforced Concrete Buildings, J. Earthq. Eng. 

Ruiz-García, J. (2012), Mainshock-aftershock ground motion features and their 

influence in building’s seismic response, J. Earthq. Eng., 16(5), 719–737. 

Ryu, H., N. Luco, S.R. Uma, and A.B. Liel (2011), Developing fragilities for 

mainshock-damaged structures through incremental dynamic analysis, Proc. 

Ninth Pacific Conf. Earthq. Eng., (225), 8. 

Vamvatsikos, D., and C.A. Cornell (2001), Incremental Dynamic Analysis, Earthq. 

Eng. Struct. Dyn., 31(3), 491–514. 

—— (2004), Applied incremental dynamic analysis, Earthq. Spectra, 20(2), 523–

553. 

—— (2005), Direct estimation of the seismic demand and capacity of MDOF 

systems through Incremental Dynamic Analysis of an SDOF approximation, 

J. Struct. Eng., 131(4), 589–599. 

Zareian, F. (2006), Simplified performance-based earthquake engineering, 

Stanford University. 

 



   

 

 

 



   

 

 

 

Summary and conclusions 

 

 

 

 



SUMMARY AND CONCLUSIONS 224 

 

 

The current best practice for seismic risk assessment is the Performance-Based 

Earthquake Engineering (PBEE) framework developed by the Pacific Earthquake 

Engineering Research Center (PEER). This approach does, however, have a 

limitation, as it generally only examines single events, neglecting the possibility of 

a succession of earthquakes, for example, in the form of seismic sequences. Large 

earthquakes (i.e., mainshocks) typically trigger a sequence of lower magnitude 

events clustered in both time and space. Some modifications to the seismic risk-

assessment framework are therefore required to account for these multiple events 

from the viewpoints of the seismic hazard and seismic vulnerability. In relation to 

the first of these perspectives, the occurrence of further earthquakes after the main 

event has to be considered, for example, this is possible via the Sequence-Based 

Probabilistic Seismic Hazard Analysis (SPSHA) which enables account to be taken 

of hazard increments due to aftershocks. Meanwhile, from the point of view of 

structural vulnerability, it has also to be assumed that each seismic event does not 

always affect a structure in an intact condition, with the prospect of damage 

accumulation requiring investigation. This can be achieved by exploiting state-

dependent fragilities, i.e., fragilities that describe the probability of failure of a 

structure that has already sustained damage, referred to as its initial damage state. 

This thesis focused on these two components - seismic hazard - (Chapter 2) 

and -structural vulnerability - (from Chapter 3 to Chapter 6).  In detail, the study 

addressed the elements that enable the classical seismic-risk assessment framework 

to be extended to also cover the issue of seismic sequences. The conclusions 

reached and relevant remarks from each chapter are summarized in what follows. 

Chapter 2 investigated the implications on the definition of design seismic 

actions in the United Kingdom, stemming from including seismic sequences in 

hazard analysis. To this end, the recent source model from the British Geological 

Survey (BGS) was used to conduct SPSHA to investigate the hazard increments 

caused by aftershocks. The parameters of the modified Omori law, which was 

employed to model aftershocks occurrences, were calibrated based on four seismic 

sequences that had occurred in the UK and were assumed to be complete in the 

magnitude range of interest. To ensure that a consistent comparison was possible, 

a classical Probabilistic Seismic Hazard Analysis (PSHA) was also performed and 

validated based on the official BGS results. Hazard maps for four exceedance 

return periods (within 95 yr and 2475 yr) and in terms of peak ground acceleration 

PGA , and pseudo-accelerations at two vibration periods, i.e., 0.2 s and 1.0 s, 

( )0 2sSa T .=  and ( )1 0sSa T .= ,  were obtained from SPSHA and compared to 

their PSHA counterparts. The comparison was conducted in terms of maximum 

and average increments expressed in absolute and percentage terms. The maps 

revealed that the hazard increases for each spectral and return period tends to be 
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more relevant in the areas covering most of Wales, the center of northern England 

and western Scotland (the areas exposed to the greatest hazard according to the 

classical PSHA and in accordance with the findings of the previous literature). The 

largest percentage increase due to aftershocks across the country for a given 

spectral ordinate,  has a non-monotonic trend in relation to the return period; the 

highest value was equal to 10%, which was found at 1100 yrrT =  for 

( )1 0sSa T .= ; meanwhile, for PGA  and ( )0 2sSa T .= , it was 14% at 

2475 yrrT = . Taking into account the range of return periods between 95 yr and 

2475 yr, the largest average percentage differences were equal to 11% for PGA, 

3% for ( )0 2sSa T .= , and 10% for ( )1 0sSa T .= ; they were found at 

2475 yrrT = , 95yrrT =  and 475yrrT = , respectively. The maximum absolute 

differences between the results of SPSHA and PSHA for a given spectral ordinate 

across the country increased monotonically with the return period (in the range 

considered). Nationwide, the largest differences between SPSHA and PSHA for 

2475yrrT =  were equal to 0.033 g, 0.069 g and 0.006 g for PGA , ( )0 2sSa T .=  

and ( )1 0sSa T .= , respectively. On average the absolute differences across the 

country for 2475 yrrT =  were 0.0051 g, 0.0041 g and 0.0013 g again for PGA , 

( )0 2sSa T .=  and ( )1 0sSa T .= , respectively.  

To gain further insight into the aftershock implications, the results of the 

PSHA and SPSHA for exceedance return-periods up to 10000 yr, and taking into 

account 24 spectral ordinates, were compared and exanimated in greater detail. 

This comparison concerned three sites, Edinburgh, Cardiff and Llangefni which 

were selected because their exposures to comparatively low, medium and high 

seismic hazard, respectively, according to PSHA results. The analysis for specific 

sites revealed that the aftershock effects were more significant at vibration periods 

shorter than 0.3s, tending to improve with longer periods and becoming almost 

constant from 1.0 s onwards. The largest relative difference between the results of 

SPSHA and PSHA was identified at 0.1s for all the sites. In Llangefni, which is the 

site characterized by the highest seismic hazard countrywide, the return period for 

which the largest hazard increase was found to vary significantly between the 

different spectral ordinates, equaling 4060 yr, 1720 yr and 1830 yr for PGA , 

( )0 2sSa T .=  and ( )1 0sSa T .= , respectively. Finally, the aftershock effects 

estimated for the UK were briefly compared to the findings of a previous SPSHA 

study conducted for Italy, where the seismic hazard is relatively higher. The 

comparison showed that at the most hazardous sites of the UK, the hazard 

percentage increments obtained with the SPSHA compared to the results of the 

PSHA were about a half of those found of the most hazardous areas in Italy, 
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although in Italy the largest spectral acceleration associated to a given return period 

can be even three times larger than the analogous one in the UK. 

Chapter 3 and Chapter 4 dealt with the assessment of state-dependent 

fragility curves using the rigorous method of back-to-back incremental dynamic 

analysis (IDA) applying it to single structures and buildings classes. In detail, 

Chapter 3 sets out the assessment of the intact-structures fragilities and the state-

dependent fragilities for a case-study system representative of the unreinforced 

masonry terraced houses commonly found in the Groningen region of the 

Netherlands. These have been the subject of extensive research, because of the 

seismicity induced in the area by the commercial extraction of gas. The first part 

of the chapter dealt with the assessment of the fragility curves of the intact 

structure obtained via Cloud Analysis of 3D model developed in collaboration 

with the firm Arup Italy using the finite element software LS-DYNA. This allowed 

us to touch some critical points concerning the fragility assessment of masonry 

buildings such as: 1) the definition of an engineering demand parameter (EDP) 

representative of the structural response and 2) the definition of the limit states. 

The main issue of the masonry structures in the context of the fragility assessment 

is the possibility that the structural failure may occur locally without affecting the 

whole structure and requiring therefore to monitor the damage at different levels; 

i.e., at the levels of the structural elements, at the macro-elements level and at the 

level of the whole structure. Moreover, both the failure modes (flexural and shear) 

of piers and spandrels have to be considered. The assessment in this chapter was 

conducted assuming the definition of the limit states based on the multiscale 

approach described in the Italian Guidelines and Technical Instructions of the 

National Research Council (CNR-DT 212/2013) which allows taking into account 

the damage spread at different levels of the structure. It should be recalled that 

this assessment was conducted assuming the shear failure mode for the single 

structural elements in order to obtain a conservative assessment of the structural 

fragility. A more precise evaluation of the fragilities would require the 

identification for each element of the failure mode developed during each 

nonlinear dynamic analysis. 

 The high computational cost for the assessment of fragility curves of the 

intact structure conducted using the 3D model have demonstrated the 

impossibility assessing the state-dependent fragility curves in a reduced period of 

time for this type of structure. Therefore, this assessment was conducted resorting 

to two equivalent single degree-of-freedom (ESDoF) systems defined and 

calibrated to be representative of the behavior of the structure in its two main 

directions. The calibration was based on the monotonic and cyclic pushover 

curves of the initial structure, which were obtained using two type of force 

distributions (the uniform mass-proportional and the inverse triangular). The 
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SDoF systems were analyzed via back-to-back IDA and the state-dependent 

fragility curves were obtained via the IM-based approach, assuming a lognormal 

distribution model. The fragility curves and the state-dependent fragility curves 

were estimated in terms of the average spectral acceleration, which was 

evaluated by taking into account 20 equally spaced periods between 0.01 s and 

0.2 s. 

Chapter 4 described the assessment of the intact-structures and state-

dependent fragility functions for Italian reinforced concrete (RC) and masonry 

structures classes. These evaluations constitute one of the outcomes of the 

European research project RISE and were conducted using IDA and back-to-back 

IDA, respectively. The assessments employed the ESDoF approximation of single 

structures, with each of them representing a building class. The analyses were 

performed using the OpenSees platform via a recent version of the DYANAS 

software. Also in this chapter, two issues that significantly affect the assessment 

of fragilities in case of structure classes are addressed: 1) the choice of the intensity 

measure ( IM ) and 2) the reduction of the computational cost for nonlinear 

dynamic analyses. They were addressed by considering four benchmark systems 

(two representative of reinforced concrete structures and two representative of 

masonry structures). Concerning the first issue, the comparison of the different 

IMs  confirmed that, due to their greater efficiency, those involving a geometric 

mean of spectral accelerations, i.e., avgSa  and NPI , performed better than single-

period spectral ordinates. In view of the absence of a specific calibration of the

NPI  intensity measure, avgSa  was selected for fragilities and state-dependent 

fragilities in both structures’ typologies. The use of this type of intensity measure 

seems to represent a better solution when a unique IM  has to be selected for 

different structures; i.e., in the case of building classes for which the spectral 

acceleration at a single vibration period may not be representative of the whole 

class, since the structural properties of the buildings within each class may vary 

substantially. As far as the limitation of the computational cost, in this chapter the 

issue was addressed identifying a limited number of records required for the 

fragility assessment. In this case, 35 ground motions was used, being a compromise 

between the computational cost and precision in fragility assessment, based on the 

statistical-inference concept of estimation uncertainty. Finally, some 

considerations were made for the definition of the distribution model to be 

assumed to define the parametric fragilities. The lognormal distribution was 

assumed to define the parametric fragility curves of the intact structure. In relation 

to the state-dependent fragility curves, the choice was made between the 

lognormal and the gamma distribution models on the basis of the seismic-hazard 

failure rates assessed at three Italian sites: L’Aquila, Naples and Milan. The 
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lognormal distribution model was ultimately selected because it enabled us to 

obtain failure-rate values that were closer than the reference values obtained with 

the empirical fragility curves (without any approximation due to the distribution 

assumption). Therefore, the chapter provides lognormal fragility parameters 

defining the fragility curves for the intact structures and the state-dependent 

fragility curves for Italian RC and masonry structures classes.  

Since the SERA project provided a set of capacity curves for each class of 

the RC structures, future evaluations will address the evaluation of fragilities and 

state-dependent fragilities using for each class different capacity curves and not 

only the average capacity curves. 

Finally, the main purpose of Chapter 5 and Chapter 6 was to present a 

simplified pushover-based procedure aimed at estimating state-dependent seismic 

fragility curves for first-mode dominated RC structures. The proposed 

methodology employs a semi-empirical predictive model for the central tendency 

and the related record-to-record variability of residual displacements of bilinear 

SDoF systems exhibiting stiffness and strength degradations. This model was 

introduced in Chapter 5 from its definition to all its possible applications. The 

predictive model, and consequently the simplified method, is applicable to SDoF 

systems with values of natural vibration period between 0.2 s and 2.0 s and post-

yielding hardening ratio between 0% and 10%. Moreover, the model was 

developed for systems whose hysteretic behavior can be described by the peak-

oriented modified Ibarra-Medina-Krawinkler hysteretic model and analyses for 

which the achievement of the damage state can be globally defined in terms of 

ductility demand considered ranged from 1.5 to 9.0 but always lower than the 

capping ductility of the capacity curve (i.e., in-cycle degradation is not considered). 

In the model, the mean residual-displacement ratio is defined as a function of two 

correlated random variables, the elongated period and the strength loss 

representing the effects of degradations in stiffness and strength, respectively. 

Consequently, the complete definition of the model also required the development 

of subsidiary models providing the marginal distributions of the elongated period 

and loss of strength, as well as their correlation. Given the characteristics of the 

capacity curves of the intact structure and the reached damage state expressed in 

terms of ductility demand, the predictive model allows to define via a Monte-Carlo 

sampling scheme: 1) the joint distribution of the three random variables (residual 

displacement, period elongation and strength degradation), 2) the residual 

displacement ratio spectra and 3) the pushover curve of the damaged structure. 

Indeed, the final goal of the model is the derivation of pushover curves 

considering the uncertainties characterizing a damaged structural system. The 

generation of the post-damaged pushover curves constitutes the basis of the 

simplified methodology for assessing of state-dependent fragility curves, as 
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described and applied in Chapter 6. Due to the record-to-record variability of 

structural response to strong earthquakes, a structure subjected to a single instance 

of base-acceleration may fall under a generic damage state while exhibiting 

different permutations of basic dynamic properties, such as resistance to inertial 

load, stiffness and residual displacement. Such variability is typically accounted for 

via sequential runs to accelerogram couples representing the alternation of two 

damaging shocks within an earthquake cluster, with an example being the back-

to-back Incremental dynamic analysis. The value of this method comes from the 

fact that the first part of the sequential analysis is avoided, replaced by a simulation 

of the principal characteristics of the equivalent SDoF system at a given damage 

state. After the production of the set of pushover curves, the method requires the 

execution on an IDA conducted with one record for each damaged system. The 

illustrative applications shown in Chapter 6 demonstrated the capacity of this 

simplified methodology to facilitate the calculation of state-dependent fragilities 

with good approximation and using fewer NLDAs than the rigorous and more 

time-consuming back-to-back IDA method. 

Future developments of the simplified method may concern the overcoming 

of the limits of applicability of the predictive model, extending the field of 

application of the parameters and considering other types of capacity curves and 

hysteretic behavior, thus allowing the extension of the simplified methodology to 

other structural typologies. 
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