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Abstract

Current practice for seismic risk assessment typically considers that structural
damage can only occur in a single seismic event. However, neglecting that
earthquakes occur in clusters, both in space and in time, can lead to an
underestimation of both seismic hazard and structural vulnerability. Indeed, past
research has shown that neglecting aftershocks (seismic events following the
mainshock in a sequence), can lead to non-negligible differences in the assessment
of seismic hazard. From the point of view of structural vulnerability, the necessity
of considering the effects of seismic sequences has also been highlighted by recent
seismic events, such as the seismic sequences in Christchurch (2010-2011), in
Emilia-Romagna (2012) and in central Italy (2016-2017), to name a few. These
events showed that at least part of the seismic damage documented on the building
heritage was due to the cumulative effect of multiple shocks clustered closely in
time. Therefore, this thesis focuses on two components of seismic risk, i.e., the
seismic hazard and structural vulnerability, and on how to treat them in order to
account for sequence effects.

In the context of seismic hazard, the thesis applies the Seguence-Based
Probabilistic Seismic Hazard Analysis procedure to the United Kingdom. This part
has been developed in collaboration with the firtm Owve Arup and Partners London
with the objectives of developing national hazard maps taking into account the
effects of seismic sequences and investigating the effects of aftershocks in the
assessment of seismic hazard.

At the same time, regarding seismic vulnerability, the thesis addresses various
issues in the estimation of state-dependent fragility curves, which are fragility
models that allow for the possibility that a structure may have already been
damaged by previous shocks. Initially, the assessment of state-dependent fragilities
is addressed using back-to-back incremental dynamic analysis applied to individual
structures belonging to classes of reinforced concrete and masonry buildings. In
one case, state-dependent fragilities have been evaluated for a masonry building as
part of the collaboration with the firm Arup Ifaly. On the other hand, the evaluation
for building classes has been carried out within the European research project
RISE (Real-time earthgunatke rlsk reduction for a reSilient Europe). These evaluations have
allowed touching some critical points that characterize the estimation of state-
dependent fragilities such as: the limitation of computational costs, the choice of
the intensity measure, the definition of engineering demand parameters, and limit
states.

Finally, in order to reduce the computational cost of the methodology for
state-dependent fragility assessment, a simplified method applicable to first-mode
dominated reinforced concrete structures is presented, based on nonlinear static



analysis and on a new proposed predictive model, which allows predicting the
distribution of capacity cutve parameters for already damaged structures.

Keywords: seismic sequences, aftershocks, state-dependent fragilities, sequence-
based seismic reliability; damage accumulation.



Sintesi in lingua italiana

Nella pratica corrente di valutazione del rischio sismico si assume generalmente
che il danno strutturale sia causato da singoli eventi sismici. Tuttavia, trascurare
che in realta i terremoti si verifichino raggruppati nello spazio e nel tempo puo
portate ad una sostanziale sottostima sia della pericolosita sismica che della
vulnerabilita strutturale. La ricerca in tale ambito ha, infatti, dimostrato che non
considerare le repliche sismiche (eventi sismici che seguono la scossa principale)
puo portare anche a differenze significative nella valutazione della pericolosita
sismica. Per quanto riguarda la vulnerabilita strutturale, la necessita di considerare
gli effetti delle sequenze ¢ stata evidenziata anche da recenti eventi sismici, quali le
sequenze di Christchurch (2010-2011), del’Emilia-Romagna (2012) e dell’Italia
Centrale (2016-2017), per citarne alcune. Questi eventi hanno mostrato che
almeno parte dei danni sismici osservati sul patrimonio edilizio era dovuto
all'effetto cumulato di scosse che si sono susseguite in breve tempo.

La presente tesi si focalizza pertanto su due delle componenti del rischio, cioe
la pericolosita sismica e la vulnerabilita strutturale, e su come trattarle per tener
conto del verificarsi di sequenze sismiche.

Nell’ambito della pericolosita sismica, la presente tesi applica la procedura di
Sequence-Based Probabilistic Seismic Hazard Analysis al Regno Unito. Tale parte, ¢ stata
sviluppata in collaborazione con Ove Arup and Partners London con l'obiettivo di
sviluppare mappe di pericolosita della nazione che tengano conto degli effetti delle
sequenze sismiche, nonché di indagare gli effetti dellinclusione delle scosse
secondarie nella valutazione della pericolosita simica.

Parallelamente nell’ambito della vulnerabilita sismica, la tesi affronta da
diversi punti di vista la stima delle fragilita stato-dipendenti, modelli di fragilita che
consentono di tener conto del fatto che l'evento sismico possa colpire una
struttura che si trova in condizioni non intatte, gia danneggiata da eventi
precedenti. Inizialmente, ¢ stato affrontato il calcolo delle fragilita stato-dipendenti
mediante il metodo rigoroso dell’analisi dinamica incrementale back-to-back
applicato a singole strutture appartenenti a classi di edifici in cemento armato e
muratura. Nel dettaglio, le fragilita stato-dipendenti sono state valutate per un
edificio in muratura nell’ambito della collaborazione con Arup Italia. La
valutazione per classi di edifici ¢ stata, invece, condotta nell’ambito del progetto di
ricerca Buropeo RISE (Real-time earthquake rlsk reduction for a reSilient Europe). Tali
valutazioni hanno consentito di affrontare alcuni punti critici della stima delle
fragilita stato-dipendenti quali: la limitazione dell’onere computazionale, la scelta
della misura di intensita, la definizione di un adeguato parametro ingegneristico di
domanda e degli stati limite.

Nell’ottica di ridurre Ponere computazionale della metodologia rigorosa di
valutazione delle fragilita stato-dipendenti, viene infine presentato un metodo



semplificato applicabile alle strutture in cemento armato il cui comportamento €
dominato dal primo modo di vibrare. Tale metodo ¢ basato sull’analisi statica non
lineare e su un modello predittivo appositamente sviluppato che consente di
prevedere la distribuzione dei parametri che definiscono la curva di capacita di

strutture gia danneggiate.

Parole chiave: Sequenze sismiche, fragilita stato-dipendenti, affidabilita sismica

basata sulle sequenze; cumulo del danno.
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1.1. Background and motivation

Current practice of seismic-risk assessment only considers the occurrence of single
seismic events, both from the point of view of seismic hazard, i.e., through the
application of Probabilistic Seismic Hazard Analysis (PSHA; Cornel, 1968); and
from the point of view of structural vulnerability assessment, which does not take
the issue of damage accumulation into account; i.e., each seismic event finds the
structure in its intact condition, with no consideration of any possible damage
caused by eatlier earthquakes. However, the assumption that the risk to the built
environment arises exclusively from single earthquakes is refused by the very
nature of seismic events, which actually occur in time-space clusters (mainshock-
aftershocks sequences). Moreover, past disasters have clearly demonstrated that
aftershocks often cause additional damage to buildings and infrastructure,
exacerbating the harm caused by the main earthquake. Recent seismic events,
including the sequences in Christchurch in 2010-2011 and Emilia-Romagna in
2012, as well as the earthquakes in central Italy in 2016-2017, have highlighted the
potential pitfalls of the current approach and indicate a clear need to revisit how
seismic-risk assessment is cartied out.

This thesis concentrates on two of the components of risk referred to above:
seismic hazard and structural vulnerability, with the focus on elements that enable
the classical risk-assessment framework to be extended to cover the issue of

seismic sequences.

1.1.1. Sequence-Based Seismic Risk Analysis (Probabilistic Seismic
Risk Analysis that accounts for earthquake sequences)

Seismic risk can be defined as the probability that a pre-defined level of losses
(expressed in terms of human lives, economic assets or cultural value) is exceeded
due to the occurrence of earthquakes within a reference time-period. The risk can
be estimated at different territorial levels. i.e., global, regional or site-specific. Loss
can therefore encompass a single structure, a city, or an entire area.

Seismic risk is a function of three components: seismic bazard; seismic
vulnerability and exposure. The first of these is represented by the frequency and the
intensity of the seismic events occurring in a particular territory and calculates the
probability that a fixed seismic-intensity threshold at the site of interest is exceeded
over a certain period of time. The second element, seismic vulnerability, is the
physical environment’s susceptibility to sustaining damage due to seismic events
of a given magnitude. It is represented by the probability that a certain level of
damage occurs during an event with a set intensity, defined by an intensity measure
(IM). Finally, exposure takes into account the location, quality and quantity of
assets and activities that may be affected, both directly and indirectly, by seismic
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events and refers to the probability that a set amount of economic loss is exceeded
at a set damage level.

The best current practice for seismic-loss assessment relies on the
Performance-Based Earthquake Engineering framework (PBEE; Cornell and
Krawinkler, 2000; Krawinkler and Miranda, 2004), which was developed by the
Pacific Earthquake Engineering Research (PEER) Center. The framework was
designed to improve the decision-making in relation to the seismic performances
of facilities. Consequently, the assumed decision variable (IDT”) can cover costs,
number of casualties, or the duration of any industry downtime. Any other D15
of primary interest to decision-makers can be also taken into account. The risk-
assessment procedure has four stages, as seen in Figure 1.1: 1) hazard analysis (i.e.,
quantifying the frequency and intensity of earthquakes and ground motions); 2)
structural analysis (which aims to determine the structural-response parameters);
3) damage analysis (i.e., the quantification of damage states and their relationship
to response parameters); and 4) loss analysis (the evaluation of financial losses,

downtime and casualties, as well as the consequences for owners and society).

7

Facility Definition
D: Location
&Design

Hazard
analysis

Hazard model
2 [IM|D]

IM: intensity measure
e.g,Sa(T))

Structural
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e.g, §$loss; downtime

Decision
making

Figure 1.1 Overview of the PEER seismic-loss assessment methodology (adapted from Krawinkler,

2005).

The main advantage of this approach is the opportunity it provides to

compartmentalize the different phases of assessing seismic risk by separating them

into discipline-specific contributions (engineering seismology, structural
engineering, cost analyses, decision making). Despite this division, the four
independent stages are linked through interfacing output variables: Intensity
Measures (IMs), Engineering Demand Parameters (EDPs) and Damage
Measures (DMs). The first step is the hazard analysis, which determines the
annual rate of exceedance of a ground motion intensity measure at a site of
interest. This is achieved with the PSHA (Cornell, 1968), the fundamentals of

which are described in what follows.
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The structural analysis aims to compute a vector of EDPs , i.e., the structural-
response parameters that can be related to the damage caused to structural and
non-structural components, as well as to the contents of the structure. An example
of an appropriate EDP is the interstorey drift, although it is possible to use any
other structural parameter that enables investigators to control for the
evolutionary state of the structural damage up to the point of collapse. The
relationship between EDPs and IMs is typically identified via non-linear dynamic
analyses (NLDAs) and their outputs. This is often referred to as Probabilistic
Seismic Demand Analysis (PSDA; Shome and Cornell, 2000), and is the
conditional probability that the EDP will exceed a specified threshold value,

edpps, assuming that the IM is equal to a particular value z;
P[EDP >ec{b1)5|U\/I =z'm]. The integration of this probability over the hazard

curve provides the mean annual frequency of exceedance of the EDP.

The DM interfacing variable can be introduced to relate EDPs to the
relevant DU . This facilitates the computation of DI5 from EDPs. In the
damage analysis phase, EDPs are related to DM of the building’s components
(structural, non-structural or contents). A DM is defined for each constituent of
interest and describes the extent of the damage caused during an earthquake. The
output of the damage analysis is the relationship between EDPs and DMs, and
expresses the probability of being in a certain damage state dz, given that the EDP

is equal to a given value, edp PEDM =dn| EDP = e@m] . Such relationships are

generally computed using analytical/numerical modeling, laboratory testing or
field experience.

The aim of the fourth stage, the loss analysis, is to estimate the exceedance
frequency of various performance levels. Performance can be parameterized via
one or more DI7%, which are defined at the system or building level. If the
relationships P[ DM = dw| EDP =edp,, | for all the relevant damage states of all
the relevant components are known, the DI of interest can be evaluated either
directly or using cost functions that relate the damage states to costs.

The entire procedure, which forms the basis of the performance assessment,
can be summarized in the following triple integral, which computes the mean
annual frequency (MAF, 1) of exceeding of a D1~ threshold (Yeo and Cornell,
2005):

A(DV )= [[[G(DV| DM )-dG(DM| EDP)-dG(EDP|IM )-|dA(IM))|. (1.1

In Eq.(1.1) A(IM) is the mean annual rate of exceeding a given IM level;
G(XIY)=P(X2x|Y=y) is the complementary cumulative distribution
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function (CCDF) of Xgiven Y; and dG(X|Y) and dJA(IM) are the
differentials of G(X|Y) and A(IM). The key assumption of the entire
procedure is the conditional independence of D17 and DM from IM and of
D1~ from EDP. This implies that intermediate variables, i.e., EDP and DM,
used to relate IM to DT, have been chosen to ensure that the conditioning
information is not “carried forward”. As an example, EDPs should be selected
so that DMs (and DI7%) do not vary with intensity, once EDP has been
specified. Similarly, IMs should be chosen to ensure that, once it is given, the
dynamic response is not also influenced by other ground motion characteristics,
e.g., magnitude or source-to-site distance.

In its classical formulation, seismic-risk analysis does not take into account
the fact that earthquakes occur in spatio-temporal clusters (mainshock-aftershocks
sequences) and that a structure can be hit by multiple subsequent events. The
formulation of the PEER Center’s PBEE framework employs PSHA in the
hazard-analysis phase. Meanwhile, a convenient time-invariant representation of
the failure probability is assumed for the vulnerability assessment. In effect,
therefore, only intact structures are considered in risk evaluation, it being assumed
that enough time will elapse until the next event for stakeholders to restore a
damaged structure to its initial state.

Consequently, changes are required to this classical seismic-risk assessment
to ensure that its evaluations of seismic hazard and structural vulnerability take the
occurrence of earthquake sequences into account. One way of doing this would
be to employ the so-called Sequence-Based Probabilistic Seismic Hazard Analysis
(SPSHA, Iervolino et al., 2014) to account the effects of aftershocks in long-term
hazard. SPSHA is a well-established procedure that, in analytical terms, combines
the classical PSHA and the aftershock probabilistic seismic-hazard analysis
(APSHA, Yeo and Cornell, 2009a), producing a seismic-hazard integral that
accounts for mainshock-aftershocks seismic sequences. More details on the
SPSHA are set out in the following paragraphs.

The occurrence of mainshock-aftershock sequences should also be
considered in the assessment of seismic vulnerability. This would take into account
the fact that structural failure may be caused not only by a single shock but also
due to damage accumulated over multiple seismic events. Indeed, earthquakes are
known to be clustered in both space and time, meaning that repairs may not be
possible between shocks. This can be made by computing the state-dependent
fragility curves, assuming the simplest form of dependency between damage
increments for which structural vulnerability, given the features of a particular
earthquake, depends on (only) the state of the structure at the time of the shock
(Iervolino et al., 2016).
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The main concepts at the hearth of both classical probabilistic seismic hazard
analysis and SPSHA, as well as the methods employed to assess vulnerability, are
set out in the following sections.

1.1.2. Objectives of the thesis

The main objective of this thesis is to comprehensively deal with the issue of
including the effects of seismic sequences in seismic risk analysis. This is
approached having regard to two complementary elements: 1) seismic hazard and
2) structural vulnerability.

The inclusion of seismic sequences in any assessment of the first element can
be achieved with the SPSHA, which is a well-established procedure first presented
by Iervolino et al. (2014) and widely used in the case of Italy (Iervolino et al., 2018;
Chioccarelli et al., 2021). Consequently, this part of the thesis examines its
application to another country, i.e. the United Kingdom (UK), in order to: 1)
develop the national seismic-hazard maps of the country that take into account
the effects of seismic sequences, and 2) quantify the increments in the UK’s
seismic hazard as a result of the aftershocks. This part of the thesis was carried out
in collaboration with the firm Ove Arup and Partners London.

The inclusion of seismic sequences in the context of the second
complementary element - structural vulnerability - is possible through the use of
state-dependent fragility curves that allow taking into account the damage-
accumulation process that occurs due to multiple seismic events after the
mainshock. This part of the thesis has several objectives. First of all, the
assessment of state-dependent fragility curves of individual structures belonging
to classes of reinforced concrete (RC) and masonry buildings which is conducted
via the rigorous procedure of back-to-back incremental dynamic analysis (IDA).
In one case, thanks to the collaboration with the firm Amp Ifaly, the state-
dependent fragility functions were evaluated for a case-study building
representative of the masontry terraced houses common in an area near Groningen
in the north of the Netherlands. This type of structure (in this location) was chosen
because commercial gas production in the region means that such buildings
experience earthquakes and have been studied widely in recent years as a result.
On the other hand, the state-dependent fragilities were assessed for existing Italian
building classes. The structures under consideration, i.e., existing residential RC
and masonry buildings in Italy, are taken from the outcomes of the SERA project
(Seismology and Earthquake Engineering Research Infrastructure Alliance for
Europe). The current assessment has also been conducted within the ongoing
European research project RISE (Real-time earthquake rlsk reduction for a
reSilient Europe). These assessments have allowed dealing with the main issues
concerning the assessment of state-dependent fragilities such as: the limitation of
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computational costs, the choice of the intensity measure, the definition of
engineering demand parameters and limit states.

Finally, a simplified method for the assessment of state-dependent fragilities
based on non-linear static (also known as pushover) analysis is presented. This was
developed to lower the computational costs compared to the classic, more
rigorous approach, enabling the evaluation of state-dependent fragilities in first-
mode dominated reinforced concrete (RC) structures. This simplified method also
required the development of a predictive model for evaluating the central tendency
and record-to-record variability of constant-ductility residual displacements of
bilinear single-degree-of-freedom systems (SDOFs) that degrade in strength and
stiffness under cyclic loading.

1.1.3. Organization of the thesis

This thesis is structured such that the remainder of Chapter 1 provides an
overview of the main concepts behind the extension of the classical seismic-risk
assessment to also cover the issue of seismic sequences. More specifically, the
essential elements of the PSHA and SPSHA are briefly described in relation to
seismic hazard. Then, with respect to structural vulnerability, are introduced the
analytical methods for the assessment of the fragility curves for both intact
structures (i.e., structure-specific fragility curves) and already-damaged structures
(i.e., state-dependent fragility curves).

The rest of the thesis is organized as follows. Chapter 2 presents a national-
scale application of PSHA and SPSHA to the UK, with hazard maps of the country
produced for three IMs and four return periods. A comparison of the results of
the two methodologies informs an assessment of the seismic-hazard damage
increments caused by aftershocks. The work in this part of the thesis was
developed in collaboration with the fitm Ove Arup and Partners London.

Chapter 3 deals with the evaluation of the structure-specific and state-
dependent seismic fragility functions of the Dutch unreinforced masonry (URM)
building representative of the masonry terraced houses located in the northern
region of the Netherlands, near Groningen. The fragilities of the intact structure
are first assessed via Cloud Analysis, analyzing the three-dimensional model
developed with LS-DYNA finite element software. Subsequently, the assessment
of state-dependent fragilities is conducted using two equivalent, inelastic, SDoF
systems, each of which represents a direction of the structure and whose definition
is based on the pushover curves obtained from the analysis of the original model.
The work in this part of the thesis has been developed in collaboration with Arup
Lzaly.

Chapter 4 presents the analytical assessment via back-to-back IDA of the
structural vulnerability models for Italian building classes, which are one of the



CHAPTER 1 38

outcomes of the RISE project. The structures under consideration are taken from
the SERA project and relate to existing residential RC and masonry Italian
buildings. Two issues affecting the assessment of fragility functions are also
addressed, i.e., the choice of the IM and the identification of the number of
ground motion records to execute the NLDAs.

Chapter 5 introduces the predictive model used for evaluating the central
tendency and record-to-record variability of constant-ductility residual
displacements of bilinear SDoF systems that exhibit strength and stiffness
degradation under cyclic loading. This is typically observed in RC structures with
predominantly flexural behavior. Some of the model’s applications are also
presented with particular attention paid to its use in the probabilistic prediction of
the post-earthquake pushover curve of a damaged structure. This is the heart of
the simplified methodology developed in the thesis for estimating state-dependent
seismic fragility functions (introduced in the following chapter). Meanwhile,
Chapter 6 outlines this simplified approach, which is based on nonlinear static
analyses and the predictive model described in Chapter 5. After introducing the
stages of the methodology, the simplified method is compared to the rigorous one,
ie., the back-to-back Incremental Dynamic Analysis (IDA), through the
application to a case study.

Finally, the important contributions and findings of the study are summarized
and discussed in the last part of the thesis.

1.2. Classical and Sequence-Based Probabilistic Seismic Hazard
Analysis

The classical PSHA was first formulated in the milestone work by Cornell, (1968).
Its goal is to estimate the average number of mainshocks per unit-time (often one
year) that cause an IM threshold 77 at a site of interest to be exceeded (i.e., the

exceedance rate). This rate, indicated herein as A is time-invariant and defines

im,E >
the homogenous Poisson process (HPP) regulating the occurrence of earthquakes
that cause the 77 to be exceeded over time. So, for a single seismic source zone

affecting the site, A, . is computed as per Eq. (1.2) (Kramer, 1996):
M =Ve | [T PUM > im | My, = m R, =501 fy, o, (mr)-dm-dr. (12).

In this equation, v, is the rate of mainshocks with a magnitude equal to or greater
than the minimum (7,,,) deemed possible for the seismic source and it is

calibrated based on a de-clustered catalog. The term

P[IM, >im| M, =mR, =r60], which is obtained with a ground motion
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prediction equation (GMPE), represents the conditional probability that the 7z
is exceeded due to a mainshock with a magnitude equal to 7 and a source-to-site
distance equal to 7. This probability also depends on @, which allows additional
parameters such as local soil site conditions and the rupture mechanism of the
soutce to be taken into account.

The joint probability density function (PDF) of the mainshock magnitude (M)
and distance (R, ) is f, p (77). Assuming that M, and R, are stochastically

independent  random  variables = (RVs), this is  calculated as
S, k. (w,r)=fML (w)-th (r), where S, (7) and Jr, (r) are the marginal

distributions of the magnitude and distance of the mainshocks, respectively. The

former is defined between ,,, and the maximum considered for the source,

My . - 1t 1s generally described using a truncated exponential distribution derived

from the Gutenberg-Richter (GR) relationship (Gutenberg and Richter, 1944).

The distribution of the latter, which is defined as being between 7, ., and 7, ..,

generally only depends on the geometry of the source and the position of the site
with respect to the source itself.
In the case of multiple seismic sources, say s in number, the calculation is

5

conducted one source at a time and the results are added up: 4, = 2/1,-,,,, Bi -

i,
i=1

The SPSHA enables account to be taken of the effect of aftershocks (i.e.,
ignoring foreshocks). It uses the same input as the PSHA, that is, the rate of
mainshocks from a de-clustered catalog. A non-homogenous Poisson process
(NHPP) is used to model the occurrence of aftershocks, conditional to
mainshock’s magnitude and location. In these hypotheses, the main outcome of
the SPSHA is the average number of seismic sequences that, in the unit of time,

cause at least one exceedance of 77 at the site. This rate, referred to here as A, ,

defines the HPP process regulating the occurrence of both mainshocks, and
subsequent aftershocks, that lead to the exceedance of 7» over time. This is
calculated with Eq. (1.3):

=v, 41— j '[P[IMT <im| M, =mR, =r,0]x

TE min " min

A

in

A m

—E[I\"4‘,,/(O,AT1):|- J. j P[LW/PW\MA:’”1rRA:’}lrQ]'fA\U,M‘\/L,K,‘(’”Ar’})\'”rr)'dm1"1r4
y Suw () -do-dr}.

(1.3)
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The (A) subscript in this equation denotes terms pertaining to aftershocks.
P[IM,, <im|M, =mR, =r,0] isequalto 1=P[IM, >im| M, =mR, =r,0]
. The exponential term represents the probability that none of the aftershocks,
triggered by a mainshock with magnitude M, = and a distance R,, =7 (strictly

speaking, it should be location, not distance), causes the exceedance of 7z

between #=0 (i.e., the occurrence time of the mainshock) and the duration of
the sequence, AT ,. P[IM  >im  |M  =m R, =r,0] is obtained with the
GMPE and is the probability that 7z is exceeded given an aftershock with a
magnitude M, =m, and a source-to-site distance R, =r,. The term
S,k x, 18 the joint PDF of the magnitude and distance of aftershocks and it

is conditional on the features of the mainshock (i.e., magnitude and location)

occurring at the source. Assuming that M , and R , are conditionally independent
RVs, this function is Stk ry = Sar, ek, o where Sor o, 18 the

conditional distribution of the aftershocks’ magnitude (i.e., following the GR) and

Jr i, x, 1s the conditional distribution of the site’s distance to the aftershocks.

The magnitude distribution of the aftershocks is bounded by a minimum

magnitude ,,, and 7 (ie., the mainshock’s magnitude). The location of

aftershocks with respect to the site depends on the location and magnitude of the

mainshock. The distribution of the aftershocks’ distance is bounded within 7, .,

and r,,., which are the minimum and maximum values possible for R,
respectively. E[N A (0, AT, )] is the expected number of aftershocks with a

magnitude between » . and 7, generated by a mainshock with a magnitude

M, =m,in AT . This is computed according to Yeo and Cornell (2009):

Oﬂﬂ,.(i//ff’/,v,wm) - 104
p-1

1 .
E[NAW (0,AT, )] = .[/'f’ -(AT, +€)1P:|, (1.4)
where ¢ and p are the parameters of the modified Omori law, which models the

temporal decay of the rate of aftershocks, and 4 and 4/ define the GR relationship
for the aftershocks.

The hazard curve for PSHA and SPSHA, respectively, are obtained by
calculating Eq. (1.2) and Eq. (1.3) for different 77 values within a range of interest.
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1.3. Fragility curves of intact structures and state-dependent fragility
curves

A structure-specific, seismic fragility function defines the conditional probability

that a structure will fail to meet some performance objective if the ground-shaking

intensity measure (IM) is at a specific level 7. This failure is often referred to

as the exceedance of a /imit- ot damage-state (DS) and traditionally relates to an
intact structure that experiences a single seismic event. In the simplest of cases,
fragility can be defined using an appropriate measure of the structural response
(EDP ) , and a threshold value thereof, edp,,,. The exceedance of this threshold

is taken to signify the structure’s transition from its initial state (intact conditions)
to the generic DS, as expressed by Eq. (1.5):

P[ f|IM = im | = P[ DS|IM = im | = P| EDP > edp,, | IM = im |. (1.5)

If seismic reliability calculations are expected to account for seismic
sequences, it is necessary to evaluate the probability that an already-damaged

structure transits in a single seismic event from one DS, say DS ,, to another
more severe one, DS, . A state-dependent fragility function will provide that

probability, conditional upon the occurrence of a shaking intensity 7z during one

of the shocks in the «cluster. This can be expressed as
P[EDP > edpmh\m‘ﬂ |D5/1 NIM = z'm] - In this case, edp,, - denotes the EDP

threshold for DS, when the structure is in the damage condition identified in
DS , Meanwhile, the state-dependent fragility can simply be denoted as
P[DS,|DS , A IM =in .

The following paragraphs describe the analytical methods for the estimation

of the fragility functions of the intact structures and the state-dependent fragility

curves.

1.3.1. Analysis methodologies

This section describes the state-of-the-art of the analytical methods used to
estimate fragility functions. Such methodologies in PBEE typically consist of
subjecting the numerical model of the structure to NLDAs, collecting the
structural response to a suite of accelerograms. The analytical methodologies used
in these fragility calculations can be classified according to the type of fragility
functions they are able to estimate, i.e., structure-specific fragility curves for intact
structures or state-dependent fragility curves. There are alternative procedures
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available in the literature for characterizing the relationship between an EDP and
an IM and for assessing the fragility curves of intact structures. More specifically,
common NLDAs methods in earthquake-engineering research are: Incremental
Dynamic Analysis IDA; Vamvatsikos and Cornell 2001, 2004); Multiple Stripe
Apnalysis IMSA, Jalayer and Cornell, 2008), and Clound Analysis (CA, Jalayer et al.,
2015, 2017).

In relation to the assessment of state-dependent fragility curves, the extended
version of IDA, referred to as back-to-back 1D.A (Luco et al., 2004; Ryu et al., 2011;
Goda, 2012; Ruiz-Garcfa, 2012; Raghunandan et al, 2015; Goda, 2015) is
described in what follows. Also introduced are the simplified pushover analysis-
based procedures for the simplified estimation of state-dependent fragilities.

1.3.2. Methodologies for assessing structure-specific seismic fragility

1.3.2.1. Incremental dynamic analysis

IDA is a type of NLDA developed to investigate the dynamic behavior of
structures at different levels of seismic intensity, covering the entire range of
structural behavior, from elastic to non-linear, and ultimately, to collapse
(Vamvatsikos and Cornell, 2001, 2004). The procedure involves performing
multiple NLDAs using a suite of accelerograms. Each record of the set is
progressively scaled in amplitude to increasing levels of shaking intensity in order
to cover a broad range of IM levels. The structural response, expressed in terms
of an EDP, is registered at each IM level for each acceleration record. This
produces a continuous EDP — IM relationship, termed as IDA curve or dynamic
pushover.
Some assumptions form the basis of this procedure:
= The sufficiency of the IM chosen to represent the seismic intensity. This
leads to the assumption that the EDP random variable conditioned on the
IM is independent of other ground motion features, i.c., the magnitude
and source-to-site distance (e.g., Luco and Cornell, 2007).
®  The scaling robustness of the IM . The assumption here is that the use of
scaled records does not introduce bias into the distribution of the structural
response obtained from the analyses (Iervolino and Cornell, 2005).
An example of an IDA is reported in Figure 1.2a.
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Individual IDA curve @ EDP response per record @ EDP - IM point
=+ 16%, 50%, 84% fractile curves — Regression line

@ (b)

edpys

In(IM)

IM

EDP EDP In(EDP)
Figure 1.2 Dynamic analysis methods for the assessment of fragility curves: 50 IDA curves of an
SDoF oscillator with 16, 50 and 84% fractile curves and EDP threshold (a); example of an MSA
obtained for five IM levels (b); logarithmic-scale scatter plot of the EDP-IM responses obtained via
CA and the corresponding least-squares regression line (c).

Ensuring parallelism with the non-linear static analysis reveals that each IDA
curve has a distinct linear elastic region, which terminates at the occurrence of the
first non-linearity. Subsequently, the curves develop in a non-monotonic manner,
Le., swinging back and forth, representing increases and decreases in the rate of
damage accumulation. The final horizontal branch of each IDA curves denotes
the onset of dynamic instability, which is a phenomenon that consists of
unrestricted deformations growth for small IM increments. Consequently, IDA
flat-lines correspond to a structure’s side-sway collapse of the structure.

As shown in Figure 1.2a, a common way of summarizing IDA results for an
entire set of records is to calculate and plot the 16, 50, and 84% fractile IDA curves
of the EDP given IM, or vice-versa (Vamvatsikos and Cornell, 2004). This
corresponds to the mean plus/minus one standard deviation of a Gaussian
distribution.

The analytical derivation of the fragility curves typically involves fitting a
parametric-probability model to the results of an IDA. The model generally
chosen is lognormal, although other types can also be used (ie., the gamma
distribution). Two alternative approaches can be employed to assess fragility from
the IDA results: the IM-based and the EDP-based. In both cases, an EDP threshold,
edpp , can be defined, so that its exceedance will be tantamount to failure (see Eq.
(1.5)). The IM-based method entails finding the intersections of the IDA cutrves,
impy , with the vertical line passing through the threshold edp,,; value (Figure

1.2a). These 7mz,, values can be regarded as realizations of a RV, IM, , which is

the seismic intensity to which the ground motion must be scaled for the structure
to achieve the DS . The fragility function can then be considered as the probability

of IM,, being equal or lower than the level of seismic intensity that may occur at
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the site, i.c, P[DS|IM =im|=P[IM,, <in]. Assuming that IM,, follows a

lognormal distribution, the fragility function can be estimated according to Eq.
(1.6):

P[DS 1M = im] = P[IM,; < im]= D[ (n(im)-n)/ 8]

n= i : Zln(l.’”m,i) (1.6)
1 <r . 2

ﬂz\/”_l.;[ln(zmm’[)—ﬂ}

where 77 and f atre the parameter estimates (median and logarithmic standard

deviation) of the assumed lognormal distribution of IM, , w1, ; is the realization
of the RV coming from to the /th record; and CD() is the standard Gaussian

(cumulative) function.
Of course, it is not necessary to adopt a parametric model for IM-based
fragility; in fact, a non-parametric representation can be obtained directly from the

sample of IM,, values, according to Eq. (1.7):

P[f|IM =im)=n" ZI(% <) (1.7)

i=1

where 1 <imor 0 if

(im/’,éifm

) is an indicator function that returns 1 if 7w,

zay >un .

Structural fragility can also be calculated using the EDP-based approach
which is suitable for both the IDA and the MSA. The next paragraph describes
employing this approach to assess structural fragilities.

1.3.2.2. Multiple-stripe analysis

Multiple Stripe Analysis is a NLDA methodology suitable for performance-based
assessments considering a wide range of ground motion intensities and multiple
performance objectives, ranging from the onset of damage through to global
collapse (Jalayer and Cornell, 2008).

Similar to IDA, MSA calculates the EDP-response of a structure at various,
increasing levels of the seismic intensity. The main difference between the two
procedures is that MSA provides the opportunity to use different suites of records
for each IM level. Consequently, MSA can only produce the same results as IDA
only if the same set of records is employed at different intensity levels.
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The record selection for MSA is carried out by selecting suites of records that
reflect the site-specific seismic hazard at each IM level in order to render the
seismic structural demand hazard consistent (Lin et al., 2013a, 2013b; Jayaram et
al., 2011). This ensures that the spectral shapes of the selected records are
compatible with the expected spectral shapes for a given intensity measure. An
example of MSA’s results is contained in Figure 1.2(b), in which the EDP
responses have been obtained for five IM levels.

Structural fragility can be computed in MSA by adopting the EDP-based
approach, which can be used when the EDP responses are obtained at discrete
(fixed) IM levels. When these EDP responses are plotted against the
corresponding IM values, they are disposed in horizontal stripes (e.g., Figure
1.2b), one for each of the levels of shaking intensity under consideration.

Counting the fraction of records in each stripe that cause the limit state

threshold, edp,,, to be exceeded enables the fragility parameters 77 and £ to be
obtained via the maximum-likelihood method described in Baker (2015) and

reported in Eq.(1.8):

ln(z'wj.)—n N

{n, B} = argmax i ln(;_

B J=1 J

)—i—q/-ln o

+(ﬂ—q»/.)-ln 1-©® m

where # is the number of IM levels considered (i.e., the number of stripes, with

each stripe containing responses from # records), and ¢, is the number of failures
observed at the stripe cortesponding to IM =im, (Figure 1.2b). In this
formulation, cases of non-convetrgent analysis (or collapse cases), say ¢, in
number, are also counted in 4 . This means that they are accounted for, despite

the potential absence of a meaningful EDP value. It should be noted that, in cases
where the observed numbers of failures 4 remain excessively low when the

stripes overall are considered, the maximum-likelihood estimates implied in Eq.
(1.8) can experience numerical problems. A viable alternative for considering
fragility, consistent with the EDP-based approach, is the three-parameter-pet-
intensity model adopted by Shome and Cornell (2000).
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1.3.2.3. Cloud analysis

Cloud analysis gets its name from its use of a set of unscaled records chosen to
cover a vast range of intensity values. In this way, typically only a single record
corresponds to each IM level resulting in a “cloud” of points in the EDP —IM
plane. An example is the scatter plot in Figure 1.2(c).

To estimate the statistical properties of the cloud data, a conventional linear
regression, where homoscedastic Gaussian residuals are assumed, is applied to the
data in the logarithmic scale. This equates to fitting a power-law curve to the cloud
data in the arithmetic scale.

Consequently, the cloud method enables the obtention of a probabilistic
relationship between an EDP and IM that predicts the conditional median of
EDP for a given level of IM , denoted as 77, :

077, (IM) =1na +b-1n(IM) (1.9)

where lngz and / are constant coefficients that are estimated from linear
regression. The conditional logarithmic standard deviation of EDP given IM,

Bepp|mv can be estimated as:

Browi = \/i(lnEDP,. ~In(a- 1M;))2 /( N-2) (1.10)

=1

where EDP, and IM, represent the corresponding cloud data for the 7-th record

in the set and IN is the number of records.

Generally, in relation to ultimate limit states, some of the records selected
may induce structural collapse, resulting in very large EDP values. In these cases,
the displacement demand values obtained from NLDAs are unreliable but known
to exceed a certain limiting value. Including these records and their corresponding
EDPs in simple CA would thus be of questionable validity. Consequently, to
correctly treat the results of the nonlinear dynamic analyses, a different procedure
can be undertaken when estimating the probability of failure. This involves
explicitly considering the collapse cases, partitioning the cloud data into two parts:
NoC , which refers to the records for the structure does not collapse and; C,
corresponding to the records inducing the collapse (Jalayer and Cornell, 2008). In
this case, the structural fragility for a prescribed limit state, i.e., DS, can be set out
using the Total Probability Theorem:

P[ EDP > edpy, | IM = int | = P EDP > edp | IM = im, NoC |-(1—P[C | IM = im]) +
+ P[ EDP > edpy,, | IM = im, C |- P[C | IM = imt]
1.11)
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where P[EDP>€L¢DY|I]\/I =i, NoC] is the conditional probability that the
EDP is greater than the threshold edp,, given that the collapse has not taken

place. This probability can be described using a lognormal distribution (Jalayer and
Cornell, 2008; Jalayer et al., 2017) as reported in Eq. (1.12):

In7, > In(a-IM,
P[ EDP > edp,, | IM = im, NoC | = @[MJ = @[MJ (1.12)

ﬁ EDPIIM,NoC ﬂ EDP|IM ,NoC

whete 7.ppmne 304 Buppng e are the conditional median and standard

deviation of the logarithm of the EDP, evaluated based on the portion of NoC
data.

P[ EDP > edp,s| IM = im,C | is the conditional probability that the EDP is

greater than the threshold edp,,; given that the collapse has taken place. This term
is therefore equal to unity. Meanwhile, P[C | IM Ziﬁz] is the probability of

collapse and can be evaluated using logistic regression (a.k.a., logit) as a function
of IM as reported in the following, where ¢, and ¢, are the parameters of the

logistic regression.

P[C|IM]=1 ! (1.13)

+ e—(uz(,Jraz1 mIM)

1.3.3. Methodologies for assessing state-dependent seismic fragility
1.3.3.1. Back-to-back Incremental Dynamic Analysis (back-to-back IDA)

As already discussed, one way of estimating a state-dependent version of a fragility
function analytically is to use an IDA variant known by some authors as back-to-
back IDA ( Luco et al.,, 2004; Ryu et al., 2011; Goda, 2012; Ruiz-Garcfa, 2012;
Raghunandan et al., 2015; Goda, 2015). This extension of IDA is intended to
produce a probabilistic description of the seismic response for structures already
damaged by an initial seismic event, meaning that, before repairs are possible, they
are susceptible to the effects of subsequent events, including mainshock-
aftershock sequences.

In back-to-back IDA, the structural model is first subjected to a set of records
hitting the structure in its intact (or initial) state, each scaled in amplitude to the
lowest 77z value that results in EDP =edp,, . At the end of each run, a different

realization of the structure is produced, which can be viewed as having made the
transition to DS . Then, each damaged incarnation of the structure is subjected

to a second set of accelerograms that represents a subsequent event of the same
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cluster. Similar to the traditional IDA, the second set of records is scaled to
progressively increasing zz levels until EDP=edp, ips is verified for the
DB 4

damaged structure, at an intensity of the shock which can be noted as 7, , for

the /~th succession of base accelerations. As the results for the traditional fragility
case obtained with an IDA, these intensity values can be used in the manner shown
in Eq. (1.6) to estimate the parameters of a lognormal model of the state-
dependent fragility.

Figure 1.3 contains an example of back-to-back IDA curves wherein, at an
intensity of zero, the curves start from a residual EDP value that the damaged
structure has inherited from the initial event. Therefore, like a traditional IDA, the
end result of the back-to-back version is a set of continuous EDP —IM cutves.
The difference is that these curves no longer describe the seismic behavior of the
original structure, but that of the structure that has been subjected to a specific
damaged state.

Back-to-Back IDA
curve

¢ Residual displacement

Cdﬂx“\l)x\

M

L

EDP

Figure 1.3 Example of back-to-back IDA curves for the assessment of state-dependent fragilities.

1.3.3.2. Pushover-Based Fragility

The classical rigorous methods for assessing state-dependent fragility functions
usually require significant computational effort, and certainly more than that
needed to investigate fragility curves for intact structures. Consequently, it was
crucial to develop simplified, less time-consuming approaches, which are often
based on the non-linear static, or pushover, analysis. An example of these methods
is the static approach introduced by Luco et al, (2004), which enables the
quantification of the residual capacity of mainshock-damaged structures. Unlike
the dynamic method based on back-to-back IDA; the static methodology is based
on the application of the SPO2IDA tool to the pushover curve of the damaged
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structure. SPO2IDA was first introduced by Vamvatsikos and Cornell, (2006) and
represents a simple and effective link between IDA curves and Nonlinear Static
Analysis. This spreadsheet tool comprises a set of analytical equations for
predicting the median value and variability of the maximum seismic response of
SDoF systems with various quadrilinear backbone curves. These equations use the
parameters defining the pushover curve and the natural vibration period to
estimate the 16, 50, and 84% fractile IDA curves. Although the method was
developed for intact structures, attempts have been made to extend it to the case
of damaged structures, as in the work by Luco et al., (2004), or Bazzurro et al.,
(2004). In the latter study, the SPOZ2IDA algorithm was used to evaluate the
residual capacity of a damaged structure at a certain damage state The authors
demonstrated that the calculation of the median value of the residual capacity of
the structure in each damage state and the capacity of the intact structure can be
exploited to identify a tagging criterion of the damage state reached by the
structure following the main seismic event.
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Abstract

This study was carried out in collaboration with the firm Ove Arup and Partners.

From this chapter is derived the following paper:

—  Orlacchio M., Cito P., Polidoro B., Villani M., lervolino 1. (2021), “Sequence based hazard maps

Jfor the United Kingdom” (Under review).

The current practice of probabilistic seismic hazard analysis (PSHA) does not take
into account that earthquakes actually occur in time-space clusters. The input for
PSHA is based on de-clustered seismic catalogs, used to characterize only the
mainshocks, that is, the largest magnitude events within each cluster. However,
the so-called sequence-based PSHA (SPSHA; Iervolino et al., 2014), allows us
including the effect of aftershocks in hazard analysis, that is, the events following
the mainshock, still conveniently resourcing from de-clustered catalogs. In the
United Kingdom (UK), the seismic source model developed for the national
seismic hazard assessment has been recently updated by the British Geological
Survey (BGS; British Geological Survey, 2020). In this study, the source model
developed by the BGS (one directly derived from it, in fact) is used to implement
SPSHA in the UK. The calibration of the model for the occurrence of aftershocks,
that is, the modified Omori’s law, is fitted on a few sequences and under some
simplifying assumptions. The results, represented by hazard maps for selected
spectral ordinates and exceedance return periods of interest for structural
engineering, are compared to the PSHA counterparts to discuss the increase in the
design seismic actions when the effects of aftershocks are considered. The maps
show that, based on the modeling of aftershock sequences considered in the study,
in the UK this increase can be up to 14%, at least for the spectral ordinates and
exceedance return periods herein investigated. The discussed maps are provided

as supplemental material to this paper.
Keywords: seismic hazard, seismic sequences, aftershocks, hazard increments.

2.1. Introduction

In the United Kingdom (UK), design seismic actions for structural design are
based on probabilistic seismic hazard analysis (PSHA; McGuire, 2004). For a given

ground motion intensity measure (IM), PSHA allows to computing the rate of

seismic events causing exceedance of a selected threshold at the site of interest. In
the classical PSHA, the rate of exceedance is time-invariant and defines the
homogenous Poisson process (HPP) describing the occurrence of earthquakes
causing exceedance of the ground motion threshold over time (Cornell, 1968).
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Although earthquakes typically occur in spatio-temporal clusters, classical
PSHA complies with the HPP assumption of earthquakes occurrence considering
only the largest magnitude event within each cluster, conventionally recognized as
the mainshock, while (the effects of) the other events in the cluster are neglected.
To achieve this, seismicity parameters for the definition of the input models used
for PSHA are derived from a catalog in which foreshocks and aftershocks, that is,
the earthquakes preceding and following the mainshock, respectively, are
preliminarily removed using de-clustering techniques (e.g., Gardner and Knopoff,
1974).

For short-term risk management purposes, Yeo and Cornell (2009) develop
aftershock PSHA (APSHA), which provides the probability that aftershocks, in a
given time interval, cause exceedance of a ground motion IM value at the site of
interest. In the framework of APSHA, occurrence of aftershocks in time is
characterized by means of a nonhomogenecous Poisson process (NHPP),
conditional to the occurrence of a mainshock of given magnitude and location,
and whose rate is modeled according to the modified Omori law (Utsu, 1961).
(Although, in principle, other models describing aftershock occurrence can be
embedded in SPHSA in lieu of the modified Omori law.)

Iervolino et al. (2014) show that it is possible to include the effects of
aftershocks in long-term hazard assessment avoiding the violation of the HPP
hypothesis and possible catalog incompleteness with respect to aftershocks, using
the so-called sequence-based PSHA (e, SPSHA). Acknowledging that
mainshock-aftershocks sequences occur at the same rate as the mainshocks,
SPSHA combines PSHA and APSHA resulting in a relatively easy-to-implement
hazard integral, which allows computing the rate of mainshock-aftershock
sequences causing exceedance of a given IM threshold at the site. Because
SPSHA models the occurrence of aftershocks by means of the modified Omori
law, it neglects foreshocks that, although can also possibly contribute to hazard,
are generally considered of minor relevance to structural engineering with respect
to aftershocks (Yeo and Cornell, 2009).

Before proceeding any further, it is to note that there are other approaches
that allow accounting for earthquake clusters in seismic hazard analysis (e.g.,
Zhang et al., 2018, 2021; Papadopoulos et al., 2021; Marzocchi and Taroni, 2014).
One of these approaches, which is often assumed as a benchmark by
seismologists, is the one referred to as epidemic-type aftershock sequences (ETAS;
Ogata, 1988). However, Wang et al. (2021), considering a point source model,
recently discussed that the differences in hazard results between SPSHA and
ETAS-based seismic hazard analysis are of limited relevance, if any, for earthquake

engineering purposes.



CHAPTER 2 56

Recently, the British Geological Survey (BGS, British Geological Survey,
2020) has developed new PSHA-based hazard maps for the UK. The study
presented herein, similar to what was done in Iervolino et al. (2018) and
Chioccarelli et al. (2021) for Italy, aims to investigate the implications, on the
definition of design seismic actions in the UK, stemming from including seismic
sequences in hazard analysis. To do so, the SPSHA procedure is developed at the
national scale, using a simplified, yet validated, version of the BGS source model
where the validation consists of comparing the PSHA results against the official
BGS counterpart. The parameters of the modified Omori law, required by SPSHA,
are calibrated based on a few sequences (because of a general paucity of aftershock
data in the UK) from a catalog developed for the UK (Villani et al., 2020).

The SPSHA results for the entire country are presented by hazard maps in
terms of (5% damped) spectral (pseudo) accelerations at three vibration periods,

as the IMs, and for four exceedance return periods (7)) of structural design

interest. Subsequently, SPSHA results are compared to those from PSHA,
implemented using the simplified hazard model, to discuss the effects of
aftershocks on design seismic actions in the UK.

The paper is structured such that the essentials of SPSHA are recalled, first.
Then, the source model is introduced followed by the calibration of the modified
Omori law for the UK. After presenting the hazard maps, the hazard increases
due to aftershocks countrywide are discussed by comparing SPSHA results to the
PSHA counterpart. Moreover, considering three sites in the UK exposed to
comparatively low, mid and high seismic hazard, the aftershock effects are
explored with reference to a wide range of spectral periods and return periods,
using uniform hazard spectra (UHS). A simple sensitivity analysis of the
parameters of the modified Omori law precedes some final remarks that close the

study.

2.2. Classical and Sequence-Based Probabilistic Seismic Hazard
Analysis
Classical PSHA provides the average number of mainshocks per unit-time (often

in one year) causing exceedance of a IM threshold (i) at the site of interest; i.c.,

the exceedance rate, A,, .. This is time-invariant and defines the HPP regulating
the occurrence of earthquakes causing exceedance of 77z over time. Classically,
A, is computed using Eq.(2.1); i.e., the hazard integral, which is herein written

considering a single seismic source zone affecting the site (e.g., Kramer, 1996):
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- ij j PIM, > im| M, =mR, =501 fo o (mr)-dw-dr. (21)

The subscript, E, is added in order to distinguish the rate A. . from the rate evaluated

im,

using SPSHA, to follow. In the equation, Vv, is the rate of mainshocks with magnitude
equal to or larger than the minimum (7, ) deemed possible for the source and it is

calibrated based on a de-clustered catalog. The /), ( ”, r) term is the joint probability
density function (PDF) of the mainshock magnitude (M L‘) and source-to-site distance

(RL, ) . Assuming that M, and R, are stochastically independent random variables, it is

fM,:,R]: (m,r)ZfML (w)le (r), where th (m) and th (r) are the marginal
distributions of magnitude and distance of mainshocks, respectively. The distribution of

magnitude is defined between 7, ,. and the maximum magnitude considered for the

source, g, and is generally described by a truncated exponential distribution derived
by the Gutenberg-Richter (GR) relationship (Gutenberg and Richter, 1944). The
distribution of the distance, which is defined between 7, and 7y, , generally only
depends on the geometry of the source and the position of the site with respect to the
source itself. The term P [IM >im| Mg =mR, =r, (9] provided by a ground motion
prediction equation (GMPE), represents the conditional probability that zz7 is exceeded
due to a mainshock with magnitude equal to 7 and source-to-site distance equal to 7.
This probability also depends on @ , which allows us to account for additional parameters
such as local soil site conditions, rupture mechanism of the source and/or others.

Considering multiple sources only entails the summation of ﬂ/w  referring to each source.

SPSHA allows us to account for the effect of aftershocks (i.e., neglecting
foreshocks) in the hazard assessment, using the same input as in the case of PSHA,
that is, the rate of mainshocks from a de-clustered catalog, and modelling the
occurrence of aftershocks using a NHPP, conditional to the mainshock magnitude
and location. In these hypotheses, the main result of SPSHA is the average number
of seismic sequences that causes at least one exceedance of 7z at the site in the

unit time. This rate, herein referred to as A,,, defines the HPP process regulating

m >

the occurrence of mainshocks, and following aftershocks, that cause exceedance
of /m over time, and it is computed via Eq. (22):
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TE maxe " muax:
My =vei1= [ [ P[IM, <im| M, =mR, =r,0]x
TE,min "Emin
A e m
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7 A min A i . . .
Xe fM’”Kh (w,r) dm - dr

(2.2)
In the equation, the (A4) subscript denotes terms pertaining to aftershocks.
P[IM,, <im|M, =mR,, =r,0] isequal to 1=P[IM, >im| M, =mR, =r,0]
, whereas the exponential term represents the probability that none of the
aftershocks, triggered by the mainshock with magnitude M, = and distance
R, =r (strictly speaking, it should be location rather than distance), causes
exceedance of 77 between #=0 (i.e., the occurrence time of the mainshock) and
the duration of the sequence, AT . P[IM , >im ,|M ,=m R, =r,,0], which
is provided by the GMPE, is the probability that z7 is exceeded given an
aftershock of magnitude M , = 7 , and source to site distance R ; =7, . The term
i, ki, x, 18 the joint PDF of magnitude and distance of aftershocks, which is

conditional on the features of the mainshock (i.e., magnitude and location)

occurring on the source. Assuming that A , and R, are conditionally
independent random variables, it is [y vk, = farm, ek, » Where
Ji i, 1s the conditional distribution of aftershocks magnitude (i.e., following the
GR) and f; |, x, is the conditional distribution of the distance of the site to

aftershocks. The magnitude distribution of the aftershocks is bounded by a

minimum magnitude » . and 7 (i.e., the mainshock magnitude). The location

of aftershocks with respect to the site depends on the location and magnitude of
the mainshock. The distribution of the aftershocks distance is bounded within

4w and 7, which are the minimum and maximum values possible for R,
respectively. E[N AW(O, AT, )} is the expected number of aftershocks, with
magnitude between #,,, and 7, generated by a mainshock with magnitude

M, =m,in AT, and it is computed according to Yeo and Cornell (2009):

L) e
p-1

E[N,,(0,AT,)]= Lo (AT, +0)" ], 2.3)
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where ¢ and p are the parameters of the modified Omori law, which in fact

models the temporal decay of the aftershocks rate, whereas ¢ and 4 define the
GR relationship for aftershocks.

Computing Eq. (2.1) and Eq. (2.2) for different 7z values in a range of
interest provides the hazard curve for PSHA and SPSHA, respectively. Hazard
curves for different spectral ordinates, in turn, allow retrieving the UHS, i.e., the
spectra whose ordinates (when considered individually) have the same exceedance
return period, for the site of interest. Hereafter, the spectral ordinates of PSHA
and SPHA-based UHS ordinates will be indicated as sapg,, and sagq,,,

respectively. Obviously, itis A,, 2A,, . for any i value; thus sa ., , 2 5a,, , .

wm

2.3. Source Model and GMPE
2.3.1. BGS logic tree

Both PSHA and SPSHA presented in this work were implemented by using the
source model recently updated by the BGS. The PSHA study of the BGS features
a complex logic tree, consisting of several branches. In each branch, the source
model is based on 22 seismic source zones, whose geometry and ID are shown in
Figure 2.1 (together with five sites of interest that will be considered later). The
source model is defined on the basis of the current understanding of seismicity in
the UK, taking also into account the surrounding areas which are considered to
have some impact on the seismic hazard of the country; i.c., the Viking Graben
(VIKI), the Normandy (NORM) and the Belgium-Pas de Calais region (PASC).
For each zone, the expected magnitude frequency distribution of the earthquakes
follows a GR relationship, with minimum magnitude equal to 3.0. The
uncertainties affecting the seismicity parameters of the zones are taken into
account using of 100 branches of the logic tree, varying in terms of maximum
magnitude, »— value and annual rate of mainshocks with (moment) magnitude

equal to or larger than 3.0, v, (M > 3.0 ). More specifically, according to the logic
tree, four maximum magnitude (i.e., 6.5, 6.7, 6.9 and 7.1) and 25 couples of the

b— values and v, (M >3.0) are identified for each source zone.
Considering the mean of the 25 v, (M > 3.0) values, which is also provided

by the BGS for each source zone, one can obsetve that the lowest v, (M >3.0)

is 0.0037 events per year for the zone named BALA, whereas the largest rate 1.12
events per year, is for the MMCW zone. It is worth noting that seismicity for two
zones; i.e., MMCW and MENA, is defined using a bi-partite GR magnitude
distribution (British Geological Survey, 2020). The first GR distribution models
the occurrence of mainshocks in the range of magnitude between 3.0 and 4.5,
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while the other applies between 4.5 and 7 .. Both BALA and MMCW zones

are located at the westward side of the UK; in the remaining part of the country,
the rate of earthquakes with magnitude equal to or larger than 3.0 is within 0.1 and
0.47 events per year.
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Figure 2.1 The seismic source model used in this study with zone names and location of five sites.

The logic tree implemented by the BGS also accounts for the uncertainty
affecting the hypocentral depth considering four possible values; i.e., 5 km, 10 km,
15 km and 20 km. Strike-slip is the dominant rupture mechanism for all the seismic
sources.

The BGS study follows the same multi-GMPE approach used in Tromans et
al. (2019), which considers five GMPEs: Atkinson and Boore (2006, 2011),
Rietbrock et al. (2013), Bindi et al. (2014), Boore et al. (2014) and Cauzzi et al.
(2015). These populate the logic tree with different weights. Bindi et al. (2014) and
Boore et al. (2014) are given the largest weight, 0.3; Cauzzi et al. (2015) is given
0.2, whereas 0.1 is assumed for Atkinson and Boore (2006, 2011) and Rietbrock
et al. (2013). To account for both the effects of elastic amplification due to shear
wave velocity structure and near-surface attenuation specific for the UK, the host-
to-target adjustments (Cotton et al., 2006; Atik et al., 2014) are applied to each of
the five GMPEs. The adjustment factors were developed considering rock site
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conditions and three values of the target spectral decay parameter: 0.016 s, 0.027
s, and 0.047 s.

2.3.2. Simplified source model

In this study, the BGS seismic hazard model was adopted for developing both
PSHA and SPSHA, yet with some simplifications aimed at avoiding the
implementation of the full logic tree. More specifically, for each seismic zone, the
GR relationship was defined by considering the weighted mean values (over the

25 values in the BGS study) of v, (M >3.0) and /. The maximum magnitude

was set equal to 6.5 for all the sources, which corresponds to the value of the
branch with the largest weight.

Among the two GMPEs with the highest weight in the BGS work, the one
of Bindi et al. (2014) was selected and wused to compute both
P[IM, <im|M, =mR, =r,0] and P[IM , >im|M ,=m R =r,,0] in Eq.
(2.1) and Eq. (2.2). This GMPE adopts the Joyner-Boore distance or R ; (Joyner

and Boore, 1981) up to 300 km. In the analyses, assuming a uniform distribution
for earthquakes epicenters (both mainshocks and aftershocks), the epicentral

distance (R, ) was converted to R, according to Eq. (2.4), which is given by
(Montaldo et al., 2005).

R, =3.5525+0.8845R . 2.4)

The selected GMPE has a magnitude range of applicability between 4.0 and 7.6;
therefore, to avoid extrapolation, earthquakes with magnitude lower than 4.0 were
not considered in the hazard assessment (also considering that earthquakes with

magnitude lower than 4.0 are typically not of interest to earthquake engineering).
Consequently, for each source, v, (M >3.0 ) , (l.e., that provided by the BGS) was

reduced, according to the GR, to exclude earthquakes with magnitude less than
4.0, which is, therefore, the minimum magnitude considered herein for both
PSHA and SPSHA (this is also in agreement with the PSHA analyses carried out
by the BGS). Similarly, portions of sources at distances larger than 300 km were
not considered in the analyses. The predominant strike-slip style was attributed via
terms provided by Bindi et al. (2014) for that rupture mechanism. summarizes all
the source characteristics finally considered.



CHAPTER 2 62

Table 2.1 Mainshocks seismicity parameters of seismic zones considered (MENA and MMCW
zones are reported twice because of their bi-partite GR).

. v (M=40)
Zone my Mp e b -value
[events per yeat]

CORN 4.0 6.5 1.03 5.60E-03
RHEN 4.0 6.5 1.00 5.00E-03
WCHA 4.0 6.5 0.99 1.33E-02
DOVE 4.0 6.5 1.00 6.00E-03
SLPT 4.0 6.5 0.97 1.82E-02
EANG 4.0 6.5 0.99 1.13E-02
MMCE 4.0 6.5 0.96 7.68E-03
PENN 4.0 6.5 0.94 2.64E-02
MMCW1 4.0 4.5 1.01 1.17E-02
MMCW?2 4.5 6.5 1.02 9.71E-02
MENA1 4.0 4.5 1.01 6.84E-03
MENA2 4.5 6.5 1.00 3.16E-02
EISB 4.0 6.5 0.99 8.19E-03
CUMF 4.0 6.5 1.02 5.73E-03
BALA 4.0 6.5 1.00 3.70E-04
SCIM 4.0 6.5 1.01 1.95E-03
SC34 4.0 6.5 1.00 1.20E-02
SC78 4.0 6.5 0.99 1.84E-02
SCY 4.0 6.5 1.04 1.55E-02
ESCO 4.0 6.5 1.00 1.50E-02
IREL 4.0 6.5 1.01 2.93E-03
VIKI 4.0 6.5 1.01 4.59E-02
NORM 4.0 6.5 0.86 5.11E-02
PASC 4.0 6.5 1.00 1.90E-02

The PSHA and SPSHA discussed in the following were developed assuming
the average shear-wave velocity of the upper 30 m equal to 800 m/s (i.e., rock site
conditions) at all sites. Moreover, the GMPE was corrected to account for the
host-to-target adjustment, considering the median value of spectral decay
parameter equal to 0.027 s, which is the value corresponding to the branch with
the largest weight in the logic tree defined by the BGS. The adjustment factors
developed by the BGS for the GMPE of Bindi et al. (2014) and used in this study

are equal to 124, 1.19 and 1.06 for peak ground acceleration (PGA),
Sa(T =0.2 s) and J‘a(T =1.0 s), respectively; i.e., the IMs considered for the

hazard maps discussed in the following. The adjustments do not depend on
magnitude and source-to-site distance and apply to the mean of the GMPE; i.e.,
they correspond to a so-called linear effect. Therefore, herein the adjustment
factors are applied directly modifying a-posteriori the ordinates of the unadjusted
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UHS of interest as discussed in Iervolino (2016), which has been shown to be a
rigorous procedure in case of GMPEs with linear effects.

2.3.3. Validation

The simplifications to the BGS source model do not affect the results concerning
the aftershocks effect on the hazard assessment (to follow), as PSHA and SPSHA
are performed using the same input data. However, the results of PSHA
conducted via the simplified source model for the sites of Cardiff, Dover,
Edinburgh and London (see Figure 2.1 for the location of the sites), are compared
to those obtained within the BGS study (Mosca et al., 2022). Figure 2.2 shows the
comparisons in terms of UHS and hazard curves for the four sites. Panels (a) and
(b) describe the UHS computed by the BGS and those developed in this study, for
the return periods of 475 years (yr) and 2475 yr, respectively. The second row of
Figure 2.2 shows the hazard curves in terms of PGA (Figure 2.2¢) and spectral

(pseudo) accelerations (S@) corresponding to the vibration period (1) equal to

0.2 s (Figure 2.2d) and 1.0 s (Figure 2.2¢) evaluated for the four sites.
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Figure 2.2 Comparison of the results obtained in the study by means of PSHA to the BGS

counterparts in terms of UHS with T, =475yr (a) and T =2475yr (b), and hazard curves for
PGA (c), Sa(T = 0.25) (d) and Sa(T = 1.05) (¢) for the sites of Cardiff, Dover, Edinburgh and

London.

The figure shows that the results obtained using the simplified input model
are in good agreement with those obtained considering the full logic tree, even if
some differences can be found. To measure them, the absolute differences
between the spectral ordinates obtained in this study and those from the BGS
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work were quantified for 17 spectral ordinates, in a range of vibration periods
between 0 s and 3.0 s. For example, considering T, =475yr, which is a typical
return period in structural design, those differences, on average, are equal to
0.0027 g, 2.23e-04 g, 0.0012 g and 0.0011 g for Cardiff, Dover, Edinburgh and
London, respectively.

2.3.4. Aftershock occurrence model

The parameters {a,b,¢, p} in Eq. (2.3), required for SPSHA, are typically calibrated

empirically via data from multiple aftershocks sequences for the region of interest;
e.g., Reasenberg and Jones (1989) for California and Lolli and Gasperini (2003),
for Italy. For the UK, there are no specific studies available. To overcome this
issue, two ecarthquake catalogs were preliminarily investigated. One is that
provided by the BGS, which includes 73 mainshock-aftershocks sequences
occurring in the whole UK and the surrounding areas. The second one is that of
Villani et al. (2020), containing 213 earthquakes attributed to 48 mainshock-
aftershocks sequences occurring within 300 km from Anglesey, North Wales; see
Villani et al. (2020) for a map of the events.

The {ﬂ,[, p} parameters were estimated, for each sequence, using the

maximum likelihood method (e.g., Ogata, 1983; Utsu and Ogata, 1995). However,
convergence issues have arisen for the short sequences; i.e., those with less than
five aftershocks, which are 71 and 44 in the BGS catalog and the Villani et al.
(2020) catalog, respectively. Moreover, there is no sufficient information about the
events occurring in the two remaining in the BGS catalogue, and therefore they
were neglected. Thus, only the four sequences from the catalog of Villani et al.
(2020) were considered for calibrating the parameters of the modified Omorti law.
For the selected sequences, Table 2.2 shows the ID according to the considered
catalog, the event name, the date and time of the mainshock, latitude and longitude
of the epicenter of the mainshock, the mainshock magnitude, the minimum

magnitude of aftershocks and the number of aftershocks in each sequence N .

For each sequence, the {a, c, p} parameters were calibrated by setting the 4 —
value equal to one (Helmstetter, 2003). The mean values, which are used for the
SPSHA, ate a=-1.71, ¢=0.002 and p=0.68. To qualitatively assess the
goodness-of-fit of these parameters, Figure 2.3 represents the ratio of the
cumulative number of aftershocks within each sequence, N ,(#), as a function of
the time 7 elapsed since the mainshock (expressed in days), to the term

a+b\m—. . ..
107 ) ; 1.e., the aftershock productivity of each sequence.
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Table 2.2 List of sequences detected in the earthquake catalog having a number of aftershocks

greater than five.

Seq. ID Event name Date Time Lat Long M, =m . E\L/,
155 Caernarvon 19-06-1903  10:40 53.03° -4.28° 4.60 2 14
200 Caernarvon 12-12-1940  21:20  53.03° -4.18° 4.40 2 7
313 Lleyn Peninsula  19-07-1984  6:56  52.96°  -4.28° 5.00 2 22
515 Manchester 21-10-2002  11:42  53.48° -2.20° 2.90 2 51
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Figure 2.3 Representation of the four sequences detected for the UK. The smooth curve represents

the modified Omori formula obtained using the mean values of the parameters {g, c, p} .

It is worth noting that, generally, the uncertainty of {a,c, p} may also be

quantified (e.g., Ogata, 1978; Kutoyantis, 1982); but the discussed paucity of data
would require to adopt other approaches, such as multi-model inference methods
(e.g., Zhang and Shields, 2018), yet this is considered of secondary importance and
it is left out of the scopes of the study. Moreover, the small dataset of sequences
has led to a relatively simple calibration. In other words, the considered aftershock

sequences are those assumed to be complete above the minimum aftershock
magnitude assumed in SPSHA, which is 7, =4.0 ; i.e., the minimum magnitude
of the considered GMPE.

To complete the characterization of the aftershocks in the framework of
SPSHA, a model for aftershocks location is needed, which in turn serves to

compute fy v in BEq. (2.2). Similar to previous studies (lervolino et al., 2014,

2018; Chioccarelli et al., 2021), it was assumed that aftershocks may occur, with
the same probability, within a circular area, centered on the mainshock location,
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whose size, S ,, expressed in squared kilometers, depends on the magnitude of

the mainshock according to the model of Utsu (1970):
S, =10"", 2.5)

Alternative models for the shape of the area enclosing aftershocks can be found
in literature (e.g., Kanamori and Anderson, 1975) and could be equivalently used
in SPSHA. An interesting approach is that of Zhuang et al. (2002), who model the
probability distribution of aftershocks location with a bell-shape decay from the
mainshock location, yet they discuss that such a model relies on the same
understanding at the basis of that given by Utsu (1970).

Thus, it is expected that selecting an alternative model for the shape of the
area enclosing aftershocks does not significantly affect the results. Finally, for the
hazard analyses the duration of the aftershock sequence, AT ,, was assumed
arbitrarily equal to 90 days from the occurrence of the mainshock, although, in
principle, this duration could be mainshock-magnitude-dependent. This
assumption is consistent with the other studies applying SPSHA (Iervolino et al.,
2018; Chioccarelli et al., 2021); nevertheless, it has been observed that the Omori
law’s parameters calibrated for the UK renders the results of hazard analysis
slightly more dependent on AT, than the previous studies. (See Sensitivity

analysis section).

2.4. Analysis and Results

The analyses were carried out through the REASSESS software (Chioccarelli et
al., 2019), in which the simplified source model for the UK was implemented (and
made available for eventual further studies). PSHA and SPSHA hazard curves, in

terms of PGA, Sa(T =0.2s) and Sa(T =1.0s), were computed for more than

four thousand sites across all the country, which are the nodes of a regular grid
spacing 0.250° and 0.125° longitude and latitude, respectively.

2.4.1. Hazard maps

PSHA and SPSHA results for any site in the UK are represented in Figure 2.4 for
PGA, and in Figure 2.5 and Figure 2.6 for ;Ya(T =0.25) and Sa(T =1.0s),

respectively. In each figure, the top panels, from (a) to (d), show the ground
motion intensity measure that the figure refers with exceedance return period from
95yrs to 2475yrs according to PSHA; those at the bottom, from (e) to (h),
represent the results when mainshock-aftershock sequences are taken into account
in SPSHA.
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Figure 2.4 Maps of PGA on rock with T, =95yr, T =475yr, T =1100yr and T, =2475yr,
from left to right, obtained using PSHA (panels a-d) and SPSHA (panels e-h).

Looking at the figures, it can be observed that, for each spectral and
exceedance return period, sites with the highest hazard are located in the western
UK ie., in the area enclosing the seismic zones EISB, MENA, BALA and
MMCW. This area also includes the sites exposed to the largest sequence-based
seismic hazard, according to the bottom panels. This is somehow expected, as the
more frequent and stronger (in terms of magnitude) the mainshocks the larger the
number of expected aftershocks. The largest PG4 which is exceeded once every
2475 yr (on average) due to mainshocks-aftershocks sequences is equal to 0.272 g;
for the same return period, the largest values for Sa(T = 0.23) and Sa(T =1.0s)
across the country are 0.564 g and 0.061 g, respectively. The sites with the lowest
hazard are enclosed by the ESCO zone in the north-eastern area of the UK. For
example, in the proximity of Aberdeen (2.1° W, 57.16° N), a PGA value of 0.012
g is exceeded, on average, once every 2475 yr, even considering the aftershock
effects; for the same return period, the lowest ground motion intensity at the same

site is equal to 0.022 g for Sa(T = 0.25) and 0.008 g for Sa(T =1.0s). The south-
east area of the UK is exposed to relatively moderate seismic hazard. For example,

at the site of Norwich (1.30° E, 52.63° N), the largest PGA, Sa(T =0.2 s) and
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Sa(T =1.0s) for T, =2475yr using SPSHA, are equal to 0.031 g, 0.0606 g and
0.013 g, respectively.

T,=95yr 1:=475yr 7:=1100 yr 1,=2475yr

b

(e) éf
pe

¢

-
;h‘ 0.00

Figure 2.5 Maps of Sa(T=0.2s) on rock with T, =95yr, T, =475yr, T, =1100yr and
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T =2475yr, from left to right, obtained using PSHA (panels a-d) and SPSHA (panels e-h).
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Figure 2.6 Maps of Sz(T=1.0s) on rock with T, =95yr, T, =475yr, T, =1100yr and

T =2475yr, from left to right, obtained using PSHA (panels a-d) and SPSHA (panels e-h).

It appears that the hazard increase due to aftershocks is not the same across
the country. This is not unexpected, as the magnitude and number of aftershocks
increase with seismic hazard due to mainshocks (see also Iervolino et al., 2018;
Chioccarelli et al., 2021). Moreover, results reveal that aftershock effect varies with
the exceedance return period and spectral ordinate, as discussed in the following,.
To analyze quantitatively the results, Figure 2.7 shows the distributions of the
differences between SPSHA and PSHA results across the country, computed at
each site as sa g, — 5apg, , ; dividing this difference by s, , gives the relative
hazard increases due to aftershocks, relatively to PSHA results; 1ie.,

(S@gps14 = Sapgys ) [5psyq - In both the figures, the top, middle and bottom rows

refer to PGA, Sa(T = 0.2s) and Sa(T =1.0s), respectively; in each row, panels

from left to right show the difference for exceedance return periods from 95 yr to
2475 yr.
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Figure 2.7 Absolute differences between SPSHA and PSHA results in terms of PGA (top),
Sa(T =0.2s) (middle) and Sa(T =1.0s) (bottom), with T, =95yr, T =475yr, T, =1100yr and
T =2475yr , from left to right.
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Figure 2.8 Relative differences between SPSHA and PSHA results in terms of PGA (top),
Sa(T =0.2s) (middle) and Sa(T =1.0s) (bottom), with T, =95yr, T =475yr, T, =1100yr and
T =2475yr , from left to right.

As already mentioned, for each spectral ordinate and exceedance return
period, it can be observed that aftershocks effect tends to increase (decrease) the
seismic hazard increase (decrease) according to classical PSHA, in both absolute
and relative terms. Looking at the figures vertically, it is found that, for each return
period, the trend of the differences is the same as that of hazard results with the
vibration period, which depends on the GMPE,; i.e., it is comparatively larger at
the low vibration periods. In fact, according to the maps, the maximum differences

over the whole country are observed for Sa(T =0.2 s) , whereas the lowest are

recorded for § a(T = 1.05) ; differences in terms of PGA are in an intermediate
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situation. On average over the country, the absolute difference ranges from 3.88E-
04 g, for T =95yr, to 0.005 g, for T, =2475yr, for PGA, whereas they are

3.77E-04 g and 0.004 g for T, =95yr and T, =2475yr, respectively, for
Sa(T =0.2 s); for Sa(T =1.0 s) , increments are very low, being about 0.001 g,
on average, for the largest return period (see Table 2.3, Table 2.4 and Table 2.5).

Table 2.3 Average and maximum difference, in absolute and relative terms, of SPSHA results with
respect to PSHA counterparts for PGA .

T, [yr] PGA
95 475 1100 2475
Average percentage difference [%0] 10.2 10.7 10.8 10.9
Average absolute difference [g] 3.88E-04 0.0016  0.0030  0.0051
Maximum percentage difference [%o] 10.9 12.2 13.2 13.8
Maximum absolute difference [g] 0.001 0.010 0.020 0.033

Table 2.4 Average and maximum difference, in absolute and relative terms, of SPSHA results with

respect to PSHA counterpatts for Sa(T =0.2s).

T [yr] Sa(T =0.2s)
95 475 1100 2475
Average percentage difference [%0] 3.2 2.9 2.7 2.4
Average absolute difference [g] 3.77E-04  0.0015  0.0026  0.0041
Maximum percentage difference [%o] 10.8 12.2 13.5 13.8
Maximum absolute difference [g] 0.003 0.022 0.043 0.069

Table 2.5 Average and maximum difference, in absolute and relative terms, of SPSHA results with

respect to PSHA counterparts for Sa(T =1.0s).

T,[Yf] 5}1([ —1.05)
95 475 1100 2475
Average percentage difference [%o] 9.2 9.6 9.1 8.3
Average absolute difference [g] 1.18E-04 4.99E-04 8.52E-04 0.0013
Maximum percentage difference [%o] 9.8 9.9 10.0 9.9
Maximum absolute difference [g] 2.72E-04 0.002 0.003 0.006

Considering the ensemble of the return periods discussed so far, the average
relative increments over the country are within 10.2% and 10.9% for PGA, 2.4%

and 3.2% for Sa(T =O.25), and 8.3% and 9.6% for Sa(T =1.0s). For each

spectral ordinate, one can observe that absolute differences tend to increase with
the increasing return period. However, the largest increment over the country, in
absolute terms, is well below 0.1 g. Looking at the map in Figure 2.7, it is found
that, in the proximity of the high hazardous MENA zone, the difference between

SPSHA and PSHA results, in terms of Sa(T =0.2s) with T, =2475yr, is equal
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to 0.069 g. Given the spectral ordinate, the trend of the relative increments as a

function of the return period is non-monotonic. The largest percentage difference
is found for T, = 2475yr in the case of PGA (North England) and Sa(T = 0.25)
(northwest Wales), being about 13.8% in both the cases, whereas, for

Sa(T =1.0s), it is about 10% (western Scotland) for T, =1100yr. In order to

summarize the results represented in Figure 2.7 and Figure 2.8, the average and
maximum differences, in both absolute and relative terms, ate given in Table 2.3,
Table 2.4 and Table 2.5 for each spectral and exceedance return period.

To close this section, the aftershock effects on design seismic actions
discussed so far are briefly compared to those estimated for Italy by Iervolino et
al. (2018). Due to the larger seismic hazard, it is expected that aftershock effects
in Italy (see Figure 2 and Figure 3 in Iervolino et al., 2018) are more significant,
both in relative and absolute terms, than those for the UK. For example,

considering PGA and the largest return period (T, =2475yr), for the most

hazardous sites, the relative increment in Italy (about 28%) can be even twice that
found for the UK (about 14%). Still with reference to PGA and T, =2475yr, the

largest absolute difference between SPSHA and PSHA results are equal to 0.116g
and 0.033g for Italy and the UK, respectively. Such a difference is also related to
the fact that, for the same return period, spectral accelerations according to PSHA
for the UK are lower than the Italian counterpart, yet by a larger ratio. More

precisely, in the most hazardous areas of Italy PGA for T, =2475yr (about 0.6 g)

is almost three time the largest PGA (for the same return period) for the UK
(about 0.25 g).

2.4.2. Site-specific hazard Analysis

In the previous section, it has been shown that aftershock effects on design seismic
actions depend on the seismic hazard of the site, the spectral and exceedance
return period. Now, SPSHA and PSHA results are discussed in more detail for the
sites of Edinburgh (3.19°W, 55.95° N), Cardiff (3.18° W, 51.49° N) and Llangefni
(4.31° W, 53.25° N). They were selected because representative of comparatively
low, medium and high hazard level across the country according to PSHA,
respectively. The location of the considered sites is shown in Figure 2.1. The aim
is to (i) investigate the increase in seismic hazard due to aftershocks with respect
to an interval of spectral and return periods larger than those considered in the
previous section, and (if) to give insights on the differences between PSHA- and
SPSHA-based hazard results.
PSHA and SPSHA results for the sites are compared in Figure 2.9.
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Figure 2.9 Results of hazard analysis for the three sites of interest: hazard curves in terms of PG4
R Sﬂ(T = 0.25) and Sa(T = l.Os) for the site of Edinburgh (a), Cardiff (b) and Llangefni (c) , UHS
with T =95yr, T, =475yr, T. =1100yr and T =2475yr for the site of Edinburgh (d), Cardiff
(e) and Llangefni (f); relative hazard increase as function of the spectral period, for four T, values,
for the site of Edinburgh (g), Cardiff (h) and Llangefni (i); relative hazard increase as function of T,

in terms of PGA, Sa(T =02s) and Sﬂ(T = 1.05) for the site of Edinburgh (1), Cardiff (m) and
Llangefni(n).

The columns of Figure 2.9, each referring to a site, are ordered following the
increasing seismic hazard, from left to right. Panels from (a) to (c) represent the
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hazard curves in terms of PGA, Sa(T =0.2 s) and Sa(T = 1.05) according to
PSHA (grey lines) and SPSHA (black lines). Panels from (d) to (f) show the UHS
obtained from PSHA (grey lines) and SPSHA (black lines) for the return periods
considered before. The spectral ordinates were computed considering 24 natural
vibration periods, which are those used in the GMPE of Bindi et al. (2014). Based
on these UHS, the relative hazard increments, as defined in the previous section,

are represented in panels from (g) to (i), for each Sa(T) and exceedance return
period. In addition, the effect of aftershocks on the hazard, in terms of PGA,
Sa(T =0.2s) and Sa(T =1.0s), as a function of return petiod from 50 yr to
10000 yr is shown in panels from (1) to (n).

Looking at the figure, it can be observed that the largest hazard increases are
for the low-to-mid vibration periods (i.e., lower than 0.3 s), independently on the
seismic hazard of the site and the considered exceedance return period. At each
site, the largest relative differences are for the vibration period equal to 0.1 s, and
all return periods: more specifically, they are 13.6%, 14.6% and 16% for
Edinburgh, Cardiff and Llangefni, respectively. Panels from (g) to (i) also show
that, considering the long vibration periods (i.e., larger than 1.0 s), the hazard
increments at each site are lower than those found at the short periods and is
almost constant: in fact, considering the return periods from 95 yr to 2475yr, they
range from about 7.5% to 10% for both Edinburgh and Cardiff, whereas they are
around 9% for any return period in the case of Llangefni. This reveals that the
contribution of aftershocks to seismic hazard tends to decrease with the increasing
of the spectral period, independently of the seismic hazard of the site and the
exceedance return period; see as Iervolino et al. (2018) and Chioccarelli et al.,
(2021) for a discussion on this issue.

Panels from (g) to (i) confirm that the relative increment in the design seismic
actions due to aftershocks, with respect to PSHA results, does not monotonically

increase with the return petriod. For example, back to Sa(T =1.0 s), it can be
observed that the largest difference is found for T =475yr in the case of

Edinburgh, whereas it is T, =2475yr for the other two sites. Thus, one may be
interested in exploring the trend of the hazard increment in a range of return
periods wider than that considered so far. To do this, one should look at panels
from (I) to (n). They reveal that, at each site, the increments increase in a very
limited range of return periods, and tend to flatten out at T, values larger than
4000 yr (and up to the largest herein considered) in the case of PGAand
Sa (T =0.2 s) , whereas, for Sa (T =1.0 s) , they monotonically decrease for return

periods from 2000 yr onwards. This is expected from the disaggregation of
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sequence-based seismic hazard (i.e., Chioccarelli et al., 2018), according to which
the contribution of aftershocks to hazard as a function of T, is not the same at
the different vibration periods. For Edinburgh, the maximum increments for

PGA, Sa(T=0.2s) and Sa(T =1.0s) are about 10.5%, 11.9% and 9.9%,
respectively. They occur at different return periods, being T, =9980yr for PGA,
T, =470yr Sa(T =0.2s) and T, =360yr for Sa(T = l.Os). Considering the
site of Cardiff, the maximum increases in terms of PGA, Sa(T =O.25) and

Sa(Tzl.Os) are equal to 12.3%, 12.5% and 9.6% and they occur at return
periods of 9990 yr, 9690 yr and 170 yr, respectively. Finally, for Llangefni, the
maximum percentage difference between SPSHA and PSHA results in terms of
PGA 1s equal to 13.1% and it is observed for T, =4060yr; in the case of

S a(T = O.2s) , the largest difference is similar to that for PGA, being equal to
13.6%, but itis found for T, =1720yr ; looking at the trend for S« (T =1.0 s) , the
peak, which is equal to 9.6%, occurs at T =1830yr .

2.5. Sensitivity analysis

Because the paucity of seismic sequences leads to a simplified calibration of the
modified Omori law parameters, this section deals with some sensitivity analysis
of the results to such parameters, that is, {a, c, p} and AT,.

First, the 2475 yr UHS derived via the SPSHA based on the mean parameters,
{a =-1.71,c=0.0023, p = 0.68} , (i.c., those pictured in panels from (d) to (f) of
Figure  2.9) are  compared to  those obtained by  using
{a =-1.66,c=0.0295, p = 0.93} , that is, the parameters for Italy by Lolli and
Gasperini (2003), a country of a generally larger seismic hazard than the UK. The
comparison is given in Figure 2.10 where it appears that the differences are limited.

Moreover, even if not given here for the sake of brevity, the four sets of
parameters obtained from each of the four seismic sequences considered, were
also used to derive the UHS for the same sites and same return period just
discussed. The found differences ate in the order of 10%-15% with respect to the
spectra obtained with the parameters obtained pooling all the sequences together.

Finally, still considering the 2475 yr UHS for the sites of Edinburgh, Cardiff
and Llangefni, Figure 2.11 shows the sensitivity of the relative hazard increase,

with respect to PSHA results, to the AT, interval assumed in the analysis. It is

shown that to vary AT, from 90 to 365 days does not significantly affect the

results.
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Figure 2.10 Comparison of UHS with T, =2475yr obtained from hazard analysis conducted

using the mean parameters calibrated for the UK and those for Italy by Lolli and Gasperini (2003)
for the site of Edinburgh (a), Cardiff (b) and Llangefni (c).
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Figure 2.11 Comparison of UHS with T, =2475yr obtained from hazard analysis conducted

using the mean parameters calibrated for the UK with AT, =90 days and AT, =365 days for the
site of Edinburgh (a), Cardiff (b) and Llangefni (c).

2.6. Conclusions

For reasons mainly related to the ease of calibration and use, implied by the
homogeneous Poisson process assumption for earthquake occurrence and the
limited completeness of information about foreshocks and aftershocks in seismic
catalogs, classical PSHA only considers mainshocks in determining the rate of
seismic events that exceed a ground motion intensity at a site of interest. However,
sequence-based probabilistic seismic hazard analysis allows us to account for the
effect of aftershock in the hazard assessment keeping the same advantages of
PSHA. In fact, SPSHA still resources from a de-clustered catalog and assumes the
homogeneous Poisson process assumption for the occurrence of mainshock-
aftershocks sequences. Finally, SPSHA relies on an analytical formulation that is
relatively easy to implement. Moreover, literature recently discussed that it is in
good agreement with other seismic sequences modeling approaches, generally
more cumbersome in calibration and simulation.
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In the presented study, SPSHA was applied to investigate the hazard increase
due to aftershocks in the UK, using the recent source model from the BGS. The
parameters of the modified Omori law, which is used to model aftershock
occurrence, were calibrated in a simplified manner based on four seismic
sequences occurred in the UK (no more than that due to paucity of quality data),
assumed to be complete in the magnitude range of interest. A very simple
sensitivity analysis was carried out to assess the effect of the modified Omorti law
parameters on the results. It was verified that using parameters for a high-
seismicity country such as Italy, does not lead to relevant differences in the hazard
results.

Considering four exceedance return periods of interest to structural
engineering within 95 yr and 2475 yr, hazard maps, in terms of PGA,

Sa(T =0.2s) and Sa(T =1.0s), resulting from SPSHA were computed for rock

site conditions, and compared to the PSHA counterparts based on the same source
model and GMPE. Moreover, with reference to three sites, the PSHA and SPSHA
results, for exceedance return periods up to 10000 yr and 24 spectral ordinates,
were compared and discussed in greater detail to give further insights about the
aftershock implications. Finally, the aftershock effects estimated for the UK were
briefly compared to a previous SPSHA study for Italy, a relatively larger seismic
hazard country. Some remarks that can be drawn from the results are listed in the
following.

—  For each spectral and return period, the hazard increase tends to be more
relevant in the areas covering most of Wales, North Central England and
western Scotland.

— For a given spectral ordinate, the largest percentage increase due to
aftershocks over the country has a non-monotonic trend with the return

period; the largest value across the country, equal to 10%, was found at
T, =1100yr for Sa(T =1.0s), while, for PGA and Sa(T =0.2s),itis 14%
at T, =2475yr.

—  For a given spectral ordinate, the maximum absolute differences between
SPSHA and PSHA results over the country monotonically increase with
return period (in the range considered). Nationwide, for T =2475yr, the
largest difference between SPSHA and PSHA are equal to 0.033 g, 0.069 g
and 0.006 g in the case of PGA, Sa(T =O.ZS) and Sa(T =1.0s),

respectively.
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—  On average across the country, the absolute differences, in the case of
T =2475yr, are equal to 0.0051 g, 0.0041 g and 0.0013 g for PGA,

Sa(T =0.2s) and Sa(T = 1.05), respectively.

—  Considering the range of return periods between 95 yr and 2475 yr, the largest
average percentage differences are equal to 11% in the case of PGA, 3% for

Scz(T = O.ZS) , and 10% for Sa(T = 1.05); they were found at T, =2475yr
, I =95yr and T, =475yr, respectively.

—  The analysis for specific sites revealed that the aftershock effects are more
significant at vibration periods lower than 0.3 s, and tend to decrease for
those larger, becoming almost constant from 1.0 s onwards. The largest
relative difference between SPSHA and PSHA results was found at 0.1 s for
all sites. With reference to Llangefni, which is the site characterized by the
highest seismic hazard countrywide, the return period for which the largest
hazard increase is found significantly varies among the different spectral
ordinates, being equal to 4060 yr, 1720 yr and 1830 yr for PGA,

Sa(T =0.2s) and Sa(T = 1.05), respectively.

— In the most hazardous sites of the UK, the hazard percentage increments of
SPSHA results with respect to PSHA are about a half than those found in
the most hazardous areas of Italy, although in Italy the larger spectral
acceleration associated to a given return period can be three times larger than
the analogous one in the UK.
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Abstract

This study was carried out in collaboration with Arup Italy.

This chapter deals with the assessment of state-dependent fragility curves of a
case-study structure representative of the unreinforced masonry (URM) buildings
(specifically terraced houses) in the Groningen region of the Netherlands. This is
an area where the seismicity induced by gas-extraction practices makes it essential
to develop an understanding of the risks that are the result.

A three-dimensional model of the structure was developed in collaboration
with Arup Italy using the LS-DYNA finite element software. This was employed
to analyze the building via the Cloud Analysis procedure to assess the fragilities of
the intact structure at different damage states. Subsequently, to limit the typical
computational effort involved in assessing state-dependent fragilities, two single-
degree-of-freedom (SDoF) systems representing the structural behavior in the
building’s two main directions were developed and analyzed using back-to-back
Incremental Dynamic Analysis (IDA).

Keywords: sequence-based seismic reliability, back-to-back IDA, SDoF systems,
unreinforced masonry.

3.1. Introduction

The evaluation of the seismic performance of unreinforced masonry (URM)
structures is a popular topic of discussion globally. In the Netherlands in recent
years, some regions began to experience seismic events because of the reservoir
depletion caused by commercial gas-extraction processes (Vlek, 2019). These
began in 1963 and have triggered shallow earthquakes since the early 1990s, with
the highest moment magnitude equal to 3.6 experienced near Huizinge on 16
August 2012. The induced seismicity had a wide impact on the built environment
which was mainly composed of URM buildings that were not designed to sustain
seismic loading. These structures presented in fact specific characteristics such as
very slender walls, limited cooperation between the walls and floors, and the use
of cavity walls that are often connected by weak and corroded ties.

This phenomenon triggered a global research program involving many Dutch
and international universities, knowledge institutions, and recognized experts. The
primary goals of the program were to assess the hazard and risk resulting from gas
extraction-induced seismicity and then develop risk-mitigation strategies. In this
context, the exploration and production company Nederlandse Aardolie
Maatschappij INAM) contracted Arup to: 1) conduct a study to define a preventive



CHAPTER 3 87

structural-upgrade strategy for existing buildings in the Groningen region of the
Netherlands, with the goal of reducing the damage caused by the induced
seismicity, and 2) verify whether the structures conform with the requirements set
out in the standard National Practice Guidelines 9998 (NAM, 2018).

This chapter considers the assessment of state-dependent fragility functions
of a structure representing the terraced house typology built widely in the
Groningen area from 1960-1980 and which was affected the most by the gas
extraction-induced seismicity referred to above.

A three-dimensional (3D) finite element model of the structure was
constructed in a collaboration with Arup Italy. This was then analyzed using the
LS-DYNA finite element software via Cloud Analysis methodology (Jalayer et al.,
2015, 2017). Subsequently, the assessment of state-dependent fragility curves was
conducted using the single-degree-of-freedom (SDoF) approximation of the
structure. Two equivalent SDoF (ESDoF) systems were defined based on the
static and dynamic pushover curves obtained for the two principal directions of
the original 3D structural model. These SDoFs were subjected to back-to-back
Incremental Dynamic Analysis (IDA) procedure ( Luco et al., 2004; Ryu et al.,
2011; Goda, 2012; Ruiz-Garcia, 2012; Raghunandan et al., 2015; Goda, 2015) to
obtain the state-dependent fragilities. Some concluding remarks can be found at
the end of this chapter.

3.2. Prototype building

The prototype building was based on the real terraced houses built in large
numbers in the Groningen region (north-east Netherlands) from 1960-1980.

In more detail, the case-study structure represents a two-unit terraced house
with two stories, large window openings to the front and rear, and all the other
construction features that are typical of the buildings in the Groningen area. The
structure is composed of: 1) external masonry cavity walls formed by calcium
silicate (CaSi) inner leaf with a load-bearing function and a clay brick outer leaf
connected by masonry metal wall ties; 2) load-bearing internal walls and party walls
formed of CaSi; 3) reinforced concrete slabs; 4) a timber roof; and 5) shallow
foundations. Some of the construction details typical of these terraced houses are
set out in Figure 3.1 (for further information on this structural typology, see
Graziotti et al., 2017).

The building is 12.5 m long, 7.80 m wide and 8.80 m high. The height includes
a 1.0 m underground section (distance from the laying surface to the ground floor).
Each unit of the structure has an extension, as is common for this type of building.
This has approximate dimensions of 3.70 m x 2.20 m x 3.50 m. Figure 3.2 portrays
different views of this model house.
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Figure 3.1 Characteristics of the case-study building.
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Figure 3.2 Views of the terraced house case-study.

The structure is composed of four walls in the X-direction and five walls in the Y-
direction. Their geometric features are shown in Figure 3.3 and Figure 3.4,
respectively. Figure 3.3 shows the X-direction’s four walls. Panels (a) and (b)
correspond to the two external walls and panels (c) and (d) to the two internal
ones. Figure 3.4 shows the five walls in the Y-direction. Panels (a) and (b)
correspond to the two external walls, panel (c) shows the wall separating the two
units of the structure, and panel (d) represents the internal wall of each unit. The
openings of each wall are also reported in Figure 3.3 and Figure 3.4.
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Figure 3.3 Geometry of the walls disposed along the X-direction: frontal wall (a), back wall (b) and
internal walls (c-d).
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Figure 3.4 Geometry of the walls disposed along the Y-direction: external walls (a-b); unit partition
wall (c), and internal wall of each unit(d).

It should be noted that, after the study commissioned by NAM (Arup, 2013),
the structure was modeled taking into account reinforcement measures designed

by Arup to ensure compliance with the standard National Practice Guidelines
(NPR) 9998.
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3.3. Finite Element Modelling approach

A 3D finite element model of the structure was produced in collaboration with
Arup Italy using LS-DYNA, which is a versatile finite element analysis program
adopted for seismic analyses, among many other applications. The program is used
widely by Arup due to its capacities to both model components of buildings, soils
and soil-structure interaction and due to quick solutions for large, complex models
on multi-processor distributed-memory computer platforms.

To model the URM walls, a user material model for the shell elements
(*MAT_SHELL_MASONRY) was developed and implemented by Arup in LS-
DYNA. This is not part of the standard LS-DYNA release. The material model is
used with a relatively coarse mesh and adopts a homogenized representation of
the brick-mortar conglomerate. It takes into account the orientation of horizontal
and vertical mortar joints and the difference in their stress-strain behavior based
on the interlocking of units. The response and failure modes taken into account
are: 1) the non-linear compressive response and toe-crushing; 2) cyclic bed-joint
crack opening/closing and sliding; 3) the head-joint opening combined with bed-
joint sliding; and 4) the interlocking pattern of bricks, which causes an anisotropic
response to shear loading. The material model is described in detail in the study
by Sturt et al. (2018), which also reports the procedure for validating the material.
A testing campaign was carried out in 2015 to characterize the CaSi masonry
typically that is typical of the load-bearing inner leaf of modern Dutch cavity wall
systems. These experiments were performed at TU Delf in the Netherlands
(Messali et al., 2017) and at EUCENTRE in Italy (Graziotti et al., 2017). The
testing included in-plane and out-plane tests on wall specimens and full-scale
shaking table tests of URM houses.

Figure 3.5 shows different views of the 3D finite element model developed
in LS_DYNA. It also shows the coordinate system considered, which was set by
placing the X-axis along the larger structure’s dimension and Y-axis along the
transverse direction.
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Figure 3.5 Views of the three-dimensional finite element model of the case-study’s terraced house.

3.4. Modal (Eigenvalue) Analysis

In the first step, modal analysis was performed by calculating the first 20 modes
of the building. Structures built with the configuration described in the previous
paragraphs generally exhibit two very different seismic behaviors in the two
principal directions. These structures are more flexible and vulnerable in the
longitudinal direction, i.e., the X-direction (Graziotti et al., 2017). This was
confirmed by the modal analysis, with the first mode showing in-plane
deformations in the weak direction and the activation of the larger part of the mass
of the structure in the X-direction (participating mass equal to 57.67 %). Hereafter,
this is therefore referred to as the first mode, with a period of natural vibration, T|

, equal to 0.20 s.

In the Y-direction, the first major mode was mode 17, with participating mass
of 22.90%. The other modes were generally local and concentrated in the roof of
the structure. Table 3.1 shows the period of natural vibration and the effective
mass and participating mass in the X- and Y-directions.

Table 3.1 Modes of the case-study building.

X-direction Y-direction
Mode  Period [s]  Eff. Mass [kg]  Partic. [%]  Eff. Mass [kg] ~ Partic. [%)]
1 0.199 1.45E+05 57.65% 2.80E+02 0.11%
2 0.175 1.55E+01 0.01% 2.51E+03 1.00%
3 0.175 7.34E+01 0.02% 3.29E+03 1.31%
4 0.174 4.97E+01 0.02% 4.82E+00 0.00%
5 0.174 3.05E+01 0.02% 1.32E+03 0.53%
6 0.165 2.82E+02 0.11% 7.67E+03 3.05%
7 0.161 1.45E+01 0.00% 1.86E+03 0.74%
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Table 3.1 (Continued) Modes of the case-study building.

X-direction Y-direction
Mode  Period [s]  Eff. Mass [kg]  Partic. [%]  Eff. Mass [kg]  Partic. [%]
8 0.161 3.04E+03 1.22% 1.80E+02 0.07%
9 0.159 4.46E+02 0.17% 5.62E+02 0.23%
10 0.114 5.59E+03 2.23% 6.48E+03 2.58%
11 0.113 1.93E+03 0.77% 2.93E+04 11.66%
12 0.113 1.45E+03 0.58% 2.74E+02 0.11%
13 0.111 2.23E+02 0.09% 1.98E+03 0.79%
14 0.111 9.70E+02 0.38% 2.81E+02 0.11%
15 0.110 6.45E+02 0.26% 2.82E-01 0.00%
16 0.105 1.54E+04 6.13% 2.80E+04 11.14%
17 0.102 1.32E+04 5.25% 5.75E+04 22.90%
18 0.094 7.40E+02 0.30% 4.52E+02 0.18%
19 0.087 2.72E+01 0.01% 4.56E+00 0.00%
20 0.086 1.60E+01 0.00% 1.38E+01 0.00%

3.5. Non-linear static (pushover) analysis

A non-linear static analysis was carried out by applying in the perpendicular
directions of the structure (X and Y) two load patterns in both positive and
negative orientations of the seismic loads and recording the static nonlinear
response. The inverse triangular and uniform (mass-proportional) force
distributions were used for the analysis. The first type of distribution is typically
similar and represents the forces produced by the dominant mode of vibration.
Meanwhile, the uniform distribution represents a possible soft-storey mechanism
where the response is controlled by the ground-level story. These distributions can
be taken as the upper and lower boundaries of the actual response of the dynamic
analyses. Generally, the real failure mode is predicted by one of these distributions.
Table 3.2 shows the lateral-load proportions.

Table 3.2 Lateral-load proportions.

Mass Floor [kg] Uniform Distribution Triangular Distribution
Second floor 73043 1.00 1.00
First floor 87827 1.20 0.52

Subsequently, in addition to the static pushover analyses performed applying
the two force distributions in the X- and Y-directions; the cyclic pushover
assessments were executed using the loading protocol relating to the displacement
shown in Figure 3.6 and defined according to the Protocol ISO 16670. This
protocol concerns displacement cycles grouped in phases at displacement levels
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that increase incrementally. The protocol has two displacement patterns. The first
one consists of five single, fully reversed cycles at displacements of 1.25%, 2.50%,
5.0%, 7.5% and 10% of the ultimate displacement. The second pattern has three
fully reversed cycles of equal amplitude, at displacements of 20%, 40 %, 60%,
80%, 100% and 120% of the ultimate displacement. The ultimate displacement is
assumed equal to 0.04 m.

0.05
0.04 ¢
0.03 f
0.02

"ol AAMMM
2

-0.02 +
-0.03 +
-0.04+
-0.05
0.0

Displacement [m]

5.0 10.0 15.0 20.0 25.C
Cycle No.

Figure 3.6 Loading protocol for the cyclic pushover analyses.

The results of the static and cyclic pushover analyses obtained for the two force-
distribution types are reported in Figure 3.7 in terms of the base shear, 17, and
the displacement of the control point, i.e., the barycenter of the top floor. Panels
(a) and (b) represent the results obtained applying the uniform distribution of
forces whereas panels (c) and (d) refer to the application of the triangular force
distribution. The figure also shows several characteristic points individuated on
the static pushover curves: 1) the point of maximum base shear (point A in the
positive direction of the load and A’ in the negative direction); 2) the point of a
20% reduction in the base shear (point B in the load’s positive direction and B’ in
its negative direction); and 3) the point of a 50% reduction in the base shear (point
C in the positive direction of the load and C’ in the negative direction). The values
of the points’ coordinates in terms of base shear, 17, , and displacement of the top

floor, &, are set out in Table 3.3 and in Table 3.4 for the uniform and triangular
force-distributions, respectively.
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Figure 3.7 Results of the static and cyclic pushover analyses performed by applying the uniform
distribution of forces in the X direction (a) and the Y direction (b). Results of the static and cyclic
pushover analyses performed by applying the triangular distribution of forces in the X direction (c)
and the Y direction (d).

Table 3.3 Coordinates of the characteristic points relating to the uniform distribution of forces.

Direction X Direction Y
Digp [] v, [#N] Dig [ 1] v, [&N]
A 0.005 295.6 0.003 807.6
B 0.015 236.5 0.006 646.09
C 0.046 147.8 - 403.8
A -0.007 -386.8 -0.002 -796.4
B -0.012 -309.4 -0.006 -637.1
C -0.029 -193.4 -0.159 -398.2

Table 3.4 Coordinates of the characteristic points relating to the triangular distribution of forces.

Ditrection X Ditrection Y
Disp [m] v, [&N] Disp [n] v, [&N]
A 0.005 264.5 0.003 769.3
B 0.008 211.6 0.006 615.4
C 0.031 1323 - 384.6
A -0.005 -318.9 -0.003 -770.6
B -0.009 -255.1 -0.014 -616.5
C -0.021 -159.5 -0.147 -385.3

3.6. Assessment of seismic fragilities using the 3D finite element
model

There are several procedures to conduct a nonlinear dynamic analysis (NLDA) for
the purpose of collecting the data required to estimate the fragility functions. One
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of these methods is Cloud Analysis, which was used in this study to assess of the
fragility curves of the case-study’s system. The cloud data encompass pairs of
ground motion intensity measure (IM ) and its corresponding structural response,
generally expressed using an engineering demand parameter ( EDP). The statistical
properties of the cloud data can be estimated by applying a conventional linear
regression (using least squares) to the data on the natural logarithmic scale, which
is the standard basis for the underlying log-normal distribution model (Jalayer et
al., 2015, 2017).

Consequently, the cloud method enables the identification of a probabilistic
relationship between an EDP and IM . This predicts the conditional median of
EDP for a given level of IM denoted as 77, :

1077y g (IM ) =1lna +b-1n(IM) (3.1)

where Inz and 4 are constant coefficients that are estimated from the linear regression.

The conditional logarithmic standard deviation of the EDP given IM , Brpp|v, can be

estimated as:

i=1

Brop = \/i(/n EDP, —/n(ﬂ . 11\4;’))2 /( N-2) (3.2)

where EDP, and IM, are the corresponding cloud data for the 7-th record in the set
and IN is the number of records.

A structure-specific seismic fragility function defines the conditional
probability that the structure, given a certain IM level, 77, fails to meet some
performance objective. This failure is often termed the exceedance of a limit or
damage state, DS, that can be defined using a threshold value of engineering

demand parameter, edp,,. The fragility function can therefore be written as
P[EDP>€@’DDS|U\/I =z'm] , or sometimes simply written as P[DS|IM =inm].

This probability in the case of a Cloud Analysis can be described using a lognormal
distribution (Jalayer and Cornell, 2008; Jalayer et al., 2017) , as reported in Eq. (3.3)

In(a-IM,)
P[ EDP > edp,|IM = im | = @[@] = @{MJ : (3.3)

ﬁEDP\IM ﬁEDP\IM

For ultimate limit states in general, structural collapse can be induced by some
of the selected records, resulting in very large EDP values. In these cases, the
displacement demands from NLDAs are unreliable, being known to exceed a
particular limiting value. A different procedure can, however, be utilized to
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estimate the probability of failure. This involves the explicit consideration of
collapse cases, dividing the cloud data into two parts: NoC, referring to the
records where the structure does not collapse; and C , where it does (Jalayer and
Cornell, 2008). The structural fragility for a prescribed limit state can be written
using the Total Probability Theorem:

P[ EDP > edp,i| IM = im | = P[ EDP > edp,, | IM = imt, NoC |- (1= P[C | IM = im]) +
+P[ EDP > edpp, | IM = im, C |- P[C | IM = imt]
(3.4)

where P[EDP > edp g | IM = i, NoC ] is the conditional probability that EDP is

greater than the threshold edp,, given that the collapse has not taken place. This
probability can be described using a lognormal distribution (Jalayer and Cornell,
2008; Jalayer et al., 2017) as reported in Eq. (3.3), but the conditional median and
standard deviation of the logarithm of EDP are evaluated considering the portion

of NoC data, i.e. 1 eppiiv, Noc and :BLUP\JM,MC'
P[ EDP > edp,i| IM = im,C | is the conditional probability that the EDP is
greater than the threshold edp,, given that the collapse has occurred. This term

is thus equal to unity. As reported in the following, P[C | IM zim] is the

probability of collapse, which can be evaluated using logistic regression (a.k.a.,
logit) as a function of IM :

1

+ ef(a',mf/ﬂm)

P[C|IM]= ; (3.5)

where o, and @, are the parameters of the logistic regression.

3.6.1. Choosing the Engineering Demand Parameter (EDP) and
defining the limit states

State-of-the-art analytical methods for estimating fragility functions rely on
subjecting the structure to NLSAs to collect the building’s responses to a suite of
accelerograms. The choice of EDP is therefore crucial. The EDP is synthetic
measure of the structural response and can be used to determine if a structure has
failed to meet a particular performance objective. Commonly used EDPs for
structures include drift/deformation quantities, which ate generally among the
better indicators of damage.

For masonry structures, both the choice of an EDP that represents the
global building performance and the relative definitions given to suitable limit

states are still open issues (Mouyiannou et al.,, 2014; Lagomarsino and Cattari,
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2015; Kappos and Papanikolaou, 2016). This is because achieving a local limit
condition would not be an adequate representation of the overall damage
sustained by the building. Indeed, the lack of proper connections between
orthogonal walls, and between walls and floors, is quite common in existing
masonry buildings and can facilitate the activation of local failure modes. Eatly
local damage modes may prevent the development of a global building response
governed by the in-plane behavior of masonry walls and the floor in-plane
stiffness. In this case, only the global behavior of the structure is investigated
assuming that the upgrade measures, designed by Arup (Arup, 2013) ensured
compliance with the standard NPR guidelines. This enables the development of
global building response to prevent local failures.

The choice of the EDP and the quantification of the limit states for the
fragility curves assessment were based on the Italian Guidelines and Technical
Instructions of the Council for National Research, (CNR), specially, CNR-DT
212/2013 (CNR, 2013). These guidelines provide suggestions for the 3D
modelling of a structure and the use of non-linear dynamic analyses as the analysis
methodology. In this case-study, the limit states were defined using a multiscale
approach that considers 1) the exceedance of a predetermined level of drift in a
certain number of elements (piers and spandrels); 2) the inter-storey drift in the
individual walls or the achievement of predefined levels of deformation in the slabs
(if flexible); and 3) the global response evaluated on the capacity curve of the
structure. The definitions of damage (SLD), serviceability (SLS) and near collapse (SLC)
limit states in the multiscale approach are described in brief below.

As non-linear continuous modeling was adopted to assess the level of drift
achieved by each element during the dynamic analyses, the piers and spandrels of
each masonry wall are defined a-posteriori according to Parisi and Augenti, (2015).

3.6.1.1. Limit state of damage (SLD)

In the multiscale approach, the variable of the limit state of damage, Y, , for

masonry buildings is defined as per Eq. (3.6):

Y pp = maax (Kumv Yoo Ysape ) (3.6)

where: Y, ¢ is the limit state variable defined at the level of the structural
element, based on the cumulative damage to the piers and spandrels (see Eq. (3.8)
)s Yy pa is the maximum value of the D/C (demand over capacity) ratio in terms
of the interstorey drift, meaning that, at the macro-element level, this control can
be significant in relation to the damage to non-structural elements; and Yy, ,, ., is

the ratio between the maximum displacement of a control point during the time-



CHAPTER 3 98

history analysis and the displacement corresponding to the attainment of the
maximum base shear evaluated on the pushover curve, which is obtained using
the same control point.

The limit state variable defined at the level of the structural element, Yy, ¢, is

defined as:

1
Yips = _mﬂx(z‘fw,‘s*’ ZA‘LD,M ) : (3.7)

SLD

T, p 1s a threshold, representing the maximum cumulative damage allowed for

the SLD, assumed in this case to be 3.0%. This threshold prevents the SLD from
being reached when only one element (pier or spandrel) achieves the maximum

drift; and zm) B and st , tepresent the cumulative damage caused to the

spandrels and piers, respectively. This cumulative damage is evaluated as the
percentage of spandrels/piers of the buildings that achieved a certain level of
damage, as defined by element drift limits (level 4 for spandrels and level 3 for
piers). These are contained in CNR-DT 212/2013 (CNR, 2013), and are also set
out in Table 3.5 and Table 3.6 for the piers and spandrels, respectively. For the
purposes of the current assessment, consideration was given to the minimum drift-
range values and the shear-failure mode for the piers, i.e., corresponding to drift
limits of 0.25% and 0.8% for the piers and spandrels, respectively.

Table 3.5 Range of drift for piers at different damage levels and different failure modes CNR-DT

212/2013.
Drift [%0]
Damage level 3 4 5
Flexural 0.4+0.8 0.8+1.2 1.2+1.8
Shear 0.25+0.4 0.4+0.6 0.6+0.9

Table 3.6 Ranges of drift for spandrels at different damage levels according to CNR-DT 212/2013.

Drift [%]
Damage level 3 4
0.4+0.6 0.8+1.2 1.8+2.2

wl

Therefore, Zy: ,, and st , inEq.(3.7) are evaluated in Eq. (3.8)as:
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1 D
ZUD,X = FSZY H{C_j - 1}

22
ZALD,P_ ZP:A/

where: N is the number of spandrels in the building; A, represents the resistant
areas of the piers; and H is a dummy variable that returns 0 for D, <C, and 1
for D, >C . Meanwhile, Y, ; ,, is defined as in Eq. (3.9):

4, 4

i B (3.9)
‘9&11))(11 0.2%

Y,

SIDM =

inwhich 9, is the maximum interstory drift and the threshold, &, ,; , is assumed

to be 0.2 % according to CNR-DT 212/2013.

3.6.1.2. Limit state of serviceability (SLS)

In the serviceability limit state, a variable measuring the spread of damage in a
construction is defined, i.e., Y, ;. This is directly related to the possibility that the

damage can be repairable. In the case of masonry buildings (unlike for RC
constructions), it is not necessary to represent the damage and related repair costs
of non-structural elements, as their prevalence is marginal (essentially being almost
all structural walls). However, it seems to be appropriate to assign different weights
to the damage caused to the vertical piers and horizontal spandrels, since the latter
are decidedly less significant and more easily repairable (as they are not
fundamental for carrying vertical loads). Furthermore, in relation to the piers, it is
also necessary to attribute weights commensurate with the corresponding resistant

areas. Therefore, Y,  is evaluated as follows:

np Di g D
YXU:L O‘PZHW(C }(1_“1))'2/1”’/(C - J (3.10)

i,SLS J,SLS

SN when Y., >1

SLC —

where 7, is a threshold of the conventional global cost of repair operations,

assumed in this case to be 0.6. The coefficient «, expresses the weight of the
masonry piers on the total economic value of the structural elements of the

building and was assumed equal 0.8. These sums are extended to all the piers #,
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and the spandrels 7, of the structure. The conventional repair-cost function,

‘(D,'/C,-,.sm ), is shown in Figure 3.8.

Qﬁ 0.5
a*
S
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Figure 3.8 Plot of the conventional repair cost function in Eq. (3.10).

Moreover, the weights associated with the repair costs of the piers are evaluated
in Eq. (3.10) as A,./ZA/€ , where A, is the resistant area of the 7-th pier. The
&

weights, w , of the repair costs for the spandrels are equal to 1/7 . Finally, the

variable Y, . controls the attainment of the collapse-prevention limit state, which

is defined in the next paragraph. This control assumes that SLS can never succeed
the SLC, and is required because certain collapse mechanisms, e.g., weak-storey,
do not lead to a significant spread of damage in a building and the cost function
does not increase beyond a particular value.

The weighted sum appearing in Eq. (3.10), i.e., the numerator of Y, , is also

known as the conventional global cost of repair.
3.6.1.3. Limit state of near collapse (SLC)

Similar to the SLD, in the near-collapse limit state, the variable Y, . is defined as:

Yoo = WW(YsLm) Yaca Ysce ) (3.11)

. . 1 1 . .
inwhich Yy, (= T_Z.xm,p_ 307 Z.x’m,p . In this case, Z‘”E’P is evaluated
SLC 7o

as per Eq. (3.8). It is assumed that the maximum capacity of the piers is reached
at the damage level 5, corresponding to a drift of 0.6%, as reported in Table 3.5
for the shear-failure mode. The threshold, 7., represents the maximum

cumulative damage allowed in the SL.C and is assumed to be 3.0%. The limit state
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variable associated with the macro elements, Y, ., , is defined as in the SLD,

with an assumption made that the limit threshold of the inter-story drift is 0.6%.
Finally, the limit state variable associated with the global response of the

building, Y, -, is the ratio between the maximum displacement of a control

point during the time-history analysis and the displacement corresponding to a
percentage degradation equal to 40% of the structure’s global base shear (60% of
the maximum base shear).

3.6.2. Record selection for the Cloud Analysis

A set of 40 records was selected from the NGA-West2 database to execute the
NDLAs. As the real-life structures upon which ours was modeled are subjected to
earthquakes due to gas extraction, the record selection was conducted without any
special regard being paid to the fault style, but instead only to the avoidance of the
effects of impulsive earthquakes and in consideration of soil category B. This is
based on the Eurocode 8 classification (CEN, 2004), and is characterized by a
shear-waves velocity ranging from 360 m/s and 800 m/s in the top 30 m (Vi 30).
Other selection criteria related to the execution of the Cloud Analysis
procedure were also taken into account (Jalayer et al., 2015, 2017). Reducing errors
in any estimation of the regression slope in this type of investigation requires a set
of records covering a vast range of intensity values. This was achieved using as

reference intensity measure the pseudo-acceleration at the natural vibration period

of the first mode of the structure in the X-direction: T, =0.20s, i.e.,S2(T;). The

records were selected giving due consideration to increasing values of Sa(T}),

evaluated considering the component Hi and covering a range of accelerations
between 0.008¢ and 1.33g.

It is also important to ensure that a significant portion of the records,
generally more than the 30%, has an EDP close to the value of the adopted limit
state. This guarantees that there are enough data points in the region under
consideration. Since different limit states were of interest, the final selection

criterion was met by choosing records with increasing S«(7;) values; with account

taken of constant increments of pseudo-acceleration.

Finally, selecting too many records (commonly more than 10%) from the
same seismic event should be avoided in order to reduce the potential correlation
between the EDP values assessed for different records.

The main characteristics of the records used to execute the NLDAs are set
out in Table 3.7. In particular, the following are reported: the RSN identification
number; the name and year of the seismic event; the name of the recording station;



CHAPTER 3

102

the moment magnitude of the event, M, ; the Joyner & Boote distance or R,

(Joyner and Boore, 1981); and the shear-waves velocity in the top 30 m (Vs30).

Table 3.7 Characteristics of the selected records.

o
(k] [m/s]

32 "Parkfield" 1966 "San Luis Obispo" 6.19 63.34 493.5
40 "Borrego Mtn" 1968 "San Onoftre - So Cal Edison" 6.63  129.11  442.88
41 "Lytle Creek" 1970 "Castaic - Old Ridge Route" 533  103.23  450.28
55 "San Fernando" 1971 "Buena Vista - Taft" 6.61  111.37  385.69
76 "San Fernando" 1971 "Maricopa Array #3" 6.61  109.01  441.25
81 "San Fernando" 1971 "Pearblossom Pump" 6.61 35.54 529.09
132 "Friuli_ Italy-02" 1976 "Forgaria Cornino" 591 14.65 412.37
230 "Mammoth Lakes-01" 1980 "Convict Creek" 6.06 1.1 382.12
236 "Mammoth Lakes-03" 1980 "Convict Creek" 591 2.67 382.12
288 "Irpinia_ Italy-01" 1980 "Brienza" 6.9 22.54 561.04
290 "Irpinia_ Italy-01" 1980 "Mercato San Sevetino" 6.9 29.79 428.57
304 "Irpinia_ Italy-02" 1980 "Tricatico" 6.2 64.36 496.46
413 "Coalinga-05" 1983 "Skunk Hollow" 5.77 7.27 480.32
434 "Borah Peak_ID-01" 1983 "ANL-767 Reactor Plant 688 10022 445.66

(Bsmt)"

435 "Borah Peak_ ID-01" 1983  "ANL-768 Power Plant (Bsmt)"  6.88 10022  445.66
481 "Lazio-Abtuzzo_ Italy" 1984 "Roccamonfina" 5.8 45.47 475.1
513 "N. Palm Springs" 1986 "Anza Fire Station" 6.06 42.17 360.45
546 "Chalfant Valley-01" 1986  "Lake Crowley - Shehorn Res." 5.77 24.37 456.83
548 "Chalfant Valley-02" 1986 "Benton" 6.19 21.55 370.94
572 "Taiwan SMART1(45)" 1986 "SMART1 E02" 7.3 51.35 671.52
587 "New Zealand-02" 1987 "Matahina Dam" 6.6 16.09 551.3
590 "Whittier Narrows-01" 1987 "Altadena - Eaton Canyon" 5.99 8.72 375.16
592 "Whittier Narrows-01" 1987 "Arcadia - Campus Dr" 5.99 4.53 367.53
753 "Loma Prieta" 1989 "Corralitos" 6.93 0.16 462.24
763 "Loma Prieta" 1989 "Gilroy - Gavilan Coll." 6.93 9.19 729.65
815 "Griva_ Greece" 1990 "Kilkis" 6.1 26.75 454.56
816 "Georgia_ USSR" 1991 "Ambralauri" 6.2 63.53 399.61
819 "Georgia_ USSR" 1991 "Oni" 6.2 42.19 392.67
823 "Roermond_ Netherlands" 1992 "OLE" 53 80.67 483.02
824 "Roermond_ Netherlands" 1992 "WBS" 5.3 100.81 525.95
897 "Landers" 1992 "Twentynine Palms" 7.28 41.43 635.01
954 "Northtidge-01" 1994 "Big Tujunga_ Angeles Nat F" 6.69 19.1 550.11
1041 "Northridge-01" 1994 "Mt Wilson - CIT Seis Sta" 6.69 35.53 680.37
1125 "Kozani_ Greece-01" 1995 "Kastoria" 6.4 47.79 579.4
1126 "Kozani_ Greece-01" 1995 "Kozani" 6.4 14.13 649.67
1137 "Dinar_ Turkey" 1995 "Burdur" 6.4 35.59 468.44
1612 "Duzce_ Turkey" 1999 "Lamont 1059" 7.14 4.17 551.3
2619 "Chi-Chi_ Taiwan-03" 1999 "TCU067" 6.2 27.66 433.63
4491 "L'Aquila_ Italy" 2009 "Ortucchio" 6.3 35.07 388.01
4893 "Chuetsu-oki_ Japan" 2007 "Toyotsu Nakano" 6.8 61.16 561.59
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Figure 3.9; Figure 3.10 and Figure 3.11 show the spectra for each component
of the records used to conduct the NLDAs in the LS-DYNA program. The H;
component of each record was applied in the X-direction of the structure and the
components H> and V in the Y- and Z-directions, respectively (see Figure 3.5).

120 Horizontal response spectra H1
T

25 T T T T T T T

Sa(T) [g]

1
T [s]

Figure 3.9 Spectra of the ground motions components Hi applied in the X-direction of the
structure.

T,=0.20s Horizontal response spectra H2
T T T

2.5

Sa(T) [g]

Figure 3.10 Spectra of the ground motions components H» applied in the Y-direction of the
structure.
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Figure 3.11 Spectra of the ground motions components V applied in the Z-direction of the
structure.

3.6.3. Intensity Measure

Intensity measure had to be chosen before conducting the analytical estimation of
the fragility curves of the intact structure. Three IMs were investigated: 1) the

first-mode spectral acceleration, . g(T1 ) , evaluated on the component Hy applied

in the X-direction of the structure during the execution of the NLDAs; 2)

Sa(T;),,,> which is the geometric mean of the spectral accelerations Sa(T;)

evaluated using the components Hi and Hz applied in the X- and Y-directions of
the structure, respectively , when performing the NLDAs; 3) the average spectral

acceleration, Sa, (1;,T,,...,T,, ) (Baker and Cornell, 2006), evaluated using Hi

ag
and with consideration given to 20 equally spaced periods in a range between 0.01s
and 0.20 s.

The process of selecting the intensity measure for the execution of Cloud
Analysis and the assessment of fragility curves of the structures was based on the
concepts of sufficiency and efficiency, which have strict ties to the accuracy of
structural-performance assessment (Luco 2002; Luco and Cornell 2007; Padgett
et al. 2007). In fact, a sufficient IM renders the structural response conditionally
independent, given the selected intensity measure, of the other earthquake
characteristics involved in the seismic-hazard assessment at the construction site
(i.e., magnitude and source-to-site distance). Meanwhile, an ¢fficient IM leads to
relatively little variability in the structural response given the IM . In the context
of the Cloud Analysis, the efficiency of an IM can be measured by the standard

error of the regression analysis, [y, . Consequently, the most efficient IM

produces the lowest S, value.
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On the other hand, establishing the IM’s sufficiency requires an investigation
of the effectiveness of the ground motion (GM) characteristics as further
regression variables (in addition to IM ). In other words, as regression variables,
the GM features result in very little improvement to the regression prediction if
the JM is sufficient. Any enhancement can be judged by the reduction in the
dispersion of the regression residuals and/or the statistical significance of the
regression coefficients corresponding to the GM characteristics (Jalayer, 2003).

In this study, the sufficiency was evaluated using a simplified statistical
approach based on linear regression to measure the effectiveness of the GM
characteristics as additional regression variables. This method requires a regression
of the dependent variable, EDP, versus the independent variable, IM .
Subsequently, plotting the residuals of the regression versus the GM characteristics
enables a second linear regression to be performed. By highlighting any significant
data trends, this approach facilitates the investigation of the potential dependence
of EDP on the other GM characteristics. The significance of the trend can be
measured by testing the hypothesis that the slope of the second linear regression
is zero. This can be evaluated using the p-value, with a hypothesis rejected if this
is lower than a set value (e.g., 0.05; 0.01) and IM is insufficient.

Next, the dependence of the structural response conditional on the three

IMs was tested with respect to the moment magnitude (A,), Joyner & Boore
distance (R;), and the 5-95% significant duration (D; ,,,). The standard

residuals from the first linear regression were plotted against the moment
magnitudes, the logarithm of distances and the logarithm of the 5-95% significant
durations. A standard linear regression was then carried out. The statistical
significance of the regression estimate was quantified using a p-value, and a value
lower than 0.05 for any of the three parameters is considered to be a
demonstration of the statistical significance between the residuals and that
parametet.

It is common to check the dependence of an M with respect to magnitude
and distance (Luco and Cornell, 2007). In this study, however, the dependence on
a measure of the ground shaking duration was also considered. The decision to do
so was based on the evidence from previous research that the response of URM
buildings (and other strength- and stiffness-degrading structures) is dependent on
the length of any strong ground-shaking (Bommer et al., 2004). The interval related
to 5-95% of the total Arias Intensity (Arias, 1970) of the record (the so-called 5—

95% significant duration D,_,.,, ) was selected as the preferred duration parameter.
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3.6.4. Results of the Cloud Analysis

This section describes the assessment of the fragility curves, performed using the
Cloud Analysis approach. The NLDAs were conducted by applying the three
components of each record (Hi, H2and V) in the three directions of the structure,
X, Y and Z (shown in Figure 3.2), respectively and recording the structural
response.

The fragility curves were evaluated for the three damage states SLD, SLS and
SLC, with single fragilities defined for the entire structure. It was assumed that the
structural response was the maximum value of the damage state variables in the
X- and the Y-directions for each record. It is worth recalling that the definition of
the limit states (described in the previous paragraphs) exclusively considers the in-
plane structural response and assumes the shear-failure mode for the piers. Each

damage state is considered to have been achieved when the variables Y, ,, Y ¢
and Y, . have a value equal to 1.0.

Table 3.8 reports the data for each record used to evaluate the fragility curves,

i.e., the values for each record of the damage state variables Y, ,, Y, and Y, .

as well as three IMs, Sa(Tl); .Ya(T]) and Sa,, . Moreover, , as described

GM

above, the magnitude, M

w?

the Joyner & Boore distance, R, and the significant
duration of the ground motions, D, ., , were used to check the sufficiency of the

IM .

Table 3.8 Data for assessing the fragility function and checking the sufficiency of the intensity

measure.

Sa (T1 ) Sa (11 )(, M Y @y Yap Yo Yoo M, R B D; s,

[e] el [ [ [ [ [ [km] [

32 0.035 0.036 0.021  0.339 0.058 0.075 6.19  63.34 17.84

RSN

40 0.097 0.111 0.059 5.898 0.120 0.547 6.63 129.11 28.00
41 0.050 0.061 0.036  0.809 0.104 0.034 533 103.23 9.18
55 0.028 0.034 0.018 3.549 0.062 0586 6.61 111.37  20.435
76 0.022 0.021 0.014 7.366 0.057 0571 6.61 109.01 22.85
81 0.256 0.281 0.248 3.514 1.667 1.190 6.61 35.54 13.73
132 0574 0.605 0.486 5.864 0.832 0.601 591 14.65 4.495
230 1.334 1.102 0.832 23403 1.094 15476 6.06 1.10 9.185
236 0.616 0.593 0.408 12.468 1.667 2381 591 2.67 6.30
288  0.760 0.668 0.518 8.507 0.711 0970 6.9 22.54  10.3124
290 0.409 0.442 0.170  4.839 0.419 0.527 6.9 29.79  26.7061
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Table 3.8 (Continued) Data for assessing the fragility function and checking the sufficiency of the
intensity measure.

Sa (Tl) Sa (Tl )(,;\r ‘Svﬂnrg Y\u) Ysu Y\'IL MU' R/B Dsf%%

[g] el [ [ ) [ [e] [

304 0.038 0.045 0.034 8904 0.067 0298 6.2 64.36  18.9341

RSN

413 0.892 0.837 0.604 14.558 1.667 2381 577 7.27 5.265
434 0.091 0.082 0.049 0.566 0.087 0.088 688 100.22  15.88
435 0.081 0.098 0.069 0.853 0.101 0.184 6.88 100.22  15.56
481 0.098 0.098 0.058 2211 0.123 0230 58 4547  12.5562
513 0.287 0.192 0.200 2224 0265 0.146 6.06 4217 5.845
546 0.172 0.136 0.096 2807 0.139 0278 577 2437  14.595
548 0.672 0.505 0.461 9.094 1.667 1272 619 2155  16.645
572 0.334 0.384 0.238 20.987 1.667 2493 7.3 51.35 12.42
587  0.476 0.572 0.454 27.768 1.667 7.143 6.6 16.09 6.4
590 0.635 0.481 0.485 6.068 1.667 2381 599 8.72 4.49
592 0.774 0.599 0.535 17.246  1.667 5952 599 4.53 3.08
753 1.024 1.026 0.953 27.768 1.667 15476 6.93 0.16 6.86
763 0.832 0.973 0.738 23.080 1.667 8.333 6.93 9.19 5
815  0.090 0.115 0.082 1.294 0.095 0.190 6.1 26.75 11.03
816  0.034 0.034 0.023 1.190 0.059 0209 6.2 63.53  16.263
819  0.322 0.193 0.132  1.419 0348 0210 6.2 4219 11.4036
823 0.008 0.009 0.007 0.310 0.0426 0.1034 5.3 80.67  9.8532
824  0.011 0.012 0.009 0.123 0.053 0.022 53  100.81 13.9216
897  0.217 0.190 0.149 14433 0.181 0.898 7.28  41.43 30.7
954 0.557 0.611 0.342 5537 0.691 0513  6.69 19.1 10.72
1041 0.839 0.628 0.391 2.605 0.685 0511 6.69 3553 8.84
1125 0.043 0.037 0.028 0.836  0.067 0.104 6.4 4779 15.765
1126 0.723 0.595 0.389 3.178 0.607  0.650 6.4 14.13 6.45
1137 0.155 0.120 0.068 4.182 0214 0468 6.4 35.59 16.37
1612 0.502 0.554 0.280 26.579 1.667 3.570 7.14 417 14.09
2619 0.456 0.454 0.325 16.321 1.667 2735 6.2 27.66 6.585
4491 0.173 0.127 0.086 3296 0.185 0.658 6.3 35.07 9.775

4893 0.373 0.282 0.308 17.246 1.667 8333 6.8 61.16 8.91

Table 3.9 and Table 3.10 show the results of the Cloud Analysis and the sufficiency
check for the SLD and SLC, respectively. In detail, the following are reported: the
coefficients « and b, estimated from the linear regression in Eq. (3.1); the
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conditional logarithmic standard deviation of EDP given IM, Brppimt (see
Eq.(3.2)); the p —value ; and the slopes, a, of the linear regressions obtained for

the sufficiency check of the three alternative IMs against the magnitude, M, , the

distance, R, and the significant duration of ground motions, D, ,, .

Table 3.9 Results of the Cloud Analysis and the sufficiency check performed for the damage limit
state (SLD).

p—value p—value p—value

IM a b :Bl:[)mm (Mw) (R/B ) ( D;,‘)w,,) ay, a“m ap,
Sa(]]) 2.60 0.73 0.94 0.04 0.59 0.32 0.65  -0.08 0.30
Afﬂ(YI )m, 274 0.79 0.91 0.06 0.71 0.27 0.59  -0.06 0.34
Sa 3.09 0.84 0.88 0.05 0.81 0.14 0.62  -0.04 0.45

ang

Table 3.10 Results of the Cloud Analysis and the sufficiency check performed for the near collapse
limit state (SLC).

p—valne p—value p—valne

M a b Browm (M) (x,) (Do) @, @, @,
Sa(T;) .05 090 106 0.12 0.08 0.87 050 021  -0.05
Sa(T),, 120 096  1.03 0.17 0.11 0.91 044 019  -0.04
Sa 166 1.04 096 0.16 0.20 0.70 045 -015 012

ag

In relation to the assessment of the fragility curve for the SLS, the definition of
the damage state variable Y, . in Eq. (3.10) required verification that the SLS
would never succeed the SLC. Therefore, if the first term in Eq. (3.10) is greater
than 1.0; Y|, ; assumes a limit value Y, =1/0.6=1.67. To account for these
extreme cases, the approach in Jalayer and Cornell (2008) and governed by the Eq.
(3.4), was adopted. Table 3.11 sets out the results of Cloud Analysis for the SLS
for the NoC data (the cases where the structure does not experience the collapse,
Le., Y, <1.67). In detail, the following are reported: the coefficients « and 2,
estimated from the linear regression in Eq. (3.1); the conditional logarithmic
standard deviation of EDP given IM, Brppmv (see Eq.(3.2)); the p —wvalue ; and
the slopes, a, of the linear regressions performed for the IM sufficiency checks

against the magnitude, M, , the distance, R, and the significant duration of the

ground motions, D; i, .
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Table 3.11 Results of the Cloud Analysis and the sufficiency check performed for the serviceability
limit state (SLS).

p—valne p—valne p—valne

M v Peom Ay, Gy, O,

a EDPIM (M,, ) (R],; ) ( D..., ) M, R, D.
Sa(T;) 0z 070 027 0.60 0.35 0.49 023 -016 024
Sa(1)),, 0 1 g 075 028 0.99 0.47 0.58 000 012  -0.19
Sa,, 021 081 030 0.44 0.44 0.62 2034 =013 -0.17

The results summarized in Table 3.9, Table 3.10 and Table 3.11 reveal that
the most efficient of the sufficient intensity measures for SLD and SLC is the

average spectral acceleration, Sa,, ; for the SLS, it is the first-mode spectral-

acceleration, Sa(T;). However, the a,, IM was chosen to represent all three

damage states, because it was also found to be sufficient for the SLS.
Figure 3.12 shows the linear regressions that take into account the IM

selected for the three damage states.

(@) 3.5
3.0
2.5
2.0
15
1.0
" 05
0.0
05
1.0
15

2.0
-5

(®) 15

Yap

Figure 3.12 Linear regressions of the cloud data for SLD (a); SLS (b) and SLC (c).

Figure 3.13 contains an example of the sufficiency check conducted for the

intensity measure, Sa,, , and the SLC. The figure shows the scatter plots of the

avg >
regressions residuals versus the moment magnitude, (M, ), the Joyner & Boore
distance, (R ;), and the 5-95% significant duration, (D;_,, ). The p-values are

also reported.
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Figure 3.13 Sufficiency check for the case of SLC and the intensity measure Sa,, in relation to the
moment magnitude, M, (a), the Joyner & Boore distance, R, (b), and of the 5-95% significant

duration, D, ., (©).

Finally, the fragility curves of the structure were evaluated according to Eq. (3.3)
for the SLD and SLC, with the results shown in Figure 3.14a. The medians,

Npppi » and the standard deviations, B, , which define the fragility curve for

the SLD and SLC, are reported in Table 3.12.

Table 3.12 Medians and standard deviations defining the fragility curve for the damage states SLD

and SLC.
Median Standard deviation
D tat
amage state 771’1)1’\1,11 Ig] ﬁ[:l)l’\l,’\l [g]
SLD 0.025 1.051
SLC 0.204 0.920

The fragility curve for the SLS was evaluated according to Eq. (3.4). Figure 3.14b
shows this curve, P[YﬂJ > 1| IM =z';77], and all the components contributing to
its assessment, namely: the probability of collapse, P [C | IM Zim], evaluated
using the logistic regression; and the conditional probability that Y, ¢ is greater
than 1.0 given that the collapse has not taken place, P[Yju. 21| IM =im, Noa] R
assessed via a linear regression of the Noc cloud data.

It should be noted that the probability of collapse, P [C | IM = z'm] ,in Figure

3.14b does not coincide with the fragility curves, P [Y.

e 21 IM =i, in Figure
3.14a. This is because they were evaluated by taking into account different EDPs
and using different distribution models, i.e., the logit in the first case and the

lognormal in the second one.
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Figure 3.14 Fragility curves of the case-study structure for the SLD and SLC (a), and the fragility
curve evaluated for the SLS and its components, according to Eq. (3.4) (b).

3.7. Assessment of state-dependent seismic fragility curves

If seismic-reliability calculations are expected to account for multiple earthquakes
and damage accumulation, it becomes important to evaluate the probability that

an already-damaged structure will make the transition from one damage state, DS

, to another that is more severe, DS ;. This probability is defined by the state-

dependent fragility function P [EDP >edpg | DS, MIM = zm} and represents the

probability that the structure will achieve DS ; conditional on the occurrence of a

shaking intensity 77, and that the structure has already been found in DS, . Here,

the  state-dependent  fragility  functions are  simply  written  as
P DS | DS, NIM =i |

The evaluation of the state-dependent fragility curves was conducted using
the procedure referred to as back-to-back IDA (Luco et al., 2004; Ryu et al., 2011;
Goda, 2012; Ruiz-Garcfa, 2012; Raghunandan et al., 2015; Goda, 2015). This
requires a structure to be subjected to numerous NLDAs. The main disadvantage
of the procedure is its high computational cost, particularly for the 3D structures.
Therefore, in order to reduce the analysis time, a simplified procedure for
analytical fragility estimation is used, that is based on non-linear static analysis.
This requires the definition of a surrogate structure in the form of an inelastic
equivalent single-degree-of-freedom (ESDoF) system, whose definition is based
on the pushover curve of the original model. Two systems were defined and
calibrated to reproduce the static and cyclic behavior of the 3D model in the two
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main directions (see Figure 3.7). The systems were analyzed using back-to-back
IDA to assess the state-dependent fragility curves. Meanwhile, the fragility curves
of the intact structure were evaluated via IDA to ensure a consistent comparison
was possible (IDA, Vamvatsikos and Cornell, 2001, 2004).

The structure-specific and state-dependent fragility curves were obtained by
applying the IM-based approach (Vamvatsikos and Cornell, 2001) to the IDA
curves and the back-to-back IDA curves, respectively. So, for the former, the IM-

based method entailed identifying the intersections of the IDA curves, i, , with
the vertical line passing through the EDP threshold that defines the attainment of
the damage state. These #,,;; values can be viewed as realizations of a random
variable (RV), IM,, , which is the seismic intensity to which the ground motion
needs to be scaled for the structure to achieve DS, . The fragility function can then

be defined as the probability that IM,; is equal or lower than the level of seismic
intensity possibly occurring at the site, ie., P [DSi [IM= z'm] =P|:I]\/I ps, < z'm].
Assuming that IM,,, follows a lognormal distribution, the fragility function can

be estimated according to Eq. (3.12):

P[DS, |1 M =im]=P[IM,; <im|=®[(In(im)-n)/B]
n= % : Z In(imy; ) (3.12)
=

where 77 and [ are the parameter estimates (median and logarithmic standard deviation)

of the assumed lognormal distribution of IM g, s the realization of the RV

DS, >

coming from to the j-th record; and @ () is the standard Gaussian (cumulative) function.

3.7.1. Calibration of the equivalent SDoF oscillators

The conversion to the ESDoIF models involved defining the characteristics of the

SDoF oscillators (e.g., the equivalent mass, m , and the vibration period, T ) and
backbones parameters. Also characterized was the hysteretic behavior in the
structure’s two horizontal directions.

Two SDoFs, each representative of a direction of the structure, were
calibrated based on the structural response shown in Figure 3.7. The backbone
curves of the two ESDoF oscillators were obtained from the pushover curves of
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the original 3D structure scaled down by the corresponding modal participation
factors ' (Fajfar, 2000; T'=1.00 for the pushover curves obtained using a
uniform force distribution and T"=1.23 in case of the triangular force
distribution) and defining a multi-linear approximation of the resulting curves, as
reported in Figure 3.15 for the latter distribution type. As the application of the
triangular force distribution produced the lowest force and displacement values in
both the X and Y-directions (%0 * coordinates), its resulting pushover curves
were used to define the capacity curves of the two SDoF systems.

The mass, 7 , the period, T", and the force and displacement values at the
points defining the linearized backbone curves of the ESDoFs are reported in
Table 3.13 and Table 3.14 for the X and Y-directions, respectively. It can be seen
that the structure had an asymmetric static response in both directions; therefore,
the positive and negative directions of the load are specified using signs plus and

minus in the subscript, respectively (e.g., Fz,xj and F, )

Table 3.13 Characteristics of the equivalent SDOF system representing the X ditection of the

structure.

Direction X

e o S8 w T
[iN] [m] [N [m] (%] [¢]
1 206.76 0.0029 -240.06  -0.0026 118713 0.239
2 142.05 0.0088 -133.570  -0.017
3 96.09 0.0293 -81.681 -0.047
4 26.84 0.1200 -31.341 -0.127

Table 3.14 Characteristics of the equivalent SDOF system representing the Y direction of the

structure.
Direction Y
= g, s S n T
[iN] [m] [N ][] ]
1 603.39 0.0021 62649  -0.0021 118713 0.126
2 492.04 0.0051  -517.21  -0.007
3 404.27 0.0321 41831  -0.033

4 405.75 0.1410 -423.42 -0.114
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Figure 3.15 Definition of the backbone curves of the two SDoF systems representing the behavior
of the entire structure in the X (a) and Y (b) direction.

In addition to the backbone curves, the hysteretic behavior assigned to each
ESDoF system to execute the NLDAs was also calibrated based on the results of
the cyclic pushovers shown in Figure 3.7. The two ESDoF systems were analyzed
using the OpenSees platform (Open System for Earthquake Engineering Simulation,
McKenna, 2011), meaning that each hysteresis was defined using a selection of the
hysteresis rules available in the OpenSees material library. To reproduce the
hysteretic behavior shown in the X-direction (Figure 3.7c), a hysteresis was defined
as a combination of the flag-shaped hysteretic rule (Christopoulos et al., 2008) and
a pinched load-deformation response with strength and stiffness degradation
under cyclic loading (i.e., pinching4 Material in the OpenSees library). On the other
hand, only the pinching4 Material was used for the Y-direction and calibrated to
reproduce the behavior shown in Figure 3.7d.

Figure 3.16 reports the comparison between the hysteretic behavior of the
3D model (panels (a) and (c)) and the responses of the two ESDoF systems to the
loading protocol shown in Figure 3.6 (panels (b) and (d)).
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Figure 3.16 Comparison of the hysteretic behavior obtained by analyzing the three-dimensional

structure (a) and the hysteretic law defined using the OpenSees platform (b) for the X- direction.
Comparison of the hysteretic behavior obtained by analyzing the three-dimensional structure (c) and
the hysteretic law defined using the OpenSees platform (d) for the Y- direction.

3.7.2. Fragility assessment

The assessment of the fragility curves of the intact structure and of the state-
dependent fragility curves were conducted via IDA and back-to-back IDA,
respectively. The same set of 30 records selected from the NESS dataset (Pacor et
al., 2018) was used for both the IDA and the first and the second phases of the
back-to-back IDA. All these analyses (IDA and back-to-back IDA) were
performed using the OpenSees platform (Open System for Earthquake
Engineering Simulation; McKenna, 2011) via a recent version of the DYANAS
software (Baltzopoulos et al. 2018).

The fragility curves were assessed taking into account four damage states,
from DS, to DS, , defined in accordance with the study of Graziotti et al. (2017).

In generally very good agreement with the literature (Lagomarsino and Cattari,
2015), this detects the global drifts corresponding to the different performance
levels identified on the basis of a shaking-table test of a full-scale, representative
specimen of a Dutch two-story terraced house in the Netherlands. Damage state
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DS, was defined as the maximum level of displacement that can be achieved
without causing any visible damage; DS, refers to the maximum displacement
level achieved that causes only minot/slight structural damage, i.e., it could be
easily repaired for a possible immediate occupancy; DS, relates to moderate
structural damage (observed in all the piers of the structure) that could be viewed
as a life-safety limit state; and D.S, references a collapse prevention damage state.
The values of maximum displacement, J *,, that represent the attainment of the

~th damage state in the case-study structure and for all the performance levels

considered are reported in Table 3.15.

Table 3.15 Values of maximum displacement representing the attainment of the four damage
states.

5% 5 * 5 5%,
I O B S )

0.0031 0.0047 0.015 0.047

The assessment of the fragility curves and the state-dependent fragility
curves were conducted for the entire structure considering, for each record and
the /th damage state, the minimum value of 7, producing the achievement of
the considered damage state in one of the two directions of the structure. The
resulting medians, 77, and standard deviations, £, defining the parametric fragility
curves (see Eq.(3.12)) for the four damage states are reported in Table 3.16. The
IM used for the assessments was the average spectral acceleration
Sa,, (1;,1;,...,T,,) » which was evaluated taking into account 20 equally spaced

periods in a range between 0.01s and 0.2s.
The fragility curves of the intact structure are shown in panel (a) of Figure 3.17.

Table 3.16 Median, 7, and logarithmic standard deviation, 3, defining the structure’s fragility
curves (IM in g).

MEDIAN 7 SIGMA g
DS, DS, DS, Ds, DS, DS, DS, Ds,
014 018 0.29 0.51 0.38 0.34 0.46 0.69

The state-dependent fragility curves were estimated by means of the back-to-
back IDA, using a set of 30 records to represent the first damaging shock of the
cluster, scaled to produce maximum displacements of 0.0031 m, 0.0047 m and

0.015 m corresponding to the attainment of DS, DS, and DS, respectively.
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Thereafter, the same 30 subsequent-shock accelerograms per the initial shock were
applied for a total of nine-hundred curves.
Table 3.17 contains the values for the median, 77, and logarithmic standard

deviation, [, defining the lognormal distribution obtained with Eq. (3.12), i.e.,

the structure’s parametric state-dependent fragility curves. The first column in the
table sets out the initial damage state, while the the rest of the rows represent the
final damage states.

Panels (b), (c) and (d) in Figure 3.17 show the structure’s state-dependent
fragility curves, evaluated with the results of the Back-to-Back IDA and assuming
a lognormal distribution. Each of the three panels in Figure 3.17 shows the curves
obtained when considering all the possible transitions between damage states

(from a damage state / to a damage state ; ) assuming the 7-th initial damage
state. Panel (b) shows curves obtained when DS, is taken to be the initial damage
state, while panel (¢) and (d) do so for the cases where DS, and DS,

respectively, represent the initial damage. The fragility functions in each panel,
which were assessed by assuming that the structure was initially in an intact
condition, are also reported as reference to show the increases in fragility caused
by the first shock.

Table 3.17 Median, 7, and logarithmic standard deviation, g, defining the state-dependent

fragility curves of the two SDoF systems ( IM in g).

MEDIAN 7 SIGMA g
Ds2 Ds3 DS4 Ds2 Ds$3 DS4
DS1 0.06 0.21 0.46 1.20 1.23 0.80
Ds2 - 0.20 0.45 - 1.23 0.78

DS3 - - 0.44 - - 0.79
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Figure 3.17 Structure-specific and state-dependent fragility curves of the case-study structure.

Fragility curves of the intact structure (a); state-dependent fragility curves evaluated by treating DS,
as the initial damage state (b); state-dependent fragility curves evaluated by treating DS, as the initial
damage state (c); state-dependent fragility curves evaluated by treating DS, as the initial damage

state (d).

3.8. Conclusions

Central to the discussion in this chapter has been the assessment of the fragility
and state-dependent fragility curves of the case-study’s model 3D structure, which
is representative of the URM terraced houses in the Groningen region of the
Netherlands. This type of building has been the subject of extensive research
because of the seismicity induced by commercial gas extraction in the area.

In a first step, the structure-specific fragilities were evaluated by analyzing a
3D finite element model developed in collaboration with Arup Italy using the LS-
DYNA software. The assessment was conducted using the Cloud Analysis, taking
into account three damage states defined according to the Italian Guidelines and
Technical Instructions of the National Research Council (CNR-DT 212/2013).

Subsequently, to limit the computational costs of assessing the state-
dependent fragility curves, two SDoF systems representing the structural behavior
in the model’s two main directions were calibrated and analyzed using the back-
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to-back Incremental Dynamic Analysis. This assessment took into account four
damage states available in the previous literature, which are defined based on the
outcomes of a shaking-table test of a full-scale specimen of the type of structure
modeled in this case study.
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Abstract

From this chapter was derived the paper:

—  Orlacchio M., Chioccarelli E., Baltzoponlos G., lervolino 1. (2021), “State-dependent seismic
[fragility functions for Italian reinforced concrete structures: preliminary results.” Proceedings of the
31" European Safety and Reliability Conference (ESREL), 19-23 September 2021, Angers,
France.

The present chapter deals with the analytical assessment of structural vulnerability
models for Italian building classes that constitutes one of the results of the
ongoing research project RISE (Real-time earthquake rlsk reduction for a
reSilient Europe). The structures under consideration are taken from the
outcomes of the SERA project (Seismology and Earthquake Engineering
Research Infrastructure Alliance for Europe) and refer to existing reinforced
concrete and masonry residential Italian buildings.

State-dependent fragility curves are evaluated via back-to-back incremental
dynamic analyses using equivalent-single-degree-of-freedom systems. The analyses
consider four damage states, identified by transient maximum inelastic
displacement thresholds defined on the system’s backbone curve, and are
performed with the DYANAS software. Such fragilities are required to calculate
the seismic structural reliability when it is possible for structural failure to be
reached progressively, i.e., due to the cumulative effect of multiple earthquakes.

Keywords:  sequence-based seismic reliability, back-to-back IDA, damage
accumulation, SDOF systems, reinforced concrete, masonry.

4.1. Introduction

One of the challenges facing the ongoing research project RISE (Real-time
earthquake rlsk reduction for a reSilient Enrope) is accounting for earthquake sequences
in short-term seismic risk assessment. This requires allowing for the fact that
structural failure can occur not only due to a single seismic event but can also be
reached progressively, due to damage accumulation in multiple earthquakes.
Seismic fragility functions are surrogate structural models that provide a
structure’s conditional probability of failure, given a certain level of seismic
intensity in a single event. In this context, failure refers to a structure failing to
meet some performance objective. An extension is represented by state-dependent
fragility functions, that provide the probability that an already-damaged structure
makes a transition from a damage state to another (worse) one, given the value of
ground motion intensity. The evaluation of state-dependent fragility is a necessary
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ingredient to account for damage accumulation in multiple events in risk
assessment (e.g., Iervolino et al. 2016, Iervolino et al. 2020).

Evaluation of structure-specific fragility functions can be made via non-linear
dynamic analysis of a numerical model of the structure. Past research has suggested
that the assessment of fragility functions representing structural typologies (or
classes) can also be performed applying the same method to a limited number of
structures, deemed representative of the entire class (e.g., lervolino et al. 2007;
Kazantzi and Vamvatsikos 2015).

This chapter presents the computation of the state-dependent fragility
functions for the Italian reinforced concrete (RC) and masonry residential
structure classes as identified in the SERA (Seismology and Earthquake Engineering
Research Infrastructure Alliance for Europe) research project. In fact, within the SERA
project, the capacity curves of equivalent-single-degree-of-freedom (ESDoF)
systems representative of different classes of the European buildings portfolio
were developed together with the corresponding fragility functions (Romao et al.
2019).

Although, for each RC building typology, the SERA project provided a set
of capacity curves (Romao et al. 2019), the average capacity curves of each set are
herein assumed to be representative of the entire typology. On the other hand, for
the Italian masonry classes, the SERA project provides single capacity curves
representative of each class.

The state-dependent fragilities are evaluated via the so-called back-to-back
Incremental Dynamic Analysis or back-to-back IDA (Goda 2012; Ryu et al. 2011).

The chapter is structured as follows: first, the characteristics of the set of
analyzed structures representative of the Italian RC and masonry buildings are
described. Then, the methodology is outlined along with the definition of damage
states used for the fragility assessment. The chosen intensity measure and the
identification of the number of ground motion records for the execution of the
nonlinear-dynamic analysis are also discussed. Finally, the results are presented,
discussing the lognormal assumption for the state-dependent fragilities.

4.2. RISE project structures

European existing structural typologies were identified in accordance with the
building taxonomy developed within SERA (Romao et al. 2019) on the basis of an
updated version of the international standard (i.e., the GEM building taxonomy;
Brzev et al. 2013). This taxonomy catalogues buildings considering four main
characteristics: primary construction material (e.g., reinforced concrete,
unreinforced masonty, steel, etc.); typology of the lateral load resisting system (e.g.,
wall, moment frame, infilled frame, etc.); height expressed in terms of number of
stories and seismic capacity-related properties (e.g., ductility and/or design later
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force), which depend on the evolution of seismic design in the country (e.g.,
Petruzzelli and Iervolino 2021); if available, information about the presence of
structural irregularities is also provided.

4.2.1. Italian RC structutes

The Italian RC existing structures analyzed in this study are represented by a set
of eighteen infilled frame buildings, each representing a building class. The
building classes are distinguished in terms of number of stories and level of seismic
design. The buildings/classes considered have one to six stories and ate also
identified in terms of code level of seismic design, i.e., absent or low. Moreover,
low-code structures are divided further, based on their design (lateral) base shear,
which is either 5% or 10% of the building weight (i.c., the seismic coefficient).

4.2.2. Italian masonry structures

The Italian masonry structures portfolio is represented in this study by a set of
fifteen wall masonry structures: in detail, ten unreinforced masonry (MUR)
buildings and five confined masonry structures (MCF). The MUR structures are
classified on the basis of the masonry material in rubble stone masonry (MUR-
STRUB); dressed stone masonry (MUR-STDRE) and masonry with clay bricks
(MUR-CL99). All the MUR structures are no-ductile systems having at most five
stories. More specifically, the set of ten unreinforced masonry buildings is
composed of five MUR-STRUB structures having from one to five stories, two
MUR-STDRE structures with number of stories equal to four and five, and three
MUR-CL99 buildings having from three to five stories.

Finally, the five confined masonry structures have low level of available
ductility and from one to five stories.

4.3. Methodology
4.3.1. Capacity curves and damage states definition

The structures described in the previous section are analyzed using equivalent
single-degree-of-freedom systems or ESDoF (e.g., Suzuki and Iervolino 2019)
characterized by piece-wise linear backbone curves and a pinched hysteretic
behavior exhibiting degradation of strength and of (unloading and reloading)
stiffness under cyclic loading. An example of the cyclic response of the analyzed
systems is shown in Figure 4.1.
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—— Backbone
—— Hysteresis

0
Figure 4.1 Example of backbone curve and cyclic response of an inelastic SDoF system with
pinched hysteretic behavior and cyclic strength and stiffness degradation.

A generic backbone curve is presented in panel (a) of Figure 4.2 in terms of
displacements, &, and ratio of the reacting force over the mass of the structure,
F/m , along with the points identifying the capacity curve. Figure 4.2a also shows
the damage state thresholds considered in this study. Four damage states are
considered ranging from s/ght damage (DS,) to collapse (DS, ); all of them are
defined according to the SERA project on the basis of Villar-Vega et al. (2017)
and Lagomarsino and Giovinazzi (2000).

The engineering demand parameter, EDP, adopted for the identification of the
damage states is the (absolute value of the) maximum transient inelastic response
in terms of displacement. Thus, in order to account for damage initiation in non-
structural elements, DS, is considered to have been reached when the maximum
displacement equals or exceeds 75% of the displacement corresponding to the

value of F /m, &, whereas the collapse corresponds to the ultimate displacement
capacity of the structure, J, . The definition of the intermediate damage states, that
is, moderate damage DS, and extensive damage D.JS,, follows closely the
proposal originally presented by Lagomarsino and Giovinazzi, 2006). The
thresholds of DS, and DS, are evenly spaced between the first and last damage
state thresholds and ate reached at the displacements equal to 0.50-J. +0.33- 5,
and 0.25-0, +0.67- 9,

', respectively.

The backbone curves of the eighteen RC structures considered here are
shown in Figure 4.2b whereas those of the fifteen masonry structures are reported
in Figure 4.2c (numerical values defining each curve are available at the data

repository Romao et al. 2020).
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Figure 4.2 Example of capacity curve and definition of the four damage states used in the study (a);
capacity curves of the analyzed reinforced concrete structures (b) capacity curves of the analyzed

masonty structures.

Each backbone of the RC structures (Figure 4.2b), is determined as an
average of the backbones of a multitude of structures comprising that class. More

specifically, each piece-wise linear backbone is defined by four points
({5}‘,1?},/”7},{51.,1:4./%},{5/,,1:/7/772},{5”,1:%/772})— see Figure 4.2a — and the

displacement-acceleration coordinates of each point on the representative curve is
evaluated as the geometric mean of the corresponding points defining the capacity
curves of the set. This geometric mean is obtained independently for the abscissa
and the ordinate of each of the four points defining a representative average curve.

Two subsets of curves can be identified in Figure 4.2b; they are representative
of one-story and more-than-one-story (from two to six) RC buildings, respectively.
More specifically, the curves with the highest values of F/» cortespond to one-

story structures among which one has absent level of seismic design whereas the
other two have low code level with design lateral force equal to 5.0% and 10.0%
of the building weight, respectively. The one-story buildings have vibration
petiods of about 0.15s whereas the structures with more than one story have
periods ranging from 0.29s to 0.88s.

In Figure 4.2c are reported the capacity curves representative of the
unreinforced masonty structures classes (solid lines) and those of the confined
masonry buildings (dashed lines). The capacity curves for masonry structures,
differently from the case of the RC systems, are already representative of each
masonry structures class and are directly provided within the SERA project in
four

terms of coordinates of the

0 ,F |m{, {0, F [m},30,,F, [m{,{0,F,|m| entirely defining the backbone
(18,1 ) A0} (8,0, o} (6, T )

points

curves. Both the unreinforced masonry buildings and the confined masonry
structures have periods of vibration between 0.13s and 0.69s.

The state-dependent fragility curves were evaluated for the entire sets of
eighteen RC structures and of fifteen masonry structures, whereas the choice of
the intensity measure and the identification of the number of ground motion
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records for the execution of the nonlinear-dynamic analyses were conducted
considering two benchmark systems among those reported in Figure 4.2b for the
RC structures and two benchmark systems among those reported in Figure 4.2¢
for masonry structure. In Figure 4.2b the backbone 1 (solid line) was selected to
be representative of a one-story RC building, which has a vibration petiod; i.e., T,
equal to 0.15s. On the other hand, backbone 2 (dashed line) is considered
representative of taller RC structures and corresponds to a six-story building with

T, equal to 0.88s. In Figure 4.2¢ the backbone 1 (solid line) is representative of
the unreinforced masonry buildings and has T, equal to 0.69s. The backbone 2

(dashed line) is representative of the confined masonry structures which has a
vibration period equal to 0.13s.

4.3.2. Fragility assessment

In this study, fragility functions (i.e., for the undamaged structure) and state-
dependent fragility functions are evaluated using IDA (Vamvatsikos and Cornell
2002) and back-to-back IDA, respectively. For a selected set of records, IDA
collects the response of a non-linear undamaged structure to the records that are
progressively scaled in amplitude to represent increasing levels of seismic intensity.
The results of the procedure can be expressed using the IDA curves that represent
the structural response via the selected EDP as a function of the intensity measure,
IM .

Back-to-back IDA is an extension of IDA, in which the structural model is
first subjected to a set of records shaking the structure at its intact state, causing it
to reach a damage state DS, . This is numerically simulated by having each record
scaled in amplitude to the lowest IM value that causes the structure to reach the
EDP threshold for damage state DS, ; thus, each record produces a different
realization of the now-damaged structural model, which can be considered to have
made the transition to DJS,. Subsequently, each damaged incarnation of the
structural model (i.e., the ESDOF) is subjected to a second set of accelerograms.
The records of the second set are scaled until the damaged structure reaches a

more severe damage, say D.S i where 7>7.

Applying the IM-based approach to the results of IDA (Vamvatsikos and
Cornell 2001) and back-to-back IDA, fragility functions and state-dependent
fragility functions are evaluated. This approach consists in finding the realizations

of the random variable (IM ;) that is the seismic intensity leading the structure

to equal or exceed a certain damage state threshold. Assuming that this random
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variable follows a lognormal distribution, the fragility functions can be estimated
according to Eq. (4.1):

P[DS, |IM = im) = P[IM,,; < im|=®( (In(in)-1)] B]. @.1)

where P[DS, |IM =im] is the sought conditional probability that, given the

intensity measure value, IM =7z, the undamaged structure reaches or exceeds a

certain damage state DS, whereas 77 and f are the parameters (median and
logarithmic standard deviation) of the assumed lognormal distribution, and ®(-)

is the standard Gaussian (cumulative) function.

Concerning the state-dependent fragility, two probability distribution models
are investigated; i.e., the lognormal and the gamma distributions. The former is
already defined in Eq. (1) whereas the cumulative density function of the latter is
provided by Eq. (4.2):

. ~ 1 im o :
P[DS/|DS[GIM—W}—W-?[Q e -dy, “2)

(I3

where P[DS DS, NIM = z'm] is the probability that an already damaged
structure transitions from a damage state DS, to a more severe damage state DS,

, a and b are parameters, and I'(+) is the Gamma function.!

In this study, the same set of records selected within the NESS dataset (Pacor
et al., 2018) is used for both the IDA and the first and the second phase of back-
to-back IDA. (The definition of the records set size is discussed in the following
sections.) All the analyses IDA and back-to-back IDA) are performed using the
OpenSEES platform (Open System for Earthquake Engineering Simulation;
McKenna, 2011) via a recent version of the DYANAS software (Baltzopoulos et
al. 2018).

4.3.3. Choice of the intensity measure

In the assessment of structural response by means of dynamic analysis, the choice
of the ground motion intensity measure is of primary importance. Traditionally,
the IM is selected on the basis of its characteristics of sufficiency and efficiency
which are strictly tied to the accuracy of the structural performance assessment
(Luco 2002; Luco and Cornell 2007; Padgett et al. 2007). In fact, a sufficient IM

! The parameters of both gaussian and gamma models depend on the initial damage state and the
exceeded damage threshold. However, such a dependency is not explicitly reported in Eq. (4.1) and
Eq. (4.22) for the sake of simplicity.
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renders the structural response conditionally independent, given the selected
intensity measure, of the other earthquake characteristics involved in the seismic
hazard assessment for the construction site (i.e., magnitude and source-to-site
distance), whereas an ¢fficient IM produces a relatively small variability in the
structural response given the IM . The concepts of sufficiency and efficiency are
used in this study to select the intensity measure for the execution of the IDA and
back-to-back IDA.

The IMs known to allow an efficient prediction of the response of reinforced-
concrete structures, in terms of maximum roof- or interstory-displacement,
generally include elastic response spectral values and somehow account for
spectral shape (Eads et al. 2015; Bojérquez and Iervolino 2011). In this study, four
IMs were preliminarily considered as candidates: the elastic spectral acceleration

at the period 0.3s; Sa(7 =0.3s) (in accordance with Romao et al. 2019), the

elastic spectral acceleration at the vibration period of the undamaged system,

Sa(T,), the geometric mean of spectral accelerations Sa,, (Baker and Cornell

2000) and the I, intensity measure (Bojorquez and lervolino, 2011). Hereafter,

the geometric mean of spectral accelerations Sz, (1;,1,,...,T,,) is evaluated

ang
considering the twenty-three periods of the ground motion prediction equation of
Bindi et al. (2011), defined in a range between 0.0s and 2.75s, according to Eq.(4.3)

Sa,, (T, T,...., Ty ) =38a(0.05)-...- Sa(2.75s) . 4.3)

The scalar intensity measure I, is also spectral-acceleration-based. In this case,
it was defined wusing the same spectral ordinates considered for
Sa,, (1,,T,...,T,;) , as shown in Eq.(4.4):

(4.4)

Sa (T,T,,...T,.) "
INP(Ti”TZ""/'TB):Sa(’Tc/)'|: ﬂazxg( 2 23)} ,

Sa(TM)

where «a is a parameter that, strictly speaking, requires structure-specific
calibration, but is assumed equal to 0.4 in the following (Bojérquez and Iervolino,
2011). It can be noted that Sa, (1,T;,...,1,,) can be regarded as a special case

of Sa, (1,,1,,...,T,,) , for a=1.

ang

Among the cited IMs, one had to be selected for computing fragility
functions and state-dependent fragility function of all the analyzed buildings. To
this aim, the four already mentioned benchmark systems are considered (see
Figure 4.2b and Figure 4.2¢).
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As pertaining to sufficiency, past research has shown that intensity measures
that account for spectral shape in a range of periods (i.e., Sa,, and I, among
those considered here) seem to perform better than single-spectral-ordinate IMs
at higher damage states. This can be intuitively attributed to the fact that a damaged
structure’s stiffness is lower than what it was in intact conditions and,
consequently, the range of vibration periods overall influencing the dynamic

response increases.
On the other hand, to have an indication of the efficiency of the four

investigated intensity measures, the coefficient of variation of the IM,,;, COl7,,

, is evaluated for increasing values of failure threshold, &, .. Figure 4.3 shows the

values of COl,, — assessed for the four different IMs and the four benchmark

systems (two representative of the RC structures and two representative of the

masonty structures).
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Figure 4.3 CO1/,, as a function of 0,,. evaluated for the four IMs for the first (a) and the second

max:

system (b) representative of the RC structures, the first (c) and the second (d) system representative

of the masonry structures.

The figure shows that Sa, and I, are generally more efficient intensity

measures than the single spectral ordinates (with the only exception for the
backbone 2 of RC structures), as expected and confirms the findings of past
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research, that IM efficiency is damage-state-dependent (KKazantzi and Vamvatsikos
2015). For example, a previous work has indicated that the efficiency of I, with
different o values (0.4 or 1) varies with damage state (Baltzopoulos et al., 2019).

For the analyses, Sa,, was used as the IM of choice, in other words I, with

a=1.

4.3.4. Number of records

The issue addressed in this section concerns the identification of the number of
ground motions used to perform dynamic analyses in other to balance the
computational costs and the accuracy in fragility assessment. To this end, the
statistical concept of estimation uncertainty (Iervolino, 2017; Baltzopoulos et al.
2019) is applied to the estimates of the parameters defining the parametric fragility
Eq. (4.1).

The record sample size is selected trying to limit the estimation error of the
two patameters 77 and f that define the fragility functions of the intact structures
under the lognormal assumption. Although the gamma distribution is also
contemplated as an alternative to the lognormal for the state-dependent fragilities,
this consideration of estimation uncertainty is limited to the intact structures’
fragility and the lognormal model. The quantitative measure of the uncertainty in
the fragility assessment used in this study, is the coefficients of variation cor,

and cor’, evaluated for the estimators of the median 77 and of the standard

deviation S, respectively. The coefficient of variation COT/9 of a generic

estimator § is defined as the square root of VAR[Q] divided by E[&] , that is

the ratio of the standard deviation and the expected value of . The terms
VAR[SJ and E[Q} can be substituted by their estimates obtained using a

parametric resampling scheme proposed in Baltzopoulos et al., 2019. This
procedure entails randomly sampling / times (in this case 5000 times) from an
assumed reference fragility model; i.e., the distribution of IM, defined by the
results of IDA performed using the entire fifty-record set. This is repeated for a
number of times, each time extracting different samples sizes N, varying from
20 to 50. In this context, sample size ostensibly corresponds to the number of

records used in dynamic analysis, and COL”, is approximated as:
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This procedure is implemented for the two benchmark systems shown in Figure
4.2b for RC structures and also for the two benchmark systems showed in Figure
4.2¢ for masonry structures considering their fragilities to collapse (i.e., DS,). In
Figure 4.4, the results obtained varying the size of the records set N from 20 to

50 are reported, in the panels (a) and (b) for the RC structures and in panels (c)
and (d) for the masonry structures.
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Figure 4.4 Cocfficient of variation for the estimators of the median COV,] (a) and the standard

deviation COL/ (b) of the DS, fragility curve of RC structures against the number of records N
; coefficient of variation for the estimators of the median COVH (c) and the standard deviation

cov, (d) of the DS, fragility curve of masonry structures against the number of records N .

Through the described procedure, it is decided to use a number of records
equal to 35 that allows maintaining cor, between 10% and 15% for the four

systems and cor, below 10%. Moreover, Figure 4.4 also shows cor, (Figure



CHAPTER 4 135

4.4a-c) and cov,, (Figure 4.4b-d) evaluated for all the other RC and masontry

structures using 35 records in order to verify that the associated coefficients of
variation of the two estimators also adhere to these limitations.

The defined set of 35 records is used for the execution of both IDA and
back-to-back IDA.

4.4. Results
4.4.1. Reinforced concrete structures
4.4.1.1. Classical curves

Figure 4.5 and Figure 4.6 reports the fragility curves of the intact structures
obtained analyzing via IDA the two benchmark systems shown in panel (b) of
Figure 4.2. Each panel of Figure 4.5 and Figure 4.6 shows the comparison between
the non-parametric fragility and the parametric fragility curve evaluated according

to Eq.(4.1) for each arriving damage state; i.e. panel (a) refers to DS, ; panel (b) to
DS, ; panel (c) to DS, and panel (d) to DS, . Figure 4.5 and Figure 4.6 show the

good agreement between the assumed lognormal distribution and the results
obtained from the analyses.
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Figure 4.5 Fragility curves evaluated for the benchmark system 1 of RC structures for the four

damage states DS (a); DS, (b); DS, (c) and DS, (d).
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Figure 4.6 Fragility cutves evaluated for the benchmark system 2 of RC structures for the four
damage states DS (a); DS, (b); DS, (c) and DS, (d).

Figure 4.7 shows the fragility curves obtained analyzing the entire set of eighteen
RC structures. Similarly to Figure 4.5 and Figure 4.6, each panel of Figure 4.7
shows the fragility curves of the intact structures evaluated for each arriving
damage state according to Eq.(4.1) (panel (a) for DS,; panel (b) for DS, ; panel (c)
for DS, and panel (d) for DS,).

The values of median, 77, and logarithmic standard deviation, £, defining

the parametric fragilities of intact structures numbered from 1 to 18 are reported
in Table 4.1. The table also shows for each structure the adopted code level of
seismic design (absent or low); the height expressed in terms of number of stories
(H) and the design lateral force (0%, 5% or 10% of the building weight). As

previously mentioned, the one-story buildings are always less fragile than the other
RC structures for all damage states considered.
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Figure 4.7 Fragility curves of RC structures evaluated for the four damage states DS (a); DS, (b);
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Table 4.1 Median 7 and logarithmic standard deviation S defining the fragility curves of RC

" Code Lateral Force MEDIAN 7 SIGMA f
Level Coefficient (%)

DS, DS, DS, DS, DS, DS, IDAN DS,
1 Absent 1 0.00 0.35 0.62 0.77 0.88 024 014  0.15 0.21
2 Absent 2 0.00 0.18 0.35 0.46 0.51 0.21 0.24 028 0.31
3 Absent 3 0.00 0.19 0.33 0.42 0.46 0.29 0.31 0.37 0.39
4 Absent 4 0.00 0.21 0.33 0.42 0.45 0.35 0.38 0.44 0.45
5 Absent 5 0.00 0.22 0.35 0.43 0.47 0.37 0.46 0.46 0.46
6 Absent 6 0.00 0.25 0.37 0.46 0.48 0.43 0.47 0.48 0.46
7 Low 1 5.00 0.38 0.64  0.76 0.90 0.23 0.12 0.11 0.17
8 Low 2 5.00 0.18 0.35 0.45 0.51 0.21 0.24 028 0.31
9 Low 3 5.00 0.17 0.31 0.40 0.43 0.28 0.31 0.35 0.37
10 Low 4 5.00 0.18 0.29 0.36 0.39 0.34 0.36 0.39 0.43
11 Low 5 5.00 0.17 0.27 0.34 0.37 0.27 0.29 0.32 0.36
12 Low 6 5.00 0.18 0.28 0.35 0.37 0.40 0.43 0.45 0.47
13 Low 1 10.00 0.37 0.63 0.76 0.91 024 013 0.11 0.18
14 Low 2 10.00 0.19 0.36 0.47 0.52 0.22 0.25 0.28 0.31
15 Low 3 10.00 0.19 0.36 0.46 0.52 0.28 0.30 0.34 0.37
16 Low 4 10.00 0.18 0.33 0.41 0.46 0.35 0.35 0.36 0.41
17 Low 5 10.00 0.17 0.31 0.40 0.46 0.35 0.37 0.42 0.45
18 Low 6 10.00 0.19 0.31 0.38 0.42 0.38 0.42 0.45 0.45
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4.4.1.2. State-dependent fragility curves

For the state-dependent fragilities, the assumption of a lognormal distribution or,
alternatively, of a gamma distribution is investigated. Figure 4.8 shows the
comparison between the non-parametric state-dependent fragilities (identified by
the non-par subscript in the legend) and the parametric ones evaluated using the
lognormal distribution (/g subscript) for the benchmark system 1 of RC structures.
Each panel of the figure shows the state-dependent fragility curves referring to
different starting damage state and having the same final damage state; i.e. panel

(a) refers to final damage state DS, whereas panel (b) refers to DS, and panel (c)

to DS, . Figure 4.9 shows the same results reported in Figure 4.8 but compares

the non-parametric state-dependent fragilities with the parametric ones evaluated
using the gamma distribution (gamma subsctipt).
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Figure 4.8 Comparison of the non-parametric and the parametric state-dependent fragility curves
evaluated for the benchmark system 1 assuming the lognormal distribution and having different

starting damage state and the same final state DS, (), DS; (b) and DS, (c).
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Figure 4.9 Comparison of the non-parametric and the parametric state-dependent fragility curves
evaluated for the benchmark system 1 assuming the gamma distribution and having different starting

damage state and the same final state DS, (a), DS; (b) and DS, (c).

The choice between the two possible distributions (lognormal and gamma) is
conducted in terms of rates of failure, i.e., the rates of failure of the eighteen RC
systems are calculated using the parametric state-dependent fragility curves
evaluated using both the gamma and the lognormal distributions and are

compared with the rates of failure obtained using the non-parametric state-
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dependent fragilities. The chosen distribution is the one best reproducing the rate
results obtained using the non-parametric state-dependent fragilities.
Within the performance-based earthquake engineering (PBEE) framework,

the failure rate 4, is the rate of earthquakes causing some undesired performance

for the structure and in case of an already damaged structure can be computed as
follow:

A, =["P[DS,|DS, AIM=in]-|d,

wm

(4.6)

im

where P [DSj | DS, NIM = z'm] is the state-dependent fragility cutve and dA,

is the differential of the hazard curve, that is, the function providing the rate of
exceedance of 7z at the site of the construction, that is, A, from probabilistic

seismic hazard analysis (PSHA; Cornell, 1968).

For the assessment of the failure rates are considered three Italian sites, i.e.,
I’Aquila, Naples and Milan; representative of high, intermediate and low seismic
hazards, respectively. The hazard analysis for the three sites is performed via the
REASSES software (Chioccarelli et al., 2018) considering the seismic source
model of Meletti et al. (2008) with magnitude rates taken from Barani et al. (2009).
The ground motion prediction equation considered is Bindi et al. (2011),
consistently with the intensity measure used to develop the state-dependent
fragility curves, and are assumed soil conditions B (CEN, 2004) .

Figure 4.10(a) shows the locations of the three sites considered and the
seismogenic source zones of the model Meletti et al. (2008), whereas panel (b)
provides the hazard curves computed via PSHA for the three sites in terms of
Sa,, .

The failure rates of the eighteen RC structures at the three Italian sites are
shown in Table 4.2, Table 4.3 and Table 4.. The tables differ in the state-dependent
fragility curves used for the assessment of the failure rates, i.e., non-parametric
state-dependent fragility curves (Table 4.2); parametric state-dependent fragility
curves evaluated assuming the lognormal distribution (Table 4.3) or using the
gamma distribution (Table 4.).

Comparing the results obtained,; it is found that modeling the state-dependent
fragilities via a lognormal distribution provides failure rates closer to those
obtained using the non-parametric results, for all the possible transitions between
different damage states and considering the three levels of seismic hazard.
Therefore, in this study the lognormal distribution was chosen to represent the
state-dependent fragilities of RC structure classes.
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Figure 4.10 Seismic sources zones and sites’ locations considered for the hazard analysis (a); annual

exceedance rates of Sz,, computed probabilistic seismic hazard analysis for the three sites (b).
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Table 4.5 collects the values of the median, 77, and logarithmic standard
deviation, [, defining lognormal distribution, Eq. (4.1); i.e., the parametric state-
dependent fragility curves for the eighteen RC structures. In the table, the fifth
column gives the initial damage state wheres the damage state reported in the rest
of the row represent the arrival damage states.

Figure 4.11 shows the state-dependent fragility curves obtained analyzing the
entire set of eighteen RC structures via Back-to-Back IDA and assuming the
lognormal distribution. Each panel of Figure 4.11 shows the state-dependent
fragility curves obtained considering a possible transition between damage states,
Le. from DS, to DS, (panel a); from DS, to DS, (panel b); from DS, to DS,

(panel ¢); from DS, to DS, (panel d); ); from DS, to DS, (panel e) and from
DS, to DS, (panel ).

Table 4.2 Failure rates for the RC structures computed using the non-parametric state-dependent

fragility curves.
L’AQUILA NAPLES MILAN

A Ds, DS, DS, DS, DS, Ds, DS, DS, DS,

DS, 6.14E-04  3.15E-04 2.17E-04 2.56E-05 7.56E-06 4.16E-06 7.73E-09  1.36E-09  6.28E-10
DS, \ 3.21E-03  7.05E-04 \ 6.57E-04  4.75E-05 \ 1.54E-06  3.04E-08
DS, \ \ 6.23E-03 \ \ 2.22E-03 \ \ 2.80E-05
DS, 245BE-03 1.23E-03 9.45E-04 3.41E-04 1.03E-04 6.59E-05 3.78E-07 6.33E-08  3.39E-08
DS, \ 7.62E-03  2.33E-03 \ 2.60E-03  3.82E-04 \ 1.40E-05  6.97E-07
Dy, \ \ 9.13E-03 \ \ 3.42E-03 \ \ 2.15E-05
s,  412E-03 1.77E-03 1.28E-03 9.25E-04 2.08E-04 1.20E-04 222E-06 1.92E-07  8.33E-08
DS, \ 9.06E-03  3.24E-03 \ 3.43E-03  6.91E-04 \ 2.40E-05  1.74E-06
DS, \ \ 2.13E-02 \ \ 1.01E-02 \ \ 9.24E-04
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Table 4.2 (Continned) Failure rates for the RC structures computed using the non-parametric state-

dependent fragility curves.

IAQUILA NAPLES MILAN
# A DS, DS, DS, DS, DS, DS, DS, DS, DS,
ps,  7.33E-03 238E-03 1.56E-03 252E-03 3.76E-04 1.80E-04 1.61E-05 5.33E-07 1.66E-07
4 DS, \ 1.11E-02  4.65E-03 \ 4.64E-03  1.28E-03 \ 4.54E-05  4.75E-06
DS, \ \ 1.85E-02 \ \ 8.98E-03 \ \ 3.10E-04
ps,  7.50E-03  238E-03 1.53E-03 270E-03 3.99E-04 1.79E-04 1.98E-05 6.50E-07 1.69E-07
5 DS, \ 1.06E-02  4.48E-03 \ 437E-03  1.23E-03 \ 3.94E-05  4.59E-06
DS, \ \ 1.30E-02 \ \ 5.86E-03 \ \ 7.26E-05
s, 741E-03 249E-03 1.49E-03 2.64E-03 4.42E-04 1.72E-04 1.79E-05 7.96E-07  1.64E-07
6 DS, \ 1.01E-02  4.59E-03 \ 4.15E-03  1.29E-03 \ 3.87E-05  5.19E-06
Ds; \ \ 1.57E-02 \ \ 7.48E-03 \ \ 1.89E-04
DS, 589E-04 3.13E-04 2.03E-04 246E-05 7.27E-06 3.51E-06 7.94E-09 1.27E-09 4.81E-10
7 DS, \ 3.54E-03  8.36E-04 \ 7.54E-04  6.63E-05 \ 1.79E-06  5.13E-08
Ds; \ \ 5.55E-03 \ \ 1.66E-03 \ \ 7.75E-06
ps,  245E-03 1.26E-03  9.57E-04 3.41E-04 1.06E-04 6.67E-05 3.77E-07 6.62E-08  3.41E-08
8 DS, \ 8.93E-03  2.56E-03 \ 3.40E-03  4.52E-04 \ 2.94E-05  9.01E-07
DS, \ \ 1.39E-02 \ \ 6.25E-03 \ \ 1.20E-04
DS, 4.07E-03 1.90E-03 143E-03 8.89E-04 233E-04 1.43E-04 195E-06 2.25E-07 1.07E-07
0 DS, \ 9.83E-03  3.43E-03 \ 3.86E-03  7.50E-04 \ 2.96E-05  1.94E-06
DS, \ \ 1.35E-02 \ \ 6.04E-03 \ \ 7.26E-05
DS, 596E-03  2.52E-03 1.81E-03 1.75E-03 4.04E-04 2.29E-04 6.82E-06  5.65E-07  2.27E-07
10 DS, \ 1.29E-02  4.95E-03 \ 5.73E-03  1.44E-03 \ 9.32E-05  6.98E-06
DS, \ \ 1.77E-02 \ \ 8.52E-03 \ \ 1.90E-04
ps,  5.83E-03 2.73E-03 205E-03 1.71E-03 4.82E-04 2.96E-04 06.66E-06 7.90E-07  3.56E-07
11 D, \ 1.16E-02  5.06E-03 \ 4.89E-03  1.45E-03 \ 472E-05  5.92E-06
Ds; \ \ 3.28E-02 \ \ 1.65E-02 \ \ 1.58E-03
s, 637E-03 3.02E-03 221E-03 2.06E-03 6.00E-04 3.44E-04 1.03E-05 1.25E-06 4.75E-07
12 DS, \ 1.10E-02  5.19E-03 \ 4.60E-03  1.51E-03 \ 4.03E-05  6.34E-06
DS, \ \ 1.86E-02 \ \ 9.09E-03 \ \ 1.56E-04
s, 6.03E-04 3.16E-04 201E-04 258E-05 7.38E-06 3.48E-06 8.56E-09 1.30E-09 4.79E-10
13 DS, \ 3.36E-03  7.88E-04 \ 6.80E-04  5.84E-05 \ 1.46E-06  4.05E-08
Ds; \ \ 4.82E-03 \ \ 1.25E-03 \ \ 3.75E-06
ps,  236B-03 1.20E-03 897E-04 3.19E-04 9.66E-05 5.94E-05 3.43E-07 5.78E-08 2.87E-08
14 DS, \ 8.51E-03  2.41E-03 \ 3.27E-03  4.28E-04 \ 320E-05  9.17E-07
Ds; \ \ 1.08E-02 \ \ 4.39E-03 \ \ 4.62E-05
s, 288E-03 1.36E-03 9.78E-04 4.94E-04 129E-04 7.33E-05 8.14E-07 9.33E-08  4.06E-08
15 DS, \ 7.56E-03  2.41E-03 \ 2.59E-03  4.09E-04 \ 1.42E-05  7.12E-07
DS, \ \ 1.11E-02 \ \ 4.65E-03 \ \ 6.08E-05
ps, 3.75B-03 1.83E-03 133E-03 7.91E-04 226E-04 1.30E-04 1.69E-06 2.22E-07 9.40E-08
16 DS, \ 8.43E-03  3.10E-03 \ 3.10E-03  6.43E-04 \ 2.06E-05  1.54E-06
DS, \ \ 1.18E-02 \ \ 5.14E-03 \ \ 6.00E-05
DS, 3.29E-03 1.78E-03 132E-03 6.45E-04 226E-04 1.32E-04 127E-06 230E-07 1.01E-07
17 DS, \ 8.85E-03  3.17E-03 \ 3.37E-03  6.97E-04 \ 2.78E-05  2.37E-06
DS, \ \ 2.10E-02 \ \ 9.90E-03 \ \ 8.84E-04
18 DS, 434E-03 2.20E-03 1.72E-03 1.08E-03  3.40E-04 2.22E-04 3.25E-06 4.73E-07  2.43E-07
DS, \ 9.54E-03  4.19E-03 \ 3.80E-03  1.09E-03 \ 3.08E-05  3.87E-06
DS, \ \ 1.66E-02 \ \ 7.94E-03 \ \ 1.84E-04
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L’AQUILA NAPLES MILAN
# A DS, DS, DS, DS, Ds, DS, DS, Ds, DS,
ps,  6.15B-04 3.19B-04 222E-04 259B-05 828B-06 493B-06 7.99B-09 1.72E-09 9.76E-10
1 DS, \ 3.23E-03  6.98E-04 \ 6.79E-04  4.53E-05 \ 1.79E-06  2.76E-08
DS, \ \ 5.86E-03 \ \ 1.94E-03 \ \ 1.36E-05
DS, 246E-03 1.24E-03 9.52E-04 3.54E-04 1.08E-04 7.20E-05 4.42E-07 7.97E-08 4.80E-08
2 DS, \ 7.65E-03  2.33E-03 \ 2.63E-03  3.80E-04 \ 1.57E-05  6.80E-07
DS, \ \ 9.29E-03 \ \ 3.55E-03 \ \ 2.80E-05
DS, 413B-03 179B-03 131E-03 9.37E-04 229E-04 144E-04 244B-06 2.83E-07 1.61E-07
3 DS, \ 9.12E-03  3.25E-03 \ 347E-03  7.06E-04 \ 2.76E-05  2.04E-06
DS, \ \ 4.47E-02 \ \ 2.37E-02 \ \ 2.38E-03
ps,  7.28E-03 241E-03 1.60E-03 248E-03 4.09E-04 2.13E-04 150E-05 7.86E-07  3.18E-07
4 DS, \ 1.11B-02  4.70E-03 \ 4.68E-03  1.32E-03 \ 523E-05  6.14E-06
DS, \ \ 1.75B-02 \ \ 8.54E-03 \ \ 1.83E-04
DS, 7.44E-03 242E-03 1.57B-03 2.65B-03 4.38E-04 2.12E-04 1.94E-05 9.88E-07  3.29E-07
5 DS, \ 1.07E-02  4.54E-03 \ 4.48E-03  1.29E-03 \ 499E-05  6.35E-06
DS, \ \ 1.33E-02 \ \ 6.02E-03 \ \ 9.32E-05
ps,  7.42B-03 253B-03 152B-03 265B-03 4.84E-04 204E-04 198E-05 122B-06 3.15E-07
6 DS, \ 1.03E-02  4.69E-03 \ 4.29E-03  1.38E-03 \ 4.96E-05  7.58E-06
DS, \ \ 1.53E-02 \ \ 7.27E-03 \ \ 1.48E-04
DS, 5.86E-04 3.14E-04 2.08E-04 2.38E-05 7.44E-06 4.11E-06 7.18E-09  1.36E-09  7.06E-10
7 DS, \ 3.60E-03  8.26E-04 \ 8.10E-04  6.28E-05 \ 237E-06  4.62E-08
Ds, \ \ 5.59E-03 \ \ 1.71E-03 \ \ 8.98E-06
DS, 246E-03 1.27E-03 9.66E-04 3.49E-04 1.12E-04 7.33E-05 421E-07 820E-08 4.87E-08
8 DS, \ 8.85E-03  2.55E-03 \ 3.35B-03  4.49E-04 \ 2.67B-05  9.01E-07
DS, \ \ 1.34E-02 \ \ 6.01E-03 \ \ 8.20E-05
DS, 408E-03 191E-03 147E-03 9.10E-04 251E-04 172E-04 226E-06 3.12E-07  2.03E-07
9 DS, \ 9.86E-03  3.43E-03 \ 3.87E-03  7.57E-04 \ 328E-05  2.17E-06
DS, \ \ 1.37E-02 \ \ 6.18E-03 \ \ 8.60E-05
ps,  597E-03 255E-03 1.85E-03 1.77B-03 4.35E-04 2.68E-04 7.55E-06 8.05E-07  4.31E-07
10 DS, \ 1.25E-02  4.92E-03 \ 551E-03  1.42E-03 \ 7.14E-05  6.84E-06
DS, \ \ 1.73E-02 \ \ 8.33E-03 \ \ 1.51E-04
DS, 586E-03 276E-03 210E-03 1.74E-03 5.14E-04 3.42E-04 7.83E-06 1.13E-06 6.61E-07
11 Ds, \ 1.17E-02  5.08E-03 \ 4.94E-03  1.47E-03 \ 544E-05  6.96E-06
DS, \ \ 3.53E-02 \ \ 1.88E-02 \ \ 1.24E-03
DS, 6.40E-03 3.03B-03 225E-03 2.07E-03 6.29E-04 3.85E-04 120E-05 1.68E-06  7.99E-07
12 DS, \ 1.12E-02  5.25E-03 \ 4.70E-03  1.56E-03 \ 505E-05  8.03E-06
DS, \ \ 1.87E-02 \ \ 9.15E-03 \ \ 1.69E-04
DS, 6.00E-04 3.17E-04 2.06E-04 249E-05 7.56E-06 4.10E-06 7.63E-09 1.39E-09  7.12E-10
13 DS, \ 3.40E-03  7.80E-04 \ 7.18E-04  5.61E-05 \ 1.84E-06  3.86E-08
DS, \ \ 4.92E-03 \ 1.35E-03 \ \ 5.54E-06
DS, 237E-03 1.20E-03 9.08E-04 3.28E-04 1.02E-04 G6.61E-05 3.87E-07 7.14E-08  4.24E-08
14 ps, \ \ 2.39E-03 \ 3.14E-03  4.11E-04 \ 2.67E-05  8.20E-07
DS, \ \ 1.07E-02 \ \ 4.36E-03 \ \ 4.13E-05
DS, 2.88E-03 1.37E-03 1.00E-03 5.03E-04 1.41E-04 898E-05 8.86E-07 1.35E-07 7.96E-08
15 DS, \ 7.59E-03  2.42E-03 \ 2.62E-03  4.24E-04 \ 1.61E-05  8.84E-07
DS, \ \ 1.09E-02 \ \ 4.54E-03 \ 0.00E+00  5.03E-05
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Table 4.3 (Continned) Failure rates for the RC structures computed using the parametric state-
dependent fragility curves obtained using the lognormal distribution.

I’AQUILA NAPLES MILAN
# A DS, Ds, DS, DS, DS, DS, DS, DS, Ds,
DS, 3.77E-03  1.86E-03 1.38E-03 8.18E-04 2.52E-04 1.63E-04 2.03E-06 3.48E-07 2.07E-07
16 DS, \ 8.44E-03  3.10E-03 \ 3.10E-03  6.55E-04 \ 2.26E-05 1.81E-06
DS, \ \ 1.19E-02 \ \ 5.21E-03 \ \ 7.23E-05
Ds, 3.31E-03 1.83E-03 1.37E-03 6.72E-04 2.67E-04 1.68E-04 1.57E-06  4.43E-07 2.34E-07
17 DS, \ 8.84E-03  3.16E-03 \ 3.36E-03  6.99E-04 \ 2.80E-05 2.17E-06
DS, \ \ 2.19E-02 \ \ 1.12E-02 \ \ 4.75E-04
18 DS, 4.35E-03 2.23E-03 1.76E-03 1.10E-03 3.74E-04 2.60E-04  3.78E-06 7.38E-07 4.57E-07
DS, \ 9.63E-03  4.23E-03 \ 3.85E-03  1.13E-03 \ 3.82E-05 4.90E-06
DS, \ \ 1.64E-02 \ \ 7.85E-03 \ \ 1.53E-04
Table 4.4 Failure rates for the RC structures computed using the parametric state-dependent
fragility curves obtained using the gamma distribution.
I’AQUILA NAPLES MILAN
# A, DS, DS, Ds, DS, DS, DS, Ds, DS, DS,
DS, 6.20E-04  3.34E-04 239E-04 2.67E-05 9.69E-06 6.46E-06 8.65E-09 241E-09 1.76E-09
1 DS, \ 3.77E-03  7.17E-04 \ 1.00E-03  5.28E-05 \ 6.35E-06  4.55E-08
DS, \ \ 6.73E-03 \ \ 2.52E-03 \ \ 4.62E-05
DS, 9.65E-03  3.06E-03 1.81E-03 4.08E-04 1.22E-04 8.57E-05 6.60E-07 1.12E-07  7.89E-08
2 DS, \ 1.78E-02  7.23E-03 \ 3.39E-03  4.64E-04 \ 4.29E-05 1.37E-06
DS, \ \ 2.44E-02 \ \ 6.00E-03 \ \ 1.84E-04
DS, 2.58E-03  1.28E-03 9.94E-04 1.08E-03 3.00E-04 2.24E-04 4.02E-06 6.30E-07 5.61E-07
3 DS, \ 8.81E-03  2.47E-03 \ 4.57E-03  9.26E-04 \ 8.87E-05 5.57E-06
DS, \ \ 1.32E-02 \ \ 1.04E-02 \ \ 5.93E-04
DS, 4.35E-03 1.95E-03 1.51E-03 295E-03 5.47E-04 3.30E-04 3.32E-05 2.04E-06 1.20E-06
4 DS, \ 1.08E-02  3.59E-03 \ 7.12E-03  2.02E-03 \ 2.66E-04  2.90E-05
DS, \ \ 2.10E-02 \ \ 1.23E-02 \ \ 7.21E-04
DS, 7.98E-03  2.65E-03 1.84E-03 3.40E-03 (6.48E-04 343E-04 06.01E-05 3.61E-06 1.42E-06
5 DS, \ 1.52E-02 5.79E-03 \ 7.52E-03  2.23E-03 \ 3.27E-04  4.39E-05
DS, \ \ 2.43E-02 \ \ 1.06E-02 \ \ 6.42E-04
DS, 8.60E-03 2.78E-03 1.83E-03 4.04E-03 7.93E-04 345E-04 1.01E-04 6.09E-06 1.52E-06
6 DS, \ 1.58E-02  6.06E-03 \ 8.68E-03  2.93E-03 \ 4.90E-04 8.81E-05
DS, \ \ 2.14E-02 \ \ 1.23E-02 \ \ 8.46E-04
DS, 5.84E-04 3.17E-04 226E-04 2.37E-05 7.71E-06 5.50E-06 7.22E-09 1.47E-09 1.30E-09
7 DS, \ 446E-03  8.53E-04 \ 1.33E-03  7.44E-05 \ 1.16E-05  8.12E-08
DS, \ \ 7.24E-03 \ \ 2.75E-03 \ \ 4.99E-05
DS, 2.55E-03  1.30E-03 1.01E-03 3.90E-04 1.24E-04 8.79E-05 5.79E-07 1.12E-07 8.12E-08
8 DS, \ 1.02E-02 2.71E-03 \ 4.23E-03  5.47E-04 \ 7.64E-05  1.83E-06
DS, \ \ 1.57E-02 \ \ 7.35E-03 \ \ 2.26E-04
9 DS, 4.33E-03 2.04E-03 1.71E-03 1.06E-03 3.08E-04 2.74E-04 3.84E-06 5.83E-07 7.50E-07
DS, \ 1.16E-02  3.75E-03 \ 5.00E-03  9.61E-04 \ 9.96E-05  5.26E-06
DS, \ \ 2.29E-02 \ \ 1.15E-02 \ \ 6.79E-04
DS, 6.40E-03 2.77E-03 2.10E-03 2.06E-03 5.56E-04 395E-04 141E-05 1.79E-06 1.43E-06
10 DS, \ 1.49E-02  5.63E-03 \ 6.91E-03  1.89E-03 \ 2.15E-04  2.21E-05
DS, \ \ 2.22E-02 \ \ 1.11E-02 \ \ 5.17E-04
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Table 4.4 (Continned) Failure rates for the RC structures computed using the parametric state-
dependent fragility curves obtained using the gamma distribution.

I’AQUILA NAPLES MILAN

# A DS, DS, Ds, DS, DS, Ds, DS, DS, DS,

DS, 6.42E-03  3.00E-03 241E-03 2.12E-03 6.60E-04 5.13E-04 1.72E-05 2.67E-06  2.42E-06
11 DS, \ 1.50E-02  5.89E-03 \ 6.97E-03  2.00E-03 \ 2.24E-04  2.36E-05

DS, \ \ 2.76E-02 \ \ 1.41E-02 \ \ 8.39E-04

D, 7.15E-03  3.35E-03 2.54E-03 2.58E-03 8.30E-04 5.52E-04 3.14E-05 4.60E-06  2.65E-06
12 DS, \ 1.57E-02  6.62E-03 \ 741E-03  2.44E-03 \ 2.81E-04 4.08E-05

DS, \ \ 2.60E-02 \ \ 1.32E-02 \ \ 7.06E-04

DS, 5.98E-04 3.20E-04 225E-04 248E-05 7.88E-06 5.51E-06 7.71E-09 1.52E-09 1.32E-09
13 DS, \ 4.02E-03  8.06E-04 \ 1.08E-03  6.64E-05 \ 6.75E-06  6.67E-08

DS, \ \ 6.33E-03 \ \ 2.24E-03 \ \ 3.04E-05

DS, 2.46E-03 1.23E-03  9.53E-04 3.69E-04 1.13E-04 8.02E-05 5.41E-07 9.71E-08 7.27E-08
14 DS, \ 9.63E-03 2.51E-03 \ 3.96E-03 4.87E-04 \ 8.04E-05 1.59E-06

DS, \ \ 1.30E-02 \ \ 5.79E-03 \ \ 1.39E-04

DS, 3.04E-03 1.46E-03 1.17E-03 5.93E-04 1.76E-04 1.48E-04 1.51E-06 2.58E-07 3.06E-07
15 DS, \ 8.68E-03  2.66E-03 \ 3.33E-03  5.64E-04 \ 4.35E-05  2.34E-06

DS, \ \ 1.39E-02 \ \ 6.36E-03 \ \ 2.06E-04

DS, 4,05E-03  2.05E-03 1.63E-03 9.91E-04 3.47E-04 274E-04 391E-06 9.09E-07 9.22E-07
16 DS, \ 9.62E-03  3.42E-03 \ 3.87E-03  8.57E-04 \ 6.04E-05 4.86E-06

DS, \ \ 1.94E-02 \ \ 9.55E-03 \ \ 5.54E-04

DS, 3.58E-03 2.13E-03 1.67E-03 8.35E-04 4.21E-04 3.09E-04 3.28E-06 1.77E-06 1.35E-06
17 DS, \ 1.08E-02  3.63E-03 \ 4.62E-03  9.94E-04 \ 1.05E-04  7.75E-06

DS, \ \ 1.92E-02 \ \ 9.41E-03 \ \ 4.51E-04

DS, 475E-03 248E-03 2.04E-03 1.36E-03 5.14E-04 4.05E-04 8.61E-06 2.14E-06 1.84E-06
18 DS, \ 1.32E-02 5.18E-03 \ 6.05E-03 1.73E-03 \ 2.14E-04  2.34E-05

DS, \ \ 2.34E-02 \ \ 1.18E-02 \ \ 6.86E-04
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Figure 4.11 State-dependent fragility curves of RC structures.
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Table 4.5 Median 7 and logarithmic standard deviation S defining the state-dependent fragility

curves of RC structures (IM in g).

# Codelevel H L ateral- Force s P P
Coefficient (%) n Y] n Y] n Yij

DS, 0.55 018 0.72 020 0.85 0.25
1 Absent 1 0.00 DS, \ \ 028 045 057 0.35
DS, \ \ \ \ 022 063
DS, 030 028 042 029 049 032
2 Absent 2 0.00 Ds, \ \ 0.16 049 033 041
DS, \ \ \ \ 0.15 0.53
DS, 023 038 037 036 044 040
3 Absent 3 0.00 DS, \ \ 0.15 0.54 0.28 048
DS, \ \ \ \ 0.10  1.55
DS, 0.17 0,51 032 043 041 044
4 Absent 4 0.00 DS, \ \ 0.14  0.62 0.23 0.54
DS, \ \ \ \ 011 074
DS, 0.18 0.58 033 047 042 045
5 Absent 5 0.00 DS, \ \ 0.14  0.63 0.24 0.57
DS, \ \ \ \ 013 0.69
DS, 0.18 059 033 049 042 046
6 Absent 6 0.00 DS, \ \ 0.15  0.66 0.24 0.60
DS; \ \ \ \ 0.12  0.76
DS, 0.57 018 0.71 015 0.85 0.22
7 Low 1 5.00 DS, \ \ 026 046 054 0.37
DS, \ \ \ \ 021 054
DS, 0.30 027 042 029 048 032
8 Low 2 5.00 DS, \ \ 0.15 0.56 031 042
DS, \ \ \ \ 0.12  0.64
DS, 0.23 037 035 035 041  0.39
9 Low 3 5.00 DS, \ \ 014 054 027 046
Ds; \ \ \ \ 012 0.64
DS, 0.19 044 031 040 038 043
10 Low 4 5.00 DS, \ \ 013 0.64 023 0.54
DS, \ \ \ \ 010 067
DS, 0.19 047 030 043 036  0.46
11 Low 5 5.00 DS, \ \ 0.13 059 022 0.53
DS, \ \ \ 0.08 1.09
DS, 0.19 053 029 047 035 046
12 Low 6 5.00 DS, \ \ 0.13  0.60 0.22 0.55
DS, \ \ \ \ 0.09  0.65
DS, 056 0.18 0.71 016 0.86 0.23
13 Low 1 10.00 DS, \ \ 0.27 043 055 0.37
DS, \ \ \ \ 022 049
DS, 0.30  0.27 043 029 050 0.32
14 Low 2 10.00 DS, \ \ 017 0.60 033 044
DS, \ \ \ \ 0.14  0.56
DS, 0.28 035 042 035 050 0.39
15 Low 3 10.00 DS, \ \ 0.17 0.50 0.33 0.45
D, \ \ \ \ 0.14  0.62
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Table 4.5 (Continned) Median 1 and logarithmic standard deviation B defining the state-
dependent fragility curves of RC structures (IM in g).

Lateral Force " DS, Ds;, DS,
Coefficient (%) n B n B n yg
DS, 024 039 036 039 044 043
16 Low 4 10.00 DS, \ \ 0.16 053 029 0.48
Ds; \ \ \ \ 014 0068
DS, 027 041 038 044 045 045
17 Low 5 10.00 DS, \ \ 0.16 057 029 0.51
Ds; \ \ \ \ 011 098
DS, 023 046 034 045 040 047
18 Low 6 10.00 DS, \ \ 015 0.62 025 0.54
Ds; \ \ \ \ 0.11  0.72

# Codelevel H

4.4.2. Masonry structures
4.4.2.1. Classical curves

Figure 4.12 and Figure 4.13 show the fragility curves of the intact structures
obtained analyzing via IDA the two benchmark systems of masonry structures
shown in panel (c) of Figure 4.2. Each panel of these figures represents the
comparison between the non-parametric fragilities and the parametric fragility
curves evaluated according to Eq.(4.1) for each arriving damage state; i.e. panel (a)
refers to DS, ; panel (b) to DS, ; panel (c) to DS, and panel (d) to DS, . Figure

4.12 and Figure 4.13 show the good agreement between the lognormal distribution
with the results obtained analyzing the masonry structures.

In Figure 4.14 are reported the fragility curves obtained analyzing the entire
set of fifteen masonry structures. Similarly to Figure 4.12 and Figure 4.13, each
panel of Figure 4.14 shows the fragility curves of the intact structures evaluated
for each arriving damage state using the lognormal distribution (Eq.(4.1)) i.e. panel
(a) for DS ; panel (b) for DS, ; panel (c) for DS, and panel (d) for DS, .

The values of median, 77, and logarithmic standard deviation, f, defining

the parametric fragilities of intact structures numbered from 1 to 15 are reported
in Table 4.6. The table also reports for each structure the masonry material, i.e.,
rubble stone untreinforced masonry (STRUB); dressed stone unreinforced
masonry (STDRE), clay brick unreinforced masonry (CL99) and confined
masonry structures (MCF). In addition, the masonry structures are characterized
by the level of available ductility (non-ductile or low) and the height expressed in
terms of number of stories ( H).
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Figure 4.12 Fragility curves evaluated for the benchmark system 1 of masonry structures for the
four damage states DS, (a); DS, (b); DS, (c) and DS, (d).
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Figure 4.13 Fragility curves evaluated for the benchmark system 2 of masonry structures for the

four damage states DS, (a); DS, (b); DS, (c) and DS, (d).
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Figure 4.14 Fragility curves of masonry structures evaluated for the four damage states DS, (a);

DS, (b); DS, (c) and DS, (d).

Table 4.6 Median 7 and logarithmic standard deviation £ defining the state-dependent fragility

curves of masonry structures (IM in g).

‘ MEDIAN 7 SIGMA g

# Material Avml?l?le

Ductility
IDAY DS, DS, DS, IDAY DS, DS, DS,
1 STRUB non-ductile 1008 013 0.16 0.18 0.26 0.22 0.18 0.17
2 STRUB non-ductile 2 0.06  0.10 0.13 0.16 0.21 0.25 0.28 0.30
3 STRUB non-ductile 3  0.05  0.10 0.15 0.18 0.30 0.33 0.38 0.42
4 STRUB non-ductile 4 005  0.11 0.15 0.19 0.37 0.42 0.45 0.47
5 STRUB non-ductle 5  0.06  0.11 0.17 0.21 0.40 0.46 0.48 0.47
6 CL99 non-ductle 3 0.06  0.11 0.15 0.19 0.33 0.34 0.40 0.43
7 CL99 non-ductile 4  0.06  0.12 0.17 0.21 0.37 0.43 0.46 0.47
8 CL99 non-ductile 5 0.06 0.13 0.18 0.23 0.41 0.46 0.47 0.48
9 STDRE non-ductle 4  0.06 012  0.17 0.21 0.36 0.40 0.44 0.47
10 STDRE non-ductle 5 0.06 012  0.18 0.22 0.41 0.46 0.47 0.47
11 MCF low 1 0.15 0.22 0.27 0.31 0.25 0.20 0.18 0.18
12 MCF low 2 0.11 0.20 0.26 0.31 0.21 0.22 0.24 0.26
13 MCF low 3 009 018 0.25 0.31 0.27 0.31 0.35 0.41
14 MCF low 4 009 019 0.27 0.34 0.34 0.38 0.43 0.46
15 MCF low 5 0.09 0.19 0.28 0.35 0.37 0.46 0.46 0.47




CHAPTER 4 149

4.4.2.2. State-dependent fragility curves

For the state-dependent fragilities, the assumption of a lognormal distribution or,
alternatively, of a gamma distribution is investigated also in the case of masonry
structures. An example of comparison between the non-parametric state-
dependent fragilities (identified by the non-par subscript in the legend) and the
parametric ones evaluated using the lognormal distribution (/og subscript) is shown
in Figure 4.15 for the benchmark system 1 of masonry structures. Each panel of
the figure shows the state-dependent fragility curves referring to different starting

state and having the same final state; i.c. panel (a) refers to DS, , panel (b) refers
to DS, and refers to DS, . Figure 4.16 shows the same results reported in Figure

415 but compares the non-parametric state-dependent fragilities with the

parametric ones evaluated using the gamma distribution (gazma subsctipt).
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Figure 4.15 Comparison of the non-parametric and the parametric state-dependent fragility curves
evaluated for the benchmark system 1 of masonry structures assuming the lognormal distribution

and having different starting damage state and the same final state DS, (a), DS, (b) and DS, (c).
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Figure 4.16 Comparison of the non-parametric and the parametric state-dependent fragility curves
evaluated for the benchmark system 1 of masonry structures assuming the gamma distribution and

having different starting damage state and the same final state DS, (a), DS; (b) and DS, (c).

The choice between the two possible distributions (lognormal and gamma) to
define the state-dependent fragility curves is conducted also in case of the masonry
structures in terms of failure rates (see Eq. (4.6)). The failure rates of the fifteen
masonry structures at the three Italian sites (I’Aquila, Naples and Milan) are
evaluated using the hazard curves shown in Figure 4.10b. The results for the three
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sites are shown in Table 4.7, Table 4.8 and in Table 4.9 in case failure rates
evaluated using the non-parametric state-dependent fragilities, the parametric
state-dependent fragilities obtained using the lognormal and the gamma
distribution, respectively.

Comparing the results obtained; it is found that modeling the state-dependent
fragilities via a lognormal distribution provides failure rates closer to those
obtained using the non-parametric results, for all the possible transitions between
different damage states and considering the three levels of seismic hazard.
Therefore, the lognormal distribution was chosen to represent the state-dependent

fragilities also for masonry structures classes.

Table 4.10 collects the values of the median, 77, and logarithmic standard
deviation, £, defining lognormal distribution, Eq. (4.1); i.e., the parametric state-
dependent fragility curves for the fifteen masonry structures. In the table, the fifth
column gives the initial damage state where the damage states reported in the rest
of the row represent the arrival damage states.

Figure 4.17 shows the state-dependent fragility curves obtained analyzing the
entire set of fifteen masonry structures via back-to-back IDA and assuming the
lognormal distribution. Each panel of Figure 4.17 shows the state-dependent
fragility curves obtained considering a possible transition between damage states,
Le. from DS, to DS, (panel a); from DS, to DS, (panel b); from DS, to DS,

(panel ¢); from DS, to DS, (panel d); ); from DS, to DS, (panel ) and from
DS, to DS, (panel f).
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Figure 4.17 State-dependent fragility curves of masonry structures.
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Table 4.7 Failure rates for the masonry structures computed using the non-parametric state-

dependent fragility curves

’AQUILA NAPLES MILAN
# A DS, DS, DS, DS, DS, DS, DS, DS, DS,
ps,  1.35B-02  7.86E-03 G.00E-03 557E-03  240E-03 152E-03 3.75E-05 8.03E-06 3.52E-06
1 D5, \ 429E-02  1.81E-02 \ 242E-02  8.53E-03 \ 6.64E-04  9.42E-05
DS, \ \ 6.41E-02 \ \ 3.70E-02 \ \ 1.49E-03
D5,  320E-02 126E-02 8.64E-03 174E-02 507E-03 288E-03 323E-04 3.06E-05 1.15E-05
2 s, \ 5.09E-02  2.30E-02 \ 291E-02  1.17E-02 \ 9.35E-04  1.61E-04
DS, \ \ 6.30E-02 \ \ 3.62E-02 \ \ 1.52E-03
DS, 238E-02  1.07E-02 7.A8E-03 122E-02 4.06E-03 225E-03 176E-04 224E-05 839E-06
3 s, \ 4.19E-02  1.82E-02 \ 235E-02  8.71E-03 \ 7.05E-04  1.04E-04
DS, \ \ 5.18E-02 \ \ 2.94E-02 \ \ 1.10E-03
D5, 2.65E-02 1.09E-02 7.06E-03 139E-02 427E-03 224E-03 227E-04 2.68E-05 8.77E-06
4 DS, \ 3.96E-02  1.80E-02 \ 220E-02  8.64E-03 \ 6.29E-04  1.09E-04
DS, \ \ 4.23E-02 \ 9.20E+01  2.36E-02 \ \ 7.76E-04
Ds,  227E-02  9.69E-03 G611E-03 1.15E-02 3.65E-03 181E-03 1.69E-04 2.10E-05 6.36E-06
5 s, \ 345E-02  1.45E-02 \ 1.89E-02  6.54E-03 \ 4.86E-04  6.69E-05
DS, \ \ 4.02E-02 \ \ 2.22E-02 \ \ 8.47E-04
DS, 247E-02  1.04E-02  6.96E-03 127E-02 392E-03 216E-03 195E-04 2.17E-05 8.00E-06
6 DS \ 401E-02  1.74E-02 \ 223E-02  8.22E-03 \ 6.38E-04  9.41E-05
DS, \ \ 4.54E-02 \ \ 2.56E-02 \ \ 8.28E-04
D5,  251E-02 9.88E-03 6.39E-03 130E-02 3.74E-03 193E-03 2.10E-04 2.19E-05 G6.94E-06
7 D5, \ 359E-02  1.57E-02 \ 1.97E-02  7.26E-03 \ 537E-04  8.28E-05
DS, \ \ 4.05E-02 \ \ 2.25E-02 \ \ 741E-04
ps,  200E-02 8.62E-03 533E-03 9.84E-03 3.08E-03 146E-03 127E-04 1.58E-05 4.51E-06
8§ D5, \ 322B-02  1.34E-02 \ 1.75E-02  5.91E-03 \ 4.38E-04  5.99E-05
DS, \ \ 341E-02 \ \ 1.87E-02 \ \ 5.29E-04
o D% 211E02 929E-03  GI1E-03  105E-02  338E-03  179E-03 132504 177B-05  597E-06
Ds, \ 3.58E-02  1.58E-02 \ 1.97E-02  7.28E-03 \ 4.99E-04  8.04E-05
DS, \ \ 3.92E-02 \ \ 2.16E-02 \ 9'201“0 7.24E-04
Ds,  223E-02 925E-03 573E-03 1.13E-02 342E-03 1.64E-03 1.63E-04 1.89E-05 545E-06
10 D5, \ 329E-02  1.41E-02 \ 1.79E-02  6.33E-03 \ 456E-04  6.53E-05
DS, \ \ 3.67E-02 \ \ 2.02E-02 \ \ 6.81E-04
D, 1.08E-02 4.00E-03 272E-03 4.09E-03 7.77E-04 3.83E-04 251E-05 134E-06 4.05E-07
11 s, \ 2.44E-02  1.07E-02 \ 1.26E-02  4.03E-03 \ 1.67E-04  2.18E-05
DS, \ \ 3.44E-02 \ 9.20E+01  1.89E-02 \ \ 3.86E-04
D5, 9.05E-03 3.96E-03 267E-03 3.07E-03 7.70E-04  3.89E-04 130E-05 127E-06 4.42E-07
12 s, \ 2.37E-02  9.94E-03 \ 1.21E-02  3.75E-03 \ 1.82E-04  2.51E-05
DS, \ \ 3.23E-02 \ \ 1.76E-02 \ \ 3.94E-04
D5,  122E-02 485E-03 3.10E-03 499E-03 1.17E-03 560E-04 357E-05 2.80E-06 8.79E-07
13 DS \ 234E-02  9.39E-03 \ 1.20E-02  3.51E-03 \ 1.90E-04  2.37E-05
DS, \ \ 2.89E-02 \ \ 1.55E-02 \ \ 3.30E-04
D5, 1.02E-02  4.30E-03 269E-03 3.89E-03  1.00E-03  4.60E-04 230E-05 231E-06 6.79E-07
14 D5, \ 2.04E-02  8.18E-03 \ LOIE-02  2.92E-03 \ 1.47E-04  1.69E-05
DS, \ \ 2.23E-02 \ \ 1.14E-02 \ \ 2.11E-04
D5, LI1E-02  432E-03 260E-03 445E-03 1.04E-03  446E-04 3.17E-05 2.60E-06 6.82E-07
15 D5, \ 1.89E-02  7.34E-03 \ 9.24E-03  2.56E-03 \ 141E-04  1.59E-05
DS, \ \ 2.02E-02 \ \ 1.02E-02 \ \ 1.88E-04
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Table 4.8 Failure rates for the masonry structures computed using the parametric state-dependent

fragility curves obtained using the lognormal distribution.

L’AQUILA NAPLES MILAN
# A DS, Ds, Ds, DS, Ds, DS, DS, Ds, DS,
ps,  1.34E-02 7.83E-03 599E-03 552E-03 238E-03 152B-03 347E-05 7.63E-06 3.57E-06
1 b, \ 427E-02  1.80E-02 \ 241E-02  8.48E-03 \ 6.57E-04  9.09E-05
DS, \ \ 6.40B-02 \ \ 3.69E-02 \ \ 1.56E-03
DS, 320E-02 126E-02 8.67E-03 1.74E-02 5.09E-03 291E-03 327E-04 324E-05 1.25E-05
2 by, \ 511E-02  2.31E-02 \ 2.92B-02  1.17E-02 \ 9.63E-04  1.69E-04
DS, \ \ 6.456-02 \ \ 3.67E-02 \ \ 1.83E-03
ps,  238E-02 107E-02 7.26B-03 1.22E-02 410E-03 233E-03 178E-04 252E-05 1.07E-05
3 Dy, \ 417E-02  1.83E-02 \ 2.34E-02  8.71E-03 \ 6.65E-04  1.09E-04
DS, \ \ 5.26E-02 \ \ 2.96E-02 \ \ 1.28E-03
DS, 2.65B-02 1.10E-02 7.19E-03 1.39E-02 4.33E-03 235E-03 242E-04 3.17E-05 1.22E-05
4 DS, \ 4.00E-02  1.82E-02 \ 222E-02  8.72E-03 \ 7.12E-04  1.22E-04
DS, \ \ 4.36E-02 \ \ 2.42E-02 \ \ 9,96E-04
DS, 229E-02  9.80E-03 6.25E-03 1.16E-02 3.74E-03 193E-03 1.86E-04 2.68E-05 9.37E-06
5 DS, \ 3.48E-02  1.46E-02 \ 1.90E-02  6.59E-03 \ 537E-04  7.81E-05
DS, \ \ 4.13E-02 \ \ 2.26E-02 \ \ 1.06E-03
DS, 247E-02 1.04E-02 7.00E-03 1.27E-02 3.94E-03 221E-03 2.02E-04 244E-05 1.02E-05
6 DS, \ 3.97E-02  1.75E-02 \ 221E-02  8.25E-03 \ 6.03E-04  1.02E-04
DS, \ \ 4.61E-02 \ \ 2.58E-02 \ \ 9.54E-04
DS, 252E-02  9.99E-03 6.47E-03 1.30E-02 3.82E-03 2.02E-03 227E-04 2.69E-05 9.78E-06
7 D5, \ 3.63E-02  1.58E-02 \ 1.99E-02  7.32E-03 \ 6.04E-04  9.34E-05
DS, \ \ 4.21E-02 \ \ 2.31E-02 \ \ 1.00E-03
ps,  201E-02 872E-03 545E-03 9.89E-03 3.17E-03 157E-03 140E-04 2.07E-05 G6.88E-06
s D5, \ 325E-02  1.35E-02 \ 1.75E-02  5.99E-03 \ 500E-04  7.01E-05
DS, \ \ 3.54E-02 \ \ 1.92E-02 \ \ 7.27B-04
9 b5, 212B-02 937E-03 G.19E-03 1.05E-02 3.44E-03 1.87E-03 145E-04 2.15E-05 8.33E-06
Ds, \ 3.636-02  1.59E-02 \ 1.99E-02  7.33E-03 \ 560E-04  8.89E-05
DS, \ \ 3.96E-02 \ \ 2.18E-02 \ \ 7.98E-04
DS, 225B-02 9.37E-03 5.85E-03 1.14E-02 3.51E-03 1.75B-03 1.81E-04 243E-05 8.05E-06
10 b, \ 3.34E-02  1.43E-02 \ 1.81E-02  6.45E-03 \ 541E-04  7.92E-05
DS, \ \ 3.81E-02 \ \ 2.07E-02 \ \ 9.02E-04
ps,  1.07E-02 3.99E-03 272E-03 4.05B-03 7.68E-04 3.85E-04 228E-05 1.25E-06 4.16E-07
11 b, \ 2.44E-02  1.07E-02 \ 1.26E-02  4.06E-03 \ 1.75E-04  2.35E-05
DS, \ \ 3.46E-02 \ \ 1.90E-02 \ \ 4.09E-04
ps,  9.05E-03 3.97E-03 2.68E-03 3.07E-03 7.88E-04 4.02E-04 131E-05 1.42E-06 5.16E-07
12 b, \ 2.37E-02  9.93E-03 \ 1.21E-02  3.75E-03 \ 1.80E-04  2.47E-05
DS, \ \ 3.28E-02 \ \ 1.78E-02 \ \ 4.56E-04
DS, 1.22B-02 4.87E-03 3.14E-03 497E-03 1.19E-03 G6.00E-04 3.61E-05 328E-06 1.24E-06
13 by, \ 234E-02  9.38E-03 \ 1.20E-02  3.50E-03 \ 2.02E-04  2.39E-05
DS, \ \ 2.93E-02 \ \ 1.56E-02 \ \ 3.78E-04
ps,  1.03E-02 435E-03 2.74E-03 3.92E-03 1.06E-03 5.16E-04 258E-05 3.22E-06 1.16E-06
14 by, \ 2.07E-02  8.25E-03 \ 1.03E-02  2.98E-03 \ 1.73E-04  2.07E-05
DS, \ \ 2.26E-02 \ \ 1.15E-02 \ \ 2.48E-04
ps,  1.12E-02  439E-03 2.66E-03 4.49E-03 1.12E-03 5.12E-04 3.62E-05 3.92E-06 1.24E-06
15 DS, \ 1.90E-02  7.41E-03 \ 9.26E-03  2.62E-03 \ 1.56E-04  1.89E-05
DS, \ \ 2.09E-02 \ \ 1.05E-02 \ \ 2.64E-04
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Table 4.9 Failure rates for the masonry structures computed using the parametric state-dependent

fragility curves obtained using the gamma distribution.

L’AQUILA NAPLES MILAN
# A DS, Ds, Ds, DS, Ds, DS, DS, Ds, DS,
ps, 133E-02 7.81E-03 6.02E-03 545E-03 237E-03 154E-03 3.38E-05 7.54E-06 3.73E-06
1 b, \ 474E-02  1.83E-02 \ 2.65-02  8.69E-03 \ 1.07E-03  1.06E-04
DS, \ \ 6.82B-02 \ \ 3.88E-02 \ \ 2.07E-03
DS, 334E-02 129E-02 8.88E-03 1.82E-02 5.32E-03 3.05E-03 4.10E-04 3.88E-05 1.51E-05
2 by, \ 579E-02  2.51E-02 \ 327E-02  1.29E-02 \ 1.65E-03  2.70E-04
DS, \ \ 8.47E-02 \ \ 4.67E-02 \ \ 4.16E-03
DS, 249E-02 1.11E-02 7.80E-03 1.28E-02 4.38E-03 2.69E-03 234E-04 3.38E-05 1.89E-05
3 Dy, \ 4.62E-02  2.01E-02 \ 2.57E-02  9.84E-03 \ 1.09E-03  1.97E-04
DS, \ \ 6.47TE-02 \ \ 3.57E-02 \ \ 2.63E-03
D, 2.88E-02 1.19E-02 821E-03 1.52E-02 4.96E-03 3.03E-03 3.87E-04 574E-05 3.19E-05
4 DS, \ 511E-02  2.22E-02 \ 279E-02  1.11E-02 \ 1.79E-03  3.53E-04
DS, \ \ 5.92E-02 \ \ 3.21E-02 \ \ 2.63E-03
DS, 258E-02 1.12E-02 7.55E-03 1.33E-02 4.64E-03 2.78E-03 3.63E-04 G6.51E-05 3.47E-05
5 DS, \ 426E-02  1.79E-02 \ 231E-02  8.59E-03 \ 1.27E-03  2.46E-04
DS, \ \ 6.89E-02 \ \ 3.68E-02 \ \ 3.89E-03
ps,  2.62E-02 109E-02 7.58E-03 1.36E-02 4.29E-03 2.60E-03 2.89E-04 3.50E-05 1.90E-05
6 DS, \ 432E-02  1.96E-02 \ 2.39E-02  9.53E-03 \ 9.33E-04  2.02E-04
Ds, \ \ 5.69E-02 \ \ 3.13E-02 \ \ 2.09E-03
DS, 2.80E-02 1.11E-02 7.54E-03 1.46E-02 4.56E-03 2.72E-03 4.09E-04 5.67E-05 2.92E-05
7 D5, \ 4.67E-02  1.93E-02 \ 2.53E-02  9.40E-03 \ 1.59E-03  2.79E-04
DS, \ \ 6.60E-02 \ \ 3.54E-02 \ \ 3.46E-03
DS, 224E-02 1.01E-02 6.68E-03 1.12E-02 4.04E-03 236E-03 2.62E-04 551E-05 2.85E-05
s D5, \ 429E-02  1.72E-02 \ 231E-02  8.20E-03 \ 1.46E-03  2.61E-04
DS, \ \ 5.92E-02 \ \ 3.16E-02 \ \ 3.06E-03
9 b5, 227B-02 101E-02 G699E-03 1.14E-02 3.95E-03 240E-03 222E-04 3.82E-05 2.10E-05
Ds, \ 451E-02  1.91E-02 \ 2.45B-02  9.26E-03 \ 1.37E-03  2.47E-04
DS, \ \ 5.29E-02 \ \ 2.86E-02 \ \ 2.14E-03
DS, 256E-02 1.07E-02 7.07E-03 1.32E-02 437E-03 254E-03 3.69E-04 G6.01E-05 3.04E-05
10 b, \ 4.69E-02  1.88E-02 \ 2.52E-02  9.11E-03 \ 1.80E-03  3.22E-04
DS, \ \ 6.69E-02 \ \ 3.56E-02 \ \ 3.79E-03
ps,  1.07E-02 3.98E-03 274E-03 4.02E-03 7.64E-04 3.94E-04 234E-05 125E-06 4.45E-07
11 b, \ 2.66E-02  1.13E-02 \ 1.38E-02  4.47E-03 \ 2.66E-04  3.36E-05
DS, \ \ 3.71E-02 \ \ 2.04E-02 \ \ 5.87E-04
ps,  9.11E-03 411E-03 277E-03 3.12E-03 8.69E-04 4.46E-04 1.40E-05 1.89E-06 6.94E-07
12 b, \ 2.54E-02  1.07E-02 \ 131E-02  4.26E-03 \ 2.61E-04  4.23E-05
DS, \ \ 4.83E-02 \ \ 2.60E-02 \ \ 1.82E-03
ps,  126B-02 5.03E-03 3.37E-03 526E-03 1.30E-03 7.34E-04 4.73B-05 455B-06 2.42E-06
13 b, \ 298E-02  1.06E-02 \ 1.56E-02  4.31E-03 \ 6.15E-04  5.58E-05
DS, \ \ 3.74E-02 \ \ 2.00E-02 \ \ 1.08E-03
ps,  1.09E-02 475E-03 3.2E-03 4.33E-03 131E-03 7.36E-04 4.00E-05 6.92E-06 3.67E-06
14 b, \ 274E-02  1.02E-02 \ 1.41E-02  4.24E-03 \ 6.32E-04  8.14E-05
DS, \ \ 3.14E-02 \ \ 1.63E-02 \ \ 9.52E-04
ps,  1.25E-02 513E-03 3.34E-03 536E-03 158E-03 89GE-04 7.82E-05 1.32E-05 7.14E-06
15 DS, \ 2.75E-02  9.71E-03 \ 1.41E-02  4.07E-03 \ 7.53E-04  1.00E-04
DS, \ \ 4.11E-02 \ \ 2.15E-02 \ \ 1.97E-03
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Table 4.10 Median 7 and logatithmic standard deviation S defining the state-dependent fragility

curves of masonry structures (IM in g).

#  Materials Avail;.il.ale DS s P P
Ductility n B n Yij n Y:j
Ds, 0.099 0257 0.143 0.199 0.170 0.183
1 STRUB  non-ductile DS, \ \ 0.042 0.436  0.083  0.392
DS, \ \ \ \0.030 0443
DS, 0.052 0381 0.105 0.305 0.137 0.302
2 STRUB non-ductile DS, \ \ 0.036  0.440 0.070  0.424
DS, \ \ \ \ 0.031  0.545
Ds, 0.068 0.414 0.122 0.371  0.162 0.406
3 STRUB non-ductile DS, \ \ 0.044 0482 0.086 0470
DS, \ \ \ \ 0.038  0.586
DS, 0.063 0.455 0.124 0.442  0.168  0.456
4 STRUB  non-ductile DS, \ \ 0.048 0.575 0.089 0.529
DS, \ \ \ \ 0.047  0.665
DS, 0.073  0.489 0.137 0.475 0.186 0.476
5 STRUB non-ductile DS, \ \ 0.054 0.581 0.106  0.542
DS, \ \ \ \ 0.053  0.765
DS, 0.067 0.440 0.125 0.388 0.167 0.418
6 CL99 non-ductile DS, \ \ 0.046  0.485 0.089 0.484
DS, \ \ \ \ 0.042  0.575
DS, 0.067 0.483 0.134 0.462 0.181 0.464
7 CI1.99 non-ductile DS, \ \ 0.053  0.596 0.100 0.543
DS, \ \ \ \ 0.050  0.712
DS, 0.080 0.485 0.149 0.480 0.204 0.479
8 CL99 non-ductile DS, \ \ 0.059  0.618 0.114  0.567
DS, \ \ \ \ 0.059 0721
Ds, 0.075 0.443  0.138 0.434 0.184 0.448
9 STDRE  non-ductile DS, \ \ 0.052  0.556 0.098 0.517
DS, \ \ \ \ 0051 0.650
DS, 0.074 0.494 0.141 0.478 0.195 0.476
10 STDRE  non-ductile DS, \ \ 0.058  0.630 0.109  0.566
DS, \ \ \ \ 0.057  0.762
DS, 0.119 0328 0.220 0.208 0.272  0.189
11 MCF low DS, \ \ 0.065 0364 0.120  0.340
DS, \ \ \ \ 0.050  0.418
DS, 0.132  0.273  0.224 0.255 0.282  0.265
12 MCF low DS, \ \ 0.068 0.422 0.132 0.434
DS, \ \ \ \ 0.056  0.559
DS, 0.112 0389 0.205 0.348 0.271  0.382
13 MCF low DS, \ \ 0.072  0.504 0.141 0.472
DS; \ \ \ \ 0.063  0.587
DS, 0.128  0.420 0.228 0.419 0.304 0.441
14 MCF low DS, \ \ 0.082 0.562 0.159 0.523
DS, \ \ \ \ 0.081  0.044
DS, 0.125 0476 0.233  0.465 0.315 0472
15 MCF low DS, \ \ 0.090 0.601 0.177 0.572
DS, \ \ \ \ 0093 0.743
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4.5. Conclusions

This study shows the results of the assessment of state-dependent fragility
functions for Italian reinforced concrete and masonry structures taken from the
outcomes of the SERA project. Fragility assessment was conducted via back-to-
back IDA of an ESDoF approximation of single structures, each representing a
building class. In this context, two issues significantly affecting the assessment
were addressed: the choice of the intensity measure and the identification of the
number of ground motion records for the execution of nonlinear dynamic
analyses. Based on a comparison of different intensity measures, it was confirmed

that those entailing a geometric mean of spectral accelerations, that is, Sz, and

ang
I» , were to be preferred due to exhibiting greater efficiency than single-period
spectral ordinates. In lack of a specific calibration of the I, intensity measure at

this stage, Sa,,

was selected for the state-dependent fragilities. As far as the
number of records is concerned, a set of 35 ground motions was used as a
compromise between computational costs and the precision in fragility
assessment, based on the statistical inference concept of estimation uncertainty.
The fragility curves for the intact structures and the state-dependent fragility

curves were modeled assuming a lognormal distribution.
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Abstract

From this chapter was derived the paper:

—  Otlacchio M., Baltzopontos G., lervolino 1. (2019), “Constant-ductility residual
displacement ratios”, Proceedings of COMPDYN 2019, 7th ECCOMAS' Thematic
Conference on Computational Methods in Structural Dynamics and Earthquake
Engineering, 24-26 June 2019, Crete, Greece.

Structures subjected to large inelastic deformations during earthquakes can
experience residual displacements, i.e., permanent deviations from the original
geometric configuration that may reflect damage due to hysteretic energy
dissipation. In fact, observed residual displacements play a fundamental role in
determining the feasibility of post-earthquake repair operations, against the
alternative of demolition and replacement. Furthermore, seismic risk studies often
use analytically derived estimates of the peak inelastic and residual displacements
as proxies for structural damage and remaining post-shock capacity, respectively,
the latter being an important ingredient for the evaluation of structural reliability
in the face of seismic sequences. This chapter presents a predictive model for
evaluating the central tendency and record-to-record variability of constant-
ductility residual displacements of bilinear single-degree-of-freedom systems that
exhibit strength and stiffness degradation under cyclic loading, such as typically
observed in reinforced concrete structures with predominantly flexural behavior.
In order to develop the model, systems with natural periods belonging to the 0.3
s to 2.0 s range with post-yield hardening ratios ranging from 0 to 10%, were
analyzed. The most influential variables are post-yielding hardening slope, ductility
demand and the level of stiffness and/or strength deterioration caused by the
ground shaking. The resulting equations provide the joint distribution of residual
displacement, elongated period and loss of lateral resistance. This model can be
used for the probabilistic definition of the post-earthquake pushover of a damaged
system.

Keywords: static pushover; cyclic degradation; sequence-based seismic reliability.

5.1. Introduction

The increased interest in the effects of earthquake sequences on structures
(Iervolino et al, 2016, 2020) and the requirement to analytically evaluate
retrofitting via seismic risk analysis, (Ramirez and Miranda, 2012; Ruiz-Garcia and
Aguilar, 2015) have stimulated a number of investigations into the issue of residual
displacements. Thus, whereas the peak transient displacement of simple inelastic
systems has been studied extensively for the last sixty years, (Veletsos and
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Newmark, 1960; Ruiz-Garcia and Miranda, 2003; Riddell, 2008) research in the
residual displacement of such systems is gradually catching up.

The magnitude of residual displacements can determine the technical and
economic feasibility of repair operations of seismic damage. In fact, large residual
displacements may lead to a decision to demolish a structure, rather than repair it,
and often represent a variable that dominates expected economic losses at
intermediate levels of ground motion intensity (Ramirez and Miranda, 2012).
Furthermore, the consideration of residual displacements as a supplement to the
peak deformation demand, allows for a more complete quantification of building
performance under sequential seismic excitation (Ruiz-Garcia and Miranda, 2004;
Christopoulos and Pampanin, 2004; Uma et al., 2010). Sequential seismic loading,
that is, multiple instances of base acceleration arriving in succession without
allowing for intermediate repairs to the structure, can be the result of earthquake
shocks occurring clustered in time and space, that is, a seismic seguence. In fact,
residual displacements were found to be a proxy for the remaining capacity of
structures that have already experienced one damaging shock during a sequence,
to withstand further aftershocks (Bazzurro et al., 2004; Luco et al., 2004).

According to the paradigm of performance-based earthquake engineering (PBEE,
Cornell and Krawinkler, 2000) assessment of seismic structural reliability requires
a probabilistic treatment of structural response. Past research has provided
examples of such a probabilistic description of inelastic displacement demand for
simple structural systems (Vamvatsikos and Cornell, 2006). However, in the case
of residual displacements, there is scarcity of such models (Ruiz-Garcfa and
Miranda, 2006; Liossatou, 2013). The objective of the present analytical study is to
contribute to filling that gap by providing a predictive model aimed at
probabilistically evaluating the residual displacement of simple yielding oscillators,
while accounting for some of the parameters known to primarily affect its central
tendency and variability.

Several studies have been focused on identifying the parameters that
primarily affect the residual displacements of single-degree-of-freedom (SDoF)
inelastic structures subjected to earthquake ground motion. From the early studies
on residual displacement, the post-yield stiffness ratio emerged as one of the most
important parameters for the evaluation of permanent deformations of bilinear
SDoF systems (Riddell and Newmark, 1979a, 1979b) and this was also confirmed
by subsequent investigations (G. A. Macrae and Kawashima, 1997; Borzi et al,,
2001; Christopoulos et al., 2003; Ruiz-Garcia and Miranda, 2006). Overall, it has
been observed that bilinear oscillators with positive post-yield stiffness ratios
generally exhibit smaller residual displacements than elastic—perfectly plastic
systems. On the other hand, oscillators that exhibit negative stiffness after yield
tend to undergo little reversal of inelastic deformation and thus exhibit larger
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residual displacements than corresponding elastoplastic or hardening systems (G.
A. Macrae and Kawashima, 1997).

Other studies considered the importance of the hysteretic law, and
investigated the impact of the shape of hysteresis loops on residual displacements
among different models of cyclic behavior (Riddell and Newmark, 1979a, 1979b;
Mahin and Bertero, 1981; Pampanin et al.,, 2003; Liossatou and Fardis, 2015;
Christopoulos et al., 2003; Ruiz-Garcfa and Miranda, 2004, 2006). These studies
pointed out that the unloading-reloading stiffness of the hysteretic model is one
of the most influential parameters that determine residual displacements. In fact,
it was observed that residual displacement demands for stiffness-degrading
systems are, on average, smaller than their counterparts computed for elastoplastic
systems with the same elastic dynamic properties and yield strength, especially if
unloading from (and reloading to) the monotonic envelope passes through, or
close-to, the origin (e.g., in the case of flag-shaped or pinched hysteresis loops).

Generally speaking, past studies indicate that for vibration periods of the
structure below 1.0 s, the central tendency of residual displacements (e.g., mean or
median) exhibits some dependence on period (G. A. Macrae and Kawashima,
1997; Ruiz-Garcfa and Miranda, 2004; Liossatou and Fardis, 2015), but this
dependence does not persist for longer periods (Ruiz-Garcia and Miranda, 2004;
Liossatou and Fardis, 2015). However, residual displacements are also
characterized by significant record-to-record variability (Mahin and Bertero, 1981;
Ruiz-Garcia and Miranda, 2004; Liossatou and Fardis, 2015; Christopoulos et al.,
2003), which also depends on the system’s period of natural vibration, being higher
towards shorter periods (e.g., between 0.10 s and 0.5 s; Ruiz-Garcifa and Miranda,
2004; Liossatou and Fardis, 2015). For SDoF systems with bilinear backbones, this
dispersion tends to increase as positive post-yield stiffness approaches zero and/or
when the system exhibits stiffness degradation (Ruiz-Garcia and Miranda, 2004,
Liossatou and Fardis, 2015 ).

Although these observations were mostly made by investigating the residual
displacements of SDoF systems under a constant-strength approach, that is,
oscillators having the same ratio of elastic restoring force demand to yield strength
(or strength ratio), a few studies also considered systems where ductility, is kept
constant (G. A. Macrae and Kawashima, 1997; Borzi et al., 2001; Christopoulos et
al., 2003; Madhu Girija and Gupta, 2020), the latter defined as the ratio of inelastic

displacement demand to yield displacement, g =|s,, |/&, . This is termed the

X

constant-ductility approach and is also adopted in the present study. Thus, this

investigation is focused on the constant-ductility residual displacement ratio (Cy),

defined as the ratio of residual to peak transient displacement, according to

Eq.(5.1):
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(.1)

res nax

C,=9,/9,

whete both the residual displacement, o

res

and peak transient displacement, &

max

, are considered preserving their sign. The choice of normalizing the residual
displacement with the maximum inelastic displacement, which is also encountered
in the literature (Ruiz-Garcfa and Miranda, 2004; Liossatou and Fardis, 2015;
Madhu Girija and Gupta, 2020), as well as the constant-ductility approach, were
motivated by the widespread use of inelastic displacement limits as thresholds for
the definition of structural damage states in PBEE. In fact, it is common practice
to define the transition of a structure from one damage state to another, during an
earthquake shock, on the basis of crossing some transient displacement threshold
(Georgios Baltzopoulos et al., 2017; Iervolino et al., 2018). In other words, the
present study is oriented towards estimating residual displacements for a structure
that can be considered to be in a certain damage state, after an earthquake.
Therefore, the objective of this chapter is to present an analytical predictive
model for the central tendency and related record-to-record variability of the
residual displacement ratio for SDoF systems with bilinear backbones that follow
evolutionary hysteretic laws. This is a step forward from a preliminary version of

the model (Orlacchio et al., 2019) €, which was limited to the consideration of

stiffness degradation due to peak-oriented hysteretic behavior. Going forward, the
present chapter provides a more general set of equations that also account for
cyclic strength degradation, which can be representative of the behavior of /ow-code

reinforced concrete structures with flexure-dominated inelastic response. The C,

ratio is calculated for various combinations of input motion, natural vibration
period and post-yielding hardening ratio, considering also different levels of

strength degradation. The end result is a set of predictive equations for C, as a

function of two other random variables (RVs): the elongated period (due to loss
of stiffness), and the loss of lateral strength, both conditional on a given ductility
demand. Thus, these equations effectively model the joint distribution of residual
displacement, elongated period and strength degradation. As a consequence, this
model allows for the probabilistic evaluation of enough parameters to define the
post-shock pushover curve of the SDoI system, which reflects its state of seismic
damage. In this sense, this constant-ductility approach could find application in
the context of simplified estimation of seismic fragility characterizing the structure
in its damaged state (Raghunandan et al., 2015; Bazzurro et al., 2004; Luco et al.,
2004).

The remainder of this chapter follows this structure: first the analysis
methodology is outlined describing the properties of the analyzed systems and the
organization of the analyses used to collect the data set. The next two sections are
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dedicated to the detailed description of the predictive model’s development and
the numerical aspects of its practical implementation, such as the derivation of
mean spectra for residual displacement ratios or the stochastic simulation of
pushover curves characterizing the damaged system. Finally, an illustrative
application is presented showing that the model can be used as a simplified tool
to predict the residual displacements of a reinforced concrete multi-story frame.
Some discussion and evaluation of the obtained results conclude the chapter.

5.2. Scope and methodology
5.2.1. Models considered for hysteretic behaviour

The purpose of the present study is the development of a predictive model for the

constant-ductility residual displacement ratio, C, , of simple inelastic systems that

can be deemed to be representative of high- and low-code reinforced concrete
structures with flexure dominated inelastic response. These structures consisted
of yielding SDoF systems characterized by piece-wise linear monotonic pushovers
and peak-oriented hysteretic behavior, potentially exhibiting cyclic strength
degradation. The analytical model adopted for the numerical implementation of
the hysteretic rule was the modified [barra-Medina-Krawinkler IMK, Ibarra et al.,
2005; Lignos and Krawinkler, 2011) model. An example trilinear pushover, or

backbone curve, is shown in Figure 5.1a using dimensionless {R, ,u} coordinates,
where R =F/F, is the strength ratio of the elastic force over the yield base shear
of the system, and y =9 / o, stands for the response-to-yield displacement ratio;

i.e., the ductility.?

The analyzed systems have backbone curves consisting of an elastic branch
followed by a post-yield hardening segment, the latter defined by a hardening slope
a, and ending at a capping point ductility . .

2 The notation ¢ is used herein to denote both maximum transient ductility demand due to base

acceleration, |5

7aax

/ 5} , and normalized displacement response under quasi-static loading & / o )

as per the typical convention in earthquake engineering literature. In all cases presented herein, the

normalizing yield displacement & , is that of the intact structural system.
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Figure 5.1 Peak-oriented modified IMK hysteretic model. Backbone curve and quasi-static cyclic
response of an inelastic SDoF system without any cyclic strength degradation, shown in

dimensionless {R, ,u} coordinates (a); quasi-static cyclic response that includes cyclic strength

degradation (b).

This hysteretic model allows for the investigation of two degradation modes,
the first being the deterioration of reloading stiffness inherent in the peak-oriented
model, where the direction of the loading path targets the maximum displacement
on the opposite side, once the horizontal axis is intersected in each reloading cycle
(Figure 5.1a). The second type of degradation considered is the cyclic deterioration
of lateral strength, which involves the offset of the hardening branch towards the
origin after each response half-cycle and the simultanecous detetioration of the
hardening slope. The latter constitutes a case of ¢yelic strength degradation, so-
termed to distinguish it from in-cycle degradation, which occurs when ductility
demand exceeds the capping point g, and the response follows the softening

branch (FEMA P440A, 2009). Figure 5.1 displays the quasi-static cyclic response
of two simple inelastic systems that behave according to the modified IMK peak-
oriented hysteretic model (Lignos, 2013) one of which corresponds to a case
without cyclic strength degradation (Figure 5.1a) whereas the other does exhibit
cyclic strength deterioration (Figure 5.1b). Although no ductility demands g > g4,
are considered in this investigation, and therefore no in-cycle strength degradation
ever comes into play in the development of the predictive model, a descending

softening branch, defined by a post-capping slope a, and intercepting the zero-
strength axis at a fracture ductility, 4, is still shown for the sake of completeness.

In otrder to investigate the effect of strength degradation on residual
displacement, three hysteretic rules were established, characterized by increasing
degradation levels that will be hereafter conventionally referred to as cases of low-
, medium- and high-degradation. Although the labeling of these degradation levels
is purely arbitrary, they were defined on a quantitative basis, according to the loss
of lateral resistance following the numerical application of a specific loading
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protocol. In this context, a normalized lateral strength degradation measure is
defined, hereafter referred to as the strength loss, AR and defined according to Eq.
(5.2):
F  +F
AR =1 — — 2’ o (.2)
2-F

max

where F_=F, -|:1 +a, - (u— 1):| is the maximum restoring force reached along

the hardening branch of the initial backbone at ductility g < g under static
loading (i.e., in the absence of cyclic strength degradation) and F' . represents

the maximum force in the positive and negative loading directions, that can be
reached at the same ductility on the deteriorated backbone after the system has
been subjected to any cyclic loading; i.c., on the pushover of the damaged
structure, as shown in Figure 5.2. On the same figure, it is worth noting that the

evaluation of F’ . and F’ is performed upon the backbones of the

max—

damaged structure that have been shifted from the initial point of equilibrium by

’

the residual displacement J,, . The parameter F

res

is hereafter used to express

max

the deteriorated lateral resistance at maximum ductility demand, evaluated as

F =12 (F'WM +F ) , which simplifies Eq. (5.2) to AR=1-F’, /F

max: max
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Figure 5.2 Examples of an SDoF structure’s monotonic pushover (backbone) curve before and
after the seismic damage. Intact-structure backbone (grey line) and post-shock backbone (dark line

with pre-yield stiffness 4 ', intersecting the zero-force horizontal axis at &, ) for a generic stiffness-

degrading system (a) and for a generic stiffness- and strength-degrading system (b).

Using this definition of strength loss, the conventional labeling of the three
degradation levels was calibrated so that AR would result approximately equal to
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0.20,0.30 and 0.40 for the low-, medium- and high-degradation levels, respectively,
at the end of a displacement-controlled quasi-static cyclic loading, as shown in
Figure 5.2. These values were obtained as an average from the application of the
loading protocol to SDoF systems with hardening slopes spanning the entire range
considered for the model. The loading protocol arbitrarily used for this definition
consisted of performing two symmetric full cycles at each increasing ductility level

1=1{2,3,4,5,6}. On the numerical side, this operation entails the calibration of

the corresponding dimensionless cyclic degradation parameter A (for more
details, the interested reader can consult Lignos and Krawinkler, 2011) of the
modified IMK model as implemented in the OpenSees platform (Open System for
Earthquake Engineering Simulation, McKenna, 2011) via the DYANAS software
(Baltzopoulos et al., 2018). The parameter A, which normalizes a structure-

dependent reference hysteretic dissipation energy E, according to

A ZE,/(é‘J 'F},), was calibrated to take values equal to 163.6, 109.1 and 81.8 for

the low-, medium- and high-degradation levels respectively. For the sake of
brevity, the index DL is hereafter used assuming values of 0, 1, 2 and 3 in order to
indicate: none, low, medium and high levels of degradation respectively, as
reported in Figure 5.3.

Overall, the SDoF systems considered in this study had eight different
periods of natural vibration ranging from 03 to 2.0 s, ie,

T={0.35,0.65,0.95,1.0;,1.2J,1.55,l.85,2.05} , cight distinct hardening stiffness
ratios ranging from zero to ten percent of the elastic stiffness,
a, = {O%, 0.5%,1%,2%,3%,4%,5%,10%} and four levels of strength degradation

(none, low, medium and high, as discussed above). The combination of all of these
variants led to a total of two-hundred and fifty-six inelastic SDoF systems used in
the analyses that will be described in the following. Furthermore, for each SDoF
structure, nine levels of ductility demand were considered, with values

U= {1.5, 2,3,4,5,6,7, 8,9}. All of these ductility values were set lower than the

capping ductility ., so that no structure is subjected to in-cycle degradation by

experiencing inelastic displacements into the softening branch.
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Figure 5.3 Three conventional levels of strength degradation used in this study, defined on the basis
of strength loss after a quasi-static cyclic loading protocol: low-degradation peak-otiented hysteretic
rule (a); medium-degradation (b); high-degradation (c).

5.2.2. Analysis methodology and input ground motions

The predictive model for €, must account for record-to-record variability in

terms of residual displacement, and the amount of stiffness and strength
degradation. This can be seen in Figure 5.4, which compares the initial static
pushover of two SDoF structures in pristine conditions with their pushover after
having been brought to an arbitrary damage state by being subjected to a single
base acceleration time-history (three examples are provided in the figure, each
corresponding to a different accelerogram). The two SDoF structures are
characterized by T'=1.0s and , =2.0% while all three base accelerations are
designed to cause the same ductility demand of g =5.0. The comparison of the
initial and the final damaged state produced by each earthquake shock exhibits
variability in all three aforementioned parameters of residual displacement, post-

shock reloading stiffness and post-shock lateral resistance (where applicable -
Figure 5.4b).
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05 / /i / A AKTHO04 (Fault parallel component)
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-0.5 / / ——-- Northridge 1994 (California), Bev.Hills
/i i 14145 Mulholland (Component azimuth 9°)
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Figure 5.4 Examples of an SDoF structure’s monotonic pushover (backbone) curve before and

after the seismic damage in {R, ,u} coordinates. Post-shock backbones and residual displacements of

an SDoF system with T'=1.0s and &, =2.0%, evaluated for three different records scaled to cause
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ductility demand g =5.0 without strength degradation (a) and with a high level of strength
degradation (b).

In this light, a suite of one hundred single-horizontal-component earthquake
ground motions was used in this study, selected from within the NESS dataset
(Pacor et al,, 2018). All one hundred records were recorded on firm soil at a
closest-to-rupture-plane distance ranging from 0 km to 44.5 km and were
produced by earthquakes with moment magnitude belonging to the 6.1-7.6 range.
Furthermore, the selected records exhibit peak ground acceleration ranging from
0.05 g to 1.40 g and are devoid of apparent pulse-like directivity effects.

The analysis itself can be divided in two phases: the first phase consists of the
execution of incremental dynamic analysis IDA, Vamvatsikos and Cornell, 2001)
using all one-hundred records in the aforementioned set. IDA involves
performing multiple nonlinear dynamic analyses for each record, which is
progressively scaled in amplitude to increasing levels of shaking intensity until a
target ductility g is reached. A mass-proportional viscous damping ratio

& =5.0% was used for all time-history analyses. This procedure allows calculating,

for each accelerogram, the minimum amplitude scale factor (SF; defined as the
non-negative scalar multiplier of all acceleration values in a record) required to
bring the response of the structural model to a fixed ductility demand. The various
target ductility levels analyzed can be considered to represent response thresholds
whose attainment defines a generic damage level for the structure. In this sense,
the IDAs allow determining the SFs that constrain all of the records to bring a
given SDoF structure to the same damage state, assuming that the implied
mainshock earthquake hits the intact structure.

The second phase consists of dynamic and static non-linear analyses for each
record, SDoF structure, and ductility threshold, performed in sequence. During
this procedure, dynamic analysis of the structure is performed for each ground
motion, using a SF calculated in the previous IDA phase, leading to different
numerical incarnations of the corresponding damage state. At the end of the
acceleration history, the time needed for damping-out any remaining velocity of
the mass is provided by zero-padding the end of the record; when the damaged

system is at rest, the residual displacement & , is recorded and static pushover analysis

is performed, in both positive and negative loading direction. Therefore, for each
SDoF system and fixed ductility demand, one-hundred manifestations of the
damaged structure’s static pushover curve are obtained, representing the record-

to-record variability of &, , degraded reloading stiffness 4 and deteriorated

’

lateral resistance at maximum ductility demand F

max *
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5.3. Predictive model for the residual displacement

5.3.1. Residual displacement ratio, period elongation and strength
degradation

The analyses performed as part of this study, described in the preceding section,

provided samples of residual displacement accompanied by the corresponding

stiffness and strength degradation. The objective was to use this data for the

development of a predictive model for C, =9, /J,,. , which can potentially

employ the stiffness and strength degradation information as predictor variables,
along with ductility, vibration period and hardening slope.

In this model, the degradation of reloading stiffness is taken into account under
the guise of period elongation; the reduction in reloading stiffness caused by the peak-
oriented hysteresis, causes the post-seismic-shock SDoF structure to exhibit an
initial branch with slope £&’< 4, which is apparent in Figure 5.2 and Figure 5.4,

and consequently an elongated vibration petiod T'=2-7z-\[m/£", where m is

the mass of the SDoF system. In this context, the variable chosen to quantify
period elongation is the natural logarithm of the relative increase in period

In(AT), which is defined according to Eq. (5.3):

ln(AT)ZIn(T;T), (5.3)

where it is worth recalling that T  is the initial natural vibration period of the SDoF
structure (i.e., prior to any earthquake-induced damage and loss of stiffness).

Strength degradation on the other hand, is quantified using the variable 1n(AR),

with AR given by Eq. (5.2) and calculated for all three degradation levels defined
previously; i.e., low, medium and high. It is important to note that the few cases
exhibiting AR >0.50, that is, loss of lateral resistance exceeding fifty percent of
the initial, were held to represent situations of incipient collapse and were not
given further consideration.

The starting point for defining the model is the relation that was observed

between the ratio of residual to peak transient displacement o, /5, and

max

In(AT), for the simplest case where strength degradation is absent. In fact, it was

observed that the ratio &, /0,

ax.

exhibits persistently high negative linear
correlation with In(AT), for varying T', g and , (Orlacchio et al., 2019). More
specifically, estimates of the correlation between In(AT) and &, /3, , indicated

as p and calculated based on the available dynamic analysis responses according

to the classical definition for linear correlation (Draper and Smith, 1998) range



CHAPTER 5 171

from —0.50 to —0.99 with | p| > 0.7 for the majority of cases examined. The few

cases for which the estimated cotrelation fell within the range —0.5< p<—0.7
were characterized by high ductility demands of £#£27.0, and some of the longer
periods of natural vibration considered; i.e., T >1.8s . This is illustrated in Figure

5.5a, where one should recall that both 6, and &, preserve their sign in this
formulation so that the ratio becomes negative when the two occur in opposite
directions. In that panel, a scatter plot of the one hundred &, /5, responses
against the corresponding 1n(AT') values is given along with the regression line

of the former against the latter.

Furthermore, it was observed that this level of (negative) correlation between

6"6‘.\' / é‘”

nax

and In(AT') also persists in the case of SDoF systems exhibiting cyclic
strength deterioration, for all three degradation levels considered (see Figure 5.5b).
In fact, values of the estimated correlation coefficient between ln(AT) and
0,./95,. of -0.93 and -0.88 characterize the cases reported in Figure 5.5a and
Figure 5.5b, respectively. However, for the cases with strength degradation, a

negative correlation was also observed between &, /8, . and In(AR), across all

max

T, p and o, considered (see Figure 5.5¢). The correlation coefficients between

5714‘ / 5/;7

ax:

and In(AR) range from -0.3 to -0.8 with || > 0.5 for the majority of

analyzed cases. The cases for which the correlation coefficient fell within the range
—-0.3< p<—0.5 were characterized by ductility demands ££>0.0 and periods of

natural vibration T >1.5s. Therefore, an increase of the deterioration parameter
/ﬂ(AR) is generally associated with a decrease in the ratio of residual to peak

transient displacement.

0.4
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Figure 5.5 Examples of regression of &, /3,

e AAINST ln(AT) and against ln(AR) highlighting
their (negative) linear correlation. Are shown the case of a SDoF system with &, =1.0%, T=1.0s

and £ =5.0 without strength detetioration (a); the case of a SDoF system with &, =5.0%,
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T=12s and x=4.0 with a medium level of strength deterioration (b); and the case of a SDoF

system with &, =10.0%, T=1.25 and g=4.0 with a high level of strength detetioration (c).

Based on this observed linear trend, a linear model was adopted for the expected
value of C, in case of absent strength degradation (DI =0). The slope and
intercept of the model are only functions of the ductility demand x and of the
post-yield hardening ratio «,. Thus, the model for C, without strength

degradation is given by Eq. (5.4):

Cy :5m/5mﬂ.x' :91 ln(AT)+ﬂl +gU ‘0-5

0, =bc, +be, NU—1+b5-0,

Bi=coitee,: H=l+c;-a,-Ju-1

os=d - THd, (u=1)+d-a,+d.,-a, - (u—1)+d.,-(u—1)-T-q,

54

whete &, is a standard Normal random variable, €, and f, represent the slope
and intercept of the model and o is the standard deviation of the regression
residuals. As can be seen from the equation, 8, and f, are expressed as linear
combinations of various simple functions of u# and ¢«,. The combination
coefficients, be and O, with / Z{l, 2,3}, are estimated by means of robust
regression (Draper and Smith, 1998) of &, /0, against {In(AT),,u,a/,} using
iteratively re-weighted least squares with bisquare weighting. These coefficients are
all reported in Table 5.1. The analytical form of the model for 6, and S, was
determined by performing preliminary fits of the basic linear model on the analysis
results, separately for the various SDoF systems and ductility levels considered,
and observing the variation of these two parameters with respect to 4, «, and
T graphically.

Regarding the dispersion around the mean, o; was found to be non-

constant, varying with T', x# and «, . Therefore, o5 was modelled by means of
least-squares curve-fitting of an analytical expression to the regression residuals
for the various T, p and «, values. This expression, which contains model
coefficients de J ={1, 2,...,5}, is also included in Eq. (5.4). The coefficient
estimates of the model for o; are reported in Table 5.2.

Figure 5.6 shows a plot of the models for the central tendency of 0, /3,
(Figure 5.6a) and standard deviation o (Figure 5.6d) in case of absent strength
degradation. The model shown in Figure 5.6a refers to the case of «, =0.0% and

for the cases with =5 and =8 in Figure 5.6b and Figure 5.6¢ respectively,



CHAPTER 5 173

whereas the plot in Figure 5.6d shows the model of standard deviation o5 for

a,=3.0%.

B34,/ 4,. from Equation (2.4) 0, from Equation (2.4)
e Single record d/ dratesponse

o Standard deviation of the regression
residuals

L 05N
=03
~
2 0.1 2

0.1 ;

0.6 040200 0204
In(AT) :

_(C)

00 02 04 06 08
In(AT)

Figure 5.6 Central tendency and standard deviation of the model for the residual displacements in

case of absent strength deterioration. Central tendency for &, =0.0% (a); central tendency for
a,=0.0% and =5 (b); central tendency for &, =0.0% and =8 (c); standard deviation 0

for &, =3.0% ().

On the base of the model shown in Eq. (5.4), the model for C, in case of
DI.=1,2,3 was also defined including in the equation the variable ln(AR)

which accounts for strength degradation. The model for C u accounting for

strength degradation is shown in Eq. (5.5) :

C,=6,/5,.=0,1n(AR)+ B +7,-n(AR) " +¢&, -0y
6, =bey ey NNHU—1+be5-
ﬂl25(11+fC'2'\//"_l+fC'3'a/)'\/ﬂ_l ,
os=dc-T+d., -(,u—l)+d(;3-a,) +d, -(,u—l)

: (5.5)

where &, is a standard Normal random variable and o is the standard deviation

of the regression residuals. As can be seen from the equation, the model of the

expected value of C, is composed of two parts, a linear part, that unlike the case
of DI.=0 is function of the variable ln(AR), and the second one which is

function of ln(AR)fz. Also in this case, 8, and f, are expressed as linear
combinations of various simple functions of g and ¢«,. The combination
coefficients, b, and ¢ with ; ={1,2,3} and the coefficient y, are estimated by

means of robust regression (Draper and Smith, 1998) of &, /J,

hax.

against

{1n(AR), lu,a,]} using iteratively re-weighted least squares with bisquare
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weighting. The procedure was performed for each level of strength degradation
separately, obtaining a set of coefficients for each DL. These coefficients are
reported in Table 5.1.

Also in the cases where cyclic strength degradation is present in the hysteretic
loops, o5 was found to be non-constant, varying with 4,7 and «,. o5 was
modeled by means of least-squares curve-fitting of an analytical expression to the
regression residuals for the various T', u# and ¢, values and the estimates of the

coefficients d., j ={1,2,..,5} shown in Eq. (5.5) are reported in Table 5.2.

Figure 5.7 shows an example of the model for the expected value of &, /5, and

max

the model of standard deviation o for a system with «, =1.0%, x=6 and,

T =0.6s considering medium level of strength degradation.

T G/ b from Equation (2.5) 3 O, from Equation (2.5) .
e Single record J,,/,.response rSetSa&cllle;rlcsi deviation of the regression
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Figure 5.7 Central tendency and standard deviation of the model for the residual displacements in

case of medium strength deterioration. Central tendency for ¢, =1.0%, ¢1=6 and T =0.6s5 (a);

standard deviation 0 in the case of &, =1.0%, (b).

At this point, it should be highlighted that the predictor variables ln(AT)

and In(AR) used in the regression model for the constant-ductility residual

displacement ratios of Eq. (5.4) and Eq.(5.5) are also RVs for a given ductility
demand g, due to record-to-record variability. However, it was observed that

these two RV, ln(AT) and ln(AR) , are correlated for all DLs and T', u, «,

ranges considered, as shown in Figure 5.8.
Therefore, completeness of the model requires the definition of the joint

distributions of C, and ln (AR) and In(AT) in case of strength degradation, or
that of €, and In(AT) in the case where strength degradation is absent. To this

end, the correlation between ln(AT) and ln(AR) was studied and Mardia's test

of multivariate normality (Mardia, 2019) was performed. In that test, the null
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hypothesis is that the RVs In(AR) and In(AT') are jointly Normal distributed,

for given initial characteristics of the structure T, ez, , DI. and for a fixed ductility
demand . The results showed that in almost all cases the null hypothesis could

not be rejected at a 5% significance level.

o single record response — In(AT)=0'In(AR)+B

03
35 30 25 20 15 1.0 0530 25 20 -15 -10 -05-25 20 -1.5 10 -05
In(AR)

Figure 5.8 Examples of correlation between ln(AT) and ln(AR) for an SDoF system with

a,=50%, T'=03s and p£=06.0 in case of low level of strength deterioration (a); medium level

of strength deterioration (b) and high level of strength deterioration (c).

Based on this result, it was assumed that {In(AT),In(AR)} is a bivariate

Gaussian variable, whose joint distribution can be completely defined knowing the

marginal distributions of ln(AT) and ln(AR) , and their cotrelation coefficient,

Pr(aTyn(aR) The plausibility of this bivatiate normality assumption was verified by

means of hypothesis testing, as mentioned above. Another assumption made was
the conditional stochastic independence of {ln(AT),ln(AR)} from C,, given a
fixed ductility demand g . The development of these additional segments of the

model are presented in the following paragraphs.

5.3.2. Regression model for period elongation

The model for period elongation was defined starting from the case of absent
strength degradation (DI.=0) and subsequently modelling the increments in

terms of AT for the three levels DI.=1,2,3 to add to the model of the central
tendency of AT for the case DI.=0.

The marginal distribution of period elongation in case of DI.=0 was
defined assuming a Lognormal model for AT and consequently a Gaussian model
for In(AT). The functional form adopted for the expected value of AT stems
from the observation of data trend of AT with the inelastic portion of the ductility

demand, (u—1), for each pair of T and «, . Fitting of the model’s parameters

to the data was performed via weighted least squares regression because of the
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non-constant variance and the analytical form of the model in case of DI =0 is
reported in Eq. (5.0):

_ T'-T -
AT = (T) =by +b,-a, U V2 4 byy-t, - U+ by, -,w/z (5.6)

Oy =dp +dy, AT

where AT is the mean of the Lognormal variable AT with standard deviation
O,y , which is estimated as the standard error of the regression residuals. The
expected value of the model for period elongation in absence of strength
degradation AT depends on ¢, and p. The coefficients 4, , with ;j ={1,...,4}
are provided in Table 5.3.

An analytical expression was also proposed for expressing o,, as a function
only of AT . Table 5.3 provides the values of the parameters d, ,, j= {12},

appearing in Eq. (5.0) estimated from curve-fitting against the regression residuals
for the level of strength degradation DI.=0.

Figure 5.9 shows a graph of the model for period elongation, highlighting the
dependence of its central tendency on «, and u (Figure 5.9a). Figure 5.9b and
Figure 5.9c represent the expected value of the model for period elongation in
absence of strength degradation in the cases of «,=0.03 and «, =0.05,

respectively.

I AT from Equation (2.6)
e Single record ATresponse

Figure 5.9 Model for period elongation in case of no strength degradation. Model for the central

tendency of period elongation (a); central tendency of petiod elongation in case of «a, =0.03 (b);

central tendency of petiod elongation in case of &, =0.05 (c).

The marginal distribution of period elongation in the case of DL.=1,2,3
was defined by processing the data of each degradation level separately and
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modeling the differences obtained between the data sets of DL.=1,2,3 and the
expected value of AT for DI.=0 shown in Eq. (5.6). Therefore in presence of

strength degradation, the mean of the model for petiod elongation AT}, _,,, can

be evaluated by adding to the expected value evaluated for DI.=0, AT, a
quantity only function of x as shown in Eq. (5.7):

(.7)

AT _ AT 2
ATDL:l,Z,?) =AT + st +b 16" M
Onrpretps = Fdpy AT 155

In the case of DL =1,2,3 the standard deviation &,;,, _,,; is modeled as
function only of the expected value of the model for period elongation m
. Table 5.3 also provides the values of the parameters 4,.; by and d,,, with
J={1,2}. Figure 5.10 shows the increments in terms of AT for the three levels
DI.=1,2,3 in case of a, =0.0% (Figure 5.102); a, =2.0% (Figute 5.10b) and
a, =5.0% (Figure 5.10c).

— AT, _, from Equation (2.7) AT, _, from Equation 2.7) —— AT}, _; from Equation (2.7)

95 ® Mean Data ATy, -, Mean Data ATy, -» ® Mean Data AT —;
och=0.0% och=2.0% ah=5.0%
20
Y15 :
=10
<
05
0.0
01 2 3 4 56 7 80 1 2 3 4 56 7 80 1 2 3 4 5 6 7 &

u-1
Figure 5.10 Increments in terms of AT for the three levels DI.=1,2,3 in case of &, =0.0% ( a);

a,=2.0%(b)and &, =5.0% ().

Finally, it should be noted that the mean In(AT') and the standard deviation
O\o(ar) characterizing the Gaussian model of ln(AT) can be evaluated by the

relationships in Eq. (5.8):

In(AT)=In(AT)-1/2-07,, +&,

- — 5.8
Cpar) = 1n(a§T +AT2)— 2-In(AT) 9

Ini
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where & is a zero mean Normal random vatiable with standard deviation o, (o7)

. Although Eq. (5.8) is written for absence of strength degradation it is also
applicable in the case of DLL.=1,2,3.

5.3.3. Regression model for strength loss

The model for strength loss provides the AR parameter of the post-shock
structure at a fixed ductility demand g, given initial characteristics of the structure
T,a, and DI.. The data showed a linear trend in log-space of AR with the
ductility demand ( U= 1) , for each pair of T and ¢, and for each level of strength
degradation. Therefore, the model for the central tendency of In(AR) is a linear
equation as reported in Eq. (5.9):

In(AR)=6,-In(u-1)+ B, +¢,

0, = by, + by, -, 5 (5:9)
By =cpytog, @, Fogs THeg, - T

The central tendency of In(AR) was found to exhibit some dependence on the
initial period of natural vibration, T", and on the post-yield hardening ratio ¢, . In
Eq. (5.9) the coefficients laR/ with 7= {1, 2} and ‘R with 7= {1,..,4} , were

evaluated by curve fitting of the results performed for each level of strength
degradation using a weighted least squares regression because of the non-constant

variance. Table 5.4 provides the values of the coefficients b,, and ¢, that

characterize the slope 8, and the intercept £, of the model. The term &, in Eq.

(5.9) is a zero mean Gaussian variable with standard deviation Cin(ar)? which is

estimated as the standard error of the regression residual and was found to be
dependent on the period of the intact structure and the ductility demand, as
reported in Eq.(5.10):

O1a(aR) =di +dp, THdy T +dy, '(/u_1)+dR5 '(/J_l)2 (5.10)

Table 5.4 provides the values of the parameters 4, j={12..5}

appearing in Eq. (5.10), estimated from curve-fitting against the regression
residuals. Examples of the models for the mean and standard deviation of

In(AR) are reported in Figure 5.11. Figure 5.11a shows the model for the mean
of In(AR) for a system with hardening slope @, =0.01 and low strength
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deterioration level, while Figure 5.1d shows the model of for the same level

O-ln(AR)
of degradation.
— i Coner from Equation (8 .
3 ISr:gAgll?g rfergg:dE?nu(aAtg;nrg%onse . rs(;t;a?rz(a%rg deviation o#t%e regressior
®) |||”"
H
01 2
In(u-1)
© ”"
H |||
0 1 2
In(u-1)

Figure 5.11 Model for strength reduction in case of low strength degradation level. Model for mean

In(AR) in case of @, =0.01 (a); central tendency of strength reduction in case of @, =0.01and
T =0.6s (b); central tendency of strength reduction in case of @, =0.01and T =1.55 (c); model
of standard deviation o,z (d).

Table 5.1 Coefficient estimates for mean of &, /0, in Eq. (5.4) and Eq.(5.5) .

res

Mean of &, /&,

res max:

Coefficients b Coefficients ¢ ; Coefficients 7,
DL DL DL
J 0 1 2 3 0 1 2 3 1 2 3

1 -0.009  -0.004  0.003 0.009 | -0.078 -0.129  -0.108  -0.094 | 0.159 0.106 0.081
2 -0277 -0.075 -0.083 -0.090 | 0493  -0.049 -0.039 -0.033 - - -

3 -0.378  0.041 0.03 0.030 | -1.412 -0.374 -0.387 -0.411 - - -

Table 5.2 Coefficient estimates for Standard deviation 0 inin Eq. (5.4) and Eq.(5.5) .

Standard deviation o

Coefficients d

J DL =0 DL =1 DL =2 DL.=3

1 0.019 0.020 0.021 0.021
2 0.009 0.029 0.028 0.027
3 0.122 -0.149 -0.144 -0.149

4 0.0478 -0.003 -0.003 -0.002

5 0.018 - - -
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Table 5.3 Coefficient estimates in Eq. (5.6) and Eq. (5.7).

Mean of In (AT) Standard deviation Oy (ar)
Coefficients by Coefficients 4,

J DI.=0 DL =1 DL =2 DI.=3 DI.=0 DL =1 DI.=2 DI.=3
1 -0.876 -0.876 -0.876 -0.876 0.023 0.005 0.005 0.013

2 0.942 0.942 0.942 0.942 0.112 0.170 0.186 0.188

3 -0.530 -0.530 -0.530 -0.530 - - - -

4 0.833 0.832 0.832 0.832 - - - -
5 - -0.004 0.003 0.0168 - - - -
6 - 0.004 0.005 0.007 - - - -

Table 5.4 Coefficient estimates in Eq. (5.9) and Eq.(5.10).

Mean of ln(AR) Standard deviation Oy, xp)
Coefficients by ; Coefficients ¢, Coefficients dy
DL DL DL
1 2 3 1 2 3 1 2 3

1.128  1.118 1.095 | -3.866 -3.460 -3.180 | 0.479 0.459 0.461
1.615 1.432 1.237 | -0.706 -0.644 -0.499 | 0.081 0.090 0.094
-0.432  -0.425 -0.424 | -0.041  -0.043  -0.042
- - - 0.095  0.096  0.102 | 0.004 0.0156  0.018
- - -0.001  -0.003  -0.004

S N O Y
|
|
|

5.3.4. Model for the correlation between stiffness and strength
degradation

In order to completely define the joint distribution of In(AT)and In(AR), the
definition of the covariance matrix > of the bivariate zero-mean Gaussian vector

{€,,¢€,} is needed as shown in Eq. (5.11):

2

O - O,

s In(AT) Oin(a1) " Oin(ar) * Pin(AT)In(4R) 5.11)
= ) .
O1n(a1) " Oin(ar) * Pia(AT)n(AR) O1n(aR)

The covariance matrix is defined by the (estimated) standard deviations of the

logarithms of period elongation Oruiat) and strength loss On(ar) and their

(estimated) correlation, Pro(aT)n(ar) > with the standard deviations being already

available from Eq. (5.8) and Eq. (5.10). In this case, the correlation coefficients
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Pra(arym(ar) WeTe modeled as a linear function of the ductility demand and

hardening slope until a transition ductility g, is reached, as shown in Eq.(5.12).
Pia(at)in(ar) =6 T -(,Ll—1)+e3 a, with 1.5 <y, (.12)

Incaseof u>u,, varies only as function of ¢, and can be evaluated

Pia(AT)n(AR)
from Eq. (5.12) assuming g = g, . The value of u, differs by level of strength

degradation, i.., it is assumed equal to 7 for DI.=1; 6 for DI.=2 and 5 for
DI. =3 on the basis of data observation.

The coefficients in Eq. (5.12) were defined by curve-fitting of the results
performed separately for each level of strength degradation. Moreover, it was
necessary to distinguish the fitting procedure of the model parameters into two
separate cases T <1.5s and T >1.5s. Figure 5.12 shows the model of

Pro(aT)in(aR) evaluated for the case of medium strength degradation in case of

T <1.5s (Figure 5.12a) and T">1.5s (Figure 5.12b). Table 5.5 provides the values
of the coefficients ¢, ;= {1,2,3} in Eq. (5.12), evaluated for the three levels of

strength degradation.

C Puanmar) in case of DL=2 from Equation (2.11)
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Figure 5.12 Model for p,, ) in case of medium strength degradation for 1" <1.5s (a) and

AT)Jn(AR
T 21.5s (b).
Table 5.5 Coefficient estimates for the ), xr)ar) model of Eq. (5.12).

Coefficients ¢,

DL =1 DL =2 DIL.=3
J T<15 T=15 T<15 T=15 T<15 T=15
1 0.564 0.5723 0.5858 0.5915 0.6093 0.6172
2 0.03052 0.01749 0.04003 0.02266 0.04433 0.02578
3 1.151 0.5893 0.8276 0.5968 0.6419 0.4105
4 0.564 0.5723 0.5858 0.5915 0.6093 0.6172
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5.4. Numerical implementation of the model

5.4.1. Distribution of C, and residual displacement ratio spectra

According to the previous sections, once the models for period elongation,
strength deterioration and residual displacement have been completely defined, it
is possible to estimate the joint distribution of {In(AT),In(AR),8,,/5,,.} ,given

max

the ductility demand g, period T', hardening slope &, and the level of strength
degradation DL. Although parametric models have been assumed for their

marginal distributions, due to the complex functional dependence of 8, /5, on

max
the other two it is convenient to obtain their joint distribution via a Monte-Carlo

sampling scheme. The first step in such a procedure, entails selecting fixed values

of , T, a,,and DL, and then calculating the mean, ln(AR) , and the standard

deviation, o (aR)’

conditional to these values from Eq. (5.9) and Eq. (5.10).
Subsequently, at the /+th Monte Carlo replication, a random sample of

ln(AR) =x,

7

is extracted from a normal distribution having these parameters. At

this point, given the marginal distribution of ln(AT) , which is another Gaussian
function defined by the mean, In(AT), and the standard deviation, O nar) >
evaluated from Eq. (5.8) it is possible to define the distribution of In(AT)

conditional on In(AR) =2, according to Eq.(5.13):

E[IH(AT)PH(AR) = X/':| = n(AT) ¥ Pia(ar) n(aR) ‘(O-ln(AT)/O-ln(AR)) ) |:Xi - ln(AR)]

2 2
Olo(atin(aR) = \/(1 -P 1n(AT),1n(AR)) “Oly(at)

(5.13)

where E[ln(AT)hn(AR) = X;] represents the conditional mean of In(AT)and

O o(aTn(aR) the conditional standard deviation. Then, a value of In(AT)= y, is

randomly sampled from the corresponding (also Normal) conditional distribution.
Finally, the conditional mean and standard deviation of the ratio &, /5, is

max

evaluated from Eq.(5.5) for the sampled vector of {In(AR),In(AT)} ={x,, 5,}
and a random sample of &, /O,

nax

=g, is extracted from the corresponding
Normal distribution, truncated between —2-05 and 2-0;. The C, value

corresponding to the /~th sample is then simply C i =%
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This procedure amounts to random sampling of a triplet of values
{In(AR),In(AT),5,,. /3,

m} ={x,y,%} from their joint conditional
distribution. By repeating the sampling procedure a number of times N, one can
obtain a representation of the joint densities of these RVs in the form of relative
frequency diagrams of the sampled values. An example of such a representation is
reported in Figure 5.13, that was constructed using one million samples. The
results of this Monte-Carlo procedure can then be used to approximate the
statistics of residual displacement ratio, such as its mean value, according to Eq.

(5.14):

_ N
C,=1N-Yz, (5.14)
i=1
%10 %10
0.80
35 0.70 (b) 35
B 3.0 . - = 1 3.0
g &
= é 2.5 gr 25
3 gH20 G Sl 20
= .;; 1.5 .E 1.5
;jj 1.0 Ej 1.0
0.5 0.5
55 0.20 I I
08 04 00 04 00 08 04 00 0.4 0.0
In(AT) y In(AT)
x 10
0.80 0.050
0.70+(¢) 4.5 (d)
0.60+ g 140 5 0.040}
0.501 s | {35 g
=} =]
0.40+ | 30 T 0.030}
T 030 & 2.5 2
0.20- 2 240 £ 0.020}
0.10+ = 1.5 k.
0.00+ ~ 1.0 &2 0010}
-0.10. 0.5
0.20 _Ie 0.000 |
55 45 35 25 1.5 05 02 00 02 04 06 08
In(AR) C,

Figure 5.13 Monte-Carlo-based representation (relative frequency) of the joint distribution of period
elongation and strength reduction (a), of period elongation and residual displacement (b), of strength
reduction and residual displacement (c), for the case of ductility demand z=4.0, post-yield

hardening ratio ¢, =3.0%, petiod of the initial structure T =0.8 s and medium level of strength

degradation; Monte-Carlo-based representation of the marginal distribution of C, (d).
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In the case of no strength degradation, the Monte-Carlo scheme degenerates into

sampling a value In(AT) = y,, from the marginal distribution of lIn(AT), and
then directly sampling 8, /3,

ax

=z, from its conditional distribution. Monte-

Carlo is still useful in this case, for representing the marginal density of C, and

calculating the mean C_ﬂ , as shown in Figure 5.14.

It is worth highlighting that, as shown in Figure 5.13c and Figure 5.14a, the record-
to-record variability of €, is such that residual displacement values near zero are
still possible, with the left tail of the marginal distributions of C, being heavier.

Another feature that is worth commenting is the slight distortion exhibited by the
simulated joint distribution of period elongation and residual displacement ratio,
shown in Figure 5.13b, towards the region of higher ln(AT) values. This can be
attributed to the contribution of the non-linear terms involving ln(AR) in Eq.

(5.9). For the same reason, there is a similar effect visible in the shape of the joint
density of €, and In(AR) in Figure 5.13c.

— Relative frequency N
0.0150 —_Mean 06 10
@) (b) 4.0
. 00125 057 B 5
2 0.4 2
S 00100 § |30
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Q . [}
& 0.0025 < o
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0.0000 opb—1 1 1 | 00
20.2-0.1 0.00.1 02 0.3 0.4 0.5 0.6 0.8 -0.6 0.4 02 00 02 :
Cp In(AT)

Figure 5.14 Monte-Carlo-based representation (relative frequency) of the marginal distribution of
C, (a) and of the joint distribution of period elongation and residual displacement ratio (b), for the
case of ductility demand £ =4.0, post-yield hardening ratio &, =3.0% and petiod of the initial

structure T =0.8s.

The validation of the predictive model was undertaken by comparing the results
of the Monte-Carlo resampling scheme with the data used for the development of
the predictive model. The validation was made calculating the 25%, 50t and the

75t percentiles of residual displacement ratio for each combination of u, «,, T

and DIl.and comparing the results from the resampling procedure with the
corresponding percentiles estimated from the initial data set.
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For sake of brevity, hereafter two examples of comparison are reported showing
the good agreement of the model with the initial data set used. Figure 5.15 shows
the results obtained for the case of absent strength degradation (DI.=0) and
a, =0.01% considering  between 1.5 and 9.0 and four natural vibration periods
T (e 0.3,0.9; 1.2; 1.8). Figure 5.16 shows the results obtained for the case of
high strength degradation (DI.=3) and «, =0.02% for all the values of u from
1.5 to 9.0 and four natural vibration periods T (i.e. 0.3s, 0.9s; 1.2s; 1.8s). In both

the figures the results obtained from the model are represented using black lines
(dashed lines for 25t and 75t percentiles and solid line for the 50t percentile). On
the other hand, the reference data are reported using a box plot representation in
which the central mark indicates the median, and the top and the bottom edges of
the box indicate the 25% and 75% percentiles, respectively.
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Figure 5.15 Comparison of the summary statistics in case of absent strength degradation and
a, =0.01% for period equal to 0.3s (a); 0.9s (b); 1.2s (d) and 1.8s (d).



CHAPTER 5 186
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Figure 5.16 Comparison of the summary statistics in case of high level of strength degradation and
a, =0.02% for period equal to 0.3s (a); 0.9s (b); 1.2s (d) and 1.8s (d).

By repeating resampling procedure while varying 4 and T', one can also obtain

mean C, spectra from the model, such as the ones shown in Figure 5.17. Figure

5.17a highlights the fact that C_,, is independent of period in the case of no cyclic

strength degradation, which is in agreement with past studies (Ruiz-Garcia and
Miranda, 2004; Liossatou and Fardis, 2015; Madhu Girija and Gupta, 2020),
despite some differences in the hysteretic laws considered then and now.
Moreover, the obtained results have the same trend with g. Past studies using the
constant-strength approach Ruiz-Garcia and Miranda, 2004; Liossatou and Fardis,
2015 report that the mean residual displacement ratio tends to increase with
increasing strength ratio (Ruiz-Garcia and Miranda, 2004; Liossatou and Fardis,
2015 until a saturation point is reached. A similar trend with 4 was found for the
mean constant-ductility residual displacement ratio in the case of elastic-perfectly-
plastic oscillators (Madhu Girija and Gupta, 2020). However, in the present case
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where peak-oriented and possibly strength-degrading hysteresis was examind, C_y
does not increase monotonically with increasing 4 in the range examined. This is
attested to more clearly by Figure 5.17¢c,d which plots C_ﬂ as a function of g, at

various periods.
For systems without any strength deterioration (Figure 5.17¢), it is possible
to distinguish two regions in terms of ductility demand: for g below a value of

around four C_y increases with increasing ductility, while for higher values of u

the trend is reversed, with C_ﬂ decreasing as ductility demand increases from four
to nine. On the other hand, the introduction of strength loss modifies this trend
(Figure 5.17d); although C_y still peaks at i ~ 4, the subsequent downwards trend
is not monotonic. These observations can be summed-up as a non-monotonic
trend of C_ﬂ as a function of u, for both cases of strength degrading and non-

strength degrading systems.
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Figure 5.17 Mean C, spectra for various u , evaluated for @, =3.0% in case of no cyclic strength
degradation (DL =0 ) (a) and high strength degradation (DL = 3) (b); mean C, as a function of
ductility demand in case of DL =0 (c) and DL =3 (d).



CHAPTER 5 188

5.4.2. Simulation of the post-shock pushover curve

The fact that the above procedure requites multiple samples of the random vector
{ln(AT),ln(AR),é‘m /S } to be extracted, allows for an additional surrogate

result of the model, which may be of interest to earthquake engineers. For each
triplet of period elongation, strength loss and residual displacement sampled from
the model, it is possible to univocally define the corresponding bilinear backbone
curve of the SDoF oscillator at the end of the seismic excitation. This means that,
apart from the residual displacement ratio, the Monte-Carlo procedure can also
provide stochastic realizations of the post-shock pushover curve of the SDoF
system, which is a probabilistic representation of the damaged state to which the
simple structure has transitioned.

In fact, after obtaining the corresponding residual displacement &, , elongated

period T' and the deteriorated lateral resistance at maximum ductility demand
F'  for each random vector {ln(AT),ln(AR),é‘m/é' }, it is possible to

e e
evaluate all the parameters defining the post-shock pushover curve as illustrated
in Figure 5.18. This figure shows the coordinates of the points defining the initial
and post-shock curve in the displacement-force plane, using the notation with
primes for the parameters of the damaged system.
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Figure 5.18 Parameters defining the pushover curves; parameters for the definition of the intact
structure’s pushover curve (a); and of the post-shock pushover curve (b).

The elastic branch of the damaged system’s pushover can be determined by
evaluating the yield force F’in and displacement & ’yr in the positive and negative

direction, as reported in Eq. (5.15):
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The post-yield branch is defined by the hardening slope «’,, the capping point
displacements in the two directions,é’. and cotresponding forces F'.. The
hardening branch’s slope can be defined once the degradation due to cyclic
strength deterioration is known, which is implicit in the hysteretic model (Lignos
and Krawinkler, 2011). The capping points can be calculated as the intersection
points of the damaged structure’s hardening branch and of the softening branch,
the latter defined by the slope «,, which is assumed to remain invariant, and the
ultimate displacement &, . At this point, it is worth recalling that the predictive
model was developed considering only ductility demands that maintain structural
response displacement along the hardening branch, without crossing into the
softening branch where in-cycle strength degradation could occur. Therefore, the
softening branch was included exclusively for keeping track of the capping points
in the damaged state. The hardening slope and the coordinates of the capping
points for the post-shock pushover are calculated according to Eq. (5.16), where
0, and I are the displacement and the corresponding force at the capping point

for the intact structure:

’ F,mmc { F 5,*+5M]
a[/:a/- . =

F’ o

J

F'.-a'-0'. F',
S . =|F' - b b B F; 6/ I:[ _ J '0!'}, (5.16)
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=l 0)]/(6-5) |

max

An example of such definition of a set of pushovers, that represent different
realizations of the damaged SDoF system, is given in Figure 5.19 for a case without
strength deterioration and a case characterized by a medium level of strength
degradation. This representation highlights the usefulness of the model, as the
distribution of residual displacements is provided as a function of a set of RVs that
have specific physical meaning for the SDoF structure that has been damaged by
an earthquake shock.
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Figure 5.19 Pushover curves corresponding to different realizations of the damaged structural

system: a case of &, =7.0%, p=06.0, T=2.0s and no strength detetioration (a) and medium

strength degradation (b).

5.5. Illustrative application on a RC frame structure

This section provides an example application of the predictive model for constant
ductility residual displacement ratio in the context of the seismic assessment of a
reinforced concrete multi-story moment-resisting frame. The case-study structural
system, shown in Figure 5.20a, is a fixed-base plane reinforced concrete frame
representing an internal frame of a symmetric four-story building without masontry
in-fills. The system exhibits first-mode dominated dynamic elastic response with a

first-mode period of natural vibration T, equal to 0.53 s and flexure-dominated

inelastic response of the constituent beams and columns (see Baltzopoulos et al.,
2015 for structural details). For the purposes of this application, an equivalent
SDoF system was defined, based on a static nonlinear analysis that was carried out
by applying a gradually increasing lateral force profile corresponding to the
structure’s first-mode excitation to base acceleration. The nonlinear structural
model built for the execution of nonlinear static and dynamic analyses adopted a
lumped plasticity approach, using a multi-linear moment-plastic rotation relation
and the modified IMK model without cyclic strength degradation for the
definition of the hysteretic behavior.

In this application, it is assumed that entry of the frame into a generic damage state
occurs when the roof drift ratio (RDR) exceeds a threshold value of 0.01. The
objective of the assessment is to determine, given that the structure has reached
the damage state threshold in terms of RDR, the probability that the residual RDR
will have exceeded a threshold value of 0.0033, which corresponds to rebar
yielding having developed at all beam ends and the formation of a plastic
mechanism for the structure. This assessment is first performed by employing the
proposed predictive model via the pushover-based equivalent SDoF system and is
the validated by means of dynamic analysis of the multiple-degree-of-freedom
(MDoF) numerical model of the structure.
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In order to obtain the data necessary for the application’s validation, the MDoF
system was subjected to incremental dynamic analysis using as input a set of fifty
acceleration records, none of which were included in the suite of records employed
for the development of the model. For the execution of the IDA, the pseudo-

acceleration at the fundamental period of vibration §,(7}) was assumed as

intensity measure. Similar to the methodology used to develop the predictive
model and presented in the previous paragraphs, the IDA results were used to
determine the scale factor needed for each record to bring the structure at assumed
damage state threshold, i.e. a RDR of 0.01 (Figure 5.20b). Subsequently, the
records thus scaled were used for the execution of dynamic analyses that were
immediately followed by static non-linear analyses, again mimicking the previously
described analysis methodology, resulting in different realizations of the damaged

structure’s pushover to be obtained, as shown in Figure 5.20c.
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Figure 5.20 Basic information on the structure and analysis results. Case-study frame (a), IDA curves
for the RC frame (b); pushover curves representing different realizations of the damaged system (c)
and definition of the equivalent SDoF (d).

From these analyses, the residual displacements at each floor of the system were
collected and the parameters defining the pushovers of the damaged system were
evaluated, in order to make a comparison with the results deriving from the
application of the predictive model in terms of the ratio of residual to peak
displacement and elongated period. These are shown in Figure 5.21, where
sMr / H,, with i ={1,2,3,4} is the ratio of residual displacement at the i-th floor

res,i
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to the total height of the structure whereas the residual inter-story drift A" / b

res, j res, j 7e8,| / -1

at the j-th story is evaluated as AT / h, ( st - ¢ MD% ) / b, where b, is the

inter-story height and j ={1,2,3,4} . It should be noted that the sign convention

5 MDoF

res,i

adopted for the figure is that is assumed positive when it occurs in the same

direction as the corresponding maximum transient roof displacement.
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Figure 5.21 Cumulative values of residual inter-story drift ratios (a); residual roof drifts evaluated at
each story(b).

For the purposes of the simplified pushover-based assessment, the predictive
model was applied for the equivalent SDoF system representative of the intact
structure. The backbone of this equivalent SDoF oscillator was obtained by
dividing the frame’s pushover force and roof displacement values by the first-
mode modal patticipation factor (Fajfar, 2000) T"=1.309 and obtaining a multi-
linear approximation of the resulting curve, as reported in Figure 5.20d. In this
multi-linear approximation, the nominal yield point of the equivalent SDoF system
is taken to correspond to a RDR of 0.0033, i.c., the point of formation of a global
plastic mechanism for the structure. Therefore, the damage state threshold
considered for this application corresponds to a ductility demand of three. The

mass » , period T and hardening slope @, of the equivalent SDoF are reported

in Table 5.6.

Table 5.6 Characteristics of the equivalent SDOF system.

T [s] m [ton] a/]*
0.774 147.13 0.017

The mean and the standard deviation defining the distribution of the period

clongation 1n(AT), from Eq.(5.6), the mean and standard deviation of the

constant-ductility residual displacement ratioC, , obtained by means of Eq.(5.4)
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and the Monte-Carlo simulation procedure, were compared with the estimates
obtained from the analysis results of the MDoF model and ate reported in Table
5.7. In that table, the standard deviation of C, derived from the simulation is

denoted as o, -
u

Table 5.7 Mean and standard deviation defining the distributions of the period elongation and of
the constant-ductility residual displacement ratio.

n(AT) O (at) u %,
Predictive
-0.61 1 1 102
Model 0.615 0.154 0.190 0.10
MDoF -0.761 0.153 0.209 0.127

The cumulative distribution functions of percentile loss of stiffness, AK, and
residual RDR, 6" ,/H,, , obtained by means of the predictive model and
empirically using the analyses results are compared in Figure 5.22. In the same
figure, x represents a generic realization of the random variables AK and
é‘[WDaF o / H

. » while the percentile loss of stiffness is computed as

AK = (k= &) /& =|(T/T7) ~1].

—— CDF from predictive model —— CDF from predictive model
Empirical CDF Empirical CDF

1.0 1.0 .
_ 08 % 08 /
A Vo /
\Q 0.6 LLE: 0.6
= 0.4 S Eﬁ.é 0.4

0.2 & 0.2

b
0.0 @ 0.0 ®) ¥
0 20 40 60 80 100 2 1 0 1 2 3 4 5xI0
AK [%] Srent/ oy

Figure 5.22 Compatison of the cumulative distribution function of petiod elongation (a) and
constant ductility residual displacement ratio (b).

Apart from these comparisons, the stated objective of the assessment was to
evaluate the probability that the residual RDR exceeds the threshold of 0.0033
given that the structure has arrived at a generic damage state. This estimation can
be of engineering interest because eventual high values of residual roof drift can
determine the feasibility of repair operations. In this case, the simplified pushover-
based procedure that made use of the proposed predictive model, leads to an
estimated probability of 15.5%, while the dynamic analysis of the MDoF model
provided a probability of 16%. This shows good agreement of the approximate
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procedure with the more rigorous analysis, which is also apparent from the

compatison of the obtained response statistics.
5.6. Discussion and conclusions

The main purpose of this study was to present a predictive model for the central
tendency and the related record-to-record variability of residual displacements for
bilinear single-degree-of-freedom systems exhibiting stiffness and strength
degradation. This model ultimately provides the probability distribution of the

constant-ductility residual displacement ratio, C , , which is defined as the ratio of

uo
residual to peak transient displacement. In order to develop the model, a multitude
of SDoF systems with different values of natural vibration period and post-
yielding hardening ratio and governed by the peak-oriented modified Ibarra-
Medina-Krawinkler hysteretic model, were subjected to nonlinear dynamic
analyses. These dynamic runs were designed to hold the ductility demand

constant at various predefined levels, by appropriately scaling the input motion.
From the data obtained from these dynamic analyses, it was observed that
the residual displacement never exceeded about a half of the corresponding peak
inelastic displacement demand for all the cases considered and that this overall
maximum residual displacement ratio tends to decrease with increasing levels of
strength degradation. The results also confirmed that the main parameter affecting
mean residual displacement is the post-yield hardening ratio, in agreement with
previous studies (G. A. Macraec and Kawashima, 1997; Borzi et al., 2001;
Christopoulos et al., 2003; Ruiz-Garcia and Miranda, 2006). Other parameters
whose influence was examined were the (initial) period of each SDoF oscillator
and the level of ductility demand. Generally speaking, the period of the structure
showed a limited influence on residual displacements within the 0.3s to 2.0s
interval considered in this study. On the other hand, ductility demand was
observed to have a more significant effect in each level of strength degradation.
The proposed model suggests that the mean residual displacement ratio can
be considered as a function of two random variables, elongated period and
strength loss, that represent the effects of stiffness and strength degradation, and
which were found to be correlated with each other. Therefore, a complete
definition of the model also required the development of subsidiary models
providing the marginal distributions of elongated period and strength loss, as well
as their correlation. The functional form proposed for the mean constant-ductility
residual displacement ratio also contains the ductility demand and post-yield
hardening ratio as independent variables. The variance of the residual
displacement ratios was found to be non-constant. For any level of strength
degradation, the standard deviation of the ratio was modeled as a function of post-
yield hardening slope, period of the natural vibration and ductility demand. It was
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also observed that central tendency of period elongation mainly depends on the
post-yield hardening ratio and ductility demand, whereas the corresponding
variance was modeled only as function of the expected value of the model. On the
other hand, the central tendency of strength loss mainly depends on ductility
demand, hardening slope and structural period whereas its variance only appears
to depend on period and ductility demand. The correlation coefficient between
period elongation and strength loss was found to be mainly affected by the initial
period of the oscillator and the ductility demand.

On a closing note, it should be highlighted that the complete proposed
model, allowed to represent the joint distribution of the three random variables:
residual displacement, period elongation and strength degradation, given ductility
demand, initial period and hardening slope of the structure and the level of cyclic
strength degradation. As shown in the paragraph concerning the numerical
implementation of the model, this representation of their joint distribution can be
achieved via a Monte-Carlo sampling scheme. This procedure can be used to
derive pushover curves, considering uncertainties, characterizing a damaged
structural system where the damage level is reflected by the ductility demand
provoked by an earthquake shock.
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Abstract

From this chapter was derived the paper:
—  Orlacchio M., Baltzopoulos G., Lervolino 1. (2020), “State-dependent seismic fragility via
pushover analysis.” Proceedings of the 17 World Conference on Earthquake Engineering,
17WCEE Sendai, Japan.
Earthquakes are clustered in space and time. This means that structures in
seismically active regions can be subjected to multiple consecutive instances of
base acceleration, with insufficient in-between time for repair operations to take
place. In such situations, buildings may experience degradation of their lateral-
force-resisting capacity due to damage accumulation. Consequently, the use of
seismic fragility functions developed for the intact structure may not be enough,
in the context of seismic risk assessment studies that consider the effect of seismic
clusters. In these cases, one may employ state-dependent fragility curves, which
are separate fragility functions assigned to the same structure, depending on
distinct damage states that it may be brought to by prior shocks.
State-of-the-art analytical estimation of structure-specific fragility entails the use
of dynamic analysis of a numerical model of the structure, for example,
incremental dynamic analysis (IDA), which can be computationally laborious, thus
motivating the development of simplified, less time-consuming methods, often
based on substituting the structural model by equivalent single-degree-of-freedom
(SDOF) systems that can be defined via pushover analysis. In fact, existing
procedures in the literature, such as back-to-back IDA, that can be used to
estimate state-dependent fragility curves, tend to increase computational costs,
rendering the development of simplified methodologies for this case a topical
issue.

In this context, this chapter presents a method for estimating state-dependent
seismic fragility functions, based on pushover analysis and a predictive model for
constant-ductility residual displacement ratio. The latter is defined as the residual-
to-peak-transient seismic displacement ratio of an equivalent SDOF structure. The
residual displacement model, which considers yielding SDOF systems that exhibit
stiffness and strength degradation, with natural periods between 0.3 s and 2.0 s
and post-yield hardening ratios from 0 % to 10%, is outlined first. The model also
estimates the joint probability distribution of normalized elongated period and
strength degradation, for a given ductility demand. This information allows for a
probabilistic evaluation of the pushover curve characterizing a damaged structural
system, which is then used to obtain state-dependent fragility when damage states
are defined via ductility demand thresholds. The state-dependent fragility curves
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are estimated via IDA of SDOF oscillators with pushovers that were previously
determined from the model. An illustrative application showcases the ability of the
proposed methodology to provide state-dependent fragility estimates in an

expedient mannet.

Keywords: sequence-based seismic reliability; damage accumulation; residual

displacements.

6.1. Introduction

Seismic risk analysis, in its classical form, does not consider structural failure that
is reached progressively due to damage accumulation in multiple events. This can
be justified by considering that, for example, after some seismic event damages
the structure of interest, enough time will elapse until the next earthquake for the
stakeholders to repair it back to its initial state. However, earthquakes are known
to be clustered in both space and time and this means that the necessary repair
time between seismic shocks may not be available. One such typical case is that of
short-term emergency management, during the aftershock sequence that follows
an earthquake characterized as the mainshock. In that case, the possibility of
aftershock-induced ground shaking exacerbating any damage caused by the main
event must be taken into account in risk assessment (Iervolino et al., 2016, 2020).

Fragility functions are well-established tools, used in seismic risk analyses to
probabilistically quantify = structural vulnerability (discussion to follow).
Traditionally, one fragility per structure is assigned, assuming that earthquake-
induced shaking will find the structure in the absence of seismic damage. In order
to extend the use of this tool to sequence-based risk assessment, the concept of a
set of state-dependent seismic fragility functions must be introduced. State-
dependent fragilities provide a full picture of the seismic vulnerability of a structure

in which damage can accumulate due to transitions across damage states (DSs).

State-of-the-art analytical estimation of structure-specific fragility involves the use
of dynamic analysis of a numerical model of the structure; e.g., incremental
dynamic analysis (IDA, Vamvatsikos and Cornell, 2001, 2004). For the evaluation
of state-dependent fragility curves, an extended version of IDA has been suggested
in several studies (Luco et al.,, 2004; Ryu et al., 2011; Goda, 2012; Ruiz-Garcia,
2012; Raghunandan et al., 2015; Goda, 2015; Baltzopoulos et al., 2018), referred
to as back-to-back IDA. The main disadvantage of deriving fragility functions based
on nonlinear dynamic analysis is the high computational cost involved, which
includes both the time investment required for effectively modelling nonlinear
structural behavior and computer time needed to run multitudes of analyses and
post-process the results. This has motivated the development of simplified
procedures for analytical fragility estimation, based on static nonlinear analysis,
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which is often termed pushover analysis. These methods make recourse to a
surrogate structure in the form of an equivalent inelastic single-degree-of-freedom
(SDOF) system, whose definition is based on the original structure’s pushover
curve. One such example, used in the case of traditional fragility estimation, is the
method proposed in Vamvatsikos and Cornell (2005), which has been recently
streamlined into a dedicated software tool (G. Baltzopoulos et al., 2017).

Herein a simplified pushover-based methodology is discussed, adapted
specifically for the estimation of state-dependent fragility functions. While
traditional fragility estimation requires a large number of non-linear runs, governed
by the need for obtaining accurate estimates in the face of record-to-record
variability of structural response (Lervolino, 2017; Baltzopoulos et al., 2019), this
is even more so for state-dependent fragility, when the analysis should ostensibly
represent all the possible effects, in terms of damage, of two consecutive
earthquakes. Therefore, there is reason for exploring possible simplification in the
latter case. In fact, in the case of sequential loading of the structure by consecutive
instances of base-acceleration, without the possibility of intermediate remedial
measures, the first shaking determines an intermediate damaged state of the
structure, which will be called upon to sustain the second shock. This intermediate
incarnation of the damaged structure is itself subject to some variability in terms
of the fundamental dynamic structural properties, such as loss of stiffness and
strength against lateral loads, and also residual displacements due to plastic
deformation. In this context, a possible shortcut could be to account for the
variability in structural properties of the damaged system via an analytical
stochastic model, eschewing the need for dynamic runs representing the first
shock, which brings the system to the damage state of interest.

The present chapter discusses exactly such a simplification, by considering
this variability in structural properties, at the given damage state, directly on the
static pushover; i.e., on the backbone curve of the equivalent SDOF. This can be
achieved by using a semi-empirical predictive model for constant-ductility residual
displacement ratios presented in the previous chapter; this model provides the
joint probability distribution of residual displacement and other parameters
necessary for the definition of the post-(first-)shock static pushover of an inelastic
SDOF system, conditional on the attainment of a specific displacement demand
during that shock. Thus, in lieu of executing sequential dynamic runs in order to
represent a succession of damaging events within a sequence, the damaged
structural configuration is obtained via Monte-Carlo simulation and analyses are
executed only to account for the second shock, further reducing the computational
cost.

The remainder of this chapter is organized as follows: first comes a
discussion on the analytical derivation of fragility functions, both for the case of
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an intact structure and for an already-damaged structure. Subsequently, the
procedure for simulating the damaged structures’ pushovers is outlined, starting
from a brief presentation of the residual displacement model and going on to
describe the stochastic generation of backbone curves, given that the structure is
in a specific damage state. Finally, the simplified methodology for state-dependent
fragility derivation is illustrated via an application, whose results are then compared
to those of a more rigorous procedure that involves sequential dynamic analysis.
The chapter closes with some concluding remarks.

6.2. State-dependent structure-specific seismic fragility

A structure-specific seismic fragility function defines the conditional probability
that, given a ground-shaking intensity measure (IM ) is at a specific level (zm) ,
the structure fails to meet some performance objective. This failure is often termed
exceedance of a /imit- or damage-state and traditionally considers an intact structure
that experiences a single seismic event. In the simplest of cases, fragility can be

defined considering an appropriate measure of structural response, often termed
an engineering demand parameter (EDP ) , and a threshold value thereof, edp,;,

whose exceedance is taken to signify transition of the structure from its initial state
to the generic damage state DS, as expressed by Eq. (6.1):

P DS|IM = im | = P[ EDP > edp,,| IM = imt | 6.1

One of the possible strategies for fragility assessment, via dynamic analysis of
a structure’s non-linear numerical model, is the so-called IM-based approach
(Jalayer, 2003), which employs the results of IDA (Vamvatsikos and Cornell, 2001,
2004). IDA scales a set of acceleration records to progressively higher 772 values,
for which the numerical model provides the corresponding EDP responses. For
every record used, the obtained EDPs can be plotted against the corresponding
im level that the record had been scaled to — a graph that is usually designated as
an IDA curve (Figure 6.1).
The IM-based method entails finding the intersections of the IDA curves,
impy , with the vertical line passing through the threshold edp,,; value (Figure 6.1).
These imp, values can be regarded as realizations of a random variable (RV),
IM,,, , which is the seismic intensity to which one needs to scale the ground
motion in order for the structure to reach damage state DS . It is common practice
to assume that IM,,. follows a lognormal distribution (Jalayer and Cornell, 2003;

G. Baltzopoulos et al., 2017), in which case the fragility function can be estimated
according to Eq.(6.2):
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P[DS|IM =im]=P[IM, <im]=®[ (In(im)-n)/B]

n= i : Zln(z'mmyi) , 6.2)
1 4 ) 2

p= \/m : ;[IH(Z”ZDSJ ) _77]

where 77 and f are the parameter estimates (median and logarithmic standard

deviation) of the assumed lognormal distribution of M, &, ; is the realization

DS >
of the RV coming from to the ith record and ®@(+) is the standard Gaussian

(cumulative) function.
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Figure 6.1 Example of IDA curves used for the evaluation of fragility curves for an intact structure
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(a); example of back-to-back IDA curves for the evaluation of state-dependent fragility curves (b);
fragility curve estimation obtained by means of the IM-based approach (c).

When seismic reliability calculations are expected to account for earthquake
clusters, the need arises to evaluate the probability that an already-damaged

structure transitions from one damage state, say DS, to another more severe
one, DS, in one seismic event. A state-dependent fragility function will provide

that probability, conditional on occurrence of a shaking intensity 7z during one

of the shocks in the cluster, which can be expressed as

P[EDP > m}bms‘ DS, |D5 L NIM = z'm] In this case, the notation edp

Ii‘D‘YA
denotes the EDP threshold for DS, when the structure is already found in DS
and the state-dependent fragility can simply denoted as P[DS 5|DS , NIM = zm]
= As already mentioned, one way of analytically estimating a state-dependent
version of a fragility function, is my means of a variant of IDA, which is termed

by some authors back-to-back IDA. In this type of dynamic analysis, the structural
model is first subjected to a set of records hitting the structure at its intact (or
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initial) state, each scaled in amplitude to the lowest 7z value that results in

EDP =edp,,; . At the end of each run, a different realization of the structure is

produced, which can be considered to have made the transition to DS .

Subsequently, each damaged incarnation of the structure is subjected to a second
set of accelerograms representing a subsequent event of the same cluster. These
records of the second set are scaled to progressively increasing 77 levels, similar
to the traditional IDA procedure, until EDP = gégpw_”“)h is verified for the

damaged structure, at an intensity of the shock which can be noted as i, , for

the 7th succession of base accelerations. These intensity values can be used for
the estimation of the parameters of a lognormal model for the state-dependent
fragility, according to Eq.(6.2), in the same manner as in the case of traditional
fragility. In Figure 6.1 an example of back-to-back IDA curves is provided, where
it can be seen that at zero intensity, the curves start from a residual EDP value
that the damaged structure has inherited from the first event.

6.3. Simulating the static pushover of an earthquake-damaged
structure

6.3.1. Predictive model for constant-ductility residual displacement
ratio
As mentioned previously, this study introduces a further simplification in
pushover-based state-dependent fragility assessment; i.e., apart from use on an
equivalent SDOF substitute structure, in the form of analytical probabilistic
definition of the possible pushover curves that characterize the structure that has
been damaged by a previous shock. This can be achieved by random sampling of
the parameters that define a set of pushover curves, which represent different
realizations of the damaged system. In this case, the chosen parameters are the

residual displacement J,, , the relative period elongation AT, and the loss of

lateral strength AR (to follow). The analytical arsenal for performing this
simulation is provided by a predictive model for the constant-ductility residual

displacement ratio, C,, developed by the same authors; a preliminary version of

this model, limited to non-degrading systems, was presented in Orlacchio et al.

(2019), while the complete model that includes cyclic strength degradation in the

hysteresis is given in the previous chapter and it is also briefly recalled to follow.
The constant-ductility —residual displacement ratio is defined as

C,=0,/9,,. , that is the ratio of residual displacement &, to peak transient

displacement o corresponding to a certain ductility . Relative period

max >

elongation is a measure of the loss of lateral stiffness of the structure during
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ground shaking and is defined as AT =(T"—=T)/T , where T' is the elongated
post-shock period and T is the initial period of the SDOF structure. The
elongated period is calculated as T’ = 27z\/m/_,é , where £’ is the post-shock
reloading stiffness (Figure 6.2a). Finally, loss of lateral strength is defined as
AR = (F -F,. )/F”/ax , where F =F, -[l+a,] ~(,u—1)] is the restoring

max

force reached along the hardening branch of the initial backbone when pushed at
ductility g under static regime (i.e., in the absence of cyclic strength deterioration)

, F, and «, are, respectively, the yield force and hardening slope of the intact

structure and ', = represents the restoring force that can be reached at the same

ma
ductility on the backbone of the damaged SDOF system, when it exhibits cyclic
strength degradation. As shown in Figure 6.2b, cyclic strength degradation entails
a gradual offset of the force-displacement envelope towards the horizontal axis,
due to progressive deterioration of structural elements. This is often modeled
analytically by updating the backbone each time a hysteretic half-cycle is
completed, with a reduction in resistance that is proportional to the dissipated
energy (FEMA, 2009), by a factor that can be calibrated to represent a certain
range of structural behavior, in terms of susceptibility deterioration phenomena.
In this case, four deterioration levels are considered, termed as no degradation and
low-, medium-, high-degradation cases, with the first being representative of
modern code-conforming structural elements and the last of structural elements
with poor dissipative characteristics. In analytical terms, these lateral strength

degradation levels are represented by the dummy variable DL = {O, 1, 2,3} , with
DI. =0 corresponding to no degradation, DI. =3 to high-degradation level etc.
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Figure 6.2 Examples of an SDOF structure’s monotonic pushover (backbone) cutve before and
after incurring seismic damage (a); example of peak-oriented hysteresis at medium strength
degradation level (b).

For a given ductility demand, that can represent the threshold edp,,; of some

DS, the parameters C,, AT and AR are RVs whose joint distribution is

provided by the predictive model given in the previous chapter. For sake of
brevity, hereafter the equations and figures given in the previous chapter will be
used to briefly recall the model.

In case of absent strength degradation DI. =0, only the joint distribution of

C, and AT has to be evaluated by means the definition of the Lognormal

marginal distribution of AT, completely defined by Eq.(5.6), and the Gaussian
distribution of C, conditional to In(AT) expressed by Eq.(5.4). On the other

hand, in presence of strength degradation (DL =12, 3) , the joint distribution of
the three random variables €, , AT and AR has to be evaluated. This distribution
can be defined from the joint distribution of {ln(AT ),1n(AR)} and the Gaussian
distribution of €, conditional to In(AR) expressed by Eq.(5.5).
{hq(AT),ln(AR)} is a bivariate Gaussian variable and its joint disttibution is
defined using the marginal distribution of AT, _ ,; shown in Eq.(5.7); the

marginal distribution of In(AR) provided by Eq.(5.9) and Eq.(5.10) and the

covariance matrix with the correlation coefficient Pro(at)n(ar) in Eq. (5.12).

The predictive model was developed considering the modified Ibarra-
Medina-Krawinkler (mIMK) hysteretic model (Lignos and Krawinkler, 2011) with
peak-oriented response. The model’s range of applicability is for vibration periods
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T between 0.3 s and 2.0 s, post-yield hardening ratios ¢, ranging from 0 to 10%
and ductility demands u along the hardening branch between 1.5 and 9.
Examples of the model are given in Figure 5.7, Figure 5. 9 and Figure 5.11 of

previous chapter where Figure 5.7, shows the model for the expected value of

é‘rw / 5”7

ax:

and the model of standard deviation o in presence of strength

deterioration, while Figure 5. 9 and Figure 5.11 show a graph of the mean of period

elongation, (AT) in case of absent strength degradation (DL =0) and the
models for central tendency and standard deviation of In(AR) in the case of

DI.=1 (low stregth degradation level).

6.3.2. Simulation of the damaged structure’s backbone curve

A single realization of the pushover curve characterizing a damaged structural
system, can be obtained by random sampling triplets of values for elongated
period, strength degradation and residual displacement from their joint
distribution, given ductility demand. In this context, the conditioning ductility
demand p represents the threshold edp,,, that defines transition to the damage

state under consideration. At this point, it should be noted that Eq.(5.4) and
Eq.(5.5) implies that, given a certain ductility demand, the random vector
{In(AT),In(AR)} is conditionally independent of the residual displacement and
follows a bivariate normal distribution. This means that a sample {x, y,z} , of the
random vector {]n(AT),ln(AR),é‘m / é'”m_} , can be obtained by the following

procedure: first, given u defining the DS, the level of strength deterioration and

the characteristics of the initial structure T and ¢«,, a random value of
In(AT)=x is extracted from a Gaussian distribution with mean In(AT) and
standard deviation o, (a7) given by Eq.(5.8). Subsequently, a value of In(AR) = y
is randomly sampled from the conditional distribution of In(AR) given

In(AT) = x, which is also a Gaussian with mean and standard deviation given by

Eq. equation reference goes here:

E[IH(AR)PH(AT) = X] =In(AR)+ Pra(AT) n(AR) '(Gln(AR)/Gln(AT) ) ' I:X - ln(AT):I
2

2
O-ln(AR)\ln(AT) = \/(1 P 1n(AT),In(4R) ) "Oln(aR)

6.3)
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where E[ln(AR)|ln(AT)=X] represents the conditional mean of In(AR),
O o(aR)in(aT) its conditional standard deviation, In(AR) the marginal mean and

Cian) the standard deviation from Eq.(5.9) and Eq.(5.10); and Pra(aryin(ar) is

from Eq.(5.11). Finally, by substituting {ln(AT),ln(AR)} ={x, y} into Eq.(5.4)
and Eq.(5.5) thus evaluating the conditional mean and standard deviation of the
ratio 9, /5, , a value of &, /5,

res pax:

is randomly sampled from the
corresponding normal distribution, which is, however, truncated between —2- o
and 2-0;.

From this random sample of {In(AT)=x,In(AR)= 3,5, /5,. =z}, it is

straightforward to obtain the corresponding residual displacement &

res 3

elongated

period T' and F’ _, all of which were defined previously. From this triplet of

max >

parameters, it is then possible to univocally define the realization of the damaged
system’s pushover curve by means of mechanical and geometric considerations.
This is illustrated in Figure 6.3, where the coordinates of the points defining the
initial and post-shock curve are given in the displacement-force plane. In the
figure, the notation with primes represents the value of the corresponding
parameter in the damaged system and the signed subscripts indicate the direction;
eg, 0’ , and ' denoteyield displacements of the post-shock backbone in the
positive and negative direction, respectively. In fact, the elastic branch of the
damaged system’s pushover can be determined by evaluating the yield force and

displacement in both directions as reported in Eq.(6.4):

2
! _ ! ! . a/y . E}' . . _ F ,W(IX . . T '
F yi - |:F max F max i Fmﬂ (/u é‘]' + §rm ):| / |:1 - P‘,mx. ab ( T

(6.4)

On the other hand, the degradation of the hardening branch’s slope due to
cyclic strength deterioration mode, which is implicit in the hysteretic model of
Lignos and Krawinkler (2011), is given by Eq.(6.5) :

’ F’ . [ FJ‘ 5’}; + 5m: } (6 5)
a /] — a/7 . nax . ; . — .
F' .

F )

max 0
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Figure 6.3 Parameters defining the pushover curves; parameters for the definition of the intact
structure’s pushover curve (a); and the damaged structure’s pushover curve (b).

Apart from ', , the other parameters, which are needed to define the post-yield
branch, are the capping point displacements in the two directions,d’. and
corresponding forces F ’[i . These can be calculated as the intersection points of

the damaged structure’s hardening branch of the and softening branch, whose
slope is assumed to remain invariant, according to Eq.(6.6):

!

Fryi.ar/j_arf E E E'

¢ c

+ £ T T + u - - a,
‘ ~" 6'.F6, o.—9, 6.-6, ¢'.%9, . (6.6)
Fro=[F(5.-5,)]/(6-6,)

6.4. Simplified evaluation of state-dependent fragility curves

The SDOF structure’s backbone curves, sampled using the predictive model for

C, , can be assumed to represent the pushover curves that correspond to different

realizations of the structure, when that structure has transitioned to a certain

damage state DS, due to one shock within an earthquake cluster. Each

realization has an asymmetric backbone due to the residual displacement o

res 3
exhibiting elongated period T and lateral resistance at yield and capping points
in the two directions, F)+ and F, .

In order to estimate the state-dependent fragility of the damaged structure,
which is already at DS ,, each SDOF realization from Monte-Catlo simulation is
subjected to incremental dynamic analysis, performed using a single record,
randomly selected from a pool of available ground motions meant to simulate
ground shaking due to a subsequent shock of the same cluster. The use of a single
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record per realization of the structure has been used before in the past, in the
context of accounting for model uncertainty in seismic risk analysis Franchin et
al., (2018). The records used in this phase are scaled to increasing 7z levels until

the structural response of each realization reaches the threshold e, s
OB A

defining the transition from damage state DS , to DS, . The final result of this

procedure is a set of IDA curves, which constitute a more expedient substitute of
the back-to-back IDA curves, and that can be used to evaluate the state-dependent
fragility via the IM-based approach. In other wotds, the intensity values i, ,,

causing the /~th simulated realization of the damaged system to reach edpprg s, >

can be used for the estimation of the parameters defining a lognormal model for
the state-dependent fragility, according to Eq.(6.2). This simplified procedure for
state-dependent seismic fragility estimation is showcased by means of an
illustrative application, which follows.

6.5. Illustrative application

This paragraph presents an application of the simplified procedure for the
estimation of state-dependent seismic fragility curves. The objective of this
application is to evaluate the accuracy of the introduced simplified method by
comparing the calculated state-dependent fragility curves with the corresponding
curves obtained using a more rigorous method, such as back-to-back IDA.

The application considers as case-study the structural system already
presented in the previous chapter and hereafter briefly described. The system is a
fixed-base four-storey plane reinforced concrete frame without masonty in-fills
(Figure 6.4a). The structure geometry was defined so that the frame would exhibits
a first-mode dominated dynamic elastic response with a first-mode period of

natural vibration T, equal to 0.53 s and a flexural-dominated inelastic response

(see Baltzopoulos et al., 2015 for structural details). The nonlinear structural model
built for running nonlinear (static and dynamic) analyses adopted a lumped
plasticity approach, using a piece-wise linear moment-rotation relation and the
modified IMK model for the definition of the hysteretic behavior.

For the purposes of this application, an equivalent SDoF system was defined,
based on a static nonlinear analysis that was carried out by applying a gradually
increasing lateral force profile corresponding to the structure’s first-mode
excitation to base acceleration. The backbone of this equivalent SDoF oscillator
was obtained by dividing the frame’s pushover force and roof displacement values
by a first-mode modal participation factor (Fajfar, 2000) of T =1.309 and
obtaining a multi-linear approximation of the resulting curve, as reported in Figure
6.4b.
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Figure 6.4 Basic information on the structure (a) and definition of the equivalent SDoF system (b).

In this multi-linear approximation, the nominal yield point of the equivalent
SDoF system is taken to correspond to a RDR of 0.0033, ie., the point of
formation of a global plastic mechanism for the structure with yielding limited to

beam ends. The mass » | period T, hardening slope 0!,; and all the other

parameters defining the equivalent SDoF backbone curve are reported in Table
6.1.

Table 6.1 Characteristics of the equivalent SDoF system.

T [s] ' [wn] F, [&N] 6, [m] o [-] & [m] ¢, [m] a[-]
0.774 147.13 304.81 0.031 0.017 0.147 0.244 03

Although in pushover-based based methods the inelastic SDoF system is used as
a proxy for the actual structure, introducing an additional approximation, this
illustrative example directly considers the SDoF system, to isolate the
consequences of the proposed procedure from effects stemming from the multi-
to single-DoF substitution. Therefore, both the simplified method and the back-
to-back IDA are conducted considering the equivalent SDoF system whose
backbone is shown in Figure 6.4b. For the nonlinear dynamic analysis required by
the procedure, the reference system is characterized by the modified IMK
hysteretic model considered at first without strength degradation and then with a
medium level of strength degradation, to test the effectiveness of the procedure in
both cases. In order to showcase the simplified procedure, four damage states are
arbitrarily defined, denoted from DS, to DS,. The transition of the intact

structure to damage state DS, is considered to occur when the structural response
of the system exceeds the threshold edp,; defined by a seismic ductility demand
M, equal to 2, which corresponds to 0, . =0.061 m in this case. Along the same
line, it is considered that the direct transition of the intact structure into DS, ,

DS, and DS, occurs when p exceeds the value of 3, 4 and 8.3, respectively. The
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last damage state corresponds to the collapse of the structure, i.e., a maximum
inelastic displacement equal to 0.244 m. The four damage states are reported in
Table 6.2 with the correspondent thresholds edp,, .

Table 6.2 Damage states considered for the assessment of the state-dependent fragility curves.

Damage state DS, DS, DS, Ds,
u 2 3 4 8.3
edpyg[m] 0.061 0.092 0.122 0.244

The threshold EDPvalues edp,,, used for the direct transition of the intact system
into one of the four generic damage states (i.e., when the transition from intact to
each DS is due to a single earthquake shock) are also considered as threshold
EDP defining the transition of the already-damaged system. Although the exact
value of the threshold displacement should take into account the nature of the
DS and structural typology, the practice of using displacement demand alone to
mark the exceedance of limit states on the pushover of the intact structure, is
common in earthquake engineering (e.g., Ricci et al., 2018).

For this application, the conditioning values of #=2 and #=3, ie,
edpps, =0.061lm and edp,;, =0.092m , are used to simulate the sets of one-
hundred backbone curves, according to the sampling procedure previously
described. In each set, the backbones represent one hundred possible realizations
of the pushover of the structure having reached damage state DS, or DS, . The
backbone curves obtained from the predictive model for the cases of absent or
medium level of strength degradation and for the two values of conditioning
ductility are given in Figure 6.5. It is worth noting that in absence of strength
degradation (Figure 6.5a-b) the backbone cutrves of the damaged structure differ
among themselves only in residual displacement and elastic stiffness.
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Figure 6.5 Backbone curves representing different realizations of the damaged structure in case of
DL=0 and conditioning ductility equal to 2 (a); DL=0 and conditioning ductility equal to 3 (b); DL=2
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and conditioning ductility equal to 2 (c); DL=2 and conditioning ductility equal to 3 (d).

Subsequently, for each set of one-hundred backbone each realization of the
damaged system is subjected to IDA, using one record per extracted pushover,
which is scaled upwards until the transition from the initial damage state (DS, or
DS,) to amore severe one occurs. The IM considered during IDA is the spectral
acceleration at the period of the intact structure, Sa(T ). These analyses were run

using the OPENSees finite-element platform McKenna (2011), where a custom-
made version of the mIMK hysteretic model was implemented, which also allows
for user-defined unloading stiffness. The IDA curves obtained in this manner are

shown in Figure 6.6 where the i7,,; points, obtained from their intersection with
the edp,,, lines, are shown as red crosses. At this point, these 77, values of each

edp,, can be used to estimate the parameters of a lognormal model for the state-

dependent fragility curves according to Eq. (6.2).
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Figure 6.6 IDA curves obtained from the application of the simplified methodology in case of
DI=0 and conditioning ductility equal to 2(a); DL.=0 and conditioning ductility equal to 3 (b);
DL=2 and conditioning ductility equal to 2 (c); DL=2 and conditioning ductility equal to 3 (d).

Sa (T)

In order to obtain some points of reference for comparing the results of this
procedure, the same state-dependent fragilities were estimated by means of back-
to-back IDA, using a set of twenty records to represent the first damaging shock
of the cluster, scaled so as to cause a ductility demand of two or three, and another
20 subsequent-shock accelerograms per initial shock, for a total of four-hundred
curves. Additionally, a twenty-record IDA was used to estimate the intact
structure’s traditional fragility curves for the four damage states reported in Table

6.2, P[DS,|IM =im]. These runs were performed using an OPENSees user
interface developed to streamline the back-to-back IDA Baltzopoulos et al.,
(2018).

The resulting median and standard deviations defining the fragility curves
for the intact structure in case of DI. =0 and of DI.=2 are reported in Table
0. 3. The corresponding cumulative probability functions are shown in Figure 6.7

in which the blue, green, orange and red solid lines refer to DS, DS,, DS, and
DS, respectively.
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Table 6. 3 Median 1 and logarithmic standard deviation g defining the fragility curves for the
two intact structures (IM in g).

MEDIAN 7n SIGMA B

pL DS, DS, DS, DS, DS, DS, DS DS,

0 0.426  0.610 0.774 1.072 0.237 0297 0.353  0.408
2 0.430  0.610 0.767 1.082 0.240 0.295 03646 0.416

Table 6.4 and Table 6.5 collect the values of the median, 77, and logarithmic
standard deviation, £, defining the parametric state-dependent fragility cutves for
the two systems evaluated by means of the simplified method and of back-to-back
IDA procedure, respectively. In the tables, the second column gives the initial
damage state whereas the damage states reported in the rest of the row represent
the arrival damage states.

Table 6.4 Median 7 and logarithmic standard deviation £ defining the state-dependent fragility

curves of the two intact structures evaluated using the simplified methodology (IM in g).

DS, DS, Ds,
n Vij n B n Vij

DS, 0546 0312 0.703 0337 0948 0.378

DL DS

0
DS, \ \ 0.651  0.340 0.936  0.336
) DS, 0518 0293 0.662 0323 0941 0364
DS, \ \ 0.629 0377 0934 0.393

Table 6.5 Median 77 and logarithmic standard deviation /3 defining the state-dependent fragility

curves of the two intact structures evaluated using the back-to-back IDA (IM in g).

DS, DS, Ds,
n Vij n B n Vij
DS, 0555 0314 0734 0343 1058 0425

DS, \ \ 0.654 0.378 1.057 0.410

DL DS

DS, 0.554 0314 0.732 0344 1.071  0.430
DS, \ \ 0.654 0.379  1.065  0.426

The corresponding cumulative probability functions evaluated with the
simplified procedure and the rigorous method of back-to-back IDA are shown in
Figure 6.8 and Figure 6.9 for the case DI. =0 and in Figure 6.10 and Figure 6.11
for the case DI.=2. Figure 6.8 and Figure 6.10 refer to the transitions having
DS, as initial damage state and DS, (panel (a)), DS, (panel (b)) and DS, (panel
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(a)) as final damage state. Figure 6.9 and Figure 6.11 refer to the transitions having
DS, as initial damage state and DS, (panel (a)) and DS, (panel (c)) as final
damage state.
The comparison shows that the simplified procedure provided state-dependent
fragilities estimates which are similar to those coming from the more rigorous
back-to-back IDA. For the transitions that does not have DS, as final damage
state, the results of the simplified method are very close to those derived from the
rigorous method, any slight difference can be explained by taking into account the
concept of estimation uncertainty of the parameters defining the fragility due to
the use of a reduced number of records in the assessment (Iervolino, 2017;
Baltzopoulos et al. 2019). A larger difference is observable for the transitions
having DS, as final damage state, this is in accordance with other studies
concerning the damage state of collapse (Zareian, 2006; Eads et al., 2013).

On a side-note, the fragility functions of the intact structure serve as a
reference, showcasing the characteristic shift-to-the-left of the state-dependent
curves, due to the drop in median capacity caused by the transition to the first

damage state (DS, or DS,) due to the damage induced by the first shock.
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Figure 6.7 Fragility curves of intact structure evaluated at the four damage states by means of IDA
evaluated in case of DL =0 (a) and DL =2 (b).
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Figure 6.8 State-dependent fragility curves evaluated with the simplified methodology and the back-
to-back IDA approach conditioned to the damage state DS, and fragility curves of intact structure

evaluated for the case with DI. =0 .
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Figure 6.9 State dependent fragility curves evaluated with the simplified methodology and the back-

to-back IDA approach conditioned to the damage state DS, and fragility curves of intact structure
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Figure 6.10 State dependent fragility curves evaluated with the simplified methodology and the back-

to-back IDA approach conditioned to the damage state D.S and fragility curves of intact structure

in case of DL =2,
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Figure 6.11 State-dependent fragility curves evaluated with the simplified methodology and the

back-to-back IDA approach conditioned to the damage state DS, and fragility curves of intact

structure evaluated in case of DIL =2,

Concerning the computational cost, the simplified procedure allowed to assess the
state-dependent fragility curve for each transition probability defining only 100
IDA curve rather than the 400 curves required by the back-to-back IDA. In terms
of time, for each SDoF analyzed in this application the simplified procedure
required 1.0 hour and 5.0 minutes rather than the about 2 hours (1.0 hour and 55
minutes) required by the back-to-back IDA.
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6.6. Conclusions

The main objective of this chapter was to present a simplified pushover-based
procedure aimed at the estimation of state-dependent seismic fragility curves. The
proposed methodology uses a semi-empirical predictive model for constant-
ductility displacement ratios to obtain, through Monte-Carlo simulation, a set of
realizations of the damaged structure’s pushover curve. The usefulness of this
shortcut lies in the fact that, due to the record-to-record variability of structural
response to strong earthquakes, a structure subjected to a single instance of base-
acceleration may fall under a generic damage state while exhibiting different
permutations of basic dynamic properties, such as resistance to inertial load,
stiffness and residual displacement. Such variability is typically accounted for via
sequential runs to accelerogram couples that represent the alternation of two
damaging shocks within an earthquake cluster, as in the case of back-to-back
incremental dynamic analysis. In the simplified proposal, the first part of the
sequential analysis is avoided, replaced by simulation of the principal
characteristics of the equivalent SDOF system at a given damage state. The
illustrative application presented as part of this chapter shows that the proposed
methodology can represent a viable alternative to the more computationally
intensive procedures, at least for regular structures for whom pushover-based
procedures are a viable approximation.
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The current best practice for seismic risk assessment is the Performance-Based
Earthquake Engineering (PBEE) framework developed by the Pacific Earthquake
Engineering Research Center (PEER). This approach does, however, have a
limitation, as it generally only examines single events, neglecting the possibility of
a succession of earthquakes, for example, in the form of seismic sequences. Large
earthquakes (i.e., mainshocks) typically trigger a sequence of lower magnitude
events clustered in both time and space. Some modifications to the seismic risk-
assessment framework are therefore required to account for these multiple events
from the viewpoints of the seismic hazard and seismic vulnerability. In relation to
the first of these perspectives, the occurrence of further earthquakes after the main
event has to be considered, for example, this is possible via the Sequence-Based
Probabilistic Seismic Hazard Analysis (SPSHA) which enables account to be taken
of hazard increments due to aftershocks. Meanwhile, from the point of view of
structural vulnerability, it has also to be assumed that each seismic event does not
always affect a structure in an intact condition, with the prospect of damage
accumulation requiring investigation. This can be achieved by exploiting state-
dependent fragilities, i.e., fragilities that describe the probability of failure of a
structure that has already sustained damage, referred to as its initial damage state.

This thesis focused on these two components - seismic hazard - (Chapter 2)
and -structural vulnerability - (from Chapter 3 to Chapter 6). In detail, the study
addressed the elements that enable the classical seismic-risk assessment framework
to be extended to also cover the issue of seismic sequences. The conclusions

reached and relevant remarks from each chapter are summarized in what follows.

Chapter 2 investigated the implications on the definition of design seismic
actions in the United Kingdom, stemming from including seismic sequences in
hazard analysis. To this end, the recent source model from the British Geological
Survey (BGS) was used to conduct SPSHA to investigate the hazard increments
caused by aftershocks. The parameters of the modified Omori law, which was
employed to model aftershocks occurrences, were calibrated based on four seismic
sequences that had occurred in the UK and were assumed to be complete in the
magnitude range of interest. To ensure that a consistent comparison was possible,
a classical Probabilistic Seismic Hazard Analysis (PSHA) was also performed and
validated based on the official BGS results. Hazard maps for four exceedance
return periods (within 95 yr and 2475 yr) and in terms of peak ground acceleration
PGA, and pseudo-accelerations at two vibration periods, i.e., 0.2 s and 1.0 s,
Sa(T = 0.25) and Szz(T =1.0 s) , were obtained from SPSHA and compared to

their PSHA counterparts. The comparison was conducted in terms of maximum
and average increments expressed in absolute and percentage terms. The maps

revealed that the hazard increases for each spectral and return period tends to be
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more relevant in the areas covering most of Wales, the center of northern England
and western Scotland (the areas exposed to the greatest hazard according to the
classical PSHA and in accordance with the findings of the previous literature). The
largest percentage increase due to aftershocks across the country for a given
spectral ordinate, has a non-monotonic trend in relation to the return period; the

highest value was equal to 10%, which was found at T =1100yr for
Sa(T=l.Os); meanwhile, for PGA and Sa(T:O.Zs), it was 14% at

T =2475 yr. Taking into account the range of return periods between 95 yr and
2475 yr, the largest average percentage differences were equal to 11% for PGA,
3% for Sa(T=02s), and 10% for Sa(T =1.0s); they were found at

T =2475yr, T. =95yt and T, =475yr, respectively. The maximum absolute

differences between the results of SPSHA and PSHA for a given spectral ordinate

across the country increased monotonically with the return period (in the range
considered). Nationwide, the largest differences between SPSHA and PSHA for

T, =2475yr were equal to 0.033 g, 0.069 g and 0.006 g for PGA, Sa(T =0.2s)
and Sa(T =1.0 s), respectively. On average the absolute differences across the
country for T, =2475 yr were 0.0051 g, 0.0041 g and 0.0013 g again for PGA,
Sd(T = O.Zs) and Sd(T = 1.0s) , respectively.

To gain further insight into the aftershock implications, the results of the
PSHA and SPSHA for exceedance return-periods up to 10000 yr, and taking into
account 24 spectral ordinates, were compared and exanimated in greater detail.
This comparison concerned three sites, Edinburgh, Cardiff and Llangefni which
were selected because their exposures to comparatively low, medium and high
seismic hazard, respectively, according to PSHA results. The analysis for specific
sites revealed that the aftershock effects were more significant at vibration periods
shorter than 0.3s, tending to improve with longer periods and becoming almost
constant from 1.0 s onwards. The largest relative difference between the results of
SPSHA and PSHA was identified at 0.1s for all the sites. In Llangefni, which is the
site characterized by the highest seismic hazard countrywide, the return period for
which the largest hazard increase was found to vary significantly between the
different spectral ordinates, equaling 4060 yr, 1720 yr and 1830 yr for PGA,

Sa(T =0.2 s) and Sa(T =1.0 s) , respectively. Finally, the aftershock effects

estimated for the UK were briefly compared to the findings of a previous SPSHA
study conducted for Italy, where the seismic hazard is relatively higher. The
comparison showed that at the most hazardous sites of the UK, the hazard
percentage increments obtained with the SPSHA compared to the results of the
PSHA were about a half of those found of the most hazardous areas in Italy,
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although in Italy the largest spectral acceleration associated to a given return period
can be even three times larger than the analogous one in the UK.

Chapter 3 and Chapter 4 dealt with the assessment of state-dependent
fragility curves using the rigorous method of back-to-back incremental dynamic
analysis (IDA) applying it to single structures and buildings classes. In detail,
Chapter 3 sets out the assessment of the intact-structures fragilities and the state-
dependent fragilities for a case-study system representative of the unreinforced
masonry terraced houses commonly found in the Groningen region of the
Netherlands. These have been the subject of extensive research, because of the
seismicity induced in the area by the commercial extraction of gas. The first part
of the chapter dealt with the assessment of the fragility curves of the intact
structure obtained via Cloud Analysis of 3D model developed in collaboration
with the firm Arup Italy using the finite element software LS-DYNA. This allowed
us to touch some critical points concerning the fragility assessment of masonry
buildings such as: 1) the definition of an engineering demand parameter (EDP)
representative of the structural response and 2) the definition of the limit states.
The main issue of the masonry structures in the context of the fragility assessment
is the possibility that the structural failure may occur locally without affecting the
whole structure and requiring therefore to monitor the damage at different levels;
i.e., at the levels of the structural elements, at the macro-elements level and at the
level of the whole structure. Moreover, both the failure modes (flexural and shear)
of piers and spandrels have to be considered. The assessment in this chapter was
conducted assuming the definition of the limit states based on the multiscale
approach described in the Italian Guidelines and Technical Instructions of the
National Research Council (CNR-DT 212/2013) which allows taking into account
the damage spread at different levels of the structure. It should be recalled that
this assessment was conducted assuming the shear failure mode for the single
structural elements in order to obtain a conservative assessment of the structural
fragility. A more precise evaluation of the fragilities would require the
identification for each element of the failure mode developed during each
nonlinear dynamic analysis.

The high computational cost for the assessment of fragility curves of the
intact structure conducted using the 3D model have demonstrated the
impossibility assessing the state-dependent fragility curves in a reduced period of
time for this type of structure. Therefore, this assessment was conducted resorting
to two equivalent single degree-of-freedom (ESDoF) systems defined and
calibrated to be representative of the behavior of the structure in its two main
directions. The calibration was based on the monotonic and cyclic pushover
curves of the initial structure, which were obtained using two type of force

distributions (the uniform mass-proportional and the inverse triangular). The
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SDoF systems were analyzed via back-to-back IDA and the state-dependent
fragility curves were obtained via the IM-based approach, assuming a lognormal
distribution model. The fragility curves and the state-dependent fragility curves
were estimated in terms of the average spectral acceleration, which was
evaluated by taking into account 20 equally spaced periods between 0.01 s and
0.2s.

Chapter 4 described the assessment of the intact-structures and state-
dependent fragility functions for Italian reinforced concrete (RC) and masonry
structures classes. These evaluations constitute one of the outcomes of the
European research project RISE and were conducted using IDA and back-to-back
IDA, respectively. The assessments employed the ESDoF approximation of single
structures, with each of them representing a building class. The analyses were
performed using the OpenSees platform via a recent version of the DYANAS
software. Also in this chapter, two issues that significantly affect the assessment
of fragilities in case of structure classes are addressed: 1) the choice of the intensity
measure (IM) and 2) the reduction of the computational cost for nonlinear
dynamic analyses. They were addressed by considering four benchmark systems
(two representative of reinforced concrete structures and two representative of
masonry structures). Concerning the first issue, the comparison of the different
IMs confirmed that, due to their greater efficiency, those involving a geometric

mean of spectral accelerations, i.e., Sa,, and I,,

performed better than single-
period spectral ordinates. In view of the absence of a specific calibration of the

I, intensity measure, Sa,, was selected for fragilities and state-dependent

fragilities in both structures’ typologies. The use of this type of intensity measure
seems to represent a better solution when a unique IM has to be selected for
different structures; i.c., in the case of building classes for which the spectral
acceleration at a single vibration period may not be representative of the whole
class, since the structural properties of the buildings within each class may vary
substantially. As far as the limitation of the computational cost, in this chapter the
issue was addressed identifying a limited number of records required for the
fragility assessment. In this case, 35 ground motions was used, being a compromise
between the computational cost and precision in fragility assessment, based on the
statistical-inference  concept of estimation uncertainty. Finally, some
considerations were made for the definition of the distribution model to be
assumed to define the parametric fragilities. The lognormal distribution was
assumed to define the parametric fragility curves of the intact structure. In relation
to the state-dependent fragility curves, the choice was made between the
lognormal and the gamma distribution models on the basis of the seismic-hazard
failure rates assessed at three Italian sites: L’Aquila, Naples and Milan. The
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lognormal distribution model was ultimately selected because it enabled us to
obtain failure-rate values that were closer than the reference values obtained with
the empirical fragility curves (without any approximation due to the distribution
assumption). Therefore, the chapter provides lognormal fragility parameters
defining the fragility curves for the intact structures and the state-dependent
fragility curves for Italian RC and masonry structures classes.

Since the SERA project provided a set of capacity curves for each class of
the RC structures, future evaluations will address the evaluation of fragilities and
state-dependent fragilities using for each class different capacity curves and not

only the average capacity curves.

Finally, the main purpose of Chapter 5 and Chapter 6 was to present a
simplified pushover-based procedure aimed at estimating state-dependent seismic
fragility curves for firstmode dominated RC structures. The proposed
methodology employs a semi-empirical predictive model for the central tendency
and the related record-to-record variability of residual displacements of bilinear
SDoF systems exhibiting stiffness and strength degradations. This model was
introduced in Chapter 5 from its definition to all its possible applications. The
predictive model, and consequently the simplified method, is applicable to SDoF
systems with values of natural vibration period between 0.2 s and 2.0 s and post-
yielding hardening ratio between 0% and 10%. Moreover, the model was
developed for systems whose hysteretic behavior can be described by the peak-
oriented modified Ibarra-Medina-Krawinkler hysteretic model and analyses for
which the achievement of the damage state can be globally defined in terms of
ductility demand considered ranged from 1.5 to 9.0 but always lower than the
capping ductility of the capacity curve (i.e., in-cycle degradation is not considered).
In the model, the mean residual-displacement ratio is defined as a function of two
correlated random variables, the elongated period and the strength loss
representing the effects of degradations in stiffness and strength, respectively.
Consequently, the complete definition of the model also required the development
of subsidiary models providing the marginal distributions of the elongated period
and loss of strength, as well as their correlation. Given the characteristics of the
capacity curves of the intact structure and the reached damage state expressed in
terms of ductility demand, the predictive model allows to define via a Monte-Carlo
sampling scheme: 1) the joint distribution of the three random variables (residual
displacement, period elongation and strength degradation), 2) the residual
displacement ratio spectra and 3) the pushover curve of the damaged structure.
Indeed, the final goal of the model is the derivation of pushover curves
considering the uncertainties characterizing a damaged structural system. The
generation of the post-damaged pushover curves constitutes the basis of the
simplified methodology for assessing of state-dependent fragility curves, as
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described and applied in Chapter 6. Due to the record-to-record variability of
structural response to strong earthquakes, a structutre subjected to a single instance
of base-acceleration may fall under a generic damage state while exhibiting
different permutations of basic dynamic properties, such as resistance to inertial
load, stiffness and residual displacement. Such variability is typically accounted for
via sequential runs to accelerogram couples representing the alternation of two
damaging shocks within an earthquake cluster, with an example being the back-
to-back Incremental dynamic analysis. The value of this method comes from the
fact that the first part of the sequential analysis is avoided, replaced by a simulation
of the principal characteristics of the equivalent SDoF system at a given damage
state. After the production of the set of pushover curves, the method requires the
execution on an IDA conducted with one record for each damaged system. The
illustrative applications shown in Chapter 6 demonstrated the capacity of this
simplified methodology to facilitate the calculation of state-dependent fragilities
with good approximation and using fewer NLDAs than the rigorous and more
time-consuming back-to-back IDA method.

Future developments of the simplified method may concern the overcoming
of the limits of applicability of the predictive model, extending the field of
application of the parameters and considering other types of capacity curves and
hysteretic behavior, thus allowing the extension of the simplified methodology to
other structural typologies.
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