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Abstract 

Earthquakes are catastrophic phenomena which cause damage and raise 

concerns among population and institutions, with an increasing necessity of 

identifying actions for mitigating their impact and effects. Moreover, since 

the occurrence rate of high magnitude, damaging events is low, direct access 

to their observation is limited. Nevertheless, microseismicity continuously 

occurs within the same active seismogenic faults where a major earthquake 

might be generated, and thus, the analysis of small magnitude events can 

provide crucial insights into the mechanical and stress state of the faults and 

the preparatory phase of large earthquakes. However, the capability of 

identifying micro-earthquakes is strongly affected by the low amplitude level 

on the seismic records, which is typically comparable to the ambient noise. 

The growth of advanced monitoring systems and the development of 

improved strategies for earthquake identification and characterization are 

acting as a powerful lens to reveal the small-scale rupture processes. In this 

thesis, I apply advanced techniques for characterizing the microseismicity in 

terms of earthquake detection, accurate location and seismic source properties 

estimation. I generate enhanced seismic catalogs using machine learning and 

waveform similarity detection techniques, identifying one order of magnitude 

more earthquakes as compared to the existing catalogs, which I investigate 

for identifying seismogenic structures in different tectonic and volcanic 

environments. The achieved resolution on the hypocentral locations and on 

the properties characterizing the seismic sources led to the development of 

models for understanding the generation and the evolution of earthquakes. 

 

Keywords: Microseismicity characterization, Seismic sequences, Deep 

learning techniques, Advanced detection strategies, Hypocenter 

determination, Seismic source. 
 

  



Sintesi in lingua italiana 

I terremoti sono fenomeni catastrofici che causano danni e diffondono 

preoccupazione tra la popolazione e le istituzioni, con un crescente aumento 

della necessità dell’individuazione di azioni per la mitigazione del loro 

impatto ed effetto. Inoltre, dato il basso tasso di occorrenza dei terremoti 

distruttivi di alta magnitudo, l’accesso alle loro osservazioni è limitato. 

Tuttavia, la microsismicità avviene con continuità all’interno della stessa area 

sismogenetica in cui un grande terremoto può essere generato e dunque 

l’analisi dei terremoti di bassa magnitudo può fornire informazioni cruciali 

sullo stato meccanico e di sforzo delle faglie e sulla fase preparatoria dei 

grandi terremoti. Tuttavia, la capacità di identificazione della microsismicità 

è fortemente influenzata dal basso livello di ampiezza sulle registrazioni 

sismiche, che è tipicamente confrontabile con il livello del rumore 

ambientale. La combinazione di sistemi di monitoraggio avanzati e lo 

sviluppo di strategie innovative per l’identificazione e la caratterizzazione dei 

terremoti agiscono come lenti per rivelare i processi di rotture su scale spaziali 

sempre più piccole. In questa tesi ho applicato tecniche avanzate per la 

caratterizzazione della microsismicità in termini di detezione dei terremoti, 

localizzazione accurata e stima dei parametri relativi alla sorgente sismica.  

Ho generato cataloghi sismici aumentati utilizzando tecniche basate 

sull’intelligenza artificiale e sulla similarità delle forme d’onda, identificando 

un numero di terremoti superiore di un ordine di grandezza a quanto riportato 

nei cataloghi esistenti, che ho investigato per l’identificazione delle strutture 

sismogenetiche in ambienti tettonici e vulcanici. La risoluzione ottenuta sulla 

localizzazione degli ipocentri e sulle proprietà della sorgente sismica ha 

permesso lo sviluppo di modelli per la comprensione della generazione ed 

evoluzione della sismicità 

 

Parole chiave: Caratterizzazione della microsismicità, Sequenze sismiche, 

Tecniche di intelligenza artificiale, Strategie di detezione avanzate, 

Localizzazione degli ipocentri, Sorgente sismica. 
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Introduction 

Earthquake characterization is a crucial task for understanding the nucleation 

process leading to the occurrence of seismic events and inferring the 

mechanical state of the faults. The characterization of seismic events consists 

of: i) identification of the earthquakes within continuous records of ground 

motion quantities, that are typically dominated by ambient noise and non-

seismic anthropogenic sources (earthquake detection); ii) determination of 

the nucleation point on the fault plane (hypocentral location); iii) estimation 

of the source properties accounting the rupture size, event magnitude and 

released stress (source characterization). Accurate analysis of major 

earthquakes has revealed the complexity of the seismogenic structures 

hosting the main events (Bernard & Zollo, 1989; Chiaraluce et al., 2017; Ross 

et al., 2019; Shelly, 2020). However, the global magnitude distribution 

reports a few high magnitude earthquakes in time, making difficult a direct 

access to their preparatory and nucleation phases, whose comprehension 

remains an open question in earthquake seismology.  

On the other hand, lower magnitude events occur within the interseismic 

cycle between successive major earthquakes, typically within the same 

structures which can accommodate larger magnitude events. According to the 

global seismicity occurrence, we expect an increase of a factor of ten in the 

number of earthquakes when lowering the considered magnitude by one unit 

(Gutenberg & Richter, 1944). Therefore, a detailed analysis of low magnitude 

events could provide an enriched view of the small-scale rupture processes. 

However, microseismic events feature a low signal-to-noise ratio on the 

seismic records, being typically buried within the ambient noise level. 

Therefore, they show prominent amplitudes above the noise level just at the 

stations closest to the epicenter, strongly limiting the capability of being 

identified through visual inspection of the data or using standard detection 

techniques (Allen, 1978; Baillard et al., 2014). Seismic networks deployed 

close to seismogenic sources and temporary deployment of dense array 

constellations have been shown to record waveforms featuring improved 
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signal-to-noise ratio for low magnitude earthquakes (Ben-Zion et al., 2015; 

Chiaraluce et al., 2022a). However, standard algorithms are not able to handle 

the massive amount of data collected by dense monitoring systems, leading 

to the necessity of developing novel approaches (Yoon et al., 2015). 

Advanced techniques have been developed for improving the resolution of 

earthquake detection, using machine learning models (Ross et al., 2018; Zhu 

& Beroza, 2019; Mousavi et al., 2020) or exploiting similarity among seismic 

waveforms (Chamberlain et al., 2018; Vuan et al., 2018), leading to the 

generation of enhanced seismic catalogs with a ten-fold increase in the 

number of identified earthquakes (Tan et al., 2021). Effectively, deep-

learning approaches have entered almost every subfield of seismology, for 

which they have shown the ability to outperform classical approaches, often 

dramatically, for seismological tasks such as denoising, earthquake detection, 

phase picking, seismic image processing, also strongly reducing the 

computational time (Mousavi & Beroza, 2022; Messuti et al., 2024). 

Coupling the improved catalogs with accurate techniques for the 

determination of the hypocentral coordinates (Waldhauser & Ellsworth, 

2000; Lomax & Savvaidis, 2022) has revealed fine-scale seismic structures 

identified by the occurrence of low magnitude events, moving the observation 

size from the kilometric to decametric/hundred of meter scale (Chiaraluce et 

al., 2017, 2022b; Ross et al., 2019). In this direction the analysis of seismic 

sequences, characterized by a higher seismicity rate as compared to the 

background and identifying earthquakes occurring close in space and time, is 

a precious framework for investigating local seismic features (Ellsworth & 

Beroza, 1998; Festa et al., 2021; Sugan et al., 2023). Therefore, seismic 

sequences present as a tool for understanding the efficiency of advanced state-

of-the art detection techniques, which require comparison across methods and 

in-depth analysis of the differences between the resulting catalogs.  

Within this thesis, we mainly focus on the characterization of the 

microseismic events occurred in the Southern Apennines, hosting the 

complex Irpinia normal system struck by the 1980 M 6.9 earthquake. This 

destructive event occurred along NW-SE-striking faults and was 

characterized by three main episodes within a few tens of seconds, causing 

about 3000 fatalities and severe damage (Bernard & Zollo, 1989). Moreover, 

this area is considered one of the regions with the highest seismic hazard in 

Italy (Stucchi et al., 2011). Since 2007, the area has been continuously 

monitored by the Irpinia Near Fault Observatory (INFO) including the Irpinia 

Seismic Network (ISNet, http://isnet.unina.it) made up of 31 seismic stations, 

equipped with strong-motion accelerometers and weak-motion sensors to be 
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sensitive to microseismic events. Seismicity in Irpinia typically features a low 

seismic rate, consisting of few events per day, and moderate depth values, 

mainly ranging between 8 and 15 km, covering a local magnitude range 

between 𝑀𝑙 −0.4 and 𝑀𝑙 3.7. The background seismicity that occurred during 

recent years appears to be distributed within a volume bounded by the main 

faults of the 1980 event without clearly identified fault segments at depth (De 

Landro et al., 2015), and sometimes occurring in sequences with events of 

maximum magnitude 𝑀𝑙 ∼3.0 (Stabile et al., 2012; Festa et al., 2021), lasting 

few days. Within this thesis, we also attempted to test these techniques to 

different environments, such as the Campi Flegrei area, where a seismic crisis 

associated with volcanic bradyseism is ongoing (Bianco et al., 2022), and 

Collalto region in Northern Italy, a gas storage site featuring induced 

seismicity (Priolo et al., 2015). 

The thesis is structured as follows. In Chapter 2 we introduce earthquake 

detection, describing the challenges in the identification of seismic events at 

the noise level and the advanced state-of-the-art detection techniques which 

are used for generating enhanced catalogs. We apply the strategies in different 

tectonic contexts, presenting semi-automatic approaches for long-term 

seismic monitoring and statistically interpreting the obtained enhanced 

detection lists. In Chapter 3 we focus on the determination of the hypocentral 

coordinates using innovative location algorithms, discussing their impact in 

the resolution of small-scale seismogenic structures as depicted from the 

relocation of high-resolution catalogs. In Chapter 4 we tackle seismic source 

characterization, revealing rupture size and stress release model for 

earthquakes in enhanced catalogs, estimating focal mechanisms for 

microseismic events and inverting them for analyzing spatiotemporal 

characteristics of the acting stress field. In Chapter 5 we summarize and 

discuss the results obtained in the different analyses, identifying interesting 

and stimulating perspectives for the considered topics. 
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Advanced techniques for earthquake 
detection 

2.1 Introduction 

Earthquake detection consists in the identification of seismic events within continuous 

ground motion records (seismograms), which are generally mostly populated by noise 

and non-seismic transients, as wind induced oscillations and anthropogenic sources. 

Earthquake rates vary according to the seismogenic settings of the areas, typically ranging 

from few events per day, as it is observed for the background seismicity in the Southern 

Apennines, (http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi), to 

thousands of events per day, as reported from seismic catalogs produced for the Mw 6.0 

L’Aquila (Tan et al., 2021) and Mw 7.8 Kahramanmaraş earthquakes (Becker et al., 

2024). However, the short duration of earthquake signals on seismic waveforms makes 

detection a very challenging task, especially as the magnitude of the events decreases and 

the amplitude of the signal approaches the noise level. 

Seismicity characterization in terms of determination of the source position, earthquake 

size and geometry allows to investigate and infer the mechanical properties of the faults 

where seismicity occurs, providing crucial information about earthquake nucleation and 

triggering processes (Abercrombie & Leary, 1993; Chiaraluce et al., 2017; Festa et al., 

2021; Waldhauser et al., 2021). The higher the number of detected earthquakes, the higher 

the amount of information that can be extracted from their characterization. Locating low 

magnitude events, that typically follow the occurrence of a larger magnitude earthquake, 

can highlight the activated faults segments (Wiens et al., 1994; Ross et al., 2019; Michele 

et al., 2020). Information on earthquake size and geometry can be inferred from the 

determination of the source parameters (De Matteis et al., 2012; Martinez-Garzon et al., 

2014; Supino et al., 2019). Following this direction, the identification of seismic events 

represents the first step for a comprehensive earthquake characterization, aiming to 

provide robust and “complete” catalogs of earthquakes to be investigated.  

http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi
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Moreover, seismic catalogs can be further inspected for extracting statistical properties. 

The most striking application concerns the determination of the regression parameters of 

the Gutenberg-Richter law (Gutenberg & Richter, 1944), relating the number and the 

magnitude of the events. It is a universal observation that, in a target area, the cumulative 

frequency-magnitude distribution of the earthquakes is not random, but appears to follow 

a specific trend, known as the Gutenberg-Richer law (G-R). Figure 2.1 reports the 

magnitude-time distribution (panel a) and the frequency-magnitude distribution (panel b) 

for the 2009 L’Aquila seismic sequence (De Santis et al., 2011). 

 

The Gutenberg-Richter law can be expressed as 

log10𝑁(𝑀) = 𝑎 − 𝑏𝑀 (2.1) 

Figure 2.1) Panel (a): Temporal evolution of earthquake magnitudes during the L’Aquila seismic 

sequence. Panel (b): Number of events in each magnitude bin (white circles) and cumulative frequency-
magnitude (black circles) distributions of events for all seismic events. Figure extracted from De Santis 

et al. (2011). 
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where 𝑁(𝑀) is the number of earthquakes with magnitude greater than or equal to 𝑀 in 

a given region and in a fixed time interval; 𝑎 and 𝑏 are positive parameters indicating the 

level and the type of seismicity in the region of concern. The slope of the Gutenberg – 

Richter law, often indicated as the b-value, has been claimed from several studies to be 

an indicator of the stress state of faults (Beroza et al., 2021; Picozzi et al., 2022a), and 

was analysed both in tectonic (Festa et al., 2021) and volcanic areas (Tramelli et al., 2021; 

2024). As an example, Picozzi et al. (2022a) showed that the b-value distribution in 

Southern Apennines is not uniform and hypothesized that differences are related to 

different stress levels (i.e. the lower the b-value, the higher the stress, Scholz, 2015) 

associated with the different seismogenic zones in this region. Moreover, despite being 

still debated within the seismological community, monitoring the time variation of the b-

value has been proposed to discriminate whether an ongoing sequence represents a 

decaying aftershock sequence or foreshocks to an upcoming large event (Gulia & 

Wiemer, 2019). 

The reliability of the estimation of statistical parameters from a seismic catalog is strongly 

affected by their content, expressed in terms of the magnitude of completeness. This latter 

quantity is defined as the magnitude above which all the events are contained within the 

catalog. Some authors attribute biases in the estimation of the b-value to local 

incompleteness in the detection, driving an underestimation of the slope of the Gutenberg-

Richter law (Herrmann & Marzocchi, 2021; Mancini et al., 2022). Thus, it appears to be 

crucial to deal with robust versions of seismic catalogs. 

The content of the seismic catalogs features a twofold dependency from the density of the 

monitoring seismic networks and the adopted detection technique. Former versions of 

earthquake catalogs were grounded on visual inspection of seismic waveforms recorded 

by sparse seismic networks, leading to a high magnitude threshold in event identification. 

The deployment of increasingly dense networks (Iannaccone et al., 2010; Ben-Zion et al., 

2015; Poiata et al., 2016), reaching even kilometric or sub-kilometric interstation 

distances, along with the integration of advanced automatic detection techniques (Yoon 

et al., 2015; Vuan et al., 2018; Zhu & Beroza, 2019) has moved the magnitude of the 

detected earthquakes to seismic signals at, or even below, the noise level of the seismic 

waveforms.  

The main branches of the automatic detection techniques can be grouped in energy-based, 

similarity-based and deep-learning algorithms. The energy-based STA/LTA method 

(Allen 1978) is one of the reference approaches in seismology and compares the 

waveform energy over a short-time window (STA) with that of a long-time window 

(LTA), the latter window characterizing the average noise level. Earthquake detection is 

declared when the STA/LTA ration exceeds an imposed threshold. While this approach 
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is highly flexible in detecting impulsive arrivals, it might fail in identifying events with 

amplitude near the noise level or closely spaced in time, such that their arrivals overlap. 

In Figure 2.2 we report the application of the STA/LTA technique on the vertical 

component of the velocity records of a M 2.9 earthquake occurred in Southern Apennines, 

for two seismic stations (SCL3, left panel, and AND3, right panel), at hypocentral 

distances of ~5 km and ~ 40 km, respectively (http://isnet-bulletin.fisica.unina.it/cgi-

bin/isnet-events/event-card.cgi?id=17713r). In this example we used a STA and LTA 

windows of 1 s and 10 s, respectively, filtering the seismic signals in the [1 – 20] Hz band. 

 

Figure 2.2) Application of the STA/LTA technique on a M2.9 earthquake occurred in Southern Apennines. 
Left panel: Application of the STA/LTA technique for the closest station (SCL3, hypocentral distance of ~5 

km). The red and blue bars in the upper panels mark the onset and the offset of the trigger, respectively. 
The impulsive arrival at the station produces a sharp variation in the STA/LTA function, leading to the 
declaration of the event. Right panel: Application of the STA/LTA technique for a more distant station (AND3, 
hypocentral distance of ~40 km). The emergent signal is barely above the noise level, producing a maximum 

value of the STA/LTA window close to the detection threshold. 

While for the closest station (SCL3) the arrival is impulsive, producing a sharp variation 

in the STA/LTA function and leading to the detection of the event, the application of the 

same strategy on a more distant station (AND3) provides a maximum value of the 

STA/LTA window close to the detection threshold, given the emergent characteristic of 

the seismic signal, close to the noise level. Moreover, since this technique only accounts 

for the energy content of the considered windows, it is not able to discriminate whether 

the energy change is driven by a real earthquake or a high-amplitude anthropogenic 

source, eventually leading to a high number of false detections when applied in noisy and 

harsh environments. Characteristic functions based on higher order statistics of the 

waveforms, such as skewness and kurtosis, have been shown to improve on STA/LTA 

for low signal-to-noise ratio and intense seismic activity (Baillard et al., 2014; Grigoli et 

al., 2016). 

http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/event-card.cgi?id=17713r
http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/event-card.cgi?id=17713r
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On the other hand, similarity-based detectors exploit the expected similarity among the 

waveforms for earthquakes occurring close in space, when recorded at the same station. 

The similarity among the waveforms is often measured in terms of the normalized cross-

correlation coefficient (CC), that can be expressed as: 

𝐶𝐶(�⃑�, 𝑦) =  
∑ 𝑥𝑖  𝑦𝑖
𝑚
𝑖=1  

√∑ 𝑥𝑖
𝑚
𝑖=1 𝑥𝑖√∑ 𝑦𝑖

𝑚
𝑖=1 𝑦𝑖

 

 

(2.2) 

where �⃑� and 𝑦 represent the time domain earthquake waveforms and 𝑚 refers to the 

number of samples of the signals. According to this definition, the CC coefficient ranges 

from -1 (perfect anticorrelation) to 1 (perfect correlation). Similarity-based detectors can 

be further divided into two main branches, known as template-matching search and 

autocorrelation. The substantial difference among the two branches is that template 

matching search requires an a-priori known set of templates, that will be used for finding 

similar events in the continuous records. Thus, template matching is often referred to as 

matched-filter detection (many-vs-all). In this framework, the similarity of the continuous 

data is tested against each template, and a detection is declared whether the CC coefficient 

with at least one template event overcomes an imposed similarity threshold. Before 

performing the template matching search, pre-processing operations, such as 

downsampling and filtering in narrow frequency bands are typically applied to continuous 

records and template waveforms aiming to increase, and eventually to emerge, the 

waveform similarity for events featuring an amplitude close to the noise level (Vuan et 

al., 2018; Ross et al., 2019; Sugan et al., 2019; Martinez- Garzon et al., 2023). The success 

of the technique in identifying similar earthquakes in the continuous records strongly 

relates to the content of the starting template catalog. It is straightforward to relate the 

capability of recognizing similar events to the number of available templates. However, 

since the similarity of the earthquake records has been proved to quickly decrease as a 

function of the inter-event distance (Schaff & Waldhauser, 2005; Michele et al., 2020), 

for performing a comprehensive template-matching analysis of a seismic region, it is 

required to have a large set of templates, also distributed in space. As an example, in 

Figure 2.3 we report the distribution of the normalized CC coefficients as a function of 

the interevent distances, extracted from Michele et al. (2020). 

Moreover, the frequency content of the seismic waveforms, and thus the shape in the 

time-amplitude domain in which the cross-correlation is evaluated, is a function of the 

magnitude. Higher-magnitude events feature lower frequency content, while lower 

magnitude events, which are typically uncataloged and represent the target for the 

template matching detection, are characterized by a substantially higher frequency 

content, although limited by anelastic attenuation due to the wave propagation through 

the media. Thus, it is more likely to find the similarity among earthquakes characterized 
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by similar magnitudes, beyond that having close focal parameters (hypocenter locations 

and focal mechanisms), further emphasizing the need of complete catalogs for an 

appropriate template-matching analysis. Despite these apparent limitations, template 

matching is a versatile and powerful technique that has found undetected events in a wide 

range of seismicity studies: uncataloged low-magnitude earthquakes (Schaff & 

Waldhauser, 2010), foreshocks (Kato & Nakagawa, 2014), aftershocks (Peng & Zhao, 

2009), triggered earthquakes (Meng et al., 2013) and earthquake swarms (Shelly et al., 

2013). 

 

Figure 2.3) Distribution of normalized cross-correlation values versus interevent separation distance for P 
(red) and S wave (black), extracted from Michele et al. (2020). 

Autocorrelation, on the other hand, does not require an a-priori known set of earthquakes. 

Rather, it assumes each portion of the continuous data as a candidate template and tests it 

against all the records (all-vs-all). Despite being particularly promising in frameworks 

featuring low seismicity rates, where the number of templates might be insufficient, 

autocorrelation has the major disadvantage of being computationally intensive and 

ultimately infeasible for detecting earthquakes in massive continuous data sets. The 

𝑂(𝑁2) algorithm complexity required for comparing all the possible couples from N 

windows extracted from the continuous data leads to a significant amount of redundant 

work, because most pairs of windows are uncorrelated and not of interest for detection. 

Indeed, as discussed in the previous paragraphs, seismic waveforms are typically 

dominated by noise and non-seismic transients. In Figure 2.4, we report the runtime 

scaling of autocorrelation as a function of the time extent of the analyzed data, reported 

as a violet line (figure extracted from Yoon et al., 2015). Autocorrelation suits in detecting 
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similar earthquakes in a few hours of continuous data (Brown et al., 2008, Yoon et al., 

2015). The algorithm complexity limits the application on days, weeks, months, or even 

years of continuous seismic, especially for dense networks, requiring large-scale 

computational resources (Yoon et al., 2015). However, autocorrelation has been 

successfully applied to seismic monitoring, leading to the declaration of uncatalogd low-

magnitude earthquakes (Zhang et al., 2014; Yoon et al., 2015; Liu et al., 2017). 

 

Figure 2.4) Autocorrelation runtimes (purple) as a function of the continuous data duration. For continuous 
data longer than 1 week, the runtime is extrapolated based on quadratic scaling (violet dashed line). Figure 
extracted from Yoon et al. (2015) 

In the recent years, the explosion of the use of machine-learning (ML) models for solving 

complex scientific problems has led to the definition of deep learning techniques for the 

identification of seismic signals in continuous data (Perol et al., 2018; Ross et al., 2018; 

Zhu & Beroza, 2019; Mousavi et al., 2020). Deep-learning detection models work by 

learning general characteristics of earthquake waveforms and seismic phases from high-

level representations, iteratively minimizing a loss function to achieve the best values for 

weights and biases in the framework of a classification problem. Despite differences in 

the network architecture, the main elements of a ML model for earthquake detection are 

the feature extraction layers, which effectively perform the classification problem 

minimizing a cost function, and a final layer which associates the probability of the input 

waveforms of being noise or earthquakes. More advanced networks are also able to detect 

the arrival of seismic phases (P and S waves) beyond the earthquake/noise classification. 

Figure 2.5 reports the architecture of ML models performing detection and phase picking 

on the input seismic waveforms (extracted from Figure 1 in Ross et al., 2018). 
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Figure 2.5) (a) Illustration of a convolutional neural network for generalized phase detection (GPD) and (b) 

application example. Probability time series for P (red) and S waves (blue) are used as characteristic 
functions for phase detection. The figure is extracted from Figure 1 in Ross et al. (2018) 

Crucial for the training of a ML model is the selection of the training dataset. The 

deployment of dense and worldwide seismic monitoring networks has given rise to 

massive datasets, often containing millions of standardized labelled seismic waveforms, 

in terms of earthquake detection and phase arrival times, generated by expert 

seismologists (Mousavi et al., 2019; Woollam et al., 2019; Michelini et al., 2021; Cole et 

al., 2023). Moreover, the use of a massive dataset ensures a wide number of events to be 

used after the train/validation/test split of the training dataset. Using the labelled data, 

high-level characteristic features are automatically extracted from the seismic waveforms 

by applying a series of filtering and decimation operations and used to classify data 

windows. For this task, most of the state-of-the-art ML models ground on convolutional 

neural networks (CNN, Ross et al., 2018; Zhu & Beroza, 2019) and attention mechanisms 

(Mousavi et al., 2020) for identifying the most discriminative and characteristic properties 

of the seismic signals. These down-sampled features are transformed into high-level 

representations through a series of residual convolution blocks, and global attention 

section at the end of the encoder can help in aiming the attention of the network to the 

parts associated with the earthquake signal (Mousavi et al., 2020). These data-driven, 

high-level features are then directly mapped to a vector of probabilities representing the 

existence of an earthquake signal (detection) using decoder branches (Figure 2.5, panel 

b). Recent studies applied these techniques to different environments, reporting 

encouraging results as compared to the manual catalogs and to the application of ordinary 

detection strategies. In particular, the application of ML models in complex tectonic 

contexts provided an increased number of detected earthquakes of more than one order 

of magnitude (Zhu & Beroza, 2019; Tan et al., 2021; Chiaraluce et al., 2022b; Mancini et 
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al., 2022), even when applying the techniques on areas that were not included in the 

training datasets (Mousavi et al., 2020). These characteristics can, thus, support the 

exportability of the ML models in different contexts, overcoming the low generalization 

that typically affects the similarity-based models. Moreover, the application of ML 

models has been proved to provide reliable estimations of the P and S phase arrival times, 

as compared to the manual identification of expert seismologists (Mousavi et al., 2020; 

Munchmeyer et al., 2022), allowing an unbiased characterization of enhanced seismic 

catalogs in terms of earthquake location and source parameter estimations. Moreover, ML 

methods can detect events which are not correlated with other events in the catalog, and 

would be missed by a template matching procedure, as there is no matching template for 

such events. 

In this chapter, we tested and compared different detection techniques in several 

frameworks, in order to generate robust and complete enhanced catalogs of microseismic 

events for statistical analysis and monitoring purposes. Moreover, these catalogs will 

represent the starting point for a comprehensive analysis of the microseismicity, discussed 

in the next chapters, improving the knowledge of the earthquake generation processes. 

Specifically, we apply advanced detection techniques for: 

• Generating enhanced detection catalogs for seismic sequences in Southern 

Apennines, testing and comparing the performance of similarity-based and ML 

techniques and interpreting, in a statistical framework, the information contained 

in the resulting catalogs (Section 2.3.1) 

• Analysing the data collected by a pioneering survey, consisting of the deployment 

of 200 seismic stations in Southern Apennines, organized in dense arrays, for 

detecting the ultra-microseismicity (Ml < 0) and improving the knowledge about 

the seismogenic structures (Section 2.3.2) 

• Investigating repeater and near-repeater earthquakes in Southern Apennines on 

the timescale of decades, to infer temporal variations in the properties of the 

propagation medium and to analyse the temporal evolution of the seismic cycle 

(Section 2.3.3) 

• Monitoring the seismicity in a gas-storage area in Northern Italy, for tracking the 

induced earthquakes during the injection and extraction stages (Section 2.3.4) 

• Defining a near-real-time automatic workflow for the continuous monitoring of 

seismicity in Southern Apennines, aiming to replace the routine manual 

surveillance by network operators (Section 2.3.5). 
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2.2    Methods 

We hereby present the advanced detection techniques that we applied for the 

aforementioned analysis. We selected the ML models for earthquake detection and phase 

picking EQTransformer (Mousavi et al., 2020) and PhaseNet (Zhu & Beroza, 2019), the 

template-matching detector EQCorrscan (Chamberlain et al., 2018) and the 

autocorrelation technique FAST (Yoon et al., 2015). 

 

2.2.1 Machine learning models for earthquake detection 

The wide spread of artificial intelligence in Earth sciences has led to the development of 

machine learning models for identifying earthquakes and recognizing the arrival times of 

seismic phases (Perol et al., 2018; Ross et al., 2018). ML models learn discriminative 

data-driven features from labelled and massive training datasets, leading to robust and 

precise earthquake detection on continuous data, even in regions non included within the 

training dataset (Mousavi et al., 2020; Munchmeyer et al., 2022). These characteristics 

make the models particularly suitable for seismic monitoring purposes and catalog 

enhancement. 

EQTransformer (EQT, Mousavi et al., 2020) is an AI-based earthquake signal detector 

and phase (P&S) picker employing a deep neural network with an attention mechanism, 

characterized by a hierarchical architecture specifically designed for detecting earthquake 

signals, inspired by human visual attention. Humans focus on a certain region of the 

waveforms for discriminating seismic signals from noise, i.e. sharp amplitude or 

frequency variations. EQT implements two levels of attention mechanisms, one at the 

global level for identifying earthquake signals within seismic waveforms, and one at the 

local level for identifying phase arrival times within that earthquake signal. The 

architecture of the model consists of 56 activation layers, which is the deepest network 

that has been evet trained for seismic signal processing, simultaneously performing the 

detection and phase picking, using separate loss functions. EQT is trained using the 

STEAD dataset (Mousavi et al., 2019), a large-scale global dataset of labelled earthquake 

and non-earthquake signals. The trained dataset consisted of ~1 M earthquake and ~300 

K noise waveforms (including both ambient and cultural noise) recorded by ~ 2600 

seismic stations at epicentral distances up to 300 km. Earthquake waveforms are 

associated with about 450 K earthquakes with a diverse geographical distribution around 

the world and were randomly split into training (85%), validation (5%), and test (10%) 

sets. Most of these earthquakes are smaller than M 2.5 and have been recorded within 100 

km from the epicentre, these features being particularly promising for local and 
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microseismic monitoring. In Figure 2.6 we report the location-magnitude distribution of 

the STEAD dataset (Mousavi et al., 2019). 

 

Figure 2.6) Location – magnitude distribution of the STEAD dataset. The figure is extracted from Figure 3 
of Mousavi et al. (2019) 

The 1-minute-long training waveforms were sampled at 100 Hz, extending for 1 minute 

and band-passed filtered in 1.0-45.0 Hz. When applying EQT on seismic records, we 

reproduced the same preprocessing operation, matching those of the training dataset. 

During the training stage, data were further augmented by adding a secondary earthquake 

signal into the empty part of the trace, in order to let the model be sensitive to multiple 

events and earthquakes occurring close in time and randomly shifting the event within 

the trace through array rotation, in order to avoid the model learning only the windowing 

scheme. 

The output of EQT is a probability vector, each value associated with a sample of the 

analysed window, for earthquake detection, P and S phase arrival time. An earthquake is 

declared whether the detection probability overcomes an imposed score threshold, while 

phase arrival times are provided when the pick probability is higher than a second, 

independent threshold. In Figure 2.7 we report the results of the EQT for a 1-minute-long 

three-component normalized velocity record for a seismic station in Southern Apennines. 

The reported waveforms are downsampled from 125 Hz to 100 Hz and bandpass-filtered 

in [1 – 45] Hz. EQT allows to select two versions of the trained model: 

EqT_original_model.h5 (hereinafter “original model”) and EqT_model_conservative.h5 

(hereinafter “conservative model”)       

(https://github.com/smousavi05/EQTransformer/tree/master/ModelsAndSampleData, 

last access 3rd July 2024). 

https://github.com/smousavi05/EQTransformer/tree/master/ModelsAndSampleData
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Figure 2.7) Application of EQT for a seismic station in Southern Apennines. The three upper panels report 
the normalized and [1-45] Hz filtered waveforms for the Z, N and E component of velocity records, 
respectively. The bottom panel reports the prediction scores for earthquake detection (green), P (red) and 

S (blue), respectively. 

The former model was optimized to minimize the rate of false negatives, while the latter 

was trained to minimize the false positive rates. Both models are trained using the same 

dataset and the same network architecture but selecting and tuning differently the 

hyperparameters. Mousavi et al. (2020) applied the original model to the region that was 

struck by the 2000 Mw 6.6 Western Tottori earthquake, searching for aftershocks over 

more than one month of continuous data, using threshold values of 0.5, 0.3, and 0.3 for 

detection, P-picking, and S-picking respectively. This analysis led to the definition of a 

catalog composed of ~21.1k earthquakes, along with reliable estimations of the phase 

arrival times, featuring zero-mean residuals and standard deviation lower than 0.1 s, when 

compared to manual identifications, for both P and S picks. 

We tested the application of both models on seismic sequences in Southern Apennines, 

also analysing the reliability of the phase arrival times. For homogenizing the probability 

thresholds, we set the probability scores to 0.3 and 0.1 for declaring detections and phase 

arrival times, respectively. For binding single-station phase arrival times to seismic 

events, EQT is coupled with a phase associator, which simply counts the number of 

detections occurring in moving time windows, without inspecting for time and space 

coherency of the moveout of the declarations. In Figure 2.9, we report the number of 

phase arrival times declared by the conservative model (blue bars) and the original model 

(red bars) at the closest stations to a seismic sequence. When adopting the original model, 

which minimizes the rate of false negatives, we retrieved a list of ∼3k detections after the 

association, ∼550 of which were real earthquakes (visual inspection of the declaration). 
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On the other hand, the application of the conservative model led to the declaration of 140 

associated earthquakes, featuring very few false positives. However, since the binding 

criterion of EQT is too weak in the selection of real events, and even when using more 

advanced associators (Zhang et al., 2019) the resulting catalogs were dominated by false 

events and we preferred to maintain a safer approach for EQT. We thus adopted the 

conservative model for earthquake detection, and we further enhanced the catalogs using 

the enlarged set of events detected by EQT as master events (templates) for a template 

matching search, which requires a reliable and robust set of phase arrival times. Indeed, 

an event with low signal-to-noise ratio waveforms and only few P/S picks will not be an 

optimal template, eventually leading to a family of many false detections. 

Similarly to EQT, PhaseNet (Zhu & Beroza, 2019) has become an established model for 

identifying earthquakes and phase arrival times on continuous data. The architecture of 

PhaseNet is modified from U-Net (Ronneberger et al., 2015) to deal with 1-D time-series 

data (Figure 2.8).  

 

Figure 2.8) Network architecture of PhaseNet. The blue rectangles represent layers inside the neural 
network, while the numbers near them are the dimensions of each layer. The input seismic data go through 
four down-sampling stages and four up-sampling stages. The down-sampling is done by 1-D convolution 

and stride, while the up-sampling is done by deconvolution, which recovers the input length of the previous 
stage. Figure extracted from Figure 5 in Zhu & Beroza (2019). 

The input seismic data are processed by four down-sampling and four up-sampling stages, 

involving 1-D convolutions and rectified linear unit (ReLU) activation functions. Down-

sampling extracts useful information from raw seismic data, while the up-sampling 

process determines the probability distributions of P wave, S wave and noise for each 

time sample (Zhu & Beroza, 2019). During the training stage, minimal data pre-

processing is applied to the training data, which consisted of a 30-s time window that 
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included the P and S arrival times. As for EQT, the position of the arrivals within the 

window is varied to ensure that the algorithm does not just learn the windowing scheme. 

All data are sampled at 100 Hz and normalized by removing its mean and dividing it by 

the standard deviation. However, in contrast to EQT, the training dataset PhaseNet was 

not filtered in the frequency domain, in order to also deal with event waveforms close to 

the noise level within the training stage. PhaseNet was trained on seismic waveform data 

based on the Northern California Earthquake Data Center Catalog (NCEDC, 2014), 

composed of ~780k recordings. As for other ML pickers, the output of the technique is a 

vector of probability scores. Zhu & Beroza (2019) applied the technique to different 

environments, retaining only the phase arrival times with probability scores higher than 

0.5, for both P and S picks, showing similar distribution in terms of time residuals 

between automatic and manual picks as for EQT. Moreover, the technique appeared to be 

robust in detecting events in noisy data and even on clipped waveforms (Zhu & Beroza, 

2019). 

We tested PhaseNet on the same dataset used for evaluating the performances of two 

models of EQT, selecting the same probability score as for the same former tests. In 

Figure 2.9, we added the number of picks provided by PhaseNet as orange bars, along 

with the two versions of EQT.  

 

Figure 2.9) Comparative analysis in logarithmic scale of the picks provided by EQT conservative model 
(blue bars), PhaseNet (orange bars) and EQT original models (red bars). For each model, an increase of 

one order of magnitude is typically observed, with the number of PhaseNet picks laying between the two 
version of EQT model.  
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From PhaseNet, we obtained a number of detections that falls between the resulting 

number from the application of the conservative and original EQT model but, as for the 

EQT original model, this technique still requires a good associator to produce a seismic 

catalog that is robust enough to not be polluted by false declarations. When coupling the 

PhaseNet detections with REAL associator (Zhang et al., 2019), a grid-search-based 

binding algorithm, we obtained a detection list of 250 real earthquakes. This number is 

lower than the cleaned catalog provided by the original EQT model but almost doubles 

the number of detections from the EQT conservative version. However, since the effect 

of the phase association appears to be crucial in ruling out the false declaration and it 

might not be trivial to disentangle the role of the association stage from the effective 

detection capability, we preferred to not include this technique in the analysis of seismic 

sequences in Southern Italy (Section 2.3.1) and the data collected by the dense arrays 

(Section 2.3.2). On the other hand, since the number of detections provided by PhaseNet 

falls between those of the two EQT models, this technique looks particularly encouraging 

for seismic monitoring application as stand-alone ML model, approaching near-real-time 

application, which is a challenging framework for template-matching strategies. We thus 

adopted PhaseNet, coupled with the phase associator REAL, to implement an automatic 

detection workflow for daily monitoring of the seismicity in Southern Apennines, 

complementing, and in the near future aiming to substitute, the routine operations by 

human seismologists (Section 2.3.5). 

2.2.2 An efficient template matching strategy: EQCorrscan 

Template matching is an efficient similarity-based approach for earthquake detection, 

exploiting the waveform similarity among events occurring close in space, making this 

technique particularly suitable for the analysis of seismic sequences. In Section 2.3.1, 

2.3.2 and 2.3.3, we applied the template matching technique EQCorrscan (Chamberlain 

et al., 2018) for the analysis of seismic sequences, continuous data recorded by a dense 

temporary survey and for identifying repeating events in Southern Apennines, 

respectively. As template matching techniques require the knowledge of the set of 

earthquakes to be used for finding similar events within the continuous data, we grounded 

our detection strategy using the earthquakes detected by EQT in a previous stage as 

master events, in both Section 2.3.1 and Section 2.3.2. On the other hand, since for the 

search of the repeating earthquakes we did not have the phase arrival times provided by 

the machine learning technique for 10 years of continuous data, we used the avai lable 

manual identification of earthquakes and corresponding phase arrival times. However, to 

further understand the performance of the technique, we discussed the content of template 

matching enhanced catalogs obtained using either the manual or the EQT detections as 

template sets for the analysis of the seismic sequences in Southern Apennines (Section 

2.3.1). 
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When building a template event, we extracted a portion of waveforms for stations with at 

least one pick (P or S). Several stations might contribute to the template, with the moveout 

of the event among the stations being indicative of the direction of propagation. We 

selected portions of templates lasting 1.5 s and starting 0.15s before the picks. For 

enhancing the similarity between the template and the continuous data and for reducing 

the computational efforts, both waveforms were bandpass-filtered in the range 2–9 Hz 

and decimated to 25Hz, similarly to other template matching applications (Vuan et al., 

2018; Ross et al., 2019). In Figure 2.10, we report the portion of the waveforms 

composing a template event (magnitude 𝑀𝑙 1.2) extracted by selecting the phase arrival 

times provided by EQT. Red waveforms indicate the 1.5s – long portions extracted around 

the P picks on the vertical components of the velocity records, while the cyan sectors 

indicate the waveforms extracted around the S picks on the horizontal components of the 

velocity records. 

 

Figure 2.10) Example of a template event used the phase arrival times provided by EQT. Red waveforms 
indicate the 1.5s – long portions extracted around the P picks on the vertical components of the velocity 
records, while the cyan sectors indicate the waveforms extracted around the S picks on the horizontal 

components of the velocity records. 

When performing the similarity-based detection using all the available templates, 

EQcorrscan implements a delay-and-stack method for the calculation of normalized 

cross-correlation coefficients, with correlation vectors aligned according to the relative 

delays between template channels. For each template, the cross-correlation with the 

continuous data is only evaluated, among the stations composing the template, on the 

channels providing the phase arrival times. For attributing a detection score to each 

template, we used the sum of the cross-correlation of the considered master events and 

the continuous data among the different channels. We then compared the similarity score 
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with an imposed threshold, defined from the median absolute deviation (MAD), of the 

cross-correlation coefficient evaluated for one hour of continuous data. In this framework, 

the MAD value will be indicative of the level of cross-correlation of the template with 

the noise, being the one hour of continuous data being typically dominated by noise 

signals. We declared an event when the sum of the similarity score of the analysed 

records, with at least one template, overcame 8 times the MAD value. This latter value is 

comparable to, and even slightly lower than, the similarity thresholds imposed in other 

template matching analyses (Skoumal et al., 2014; Li & Zhan, 2018; Sugan et al., 2023). 

For template matching, the number of detections critically depends on the selected 

threshold. For a lower threshold, we can retrieve more earthquakes, but with the risk of a 

dramatic increase in the number of false detections, which might be due to the artificial 

similarity observed with noise waveforms enhanced by the narrow filtering operation. On 

the other hand, higher thresholds would reduce the number of false positives, but at the 

expense of increasing missed real events. Thus, the threshold should be set to balance the 

number of false and real detections. We thus explored the possibility of automatically 

identifying a refined threshold for ruling out false positives from the enhanced catalogs 

(Scotto di Uccio et al., 2023).  For several test cases, we visually inspected all the 

detections with similarity scores higher than 8 times the MAD, to isolate real events from 

false positives accounting for the shape and the frequency content. In the left-hand panel 

of Figure 2.11, we report the distribution of the ratio between the sum of the cross-

correlation associated with the single declaration and the detection threshold 

(CCsum/thresh), distinguishing false events (red points) and real earthquakes (green 

points) for an enhanced catalog composed of 233 detections.  

 

Figure 2.11) Left-hand panel: distribution of the ratio CCsum/threshold for the events in the initial catalog 
provided by EQCorrscan (green points correspond to real events, red points to false positives). Right-hand 

panel: cumulative number of events as a function of the ratio CCsum/threshold for the subset of the real 
events (green line), false positives (red line) and for the whole initial catalog (blue line). The black dashed 
line marks the similarity parameters associated with the slope change in the global CCsum/threshold 
distribution, which we use as refined threshold. 
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The distributions of real and false detections appear separated with an overlap in the range 

(1.1–1.4). To investigate the distribution of the previous parameter further, in the right 

panel of Fig.1.11, we represent the cumulative number of real and false events (green and 

red curves, respectively) and the cumulative number of all detections in the catalog (blue 

curve) as a function of the CCsum/thresh parameter. For low values of this parameter, the 

cumulative number of detections is dominated by false events. As the parameter 

increases, we retrieve fewer and fewer false events having such a high score, resulting in 

a flattening of the red curve. Thus, for large values of CCsum/thresh the increase of the 

blue curve is driven by the distribution of the real events. Since the real and false event 

distributions feature different behaviours, the cumulative distribution of all the detections 

exhibits a change in the slope, which can be identified (black dashed line in the right panel 

of Figure 2.11) by fitting its initial and final trends and used as a refined threshold that 

allows us to significantly reduce the number of false detections in the catalog. In the right 

panel of Figure 2.11, the slope break corresponds to the value CCsum/thresh=1.15, which 

results in a new threshold of 9.2 MAD, higher than the initial value. We stress that this 

criterion is directly applied to the cumulative number of detections in the catalog output 

by the template matching technique and can be automated, without preliminarily 

identifying the two families. 

Finally, we also estimated the phase arrival times for detections, this time exploiting the 

individual cross-correlation coefficient. We imposed a minimum cross-correlation 

coefficient of 0.6 for accepting the phase arrival time, while selecting a maximum time 

lag of ±0.2 s in the exploration. This approach allowed us to fine-tune the individual picks 

around the detection made with all channels simultaneously. 

2.2.3 An innovative technique for autocorrelation: FAST 

As introduced in Section 2.1, the autocorrelation is a similarity-based strategy that is 

grounded on the expected similarity among seismic signals, as compared to random noise 

records. The autocorrelation is an uninformed detector, since it does not require the 

knowledge of the desired seismic signals. Rather, it considers every time window 

extracted from the continuous data as a candidate waveform to be searched within the 

records. This approach appears to be particularly promising especially for seismic 

sequences, in which earthquakes occur closely in space and time with a seismic rate 

higher than background seismicity, and for monitoring induced seismicity, given the high 

similarity expected from the low inter-event distance (Schaff & Waldhauser, 2005). 

However, the computational cost required by the autocorrelation (𝑂(𝑁2), see Figure 2.4), 

makes this strategy unfeasible for long-term monitoring. To overcome this limitation, 

Yoon et al. (2015) introduced a new algorithm, known as FAST (Fingerprinting And 

Similarity Thresholding), claiming to feature the same resolution as standard 

autocorrelation techniques while strongly lowering the computational time. The 
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innovation introduced within FAST stands in the conversion of time-domain waveforms 

into binary objects, known as fingerprints, which only contain discriminative features of 

earthquakes. Fingerprints serve as a proxy for waveforms, thus two similar waveforms 

should produce similar fingerprints, while two dissimilar waveforms should be converted 

into dissimilar fingerprints. Figure 2.12 illustrates the main stages of the conversion of 

time-domain waveforms into binary fingerprints. 

The core of FAST consists of three stages: 

• Feature extraction: in which the time-domain data are effectively compressed and 

the features are extracted for generating the sparse and binary fingerprints 

containing the most discriminative characteristics. 

• Similarity search: given a query fingerprint, an optimized Min-Hashing algorithm 

(Broder et al., 1998), maps the object in a local database and returns the most 

similar fingerprints, without needing to compare it with the entire set. 

• Network pseudo-association: if multiple stations are used, single-station results 

are combined to declare events in the network, ruling out eventual false detections 

at the station level. 

 

 

Figure 2.12) Conversion of time-domain waveforms into binary fingerprints containing only the discriminative 

features of earthquakes. Figure is redrawn after Yoon et al. (2015). 
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In the pre-processing phase, gaps and zeroes in the data stream are replaced with Gaussian 

uncorrelated noise, since these characteristics would have been misleadingly interpreted 

as similar. Moreover, with the twofold aim of further reducing the computational time 

and enhancing the signal-to-noise ratio of the waveforms, time-domain waveforms are 

downsampled and filtered in a narrow frequency band. When applying FAST to enhance 

catalogs for seismic sequences in Southern Apennines (Section 2.3.1) and to monitor the 

induced seismicity in the gas-storage area of Collalto (Section 2.3.4), we applied a 

downsampling factor of 5 to the raw continuous data, leading to a new sampling rate of 

25 Hz and 50 Hz, respectively. The different sampling rates implied different frequency 

bands to be used for filtering, given the lower Nyquist frequency for data collected in the 

southern Apennines, as compared to the data from the gas-storage area. We thus filtered 

the former records in the [1-10] Hz frequency band, while the latter in the [1-20] Hz 

frequency band. However, both frequency bands agree with those selected for different 

applications of similarity-based detectors (Yoon et al., 2015; 2019). 

In the feature extraction phase, single-component waveforms extracted from the pre-

processed continuous data are converted into spectrograms, using overlapping windows 

and subdividing the frequency domain into equally spaced bins. Using this representation, 

earthquakes appear in the spectrogram as transient, high-energy events. The spectrogram 

is further split into overlapping windows in the time dimension, each window referred to 

as a "spectral image". Each spectral image extracted from the spectrogram is then 

compressed by applying the Haar wavelet transform and maintaining only a certain 

fraction of the coefficients, those that are most detached from their daily average. This 

compression is shown to preserve the seismic features in the fingerprints under the 

assumption that the daily average is representative of the ambient noise. The selected 

coefficients are then binarized, to generate final sparse and binary fingerprints. In both 

applications of FAST, we adopted 6.0 s of time-window signal with a shift of 0.2 s for 

evaluating an individual spectrogram, while the spectral images, resampled in 32 x 32 

samples, contain information of 12.4 s of time-domain windows. The time extension of 

the spectral image is long enough to include the whole earthquake in its content and, on 

the other hand, sufficiently short for separating events occurring close in time, as it might 

occur during seismic sequences. When applying the Haar wavelet transform, we 

maintained only 200 out of the 1024 wavelet coefficients, selecting them among those 

featuring the highest Z-score. Z-score is a useful metric for quantifying the deviation of 

the i-th coefficient 𝑐𝑖 from the mean 𝜇𝑖 weighted by the standard deviation 𝜎𝑖 of the same 

coefficient, being defined as: 

𝑍𝑖 =
𝑐𝑖 − 𝜇𝑖
𝜎𝑖

 

 

(2.3) 
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Hypothesizing that 𝜇𝑖 is dominated by noise, the highest the 𝑍𝑖 , the more that coefficient 

detaches from non-seismic behaviour. 

After feature extraction, the goal is to identify pairs of similar fingerprints to detect 

earthquakes. FAST creates a database in which similar fingerprints are grouped, using 

hashing functions, into the same hash bucket. Then the similarity search returns all similar 

fingerprints to a given search query object, measuring the similarity in terms of the 

Jaccard similarity. Given two binary fingerprints, the Jaccard similarity is defined as 

𝐽(𝐴, 𝐵) =
|𝐴 ∩𝐵 |

|𝐴∪𝐵|
. The numerator contains the number of bits in both A and B that are equal 

to 1, whereas the denominator is the number of bits in either A, B, or both A and B that 

are equal to 1. Locality-sensitive hashing (LSH) efficiently compares fingerprints, 

returning a shorter list of “candidate pairs” that are similar with high probability. Each 

fingerprint is inserted into one hash bucket that is selected based on the output of a hash 

function. A hash table contains many hash buckets, and the hash function determines how 

items are distributed among the different hash buckets. LSH allows to search for pairs of 

similar items (seismic signals) within the same hash bucket—these pairs become 

candidate pairs, ignoring pairs of items that do not appear together in the same hash 

bucket, which comprise most pairs. The Min-Hash algorithm application is grounded on 

two independent parameters: the number of tables 𝑏 and the number of hash functions per 

table 𝑟 (Yoon et al., 2015). The number of hash functions, 𝑟, is the most sensitive 

parameter in the similarity search, also affecting the computational time: lower values 

lead to fewer missed detections, more false detections and longer runtime, while higher 

values produce more missed detections, fewer false detections, shorter runtime (Yoon et 

al., 2015). Thus, increasing the number of hash functions is, in a probabilistic framework, 

equivalent to requiring a higher similarity among the waveforms. Yoon et al. (2015) 

suggested values for the number of hash functions to be selected according to the time 

extension of the dataset. For days/weeks long datasets, the suggested value is 4. We thus 

set 𝑏 =  100 and 𝑟 =  4 (Yoon et al., 2015; Festa et al., 2021). The search is fast and 

scalable with increasing database size, with near-constant runtime for a single search 

query, so that the total runtime is near-linear (Yoon et al., 2015). 

In the application of the similarity search for seismic sequences in Southern Apennines, 

we noted an anomalous and suspicious high number of similar fingerprints for a specific 

station, one order magnitude greater than for the other stations. Being a class of false 

positives in autocorrelation techniques represented by coherent noise occurring over time 

due to local ambient source, we investigated the time-domain waveforms for that station. 

In Figure 2.13, left panel, we show 30 seconds of raw data recorded at the considered 

station in the upper panel, while the lower panel shows the [1 – 10] Hz filtered waveform, 

the input for the fingerprint generation. This representation clearly shows that the [1-10] 

Hz bandpass filtering on this station strongly affects its frequency content, leading to a 
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nearly monochromatic time-domain signal. Consequently, since such a signal extended 

for several minutes and was randomly distributed within the daily records, the similarity 

search found a massive number of similar fingerprints, that should be considered as false 

positives given their non-seismic nature. Moreover, inspecting the power spectral density 

for the considered station (PSD, dispalayed in the right panel of Figure 2.13), we noted a 

spurious frequency peak around 1.5 Hz, which falls within the frequency band used for 

filtering the data. Thus, the selected frequency band significantly alters the shape of the 

time-domain waveforms, leading to an artificial similarity over time. A straightforward 

solution for overcoming this issue might have been represented by the selection of a 

different frequency band, not containing 1.5 Hz. However, this frequency range has 

particular interest in seismic signals; thus, to mitigate this effect, we discarded those 

fingerprints that are similar for more than 3 percent of the day length (∼15 min). This 

choice effectively reduced the number of false detections due to the occurrence of 

coherent and repeated noise. Indeed, FAST might also be sensitive to non-seismic, 

repeated transients resulting from anthropogenic activities (e.g. quarry blasts, Yoon et al., 

2017). 

 

Figure 2.13) Left panel: The upper panel reports the raw waveform at LIO3 station, while the lower panel 
contains the [1-10] Hz filtered data, which feature a monochromatic behaviour, this latter causing an increase 

in the number of similar fingerprints for that station. Right panel: Daily power spectral density (PSD) for LIO3 
station for the considered day. The PSD shows a spurious peak around the characteristic frequency of the 
monochromatic signal dominating the waveforms after the filtering. 

In the final association stage, we merge the single-station declarations requiring similarity 

among fingerprints to occur in at least 2 stations for the application to seismic sequences 

in Southern Apennines and at 4 stations for the application to the gas storage area in 

Collalto. Moreover, in order to account for the propagation of waves among the different 

seismic stations, we imposed a maximum lag between detection times of 3 s. This latter 

value was selected considering the average inter-station distances. 
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Similarly to the approach introduced for the analysis of the template matching catalogs, 

for limiting the false detections within the FAST declarations we investigated the 

possibility of setting up a semi-automatic criterion, based on the analysis of the 

cumulative distribution of the similarity score parameter for all the detections, at a fixed 

number of stations. We typically observe a slope break in the cumulative distribution, and 

below this corner, the reported similarity scores are very close to each other. When 

inspecting the waveforms for events featuring similarity scores below this value, the vast 

majority corresponds to false positives. On the other hand, above this corner, the values 

follow a different distribution, and they appear to be indicative of real events. Thus, the 

slope break criterion is adaptively applied for each sequence to refine the threshold for 

event selection. We applied this strategy only when the number of detections was large 

enough to allow statistical analysis in terms of the distribution of the total similarity scores 

(peaksum). To validate this criterion, we also performed a visual inspection of the 

declarations to discriminate real and false events according to the shape, the frequency 

content of the signal, and the propagation throughout the considered stations. Finally, 

events below the threshold were considered in a later stage if their fingerprints were found 

similar to those of events above the threshold (repechage phase). 

2.3    Application of advanced detection techniques 

In this section, we report the main results from the application of the aforementioned 

techniques in several contexts. We compared the detection performance of similarity-

based detection techniques for catalog enhancement in Southern Apennines (Section 

2.3.1). We integrated machine learning and template matching approaches for 

detection of the microseismic events recorded by a dense array deployment in 

Southern Apennines (Section 2.3.2) and using template matching we sought for 

repeated earthquakes in 10 years of continuous data from the same area (Section 

2.3.3). In Section 2.3.4 we used autocorrelation for monitoring the microseismicity 

in the gas storage area of Collalto (Northern Italy), while in Section 2.3.5 we built up 

an automatic detection system for daily monitoring of the seismicity in the Southern 

Apennines. 

2.3.1 Comparing and integrating advanced detection techniques for 
seismic sequences in Southern Italy 

The analysis of seismic sequences, characterized by a higher seismicity rate as compared 

to the background seismicity and featuring earthquakes occurring close in locations and 

occurrence time, have been proven to provide precious information about earthquake 

generation processes, with the analysis of enhanced catalogs helping in extracting 
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statistical and geometrical information (Vuan et al., 2018; Beroza et al., 2021; Tan et al., 

2021; Chiaraluce et al., 2022b). 

In this analysis (Scotto di Uccio et al., 2023), we applied the autocorrelation technique 

FAST, the machine learning detector EQT and the template matching approach 

EQCorrscan to 10 seismic sequences that occurred in Southern Apennines, between 2011 

and 2020. Southern Apennines host the complex Irpinia normal system, which was struck 

by the 1980, M 6.9 earthquake that occurred along NW–SE-striking faults and was 

characterized by three main episodes within a few tens of seconds. It caused about 3000 

fatalities and severe damage (Bernard & Zollo, 1989; event epicentre is reported as a red 

star in Figure 2.14). Moreover, this area is considered one of the regions with the highest 

seismic hazard in Italy (Stucchi et al., 2011). Since 2007, the area is continuously 

monitored by the Irpinia Near Fault Observatory (INFO). The key idea of Near Fault 

Observatories is to install dense networks of multiparametric sensors close to faults, 

aiming at understanding the underlying Earth instability processes over broad time 

intervals (Chiaraluce et al., 2022a). INFO includes the Irpinia Seismic Network (ISNet, 

http://isnet.unina.it) made up of 31 seismic stations, equipped with strong-motion 

accelerometers and weak-motion sensors to be sensitive to microseismic events. ISNet 

covers an area of 100𝑘𝑚 × 70𝑘𝑚, including the epicentre of the 1980 Irpinia earthquake 

(Iannaccone et al., 2010), with an interstation distance of 10–20 km. ISNet daily releases 

a seismic catalog (http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi), 

which consists of two layers: the first one is an automatic catalog generated by the 

Earthworm software (Johnson et al., 1995), which runs on continuous data-streams. A 

second revised catalog is released after waveform inspection by network operators with 

the twofold aim of improving the phase picking and including missed detections by the 

automatic procedure. At this stage, an event is included in the manual catalog if at least 4 

phases have been identified on the records, including one S phase, and the P and S pick 

residuals are smaller than 0.5 and 1.0 s, respectively. The manually revised catalog of 

seismic events for the past 15 yr includes ∼3000 earthquakes, which is reported in Figure 

2.14 with shaded black circles, along with the stations of the ISNet network. 

Seismicity in Irpinia typically features a low seismic rate, consisting of few events per 

day, and moderate depth values, mainly ranging between 8 and 15 km. Moreover, recent 

studies have shown a seasonal dependence of the seismic rate, caused by hydrological 

forcing due to the variation in the charge level of the karst aquifer (D’Agostino et al., 

2018; Tarantino et al., 2024).  The events cover a local magnitude range between 𝑀𝑙 −0.4 

and 𝑀𝑙 3.7, with a completeness magnitude of 𝑀𝑙 1.1 (Vassallo et al., 2012). The 

background seismicity that occurred during recent years appears to be distributed within 

a volume bounded by the main faults of the 1980 event and is sometimes clustered in 

sequences with events of maximum magnitude 𝑀𝑙 ∼3.0 (Stabile et al., 2012), lasting for 

a few days. 

http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi
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Figure 2.14) Manual ISNet catalog from January 2007 to June 2022. Background seismicity is represented 

with shaded black circles, while the ten considered seismic sequences are colored with different colors. The 
red star marks the epicenter of the 1980 M 6.9 earthquake. Red triangles indicate the seismic stations of the 
ISNet network. 

The monitoring strategies currently adopted at INFO led to manually revised catalogs 

containing between 8 and 74 events for the seismic sequences. In Table 2.1, we report the 
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information regarding the main event and the number of detections in the manual catalog 

for each of the ten considered sequences. 

Table 2.1) Number of detections in the manual catalogs and information regarding the main event for each 

of the analysed seismic sequences. 

ID PLACE DATE LAT LON DEP 𝑴𝒍 # EVENTS 

1 Rocca San Felice (AV) 2020/07/03 40.938 15.150 9.6 3.0 74 

2 Lioni (AV) 2011/08/02 40.850 15.181 11.4 2.7 48 

3 San Gregorio Magno (SA) 2012/02/17 40.709 15.367 5.6 2.8 9 

4 Lioni (AV) 2012/03/03 40.832 15.164 11.3 3.7 25 

5 Laceno (AV) 2013/07/22 40.772 15.130 13.3 1.8 30 

6 Ricigliano (SA) 2015/12/12 40.679 15.484 19.5 3.0 12 

7 Sant'Angelo le Fratte (PZ) 2016/05/15 40.535 15.171 16.0 2.7 19 

8 Lioni (AV) 2017/07/16 40.843 15.175 11.2 2.8 17 

9 Capo di Giano (PZ) 2019/04/16 40.756 15.491 7.2 2.9 8 

10 Bella (PZ) 2019/08/08 40.775 15.499 6.3 3.1 23 

 

Aiming at increasing the content of catalogs for seismic sequences including low- 

magnitude earthquakes, for the analysis of each sequence we selected the continuous 

velocity records (more sensitive to microseismic events) at the 5–7 closest stations to the 

sequence’s centroid, spanning a hypocentral distance range between 10 and 30 km. Our 

choice was guided by the need to have optimal azimuthal coverage with respect to the 

sequence. At one station (VDS3), we selected a ±0.25 g full-scale accelerometer because 

no high-gain seismometer was available. When cumulating the number of detections for 

the sequences, the manually revised INFO catalog contains 265 events, 82 of which were 

automatically declared by the STA/LTA-based detector operating on the network. 

To assess the overall performance of the adopted detection techniques, we analysed the 

results obtained from applying four strategies to the data of ten seismic sequences in the 

Irpinia region: (i) FAST, (ii) EQT, (iii) EQCorrscan using EQT's templates (hereinafter, 

EQT + TM) and (iv) EQCorrscan using as templates the manual detections from INFO 

(hereinafter, INFO + TM). In Figure 2.15 we show the number of events provided by 

each technique, after applying the quality selections described in Section 2.2, organized 

in a Venn diagram. To extract the most complete catalogs, we merged the lists provided 

by each technique according to the detection time. The merged catalog contains 1792 

events, increasing by a factor of ∼7 the revised manual catalog and by a factor of ∼21 the 

automatic one. Looking at the overall performance of the single techniques, we report 

that FAST declares 942 events (∼ 3.5× the manual catalog, ∼ 11× the automatic catalog), 

EQT detects 450 events, increasing by factors of 1.5 and 5.0 the revised and automatic 
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catalogs, respectively. EQT + TM declares 1715 events, with a catalog content similar to 

the merged one, while INFO + TM detects 1165 events (∼68 % of the EQT + TM 

catalog). Most of the events (95%) declared by FAST are also retrieved by EQT + TM, 

while the detections common to FAST and INFO + TM decrease to 734, representing 

78% of the FAST catalog. 

 

 

Figure 2.15) Venn diagram showing the performance of the different detectors: the autocorrelation (FAST, 

red), machine learning (EQT, yellow), template matching (EQT + TM, green; INFO + TM, cyan) techniques. 
The EQT detections are included in the EQT + TM ones because the EQT output is used to form templates.  

The contribution of the different techniques to the merged catalog in terms of number of 

detections changes among sequences. We observe that sequence ID 1 (Rocca San Felice) 

has a significantly larger number of earthquakes (∼300 events in one day), while for the 

other sequences the rate is lower, typically presenting between 50 and 200 events in 4 

days. In Figure 2.16, we report the number of detections provided by the techniques for 

each sequence, with the Rocca San Felice sequence (ID 1) reported separately in the left 

panel, to improve the visualization of the results for the other sequences (ID 2–10), due 

to the different seismic rate. Inspecting the results for each sequence, we note consistent 

performances among the detection strategies: for each sequence, the most complete 

catalog is obtained using EQT events as template set for the template matching detection 

using EQCorrscan (red bars in Figure 2.16). In fact, the number of events detected by 
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EQT (orange bars in Figure 2.16) is typically twice larger than the existing manual catalog 

(pink bars in Figure 2.16). The use of manual catalogs as template sets (INFO + TM, 

green bars in Figure 2.16) produces lower matched detections, due to the fewer available 

templates, but the resulting catalogs are generally still richer than the autocorrelation 

catalogs. On the other hand, FAST provides a number of detections twice larger than 

EQT, but since it does not provide information about the phase arrival times along with 

the detections, necessary for extracting the template events, it is not feasible to apply a 

template matching based on its catalogs. 

 

Figure 2.16) Number of detections for each sequence provided by FAST (blue), EQT (orange), EQT + TM 
(red), manual INFO catalog (pink) and INFO + TM (green). The results for sequence ID 1 (Rocca San Felice) 
is shown independently in the left panel, since it features the highest number of events. 

Inspecting the temporal distribution of the events, as a function of the occurrence time 

since the main event, we highlight the presence of foreshocks anticipating the 

mainshocks. In Figure 2.17, we report the cumulative fraction of events occurring 24 

hours before and after the main event, color-coded according to Figure 2.14 and Table 

2.1. Looking at the time evolution of sequences, we can identify two main behaviours. 

Most of the sequences generate the majority of earthquakes (around 70 percent of the 

catalog) within 6 hours after the mainshock and are characterized by a similar temporal 

evolution of the aftershocks. Three sequences feature swarm-like behaviour with several 

magnitudes of the aftershocks being comparable to that of the largest event. For the most 
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populated sequence (ID 1, yellow curve in Figure 2.17), we observe 21 low-magnitude 

foreshocks within 14 hours before the main event. Conversely to the other cases, during 

this sequence, characterized by a main event of 𝑀𝑙  3.0, the seismic rate further accelerated 

two days after the mainshock, following the occurrence of a 𝑀𝑙  2.8 event, driving the 

sequence for the next two days. 

 

Figure 2.17) Foreshock/aftershock analysis. This figure shows the cumulative percentage of the events in 
the catalog as a function of the time since the main event. 

FAST declares 73 events that are missed by the other techniques, which represents 5 % 

of the merged catalog. After checking these events, we observe that they typically feature 

a low, close to one, signal-to-noise ratio. For these events, we find that they exhibit a 

smaller cross-correlation value with the used templates, but they can still be retrieved by 

the EQT + TM technique by lowering the acceptance threshold, at the cost of a significant 

increase in the number of false events. As an example, for the San Gregorio Magno 

sequence (ID 3), EQT + TM technique is able to detect all the events in this class when 

decreasing the declaration threshold to 6 MAD. These events appear within a set of more 

than 3.5k detections (8 MAD catalog is composed of 82 declarations), mostly 

corresponding to false positives.  
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Most of the detections retrieved by EQT + TM and missed by FAST correspond to 

earthquakes occurring in the coda of the previous events. In Figure 2.18, we report a one-

minute-long waveform extracted during the Rocca San Felice seismic sequence, which 

contains multiple and overlapping low-magnitude earthquakes. While the template 

matching can effectively discriminate nearly overlapping events due to the short 

extension of the templates (1.5 s), leading to the declarations of 5 earthquakes in the 

considered window (none of these reported in the manual catalog), FAST groups the 

events together into a single and extended chain of similar fingerprints. In Figure 2.18, 

the green boxes refer to the individual detections provided by EQT + TM, while the 

extended red box marks the long fingerprint chain that was reported by FAST. 

 

Figure 2.18) Performance of EQCorrscan and FAST on a one-minute-long waveform featuring near-
overlapping events. Green boxes mark the disentagled detections from template matching catalog, while the 

wide red box marks the single long chain of similar fingerprints provided by FAST, which does not distinguish 
the overlapping events. 

When shortening the time window for fingerprint generation from 6 to 3 s, FAST is able 

to separate most grouped detections, at the cost of increasing the computational time and 

the number of false declarations. When applied to longer data streams, this 
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parametrization seems to quickly bring to prohibitive computational time that can hardly 

be imagined to be adopted in standard processing. 

Analysing the content of the catalogs provided by the machine learning technique EQT, 

we note that it provides the least enlarged detection list, but it is still twice larger than the 

existing manual catalogs. We ascribe the lower performances of the technique both to the 

stressing test bed of this application, consisting of sequences of microearthquakes, which 

might not be fully representative of the training dataset (Mousavi et al., 2019), occurring 

close in time, and to the choice of the selected version of the EQT model.  

 

Figure 2.19 – Left panel: Application of the conservative model of EQT to a one-minute-long waveforms 
containing multiple events. EQT can correctly discriminate the events, featuring magnitude 1.0, 0.4 and 0.3 
respectively. However, it misses an event reported in the template matching catalog, placed around sample 

800. 

In Figure 2.19 – left panel, we report the application of the conservative model of EQT 

for a one-minute-long waveform containing multiple earthquakes. In the left panel of 

Figure 2.19, we note that EQT can correctly identify and discriminate three events 

occurring in 20 seconds (from sample 3000 to sample 5000), which feature magnitudes 

1.0, 0.4 and 0.3 respectively. However, it does not recognize a low-magnitude event 

placed around sample 800, contained in the template matching catalog, where EQT does 

not provide any variation in the probability distributions. We also tested EQT on the same 

windows analyzed in Figure 2.18 that, despite being in the same amplitude scale as the 

left panel of Figure 2.19 due to the normalization, features multiple M < 0 earthquakes. 

We report the results in the right panel of Figure 2.19. The application of the conservative 

model of EQT does not provide indications of the presence of the events, apart from a 

very faint variation in the flat trend of the probability distribution for the event close to 

the right edge of the considered window. On the other hand, the application of the original 

model of EQT, reported in the bottom panel, can help in discriminating the earthquakes, 

with probability values for the P and S phase arrival times close to the threshold values 

from Mousavi et al., (2020) (0.3, reported as a black dashed line in the bottom panel). 
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The original model provides the P arrival time for the event close to sample 4000, while 

it reports probability below the threshold for the other events. Conversely, the S phases 

are provided for all the detected events. However, since the original model is too sensitive 

in providing detections without resulting in a massive dataset dominated by false 

detections, which might be difficult to be automatically ruled out, we preferred to obtain 

a smaller but more reliable starting catalog of machine learning detections to be used for 

detecting lower magnitude events through a similarity search. We thus propose the use of 

the original model of EQT as a machine learning picker rather than a detector for scanning 

continuous waveforms. This approach would provide a large number of arrival times on 

a validated set of detection catalogs. 

Recently, several studies have shown that the performance of machine learning-based 

detectors might be affected by the position of the event within the analyzed window, 

penalizing events close to the edge of the window, leading to biases in the completeness 

of the resulting manual catalogs (Park et al., 2023; Pita-Slim et al., 2023). They 

demonstrated that even a small perturbation in the data (e.g. varying the position of the 

events of a few samples within the analyzed windows) causes the neural network to output 

different answers, not only on the classification probability, which might be also lowered 

below the detection threshold, but also on the location of the peaks, and thus the 

corresponding phase arrival time (Park et al., 2023). In Figure 2.20 we tested the 

application of the conservative model of EQT on the same window as the left panel in 

Figure 2.19, also extracting the one-minute-long waveforms 12 seconds after the start of 

the former window, featuring the events in a more central position within the analyzed 

window. 

 

Figure 2.20) Comparison of the performance of EQT on events featuring different position of the waveforms 
within the one-minute-long considered windows. The window on the left panel starts at 2020-07-03 16:16:42 
and contains the events in the central part of the window, while the right panel has been extracted from 

2020-07-03 16:16:30 and contains the events closer to the right edge of the window. In the right panel, the 
peak probability scores obtained from the left panel are reported, with red and blue dashed lines marking 
the former P and S probability scores, respectively. 
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The comparison of the results for the two time-windows shows that, effectively, the 

probabilities provided by EQT for the events placed in a central position of the window 

(left panel of Figure 2.20) are higher than the those obtained for earthquakes close to the 

edge of the window (right panel of Figure 2.20, which represents the same waveforms 

discussed in Figure 2.19 – left panel). In the right panel of Figure 2.20, we also report the 

three peaks of the probability distribution predicted by EQT for the three events as for the 

left panel, marking with dashed red and blue lines the former scores for P and S waves, 

respectively. Although the P and S probabilities for the first, higher magnitude event do 

not differ significantly, due to the central position of the event in both windows, we 

observe a decrease of about 20 % in the peak probability scores for the following two 

lower magnitude events, close to the edge of the window in the right panel of Figure 2.20. 

The use of high overlap values among consecutive time windows to be fed to the neural 

networks has been proposed as a mitigation strategy for this issue, in order to ensure that 

events always feature an adequate position within the considered window (Park et al., 

2023). In this analysis, we used an overlapping of 30 % among consecutive windows 

(Mousavi et al., 2020), lower than the values proposed by Park et al. (2023), which 

suggested overlapping even higher than 90 %. We can thus attribute some of the missed 

detections within our EQT catalog to this issue. However, despite being still affordable 

for the analysis of short datasets, the use of higher overlapping values can easily lead to 

higher computational times required for the analysis of massive datasets. Although we 

are aware of this issue, we recovered the missed detections through the template matching 

detection stage, confirming that the proposed strategy of the integration of machine 

learning and template matching can provide the most robust and complete seismic 

catalogs. 

We highlight the importance of the enhanced catalogs to improve the characterization of 

the seismic sequences in terms of well-established statistical parameters. We used the 

seismic catalogs for estimating the magnitude of completeness, Mc and the b-value of the 

Gutenberg–Richter frequency magnitude distribution using the software ZMAP (Wiemer 

2001) and considering the local magnitude to characterize the event size. The estimation 

of the statistical parameters using the INFO catalog is typically not possible for most of 

the considered sequences due to the small number of detected events (i.e. in some cases 

consisting of 10 earthquakes only). For performing a statistical analysis of the enhanced 

catalogs, we assigned a local magnitude value to each of the earthquakes detected within 

individual sequences, using amplitude ratio. We first selected one event in each sequence, 

referred to as the reference event: the event is required to be located in the INFO catalog, 

with waveforms clearly emerging from the noise at all the stations and local magnitude 

between 1.0 and 2.0, for ensuring a similar frequency content as for the lower magnitude 

events. For this event we computed the local magnitude from half of the maximum peak-

to-peak Wood–Anderson displacement averaged on the horizontal components and on 
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the stations, using the local relationship of Bobbio et al. (2009) and the INFO catalog 

location. For all other events within the same sequence, we provided a magnitude 

estimation through the displacement amplitude ratio, assuming colocation:  

𝑀𝑙 = 𝑀𝑙𝑟𝑒𝑓
+ log10 (

𝐴

𝐴𝑟𝑒𝑓
) 

 

(2.4) 

where 𝑀𝑙𝑟𝑒𝑓
 is the magnitude of the reference event; 𝐴 and 𝐴𝑟𝑒𝑓  are half of the maximum 

peak-to-peak amplitudes for the considered and the reference events, respectively. The 

error in the magnitude estimation due to colocation is estimated to be 0.1 units of 

magnitude (Festa et al., 2021). 

Considering the combined catalog for each sequence (obtained by combining EQT + TM 

and FAST detections), we obtain a magnitude of completeness ranging between Mc −0.3 

and Mc 0.4 (in the local magnitude scale), with an average improvement with respect to 

the INFO manual catalog of 1.1 (Vassallo et al., 2012). Distinguishing the results from 

the different techniques, we find that the Mc for EQT + TM coincides with those obtained 

for the combined catalogs. Moreover, FAST and INFO + TM provide Mc estimates 

similar to those of the combined catalogs, with the exception of sequences ID 1 and ID 5, 

where it is larger. On the contrary, EQT features an Mc larger by 0.3 on average, with a 

large variability (from 0.1 to 0.7), but still smaller than the one from INFO. Focusing on 

the b-value, we find that EQT + TM, INFO + TM and FAST provide comparable values 

within uncertainties. Interestingly, we observe that, in general, EQT provides b-values 

systematically lower than the other two techniques, mainly driven by local 

incompleteness in the catalogs (Herrmann & Marzocchi, 2021). In other words, it seems 

that EQT progressively loses detections while approaching Mc, which leads to a biased 

population of magnitude bins and lower b-value estimates. This suggests the need to cover 

almost two to three orders of magnitude to estimate the relative rate of occurrence reliably 

for seismic events in sequences for the area. In Figure 2.21, we show the estimation of 

the statistical parameter of the Gutenberg-Richter law for the most populated seismic 

sequence (Rocca San Felice, ID 1), while in Table 2.2 we report the Mc and b-value for 

each sequence and enhanced catalog. For the considered seismic sequence in Figure 2.21, 

we observed a breakup from the linear trend at higher magnitudes. Moreover, this 

separation appears to be different according to the technique used for generating seismic 

catalogs. We remark that the magnitude of individual earthquakes in Figure 2.21 could 

vary among the techniques, since the stations used in the evaluation of the magnitude are 

those at which the event was detected. Moreover, the separation appears for less populated 

and less significant magnitude bins, whose extensions are comparable with the 

uncertainties on the magnitude estimates, and are not used to determine the parameters of 

the log-linear relationship. 
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Figure 2.21) Gutenberg–Richter distribution for FAST (Mc = 0.0 and b = 0.71 ± 0.05; upper-left-hand panel), 
EQT (Mc = 0.2 and b = 0.54 ± 0.04; upper-right-hand panel), EQT + TM (Mc = −0.3 and b = 0.71 ± 0.03; 
lower-left-hand panel) and INFO + TM (Mc = −0.1 and b = 0.72 ± 0.04; lower-right-hand panel) catalogs. 

Table 2.2) Mc and b-value estimation from the enhanced catalogs of each sequence 

ID 𝑀𝑙 main FAST EQT EQT + TM INFO + TM 

1 3.0 Mc = 0.0 

𝑏=0.71±0.05 

Mc = 0.2 

𝑏=0.54±0.04 

Mc = -0.3 

𝑏=0.71±0.03 

Mc = -0.1 

𝑏=0.72±0.04 

2 2.7 Mc = -0.3 

𝑏=0.60±0.05 

Mc = -0.2 

𝑏=0.51±0.07 

Mc = -0.3 

𝑏=0.68±0.06 

Mc = -0.3 

𝑏=0.62±0.06 

3 2.8 Mc = 0.3 

𝑏=0.62±0.11 

N.A Mc = 0.4 

𝑏=0.76±0.13 

Mc = 0.6 

𝑏=0.65±0.16 

4 3.7 Mc = -0.1 

𝑏=0.76±0.08 

Mc = 0.1 

𝑏=0.54±0.08 

Mc = -0.2 

𝑏=0.65±0.07 

Mc = -0.1 

𝑏=0.70±0.09 

5 1.8 Mc = 0.3 

𝑏=0.83±0.10 

Mc = 0.3 

𝑏=0.75±0.10 

Mc = -0.3 

𝑏=0.73±0.05 

Mc = 0.1 

𝑏=0.83±0.08 
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6 3.0 Mc = 0.3 

𝑏=0.75±0.18 

Mc = 0.4 

𝑏=0.53±0.13 

Mc = 0.2 

𝑏=0.69±0.11 

Mc = 0.3 

𝑏=0.8±0.2 

7 2.7 Mc = 0.4 

𝑏=0.66±0.13 

N.A Mc = 0.3 

𝑏=0.78±0.14 

Mc = 0.5 

𝑏=0.67±0.15 

8 2.8 Mc = 0.1 

𝑏=1.16±0.11 

Mc = 0.9 

𝑏=1.00±0.14 

Mc = 0.2 

𝑏=1.26±0.13 

Mc = 0.2 

𝑏=1.08±0.09 

9 2.9 N.A N.A Mc = -0.3 

𝑏=0.60±0.09 

N.A 

10 3.1 Mc = 0.2 

𝑏=0.73±0.16 

Mc = 0.2 

𝑏=0.53±0.09 

Mc = 0.1 

𝑏=0.76±0.13 

Mc = 0.2 

𝑏=0.71±0.16 

 

The considered seismic sequences occurred in different sectors of the Irpinia area. Picozzi 

et al. (2022a) showed that the b-value distribution in this area is not uniform and 

hypothesized that b-value differences are related to different stress levels (i.e. the lower 

the b-value, the higher the stress, Scholz 2015) associated with the different seismogenic 

zones in this region. We therefore compare the b-values obtained for the seismic 

sequences with those of Picozzi et al. (2022a). To this aim, we need to consider the 

moment magnitude of the detected events. We thus converted the local magnitude 

estimates into seismic moment ones using the empirical relationship log10𝑀0 =
1.5 𝑀𝑙 + 10.55 which has been derived considering the earthquakes in the INFO catalog 

(i.e. 𝑀𝑙 and Mw values from Picozzi et al., 2022a). The 𝑀0 can in turn be used to retrieve 

the moment magnitude Mw (Hanks & Kanamori, 1979). This magnitude scaling relation 

allows b-value estimates in terms of moment magnitude (𝑏𝑀𝑤) from the b-value based on 

the local magnitude (𝑏𝑀𝑙), yielding to 𝑏𝑀𝑤 =
1.5

1.31
 𝑏𝑀𝑙 .  As reported in Figure 2.22, which 

represents the b-value spatial distribution in Irpinia Picozzi et al. (2022a), the smallest b-

values from Picozzi et al. (2022a) are observed for the Southern sector of the Irpinia 

region (∼0.7). The central and northern sectors are associated with slightly larger b-values 

(i.e. between 0.8 and 0.9). We computed the difference between the b-values from Picozzi 

et al. (2022b) and those obtained for the sequences using the combined catalog (Δb-

value). It is worth clarifying that the former values are obtained by considering a 3-D grid 

of the area and associating to each node the closest events that occurred between 2007 

and 2020. Therefore, the b-values from Picozzi et al. (2022b) provide a spatial average of 

the stress level in a rather large crustal volume and over a long time period with respect 

to the b-values obtained for the sequences, which have limited spatial and temporal extent. 

Despite this methodological issue, we observe that the Δb-values are small, within a ±0.25 

range, and larger than zero for most cases, indicating an overall decrease of the b-value 

during the sequences. 



41 CHAPTER 2.    Advanced techniques for earthquake detection 

 

 

Figure 2.22) Map showing the spatial distribution of average b-values from bootstrap analysis (redrawn from 

Picozzi et al. 2022b). In the figure, we show the nucleation point for the 1980 Irpinia earthquake (white star) 
and Δb-value (see text for the definition, coloured circles) for the sequences analysed here. 

Worldwide observations indicate that the b-value is directly connected to differential 

stress (Schorlemmer et al., 2005; Scholz 2015) and it increases as the differential stress 

decreases. The systematic lower b-values for the sequences might indicate that they 

occurred in regions where the stress is higher than in the surrounding areas, and they 

likely rupture compact, sub-kilometric size asperities (Festa et al., 2021). When analysing 

in detail two sequences in the area, Stabile et al. (2012) and Festa et al. (2021) retrieved 

large stress drops and focal mechanisms compatible with the main orientation of the large 

faults that generated the 1980 Irpinia earthquake. These sequences either occurred on 

subparallel, smaller scale faults, or they ruptured some patches on the main faults that 

were unruptured during previous events, or they map small-scale, geometrical 

discontinuities, which impede rupture growth into a large earthquake. In all cases, the 

sequences did not evolve into a large event, indicating that both static and dynamic 

stresses were not able to sustain a rupture over larger spatial scales.  

In the next sections, we will locate the earthquakes in the enhanced catalogs, using a 

relative location technique, for illuminating the fault segments where seismic sequences 

occurred (Section 3.2.1). Furthermore, we will investigate the source parameters for the 

seismic sequences assessing the seismic moment and the source size for the considered 

earthquakes (Section 4.2.1). Finally, we will define the stress release model of the 

sequences for understanding the triggering and the evolution of seismic events (Section 

4.2.2). 

 

2.3.2 Seismic monitoring using temporary dense array deployments 

Near-fault observations can provide insights into the physical process interaction between 

fault slip activation, fluid presence/migration and seismicity production and processes 
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acting at different timescales that generate large earthquakes. As shown in Section 2.3.1, 

the integration of dense monitoring networks and advanced detection techniques can 

provide enhanced seismic catalogs of almost one order of magnitude larger than the 

revised manual catalogs, which can feature completeness magnitude closer or even lower 

than 𝑀𝑙  0 (Tan et al., 2021; Scotto di Uccio et al., 2023). With the aim of exploring the 

ultra-microseismicity in Southern Apennines, within the framework of an innovative 

experiment (DETECT, Bindi et al., 2021; Picozzi et al., 2022b), 200 seismic stations have 

been deployed in Irpinia for almost one year (September 2021 – August 2022), finely 

filling the gap of the less dense network of the Irpinia Near Fault Observatory. The 200 

seismic stations have been organized in 20 arrays of 10 stations each, with an aperture of 

a few hundred meters on average, and featuring different geometrical configurations. 

Each array was equipped with one broadband sensor (station code 01), one 1-Hz sensor 

(station code 02) and eight 4.5 Hz short-period geophones (station codes 03 to 10). In 

Figure 2.23 we report the DETECT station distribution (red triangles), along with the 

stations of the Irpinia Near Fault Observatory (black triangles). 

 

Figure 2.23) Distribution of the DETECT stations (red triangles), organized in the 20 arrays indicated with 
the corresponding code. Black triangles mark the location of the the Irpinia Near Fault Observatory stations.  
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The DETECT stations continuously recorded ground motion velocity with a sampling 

rate of 200 Hz. In Figure 2.24, we report the data availability during the whole DETECT 

experiment, reporting the fraction of recording stations as a function of time. 

 

Figure 2.24) Data availability during DETECT experiment. Drops of the data availability close to the edges 
are due to the progressive installation and uninstallation of the stations respectively. 

Despite the low data availability near the starting and the ending period of the experiment 

due to the progressive installation and uninstallation of the seismic stations, respectively, 

we achieved an average data availability higher than 80 % during the whole monitoring 

period. However, since the stations did not transmit waveforms in real-time, the records 

were stored locally in a system coupled with the stations and gradually downloaded 

directly on-field. This issue sometimes led to a lack of data due to the memory filling of 

the storage systems, which typically occurred with characteristic times of 3 months. This 

feature can be also noticed by local minima in the data availability distribution. 

Earthquake detection followed the scheme proposed by Scotto di Uccio et al. (2023) for 

seismic sequences in the same region. The workflow was based on the use of the machine 

learning detector EQTransformer (Mousavi et al., 2020), which provides a wide set of 

templates for further similarity-based detection using the template matching technique 

EQCorrscan (Chamberlain et al., 2018). During the detection stage, the dense network 

was split into 6 subnetworks of 6 arrays each, with an overlapping of 3 arrays between 

consecutive subnetworks (Figure 2.25). Earthquake detection was performed 

independently for each subnetwork, integrating the declarations among the subnetworks 

according to the detection times. 
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Figure 2.25) The six subnetworks extracted from the DETECT network. Each subnetwork consists of six 

arrays, with an overlapping of three arrays with the adjacent subnetwork.  

This strategy allowed us to focus on the volume beneath the considered receivers, 

increasing the capability to detect local and very low magnitude events, and limiting the 

false declarations provided by coherent noise at distant stations. We used the same 

parameterizations for EQT and EQCorrscan as for Section 2.3.1 (Scotto di Uccio et al., 

2023). We just modified the overlapping condition among adjacent time windows in 

EQT, increasing this value from 30% to 50%, following the results and the discussion of 

Section 2.3.1. For EQT, detections were declared when at least 5 picks were associated, 

within a single subnetwork, in time windows of 10 s, and then visually inspected. 

The proposed detection strategy led to the declaration of 3563 real earthquakes. We 

remark that this value is comparable with the number of earthquakes in the manual catalog 

of INFO for more than 12 years of continuous monitoring (Figure 2.14). While the manual 

INFO catalog contains 443 earthquakes during the monitoring period of the DETECT 

experiment, the integration of ultra-dense monitoring and advanced detection techniques 

increased the existing catalog by a factor of ~8.2, higher than the enhancing factors 

obtained with the same detection strategy on the ordinary seismic network (Scotto di 

Uccio et al., 2023). No events with a magnitude higher than 𝑀𝑙 3 occurred within the 

experiment, with just a 𝑀𝑙 2.8 occurring close, but outside the DETECT network. The 

high number of events in the DETECT catalog indicates that monitoring active 
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seismogenic sources with ultra-dense seismic arrays can strongly enhance the seismic 

catalog, even when the seismic activity is not intense. Considering the performance of 

EQT, the number of confirmed earthquakes was enhanced by a factor of ∼4 compared to 

the manual catalog of the ordinary INFO network. Thus, the contribution of 

EQTransformer to the enhancement is almost twice as large as than what was observed 

by Scotto di Uccio et al. (2023) for seismic sequences. We owe this result both to the 

ability of the machine learning picker to identify very-low magnitude events at the array 

close to the earthquakes and to the use of higher overlapping values. However, we noted 

a slightly larger rate of false detections (∼ 25 %), mainly dominated by local transients 

observed at a single array, declared by the simple association algorithm of 

EQTransformer. On the other hand, the similarity-based detector provided more false 

positives compared to the former application, mainly driven by the high similarity of the 

noise at the nearby stations within the same array. 

The obtained enhanced seismic catalog allows to track the time distribution of the 

seismicity during the monitoring period. In Table 2.3, we report the monthly number of 

earthquakes for the manual INFO catalog, based on the ordinary network, and the 

DETECT catalogs obtained applying EQT, and EQT + TM, respectively. 

Table 2.3) Monthly detections for the manual INFO catalog, the EQT and EQT + TM catalogs for DETECT. 

MONTH INFO EQT EQT + TM 

September 2021 43 221 349 

October 2021 31 169 341 

November 2021 24 123 223 

December 2021 18 104 215 

January 2022 28 123 215 

February 2022 92 201 522 

March 2022 43 131 216 

April 2022 26 122 394 

May 2022 39 192 374 

June 2022 54 181 548 

July 2022 45 99 256 

TOTAL 443 1666 3653 

 

Considering the monthly distribution, we note that the number of seismic events generally 

decreases from September 2021 to March 2022, while it increases from this latter month 

up to the end of the experiment. Due to the progressive uninstalling of the arrays during 

July 2022, this month is not fully representative of the observed trend. February 2022 

appears to detach from the discussed behaviour. However, during this month, three 
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swarm-like seismic sequences (maximum 𝑀𝑙 1.9) occurred in Irpinia, with enhanced 

catalogs obtained from the integration of the detection techniques of hundreds of events 

each. The observed results appear to be consistent with the seasonal seismic trend 

observed in Irpinia, as extracted from the existing manual catalog. In Figure 2.26, we 

report the median and mean (in brackets) monthly number of earthquakes in the INFO 

manual catalog from January 2009 to September 2021, the starting time of the DETECT 

experiment. 

 

Figure 2.26) Median monthly number of earthquakes for each year from January 2009 to September 2021 
(colored bars). The mean number of earthquakes for each month, which is marked with a dashed black line, 

is reported within the brackets, next to the median value. 

Coherently with the trend observed for the DETECT experiment, we also identify a clear 

seasonal behaviour from the analysis of the manual catalog, with a decreasing and 

increasing seismic rate approaching and starting from the month of March, respectively. 

This feature agrees with the hypothesis of a seismic response to the hydrological stress 

perturbation in Irpinia, induced by the variations in the level of the karst aquifer 

(D’Agostino et al., 2018). 

For assessing the statistical parameters of the enhanced catalog, we assigned a magnitude 

value to the detections. Conversely to the analysis of seismic sequences, in which we 

assumed colocation for events between each sequence due to the limited area where the 
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sequence evolved, in this framework the hypothesis of colocation cannot be held 

anymore. We therefore performed earthquake location (see Section 3.3.2), selecting the 

automatic phase arrival times from the detection stage, using NLLoc (Lomax et al., 2009) 

and the 1D-layer velocity model for the area proposed by Matrullo et al. (2013). We used 

the relation of Bobbio et al. (2009) for estimating the local magnitude of the earthquakes, 

considering the average peak-to-peak displacement amplitude on synthetic Wood-

Anderson records. In Figure 2.27, we report the Gutenberg-Richter law for the INFO 

catalog from 2008 and the DETECT catalog from September 2021 to July 2022. 

 

 

Figure 2.27) Gutenberg- Richter law for the manual INFO catalog from 2089 (green) and for the DETECT 
catalog (blue). The dashed blue and green vertical lines mark the completeness magnitude of the DETECT 

and INFO catalogs, respectively. 

The analysis of the magnitude of completeness for the two catalogs shows that monitoring 

the seismogenic sources in Irpinia with temporary dense array deployment allows to 

decrease the completeness of the catalog by almost 1.5 orders of magnitude, moving from 

Mc 1.1 (Vassallo et al., 2011) to Mc = -0.3. Moreover, the comparison of the b-values for 

both catalogs indicates similar slope of the Gutenberg – Richter law, being 𝑏𝐼𝑁𝐹𝑂 =
 −1.04 ± 0.08 and 𝑏𝐷𝐸𝑇𝐸𝐶𝑇 =  −1.03 ± 0.10 for the INFO and DETECT catalogs 

respectively. On the other hand, the analysis of the slope of the Gutenberg-Richter 
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relationship for seismic sequences in the DETECT catalogs still reveals lower b-value for 

the seismic sequences as compared to the background seismicity, in agreement with the 

former results of Scotto di Uccio et al. (2023). In the next sections, we will perform 

accurate earthquake location for the DETECT catalog, interpreting the seismicity 

structures highlighted by the microseismicity (Section 3.3.2). 

2.3.3 An enhanced catalog of repeating earthquakes in Southern Italy 

Conversely to the seismic sequence, in which earthquakes occur with high seismic rate 

typically over co-located sources, repeaters are defined as earthquakes displaying very 

similar waveforms when recorded at the same sensor but repeating over a timescale longer 

than for seismic sequences (Uchida & Bürgmann, 2019). 

Repeaters nucleate stably on a patch of the fault, so that path and site effects between 

source and station are common (Vidale et al., 1994; Nadeau et al., 1995). Due to their 

stability over time, the source of the repeaters is usually modeled as the repeated 

activation of an asperity surrounded by domains with different frictional properties. The 

size of the asperities producing the repeaters can be as small as a few hundred meters or 

even less, making the analysis of the repeaters a powerful and unique tool to map the local 

interface stress state at depth (Uchida et al., 2012). Repeaters usually show a temporal 

pattern with typical recurrence intervals of a few years or less and are often modeled as 

nucleating over locked patches distributed on an otherwise creeping fault zone.  

The main goal of this work is the identification and characterization of repeating 

earthquakes in the volume of the 1980 Irpinia earthquake, eventually aiming at the 

identification of small-scale segments of the fault system generating repeater events (Palo 

et al., 2023b). In this framework, we selected the densest cluster of near-repeaters defined 

in Palo et al. (2023a), which grouped similar events contained in the manual INFO catalog 

from February 2008 to March 2020, for generating an enhanced catalog of repeating 

earthquakes using the events of this cluster as templates, scanning the continuous seismic 

signal with a similarity search approach (Chamberlain et al., 2018; Scotto di Uccio et al., 

2023). 

In this analysis, we thus selected the cluster ID 14 in Palo et al. (2023a), composed of 20 

earthquakes (16 out of the 20 earthquakes were located in Palo et al. 2023a, represented 

with blue dots in Figure 2.28), and we focused on the INFO station where all events of 

the cluster were detected (labelled as SNR3 and marked with a red triangle in Figure 

2.28). Black dashed rectangles mark the position of the main seismogenic source (DISS, 

2021), responsible for the multiple ruptures of the 1980 M 6.9 earthquake. The daily 

velocimetric recordings at the reference station were scanned from 1 January 2012 to 22 

April 2022, which is the time interval of the available continuous signals at this station. 
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Figure 2.28) Location of the cluster used in this analysis (Palo et al.,2023a), reported as blue dots. The red 

station marks the position of the SNR3 station, while the dashed black lines mark the fault segment s 
activated during the 1980 M 6.9 earthquake. 

To homogenize the preprocessing operation to the initial parameterization of the 

clustering analysis in Palo et al. (2023a), we extracted the templates bracketing the 

vertical component of velocity records from 0.4 s before to 1 s after the manual 

identification of P arrival times, downsampling the traces to 50 Hz. As in Palo et al. 

(2023a), templates were filtered in the frequency band of 1–20 Hz using a 4th-order 

Butterworth bandpass filter. Continuous data were preprocessed matching the 

parameterization adopted for generating the templates. In both cases, preprocessing also 

included a linear detrend and a demeaning of the signals. An event was declared when 

the cross-correlation (CC) between the portion of the continuous window and a template 

overcame 0.8, which was the threshold fixed in Palo et al. (2023a). After refining the 

detection list, we obtained a catalog of 12 potential repeaters, increasing by more than 

50% the content in the initial cluster of similar earthquakes. In Figure 2.29, we report the 

vertical component of the velocity records for the 12 detected repeaters, marking with red 

the waveform of the master event and reporting the CC coefficient for each slave event. 

For evaluating the area activated by the occurrence of the repeaters, we compared the S-

P travel times for the new events with the corresponding values of the master events. In 

particular, we can relate the differences in the propagation time to differences in the 
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earthquake location, since Δ𝑡𝑖,𝑀 =
𝛾−1

𝑉𝑃
 Δ𝑟𝑖,𝑀, where Δ𝑡𝑖,𝑀 = Δ𝑡𝑃,𝑖 − Δ𝑡𝑆,𝑖 =  (𝑡𝑃,𝑖 −

𝑡𝑃,𝑀) − (tS,i− 𝑡𝑆,𝑀) and Δ𝑟𝑖,𝑀 represent the spatial distance, projected along the raypath 

to station SNR3, between the i-th event and the master event. Given the location results 
for the cluster in Palo et al. (2023a), which placed the events within [11-12] km of depth, 

we assumed 𝑉𝑃 = 6 km/s and  𝑉𝑃/𝑉𝑆 = 𝛾 = 1.95 (Matrullo et al., 2013; Amoroso et al., 

2014). Δ𝑡𝑃𝑖 was estimated as the time shift that maximizes the CC function between the 

master event and the i-th potential repeater, both windowed starting 0.1 s before the P 

onset, as explained above. Similarly, Δ𝑡𝑆𝑖 was estimated in the same way, but windowing, 

in this case, 0.2 s before S onset. All the solutions but one feature Δ𝑡 𝑖,𝑀 in the range of 

(−0.05 s, 0.05 s), which corresponded to a Δ𝑟𝑖,𝑀 within 300 m from the hypocenter of the 

master event. 

 

Figure 2.29) Set of potential repeaters extracted from continuous data for cluster 14 of Palo et al. (2023a) 
at the SNR3 station. The red waveform marks the master event used for refining the detection list. CC 
coefficient with the master event is reported in parenthesis for each detection. 

Following the approach of Scotto di Uccio et al. (2023), we evaluated the local magnitude 

for the set of potential repeaters assuming colocation with a located event within the 

cluster, resulting in magnitude values ranging from 𝑀𝑙 0.4 and 1.7. Using the relation 

between moment magnitude and local magnitude proposed in Malagnini & Munafó 

(2018), 𝑀𝑤 =
2

3
 𝑀𝑙 + 1.14, we inferred the moment magnitude 𝑀𝑤  (and then the seismic 
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moment 𝑀0) for the set of repeaters. To associate a size to the source fault of each event 

from the moment magnitudes, we assumed an instantaneous and homogeneous stress 

release on a circular fault of size 𝑎, which is connected to the seismic moment and the 

stress drop Δ𝜎 through 𝑀0 =
16

7

Δ𝜎

𝑎3
 . The knowledge of the source radius allows, finally, 

the estimation of the coseismic slip 𝑠, through: 

Δ𝜎 =
7𝜋

16
𝜇
𝑠

𝑎
 

(2.5) 

where 𝜇 represent the rigidity coefficient of the medium. In this evaluation, we used the 

average stress drop inferred for the events in the cluster in Palo et al. (2023a), which 

corresponds to Δ𝜎 = 4.0 ± 3.3 MPa. The cumulative slip from this the average stress 

drop value was about 35 mm, and the time distribution of the events show groups of 

repeaters occurred every 1.2–1.8 years. 

This analysis opened the way to explore the possibility of constraining small-scale slip 

histories on the Irpinia fault by low-magnitude repeating earthquakes. In this direction, 

this approach can be extended to other clusters of near-repeaters to potentially identify 

other small-scale fault domains whose existence is suggested by the different fault sizes 

between the source volumes of the original set of near-repeaters used as a template and 

the inferred catalog of repeaters. 

2.3.4 Monitoring microseismic activity in the gas storage area of Collalto 
(Northern Italy) 

Seismic monitoring in areas where induced earthquakes could occur is a challenging topic 

for seismologists due to the generally very low signal-to-noise ratio. Seismic monitoring 

aims to characterize the spatio-temporal evolution of the seismicity in a sub-surface 

volume where industrial exploitation activities take place with the aim of discriminating 

the natural seismicity from the anthropogenic one (i.e., induced) and eventually 

intercepting variations in the background seismicity rate that, if needed, will guide the re-

modulation, interruption, and restart of industrial activities. Indeed, tracking the 

microseismicity in time after fluid injection and accurately locating it can allow one to 

detect pore pressure changes and intercept migration fluid patterns (Goertz-Allmann et 

al., 2011). High-sensitivity monitoring networks have been proposed for detecting 

microseismic events, such as the one deployed around the Collalto underground gas 

storage in north-eastern Italy (Priolo et al., 2015). The Collalto seismic network (Rete 

Sismica di Collalto, RSC) aims to monitor the natural and induced seismicity potentially 

related to the industrial activity of the Collalto gas storage facility. It is composed of ten 

seismological stations equipped with borehole seismometers with periods varying 

between 10 s and 120 s operating at a sampling rate of 200 Hz, and accelerometric sensors 

at the surface of five sites, resulting in a completeness magnitude Mc for the whole area 
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of 0.6 in local magnitude (Romano et al., 2019). The Collalto gas field is a natural, 

depleted reservoir with a working gas storage capacity of approximately 600 million 

standard m3, covering an area of almost 89 km2 (https://www.edison.it/it/centrale-

stoccaggio-di-collalto). The field is equipped with 17 active wells through which the gas 

is seasonally injected into the reservoir during the April–October period and extracted 

during the November–March period. 

In this analysis, we aim to test how and to what extent a small aperture, low-cost seismic 

array combined with the advanced microseismicity detection technique FAST can locally 

improve, e.g., in terms of the magnitude of completeness, the performance of a 

permanent, high-quality, less-dense seismic network, in enhancing the local earthquake 

catalog (Scala et al., 2022). For this purpose, we installed a seismic array, with a 2 km 

maximum aperture, composed of eight seismic stations located in the area near the gas 

storage site in Collalto, with two stations co-located with two seismometers of the RSC 

network. The temporary network, which is reported in Figure 2.30 along with the RSC 

network, was installed in wintertime and was operative for about one month (from 8th 

January 2021 to 31st January 2021), collecting continuous velocity records with a 

sampling rate of 250 Hz.  

 

Figure 2.30) Location of the experimental seismic array (blue markers), along with the RSC seismic network 

(red markers). The black stars mark the 𝑴𝒍 0.1 and 0.0 Conegliano earthquakes, while the red star refers to 
the 𝑴𝒍 𝟎.𝟒 Vittorio Veneto earthquake. All these events were included in the RSC catalog. 
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In the preprocessing operation for the autocorrelation detection, we replaced gaps and 

zeroes in the data stream with Gaussian uncorrelated noise. Moreover, the waveforms 

were bandpass-filtered between 1 and 20 Hz using a 2-poles acausal Butterworth filter 

and decimated to 50 Hz to dump the high frequency noise and improve computational 

efficiency. We adopted the same parameterization for feature extraction in FAST as for 

Scotto di Uccio et al. (2023), selecting the detections only if similarity was found in least 

at 4 stations. The transient list was further investigated in terms of first arrival times and 

duration, for ruling out eventual false declarations. For the Collalto array, several 

detections were removed because of low apparent velocity across the array, long duration, 

and almost monochromatic character, mainly related to anthropogenic activity and/or 

weather effects. After this last step, the catalog was further enhanced, by including all the 

transients associated with fewer than 4 stations but being similar, at least at 2 stations, to 

accepted earthquakes. 

This strategy led to the detection of 38 transients. Among them, 20 transients were 

discarded during the post-processing association phase due to unrealistic apparent 

velocity within the array. Indeed, they are characterized by signals having short durations 

and a large difference between the arrival times at the different array nodes, even higher 

than 10 s. A visual inspection of the detections confirmed that these waveforms were not 

seismic signals but were rather characterized by either monochromatic wave trains or the 

superposition of two monochromatic components at close frequencies. At the end of the 

procedure, we obtained a list of 18 detections.  

During the experiment, a seismic sequence occurred in the district of Ravenna, at an 

epicentral distance of about 230 km from the array centre, with the largest event having 

magnitude Mw 4.3. Inspecting the detected events, FAST declared five different 

transients that can be associated with three events of this sequence. The number of 

transients (5) is larger than the number of associated events (3) since two events were 

detected twice (FAST separately declared body-waves and later surface waves), as the 

difference in phase travel times was higher than the time window defined for the 

generation of fingerprints. 

The final catalog is composed of 16 seismic events, consisting of 7 local earthquakes that 

occurred around Collalto, while the remaining ones are regional or teleseismic events. 

Focusing on the local events, we found two detections located close to Conegliano (black 

stars in Figure 2.30), included in the RCS catalog (the closest earthquakes to the array), 

featuring magnitudes 𝑀𝑙 0.1 and 0.0, respectively. Two more events were detected by 

FAST that were not contained in the RCS catalog. These events were declared because 

of their reciprocal similarity and their similarity with the 𝑀𝑙 0.1 Conegliano event. They 

both feature a very low signal-to-noise ratio on raw waveforms (SNR~1.5) and cannot be 

located using the array records. However, considering the waveform similarity with the 
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Conegliano events, we assumed these events are colocated and provided an estimate of 

the magnitude (𝑀𝑙  −0.4 and −0.2 respectively). In Figure 2.31, we report the vertical 

component of velocity records, filtered in [1 – 20] Hz, for the Conegliano 𝑀𝑙 0.1 (left 

panel), and the FAST detections 𝑀𝑙  −0.4 and −0.2, in the central and right panels, 

respectively. 

 

Figure 2.31) Vertical component of the velocity records, filtered in [1 -20] Hz, for the Conegliano 𝑴𝒍 0.1 (left 
panel), and the FAST detections 𝑴𝒍  −0.4 and −0.2, in the central and right panels, respectively. 

In addition, FAST also correctly identified the 𝑀𝑙 0.4 event located at Vittorio Veneto 

(red star in Figure 2.30), which was also included in the RCS catalog, and two further 

events similar to it, whose magnitudes were estimated to be -0.4 for both earthquakes. It 

is worth noting that the negative magnitude events of Conegliano and Vittorio Veneto 

occurred before the corresponding larger-magnitude events. In particular, the Conegliano 

events occurred ~15.5 and ~14 h before the 𝑀𝑙  0.1 event, while the Vittorio Veneto 

doublet occurred ~6.5 h and ~13 min before the origin time of event 𝑀𝑙  0.4. Thus, despite 

the small number of these new events, we can interpret them as foreshocks of the two 

larger-magnitude reference events. 

The limited duration of the experiment did not allow us to fully estimate the capability of 

the permanent and temporary deployment in monitoring the microseismicity with respect 
to the storage area target. However, starting from our results, in the following, we propose 

a strategy to infer the smallest magnitude that could have been detected in the study area. 

We investigated the noise distribution in the waveforms processed through the similarity 

search of FAST. For this analysis, the data stream at all stations of the array was 
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subdivided into one-minute-long windows, filtered in the band 1–20 Hz, and the noise 

level was estimated as the RMS amplitude of the whole signal. For local events detected 

by FAST, we computed the signal-to-noise ratio (SNR) on the horizontal components of 

the stations associated by FAST. Considering 7 s-long windows before and after the 

origin time as the noise 𝑁(𝑡) and the signal 𝑆(𝑡) contributions, we computed the Fourier 

transforms of both time series 𝑁(f) and S(f). The 𝑆𝑁𝑅 is defined as S/N, where: 

𝑆 =  ∫ 𝑆(𝑓) 𝑑𝑓
𝑓2=20 𝐻𝑧

𝑓1=1 𝐻𝑧

 

 

(2.6) 

and an analogous representation stands for the noise. For the three largest events of the 

two clusters (𝑀𝑙  0.4, 0.1 and 0.0), the SNR ranges between 4 and 6 on both horizontal 

components within the array, while for the smallest ones (𝑀𝑙 − 0.4,−0.4 and -0.3) the 

SNR ranges between 1.01 and 1.67 with a mean value 〈𝑆𝑁𝑅〉=1.34, which is assumed to 

be limit for the detection capability of the array system processed by FAST. Around this 

level, we have detected events of minimum magnitude M = −0.4 at a maximum 

hypocentral distance R = 13 km. Fixing this SNR level and reducing the distance in the 

range between 2 km and 3 km, to account for events potentially occurring near the gas-

storage area, we can estimate the minimum detectable magnitude using the local 

magnitude scaling law proposed by Bragato & Tento (2005), valid for north-eastern Italy 

and considering the overall level of noise and the estimated quantity 〈𝑆𝑁𝑅〉. Considering 

that the Collalto gas-storage has an average depth of 1.5–1.6 km, and taking into account 

a range of reference distances between 2 km and 3 km from the array stations, we have 

retrieved an average limit magnitude 𝑀𝑙𝑚𝑖𝑛
 between −0.8 and −0.6, when we select a 

noise level equal to the 90th percentile of the noise distribution. Thus, we can state, with 

a 90% level of confidence, that no events with local magnitude larger than −0.6 have 

occurred within the study area during the experiment. 

2.3.5 An automatic detection strategy for continuous seismic monitoring 

Earthquake identification in continuous data for monitoring the seismic activity is 

typically a routine task performed by expert human operators. Despite the expertise of the 

operators, earthquake detection, but especially the identification of phase arrival times, is 

strongly affected by the subjective ability of the operator to discriminate the event within 

waveforms dominated by noise records, eventually leading to inhomogeneous catalogs. 

Moreover, in case of seismic sequences and higher seismic rate epochs, the monitoring 

effort requested for the operators might easily become overwhelming. Since catalogs 

generated using advanced detection techniques have been shown to be robust and even 

richer than the manual catalogs, also in case of seismic sequences, we hereby present a 
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novel detection strategy for the daily monitoring of the seismic activity in Southern Italy, 

complementing, but soon aiming to substitute, the work of human analysts. 

In Southern Italy, the Irpinia Near Fault Observatory (INFO) manages the Irpinia Seismic 

Network (ISNet, http://isnet.unina.it) made up of 31 seismic stations (red triangles in 

Figure 2.14), equipped with strong-motion accelerometers and weak-motion sensors to 

be sensitive to microseismic events. While an automatic energy-based detector analyses 

ground motion records in real-time, typically detecting the higher magnitude events, each 

day a network operator visually scans the continuous data searching for missed 

earthquakes in the previous day. An event is included in the manual catalog if at least 4 

phases have been picked on the records, including one S phase, and at least one station 

presents both P and S picks. After location, phase residuals are required to be smaller than 

0.5 and 1.0 s, respectively. However, several factors, such as the extension of the time 

window for visually inspecting the continuous data (often 7 to 9 minutes), highly noisy 

data on windy days or even just the level of attention of the operators during the scanning 

stage might bias the detection capability. In Figure 2.32 we report a 7-minute-long 

window as it appears during the visual inspection of the continuous waveforms. This 

figure shows the vertical component of the velocity records (or acceleration records for 

stations equipped by strong-motion sensors only), spatially ordering the stations from 

North to South direction. The selected window, at first glance, does not appear to contain 

any clear and coherent seismic signal across multiple stations. 

 

Figure 2.32) Panel reporting a typical 7-minute-long window selected for visual inspection by network 
operators. Each waveform represents the vertical velocity (or acceleration) records for a specific station, 

which are ordered from North to South direction. 
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To homogenize the detection performances and to limit the subjective bias, we built up a 

daily detection strategy based on PhaseNet (Zhu & Beroza, 2019), guided by the results 

of the comparison of machine learning-based detectors (Figure 2.9). As observed in the 

analysis of Section 2.2.1, PhaseNet appears to be the most promising technique to be 

implemented stand-alone, providing an encouraging trade-off between the number of 

detected events and the number of false positives. For associating the seismic phases 

provided by PhaseNet on the extended ISNet network, we used REAL (Zhang et al., 

2018), a grid-search associator for relating individual phase arrival times to seismic 

sources, using theoretical travel times generated from a selected velocity model. For  this 

application, we selected the velocity model proposed for the Irpinia region by Matrullo et 

al. (2013). In this workflow, we declared an event when at least 5 picks were associated, 

with at least 3 P and 2 S arrival times, and 2 stations provided both phases. It is worth 

noting that these criteria are stricter than those required for the visual identification of the 

earthquakes, eventually leading to some missed detections. However, on the other hand, 

this parameterization was chosen after some tests for balancing the number of missed and 

false declarations, being more numerous when using the same criteria as for visual 

identification. 

The role of the automatic detection strategy is, up to now, to complement the visual 

inspection of the continuous waveforms, providing, before the start of the manual 

research, a list of potential earthquakes that occurred in the previous day. Moreover, the 

predictions of the phase arrival times are already set on the raw waveforms, extracted 

around the detection time for each declaration in the list. The network operator still 

inspects the continuous waveforms for missed events, eventually adding them to the 

detection list. Finally, before proceeding with earthquake location, the operator manages 

the provided phase arrival times by adding, refining or eventually discarding automatic 

picks. The complementing detection strategy has been operating since 27 th February 

2024, in a period in which the seismic rate is often observed to increase as a function of 

time (Figure 2.26). In this section, we summarize the results obtained up to 27th August 

2024 (167 days). 

In the considered period, the automatic detection strategy declared 685 events, 535 of 

which were real earthquakes (78%), while 150 detections did not represent seismic events 

(22%). 391 earthquakes were effectively located (74% of the real earthquakes), whereas, 

for the remaining percentag,e either the location uncertainties did not match the imposed 

quality threshold or there were not enough phase arrival times available after the manual 

revision of the picks. Considering the number of missed detections, the automatic 

workflow did not declare 19 earthquakes that were manually identified within the 

continuous data. However, the related percentage for the missed evenst is around 5% as 

compared to the number of detected and located earthquakes, respectively.  
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To highlight the main improvement resulting from the application of the automatic 

detection strategy, we can recall the time window shown in Figure 2.32. Despite no clear 

events appearing from the visual inspection of the continuous waveforms, an automatic 

detection was declared at 04:21:17, reporting phase arrival times at the stations VDS3, 

SCL3 and COL3. The filtered waveforms are shown in Figure 2.33 for the mentioned 

stations. 

 

Figure 2.33) [1 -20] Hz filtered waveforms for station VDS3, SCL3 and COL3. The event was not visually 
identified from the representation as in Figure 2.32 but was detected by the automatic detection strategy. 

When inspecting the waveforms for the detected event provided by the automatic strategy, 

the filtering operation increases the visibility of the event, allowing the operator to refine 

the phase arrival times. The event was finally located by selecting 3 P and 2 S phase 

arrival times, leading to the insertion in the catalog of a 𝑀𝑙 0.3 earthquake located at 3.0 

km depth that would have been lost without the implementation of the automatic detection 

strategy. 

To assess the reliability of the arrival times identified by the automatic detection strategy, 

we compared the phase arrival times before (automatic declarations) and after the manual 

refinement. In the following Figure 2.34, we report the time residuals between the 

automatic PhaseNet picks and the refined manual picks, the latter being used for the final 

earthquake location (around 2500 values). We observe consistency between automatic 

and manual phase arrival times. The distributions for P and S pick time residuals both 

feature mean values consistent with zero, suggesting that the automatic phases are 

accurate enough to obtain reliable earthquake locations even without the refinement step, 

leading to a complete automatization of the workflow. While we observe a narrower 

distribution for the P picks, we note wider dispersion for the (more complex) S phases. 

This feature is not surprising, since identifying the correct onset for the S picks is typically 

more challenging than for the primary waves, due to the lower signal-to-noise ratio and 

the complexity of the medium that might generate secondary phases. Thus, while we can 

assume the manual P pick as the ground truth for the arrival time of the primary wave, 
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for the larger time residuals in the S phases it is not trivial to distinguish whether the 

higher value results from an incorrect estimation of the automatic or the manual pick. As 

an example, we show in Figure 2.35 the results for the phase picking for a 𝑀𝑙  0.4 

earthquakes, reporting with a green dashed line the automatic Phasenet pick and the 

corresponding manually refined arrival time, using a blue dashed line. 

 

 

Figure 2.34) Distribution of the time residuals between PhaseNet automatic picks and manual refined arrival 
times for the P (left panel), S (central panel) and combined phases (right panel). Both P and S phases 
declared by PhaseNet are compatible with the manual arrival times, with a larger dispersion observed for 
the S phases. 

While we observed coherent arrival times for the P phase between the automatic and the 

manual picks, we noted a larger residual for the estimation of the S arrival time. In 

particular, the manual arrival time is placed 0.375 s after the declaration of PhaseNet, this 

value being close to the standard deviation of the S residual distribution. However, 

looking at the bottom panel of Figure 2.35, we note that the PhaseNet estimation is closer 

to the correct arrival time of the S phase, as compared to the manual  identification, 

matching the change in amplitude and frequency characteristic for the arrival of the S 

phase. This feature is even more clear in the following Figure 2.36, which is a close-up 

of the East component around the S arrival time. 
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Figure 2.35) Automatic and manual identifications of phase arrival times for a 𝑴𝒍 0.4 earthquake, reported 
as green and blue dashed lines, respectively. While the P arrival time is coherent among the two strategies, 
S arrival times feature a time residual of 0.375s, with the PhaseNet picks preceding the manual identification. 

 

Figure 2.36) Zoom of the bottom panel of Figure 2.35, around the arrival of S wave. In this representation 
the PhaseNet pick (green dashed line) appears to be more reliable as compared to the manual identification 
(blue dashed line), correctly identifying the change in amplitude and frequency characteristic for the arrival 
of the S phase. 

Thus, despite the higher residual, the most reliable S arrival time is provided by the 

automatic detection strategy, warning about the assumption of the manual identification 

as ground truth given the complexity of the waveforms, which typically contain converted 

and refracted phases. Moreover, we can compare the resulting catalog with those 

extracted from the past years within the same time extent, which is solely based on manual 

detections. While in the considered period, the automatic detection strategy led to the 
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location of 391 events, we observed almost 150 earthquakes in the past years, on average. 

Thus, the application of PhaseNet provides an almost three times richer catalog than the 

manual one, even for the background seismicity. Moreover, investigating the Gutenberg-

Richter law for the considered period from different years (shaded dots for the past years 

black dots for the automatic catalog, Figure 2.37), we observed a reduction in the 

magnitude of completeness, by almost 0.5. Since we did not observe any seismic 

sequence during the operation of the automatic detection strategy and we note a similar 

slope in the Gutenberg-Richter relation, suggesting that we are observing the same 

seismicity as for the past years, we can attribute the higher number of retrieved events to 

the higher sensitivity of the novel approach. 

 

Figure 2.37) Gutenberg – Richter law extracted from events that occurred between 27th February and 27th  

August for each of the past years from 2008 to 2021 (shaded dots). The black dots mark the Gutenberg – 
Richter relation for the PhaseNet enhanced catalog. The magnitude of completeness decreases by almost 
0.5 magnitude units. 

However, the automatic detection strategy produces both false positives and false 

negatives, which represent a minor fraction of the detection list. False positives are 

typically raised from detections that match the minimum requirements in the 

identification stage, showing either phase arrival times declared due to ambient noise or 

characteristic anthropogenic sources. In Figure 2.38, we report the waveform associated 

with false picks declared for non-seismic transients. 

Most of the false events are typically observed at specific stations that tend to contribute 

more to the false detections than to the identification of real earthquakes, being more 
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affected by anthropogenic and cultural noise. However, when averaged among the 

monitoring period, the number of daily false detection is still lower than the unit, 

supporting the robustness of the automatic approach. To limit the number of false 

detections, we tested the possibility of imposing a higher probability score for considering 

the phase arrival times at the 6 most critical stations, which typically populate the class 

of false detections. For these latter receivers, we therefore require a minimum probability 

score of 0.6, twice larger as compared to the usual threshold adopted for the other stations. 

We apply the novel approach for 20 days of continuous monitoring, strongly reducing of 

60 % the number of false positives within the daily detection list, from 41 to 16 false 

detections. Promisingly, we did not observe any missed real earthquake within the testing 

window. Following these results, we introduced the novel thresholds in the operational 

automatic detection workflow. 

 

 

Figure 2.38) Examples of false detections raised by the declaration of arrival times for non-seismic 
transients. 

On the other hand, the automatic detection strategy missed 18 earthquakes which were 

identified after the visual inspection of the traces. Typically, these events feature low 

magnitude, with an average magnitude of 𝑀𝑙 0.4, a value lower than the completeness 

magnitude of both manual (Vassallo et al., 2012) and automatic catalogs (see Figure 

2.37). The highest magnitude event which was missed by the automatic procedure is a 𝑀𝑙 

1.0 earthquake, which featured 4 P and 1 S manual phase arrival times (http://isnet-

bulletin.fisica.unina.it/cgi-bin/isnet-events/event-card.cgi?id=17711d). However, the 

low number of picked stations as compared to similar magnitude events, and the 

http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/event-card.cgi?id=17711d
http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/event-card.cgi?id=17711d


63 CHAPTER 2.    Advanced techniques for earthquake detection 

 

uncertainties in the earthquake location (of the order of a few kilometres), might have led 

to a higher magnitude value than the real one. For the considered earthquake, the raw 

waveforms appear to have a dominant low frequency content and a faint S arrival at all 

stations (Figure 2.39). 

 

Figure 2.39) 𝑴𝒍 1.0 earthquake missed by the automatic detection strategy. Despite the higher magnitude, 
this event was observed at 4 stations only, with a single identification of the S arrival time, due to the low 
frequency content of the waveforms. 

For this event, PhaseNet correctly provided the P arrival times at all four stations which 

were also picked manually, but no probabilities for the S phase overcame the threshold. 

Thus, the detections did not match the minimum number of associated phases (3 P and 2 

S), and it was discarded during the association stage. A second family of missed events 

is characterized by low-magnitude earthquakes that, at individual stations, feature a 

sufficient number of picks provided by PhaseNet to be associated, but some of them are 

discarded, eventually due to uncertainties in the phase arrival times. As an example, we 

analysed a 𝑀𝑙 0.4 event, manually detected at 3 stations, featuring 3 P and 2 S manual 

picks (http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/event-card.cgi?id=17646e, 

http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/event-card.cgi?id=17646e
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Figure 2.40). As the network operator, PhaseNet provided 3 P and 2 S picks among the 

three stations but, due to a higher residual on the P pick at station COL3 (right panel of 

Figure 2.40), the declared phase arrival time was discarded in the association, leading to 

an insufficient number of phases to declare the event. 

 

 

Figure 2.40) 𝑴𝒍 0.4 earthquake missed by the automatic detection strategy, due to uncertainty in a pick 
declaration which was discarded within the association stage. 

Despite the discussed limitations, the proposed detection strategy has widely increased 

the content of the manual catalog, reporting consistent phase arrival times as compared 

to the identifications of the network operators. Moreover, this strategy can limit the 

subjective ability of the operators to identify earthquakes within continuous noisy records, 

leading to a more homogenous and complete catalog. These results support to feasibility 

of further automating the workflow, aiming for a fully automatic location workflow and 

approaching a near-real-time application. 
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Accurate determination of 
earthquake locations 

3.1 Introduction 

Earthquake location is an inverse problem consisting in the determination of four 

parameters: the three spatial coordinates of the nucleation point (hypocenter) and the 

origin time of the event, using the P and S arrival times at different stations. Determining 

the position of the hypocenters provides powerful information for investigating the 

geometry of the faults that may generate large-magnitude earthquakes. In the case of a 

major event, accurate location of foreshocks and aftershocks can provide information on 

the rupture process from the preparation phase to the arrest by illuminating the structural 

complexity of the causative fault (e.g., Lomax, 2020; Waldhauser et al., 2021). Moreover, 

the analysis of the spatio-temporal evolution of the hypocentral locations can reveal the 

triggering mechanism of seismic sequences and swarms, being driven by fluid diffusion 

(Antonioli et al., 2005; Chiarabba et al., 2009) or concentrated in small-size asperities on 

the fault plane (Stabile et al., 2012). Accurate earthquake location of enhanced catalogs 

has shown complex faults segments activated during major events (Waldhauser & 

Ellsworth, 2000; Chiaraluce et al., 2017; Michele et al., 2020; Spallarossa et al., 2021; 

Ding et al., 2023; Kwiatek et al., 2023), identifying the fault planes responsible for the 

occurrence of the main events. The analysis of these cross sections resulting from accurate 

earthquake location for the 2016-2017 Centro Italia seismic sequences revealed the 

strongly complex geometry of the whole fault system composed of relatively younger 

normal segments emplaced in an environment modelled by the previous compressional 

tectonics, with additional evidence of the seismicity compartmentalization within specific 

layers deduced from the distribution of hypocenters at depth (Michele et al., 2020). On 

the other hand, in the Parkfield region, which is often struck by M6 earthquakes, location 

analyses have shown a vertical distribution of seismicity, whose shape suggested that the 

fault has spiral geometry, dipping NE in the northern region, nearly vertical in the central 

region, and SW in the southern region (Kim et al., 2016). The rapid twisting of the fault 

plane occurs in a short distance of approximately 50 km. The seismic velocity anomalies 

and fault geometry suggest location-dependent piecewise faulting, which may cause the 
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quasi-periodic high-magnitude earthquakes in the Parkfield region (Kim et al., 2016). The 

uncertainties in the estimation of source positions can be even lower than the source size, 

typically being of the order of one hundred meters (Ross et al., 2019; Michele et al., 2020). 

However, hypocenter determination of low-magnitude earthquakes in enhanced catalogs 

is challenging because they typically emerge from the noise only at the few closest 

stations with uncertain arrival times. A typical percentage of template-matched events 

that can be relatively located from enhanced catalogs is < 50 % (Cabrera et al., 2022). 

Nevertheless, accurate locations from deep catalogs can provide a high-resolution image 

of fault structures, help to discern their interaction (e.g., Ross et al., 2019; Park et al., 

2022; Sugan et al., 2023), illuminating paths for possible fluid migration (Ross et al., 

2020; Vuan et al., 2020). 

The estimation of the hypocenter coordinates is a non-linear inverse problem, given the 

relationship between linking the phase arrival times (data) and the unknown location of 

the source (parameters). Even in the assumption of homogeneous medium, characterized 

by a constant velocity value for the P and S waves, the phase arrival time at a considered 

station can be expressed as a function of the hypocentral coordinates as: 

𝑇𝑃,𝑆 = 𝑇0 + 𝑇𝑇𝑃,𝑆 = 𝑇0 +
√(𝑥𝑠𝑡𝑎 − 𝑥𝐻)

2 + (𝑦𝑠𝑡𝑎 − 𝑦𝐻)
2 + (𝑧𝑠𝑡𝑎 − 𝑧𝐻)

2

𝑣𝑃,𝑆
 

where (𝑇0, 𝑥𝐻 ,𝑦𝐻 , 𝑧𝐻) represent the origin time and the hypocentral coordinates, 

(𝑥𝑠𝑡𝑎 , 𝑦𝑠𝑡𝑎 , 𝑧𝑠𝑡𝑎) refers to the position of the station where the phase arrival time is 

identified and 𝑉𝑃,𝑆 indicates the velocity of the considered phase. In a more general and 

realistic framework, in which the phase velocity is not uniform but varies within the Earth, 

the former relation can be generalized as  

𝑇𝑃,𝑆 = 𝑇0 + ∫ 𝑢(𝒓𝟎) 𝑑𝑠
𝒓𝟎(𝑠)

 
(3.1) 

where 𝒓𝟎(𝑠) denotes a point at distance 𝑠 along ray path 𝒓𝟎 between source and receiver 

locations and 𝑢 represents the inverse of the velocity field, also referred to as slowness. 

Given the non-linearity of the inverse problem, two main approaches have been proposed 

for obtaining the hypocentral coordinates from the phase arrival times, which can be 

classified as linearized or global approaches. In the linearized approach, the hypocentral 

solution is iteratively obtained by updating a starting trial source location, assuming that 

the real position is close to the chosen starting coordinates (Geiger, 1912, Lee & Lahr, 

1975). In this framework, we can linearly expand the model relation at the first order 

using the Taylor series around the starting solution 𝒎𝟎 as 
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𝑇𝑖 ≈ 𝑇𝑖
0 + ∑

𝜕𝑇𝑖
𝜕𝑚𝑗

4

𝑗=1

|
𝒎𝟎  Δmj

0 

 

(3.2) 

In the former relationship, 𝑇𝑖
0 represents the theoretical arrival time at the i-th station 

obtained from the starting solution, while Δmj
0 refers to the residual between the actual 

and the trial parameters. Reformulating the expression in terms of the residual between 

the observed and the theoretical arrival times, the relation can be expressed as a linear 

combination of the residual between the actual and the trial parameters, as follows: 

di ≈ 𝑇𝑖 − 𝑇𝑖
0 =  ∑

𝜕𝑇𝑖
𝜕𝑚𝑗

4

𝑗=1

|𝒎𝟎  Δmj
0 =  ∑𝐺𝑖𝑗

4

𝑗=1

𝑚𝑗 

 

(3.3) 

Thus, the relation can be expressed as a linear problem 𝐝 = 𝑮 𝚫𝒎, in which 𝐝 is the 

vector containing the residuals between the observed and theoretical arrival times 

(dimension 𝑛 𝑥 1, with 𝑛 number of P and S arrival times), 𝚫𝒎 provides information 

about the residual between the actual and the trial parameters (dimension 4 𝑥 1). In the 

case of a uniform velocity value, we can analytically express the elements of the matrix 

𝑮 (dimension 𝑛 𝑥 4) as: 

𝐺𝑖,1 =
𝜕𝑇𝑖
𝜕𝑥𝐻

 |𝒎𝟎 =  −
1

𝑣𝑃,𝑆

𝑥𝑠𝑡𝑎 − 𝑥𝐻
0

√(𝑥𝑠𝑡𝑎 − 𝑥𝐻
0 )2 + (𝑦𝑠𝑡𝑎 − 𝑦𝐻

0)2 + (𝑧𝑠𝑡𝑎 − 𝑧𝐻
0 )2

 

     𝐺𝑖,2 =
𝜕𝑇𝑖
𝜕𝑦𝐻

 |𝒎𝟎 =  −
1

𝑣𝑃,𝑆

𝑦𝑠𝑡𝑎 − 𝑦𝐻
0

√(𝑥𝑠𝑡𝑎 − 𝑥𝐻
0 )2 + (𝑦𝑠𝑡𝑎 − 𝑦𝐻

0)2 + (𝑧𝑠𝑡𝑎 − 𝑧𝐻
0 )2

 

 

(3.4) 

𝐺𝑖,3 =
𝜕𝑇𝑖
𝜕𝑧𝐻

 |𝒎𝟎 =  −
1

𝑣𝑃,𝑆

𝑧𝑠𝑡𝑎 − 𝑧𝐻
0

√(𝑥𝑠𝑡𝑎 − 𝑥𝐻
0 )2 + (𝑦𝑠𝑡𝑎 − 𝑦𝐻

0)2 + (𝑧𝑠𝑡𝑎 − 𝑧𝐻
0 )2

 

𝐺𝑖,4 =
𝜕𝑇𝑖
𝜕𝑇0

 |𝒎𝟎 =  1 

Since G is a non-square matrix, the least square solution to the inverse problem is given 

by 

𝚫𝒎 = (𝑮𝑻𝑮)−𝟏𝑮𝑻 𝐝 

 

(3.5) 

Equation 3.5 provides the best solution in terms of minimizing the quadratic deviation 

between the observed and theoretical data. Using a starting trial solution 𝚫𝒎𝟎, it is thus 
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possible to determine the perturbation 𝚫𝒎 to the starting model that provides the best 

data fit. The new model will be given by 𝒎𝟏  = 𝒎𝟎  + ∆𝒎𝟎. This procedure can be 

iterated using 𝒎𝟏 as new starting solution, obtaining the perturbation ∆𝒎1 and so a new 

model 𝒎𝟐. This iterative loop can be stopped when the prediction error becomes 

comparable with the mean data error (the error on the individuation of the seismic phase 

on the seismogram) or when the perturbations with respect to the previous model are not 

so significant. The linearized approach has the basic advantage of being relatively fast in 

computational time, but suffers from the presence of multiple local minima, thus location 

results are strongly connected with the chosen trial solution, eventually leading to a 

convergence to a local minimum rather than to the global one. To limit this issue, it is 

possible to include a multi-start approach of the starting solution, that can be chosen 

randomly, for ensuring a more complete exploration of the domain. 

On the other hand, a global approach can systematically explore the whole parameter 

space, providing a complete view of the solution. An initial grid with a fixed size, number 

of nodes and location defines the full search region. Subsequently, nested grids are 

centered automatically on the optimal hypocentral node of the containing grid in one or 

more directions. The nested grids are typically smaller in size but may have more nodes 

than the containing grid. For every node of each location grid, the grid-search algorithm 

must obtain travel-times for every observation from the corresponding travel-time grid. 
Most of the global location techniques are based on the definition of a probability density 

function for associating the most probable source among all the possible combinations of 

parameters, allowing the use of 3D models and providing comprehensive uncertainty 

information (Lomax et al., 2000). Conversely to the linearized model, these methods are 

less affected by multiple local minima in the probability, given the complete investigation 

of the parameter domains using efficient grid-search approaches (Lomax et al., 2000; 

Lomax, 2008). The maximum likelihood (or minimum misfit) point of the complete, non-

linear location PDF is selected as the "optimal" hypocentre. Considering a vector 𝒅 of 

arrival times, let 𝑝(𝒅) be the probability density function (PDF) describing the 

uncertainty of 𝒅  due to measurement uncertainties. Similarly, let 𝒎 denote the vector of 

source location parameters and 𝑝(𝒎) be the prior PDF representing the a priori available 

information about the location (i.e. the knowledge of the active faults zones in the area). 

A solution to the earthquake location model is found by combining the information in the 

observed data, 𝑝(𝒅), the prior PDF, 𝑝(𝒎), and the ability of the forward problem to 

predict the observed data 𝐹(𝒅,𝒎). This is achieved in a probabilistic framework by 

constructing a PDF, 𝑄, describing the state of posterior information by (Lomax et al., 

2009): 

𝑄(𝒅,𝒎) = 𝑘 
𝑝(𝒅)𝐹(𝒅,𝒎) 𝑝(𝒎)

𝜇(𝒅,𝒎)
 

(3.6) 
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In which 𝑘 is a normalization factor and 𝜇(𝒅,𝒎) is the homogeneous distribution over 

data and parameters. The final, posterior state of information about location parameters 

𝒎 is given by integrating over the data 𝒅 to obtain the marginal posterior PDF: 

𝑄(𝒎) = 𝑘 𝑝(𝒎)∫
𝑝(𝒅)𝐹(𝒅,𝒎) 

𝜇(𝒅,𝒎)
𝑫

𝑑𝒅 

 

(3.7) 

Equation 3.7 is the general, probabilistic solution to the inverse problem of event location 

from the available data, since it describes the uncertainty in event location 𝒎 given all 

available information. This quantity is often referred to as the likelihood function 𝐿(𝒎), 
which gives a (non-normalized) measure of how good any model 𝒎 is in explaining the 

observed data 𝑝(𝒅). 𝑝(𝒅) is often approximated by a Gaussian distribution, described by 

mean 𝒅𝟎 and covariance matrix 𝑪𝒅. It is also usually assumed that 𝒅 and 𝒎 are 

independent and hence that 𝜇(𝒅,𝒎) can be written as 𝜇(𝒅)𝜇(𝒎), with 𝜇(𝒅) usually 

taken to be constant. Following these assumptions, the likelihood function can be 

expressed as:  

𝐿(𝒎) = exp { −
1

2
 [𝒅𝟎 − 𝒇(𝒎)]

𝑇  𝑪𝒅
−1[𝒅𝟎 − 𝒇(𝒎)]} 

 

 

(3.8) 

With the mentioned simplifications a maximum likelihood estimation of the origin 

time,𝑡0, can be determined analytically from weighted means of the observed arrival 

times and the predicted travel times (Tarantola & Valette, 1982). If the observed and 

predicted arrival times are uncorrelated, the likelihood function can further be shortened 

as  

𝐿(𝒙) = exp {−
1

2
∑

[𝑇𝑖
0 − 𝑇𝑖

𝑐(𝒙)]2

𝜎𝑖
2

𝑖

}  
(3.9) 

In Equation 3.9, 𝒙 is the spatial part of 𝒎, 𝑇𝑖
0 are the observed travel times, 𝑇𝑖

𝑐 are the 

calculated travel times for observation 𝑖 and 𝜎𝑖 summarizes the associated standard 

deviation of uncertainty in the observed and calculated travel times . Though not 

normalized, 𝐿(𝒙) is sufficient to provide the relative probability of any location 𝒎 being 

the best estimate of the event location given the available data measurements. The 

definition of the probability density function allows to statistically estimate the 

uncertainty of the earthquake location. Following this approach, Lomax et al. (2000) 

provide Gaussian error uncertainty estimates, such as the expectation hypocentre location 

and the 68% confidence ellipsoid. Large differences between the expected hypocentre 
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location and the maximum likelihood hypocentre result from an ill-conditioned location. 

(Lomax et al., 2000). 

The accuracy of hypocenter locations depends on the network geometry, accuracy of 

phase arrival times, and knowledge of the velocity model (Pavlis, 1986; Gomberg et al., 

1990; Waldhauser et al., 1999). Often, for computational convenience or due to lack of 

information, the velocity model is parameterized with velocity varying only with depth. 

This is commonly called a laterally homogeneous or 1-dimensional (1D) model. Such a 

model may consist of one or more layers of constant or vertical-gradient wave-speeds 

which, for local or near-regional scale, may be horizontal and flat. However, the use of a 

one-dimensional reference velocity model to locate earthquakes might reduce the location 

accuracy, since the three-dimensional velocity variations which are not considered in less 

complex models can introduce biases into the estimated travel times. A strategy for 

partially accounting for the velocity variations consists in the inclusion of station and/or 

source correction terms in the location procedure (Shearer, 1997; Lin & Shearer, 2005; 

Lomax, 2008; Lomax & Savvaidis, 2022).  

Location uncertainties can also be minimized by using relative earthquake location 

methods (Poupinet et al., 1984; Fremont & Malone, 1987; Got et al., 1994; Waldhauser 

& Ellsworth, 2000; Trugman & Shearer, 2017). If the spatial separation between two 

seismic events is small compared to the hypocentral distance and the scale-size of the 

velocity heterogeneities, the ray paths between the sources and a certain station are similar 

along almost the entire ray path. Therefore, the difference in travel times for two events 

observed at the station can be related to the spatial offset between the events, increasing 

location accuracy. This is because the absolute errors are of common origin except in the 

small region where the ray paths differ at the sources. Relative location techniques are 

based on the use of differential travel times of couples of earthquakes at the same station 

(also referred to as double difference) rather than absolute phase arrival times at the 

receiver. Double differences can be expressed as the residual between observed and 

calculated differential travel times between the two events: 

𝑑𝑡𝑘
𝑖,𝑗 = (𝑡𝑘

𝑖 − 𝑡𝑘
𝑗)
𝑜𝑏𝑠

− (𝑡𝑘
𝑖 − 𝑡𝑘

𝑗)
𝑡ℎ𝑒𝑜

 

 

(3.10) 

In the former relation, the indexes 𝑖 and 𝑗 refer to a couple of earthquakes, while 

𝑘 indicates the station that recorded the phase arrival time. Using this quantity, 

Waldhauser & Ellsworth (2000) showed that a generally valid equation for the change in 

hypocentral distance between a whole set of earthquakes can be written as a linear 

problem as: 

𝑾𝑮𝒎 =𝑾𝒅 

 

(3.11) 
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Where 𝑮 defines a matrix of size Mx4N (M number of double-difference observations, N 

number of events) containing the partial derivatives, 𝒅 is the data vector containing the 

double-differences, 𝒎 is a vector of length 4N, (Δ𝑥,Δ𝑦, Δ𝑧, Δ𝑇), containing the changes 

in hypocentral parameters we are interested in, and 𝑾 is a diagonal matrix to weight each 

equation. 

Moreover, it is also possible to improve the accuracy of the relative arrival-time readings 

using waveform cross-correlation methods. In fact, two earthquakes produce similar 

waveforms at a common station if their source mechanisms are virtually identical and 

their sources are colocated so that signal scattering due to velocity heterogeneities along 

the ray paths is small. Differences in the cross-correlation differential travel time can help 

in finely quantifying small variations in the earthquake locations. 

A standard approach for solving the former equation, in a weighted least-squares sense 

(i.e. minimizing the L2-norm of the residual vector) is the use of normal equations: 

�̂� = (𝑮𝑇𝑾−1𝑮)−1𝑮𝑇𝑾−1𝒅 

 

(3.12) 

With 𝑾 containing a priori quality weights expressing the normalized quality of the data, 

that is the precision of the cross-correlation measurements. For small clusters, and for 

well-conditioned systems, we can solve the former equation by the method of singular 

value decomposition (SVD): 

�̂� = 𝑽 𝚲 𝑼𝑻𝒅 

 

(3.13) 

Where U and V are two matrices of orthonormal singular vector of the weighted matrix 

G and 𝚲 is a diagonal matrix of the singular values of G. U, V and 𝚲 store information 

on the resolvability of the parameters 𝒎 and the amount of information supplied by the 

data d. From these matrices, is it possible to estimate the least square errors, 𝑒𝑖 , for each 

model parameter by 

𝑒𝑖
2 = 𝐶𝑖𝑖 ∗ 𝑣𝑎𝑟 

 

(3.14) 

where 𝐶𝑖𝑖 are the diagonal elements of the covariance matrix 𝑪 =  𝑽 𝚲−𝟐𝑽𝑻 and 𝑣𝑎𝑟 is 

the variance of the weighted residuals considering the mean of the residual vector and the 

residual of the i-th observation. As the system to be solved becomes larger, SVD is 

inefficient. In these cases, the solution �̂� can be found by using the conjugate gradient 

algorithm LSQR (Paige & Saunders, 1982), which takes advantage of the typical 

sparseness of the matrix 𝑮. LSQR solves the damped least-squares problem: 



72 CHAPTER 3.    Accurate determination of earthquake locations 
 

‖𝑾 [
𝑮

𝜆𝑰
]  𝒎 −  𝑾 [

𝒅

𝟎
]‖
2
= 0 

 

(3.15) 

with 𝜆 being the damping parameter. 

However, the reliability of the LSQR uncertainties is not guaranteed, since the diagonal 

elements of the covariance matrix are critically dependent on the convergence during 

internal iterations (Paige & Saunders, 1982; Waldhauser & Ellsworth, 2000). The 

reliability of the errors reported by LSQR, can be verified using SVD or by implementing 

a statistical resampling. 

In this chapter, we use advanced techniques for determining the hypocentral coordinates 

in different seismogenic areas. Specifically, we: 

• obtained accurate earthquake locations for the enhanced catalogs of seismic sequences in 

Southern Italy (generated in Section 2.3.1), integrating absolute and relative location 

techniques using automatic phase arrival times, for understanding the evolution of the 

seismic sequences (Section 3.3.1) 

• located the enhanced catalog (obtained in Section 2.3.2) resulting from the application of 

the advanced detection techniques on the data collected by the dense array deployment in 

Southern Italy (Section 3.3.2) 

• performed earthquake location for the seismicity observed within the Campi Flegrei 

caldera from 2014 to 2024, selecting an innovative technique for absolute and relative 

location of the earthquake grounding on the definition of a source-specific station travel 

time correction field (Section 3.3.3) 

3.2 Methods 

3.2.1 A global probabilistic approach for earthquake location: NLLoc  

NLLoc is a probabilistic earthquake location technique adopting a non-linear, global 

sampling algorithm to obtain the hypocenter coordinates (Lomax et al., 2000). This 

technique has been established as the reference method for obtaining absolute earthquake 

locations, being applied in different contexts as tectonic (Chiaraluce et al., 2017; Festa et 

al., 2021), volcanic (Tramelli et al., 2022; De Siena et al., 2024), induced seismicity 

(Coccia et al., 2013; Lim et al., 2024) and even for earthquake early warning purposes 

(Satriano et al., 2008). NLLoc produces an estimate of the posterior density function 

(PDF) for the spatial hypocentre location, 𝑄(𝒎), using either a systematic grid-search or 

a stochastic, Metropolis-Gibbs sampling approach. PDF values obtained by grid-search 



 
73 CHAPTER 3.    Accurate determination of earthquake locations  
 

 

samples represent the complete, probabilistic spatial solution to the earthquake location 

problem. This solution indicates the uncertainty in the spatial location due to Gaussian 

picking and travel-time calculation errors, the network-event geometry, and the 

incompatibility of the picks (Lomax et al., 2000). The travel times between a station and 

all nodes of a 3D grid are calculated using the Eikonal finite-difference scheme of Podvin 

& Lecomte (1991), while the grid-search algorithm in NLLoc performs successively 

finer, nested grid-searches within a spatial volume to obtain an estimate of the location 

PDF. The grid-search performs a systematic, exhaustive coverage of the search region 

and thus can identify multiple optimal solutions and highly irregular confidence volumes. 

The estimated travel times are evaluated to obtain a non-normalized location PDF value, 

which is stored at the appropriate node. When the grid-search for the final, fine grid is 

complete, the gridded PDF values are normalized by assuming that the integral of PDF 

over the search volume is unity. 

For estimating the earthquake location, NLLoc evaluates the probability density function 

on each node of a chosen spatial grid, accounting for the weighted time residuals among 

the observed and the theoretical travel times. Therefore, crucial elements in the 

hypocentral inversion are the grid size, the weighting factors associated with the phase 

arrival times and the adopted velocity model. The step and the dimension of the grid are 

guided by the extension of the seismogenic region, balancing the location resolution and 

the computational time. For the location analysis in the Southern Apennines (Sections 

3.3.1 and 3.3.2), which extends about 100 𝑘𝑚 𝑥 70𝑘𝑚, we adopted the grid 

parameterization used in De Landro et al. (2015). We discretized the space domain by 

deploying 205 nodes along the latitude and longitude directions, while we selected 73 

points along the depth direction. Specifically, to account for the station elevation, we 

extended the nodes also to a negative depth direction up to -2 km. The spatial step among 

consecutive nodes along each direction was set to 0.5 km. On the other hand, for the 

location analysis at the Campi Flegrei, whose seismicity typically interests an area of 

8 𝑘𝑚 𝑥 8 𝑘𝑚, we adopted a finer step size of 0.2 km, discretizing the space using 61, 81, 

and 56 points along the latitude, longitude and depth direction, respectively. Also in this 

latter case, we extended the grid along the negative direction of the depth up to -1.0 km, 

to account for the station elevation. 

To determine the hypocentral coordinates, NLLoc weights the time residual among the 

observed and the theoretical arrival times. Therefore, the weight refers to the importance 
of the individual phase arrival time within the hypocentral inversion stage. Classically, 

the weight is directly connected to the uncertainty in the manual estimation of the phase 

arrival times, being dependent on the signal-to-noise ratio of the phase onset. The 

assigned weights typically inversely refer to the importance within the inversion: the 

lower the weight, the higher the importance. As an example, De Landro et al. (2022) 
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proposed a weighting scheme for the phase arrival times as indicated in the following 

Table 3.1: 

Table 3.1) Weighting scheme proposed in De Landro et al. (2022), for assigning the importance of the phase 

arrival time within the location inversion. 

TIME UNCERTAINTY (s) WEIGHT 

< 0.05 0 

[0.05, 0.1[ 1 

[0.1, 0.2 [ 2 

[0.2, 0.5[ 3 

> 0.5 4 

 

For  the determination of the earthquakes within the Campi Flegrei caldera (Section 

3.3.3), we used the manual phase arrival times provided by the INGV – Osservatorio 

Vesuviano (available at https://terremoti.ov.ingv.it/gossip/flegrei/index.html), along with 

the manual estimation of the uncertainty on the phase arrival times. On the other hand, in 

the location analysis in the Southern Apennines, we used fully automatic phase arrival 

times. The importance of the arrival times in the location stage was estimated considering 

the associated probability for machine learning picks and the CC values for template 

matching phases, respectively. We converted the probability values (ranging between 0.1 

and 1.0) into discrete weights for location (from 4 to 0, decreasing numbers corresponding 

to larger importance in the location stage) according to the table proposed by Mousavi et 

al. (2020) for the EQT detections:  

Table 3.2) Table proposed by Mousavi et al. (2020) for the converting the probability of EQT detections in 
weights for earthquake location. 

PROBABILITY WEIGHT 

>0.7 0 

]0.5, 0.7] 1 

]0.2, 0.5] 2 

]0.1, 0.2] 3 

< 0.1 4 

 

For the template matching picks, we imposed at least the same level of accuracy of the 

machine learning picks used for the declaration, eventually increasing the discrete 

weights for low cross-correlation values. We raised the discrete weights by one point for 

every decimal of the CC coefficient detaching from 1.0. However, since machine learning 

models result from complex and non-linear operations, it is not trivial to relate the quality 

and reliability of the identification of the phase arrival time to a single quantity, as the 

https://terremoti.ov.ingv.it/gossip/flegrei/index.html
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signal-to-noise ratio in the manual picking. The analysis performed in Section 2.3.1 also 

showed that the probability scores associated with the declaration of a phase arrival time 

might depend on the position of the event within the considered window (Pita-Slim et al., 

2023). We acknowledge that, at this stage, there is not a continuous mapping between 

probability values and phase arrival time quality evaluated through discrete weights. 

However, this conversion into weights mitigates the variability in the probability values, 

possibly associated with the specific position of the event in the analysed window. 

However, the probability value is the only metric that is provided along with the phase 

arrival time, and the conversion of the probability scores in weights to be used within 

earthquake location is a common approach when dealing with machine learning-based 

catalogs and/or automatic workflows for earthquake characterization (Mousavi et al., 

2020; Tan et al., 2021; Zhang et al., 2022). 

3.2.2 Relative location techniques for hypocenter location 

Relative location techniques associate the residual between the observed and predicted 

phase travel-time difference for pairs of earthquakes observed at common stations to 

changes in the relative position of the hypocenters, through the partial derivatives of the 

travel times for each event with respect to the hypocenter parameters (Waldhauser & 

Ellsworth, 2000; Trugman & Shearer, 2017; Lomax & Savvaidis, 2022). This approach 

cancels common errors when the distribution of seismicity is sufficiently dense, i.e., 

where distances between neighbouring events are small relative to station distances 

(typically a few kilometers or less). By linking hundreds or thousands of earthquakes 

together through a chain of near neighbours, it is possible to obtain high-resolution 

relative hypocenter locations over a large area (Waldhauser & Schaff, 2008). Relative 

location techniques are widely used for providing fine-scale and accurate location 

catalogs, with decametric relative location uncertainties (Waldhauser & Schaff, 2008: 

Chiaraluce et al., 2017; Michele et al., 2020). As for the absolute location techniques, the 

main families for location algorithms can be classified as linear (HYPODD, Waldhauser 

& Ellsworth, 2000) or global (NLLoc-SSST-coherence, Lomax & Savvaidis, 2022) 

 

3.2.2.1 A linearized approach for relative earthquake location: HYPODD 

HYPODD (Waldhauser & Ellsworth, 2000) minimizes the residuals between observed 

and theoretical travel-time differences (double-differences), accounting for absolute 

travel-time and cross-correlation P-and S-wave differential travel-time measurements. 

HYPODD follows the approach described in Section 3.1, for the linearized relative 

location techniques. HYPODD implements a least-squares solution by iteratively 

adjusting the vector difference between hypocentral pairs. The use of cross-correlation 
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differential travel times has been shown to increase the spatial resolution of the relative 

hypocenter location, being indicative of the small-scale distance of the event pairs 

(Waldhauser & Schaff, 2008; Michele et al., 2021). Since catalog and cross-correlation 

data are jointly inverted, the interevent distances are determined to the accuracy of the 

cross-correlation data, while the relative locations between multiplets and uncorrelated 

events are determined to the accuracy of the absolute travel-time data. 

For the location analysis in the Southern Apennines, we used absolute locations 

(estimated using NLLoc) as the starting point for relative re-locations of events in each 

sequence using HYPODD (Waldhauser & Ellsworth, 2000). In the analysis of the 

enhanced catalogs for seismic sequences, we evaluated the catalog delay times in each 

sequence using picks for event pairs separated by less than 10 km in absolute location at 

all the available stations. For CC differential travel times, we evaluated the delay times 

for events that were separated by less than 10 km, on seismograms decimated to 100 Hz 

and filtered in the frequency band [1.5 – 15] Hz (Schaff & Waldhauser, 2005; Michele et 

al., 2020). We assessed the length of the time windows for extracting the waveforms 

around the P and S arrival times by performing parametric tests. The typical extension of 

the time window for evaluating the cross-correlation among a couple of events is of the 

orders of seconds, with a slightly longer extension for the S phase and including different 

portions of waveform preceding the phase arrival time (Hauksson & Shearer, 2005; 

Waldhauser & Ellsworth, 2008; Stabile et al., 2012; Michele et al., 2020; Waldhauser et 

al., 2021). We here report the parametric test performed for the analysis of the P waves 

differential travel time for the EQT catalog of the Rocca San Felice seismic sequence. A 

similar analysis was conducted for the S waves. We compared the cross-correlation 

coefficients resulting from different window extensions, extracted [-0.3, 0.4] s, [-0.4, 1.0] 

s, [-0.5, 0.5] s and [-0.4, 0.7] s around the P arrival time. In Figure 3.1, we report the 

distribution of the obtained cross-correlation coefficients. 
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Figure 3.1) Distribution of the cross-correlation coefficients resulting from different windows extracted 

around the P arrival time. 

Too short windows (i.e., [-0.3, 0.4] s, [-0.5, 0.5]) resulted in too high values of CC 

coefficients such that the reliability of the lag measurement was overestimated. In 

particular, the shape of the distribution appeared to conflict with the analogous 

distribution observed in Schaff & Waldhauser (2005). Moreover, given the expected drop 

of the cross-correlation coefficient as a function of the interevent distance (Figure 2.3), 

which might lead to a decrease of several decimals in waveform similarity among events 

occurring a few kilometers apart (Michele et al., 2020), we should expect more populated 

bins in the central part of the distribution. We thus selected a 1.1 s ([-0.4, 0.7] s) long 

window around the P phase arrival time for calculating the CC coefficients, imposing a 

maximum lag of 1s. Similarly, for the S phase we used a 1.4-s-long window. Finally, we 

only retained delay times for events with a CC coefficient higher than 0.7 (Chiaraluce et 

al., 2017; Michele et al., 2020; Waldhauser et al., 2021) 

We estimated relative locations with HYPODD using an iterative least square procedure 

(LSQR) that minimized the differential time residuals for pairs of earthquakes at common 

stations by adjusting the vector connecting their hypocentres (Waldhauser & Ellsworth, 

2000). We used 4 steps of 4 iterations (a total of 16 iterations) of damped and dynamically 

weighted least square inversions. In the initial settings, we assigned higher weights to 

catalog delay times, for better constraining the location of the clusters, and we increased 
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the contribution of the CC differential travel times in the following settings, to consider 

the different positions of the events within the cluster. The damping factor was selected 

to stabilize the problem (Waldhauser, 2001). To avoid inconsistency with ray patterns 

used in the absolute locations, we extracted a 1-D model composed of 20 thin layers 

resampling the velocity model used for absolute locations.  

LSQR only approximates some aspects of the uncertainty (Waldhauser & Ellsworth, 

2000), so we applied the Singular Value Decomposition (SVD) method for a more 

complete assessment of location errors. The SVD option can only solve a significantly 

lower number of earthquakes than LSQR. Nevertheless, we were able to apply the SVD 

technique for all the sequences apart from the Rocca San Felice sequence. For this latter 

sequence, we estimated location uncertainties using a bootstrap strategy, realizing 200 

independent double differences relocation runs on subsets of events within the sequence. 

Each subset was obtained by randomly extracting 150 events, 60 % of which belong to 

the machine learning catalog. This selection ensures a more robust linkage to the cluster, 

since the number of picks associated with templates is generally larger than for template-

matched events. We evaluated the location uncertainties from a statistical analysis based 

on the distance of each event from the cluster centroid in all the runs where it was located. 

This procedure allows the quantification of dependency of the results on the single subset. 

For the i-th event, we estimated the uncertainty along the j-th direction as 𝑒𝑟𝑟𝑗
𝑖   =

𝑚𝑒𝑑𝑖𝑎𝑛𝑝,𝑚|(𝑥𝑗,𝑝
𝑖   − 𝑥𝑗,𝑝

𝑐 )  − (𝑥𝑗,𝑚
𝑖   − 𝑥𝑗,𝑚

𝑐 )|, where 𝑝 and 𝑚 indicate two independent 

runs in which the i-th  event was located, and the superscript c refers to the cluster’s 

centroid of the considered run. The robustness of these estimates was verified by 

observing agreement with uncertainties from a SVD inversion for the subset of template 

events. 

 

3.2.2.2 Global approach for relative earthquake location: NLLoc-SSST-Coherence 

Relative location techniques are based on the use of differential travel times for resolving 

the small-scale hypocentral distance among couple of earthquakes. These techniques also 

leverage the use of waveform similarity and precise, cross-correlation, differential timing 

between events at individual stations to determine fine-scale, inter-event spatial relations. 

Despite these methods have been shown to highlight small-scale features of the 

seismicity, showing narrow streaks and sets of faulting structures (Got et al., 1994; 

Michele et al., 2020; Waldhauser et al., 2021), these techniques require dense monitoring 

coverage, with stations providing a massive amount of differential travel times, that is not 

always guaranteed. This is the case of the seismicity in the Campi Flegrei caldera, where 

despite a dense multiparametric network monitors the area (Bianco et al., 2022), not all 

the waveforms for the stations are publicly available. Following the strategy of 
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HYPODD, while we could have extracted the phase arrival times at all the stations from 

the released bulletin (https://terremoti.ov.ingv.it/gossip/flegrei/index.html) and computed 

the catalog delay times, we could only evaluate the waveform cross-correlation just for a 

limited fraction of the stations. Therefore, to avoid introducing biases in the location 

procedure, we adopted the strategy proposed by Lomax & Savvaidis (2022), NLLoc-

SSST-coherence (NLLoc-SC), which is intended to achieve the same resolution of cross-

correlation-based techniques, without explicitly evaluating the waveform similarity, and 

thus being particularly suitable for the analysis of the seismicity at the Campi Flegrei 

caldera (Section 3.2.3). 

 NLLoc-SC is a standard, arrival-time location procedure, modified to improve relative 

location accuracy through the use of spatially varying, source-specific station travel-time 

corrections (SSST) and a new, waveform coherence-based, multi-event location 

procedure. In a first relocation stage, NLLoc-SC iteratively develops SSST corrections 

on decreasing length scales (Richards-Dinger & Shearer, 2000; Lomax & Savvaidis, 

2022), improving relative location accuracy and clustering of events.  In contrast to station 

static corrections, which give a unique time correction for each station and phase type, 

SSST corrections vary smoothly throughout a 3D volume to specify a source-position- 

dependent correction for each station and phase type (Lomax & Savvaidis, 2022). These 

corrections account for 3D variations in velocity structure and corresponding distortion 

in source-receiver ray paths. Spatial-varying, SSST corrections are most effective for 

improving relative locations on all scales when the ray paths between stations and events 

differ greatly across the studied seismicity. SSST corrections can improve multi -scale 

precision when epistemic error in the velocity model is large, such as when a 1D, laterally 

homogeneous model or a large-wavelength, smooth model is used in an area with sharp, 

lateral velocity contrasts or smaller-scale, 3D heterogeneities. The iteration uses Gaussian 

smoothing kernels of decreasing size to produce final, NLL-SSST locations. Residuals 

from P and S arrivals and relocated events meeting minimum quality criteria are used for 

updates at each iteration. Figure 3.2 summarizes the obtained spatial distribution source-

specific station corrections, extracted from Figure 1 in Lomax & Savvaidis (2022), along 

with the spatial travel time corrections. 

In a second relocation stage, NLL-SSST-coherence reduces aleatoric location error by 

consolidating information across event locations based on waveform coherency between 

the events (Lomax & Savvaidis, 2022). NLL-coherence uses waveform similarity directly 

to improve relative location accuracy without the need for differential time measurements 

or many stations with waveform data. The method assumes that high coherency between 

waveforms for two events implies the events are nearly colocated, and also that al l of the 

information in the event location, when corrected for true origin time shifts, should be 

nearly identical in the absence of noise. 

https://terremoti.ov.ingv.it/gossip/flegrei/index.html
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Figure 3.2) Left panel: example of source-specific station P wave travel time corrections, extracted from 

Figure 1 in Lomax & Savvaidis (2022). SSST corrections are added to the current, P travel-time field for the 
station to produce updated, SSST corrected travel-times (right). 

Then, stacking over probabilistic locations for individual nearby events can be used to 

reduce the noise in this information and improve the location precision for individual, 

target events. We measured coherency as the maximum, normalized cross-correlation 

between vertical component velocity records from one or more stations for pairs of events 

within 2 km in the analysis of the seismicity at the Campi Flegrei caldera. We take the 

maximum station coherence between the target event and each other event as a proxy for 

true inter-event distances, and thus as stacking weights, to combine NLL-SSST location 

probability density functions over the events. Specifically, the procedure only uses high 

coherency waveforms, with a cross-correlation threshold of 0.5, evaluated on waveforms 

filtered in the [2 – 10] Hz band and downsampled to 50 Hz. The contribution of individual 

traces in the stack is then weighed by a cosine taper function to provide smoothly 

changing stacking weights between 0 and 1. Following this approach, the weight is near 

1 only for coherence values > 0.8. In effect, this stack directly improves the hypocenter 

location for each target event by combining and completing arrival-time data over nearby 

events and reducing aleatoric errors in the data, such as noise, outliers and missing 

arrivals. Figure 3.3, extracted from Lomax & Savvaidis (2022), illustrates the steps for 

obtaining the stacked PDF for a cluster of similar events. 
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Figure 3.3) Left - Top trace represents the target waveform while the reported coherence with the target is 

indicated to the upper right of each waveform. Right - Schematic representation of coherences between the 
target and each waveform, corresponding stacking weight after cosine taper mapping of coherence, location 
PDF's forming the stack (color intensity indicates stack weight), and final NLL-coherence location PDF for 
the target event. 

3.2.3 Accuracy of automatic phase arrival times and influence of the velocity 
model in the hypocenter determination 

In the analyses of Sections 3.3.1 and 3.3.2, we use automatic picks provided by advanced 

detection techniques. In this section, we compare the accuracy of phase arrival times 

obtained through the integration of machine learning and similarity-based techniques 

(EQT + TM) with the corresponding manual identification. We here report the 

distributions of the time residuals between the automatic and manual phase arrival times 

for the enhanced catalogs obtained for the 10 seismic sequences in Irpinia (Section 2.3.1), 

extracted from the 265 common events among the enhanced and existing manual catalogs. 

Figure 3.4 reports the distribution of the time residuals with the P, S and both phases, 

respectively, analogously to Figure 2.34. Both P and S arrival times feature residual 

distributions centred around zero (Scotto di Uccio et al., 2023). In particular, the 

distribution of the P residuals features a standard deviation lower than 0.1 s, this value 

being half of that observed from the automatic detection strategy for the daily monitoring 

of the seismicity. However, while the latter analysis includes the whole seismic network, 

and hence also stations further from the hypocenter, in the analysis of the seismic 

sequence we selected the closest stations to each sequence, which typically feature a 

higher signal-to-noise ratio and thus are favoured in the identification of phase arrival 

times. 
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Figure 3.4) Distribution of the time residual among the automatic and manual phase arrival times for the ten 
seismic sequences analysed in Section 2.3.1. Both P and S phase arrival times feature zero-mean residuals, 
with a slightly larger dispersion for the S phase. 

As observed in Figure 3.4, the distribution of the S residuals features a higher dispersion 

as compared to the corresponding distribution of the P residuals, being the former phase 

is more affected by the complexity of the media, which might generate converted phases. 

However, these results suggest that the automatic identifications are accurate enough to 

be used within the location stage, without leading to significant biases as compared to the 

manual locations. 

We further assessed the accuracy of the automatic phase arrival times by investigating 

the dependency of the predictions to the training datasets used for generating the deep 

learning models. In Sections 2.3.1 and 2.3.2, we used the ML technique EQTransformer 

(Mousavi et al., 2020), originally trained on the worldwide STEAD dataset (Mousavi et 

al., 2019, see Figure 2.6), containing ~1 M earthquake and ~300 K noise waveforms 

recorded by ~ 2600 seismic stations at epicentral distances up to 300 km. For the most 

populated sequence analysed in Section 2.3.1, (Rocca San Felice, ID 1), we evaluated 

again the residual distributions for P and S phases using different training datasets for 

EQT. Aiming to create standardized formats for seismological analysis, Woollam et al. 

(2022) proposed a toolbox, known as Seisbench, collecting homogenized benchmark 

datasets and trained machine learning models. Seisbench provides a unified environment 
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for applying deep learning models to seismic waveforms, and for accessing and training 

machine learning algorithms on seismic datasets. SeisBench has been built to alleviate 

traditional bottlenecks when applying machine learning techniques to seismic data,  in 

particular the steps of data preparation, collection and labelling. In this analysis, we 

selected the EQT models trained on INSTANCE (Michelini et al., 2021) and IQUIQUE 

(Woollam et al., 2019), reported in the left and right panels of Figure 3.5, respectively. 

 

Figure 3.5) INSTANCE (left panel) and IQUIQUE (right panel) datasets, implemented in Seisbench. For 
estimating the phase arrival times, we used EQT models trained individually on one of the considered 
datasets.  

The INSTANCE benchmark dataset is a dataset of signals compiled by the Istituto 

Nazionale di Geofisica e Vulcanologia (INGV), containing ~130,000 noise traces and 

~1.2 million three-component waveforms, associated with ~50,000 earthquakes, whose 

magnitudes range from 0 - 6.5. The IQUIQE dataset contains 13,400 instances of picked 

arrivals from the aftershock sequence following the Mw=8.1 Iquique earthquake 

occurring in Northern Chile in 2014. Conversely to the INSTANCE model, which also 

included noise waveforms in the dataset, the IQUIQUE waveforms only contain examples 

of earthquakes. We used Seisbench to apply these two versions of EQT on the same 

stations used in Section 2.3.1 for the detection analysis of the Rocca San Felice seismic 

sequence. In Figure 3.6, we report the residual distributions, as compared to the manual 

identifications, for the P and S phases of both models, along with the results from the 

original STEAD model used in Scotto di Uccio et al. (2023). The results suggest that 

machine learning models trained on massive datasets (STEAD and INSTANCE) feature 

similar performance, both in terms of accuracy and number of declared phase arrival 

times. Phase arrival times provided by both models feature zero-mean residuals as 

compared to the manual identifications for both phases, with a slightly larger dispersion 

for the S phase, coherently with what is observed in Figure 3.4. 
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Figure 3.6) Residual distributions for P and S phase arrival times predicted by EQT models trained on 

STEAD (upper panel), INSTANCE (central panel) and IQUIQUE (lower panel), respectively. The distribution 
observed for the INSTANCE training dataset is coherent with the STEAD dataset. 

These characteristics suggest that machine learning models trained on massive datasets 

can well generalize even on areas that are not fully representative of the training dataset, 
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implying that during the training stage the model has correctly learnt the global features 

characterizing the phase arrival times. Conversely, we observe degraded results when 

analyzing the automatic phase arrival times provided by the EQT model trained on  

IQUIQUE dataset. We note a strongly diminished number of phase arrival times declared 

by the model, being almost two orders of magnitude lower than the number of picks 

provided by EQT trained on both STEAD and INSTANCE datasets. Moreover, the 

accuracy of the picks declared by the model trained on IQUIQUE dataset is not 

compatible with the former results. While the number of declared P arrival times (7) is 

too low to be discussed statistically, the distribution of the S residuals features a strong 

non-zero mean, being centred in -0.6 s, implying that automatic phase arrival times tend 

to precede the manual identifications. We attribute this result to the differences in the 

seismogenic sources between the local IQUIQUE dataset and the target seismicity and to 

the low number of events included in the training catalog. While for the STEAD and 

INSTANCE catalogs, the number of earthquakes was typically in the order of 

tens/hundreds thousands (Mousavi et al., 2019; Michelini et al., 2021), the IQUIQUE 

catalog contained 411 events only (Woollam et al., 2019). Moreover, the typical depth of 

the IQUIQUE earthquakes varies between 40 and 150 km, being significantly deeper than 

the crustal earthquake which are we targeting. On the other hand, STEAD and 

INSTANCE catalogs are more populated by crustal earthquakes and thus learnt better the 

characteristics of the propagating waves. 

Finally, to assess the dependency of the quality of the hypocentral coordinates on the 

adopted velocity model, we compared the location results from different velocity models. 
We focus here on the Rocca San Felice seismic sequence (ID 1 in Section 2.3.1) and, 

starting from a 1-D layered velocity model tailored for the Irpinia area (Matrullo et al., 

2013, red line in Figure 3.7), we derived two gradient models, which smooth the 

discontinuities in the wave velocity across layer boundaries, by linearly interpolating 

values between either at the top (blue line) or at the middle points of the layers (green 

line). We note that the velocity model obtained by fixing the velocity value at the top of 

the layers systematically overestimates the velocity in each layer, while the continuous 

model obtaining by fixing the velocity of the layer at its mean point alternates depths for 

which the velocity is either underestimated or overestimated as compared to the model of 

Matrullo et al. (2013). We compared the location accuracy in terms of the corresponding 

uncertainties (horizontal and vertical hypocenter uncertainties and root-mean-square of 

the travel time residuals, RMS). Figure 3.8 summarizes the distribution of the 

corresponding location uncertainties for each model, color-coded as in Figure 3.7. Figure 

3.7 contains the velocity models for the P wave, but we applied a similar interpolation 

also for the S wave, using a constant Vp/Vs ratio (1.85, Matrullo et al., 2013). 
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Figure 3.7) Smooth velocity model obtained from the interpolation of the Matrullo et al., (2013) P wave 

velocity model. The blue line represents the model obtained interpolating the velocity at the top depth of the 
layers in Matrullo et al. (2013), while the green blue line represents the model obtained interpolating the 
velocity at the mean depth of the layers 

 

Figure 3.8) Horizontal hypocenter uncertainty (first column), vertical location uncertainty (second column) 
and RMS (third column) for the obtained location using the 1D layer velocity model (red), the continuous 

model obtained by interpolating the top of each layer (blue) and the continuous model obtained by 
interpolating the mean depths of each layer (green). The text reports the median and the MAD values 
observed for each distribution. 
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Despite observing comparable median RMS among the results obtained from the three 

models, the interpolated model which fixes the velocity at the mean point of the layers 

features the lowest spatial location uncertainties, as compared to the other two candidate 

models. The retrieved spatial uncertainties are reduced by ~10 % and ~15 % for the 

median horizontal and vertical hypocenter errors, respectively. Moreover, since the 

velocity model obtained by interpolating the velocity from the top of the layers (blue line 

in Figure 3.7), constantly overestimates the velocity of the waves at each depth, it results 

in greater depths, as compared to the other two models. Following these results, we 

adopted the continuous velocity model obtained by fixing the values at the mean point of 

the layers for the absolute locations in this chapter. 

3.3 Unveiling seismogenic structures through accurate 

earthquake location 

In this section, we report the location results for the seismicity occurring in the Southern 

Apennines and within the Campi Flegrei caldera. In Section 3.3.1, we locate the enhanced 

catalogs for seismic sequences in Southern Apennines, generated in Section 2.3.1, 

integrating absolute and relative location techniques. In Section 3.3.2, we performe an 

analogous location analysis using the enhanced catalogs generated from the data recorded 

by the dense arrays in Southern Apennines during its 1-year-long deployment. In Section 

3.3.3, we investigate the seismicity of the last 10 years that occurred within the Campi 

Flegrei caldera to illuminate the seismogenic structures activated during the ongoing 

unrest phase. 

3.3.1 Depicting fault segments from the analysis of enhanced catalogs for 
seismic sequences 

In Section 2.3.1, we generated enhanced catalogs for 10 seismic sequences in Southern 

Apennines, integrating machine learning and template matching detection techniques 

(Scotto di Uccio et al., 2023). The obtained seismic catalogs improved the content of 

existing manual detection lists by a factor of ~7, leading to the declaration of ~1.8k 

earthquakes. The number of located events in the manual catalogs, obtained using a 

linearized approach for determining the absolute position of the hypocenters, is 265. We 

recall that an event is included in the manual INFO catalog if at least 4 phases have been 

picked on the records, including one S phase, and at least one station contains both P and 

S picks. Moreover, individual phase residuals are required to be smaller than 0.5 and 1.0 

s for the P and S waves, respectively. In Figure 3.9, we report the absolute locations of 

the events from the manual INFO catalog for all the sequences in the left panel, along 

with the seismicity projected on a vertical plane, oriented according to a characteristic 



88 CHAPTER 3.    Accurate determination of earthquake locations 
 

direction for the Irpinia region (N40E) in the right panel. This angle marks the orthogonal 

direction to the strike of the major faults responsible for the 1980 M 6.9 earthquake 

(Bernard & Zollo, 1989). 

 

Figure 3.9) Absolute location for the 10 seismic sequences from the manual INFO catalog. In the left panel, 
the black segments mark the faults activated during the 1980 M 6.9 earthquake. In the right panel, the 
seismicity is projected along a vertical plane oriented N40E, (A-A’ direction), orthogonal to the strike of the 

faults represented in the left panel. 

As results from the manual INFO catalog, hypocenters mainly appear to be scattered and 

sparse within the region affected by the seismic sequences, without clearly mapping 

seismic structures in the vertical cross-section of Figure 3.9. The spatial location 

uncertainties are as large as a few kilometers, enough to obscure the fault segments or 

patches on which the seismicity takes place. The median (mean) values of spatial location 

uncertainties for the events in the manual catalog are 0.9 km (1.4 km) and 1.3 km (2.6 

km) for the horizontal and vertical directions, respectively. Figure 3.10 summarizes the 

location uncertainties for the events in the manual catalogs. 

We performed accurate earthquake location for the enhanced seismic catalogs generated 

in Section 2.3.1, integrating the absolute location technique NLLoc (Lomax et al., 2000, 

Section 3.2.1) and the relative location approach HYPODD (Waldhauser & Ellsworth, 

2000, Section 3.2.2.1), using the parameterization described within the corresponding 

section (Scotto di Uccio et al., 2024a). For the absolute location with NLLoc, we used the 

available P and S arrival times from the enhanced catalogs of Scotto di Uccio et al. (2023). 

However, while within the detection analysis we limited the selected stations to the 5-7 

closest ones to the sequence’s centroid, to detect the lower-magnitude events, we here 

extended the starting phase-pick dataset to all the stations not included in the detection 

step of Scotto di Uccio et al. (2023), to ensure an appropriate azimuthal coverage. For the 

new stations, we selected the velocity records when available, and the acceleration data 
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as a second choice, following the same detection strategy used in Scotto di Uccio et al. 

(2023). 

 

Figure 3.10) Location uncertainties from the events in the manual catalogs. The left panel reports the 
horizontal uncertainties, the central panel reports the vertical uncertainties, while the right panel reports the 

root-mean-square of the travel time residuals. In each panel, 𝝁 indicates the median value of each 
distribution. 

Guided by the results presented in Section 3.2.1, we adopted a continuous velocity model 

obtained from Matrullo et al. (2013), fixing the velocity of the layers at the mean point of 

each layer (Figure 3.7), which resulted in the lowest median location uncertainties (Figure 

3.8). The described strategy led to the estimation of the absolute locations for 1130 events 

(∼60 % of the detection catalog of Scotto di Uccio et al., 2023). The number of absolute 

locations from the enhanced catalogs is 5 times larger than in the manual catalog, 

improving the number of located earthquakes by a factor 2.5 to 8 for each sequence, and 

providing a wide set of catalog and cross-correlation delay times for earthquake 

relocation. The cross-section in Figure 3.11, which was obtained analogously to the 

seismicity projection in Figure 3.9, reports a sparser hypocentral distribution, as 

compared to the locations in the manual catalog. However, it is worth recalling that the 

locations in the enhanced catalogs mainly refer to very low-magnitude events, which are 

typically less constrained than the higher-magnitude events included in the existing 

manual catalogs (Festa et al., 2021). In Figure 3.12, we report the hypocenter uncertainties 

for the absolute locations of the earthquakes in the enhanced catalogs. The median spatial 

uncertainties are estimated to be 1.6 km and 1.9 km for the horizontal and vertical 

locations, respectively, while the median RMS of the travel time residuals is 0.12 s.  
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Figure 3.11) Absolute locations for the enhanced catalogs of seismic sequences obtained in Scotto di Uccio 
et al. (2023). 1130 events (60% of the starting detection catalogs) have been located. 

 

Figure 3.12) Location uncertainties from the events in the manual catalogs. Left panel reports the horizontal 
uncertainties, central panel reports the vertical uncertainties, while the right panel reports the root-mean-
square of the travel time residuals 

Despite these values being larger than the corresponding median uncertainties for the 

locations of the manual catalog, when extracting the spatial location errors for the 

common events among the two detection lists, we observe that the automatic location 
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errors are typically lower than those of the manual catalog, especially for the uncertainties 

on the hypocentral depth. In Figure 3.13, we report the uncertainties for the shared events 

in the manual and enhanced catalogs. 

 

Figure 3.13) Distrbution of the spatial location uncertainties for common located events in the manual and 
automatic catalogs. The location uncertainties for the events located using the automatic phase arrival times 
typically show lower values. 

We attribute these features both to the accuracy of the automatic picks and to the choice 

of a continuous velocity model in the automatic location, which better reproduces the 

velocity variation than the 1D layer velocity model adopted in locating the manual 

catalog. Starting from the absolute positions of earthquakes estimated with NLLoc, we 

achieved double difference relocation with HYPODD (Waldhasuer & Ellsworth, 2000) 

using both catalog and cross-correlation differential travel times. We adopted a 1D 

velocity model of 20 thin layers, extracted from the continuous velocity model used in 

the absolute location, to minimize the inconsistency between the models. Using an 

iterative and dynamic weighting of the catalog and cross-correlation differential travel 

times, we achieved hypocentral relocations for 550 events, from 8 out of the 10 seismic 

sequences analyzed in Scotto di Uccio et al. (2023). The two sequences for which we did 

not get relocations (IDX 7 and IDX 9 in Scotto di Uccio et al., 2023) feature the lowest 

number of detections (about 40 events). The total number of relocated events represents 

∼ 30% of the enhanced catalog. A similar fraction is observed for each sequence and 

appears coherent with earthquake relocation in other template-matching-derived catalogs 
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(Cabrera et al., 2022; Ross et al., 2019). The reduction in the number of well-located 

events is driven by the different impact of the waveform similarity during the detection 

and location phases. Template matching detection algorithms leverage stacked cross-

correlations across the entire network (Chamberlain et al., 2018; Vuan et al., 2018), 

resulting in a global similarity value, to which stations with both high and low cross-

correlation values contribute. High-quality thresholds on the similarity coefficient for 

cross-correlation differential travel times requested by accurate double difference 

locations (Michele et al., 2020; Waldhauser et al., 2021), limit the number of available 

stations, especially for low-magnitude events. Figure 3.14 shows the double difference 

relocation of the earthquakes in the enhanced catalogs (sequence indexing with respect to 

Scotto di Uccio et al., 2023). In the left panel, we show the position of epicenters with 

respect to the seismic network. In the right panel, the hypocenters are projected along the 

vertical plane A-A’ oriented perpendicular to the trend of the Apennines (N40°E). This 

plane represents the direction orthogonal to the main structures of the area, generating the 

1980 Irpinia earthquake. For all the sequences, apart from the Rocca San Felice sequence 

(ID 1), where it was unfeasible to adopt the SVD approach due to the higher number of 

earthquakes, we estimated the statistically robust relative location uncertainties from the 

covariance matrix (Waldhauser & Ellsworth, 2000). From the inversion of the covariance 

matrix, we obtained median spatial location uncertainties of 70 m, 76 m and 119 m along 

the East, North and vertical direction, respectively. In Figure 3.15 we report the 

distribution of the spatial location uncertainties estimated with the SVD. 

 

Figure 3.14) Double difference relocation of the enhanced catalogs of Scotto di Uccio et al. (2023). The 
representation of the cross-section shows that the seismicity patterns feature clear alignments 
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Figure 3.15) Distribution of the spatial location uncertainties for the double difference relocation of the events 

in the enhanced catalogs. The spatial scale in this figure is much lower than the analogous representation 
of the kilometric-size location uncertainties in Figures 2.11 and 2.12 

For the Rocca San Felice seismic sequence, marked in Figure 3.14 with yellow dots (IDX 

1) and featuring the highest number of both detections and relocated events (∼800 and 

250 events respectively), we estimated location uncertainties using a bootstrap strategy, 

realizing 200 independent double difference location runs on subsets of events within the 

sequence (see Section 3.2.2.1). Each subset was obtained by randomly extracting 150 

detected events, 60 % of which belong to the machine learning catalog. and we evaluated 

the location uncertainties by considering the distance of each event from the respective 

cluster’s centroid in all the runs where it was located.  This strategy led to median values 

of location uncertainties of 91 m, 31 m and 105 m in the East, North and vertical directions 

respectively, comparable to the robust median values extracted from the SVD inversion. 

The cross-section (right panel of Figure 3.14) shows that the seismicity patterns feature 

clear alignments and a high degree of clustering, highlighting km-sized structures that 

share similar dips. For all sequences, the spatial extent of the sequences depicted by 

relocations is much greater than what is expected from the total released seismic moment, 

extending for 1–3 km along the depth, longer than what is suggested by scaling laws for 

M < 4 earthquakes, and features a NW-SE-dipping plane. Integrating the visualization of 

the absolute (Figure 3.11) and relative (Figure 3.14) hypocenter location, when mapping 

the seismic sequences at depth, their location is generally not compatible with the faults 

that hosted the 1980 event - based on either the fault trace at the surface (Westaway & 

Jackson, 1987) or the fualt dip and geometry estimated from seismic and levelling data 

(Bernard & Zollo, 1989; Amoruso et al., 2005). This indicates that seismic sequences 

ruptured small patches of secondary, sub-parallel segments, as compared to the main 

structure of the M 6.9 earthquake. 
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Although the relocated catalog is only twice as large as the manual catalog, the 

improvement in cluster definition and spatial resolution is much more significant, 

allowing the identification of alignments and structures at a kilometric scale, that were 

not clearly illuminated from the manual catalog (Palo et al., 2023a), owing to the wide 

increase in the number of differential travel-times. As an example, for the Rocca San 

Felice sequence, we used 97.5 k catalog differential times (47k for the P phase, 50.5k for 

the S phase) and 85k CC delay times (31k for the P phase, 54k for the S phase), which 

was more than one order of magnitude as compared to the differential travel -times 

extracted from the manual catalog (Festa et al., 2021). 

The high-resolution earthquake location allows us to track the spatiotemporal evolution 

of the seismic sequence. An interesting case is represented by the Rocca San Felice 

seismic sequence, which was activated through the occurrence of a 𝑀𝑙 3.0 earthquake and 

featured a similar magnitude event (𝑀𝑙 2.8) almost two days later. When zooming on the 

sequence location (Figure 3.16 - left panel), the epicenters clearly suggest the presence of 

two clusters, at a distance of 5 km from each other. The projection of the seismicity along 

the vertical plane oriented N40°E (Figure 3.16 – right panel), indicates that the two 

clusters feature similar orientations but occurred at different depths: the shallower one is 

mostly confined between 6 km and 9 km, and the deeper one between 9.5 km and 11 km. 

The two clusters were activated at different times during the sequence, as shown in Figure 

3.16 – right panel, where colors denote the occurrence time relative to the mainshock. 

The foreshocks (pink circles) and the events that occurred within the first two days of the 

mainshock (indicated with a black star) illuminate a first 4-km-long segment with a dip 

of 55°, coherently with the focal mechanism estimated by Festa et al. (2021). Two days 

after the mainshock, the occurrence of a 𝑀𝑙  2.8 event activated the deeper secondary 

patch, featuring a slightly shorter extent. 

 

Figure 3.16) Left panel: Spatio-temporal evolution of the epicenters for the Rocca San Felice seismic 

sequence (IDX 1), colored according to the occurrence time from the main event. The main event is 
represented by a black star. Right panel: Cross-section colored according to the occurrence time from the 
main event. 
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The presence of two separated clusters was not recognized in the previous work of Festa 

et al. (2021) and is supported by the change in the first station recording the P wave 

arrival, that occurred at the station RSF3, for events in the first cluster, and at LIO3, for 

events in the second one. The improvement in the double difference relocation, as 

compared to the results of Festa et al. (2021), who analysed the same seismic sequence 

but using just the 48 highest magnitude events, comes from the combination of a deeper 

event catalog, but also from a larger number of picks per event. Indeed, for most of the 

events we retrieved picks and waveforms also for the accelerometric station SALI, located 

close to the centroid’s epicenter, indicating that strong motion sensors can provide useful 

information even for microseismic events if their sensitivity is high enough (for SALI it 

is 4.0 V/m/s2). In Chapter 4, we will characterize the source properties for these 

sequences, investigating the source parameters and the stress release model, aiming to 

understand the evolution of the seismic sequences along the fault plane.  

3.3.2 Using ultra-microseismic events for illuminating fault segments 

In Section 2.3.2 we generated enhanced seismic catalogs from seismic records collected 

within a temporary experiment in Southern Apennines consisting in the deployment of 

200 seismic stations organized in 20 dense arrays. We used the approach of Scotto di 

Uccio et al. (2023), integrating machine learning and template matching techniques on 

overlapping subnetworks of 6 arrays, aiming to identify very low-magnitude events. The 

resulting catalog from the one-year monitoring was composed of ~3.6k earthquakes, 

increasing the existing manual catalogs of the same period by a factor higher than 8 and 

including as many earthquakes as there are in the manual catalog from 15 years of 

continuous monitoring in the area using the ordinary seismic network. 

In this section, we perform earthquake relocation for the enhanced catalog using the same 

strategy proposed in Section 3.3.1. We initially obtain absolute locations of the events 

using NLLoc and a 1D layer velocity model using the automatic phase arrival times. A 

pick refinement strategy was applied, based on cross-correlation and hierarchical 

clustering (Muzellec et al., 2024), for improving the quality of the phase arrival times. 

We thus relocate the events using the refined phase arrival times, finalizing the approach 

with the double difference relocation of the events using HYPODD. 

For earthquake location, we used ~47k P and ~72k S automatic phase arrival times. 

However, the spatial distribution of the stations providing the arrival times of seismic 

waves is not homogeneous, but some arrays tend to contribute more to the pick dataset. 

In Figure 3.17, we report the distribution of the P (left panel) and S (right panel) picks for 

the declared events among the arrays. A red pixel indicates the presence of the phase 

arrival time for the considered station, otherwise a blue pixel indicates the absence of a 

pick. From Figure 3.17, we note that arrays 06, 09 and 11 typically populate the set of 
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phase arrival times for most of the declared events. If we recall the spatial position of the 

arrays (Figure 2.23), we observe that these arrays were deployed in the central region of 

the Irpinia region. Therefore, this can be an indication of a higher seismicity rate in the 

region and/or a lower noise level around the installation sites, which led to a higher signal-

to-noise ratio for low-magnitude earthquakes. Moreover, we note that the density of the 

phase arrival times in the northern sector of the Irpinia (arrays 01 to 05) is much scarcer 

than the corresponding values in the central and southern regions. This might indicate a 

lower number of earthquakes that occurred in the northern region. This observation is 

supported by the earthquake location in the existing manual catalog as reported in Figure 

3.18. 

 

Figure 3.17) Distribution of the P (left panel) and S (right panel) phase arrival times for the 20 deployed 
arrays. Most of the phase arrival times are observed for the arrays 06, 09 and 11, which are deployed in the 
central region of the Southern Apennines. A red pixel indicates the presence of the phase arrival time for the 
considered station, otherwise a blue pixel indicates the absence of a pick. 
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Figure 3.18) Absolute location of the earthquakes in the manual catalog from September 2021 to August 

2022, obtained by selecting the stations of the ordinary seismic network. Most of the seismicity occurred in 
the central and southern section of the Irpinia region. The cross-sections on the right panel represent the 
projection of the hypocenters along vertical planes oriented N40E. For each sector, only hypocentres within 
15 km from the vertical planes are considered. 

Moreover, all the cross-sections for the three considered sectors do not feature any 

significant seismicity alignment. The seismicity is more confined at shallow depths in the 

northern and central sectors of the area, whilst deepening toward the southern sector of 

the Irpinia region. Analysing the manual catalog, a lack of seismicity emerges in the 

southeastern edge of the region (within planes B-B’ and C-C’), which was also identified 

by De Landro et al. (2015) and interpreted to be due to the contact between units with 

different rheological behaviour in response to the extensional NE–SW stress regime 

acting in the chain. 

Using the automatic phase arrival times and the parameterization of NLLoc as from 

Section 3.3.1, we obtained absolute hypocentral locations for the enhanced catalog, which 

are reported in Figure 3.19. The representation of the epicenters from the enhanced 

catalogs confirms the different seismicity density in the different sectors of the Irpinia 

region, being considerably higher in the central and southern sectors. The cross-section 

representations are much more populated than the analogous projections from the manual 

catalog, marking the presence of shallow (depth < 5 km) and deeper (depth > 5km) 

seismicity. Some clustered and grouped seismicity is visible in the cross-section 

representations along the B-B’ and C-C’ vertical planes, but the kilometric spatial 

location uncertainty (mean values for the horizontal and vertical hypocentral position of 

1.7 km and 2.5 km, respectively) and the high azimuthal gap for the lowest magnitude 

events, due to the low number of arrays at which they are recorded, prevent us from 
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clearly identifying seismicity patterns. Some artificially shallow seismicity (depth 

shallower than 3km) and the concentration of hypocentres on specific depth 

discontinuities of the velocity model might be due to the lack of sufficient data to 

constrain the focal depths. However, from the representation of the epicenter in the left 

panel of Figure 3.19, we can still appreciate the lack of seismicity in the southeastern 

edge, as from the manual catalog (Figure 3.18) and De Landro et al. (2015, Figure 2). 

 

Figure 3.19) Upper panel: Representation of the epicentes from the absolute location of the earthquakes in 
the enhanced catalogs. The seismicity appears to occur mainly in the central and Southern sector of the 
area. Lower panels: characteristic cross-section for the area. Absolute locations do not highlight seismicity 
alignments with activated structures. 
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To improve the accuracy of earthquake location, we performed double difference 

relocation of the enhanced catalogs. More than 80% of the automatic phase arrival times 

were refined (Muzellec et al., 2024), with an average corrective term within ±0.1 s for 

both P and S phases, implying the possibility to finely correct the phase arrival times for 

achieving decametric scale accuracy. The corresponding distribution of the phase 

residuals is reported in Figure 3.20.  

 

Figure 3.20) Time residuals among the automatic and phase arrival times refined through hierarchical 
clustering and cross-correlation alignment. The three distributions suggest that the automatic identifications 
are coherent but slight corrections are necessary to appreciate the small-scale spatial distance among the 
events. 

Using the refined phase arrival times, the absolute hypocentral locations were computed 

in a 3D model for the area (De Landro et al., 2015) to account for lateral velocity 

variations, and we selected these locations as starting positions for the double difference 

relocations. We obtain double-difference relocation for 2248 earthquakes, which 

represents ~65 % of the detected earthquakes in the enhanced catalog. This percentage is 

almost twice as large as the fraction of the relocated earthquakes in the enhanced catalogs 

for seismic sequences generated by adopting the same detection strategy and using the 

ordinary seismic network (Scotto di Uccio et al., 2024a). We address this result with the 
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use of dense arrays for seismic monitoring, providing a larger number of absolute phase 

arrival times even for low-magnitude events, translating into a huge number of catalog 

and cross-correlation differential travel times to be used during the event relocation. In 

Figure 3.21, we report the epicentral distribution for the relocated seismicity, coloring the 

cross-sections in the right panel according to the occurrence time of the earthquakes and 

splitting the dataset into two time periods to avoid overcrowding in the projections of the 

hypocenters. 

 

Figure 3.21) Double difference relocation of the enhanced catalog for the DETECT experiment, projected 
along the A-A’ vertical plane. In the left panel, the epicentral representation confirms higher seismicity in the 
central and Southern sector of the area, while strongly marking the lack of seismicity in the southeastern 
edge, within the black dashed circle. The cross-sections in the right panel reports the presence of sparse 

shallow seismicity within 5 km of depth, while the deeper seismicity tends to appear more clustered in space 
and time. The cluster within the cyan circle represents a swarm-like sequence of 30 earthquakes, associated 
with the occurrence of a 𝑴𝒍 2.1 event in Dentecane (AV), located outside the array deployment 

The epicentral representation of the relocated earthquakes in the enhanced catalog (left 

panel of Figure 3.21) further marks the observations that came out from the corresponding 

representation of the absolute locations. The seismicity in the central and southern sectors 

of the area is much more active than the corresponding seismicity in the Northern part. 

The seismicity in this latter section is mainly dominated by isolated events and a single 

swarm-like sequence of 30 earthquakes, associated with the occurrence of a 𝑀𝑙 2.1 event 

in Dentecane (AV), located outside the array deployment and marked by a cyan circle in 
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Figure 3.21. We performed a clustering analysis using DBSCAN to identify seismicity 

clustered in time and space, requiring a minimum number of 10 members for declaring a 

family. We declared 22 seismicity clusters, with the three most populated families 

composed of 110, 92 and 85 earthquakes, which occurred in the central and southern 

sectors within three swarm-like sequences culminated that with 𝑀𝑙 1.7, 𝑀𝑙  1.8 and 𝑀𝑙  1.9 

events, respectively. While the shallow seismicity appears to be sparse and diffuse, 

without being systematically clustered in space and time, the deeper seismicity mainly 

occurs close in space, illuminating seismicity patterns, such as the brown cluster in Figure 

3.22. We found that almost 50 % of the earthquakes that occurred deeper than 5 km belong 

to a seismic cluster, while this percentage is reduced to 20 % when considering the 

shallow seismicity.  

 

Figure 3.22) Clustering analysis using DBSCAN for identifying seismicity clusters. We declared 22 seismic 
clusters populated by at least 10 earthquakes. 

To better understand the seismicity in the different sections, we provide similar cross-

sections for each region of the Irpinia in Figure 3.23, reporting only the earthquakes 

occurring within 15 km from each vertical plane, splitting the dataset in two time periods. 

As depicted by the double difference relocation of earthquakes in the DETECT catalog, 

the seismicity varies in depth and location in a SE-NW direction. To the SE, seismicity 

extends well within the Apulian carbonate platform along and around a previously 

identified, SE-dipping, long-lived and multiply reactivated major fault (Amoroso et al., 

2014; Amoruso et al., 2005, 2011; Figure 3.24). However, seismicity becomes shallower 

northwestwards, and at the same time it steps to the right, before deepening again further 

north. This is interpreted as a result of fault segmentation, which involves the occurrence 

of a major dextral fault step to the NW (Figure 3.24), as also discussed in Camanni et al., 

(2024). The deep DETECT seismicity to the north illuminates the multiply reactivated, 

right-stepping, northern segment of the fault, which represents the third rupture episode 
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of the 1980 Irpinia earthquake. However, shallow seismicity in the fault step area is likely 

associated with extension-related detachment of rock volumes along the melange sitting 

on top of the Apulian carbonate platform (Mazzoli et al., 2001). This fault step is also 

clearly illuminated by seismic tomography (Amoroso et al., 2014). On the other hand, the 

fault associated with the first segment of the 1980 Irpinia earthquake (Ascione et al., 

2013), being located in its hanging wall, is very poorly illuminated during the DETECT 

(Figure 3.24). 

 

Figure 3.23: Cross-sections along vertical planes oriented N40E for the Northern, Central and Southern 
region of the Irpinia, as in Figure 3.18 and Figure 3.19. The left panels refer to the period from September 

1st 2021 to February 8th 2022, while the right panels contain the event from this latter date up to the end of 
the experiment. 
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Figure 3.24) Schematic representation of the step fault identified from the analysis of the DETECT 
seismcity 

3.3.3 Delineation of fault zones activated during the 2014–2024 unrest at the 
Campi Flegrei Caldera (Southern Italy) 

The Campi Flegrei caldera is an Italian high-risk volcano experiencing a progressively 

more intense long-term uplift, accompanied by increasing seismicity and geochemical 

emissions over the last two decades (Giudicepietro et al., 2024). The Campi Flegrei 

volcano is characterized by a nested caldera structure (Orsi, 2022; Vitale & Isaia, 2014), 

produced by two large explosive eruptions, referred to as the Campanian ignimbrite (CI) 

and the Neapolitan yellow tuff (NYT), at 39 ka and 14.5 ka, respectively (Orsi  et al., 

1992; Rosi et al., 1996). A series of ground uplift‐subsidence episodes (bradyseism), 

associated with seismic activity, affected the central area of Pozzuoli since the early 1950s 

(Del Gaudio et al., 2010), with the two most rapid uplift phases occurring in 1970–72 and 

1982–84, producing over 20,000 shallow earthquakes during the 1982–84 crisis (D'Auria 

et al., 2011). A long subsidence phase occurred between 1985 and 2005, with a relatively 

rare seismicity (Gaeta et al., 2003). Since 2005 a new monotonic uplift phenomenon 

started with unsteadily accelerating seismicity (Bevilacqua et al., 2022), especially from 
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2014 onwards, featuring even rates of 15 mm/month, which produced a clear increase in 

the number of seismic events and maximum magnitude, as reported in Figure 3.25. 

 

Figure 3.25) Left panel: Ground deformation recorded at the RITE GNSS station from 2014 up to March 
2024. The ground uplift reached the value of 100 cm. Vertical dashed lines mark the increase in the uplift 

rate, experienced in mid-2017, mid-2020 and end of 2022. Right panel: Temporal distribution of the number 
of earthquakes (black curve) and their maximum magnitude (red curve) in the same time interval. Both 
curves feature a marked increase, leading to seismic rates of several hundreds of events per month. Figure 
from Scotto di Uccio et al. (2024b). 

The cause of the bradyseism is strongly debated (e.g., Troise et al., 2019). The main 

hypotheses are that the deformation is either directly caused by pressure and/or volume 

changes induced by magma emplacement and intrusion at shallow depths beneath the 

caldera (Macedonio et al., 2014; Woo & Kilburn, 2010) or that it is due to the poroelastic 

response of the shallow hydrothermal system to changes in pore pressure and fluid content 

(Bonafede, 1991; Nespoli et al., 2023; Todesco, 2021). 

The Campi Flegrei volcano hosts a highly advanced, permanent multiparametric 

monitoring system (Bianco et al., 2022), including a dense seismic network consisting of 

21 inland stations that span, with variable density, through the whole caldera area. The 

highest density of stations occurs around Solfatara and Pisciarelli, sources of most of the 

historically recorded seismicity. The southern portion of the caldera is submerged and has 

represented a break in the network topology until the deployment of 4 marine underwater 

multi-parametric stations, which are part of the MEDUSA marine monitoring system 

(Iannaccone et al., 2018; see http://portale.ov.ingv.it/medusa). In the central part of the 

caldera, where most of the current seismicity occurs, the network can also locate 

earthquakes with a duration magnitude close to -1 (Bianco et al., 2022). 

Most of the earthquakes in the caldera occur at depths shallower than 3 km, showing a 

near‐elliptical epicentral distribution at the broad caldera scale, as depicted from the 

reference catalog of the Istituto Nazionale di Geofisica e Vulcanologia ‐ Osserva torio 

Vesuviano (INGV‐OV, https://terremoti.ov.ingv.it/gossip/flegrei/2024/index.html). 

Most of the seismicity occurs inland, beneath the Solfatara‐Pisciarelli area and north of 

http://portale.ov.ingv.it/medusa
https://terremoti.ov.ingv.it/gossip/flegrei/2024/index.html


 
105 CHAPTER 3.    Accurate determination of earthquake locations  
 

 

Pozzuoli, whereas it deepens offshore. Typically, events show duration magnitudes Md 

≤ 1; however since early 2023 there is a general increase in the average magnitude per 

month, including 30 events with Md ≥ 3 and the largest, Md 4.4 earthquake, occurring on 

20 May 2024, in the eastern sector of the caldera (Baraschino et al., 2024; Supino et al., 

2024).  

In this study, we obtained multi‐scale, high‐precision relocations of the ongoing 

seismicity using the integration of source-specific station travel time corrections and 

waveform coherence (NLLoc-SSST-coherence, Section 3.2.2.2, Lomax & Savvaidis, 

2022), allowing us to identify the location and geometry of the activated structures during 

this crisis in the central area of the caldera. We used these new results along with mapped 

surface faults and other geophysical information to better understand the mechanics of 

earthquake faulting, with the aim of identifying zones where future, larger magnitude 

earthquakes can potentially occur.  Figure 3.26 reports the event hypocenters as from the 

released catalog from INGV-OV for the considered time interval, composed of 9031 

earthquakes that occurred between 01/01/2014 and 14/03/2024. 

 

Figure 3.26) Shaded relief map of Campi Flegrei with simplified caldera boundaries (modified after Natale 

et al., 2022; Vitale & Isaia, 2014), showing the 2014–2024 seismicity recorded by INGV-Osservatorio 
Vesuviano seismic network, colored by hypocentral depth and magnitude-scaled. The upper-right inset 
shows the vertical deformation pattern 
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Inspecting the content of the manual catalog, we note that most of the events feature 

shallow depth and low magnitude values. In Figure 3.27 we report the depth and 

magnitude distributions for the considered earthquakes. 

 

Figure 3.27) Left panel: Depth distribution for the located earthquakes in the INGV-OV catalog from 
01/01/2014 to 14/03/2024. Right panel: Duration magnitude (Md) distribution for the earthquakes that 
occurred within the same time interval. 

We observe that more than 75 % of the earthquakes feature depths shallower than 2 km, 

with a clear different distribution for the onshore and offshore seismicity. While the 

onshore seismicity mainly occurs within the Solfatara-Pisciarelli area and features a 

median depth of 1.4 km, the offshore seismicity is typically twice deeper, with a median 

depth of 2.5 km. The median horizontal and vertical uncertainties in the INGV-OV 

hypocentral coordinates are 200 m, although they are crudely characterized with steps of 

100 m. Moreover, grid effects emerge when just zooming on the epicentral representation, 

suggesting the necessity of improving the location quality using advanced location 

techniques for highlighting seismogenic areas. On the other hand, the magnitude 

distribution suggests that most of the seismicity is represented by microseismic events, 

featuring duration magnitudes Md < 1 (92% of the located earthquakes in the INGV-OV 

catalog). 114 events featured Md > 2, while only 16 earthquakes were characterized by 

Md > 3. However, the generally shallower hypocentral depths, as compared to the tectonic 

seismicity, make these earthquakes widely felt, raised concerns among the population 

(850k inhabitants within the area affected by the ground deformation) and public 

authorities about the impact of seismic activity on buildings and infrastructure in the area. 

We used P and S arrival‐times from the earthquake catalog provided by the INGV—

Osservatorio Vesuviano from 01/01/2014 to 14/03/2024 

(https://terremoti.ov.ingv.it/gossip/flegrei), accessing the information for individual 

events. For these events, Md ranges between − 1.1 and 4.2, with the Md 4.2 event (27‐

09‐2023 01:35:34) having the largest number of picks (18 P‐, 6 S‐picks). Lower 

https://terremoti.ov.ingv.it/gossip/flegrei
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magnitude events (Md < 2) typically show 6–10 P, 2–4 S arrival times. We extracted 

arrival times from 18 stations of the INGV network (triangles in Figure 3.26), located 

within 15 km from the epicenters. Unfortunately, since not all the station recordings are 

publicly available, we recovered vertical component waveforms from nine velocimetric 

stations available on EIDA portal (https://eida.ingv.it; yellow triangles in 3.26) for 

evaluating the waveform coherence (Lomax & Savvaidis, 2022). 

We obtained multi-scale high-precision earthquake relocations with NLL-SSST-

coherence, which combines source-specific, station traveltime corrections (SSST) and 

stacking of probabilistic locations for nearby events based on inter-event waveform 

coherence (Lomax and Savvaidis, 2022). We generated SSST corrections which vary 

smoothly throughout a 3D volume to specify a source-position-dependent correction for 

each station and phase type. These corrections account for 3D variations in the velocity 

structure and corresponding distortion in source-receiver ray paths.  

In a second relocation stage, NLL-SSST-coherence reduces aleatoric location error by 

consolidating information across event locations based on waveform coherency between 

the events, expressed in terms of cross-correlation coefficient among couples of events 

located within 2 km after NLL-SSST relocation. The stacking over probabilistic locations 

for nearby events can be used to reduce the noise in this information and improve the 

location precision for individual, target events. In Figure 3.28 we show the vertical 

component of velocity records for a cluster of events, having cross-correlation above 0.5 

in the frequency band [2 – 10] Hz, recorded at the station COLB. We characterized the 

events in terms of the cross-correlation coefficients with the master event, displayed in 

the upper panel. Adopting NLLoc-SC, we relocated ~9000 earthquakes in the INGV-OV 

catalog from 01/01/2014 to 14/03/2024, using a smooth version of the velocity model 

extracted from Calò & Tramelli (2018). In Figure 3.29, we report the epicentral 

distribution of the relocated earthquakes, color-coded and scaled according to the duration 

magnitude. 

 

https://eida.ingv.it/
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Figure 3.28) Cluster of similar earthquakes recorded at station COLB. The coherency is evaluated in terms 

of the cross-correlation coefficient with the master event, reported in the upper panel of the figure. 
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Figure 3.29) Relocated NLL-SC seismicity 2014–2024 (Md ≥ − 0.8, 8133 events) represented as circles 

color-coded and scaled according to Md. 

Before proceeding with the interpretation of the seismicity clusters, we inspected the 

location uncertainties within each relocation stage, which are reported in the following 

Figure 3.30. We observe a significant decrease in the RMS of travel time residuals when 

comparing NNLoc to NNLoc-SSST results, indicating that station corrections tailored on 

source positions (SSST) significantly reduce the misfit of travel times, measured by the 

RMS. However, the spatial location uncertainties do not diminish significantly and show 

similar median values. When integrating waveform coherence in the procedure, we 

observe a dramatic reduction of location uncertainties by a factor of 4 (median values of 

0.13 km and 0.15 km on horizontal and vertical errors, respectively), while the RMS of 
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travel time residuals is similar to the value from NNLoc locations. We ascribe this latter 

behavior to the fact that NLLoc-SSST-coherence does not minimize the fit of the arrival 

times for single events, as it happens in the SSST stage. Instead, it combines multiple 

location results stacking the PDFs. This yields a minimization of the average residuals 

for events having similar waveforms. Indeed, the single event RMS of travel time 

residuals in this case is even less informative of location quality, because it does not 

concern the cost function to be minimized (Husen & Hardebeck, 2010; Michele et al., 

2019). 

 

Figure 3.30) Histograms of location uncertainties measured by vertical (top panel) and horizontal (middle 

panel) errors in km and RMS of travel time residuals in s (bottom panel). We found a dramatic reduction in 
the location errors due to the waveform coherence step of the location procedure. 

Nevertheless, waveform similarity allows to cluster events, significantly reducing spatial 

relocation uncertainties. We finally compared the location uncertainties obtained within 

this study with those extracted from the catalog of De Siena et al. (2024) (accessible at 

https://osf.io/9bdh2), which contains located events from 2005 to 2019, through the 

NLLoc software, using the 3D velocity model of Battaglia et al. (2008). We extracted 

~1100 common earthquakes in the 2014 – 2019 time window, whose distributions are 

reported in Figure 3.31. We report location errors compatible values with those resulting 

from the use of the 3D velocity model. Furthermore, the histograms of the spatial location 

uncertainties obtained using NLLoc-SSST-coherence are mostly populated within the 

first bin ([0 – 100] m), while the uncertainties estimated in De Siena et al. (2024) mainly 

populate the [100 – 200] m bin. This result supports the role and the effect of the SSST 

correction in the relocation stage as an alternative to the 3D velocity models. 

 

https://osf.io/9bdh2
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Figure 3.31) Histograms of location uncertainties from this study and from De Siena et al. (2024), for the 

earthquakes that occurred within 2014 and 2019, located using NLLoc and the 3D velocity model of Battaglia 
et al. (2008). 

The high‐precision NLL‐SC locations delineate several clusters and alignments of 

seismicity produced during the ongoing unrest at Campi Flegrei. Most of the seismicity 

concentrates in the shallow region around the Solfatara‐ Pisciarelli area. Here, epicenters 

define a ∼1 km × 1 km, horseshoe‐shaped structure, opening and deepening toward the 

northeast beneath the Agnano Plain, and slightly larger than the ∼0.5 km diameter of the 

Solfatara crater. Smaller‐scale shallow seismicity clusters, with a typical size of 100–300 

m, occur south and southwest of the Solfatara, along the coast of Pozzuoli. The most 

recent magnitude Md 3.6+ events, except for the largest magnitude Md 4.2, also occurred 

in the Solfatara‐Pisciarelli area, beneath the horseshoe‐shaped seismicity, at depths 

between 2 and 3 km. Northwest of the Solfatara crater, the seismicity depicts an E–W 

trending, 1.5–2.0-km-long structure composed of clusters at depths 2–3 km comparable 

to those of the major events in the Solfatara. Southeastward, off the coast of Bagnoli, a 

∼1 km-long, sub‐vertical alignment, trending ∼N–S is well defined by the relocated 

seismicity. This alignment hosts an Md 4.2 event which ruptured an area with 

characteristic size of 400–700 m, according to the estimated source radius (Scotto di 

Uccio et al., 2024b). Offshore, to the southwest, the seismicity deepens, down to ∼5 km, 

forming a WNW‐oriented alignment offshore of Bacoli, and a N–S alignment off the 

coast of Monte Nuovo/Baia. When observed on a large spatial scale, this seismicity forms 

a near‐elliptical shape, punctuated by the alignments and clusters containing the larger 

magnitude (Md > 3) events, with a lack or decreasing rate of seismicity offshore in the 

southeastern and northwestern sectors of the caldera. To understand the spatio-temporal 
evolution of the seismicity, we report the epicentral map for different time intervals in 

Figure 3.32, guided by the seismic rates observed in Figure 3.25. 
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Figure 3.32) Spatiotemporal evolution of the seismicity in periods 2014–2017, 2018–2019, 2020–2021 
and 2022–2024. The epicenters, scaled according to Md, are reported for earthquakes featuring Md ≥ − 
0.8 and ellipsoid major axis ≤2.0 km. 

The time evolution of the seismicity shows an increase in both the number of events and 

the maximum magnitude. In the period 2014–2019 a low seismicity rate is observed, 

mostly characterized by small magnitude (Md < 2) events occurring at depths shallower 

than 3 km. These events are located within a 1–2 km radius from the Solfatara crater 

which hosts, together with the adjacent Pisciarelli fumarolic field, the most vigorous 

hydrothermal activity in the caldera (Chiodini et al., 2017; Tamburello et al., 2019). The 

inspection of the 2014–2017 seismicity highlights a pattern coherent with the transfer 

structure discussed by Petrosino and De Siena (2021), which connects the uplifting 

central sector to the western Agnano plain bounding faults. During 2019–2024 the 

seismicity deepened, extended offshore and increased in maximum magnitude, while in 

the last 2 years (2022–2024), the seismicity spreads to a larger area, forming the elliptical, 

ring‐like structure, extending from inland north of Solfatara southwards through Bagnoli, 

westward toward Bacoli and Monte Nuovo. Uplift velocity rather than cumulative uplift 

seems to control localized seismicity production with the progressive activation of 

relatively long fracture zones at the margin of the uplifting resurgent dome (Bevilacqua 
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et al., 2022; Tramelli et al., 2022). In Figure 3.33, we report the spatial distribution of 

relocated seismicity for an integrated geo‐structural interpretation based on up‐to‐date 

reconstructions, integrating the known geological features and the focal mechanisms 

estimated for the Md > 3 earthquakes. 

 

Figure 3.33) Simplified structural map showing the relationship between the epicentral distribution of 
relocated seismicity in the 2022–2024 period with the elliptical pattern and the main volcano-tectonic 
structures. Black lines map known geological features. Focal mechanisms solutions for selected 2023 Md > 

3 events are shown (ID according to Scotto di Uccio et al., 2024b) with their color coded by depth. The cross-
sections for each vertical planes (panels b, c and d) report earthquakes occurred within the corresponding 
yellow box (s1, s2 and s3). 
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The near‐elliptical shape observed at the global scale of the caldera qualitatively 

resembles that of the 1982–84 crisis (e.g., Scarpa et al., 2022), whose seismicity 

distribution was related to a central collapsed portion of the caldera (De Natale et al.,  

2006). Only a part of the relocated seismicity, occurring in the offshore sector (Features 

A and B in Figure 3.33), is compatible with the caldera ring fault zone (e.g., Natale et al., 

2022). This offshore part appears related to the innermost portion of the composite caldera 

ring fault zone, recently mapped with high‐resolution seismic reflection profiles. Overall, 

only the deepest offshore seismicity, between 3 and 4 km depth, appears to fit and 

approximate the downward propagation of the south–western inner ring fault (Feature A 

in Figure 3.33), where the most frequent dip angles are between 60° and 80° (Natale et 

al., 2022). This is consistent with a steep (∼70°) inward‐dipping fault structure that 

justifies the 1.2 km horizontal gap between the surface projection of the mapped inner‐

ring fault and the ∼4 km deep epicenter locations. 

A novelty of the unrest is the activation of a ∼N–S trending sub‐vertical fault structure 

just offshore La Pietra (Feature C in Figure 3.33), which generated the largest magnitude 

(Md 4.2) event and is overall producing earthquakes between 2 and 3 km depth. This 

structure was not identified to date, since it lies in a region where no deep‐penetrating 

reflection profiles are available, and there was no particular seismicity clustering in the 

1982–84 crisis (e.g., Scarpa et al., 2022). From spectral modeling of seismic 

displacement, the average seismic moment and corner frequency of the event indicate a 

southward rupture extending over ∼750 m (Scotto di Uccio et al., 2024b) which is 

consistent with the rupture size delineated by nearby seismicity, and the calculated focal 

mechanism (event 7 in Figure 3.33, Scotto di Uccio et al., 2024b). The stress drop 

estimated for the Md 4.2 event (2–3 MPa) is quite large for its hypocentral depth, 

suggesting a high strength of rocks in the shallow caprock or underlying volcano‐

sedimentary basement (Vanorio & Kanitpanyacharoen, 2015). 

In the Solfatara area (Figure 3.33, Feature D) the relocated seismicity matches well 

several fault arrays mapped on the surface and subsurface geology. These fault arrays are 

related to the maar‐diatreme structure of Solfatara, whose polygonal shape is controlled 

by the main NW–SE and NE–SW faults, locally cross‐cut by smaller E–W faults exposed 

at Pisciarelli fumarole field across the western rim of Agnano caldera (Isaia et al., 2021). 

Hence, the horseshoe distribution of seismicity, deepening northeastward, fits with the 

presence of such an array of faults at depth (Isaia et al., 2021), which strongly controls 

the hydrothermal circulation in the area (Troiano et al., 2019). 

An approximately E–W-trending fault bounds the distribution of the relocated seismicity 

NE of the Solfatara crater (Figure 3.33, Feature E), on which a series of spatially and 

temporally correlated seismicity bursts occurred between 2 and 3 km depth. This structure 

corresponds to a south‐dipping normal fault with a left‐lateral component, with noticeable 
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surface expression at Agnano and Cigliano and corroborated by structural field data 

(Vitale et al., 2022). This extensional structure roughly matches a similar feature stably 

detected by ambient noise polarization (Petrosino & De Siena, 2021). The bursts of 

seismicity occur along a 5-km‐long structure, which reaches La Starza marine terrace to 

the west (Vitale et al., 2019), and is buried beneath the Agnano plain (Troiano et al., 

2022). Given its extension and assuming a stress drop as for the Md 4.2 earthquake, this 

structure might accommodate up to Mw ∼5.1 earthquakes. 

The NE–SW seismicity alignment (Feature F) on the western end of the Astroni crater is 

associated with the occurrence of seismicity bursts (∼50% of events occurred within 12 

hr from the previous ones) eventually caused by pressurized fluids moving along NE–

SW faults within the shallow (1.0–1.5 km) portion of the hydrothermal system. 

We can conclude that several structures delineated by the ongoing seismicity have 

correspondence in the shallow geological fault record, whose formation was not 

necessarily related to the same volcanic‐tectonic process (i.e., dome resurgence), but 

rather generated by other, more energetic processes, such as caldera collapse, minor 

volcano‐tectonic collapses, magma intrusions/migration. In general, the stress changes 

caused by the ongoing uplift of the central caldera appear to concentrate on weaker, pre‐

existing structures that are reactivated by small‐to‐moderate, sub‐kilometric fractures. All 

the Md 3.6+ earthquake ruptures, apart from the largest Md 4.2 event, have nucleated 

along segments of the complex SW–NE and SE–NW fault system array at the margins of 

the Solfatara crater. As for the Md 4.2 event, the evidence for relatively high‐stress drops 

and average slip (2–3 MPa, 3–5 cm; Scotto di Uccio et al., 2024b) suggests a possible 

effect of fluid‐driven, pore‐pressure increase at these faults that could favor the 

development of larger size fractures. 
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Microseismicity characterization 

 

4.1 Introduction 

In the previous chapters, we focused on the identification of earthquakes within 

continuous ground motion records using advanced detection techniques (Chapter 1) and 

we determined their locations within the crust using absolute and relative location 

methods (Chapter 2). Despite these analyses allowing us to infer crucial properties of the 

earthquake distribution, also in a statistical framework, and to identify seismogenic 

structures within complex fault systems, a clearer view of the mechanical properties of 

these structures can only be achieved through an accurate source characterization. In the 

earthquake location of enhanced catalogs for seismic sequences in the Southern 

Apennines (Section 3.3.1) we identified kilometric-size seismicity patterns from 

hypocenter determination. However, to infer the smaller-scale connection between the 

occurrence of nearby earthquakes and the evolution of the seismic sequences, we should 

compare the spatial hypocentral distances with the characteristic extensions of the 

involved ruptures. In this framework, the analysis of the source parameters can reveal the 

magnitude of the earthquakes, in terms of moment magnitude 𝑀𝑤 , along with its 

characteristics source dimension 𝑟. Source characterization also allows for the 

interpretation of the geometrical properties of the seismic source. In Chapter 2, we 

discussed the orientation of the seismogenic structures that were depicted by earthquake 

relocation, in terms of epicentral alignment and dipping of the identified pattern. These 

deductions can be confirmed by the investigation of focal mechanisms associated with 

seismic sources, which can reveal the orientation of the fault and direction of the slip for 

individual earthquakes within each cluster.  

In this chapter, we characterize seismic sources in different frameworks:  

• We investigate the source parameters for the relocated earthquakes in the enhanced 

catalogs of seismic sequences in Southern Apennines, determining the moment 
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magnitude, the rupture length and the stress conditions characterizing individual 

earthquakes (Section 4.3.1). 

• We build stress release models for the seismic sequences in Southern Apennines, based 

on the estimated source parameters, for inferring the spatiotemporal evolution and 

mechanical connection of earthquakes in the seismic sequences (Section 4.3.2). 

• We infer the focal mechanisms of low-magnitude events recorded by the dense array 

deployment, generating an enhanced catalog of geometrical features for the background 

seismicity in Southern Apennines using a machine learning technique (Section 4.3.3). We 

use the catalog of focal mechanisms to retrieve the stress field acting in the area (Section 

4.3.4) 

4.2 Source characterization 

4.2.1 Source parameters 

The characterization of the source parameters of small to moderate earthquakes is an 

important step in understanding the general mechanisms of earthquake nucleation and 

propagation, since it shines a light on the physical processes involving faults over 

different space and time scales. The analyses of the source parameters have depicted 

crucial features for understanding the occurrence of earthquakes in different contexts, 

revealing the magnitude and the area involved in the seismic ruptures (Abercrombie & 

Leary, 1993; Kwiatek et al., 2011; Zollo et al., 2014; Supino et al., 2019; Picozzi et al., 

2022a). Different techniques have been proposed for determining the source parameters, 

living either in the time domain (Urbancic et al., 1996; Colombelli & Zollo, 2015; Nazeri 

et al 2019; Al-Ismail et al., 2023; Longobardi et al., 2023) or in the frequency domain 

(Nakano et al., 2008; Picozzi et al., 2017; Supino et al., 2019; Shible et al., 2022). 

Regardless of the domain of development, these techniques aim to determine the moment 

magnitude and the rupture length of the considered earthquakes.  

In a seismological framework, the fault is a planar surface, which ideally separates two 

blocks approaching failure due to remote tectonic load. Along the fault surface, the 

fracture produces a discontinuity in the relative displacement with respect to the two lips 

of the surface itself (Figure 4.1). It is possible to describe the dislocation process related 

to the fracture through a function, known as the source function, which represents the 

relative displacement of two points belonging to the different blocks. Mathematically, the 

source function can be expressed as the relative displacement of the points along the 

points on the two sides of the fault as: 

Δ𝑢(𝝃, 𝑡) = 𝑢(𝝃, 𝑡)|Σ
+
−  𝑢(𝝃, 𝑡)|Σ

−
 (4.1) 
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Figure 4.1) Schematic representation of a fault, with area 𝜮 and normal vector 𝒏. The point P is indicated, 
in a reference frame along the fault, by the coordinates (𝝃𝟏 ,𝝃𝟐) and the dislocation occurs when the 

displacement on the 𝜮+side differs from the displacement on the 𝜮−side. Figure extracted from Zollo & Emolo 
(2011) 

Quantities such as the fractured area, average dislocation of the fault < Δ𝑢 > and the 

average rupture velocity characterized the fracture process. For seismic waves whose 

characteristic period is greater than, or comparable to, the duration of the rupture process 

and for wavelengths higher than the source dimension, it is possible to replace the real, 

complex rupture physics with its simpler average dislocation model. Thus, in this 

framework in which the source is assumed to be a geometrical point, the entire dislocation 

process can be described by a single average dislocation function associated with the 

barycenter of the fault surface. This latter model is simple enough to be described by an 

equivalent system of an orthogonal double-couple of forces, oriented in the direction of 

the slip and normal to the fault surface (Figure 4.2). The moment associated with one of 

the two couples is referred to as the seismic moment, which the moment magnitude scale 

is based on (Hanks & Kanamori, 1979). 

To describe the seismic source, we can express the observed seismogram at the recording 

station in 𝒙, 𝑈∗(𝒙, 𝑡) as the convolution of the effective source function 𝑆(𝝃, 𝑡), a term 

accounting for the propagation of the seismic waves within the medium 𝐺(𝒙, 𝝃, 𝑡) and the 

instrument response 𝐼(𝒙, 𝑡): 

𝑈∗(𝒙,𝑡) = 𝑆(𝝃, 𝑡) ∗ 𝐺(𝒙, 𝝃, 𝑡) ∗ 𝐼(𝒙, 𝑡) (4.2) 



120 CHAPTER 3.    Microseismicity characterization 
 

 

 

 

Figure 4.2) The real and complex rupture process can be simplified, under specific conditions, with an 
average dislocation model, which is analogous to the effect of a system of a double-couple of forces acting 
along and perpendicular to the fault plane. 

Through the convolution theorem, in frequency domain the former relation can be simply 

expressed as the product of the Fourier transform of the individual operators:  

𝑈∗(𝒙,𝜔) = 𝑆(𝝃,𝜔) 𝐺(𝒙, 𝝃,𝜔)𝐼(𝒙,𝜔) 
 

(4.3) 

Since the instrumental response is often known, we can remove the effect of the 

instrument from the recorded ground motion (with 𝑈 being the corrected displacement) 

and obtain a formulation for the Fourier transform of the source function as:  

𝑆(𝝃,𝜔) =
𝑈(𝒙,𝜔)

𝐺(𝒙, 𝝃,𝜔)
 

 

(4.4) 

In this analysis, we adopted the probabilistic inversion approach proposed by Supino et 

al. (2019) for retrieving the seismic moment and the rupture length from the S-wave 

displacement amplitude spectra of relocated events. This technique is based on a Bayesian 

inversion of the spectra and allows for an exploration of the correlations among 

parameters with a robust uncertainty estimation. The far-field displacement spectra of 

seismic signals feature characteristic properties for most of the real earthquakes: at  low 

frequencies, the amplitude spectrum presents a plateau level, while, at higher frequencies, 

the amplitude spectra start decaying following almost a power law. A characteristic 

displacement spectrum is reported in logarithmic scale in Figure 4.3. The plateau is 

observed in the frequency domain for which the source is seen as a point. In that domain, 

interaction among different points of the source cannot be seen due to wavelength 

resolution, and the source acts as a point with a unique behavior; this is called the flat 

level of the spectrum Ω0 , and mathematically, it can be written as the limit: 
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lim
𝜔→0

𝑈(𝜔) = ∫ 𝑈(𝑡)𝑑𝑡

∞

−∞

= Ω0 

 

(4.5) 

 

 

Figure 4.3) Theoretical displacement spectrum for an earthquake. At low frequency, the spectrum presents 
a plateau level, while at higher frequencies it starts decaying. 

In particular, in the point source approximation, Ω0 can be shown to be related to the total 

moment released by an earthquake, 𝑀0 (Aki & Richards, 2002). Beyond a certain 

frequency, namely the corner frequency 𝑓𝑐 , the observer has the resolution to distinguish 

the interactions from different points of the source; this interference effect can be modeled 

by a power-law. The observed corner frequency is therefore related to the effective size 

of the source. The simplest expression for the depicted spectral function can be expressed 

as (Brune 1970): 

𝑈(𝑓, 𝑓𝑐, Ω0) =
Ω0

1 + (
𝑓
𝑓𝑐
)
𝛾  

 

(4.6) 

If we consider a source function having the shape of a triangle, the representation of the 

far-field displacement spectrum confirms this relation, with the corner frequency 
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inversely proportional to the width of the triangle and the seismic moment proportional 

to the area of the triangle. 

In the case of the application of a double-couple point force, under the condition of 

isotropic and homogenous medium and far-field (𝑟 ≫ 𝜆), the radiated wavefield can be 

expressed as the sum of the contribution of the primary and secondary waves:  

𝑈𝐹𝐹(𝑟, 𝑡) = 𝑈𝐹𝐹
𝑃 (𝑟, 𝑡) + 𝑈𝐹𝐹

𝑆 (𝑟, 𝑡) 
 

(4.7) 

 

where 

𝑈𝐹𝐹
𝑃 (𝑟, 𝑡) =

1

4𝜋𝜌𝛼2
1

𝑟
𝑅𝑃 𝑆 (𝑡 −

𝑟

𝛼
) 

 

(4.8) 

𝑈𝐹𝐹
𝑆 (𝑟, 𝑡) =

1

4𝜋𝜌𝛽2
1

𝑟
𝑅𝑆 𝑆 (𝑡 −

𝑟

𝛽
) 

 

(4.9) 

In these relationships, 𝛼 and 𝛽 are the velocity of the P and S waves, respectively, S 

represents the source function and 𝑅𝑃 and 𝑅𝑆 refer to the radiation patterns of the two 

waves, respectively. Moreover, these relations suggest that the amplitude of the seismic 

waves attenuates while propagating from the source to the receiver by a factor of 1/R, 

referred to as the geometrical spreading. However, when a wave propagates through a 

real medium, wave amplitudes further attenuate as a result of the internal heat dissipation 

of the material; real propagation media are partially anelastic, and anelastic attenuation 

must be taken into account to model the propagation from the source of an earthquake to 

the receiver. The effect of the internal friction can be described by an anelastic attenuation 

factor (quality factor), 𝑄𝛼 , defined as follows: 

1

𝑄𝑎(𝑓)
= −

Δ𝐸

2𝜋𝐸
 

 

(4.10) 

where Δ𝐸 represents the energy lost due to non-elasticity, and 𝐸 is the peak deformation 

energy of the medium at a given frequency. The anelastic quality factor can be evaluated 

in the frequency domain through the analysis of the spectral decay. This approach exploits 

the a priori known spectral shape of a seismic event, reported in Equation 4.6. In this 

formulation, the low frequency behavior of the displacement spectra typically features a 

plateau level (Figure 4.3). If we consider the seismic signal recorded at a distance 𝑟1, 

which has undergone anelastic attenuation during its propagation from the source, and we 
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investigate the displacement spectra in the low frequency range, it should report a 

functional form as: 

| 𝑢(𝑟1, 𝑓)| ≅ 𝑘𝑒
−
𝜋𝑟1𝑓
𝛽𝑄𝑎  

 

(4.11) 

with 𝑘 containing information on the geometrical spreading. Extracting the logarithm of 

the former relation, we can obtain a linear relation expressing the amplitude of the 

displacement spectra at low frequencies as a function of the frequency itself:  

ln(| 𝑢(𝑟1,𝑓)|) = ln 𝑘 −
𝜋𝑟1
𝛽𝑄𝑎

𝑓 

 

(4.12) 

From the slope of the linear relation, known the propagation time from the source to the 

receiver and in the low frequency domain, it is possible to estimate the quality factor 𝑄𝑎. 

The ambiguities in modelling and isolating the source component from seismograms led 

to the development of the empirical approach in which a small, co-located smaller 

earthquake can be used as an empirical Green’s function for resolving the propagation 

effects of higher magnitude events (e.g. Mueller, 1985; Mori & Frankel, 1990). 

Performing the deconvolution requires no assumptions about source shape, path or site 

effects, and it can be applied at individual stations to investigate azimuthal variation in 

the source radiation. It enables the calculation of spectral ratios and deconvolved source 

time functions, making both spectral- and time-domain source modelling possible. 

Unfortunately, the requirement for a sufficiently closely located EGF earthquake, that is 

large enough to have adequate signal-to-noise ratio, but small enough compared to the 

target event to be an effective Green’s function, significantly limits the number of events 

that can be studied using this method. Furthermore, the need for both earthquake spectra 

to have signal above the noise level at all analysed frequencies, limits the available 

frequency range. Also, corner frequencies near the edge of the frequency range will have 

the largest uncertainties and their estimation will most likely be biased. 

Moreover, it is possible to include site effects (Anderson & Hough, 1984), by employing 

an exponential decay term, 𝑒−𝜋𝑘𝑓 , whose characteristic coefficient could be extracted for 

individual stations and phases. 

We can, thus, merge the individual propagation terms (geometrical spreading, anelastic 

attenuation and site effects) to build the propagation operator 𝐺 for the S waves as: 

𝐺(𝑄𝑎 , 𝑘, 𝑓) =
𝑅𝑠𝐹

4𝜋𝜌𝛽3
1

𝑟
𝑒
−
𝜋𝑓𝑇
𝑄𝑎 𝑒−𝜋𝑘𝑠𝑓  

(4.13) 
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Where T is the source-receiver travel time, 𝑄𝑎 is the quality factor related to anelastic 

attenuation and 𝑘𝑠 accounts for the site effect. 𝑅𝑠 is the average radiation pattern for the 

S waves (e.g Boore & Boatwright, 1984) and F is the free surface reflection coefficient. 

From the source parameters, we can infer further source properties as the source radius 𝑟 

and the static stress drop Δ𝜎. Madariaga (1976) defined relationships between the 

observed corner frequency 𝑓𝑐  from the displacement spectrum for the P and S waves and 

the source radius. By analyzing the spectra of the seismic radiation emitted at different 

angles with respect to the normal vector to the fault surface, Madariaga (1976) obtained 

average coefficients connecting 𝑓𝑐  to the source radius. In particular, for the S waves, he 

observed that 

𝑟 = 𝐾
𝛽

𝑓𝑐
 

(4.14) 

with 𝐾 = 0.21 and 𝛽 the velocity of the S waves. This relation indicates that the larger 

the source radius, the lower the resulting corner frequency. Several authors have proposed 

alternative rupture models, resulting in different values of the K coefficient (𝐾 =  0.37, 

Brune, 1970; 𝐾 =  0.26, Kaneko & Shearer, 2014), therefore providing different values 

for the source radius. Also, different kinematic and dynamic source models have been 

proposed to infer the stress drop from observations, such as a circular rupture (Brune, 

1970; Sato and Hirasawa, 1973; Madariaga, 1976) or a one-dimensional rupture (Haskell, 

1964). The static stress drop coincides with the total stress variation during the fracture 

process, and it is provided by the difference of stress between the initial stage and the 

stress when the rupture is at the end.  Analyzing the properties of the dynamic propagation 

of the rupture under the condition of uniform static stress release, Madariaga (1977) 

extracted a relation connecting Δ𝜎 to the average value of the final dislocation along the 

fault < Δ𝑢 >: 

Δ𝜎 =
𝜇

𝐶𝜎

< Δ𝑢 >

𝑊
 

 

(4.15) 

In the former relation, 𝜇 refers to the shear modulus, 𝑊 is the minor dimension of the 

fractured surface and 𝐶𝜎 is shape factor related to the geometry of the ruptured area. For 

circular fractures, an assumption holding for describing the source geometry of 

microseismic earthquakes, 𝐶𝜎 = 16/7𝜋. The simplest model of a static circular crack is 

obtained under the assumption of a constant stress drop Δ𝜎 (e.g. Keilis-Borok, 1959), can 

be expressed, accounting for the definition of the seismic moment 𝑀0, as: 

Δ𝜎 =
7

16

𝑀0

𝑟3
 

 

(4.16) 
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The interpretation and implications of the stress drop is still challenging and controversial 

within the community. Aki (1967) found the earthquake source to be relatively scale 

invariant, reported in Figure 4.4, with constant stress drop (albeit scattered across three 

orders of magnitude), although potentially with some dependence on faulting type or 

location (Kanamori & Anderson, 1975). Since then, numerous studies of earthquakes over 

a wide range of magnitudes, in various tectonic settings, involving increasing quantity 

and quality of seismic data to try and understand better the controlling factors, have led 

to considerable controversy and uncertainty. For example, some studies find earthquakes 

to be scale invariant over a wide magnitude range (e.g. Abercrombie, 1995; Kwiatek et 

al., 2011), whose conclusions agree with the representation of Figure 4.4. On the other 

hand, other studies concluded that the stress drop is higher for larger magnitude events 

(Malagnini et al., 2014; Bindi et al., 2020) 

 

Figure 4.4) Seismic moment as a function of the fault length for different ranges of magnitudes. Continuous 
black lines mark the theoretical constant stress drop scaling of 𝜟𝝈 = 𝟏 𝑴𝑷𝒂,𝟏𝟎 𝑴𝑷𝒂. Yellow and black dots 
refer to the M > 6 earthquakes, while the grey cloud refers to the moderate magnitude seismicity analysed 

in Madariaga et al. (1991). Source parameters for most of the earthquakes fall within the continuous black 
lines, supporting the hypothesis of constant stress drop scaling (figure extracted from Zollo & Emolo, 2011) 

In this analysis, we adopted the approach proposed by Supino et al. (2019) for estimating 

the source parameters in the frequency domain, by analyzing the S wave displacement 

spectra. The authors developed a probabilistic framework based on the conjunction of 

states of information between data and model, to jointly retrieve earthquake source 
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parameters and anelastic attenuation factor from inversion the of displacement amplitude 

spectra. The evaluation of the joint probability density function (PDF) enables us to 

consider the correlations between the parameters in their final estimations and their 

related uncertainties. Following this approach, the algorithm searches for the maximum 

of the a posteriori PDF through the basin hopping technique that couples a global 

exploration built on a Markov chain with a local deterministic maximization. Then 

statistical indicators (mean, variance and correlation coefficients) are computed on source 

parameters and anelastic attenuation through the integration of the PDF in the vicinity of 

the maximum likelihood solution. The definition of quality criteria based on the signal-

to-noise ratio (SNR) and similarity of the marginal PDFs with a Gaussian function, enable 

us to define the frequency domain for the inversion and to get rid of unconstrained 

solutions. 

4.2.2 Stress release modelling 

The evaluation of the stress perturbation on the fault plane due to the occurrence of 

earthquakes is crucial for assessing the evolution and the mechanical interactions between 

seismic events. Smaller earthquakes that sometimes occur in the vicinity of the main 

event’s hypocentre might provide insights into its nucleation process. One view is that 

they are triggered by aseismic slip over an extended area surrounding the eventual 

mainshock hypocentre (pre-slip model; Ellsworth & Beroza, 1995). If correct, the 

underlying aseismic slip may be a precursor to the earthquake (Bouchon et al., 2013). 

Alternatively, they might occur by neighbour-to-neighbour stress transfer between one 

foreshock and another one without an aseismic slip component (cascade model; Wyss & 

Brune, 1971; Ellsworth & Beroza, 1995; Ellsworth & Bulut, 2018). Under this 

interpretation, the foreshocks are no different than any other set of clustered earthquakes, 

and the mainshock is just a random outcome of triggering (Helmstetter & Sornette, 2003). 

One approach to discriminating between these end-member alternatives focuses on the 

spatial and temporal evolution of the foreshocks as revealed by their seismograms 

(Ellsworth & Bulut, 2018). If aseismic slip drives the foreshock-aftershock process, their 

hypocentres would be expected, on average, to populate the pre-slip zone. Under the 

cascade hypothesis, on the other hand, events would cluster in close enough proximity to 

one another to permit event-to-event triggering from either dynamic and/or static stress 

changes. 

To introduce the stress function, we consider a circular crack with the final slip being 

maximum at the center of the rupture and smoothly decreasing to zero, with the 

relationship generalized from the dynamic frictional model of Burridge and Halliday 

(1971), as proposed by Andrews (1980): 
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 𝐷(𝑟) = {𝐷0 [1 − (
𝑟

𝑎
)
2

]
3/2

𝑟 < 𝑎

0 𝑟 ≥ 𝑎

 (4.17) 

where 𝐷0 is the maximum slip, 𝑎 is the source radius and 𝑟 is the distance from the 

center of the fault. A representation of the final slip is in Figure 4.5. 

 

Figure 4.5) Slip as a function of the distance, in the model of Burridge & Halliday (1971).  

We compute the 2D Fourier transform of the slip function. Considering the wavenumber 

𝒌 = (𝑘𝑥, 𝑘𝑦) = 𝑘(𝑐𝑜𝑠 𝜑 , 𝑠𝑖𝑛 𝜑), the 2D Fourier transform is  

𝐷(𝒌) =
1

2𝜋
∬ 𝐷(𝑥, 𝑦)𝑒−𝑖𝒌⋅𝒓𝑑𝑥𝑑𝑦
𝑅2

 
(4.18) 

Using the azimuthal symmetry of the slip function, we can use polar coordinates to solve 

the integral and  get 

𝐷(𝒌) =
1

2𝜋
∫ 𝑟𝐷(𝑟)𝑑𝑟∫ 𝑒−𝑖𝑘𝑟(𝑐𝑜𝑠 𝜃𝑐𝑜𝑠 𝜑+𝑠𝑖𝑛𝜃 𝑠𝑖𝑛 𝜑)𝑑𝜃

2𝜋

0

𝑎

0

 
(4.19) 

 

since 𝒓 = (𝑥, 𝑦) = 𝑟(𝑐𝑜𝑠 𝜃 , 𝑠𝑖𝑛 𝜃). We note that  

∫ 𝑒−𝑖𝑘𝑟(𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑+𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛𝜑)𝑑𝜃
2𝜋

0

= ∫ 𝑒−𝑖𝑘𝑟 𝑐𝑜𝑠 𝜃𝑑𝜃
2𝜋

0

= 2𝜋𝐽0(𝑘𝑟) 
(4.20) 
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where 𝐽0 is the zero-order Bessel function of first kind. Thus, we get that the Fourier 

transform of the slip only depends on the modulus of the wavenumber and it can be 

written as  

𝐷(𝑘) = ∫ 𝑟𝐽0(𝑘𝑟)𝐷(𝑟)𝑑𝑟
𝑎

0

 
(4.21) 

  

which results into the Hankel transform of the function 𝐷(𝑟). The integral can be solved 

analytically, for the function 3.17, yielding  

𝐷(𝑘) =
𝐷0
𝑎3𝑘5

[3(3 − 𝑘2𝑎2) 𝑠𝑖𝑛( 𝑘𝑎) − 9𝑘𝑎 𝑐𝑜𝑠( 𝑘𝑎)] 
(4.22) 

The formula 4.22 can be also written as (Andrews, 1980): 

𝐷(𝑘) = 2√2
𝐷0𝑎

2

(𝑘𝑎)5/2
𝛤 (
5

2
) 𝐽5/2(𝑘𝑎) 

(4.23) 

Using the isotropic representation, as an approximation of the stiffness function 

(Andrews, 1980): 

𝑆(𝒌) = −
1

2
𝜇𝑘 

(4.24) 

This leads to the following representation of the shear stress: 

𝑆𝜎(𝒌) = 𝑆(𝒌)𝐷(𝒌) = −√2
𝐷0𝜇𝑎

(𝑘𝑎)3/2
𝛤 (
5

2
) 𝐽5/2(𝑘𝑎) 

(4.25) 

where 𝜇 is the shear modulus. Since the stress only depends on 𝑘, we can use the Hankel 

anti-transform to get the shear stress in the space domain: 

𝜎(𝑟) = ∫ 𝜎(𝑘)𝐽0(𝑘𝑟)𝑘𝑑𝑘 =
+∞

0

−√2𝐷0𝜇𝛤(
5

2
)∫

𝐽5/2(𝑘𝑎)𝐽0(𝑘𝑟)

(𝑘𝑎)1/2
𝑑𝑘

+∞

0

 
(4.26) 

This integral can be solved analytically as:  

𝜎(𝑟) =  
𝐷0𝜇

2𝑎
𝛤 (
5

2
)

{
 
 

 
 √𝜋

2
(3
𝑟2

𝑎2
− 2) 𝑟 < 𝑎

1

√𝜋
[𝑎𝑟𝑐𝑠𝑖𝑛

𝑎

𝑟
(
3𝑟2

𝑎2
− 2) − 3√

𝑟2

𝑎2
− 1] 𝑟 ≥ 𝑎

 

(4.27) 

A representation of the function 4.27 is shown Figure 4.6. 
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Figure 4.6) Static shear stress from the slip model of Figure 4.5. 

We can add the correction to Equation 4.24, to account for the non-isotropic component 

of the stiffness vector. According to Andrews (1980) the complete stiffness vector is:  

𝑆𝑐(𝒌) = −
1

2

𝜇

𝑘
(𝑘2 +

1

3
𝑘𝑥
2) = 𝑆(𝒌) −

1

6
𝜇𝑘
𝑘𝑥
2

𝑘2
= 𝑆(𝒌) −

1

6
𝜇𝑘 𝑐𝑜𝑠2𝜑

= 𝑆(𝒌) + 𝑆𝑎(𝒌) 

(4.28) 

where 𝑥 is the direction of the slip and we have assumed a Poissonian medium (𝜆 = 𝜇).  

The stress in the wavenumber domain writes:  

𝜎𝑐(𝒌) = 𝑆𝑐(𝒌)𝐷(𝒌) = 𝜎(𝒌)+ 𝑆𝑎(𝒌)𝐷(𝒌) (4.29) 

Because of the linearity of the Fourier transform, we have in the space domain that the 

stress is obtained as the summation of the contribution from 4.27, plus a correction which 

comes from the anti-transform of the function  

𝜎𝑝(𝒌) = 𝑆𝑎(𝒌)𝐷(𝒌) = −
√2

3

𝐷0𝜇𝑎

(𝑘𝑎)3/2
𝛤 (
5

2
) 𝐽5/2(𝑘𝑎) 𝑐𝑜𝑠

2𝜑 
(4.30) 

The Fourier anti-transform is of this function is  

𝜎𝑝(𝑟, 𝜃) = −
√2

6𝜋
𝐷0𝜇𝛤(

5

2
)∫

𝐽5/2(𝑘𝑎)

√𝑘𝑎
𝑑𝑘∫ 𝑒𝑖𝑘𝑟 𝑐𝑜𝑠(𝜑−𝜃) 𝑐𝑜𝑠2𝜑𝑑𝜑

2𝜋

0

+∞

0

 
(4.31) 

The inner integral is 
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∫ 𝑒𝑖𝑘𝑟 𝑐𝑜𝑠(𝜑−𝜃) 𝑐𝑜𝑠2 𝜑𝑑𝜑
2𝜋

0

=
1

2
∫ 𝑒𝑖𝑘𝑟 𝑐𝑜𝑠(𝜑−𝜃)[1 + 𝑐𝑜𝑠( 2𝜑)]𝑑𝜑
2𝜋

0

= 𝜋𝐽0(𝑘𝑟) − 𝜋𝐽2(𝑘𝑟) 𝑐𝑜𝑠( 2𝜃) 

(4.32) 

The outer integral is composed of two parts, leading to 

𝜎𝑝(𝑟, 𝜃) =
1

6
𝜎(𝑟) +

√2

6
𝑐𝑜𝑠(2𝜃)𝐷0𝜇𝛤(

5

2
)∫
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2

(𝑘𝑎)𝐽2(𝑘𝑟)

√𝑘𝑎
𝑑𝑘

+∞

0

=
1

6
𝜎(𝑟) + 𝜎2(𝑟, 𝜃) 

(4.33) 

Therefore, the final expression can be reported as  

𝜎𝑐(𝑟, 𝜃) =
7

6
𝜎(𝑟) + 𝜎2(𝑟, 𝜃) 

 

(4.34) 

with 𝜎(𝑟) represented in 4.27 and  

𝜎2(𝑟,𝜃) = −
1

24𝑎√𝜋
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)
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𝑎

𝑟
𝑟 > 𝑎

 

(4.35) 

The solution for the stress is shown in Figure 4.7. 

 

Figure 4.7) Complete stress solution, computed for 𝜽 = 𝟎 and 𝜽 = 𝝅/𝟐, compared to the approximate 
solution of Figure 4.6. 
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Within the analysis of the stress release model for seismic sequences in Southern 

Apennines (Section 4.3.1), we adopted the stress formulation accounting for the non- 

isotropic component of the stiffness. 

4.2.3 Focal mechanisms estimation 

Focal mechanisms are geometrical or mathematical representations of faulting during an 

earthquake. Fault planes can be characterized in terms of their geometrical properties, 

according to their orientation and direction of the slip vector on them. For determining 

the orientation of the fault plane in a reference frame, two angles are required: the strike 

angle (Φ𝑠) and the dip angle (𝛿). The slip direction is specified through another angle, 

referred to as the rake angle, (𝜆). The following Figure 4.8 schematically represents a 

fault plane with the relative reference angles. 

 

Figure 4.8) Definition of the fault orientation parameters (strike 𝜱𝒔 and dip 𝜹 angles) and the rake angle 𝝀 
indicating the orientation of the slip vector along the fault. 

The strike angle Φ𝑠 is the angle, measured clockwise, between the fault trace and the 

North. Its value ranges in [0, 2𝜋]. The strike angle marks the strike direction and looking 

in that direction, the hanging wall of the fault appears on the right side. On the other hand, 

the fault dip 𝛿 is the angle formed between the fault plane and the Earth’s surface, in the 

vertical plane orthogonal to the strike. The domain of the dip angle is bounded by 0 and 

𝜋/2. The orientation of the slip vector 𝚫𝒖, which indicates the displacement direction of 

the hanging wall relatively to the footwall, is described through the rake angle 𝜆, formed 

between the strike direction and the slip vector. The rake angle 𝜆 lives in the domain 

[−𝜋, 𝜋] and its value characterizes the faulting type. If 𝛿 is different from 0 and 𝜋/2  and 

𝜆 = 𝜋/2, the fault is known as a pure inverse fault (or thrust), while if 𝜆 = −𝜋/2 the fault 

is referred to be as pure normal (or direct) fault. For intermediate values of the rake angle, 

oblique-normal and oblique-reverse faulting can be defined. A strike-slip fault is 
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characterized by a horizontal slip vector (𝜆 = 0 or 𝜆 = 𝜋) and, particularly, a vertical 

strike slip fault is further characterized by 𝛿 =  𝜋/2. For this fault type, two distinctions 

can be performed according to the value of the rake angle: a right-lateral strike-slip fault 

features 𝜆 = 𝜋 while a left-lateral strike-fault is characterized by 𝜆 = 0. The following 

Figure 4.9 summarizes the fault types that were previously described. 

 

Figure 4.9) Schematic representations of different fault types: normal, strike-slip and inverse fault. 

For determining the focal mechanism, the introduction of the focal sphere is a crucial 

element. The focal sphere is defined as a sphere centred in the earthquake hypocenter, 

characterized by a unitary radius. The radiation pattern, which is the azimuthal variation 

of the amplitude of the motion produced by a seismic wave at a fixed distance, is 

represented along the surface of the focal sphere. In the focal mechanism estimation, the 

wave amplitude is backprojected along the ray path from the receiver to the source, to 

identify the point where the seismic ray intersects the focal sphere. It thus appears that 

the knowledge of the location of the hypocenter, along with the velocity distribution along 

the ray path, plays a critical role in the accuracy of the focal mechanism estimation. A 

point on the focal sphere can be identified by a set of polar coordinates (𝑖𝜉 ,Φ) in a 

reference system centred in the earthquake hypocenter, in which 𝑖𝜉 = 0 corresponds to 

the vertical direction oriented downward and  Φ represents the azimuth respect to the 

North direction (Figure 4.10). Since the focal sphere lies within the source near field, it 
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is not trivial to understand how the radiation pattern of the far field might correctly 

represent the displacement occurring near the source. 

 

Figure 4.10) Definition of the focal sphere and local polar coordinates in a reference frame centred in the 
earthquake hypocenter. 

For a point source, it is possible to show that near (NF), intermediate (IF) and far (FF) 

fields of the displacement in the position 𝒓, solution of the elastodynamic equation, might 

be expressed as a function of the time-dependent seismic moment 𝑀0(𝑡) as (Aki & 

Richards, 2002): 
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(4.36) 
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where  𝜌, 𝑣𝑝 and 𝑣𝑠 represent the density, P and S wave velocity, while 𝑟 refers to the 

source-receiver distance. We can consider cartesian and spherical reference frames for 

the analysis of the radiation pattern associated with a shear dislocation occurring along 

the fault surface, as in Figure 4.11.   

 

Figure 4.11) Cartesian and spherical reference frames for the analysis of the radiation pattern associated 
with a shear dislocation occurring along the fault surface. 

In this reference frame, the radiation pattern coefficients 𝑅 are given by: 

𝑅𝑁𝐹 = 9 sin2θcosΦ �̂�  − 6(cos2θcosΦ �̂� − 𝑐𝑜𝑠𝜃sinΦ Φ̂) 

𝑅𝐼𝐹𝑃 = 4 sin2θcosΦ �̂� − 2(cos2θcosΦ �̂� − 𝑐𝑜𝑠𝜃sinΦ Φ̂) 

                  𝑅𝐼𝐹𝑆 = −3 sin2θcosΦ �̂� + 3(cos2θcosΦ �̂� − 𝑐𝑜𝑠𝜃sinΦ Φ̂) 
 

(4.37) 

𝑅𝐹𝐹𝑃 = sin2θcosΦ �̂� 

𝑅𝐹𝐹𝑆 = cos2θcosΦ �̂� −  c𝑜𝑠𝜃sinΦ Φ̂) 
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From Equation 4.36, we can obtain the final value of displacement associated with a shear 

dislocation of seismic moment 𝑀0(𝑡), evaluating the limit 𝑡 → ∞ and assuming that the 

seismic moment features a constant value 𝑀0 for 𝑡 → ∞. We therefore obtain: 

𝑢(𝑟, 𝑡) =
𝑀0

4𝜋𝜌𝑟2
[
1

2
(
3

𝑣𝑠
2−

1

𝑣𝑝
2)𝑠𝑖𝑛2𝜃𝑐𝑜𝑠Φ �̂�

+
1

𝑣𝑝
2
(𝑐𝑜𝑠2𝜃𝑐𝑜𝑠Φ �̂� − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛Φ Φ̂)] 

 

 

(4.38) 

If we consider the displacement radiation pattern for a P wave associated with a shear 

dislocation in the reference frame of Figure 4.11, we expect that a particle of the medium 

that belongs to one of the quadrants deployed around the fault undergoes a compressive 

(directed toward the receiver) or extensional (directed towards the source) first motion. 

From Equation 4.37, the displacement for the P wave is proportional to 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠Φ. 

When Φ = 0,𝑢𝑟  is proportional to 𝑠𝑖𝑛2𝜃, which corresponds to a diagram with four lobes 

(left panel of Figure 4.12), reflecting the alternation of signs as in the right panel of Figure 

4.12. 

 

Figure 4.12) Left panel: P wave radiation pattern for a vertical strike-slip fault. Grey arrows indicate the slip 

direction with respect to the fault plane. Red arrows indicate the P wave amplitude for different 𝜽 angles. 
Right panel: First motion amplitude for the P wave respect to the fault and auxiliary planes. 

Since the function expressed in Equation 4.38 varies smoothly, it is straightforward to 

imagine that the polarity flip occurs when the amplitude of the first motion becomes zero. 
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Therefore, outside the area affected by the dislocation, there is a continuous transition 

from motion directed towards the source to motion directed in the opposite direction. The 

maximum amplitude for the P wave displacement is expected halfway of each of the four 

quadrants, therefore at 45° from the fault plane.  

The sign of the first motion for the P wave is preserved along the ray path towards every 

receiver. Thus, if enough readings of the P wave first motion signs are available, 

backprojecting the wave amplitudes from the receivers to the source it is possible to 

determine the orientation of the fault plane. However, the intrinsic symmetry in the four-

lobes radiation patterns makes it impossible to distinguish univocally the fault from the 

auxiliary plane, on which the slip features the opposite direction. The analysis of the 

hypocentral locations of the aftershocks of a high-magnitude event can help in tackling 

this issue and in determining the orientation of the fault plane. Indeed, aftershocks 

typically occur on the fault plane that has generated the higher magnitude event, 

disentangling the ambiguity among the two nodal planes. Moreover, distinguishing the 

fault from the auxiliary plane is intrinsically easier for strike-slip faults, since the planes 

feature an orthogonal orientation often directly visible on the Earth’s surface (Jones, 

1998; Prejean et al., 2002; Karasözen et al., 2014). Identifying the fault plane on normal 

or inverse faults is a more complex task that typically requires accurate hypocent ral 

locations of the aftershocks (Chiaraluce, 2012; De Matteis et al., 2012; Tarantino et al., 

2024). 

Information on the focal mechanisms is typically represented through the beachball 

diagram, which is built according to a lower hemisphere stereographic projection of the 

first motion P polarities observed at multiple seismic stations deployed around the 

epicenter. In the beachball representation, the colored quadrants indicate the volume of 

the medium around the source which undergoes extension, whereas the white quadrants 

refer to the segments which undergo compression. Figure 4.13 reports the beachball for 

the main fault types which were previously discussed. In these representations, the P and 

T axes, the principal axes of compression and extension respectively, are reported as 

points in the white and colored segments, respectively. Associating the orientation of the 

tectonic compression and extension axes to the P and T axes determined from the focal 

mechanisms of multiple earthquakes makes it possible to obtain the actual orientation of 

the regional stress field (Pasquale et al., 2009; De Matteis et al., 2012; Martinez-Garzon 

et al., 2014b). 
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Figure 4.13) Beachball representation for the focal mechanisms associated with the main fault types. The 
coloured quadrants indicate the volume of the medium around the source which undergoes extension, 
whereas the white quadrants refer to the segments which undergo compression. 

4.2.4 Stress field inversion 

Earthquakes are processes associated with the sudden rupture of rocks along cracks, 

fractures or faults exposed to stress field in the Earth’s crust. If the stress reaches a critical 

value exceeding the strength of faults or fractures in rocks, the accumulated energy of 

elastic deformation is partially spent for anelastic deformations in the focal zone and 

partially released and radiated in the form of seismic waves. Stress in the Earth’s crust 

causing earthquakes can be of tectonic or non-tectonic origin (Ruff, 2002). The main 

source of non-tectonic stress within the Earth is gravitational loading. This stress is 

vertical with the largest lateral variations near the Earth’s surface and being more 

homogeneous at depth. On the other hand, tectonic stress is mostly horizontal and 

originates in forces driving the plate motions (Heidbach et al., 2008). Principal stress 

directions in the Earth’s crust are frequently close to vertical and horizontal directions.  

This led Anderson (1951) to develop a simple scheme connecting the basic stress regimes 

in the Earth’s crust with the type of faulting on a pre-existing fault in the crust. Anderson 

(1951) distinguishes three possible combinations of magnitudes of principal stresses: the 

vertical stress is maximum, intermediate or minimum with respect to the horizontal 
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stresses. If the vertical stress is maximum, the hanging wall is moving downwards with 

respect to the footwall and the normal faulting is observed along a deeply steeping fault. 

If the vertical stress is minimum, the crust is in horizontal compression and the hanging 

wall is moving upwards with respect to the foot wall and reverse faulting is  observed 

along a shallow dipping fault. Finally, if the vertical stress is intermediate, the foot and 

hanging walls are moving horizontally and strike-slip faulting is observed along a nearly 

vertical fault. Obviously, the Anderson’s classification is simple and does not cover all 

observations but still it proved to be valid for many seismically active regions and helpful 

for a rough assessment of the stress regime (Simpson, 1997; Hardebeck & Michael, 

2006). In Figure 4.14, we visually summarize the faulting regimes according to the 

module of the acting stress. 

 

Figure 4.14) Anderson’s classification scheme of stress in the Earth’s crust (left) and corresponding faulting 
regimes (right). The focal mechanisms with the P and T axes are shown in the lower-hemisphere equal-area 

projection. 

Stress describes forces acting on a unit surface in a body. Since the acting force and the 

normal of the unit surface are vectors, the stress is a tensor described by nine components 
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𝝉 = [ 

𝜏11 𝜏12 𝜏13
𝜏21 𝜏22 𝜏23
𝜏31 𝜏32 𝜏33

] 
(4.39) 

 

The force acting on surface S with normal 𝒏 is called the traction 𝑻, and is expressed as: 

𝑇𝑖 = 𝜏𝑖𝑗𝑛𝑗 (4.40) 

with its normal and sheer components 𝜎𝑛 and 𝜏 

𝜎𝑛 = 𝑇𝑖𝑛𝑖 =  𝜏𝑖𝑗𝑛𝑖𝑛𝑗 (4.41) 

𝜏𝑁𝑖 = 𝑇𝑖 − 𝜎𝑛𝑛𝑖 = 𝜏𝑘𝑗𝑛𝑗(𝛿𝑖𝑘 − 𝑛𝑖𝑛𝑘) (4.42) 

 

where 𝑵 is the direction of the shear component 𝜏 and lies on the surface S. Since stress 

is defined as that part of forces in a body which causes its deformation but not rotation, 

the stress tensor must be symmetric (𝜏𝑖𝑗 = 𝜏𝑗𝑖), being described by six independent 

components only. 

The values of the stress tensor components depend on the system of coordinates, in which 

the components are measured. The coordinate system can always be rotated in the way 

that the stress tensor diagonalizes 

𝝉 = [ 

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] 
(4.43) 

 

where 𝜎1,𝜎2 and 𝜎3 are called the maximum, intermediate and minimum principal 

stresses (compression is positive): 

𝜎1 ≥  𝜎2 ≥ 𝜎3 (4.44) 

and the vectors defining this special coordinate system are called the principal stress 

directions or principal stress axes. Mathematically, the principal stresses and their 

directions are found by calculating the eigenvalues and eigenvectors of the stress tensor. 

The normal and shear components 𝜎𝑛 and 𝜏 of traction 𝑇 (also called the normal and shear 

stresses) read in the system of principal stress directions 

𝜎𝑛 =  𝜎1𝑛1
2 + 𝜎2𝑛2

2 + 𝜎3𝑛3
2 (4.45) 

𝜏2 = 𝜎1
2𝑛1

2 + 𝜎2
2𝑛2

2 + 𝜎3
2𝑛3

2 − 𝜎𝑛
2  (4.46) 
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If principal stresses 𝜎1, 𝜎2 and 𝜎3 are fixed, then normal and shear stresses 𝜎𝑛 and 𝜏 are 

just functions of the normal 𝒏 to a fault and can be plotted in the Mohr’s circle diagram 

(Figure 4.15). All permissible values of 𝜎𝑛 and 𝜏 must lie in the shaded area of the diagram 

(Mavko et al., 2020). 

 

Figure 4.15) Mohr’s circle diagram. Quantities 𝝈𝒏 and 𝝉 are the normal and shear stresses along a fault,  
𝝈𝟏 , 𝝈𝟐  and 𝝈𝟑  are the principal stresses. All permissible values of 𝝈𝒏 and 𝝉 acting on a fault must lie in the 
shaded area of the diagram 

If a rock is critically stressed in the Earth’s crust, the rock is fractured, with the occurrence 

of the earthquake. In principle, an earthquake can occur on a newly developed fracture or 

on a pre-existing fault in the Earth’s crust which is re-activated. The condition under 

which fracturing or faulting occurs is described by the so-called failure criteria. According 

to the Mohr-Coulomb failure criterion (Zoback, 2010; Scholz, 2019), shear stress on an 

activated fault must exceed the critical value 𝜏𝑐 , which is calculated from cohesion 𝐶, 

fault friction 𝜇, the normal stress 𝜎𝑛 and the pore pressure 𝑝: 

𝜏𝑐 = 𝐶 + 𝜇(𝜎𝑛 − 𝑝) (4.47) 

If the Mohr-Coulomb failure criterion is satisfied (red area in Figure 4.16), the fault 

becomes unstable and an earthquake occurs along this fault. The higher the shear stress 

difference, Δ𝜏 = 𝜏 − 𝜏𝑐 , the higher the instability of the fault and the higher the 

susceptibility of the fault to be activated. A fault most susceptible to failure is called 

“principal” fault (Vavryčuk, 2011) being defined by the point in which the Mohr-

Coulomb failure criterion touches the Mohr’s circle diagram (blue point in Figure 4.16). 
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Figure 4.16) Mohr-Coulomb failure criterion. The red area shows all possible orientations of fault planes 

which satisfy the Mohr-Coulomb failure criterion. The blue dot with shear and normal stresses 𝝉𝒄 and 𝝈𝒄  
denotes the principal fault plane which is optimally oriented with respect to stress, and C denotes the 
cohesion. 

A variety in possible orientations of unstable fault planes is demonstrated in Figure 4.17. 

The left-hand plot of Figure 4.17 shows the Mohr’s diagram, the failure criterion and the 

positions of randomly distributed unstable fault planes satisfying the failure criterion. The 

middle and right-hand plots of Figure 4.17 show the nodal lines and the P (pressure) and 

T (tension) axes for the corresponding focal mechanisms, respectively. The nodal lines 

and P/T axes inform us about the predominant type of faulting and about the scatter in the 

orientations of the unstable fault planes. Predominant faulting and its scatter are also 

projected into the scattering of the P/T axes, which form clusters of a specific shape and 

size (Figure 4.17, right-hand plot). 

 

Figure 4.17) Focal mechanisms associated with unstable fault planes. Randomly distributed fault planes 
inside the unstable area of the Mohr’s diagram (left), corresponding nodal lines (in the middle) and the P/T 
axes (right). The P (pressure) axes are marked by the red circles, the T (tension) axes by the blue crosses. 
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Several methods have been proposed for the determination of stress from a set of focal 

mechanisms of earthquakes (Maury et al., 2013). These methods usually assume that (1) 

the tectonic stress is uniform (homogeneous) in the region, (2) earthquakes occur on pre-

existing faults with varying orientations, (3) the slip vector points in the direction of shear 

stress on the fault (Wallace, 1951; Bott, 1959). Obviously, these conditions might not be 

always satisfied. In case that stress is not uniform, the area should be subdivided into 

smaller regions in which the assumption of uniform tectonic stress is reasonable. In this 

case, the stress inversion methods are capable of determining four parameters of the stress 

tensor: three angles defining the directions of the principal stress directions, 𝜎1,𝜎2 and 

𝜎3, and shape ratio R. The stress tensor is usually searched with the normalized maximum 

compressive stress (𝜎1 =  1) and with zero trace (𝑇𝑟(𝝉) = 𝜎1+ 𝜎2 + 𝜎3 = 0). The 

simplest approach to stress inversion is the method of Michael (1984). This method 

employs (4.40) expressed in the following form: 

𝜏𝑘𝑗𝑛𝑗(𝛿𝑖𝑘 − 𝑛𝑖𝑛𝑘) = 𝜏𝑁𝑖 (4.48) 

For evaluating the right-hand side of the equation, Michael (1984) applies the Wallace-

Bott assumption that direction N of the shear stress component of the traction T on a fault 

is identical to the slip direction s, and he further assumes that shear stress 𝜏 on activated 

faults has the same value for all studied earthquakes. Since the method cannot determine 

absolute stress values, 𝜏 is assumed to be 1. Therefore, 4.40 is expressed in the matrix 

form: 

𝑨𝒕 = 𝒔 (4.49) 

Where t is the vector of stress components 𝒕 = [𝜏11, 𝜏12, 𝜏13, 𝜏22, 𝜏23] and 𝑨 is the 3x5 

matrix calculated from the fault normal n 

𝐴 = [

𝑛1(𝑛2
2 + 2𝑛3

2) 𝑛2(1− 2𝑛1
2) 𝑛3(1− 2𝑛1

2)

𝑛2(−𝑛1
2 +𝑛3

2) 𝑛1(1− 2𝑛2
2) −2𝑛1𝑛2𝑛3

𝑛3(−2𝑛1
2−𝑛2

2) −2𝑛1𝑛2𝑛3 𝑛1(1− 2𝑛3
2)

   

𝑛1(−𝑛2
2 +𝑛3

2) −2𝑛1𝑛2𝑛3
𝑛2(𝑛1

2+2𝑛3
2) 𝑛3( 1− 2𝑛2

2)

𝑛3(−𝑛1
2− 2𝑛2

2) 𝑛2(1− 2𝑛3
2)

] 
(4.50) 

 

and s is the unit direction of the slip vector. Extending the former equation for focal 

mechanisms of K earthquakes with known fault normal n and slip directions s, a system 

of 3xK linear equations for five unknown components of the stress tensor is obtained. 

The system is solved using the generalized linear inversion in the L2-norm (Lay & 

Wallace, 1995) 

𝒕 = 𝑨−𝒈𝒔 (4.51) 

The basic drawback of this method is the necessity to know the orientations of the faults. 

Usually, when determining the focal mechanisms, the orientations of the two nodal planes 

are calculated: one nodal plane corresponding to the fault and the other nodal plane (called 
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the auxiliary plane) defining the slip direction. The inherent ambiguity of the focal 

mechanisms does not allow distinguishing easily which of the nodal planes is the fault. If 

the Michael’s method is used with incorrect orientations of the fault planes, the  accuracy 

of the retrieved stress tensor is decreased. On the other hand, the method is quite fast and 

it can be run repeatedly. Therefore, the confidence regions of the solution are determined 

using the standard bootstrap method (Michael, 1987). If the orientation of fault planes in 

the focal mechanisms is unknown, each nodal plane has a 50 % probability of being 

chosen during the bootstrap resampling. 

For implementing the stress field inversion, we followed the approach proposed by 

Martinez-Garzon et al. (2014a), known as MSATSI. Here, the input focal mechanisms 

can be grouped prior to the inversion into a number of subareas (“grid points”) distributed 

over a number of dimensions, from 0D and 1D (e.g., temporal changes of the stress field), 

up to 4D (e.g., spatiotemporal distribution). Then, a stress tensor for each grid point is 

inverted simultaneously using a damped least-squares inversion scheme in order to obtain 

a smoothed solution. The inversion provides the orientations of the three principal stress 

axes and a quantity (Φ) that reflects the relative stress magnitude R: 

Φ = 1− R =
σ2 − 𝜎3
𝜎1− 𝜎3

 (4.52) 

 

in which 𝜎1, 𝜎2 and 𝜎3 are the magnitudes of the three principal stress axes obtained from 

the deviatoric stress tensor. The relative stress magnitude quantifies whether the 

magnitude of the intermediate principal stress 𝜎2 is closer to the magnitude of the most 

compressive (𝜎1) or the least compressive principal stress (𝜎3). The bootstrap resampling 

method applied to the input focal mechanisms results in the uncertainties of the stress-

axes orientations and the relative stress magnitude. In the inversion of the stress field from 

the focal mechanisms evaluated within the framework of the DETECT experiment, we 

selected 2000 bootstrap resamplings of the dataset. 

4.3 Source characterization for microseismic events in the 

Southern Apennines 

4.3.1 Source parameters estimation of events in enhanced catalogs for seismic 
sequences in Southern Apennines. 

In Section 2.3.1, we produced enhanced catalogs for seismic sequences in the Southern 

Apennines, integrating advanced detection techniques, which led to an increase in the 

number of identified earthquakes by a factor of ~7. In Section 3.3.1, we relocated ~30% 
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of the events using absolute and relative location techniques, an increase by a factor of 

~2 compared to the number of absolute locations in the manual catalogs, which allowed 

us to highlight the seismicity patterns along small-scale structures where the sequences 

occurred. In this section, we attempted to estimate the source parameters in the frequency 

domain for the relocated events in the enhanced catalogs using S waves. 

After removing the instrumental response from the seismic records, we can write the 

amplitude displacement spectra as: 

𝑈(M0, 𝑓𝑐, 𝛾, 𝑄𝑎 , 𝑘, 𝑓) = 𝑆(𝑀𝑜, 𝑓𝑐, 𝛾, 𝑓) 𝐺(𝑄𝑎 , 𝑘, 𝑓) 
 

(4.53) 

in which the source spectrum is expressed in Equation 4.6 and the complete propagation 

operator is described by Equation 4.13. The modelling of the spectra requires a joint 

inversion for source parameters and propagation (here described by the quality factors 

due to the anelasticity, 𝑄𝑎 , and site 𝑘) which are strongly correlated. To reduce this 

correlation, we tried to evaluate the exponential decay in the Green’s function separately 

from the inversion of source parameters. For each sequence, the events are nearly 

collocated, preventing the possibility of separating the contribution of the regional 

anelastic attenuation from the site effects (Strumia et al., 2024). For this reason, we define 

a comprehensive quality factor 𝑄, such that: 

1

Q
=
1

𝑄𝑎
+
𝑘

𝑇
 

(4.53) 

and: 

𝐺(𝑄, 𝑓) = 𝐾
1

𝑟
𝑒
−
𝜋𝑓𝑇
𝑄  

 

(4.54) 

Thus, the Green’s function is characterized by the single parameter 𝑄, to be determined, 

accounting for both anelastic attenuation and site effect. 

We considered small events in each sequence as empirical Green’s functions (EGF). For 

those events, the effective (source) corner frequency is much larger than the apparent 

corner frequency of the Green’s function low-pass filter, and sometimes even larger than 

the Nyquist frequency of the records (in this case 𝑓𝑁𝑦𝑞 = 62.5 𝐻𝑧). Considering the 

typical hypocentral distance for the events occurring within the seismic sequences and a 

regional quality factor for the S waves in the region 𝑄 = 230 (Zollo et al., 2014), the low-

pass filter of the Green’s function has characteristic frequencies of [15-20] Hz. 

Considering the EGF spectra in the domain where 𝑓 ≪ 𝑓𝑐, the displacement spectrum can 

be approximated as: 
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𝑈𝐸𝐺𝐹(𝑄𝐸𝐺𝐹 ,𝑓) = 𝐾
1

𝑟
𝑀0𝑒

−𝜋𝑓𝑇/𝑄𝐸𝐺𝐹  

 

(4.55) 

We selected events featuring local magnitude 𝑀𝑙  <  1 as EGFs, fitting with a linear 

model log𝑈𝐸𝐺𝐹  as a function of the frequency to retrieve 𝑀0 and 𝑄𝐸𝐺𝐹. We pre-processed 

the raw traces by removing the instrumental response, including a 5% Hann taper and a 

water level regularization during the deconvolution stage. We bracketed the S wave 

window from 1 s before to 3 s after the phase arrival time. We considered the frequency 

band that satisfied the condition of SNR larger than 3.5, and evaluated frequency by 

frequency, between the event and the noise spectra. This latter was computed from a 4s 

time window extracted before the event origin time. The value of 𝑄𝐸𝐺𝐹 is station 

dependent. Since events in the same sequence share almost the same source-receiver path, 

we expect a consistency in the 𝑄𝐸𝐺𝐹 estimates across the EGFs for the same station. For 

stations presenting at least 5 estimates of 𝑄𝐸𝐺𝐹, we evaluated the compatibility of the 

inferred values and used the mean value to correct for the Green’s function exponential 

attenuation. We typically evaluated 𝑄𝐸𝐺𝐹 at 4 ± 2 stations for each sequence, deployed 

within a hypocentral distance of 20 km from the sequence’s centroid. This distance 

represents the threshold below which the events used as EGFs feature a sufficient signal-

to-noise ratio.  

 

Figure 4.18) Left panel:𝑸𝑬𝑮𝑭  estimation from linear fit (red line) of the logarithm of displacement event 

spectrum (blue dots) as a function of the linear frequency, for a 𝑴𝒍 = 𝟎.𝟒𝟏 earthquake in the Rocca San 

Felice seismic sequence. Noise spectrum is reported as black dots. Right panel: histogram of the 𝑸𝑬𝑮𝑭 for 
the events 𝑴𝒍  <  𝟏 in the Rocca San Felice sequence (IDX 1) at NSC3 station. 

We hereby report in Figure 4.18 the results of the evaluation of 𝑄𝐸𝐺𝐹 for the station NSC3 

for the Rocca San Felice seismic sequence, located at a hypocentral distance of ~11 km 

from the mainshock. We fit the logarithm of the amplitude displacement spectra in the 

frequency band where 𝑓 ≪ 𝑓𝑐  and the signal-to-noise ratio of displacement spectra 

overcomes the threshold of 3.5. An example of 𝑄𝐸𝐺𝐹 distribution (for the station NSC3) 
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is reported in the right panel of Figure 4.18. We observed a peaked Gaussian-like 

distribution, typical of stations providing a large number of estimates for the quality 

factor. We extracted the weighted mean of individual 𝑄𝐸𝐺𝐹 values using the inverse of 

the fit residuals as weighting factors, to describe the quality factor < 𝑄𝐸𝐺𝐹 > for that 

station-sequence couple. For the example in Figure 4.4, we estimated < 𝑄𝐸𝐺𝐹 >= 130 ±
12  for NSC3, which is smaller than, but still within the variability range of the regional 

estimation provided by Zollo et al. (2014). We typically observe lower values of 𝑄𝐸𝐺𝐹 as 

compared to the regional value suggested by Zollo et al. (2014) suggesting a higher 

impact of the site effects with respect to the anelastic attenuation for short source-station 

propagation distances. 

For other stations, for which we have an insufficient number of high-quality EGFs, we 

attempted to estimate a sequence-dependent quality factor 𝑄𝐿𝑂𝐶  by exploring different 

values of the comprehensive quality factor around the average regional estimate 𝑄𝑅𝐸𝐺  = 

230 (Zollo et al., 2014). Considering events with 𝑀𝑙 > 1, we inverted the displacement 

amplitude spectra, fixing the attenuation to one of the following values 𝑄 = 100, 170, 230, 

300, 400 in different inversion runs. We compared the average residuals resulting from 

the best solution for the source parameters in each run. We selected as 𝑄𝐿𝑂𝐶  the 𝑄 value 

producing the lowest misfit, imposing a minimum number of 5 solutions per station. For 

each sequence, we typically estimated 𝑄𝐿𝑂𝐶  at 4 ± 2 stations, featuring hypocentral 

distance between 20 and 42 km from the main event in the sequence. We here reported 

the parametric test performed for the station SFL3 within the Rocca San Felice sequence 

(IDX 1), at a hypocentral distance of ~40 km from the main event. We did not retrieve 

any solution exceeding the quality threshold for Q = 100 and Q = 170 (Supino et al., 

2019), and we observed the minimum RMSE for Q = 300. The choice of the latter quality 

factor produces, on average, RMSE values from the spectral fitting that are 20 % smaller 

than those obtained using the regional value Q = 230 (Zollo et al., 2014). We report in 

Figure 4.19 the spectral inversion using Q = 230 (left panel) and Q = 300 (right panel) for 

a 𝑀𝑙 2.2 event of the Rocca San Felice seismic sequence at the SLF3 station, with the 

average RMSE for the other Q values for the inversion of all the available events in the 

bar plot of the inset in the right panel.  
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Figure 4.19) Spectral inversion of a 𝑴𝒍 = 𝟐.𝟐 earthquake at SFL3 station (r ~ 40 km from the main event, 
sequence IDX 1) using different attenuation factors for the station. Left panel: inversion using Q = 230. Right 
panel: inversion using Q = 300. In both panels, black vertical lines mark the frequency band in which the 
spectral fit is performed. The pink vertical lines indicate the estimated corner frequency. Right panel inset: 

average RMSE for the events at SFL3 for the sequence IDX 1, using different Qs values in the inversion 

We note that in this latter case, the average value (𝑄 = 230) provides unreliably large 

corner frequencies (as compared to the values obtained at other stations), close to the 

upper limit of the frequency band used for the inversion. We thus select 𝑄𝐿𝑂𝐶 = 300 for 

this station, this value proving the least average RMSE in the inversion. However, the 

possibility of extracting 𝑄𝐿𝑂𝐶  depends on the number of events of 𝑀𝑙  >  1 that occurred 

within the considered sequence. As an example, for the most populated sequence, we 

extracted 𝑄𝐿𝑂𝐶  for 5 stations with 25 𝑘𝑚 ≤ 𝑟 ≤ 45 𝑘𝑚 

We finally kept 𝑄 = 𝑄𝑅𝐸𝐺  for stations where neither 𝑄𝐸𝐺𝐹 nor 𝑄𝐿𝑂𝐶  could be evaluated. 

This is typically the case of the furthest stations, where the signal-to-noise ratio of the 

seismic records led to an insufficient number of events to be used for estimating the 

quality factor. We used 𝑄𝑅𝐸𝐺  on average for 2 ± 1 stations, located at a hypocentral 

distance of 35 𝑘𝑚 ≤ 𝑟 ≤ 58 𝑘𝑚. 

For a more complete view, we hereby report in Figure 4.20 the results of three spectral 

inversions for a 𝑀𝑙  2.8 earthquake of the Rocca San Felice (IDX 1) at stations 

characterized by 𝑄𝐸𝐺𝐹 (𝑟~ 11 𝑘𝑚), 𝑄𝐿𝑂𝐶(𝑟~ 43 𝑘𝑚),  and 𝑄𝑅𝐸𝐺  (𝑟~ 48 𝑘𝑚), in the left, 

central and right panel, respectively. 
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Figure 4.20) Spectral inversion of a 𝑴𝒍 = 𝟐.𝟖 earthquake using different attenuation factors for the stations. 

Left panel: inversion using 𝑸𝑬𝑮𝑭 at NSC3 station. Central panel: inversion using 𝑸𝑳𝑶𝑪 at SCL3 station. Right 
panel: inversion using 𝑸𝑹𝑬𝑮 at VDS3 

We now discuss the resolution of the source parameters in the inversion of the 

displacement spectra. In the previous section, we introduced the lowpass filtering effect 

due to the propagation of the seismic waves from the source to the receiver. We showed 

that at the characteristic hypocentral distances for the seismic sequences in the Southern 

Apennines, and given the regional quality factor for the S waves suggested by Zollo et al. 

(2014), characteristic cutoff frequencies fall within 10 and 20 Hz. Thus, the spectral 

content at higher frequencies than the low-pass cutoff frequencies of the Earth’s Green’s 

function can be severely affected and biased using an incorrect value of quality factor. It 

is worth noting that 𝑓𝑐  for microseismic events (e.g. 𝑀 < 2) typically feature values 

higher than the [10 – 20] Hz range, thus the estimation of the corner frequency might be 

biased for events in this magnitude range. We performed synthetic tests, to demonstrate 

that the plateau level related to the seismic moment is well resolved for these events 

despite the combined effect of the decay beyond the corner frequency due to the source 

and the decay due to the anelastic attenuation. We computed synthetic spectra, 

considering an event with moment magnitude 𝑀𝑤  1.5 and corner frequencies of 15 Hz 

and 25 Hz. For generating synthetic noise and earthquake spectra, we used the average 

value for the anelastic attenuation (Q=230) at a hypocentral distance of 12 km (an average 

typical value for earthquakes in this magnitude range for the analyzed sequences), adding 

10% of noise to the spectra, following Supino et al. (2019). We then inverted the spectra 

considering Q values either larger or smaller than the one used in the forward modelling 
(𝑄𝑠𝑚𝑎𝑙𝑙 = 150, 𝑄𝑙𝑎𝑟𝑔𝑒  = 300), to account for uncertainty and variability in the anelastic 

operator, and a frequency band for the inversion 0.5-30 Hz, which represents the largest 

frequency band available for the inversion of real data in this analysis. We report in Figure 

4.21 the results of spectral inversion for the synthetic tests. 
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Panel 
True 𝒇𝒄 
(Hz) 

Q value for 

 the 

inversion 

Retrieved Mw 
Retrieved 𝒇𝒄 
(Hz) 

a 15 150 1.52 ± 0.02 26 ± 2 

b 15 300 1.49 ± 0.02 13.2 ± 1.0 

c 25 150 1.56 ± 0.01 38.6 ± 1.2 

d 25 300 1.50 ± 0.02 19.5 ± 1.9 

 

 

Figure 4.21) Synthetic tests for an event of magnitude Mw 1.5, Q=230 and fc =15 Hz - Panels a) and b) – 
and fc = 25 Hz - Panels c and d. We inverted the spectra assuming Q=150 – Panels a) and c) - and Q=300 
– Panels b) and d). We found that the moment magnitude is well resolved, while the corner frequency 
estimate is strongly affected by the attenuation and limited bandwidth. In the table we report the retrieved 

values. 
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We found that the corner frequency is not well retrieved from the inversion, while the 

estimation of seismic moment is minimally affected by the change in the quality factor. 

The final moment magnitude reproduces the original one, with differences smaller than 

0.1. These possible biases introduced by the attenuation cannot be reduced in the average 

estimates, since these events clearly emerge from the noise only at a limited number of 

stations (<4). Moreover, with decreasing magnitude of the events, the available 

bandwidth for spectral inversion is also reduced. On the other hand, we demonstrated 

with synthetics that we can resolve both the moment magnitude and the corner frequency 

for events with corner frequencies around 10 Hz or smaller, even if we introduce biases 

in the anelastic attenuation. In Figure 4.22, we report the results obtained for an event of 

𝑀𝑤  2.0 and 𝑓𝑐  = 8 Hz, adopting the same parametrization and inversion strategy of the 

former synthetic test. 

 

 

 

 

Figure 4.22) Synthetic tests for an event of magnitude Mw 2.0, Q=230 and fc=8 Hz. We inverted the spectra 
assuming Q=150 – Panel a) Q=300 – Panel b). We found that both moment magnitude and corner frequency 
are well resolved. In the table we report the retrieved values. 

Panel True 𝒇𝒄 (Hz) 
Q value for  

the inversion 
Retrieved Mw Retrieved 𝒇𝒄 (Hz) 

a 8 150 2.05 ± 0.03 8.7 ± 1.1 

b 8 300 1.99 ± 0.02 7.8± 0.6 
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Supported by these results, we estimated the seismic moment 𝑀0 (and the moment 

magnitude 𝑀𝑤) for all the events, while corner frequencies were only determined for 

events with 𝑀𝑙 > 2. The quality of the solutions was checked by analyzing the shape of 

the a-posteriori probability density function related to the estimated parameters. Solutions 

not showing peaked probability functions were discarded, following the strategy defined 

by Supino et al. (2019). 

We globally estimated the seismic moment for 236 out of the 550 relocated events 

(∼60%), which correspond to 15% of the starting enhanced catalog of earthquake 

detections. For the Rocca San Felice seismic sequence, we retrieved the seismic moment 

𝑀0 for 45 % of the relocated events. In Figure 4.23 we report the distribution of the 

moment magnitude 𝑀𝑤  (Hanks & Kanamori, 1979), against the local magnitude 𝑀𝑙, as 

evaluated in Scotto di Uccio et al. (2023), marking with a red line the 1:1 trend 

between 𝑀𝑙  and 𝑀𝑤 . 

 

Figure 4.23) 𝑴𝒘  −  𝑴𝒍 distribution, with the 1:1 scaling (dashed red line). For 𝑴𝒍  < 𝟐 earthquakes, we 
observed 𝑴𝒘 = 𝟎. 𝟖𝟗 (±𝟎. 𝟎𝟑) + 𝟎. 𝟔𝟐 (±𝟎. 𝟎𝟐)𝑴𝒍 (green dashed line). 

We recognize two trends between the magnitude scales: for 𝑀𝑙  <  2 the distribution 

strongly deviates from the 1:1 scaling relation. Evaluating the average value of 𝑀𝑤  in 

different 𝑀𝑙 bins of width 0.2 and performing a linear fit between the two quantities, we 

retrieved 𝑀𝑤 = 𝑎 + 𝑏 ∗ 𝑀𝑙 =  0.89 (±0.03) +  0.62 (±0.02)𝑀𝑙 (fit reported in Figure 
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4.23 as a green dashed line). The estimated slope agrees with the predictions of 

Deichmann (2017), which indicated a saturation of the event duration in the local 

magnitude computation due to the anelastic attenuation, resulting in the scaling 𝑀𝑤 =

 𝐶 +
2

3
𝑀𝑙. For 𝑀𝑙 >  2, the distribution follows the 1:1 scaling trend between 𝑀𝑙 and 𝑀𝑤 , 

as expected from the definition of the moment magnitude (Hanks & Kanamori, 1979), 

also found by Zollo et al. (2014). 

In Figure 4.24, we reported the 𝑙𝑜𝑔𝑀0 − 𝑙𝑜𝑔𝑓𝑐 distribution for the resolved events of 

individual sequences, with red straight lines marking the theoretical trends obtained 

assuming characteristic stress drop values of Δσ = 100𝑘𝑃𝑎,1𝑀𝑃𝑎 and 10 𝑀𝑃𝑎. The single 

station corner frequencies have been averaged considering the relative uncertainty of the 

estimates. 

 

Figure 4.24) Distribution of source parameters for 𝑀𝑤 > 2, colored according to sequence IDX, with 
theoretical constant stress drops scaling of 0.1 MPa, 1 MPa and 10 MPa (red solid lines) 

For the resolved events, the distribution of the corner frequencies with moment appears 

to follow a nearly linear trend, with stress drop ranging between 1-3 MPa. For the Rocca 

San Felice sequence, yellow marks in Figure 4.24, the average 𝛥𝜎 was ~ 1.0 MPa. 

Averaging over all sequences, we found a median stress drop of Δ𝜎 = 2.2 𝑀𝑃𝑎; its 

variability across sequences, estimated by the logarithm of standard deviation is 𝑠𝛥𝜎=0.3 

𝑀𝑃𝑎. The stress drop found here is one order of magnitude larger than the stress drop 

retrieved for the background seismicity in the area by Zollo et al. (2014), who used a 
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similar inversion strategy and an independent catalog not influenced by the sequences 

studied here. Since they derived the average stress drop using the Madariaga model 

(Madariaga, 1976), when converting that value into an equivalent Brune’s stress drop, 

they obtained a median value of 𝛥𝜎=0.26 𝑀𝑃𝑎. This difference indicates that the release 

of stress during sequences likely occurs in more compact asperities that can be associated 

with higher coupling than for background seismicity (Chen et al., 2012). The stress drops 

we retrieved for these seismic sequences are comparable to the estimate of 3.5𝑀𝑃𝑎 of the 

1980, M 6.9 Irpinia earthquake (Deschamps & King, 1983, Bernard & Zollo, 1989). 

Moreover, we found differences in the stress drops associated with sequences, with 

increasing values moving from North to South in the Irpinia region, as also shown by 

Picozzi et al. (2022a), whose catalog contains all the events with magnitude larger than 

1.5 for the area. We found median stress drops of 𝛥𝜎𝑁=1.8 𝑀𝑃𝑎 in the Northern sector 

(Cervialto Fault area, the initial rupturing segment of the 1980 earthquake) and 𝛥𝜎𝑆=3.4 

𝑀𝑃𝑎 in the Southern Sector (San Gregorio Magno Fault area, i.e., on the second rupturing 

segment of the 1980 earthquake). Tomographic images in velocity (Amoroso et al ., 2014; 

Improta et al., 2014; Vassallo et al., 2016) and anelastic attenuation (Qp, Qs; Amoroso et 

al., 2017) coupled with rock physics modelling indicate the presence of pressurized fluids 

in the area of microseismicity. Differences in the stress drops between the two areas could 

be associated with the different fluid content and fraction. In the Southern sector rock 

physics modelling indicates the presence of a mixture brine-𝐶𝑂2 (Amoroso et al., 2017). 

The large, extended low Vp/Vs anomaly in tomographic images in the northern sector 

indicates a pressurized reservoir of fluids, associated with the large natural emission of 

low-temperature 𝐶𝑂2 at the Mefite d’Ansanto, Rocca San Felice site (Chiodini et al ., 

2010). 

4.3.2 Stress release modelling for seismic sequences in Southern Apennines 

We evaluated the rupture plane associated with the seismic sequence as the best-fit plane 

across the hypocenters of the events in the sequence. As an example, for the Rocca San 

Felice sequence, we obtained the strike and the dip of the plane coherent with the angles 

estimated from the inversion of first motion polarities (Festa et al., 2021; Palo et al., 

2023a). If the locations did not constrain a plane, we used the focal mechanism solutions 

from Palo et al., (2023a) and selected the plane that was more consistent with the expected 

orientation of faults in the area. We finally mapped the stress change on the fault plane 

associated with the sequence, using the rupture model proposed by Andrews (1980), 

considering a non-isotropic, complete representation of the stiffness. Since in the rupture 

model neither the slip nor the stress drop is considered constant, we imposed the average 

stress drop within the crack from the Andrews model coinciding with the event stress 

drop computed from the source parameters. We evaluated the source size for all the events 

for which we estimated the seismic moment using Equation 4.16, by considering either 
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the retrieved corner frequency or assuming self-similarity. The former condition applies 

to the largest magnitude events in the sequences, the latter for lower magnitude events. 

For almost all the sequences, the stress model suggests static stress release as a trigger 

mechanism, with small events mainly concentrated in or around the area affected by stress 

changes due to the main events in the sequence. As an example, we report in the left panel 

of Figure 4.25 the stress release model for a seismic sequence featuring a 𝑀𝑙 2.9 main 

event (IDX), in which we observe a single km-sized patch mainly oriented along the dip 

direction, with earthquakes occurring within the volume affected by the main event. For 

assessing the connection between the earthquakes, we evaluated the nearest neighbor 

distance for each couple of events, after projecting the earthquake relocations along the 

estimated fault plane. The distribution of the nearest neighbor distance is reported in the 

right panel of Figure 4.25. The median nearest neighbor distance was  ~30 m, with this 

value being associated with a source radius of a 𝑀𝑤𝑒𝑞 = 0.6/ 𝑀𝑙 𝑒𝑞 = −0.3   earthquake, 

assuming the median stress drop extracted from the resolved events of the considered 

sequence and the estimated 𝑀𝑙 −𝑀𝑤  scaling law from Section 4.2.1.1. We observe that 

almost 70 % of the event-couples fell within the sum of the estimated source radius along 

the fault plane, suggesting a static stress release mechanism. 

 

Figure 4.25) Left panel: Stress release model for the sequence IDX 1. Right panel: Histogram of the nearest 
neighbor distance for the relocated events of the sequence IDX 1.  

When considering the other sequences, we observed similar scores, with a mean 

percentage of 60 ± 12 % of connected events (evaluated for the sequences featuring 

more than 40 events in the relocated catalog), with stress release model still suggesting 

static stress release as triggering mechanisms. Moreover, we retrieved similar dip – 

oriented trends, as for the example of Figure 4.25. In Figure 4.26, we report the stress 

release for the 8 sequences for which we estimated the stress release model. 
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Figure 4.26) Stress release model for the considered sequences. Small events are mainly concentrated in 
or around the area affected by stress changes due to the main events in the sequences, suggesting stress 

release as trigger mechanism. 

An interesting case is represented by the Rocca San Felice seismic sequence (bottom right 

panel in Figure 4.26). For this sequence, we observe two seismicity patterns activated at 

different times (the main event 𝑀𝑙 3.0 involved the leftmost patch, and the seismicity 

migrated along the rightmost segment almost two days after the mainshock with the 

occurrence of a 𝑀𝑙 2.8 earthquake). In both clusters we still observe a predominant 

orientation along the dip direction. Since this sequence features the highest number of 

events, we used it for assessing the robustness of the obtained stress release models. 

As discussed in the Section 4.2.1.1, the estimation of the source radius scales with the 

selected geometrical shape factor (K term in Equation 4.14). In this analysis, we adopted 

the shape factor proposed by Brune (1970), which assumed 𝐾 = 0.37. On the other hand, 

several authors have proposed alternative rupture models, resulting in different values of 

the K coefficient (𝐾 =  0.21, Madariaga 1976; 𝐾 =  0.26, Kaneko & Shearer, 2014), 

therefore providing different values for the source radius and, consequently, stress drops. 

In particular, when substituting the K factor from the Brune model with the values 

proposed by Kaneko & Shearer (2014) and Madariaga (1976), the source radius is 

lowered by factors of ~1.4 and ~1.8, respectively. Because of adopting these different 

rupture models, the stress drop increases by factors of ~2.9 and ~5.5, respectively, as 

compared to the value obtained through the Brune model. For assessing the robustness of 

the former results, we compared the stress release model obtained through the Brune 

model with the corresponding one provided by the selection of the end-member 

Madariaga model. When comparing the stress change induced by a circular rupture 

modelled with the two end-member cases, the Brune and Madariaga models, in the former 

we have a larger radius and a smaller stress drop, while in the latter the radius is reduced, 

but the stress drop is increased significantly. In Figure 4.27 we represent the stress change 

during an earthquake having a Brune source radius of 100 m and a Brune stress drop of 1 

7

 

8
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MPa. In the plot, the stress released assuming a Brune rupture was amplified by a factor 

of 3 for the sake of clarity. Despite the expected differences in the released stress and 

rupture size, we found that the region experiencing a stress increase after the earthquake 

has similar size for both models. 

 

Figure 4.27) Comparison of the stress released by an earthquake with Brune radius and stress drop of 100 
m and 1 MPa respectively, using Brune and Madariaga models. The solutions are represented along the 

directions parallel (𝜽=0) and orthogonal (𝜽 = 𝝅/𝟐) to the slip. The solution from the Brune model is amplified 
by a factor of 3. We found that the size of the region experiencing a stress increase after the earthquake is 
of the same order of magnitude for both models. 

When comparing the stress change on the fault plane, obtained using Brune (Figure 4.28 

– left panel) and Madariaga (Figure 4.28, right panel) models for the Rocca San Felice 

seismic sequence, the two models show very similar patterns in terms of stress release at 

the fault scale, with the main differences being related to areas where the stress decreases. 

This indicates the robustness of the results, even when changing the source model. 

However, when zooming along the fault plane and using appropriate normalized scales, 

we appreciate the differences between the two models (Figure 4.29). 
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Figure 4.28) Comparison of stress changes using Brune (left panel) and Madariaga models (right panel) 
with the same scale for the stress for the Rocca San Felice sequence. At the scale of the fault, the two 
images appear very similar, with the main differences around the hypocenters of the events, within the 
source radius. 

 

Figure 4.29) Zooming on the Figure 4.28, representing now the left cluster of the Rocca San Felice 
sequence. Left panel - Stress change with the Brune model; Central Panel - Stress change with the 

Madariaga model represented with the same scale as the Brune model; Right Panel - Stress change with 
the Madariaga model, represented with a wider scale that helps to identify the maximum amplitudes. 
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In the evaluation of the source size for low-magnitude events within each sequence, we 

used the median stress drop inferred from all the events of the corresponding sequence 

having M >2, for which we computed source parameters. Although self-similarity was 

also claimed for the background seismicity in the area by Zollo et al ., (2014), we are 

aware that self-similarity is not guaranteed across the scales explored by events of 

magnitude 𝑀𝑤  0.5-3.6 investigated in this study. To assess the sensitivity of the results 

against the self-similarity assumption, we also tested a different scaling model  𝑀0 ∝

𝑓𝑐
−(3+𝜖)

, where the 𝜖 parameter was selected according to Picozzi et al. (2022a) for events 

in the Irpinia area. In Figure 4.30 we report the stress change for the Rocca San Felice 

sequence assuming self-similarity (left panel) and the scaling of Picozzi et al. (2022a), 

using 𝜖 = −0.39, as proposed by the authors for characteristic hypocentral depths of this 

sequence (right panel). We observe no significant differences between the two models, 

due to the fact that changes in stress drops appear as changes in the source radius at a 

power of -1/3.  

 

Figure 4.30) Stress changes obtained assuming self-similarity (left panel) or the scaling model  𝑴𝟎 ∝ 𝒇𝒄
−(𝟑+𝝐)

, 
where the 𝝐 = −𝟎. 𝟑𝟗 according to Picozzi et al. (2022a) for the Rocca San Felice sequence. The two maps 
appear very similar, with differences around the hypocenters of small events. 
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An important feature retrieved within this analysis is that the distribution of the events is 

not isotropic around the main events of the sequences, but small events tend to align 

dominantly along the dip direction, which also corresponds to the slip direction, for 

normal faults. A schematic representation for the lineations is reported in Figure 4.31.  

 

Figure 4.31) Schematic representation of seismicity lineations, oriented along the dip direction, which for a 
normal fault coincides with the slip direction. 

Specific patterns for sequences along the direction of the slip have been observed in 

strike-slip environments (Rubin et al., 1999; Shearer 2002). Lineations of the seismicity 

along the major faults in California have been interpreted as the boundary between locked 

and creeping domains (Rubin et al., 1999; Rubinstein & Beroza 2007). In the normal fault 

environment of the Southern Apennines, the evolution of the seismicity during the 

sequences is also controlled by slip and cannot be explained by the anisotropic stress 

release after the event (Andrews, 1980). Fault roughness, modulated by repeated stick-

slip episodes may determine predominant patterns at the scale of the microseismicity 

observed here (10 − 100𝑚), with striations mainly oriented along the dip direction 

(Candela et al., 2011). Corrugated faults behave as geometrical asperities and can localize 

deformation hosting stick-slip episodes at small scales (a few centimeters of slip) (Resor 

& Meer, 2009). Fault roughness and geometrical barriers at this scale may also impede 

small events from growing into larger magnitude earthquakes (Sagy et al ., 2007; Marshall 
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& Morris, 2012). These strips can also favor upward migration of fluids, although we 

cannot discern a signature of diffusion-dominated processes from the space-time 

evolution of the sequences. At generally larger scales, a M4.0 event was reported to 

precede and trigger the M 6.1 L’Aquila earthquake in Central Apennines (Cabrera & Poli, 

2023). 

The occurrence of aseismic slip episodes near the lineations could also be the cause for 

the along-dip evolution of the seismicity and might explain the longer extent compared 

to the released seismic moment. Aseismic transients have already been observed in 

normal fault environments during the occurrence of larger seismic sequences (Gualandi 

et al., 2017; Kaviris et al., 2021). However, for the sequences analyzed here, geodetic 

data has not detected aseismic transients at this space-time scale during the sequences 

analyzed in this study. The Rocca San Felice sequence shows the activation of two 

parallel clusters, oriented along the dip direction, but about 5 km apart. The two clusters 

featured mainshocks of similar magnitude (𝑀𝑙  3.0 and 𝑀𝑙  2.8, respectively), a kilometric 

size extension along the dip (4 km and 2 km), with the first evolving preferentially up-

dip and the second one, activated about two days late, downdip. As shown in Figure 4.28, 

the stress perturbation associated with the first sequence cannot be responsible for the 

activation of the second patch. Also, the lack of seismicity between the two segments 

does not support the hypothesis of fluid migration as being responsible for triggering the 

second cluster. According to the rate of occurrence of independent events with 𝑀𝑙 > 2.5 

in the northern part of the region (𝜆 = 2.1 ∗  10−3𝑒𝑣/𝑑𝑎𝑦), we estimated the probability 

of occurrence of two independent events within 2 days to about 0.4%. We ,therefore, 

tested the hypothesis of aseismic slip between the two seismicity clusters of this sequence. 

We assess the evolution of the displacement at the three closest GPS stations SNAL, 

MTMR, ANG1, the first two belonging to the INGV-RING network, the latter to the 

Regione Campania. The time series of daily coordinates (see D’Agostino et al., 2020 for 

details of GPS data processing) at the three stations have been checked for possible offsets 

across the seismic sequence. Evaluating the average positions in North, East and vertical 

coordinates, before and after the Rocca San Felice sequence, we could not find significant 

static offsets within the estimated error bounds (Figure 4.32). 

We assessed the maximum average slip allowed on a deep dislocation whose 

displacement on the surface would not emerge from the noise level at the three GPS 

stations. We centered the potential aseismic dislocation between the two clusters and used 

the fault geometry and kinematics inferred by the composite focal mechanism solution of 

Festa et al. (2021), calculating the surface displacements using the Okada techniques 

(Okada. 1992). We tested a range of uniform slip on the dislocation between 25 and 75 

mm, assuming constant strain drop of 10-5. The relatively deep position of the dislocation 

centroid between the two clusters (~8 km) allows slip on the deep dislocations up to 50 

mm without detection at the surface (Figure 4.32). For slip larger than 50 mm, the non-
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linear increase of cumulative seismic moment determines surface displacements outside 

the range of allowed offsets. Thus, an aseismic event of 𝑀𝑤 ~5.0 could have occurred 

during the sequence, transferring stress across the two asperities without producing a 

signal that would have been visible at the GPS stations. 

Figure 4.32) Upper panel: map of the GPS stations near the Rocca San Felice seismic sequence and 
associated displacements. The vectors show the horizontal displacements with 1-sigma error ellipses, from 

the static offset during the seismic sequence. Three different synthetic scenarios were evaluated assuming 
increasing slip (25, 50 ,75 mm), with geometry and kinematics from Festa et al., 2021. The surface 
displacements produced by a slip of 50 mm on the fault drawn with purple lines is shown in the map (purple 
arrows). Lower panel. GPS position time series and average positions (white dashed lines) before and after 

the seismic sequence, with a 1-sigma error shown with grey shading. Calculated displacements are shown 
(dashed lines) for the 25mm (green), 50mm (purple) and 75 mm (red) dislocation scenarios. 
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4.3.3 Focal mechanism estimation for earthquakes in Southern Apennines using 
dense array deployments 

In Section 2.3.2, we described the temporary deployment of 20 dense seismic arrays of 

10 stations each in the Southern Apennines, which continuously recorded ground motion 

velocity from September 2021 to August 2022. In this analysis we aim to produce an 

enhanced catalog of focal mechanisms for the area, integrating the stations from the 

ordinary seismic network and the dense survey (231 stations).  

Southern Apennines are dominantly characterized by a normal-faulting tectonic regime, 

subject to an extensional regional stress field (Bernard & Zollo, 1989; Montone et al., 

1999; De Matteis et al., 2012; Festa et al., 2021; Tarantino et al., 2024). The area was 

struck by the destructive 1980 M 6.9 Campania-Lucania earthquake (Westaway & 

Jackson, 1987; Bernard & Zollo, 1989), a pure normal-faulting event that occurred on an 

approximately 60-km-long NW-SE-striking fault segment with three main rupture 

episodes at 0, 18 and 39 seconds after the first nucleation. Since 1980, the largest event 

that occurred within the epicentral area of the 1980 earthquake was the 3 April 1996 

𝑀𝑙  4.9 earthquake, also characterized by a normal-faulting mechanism (Cocco et al., 

1999). Two moderate magnitude seismic sequences occurred between 1990 and 1991 in 

the Potenza region, located about 40 km southeast of the 1980 Irpinia aftershock area 

(Ekstrom, 1994). The two mainshocks (𝑀𝑙  5.2 and 𝑀𝑙  4.7) and the larger events of the 

sequences were characterized by strike-slip faulting mechanisms, with the preferred fault 

planes having an east–west orientation (Di Luccio et al., 2005). In Figure 4.33, we present 

the focal mechanisms for the discussed earthquakes (from De Matteis et al., 2012). 

Several authors have inspected microseismicity in the area for inferring information on 

the focal mechanisms. Pasquale et al. (2009) selected 2352 M < 4 aftershocks of the 1980 

M 6.9 earthquakes, which resulted in a catalog of 139 fault plane solutions (6 % of the 

starting earthquake list). Most of the retrieved focal mechanism solutions indicate normal 

component faulting (pure normal faulting and oblique-normal faulting). Only some 

solutions show strike-slip or inverse faulting. De Matteis et al. (2012) selected 1312 

earthquakes with magnitudes ranging from 0.9 to 3.1, that occurred within August 2005 

and April 2011 and were recorded by the INFO and INGV networks, which are much 

denser than the seismic network that recorded the 1980 M 6.9 aftershocks used in 

Pasquale et al. (2009). The authors estimated the fault planes for 118 earthquakes (9% of 

the starting earthquake list). The majority of focal mechanisms still show a dominant 

normal-faulting mechanism with pure normal faulting and oblique-normal faulting. Only 

a few solutions show pure strike-slip or reverse faulting. As also observed by Pasquale et 

al. (2009), in the Potenza area most focal mechanisms show strike-slip kinematics. 
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Therefore, the authors claimed that the background microearthquake activity in the 

studied sector of the Apenninic chain is controlled by two major fault systems: a sequence 

of subparallel northwest–southeast-trending normal faults and an approximately east–

west oriented strike-slip fault transversely cutting the chain (De Matteis et al., 2012). 

 

 

Figure 4.33) Focal mechanisms for the main earthquakes occurred in the Southern Apennines. The 
destructive 1980 M 6.9 and the 1996 M 5.1 Irpinia earthquakes feature pure normal-faulting mechanism, 
while the events of the 1990-1991 Potenza seismic sequence mainly report east-west oriented mechanisms. 

Figure extracted from De Matteis et al. (2012). 

Although in Section 2.3.2 and Section 3.3.2 we generated and located enhanced detection 

catalogs using solely the stations of the dense arrays, producing a catalog of 2.2k located 

earthquakes with a magnitude of completeness close to 𝑀𝑙 0, we do not expect to obtain 

focal mechanisms for most of these ultra-low magnitude events. Indeed, the signals of 
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most of these earthquakes typically emerge at only one or a few arrays, having a low 

signal-to-noise ratio and leading to a complexity in the evaluation of the first motion 

polarities to be used for obtaining the geometrical properties of the source, as well as an 

inadequate coverage of the focal sphere. We therefore selected the events which were 

included in the existing manual INFO catalog (http://isnet-bulletin.fisica.unina.it/cgi-

bin/isnet-events/isnet.cgi), which contains ~400 earthquakes in the considered time 

window and features a magnitude of completeness of 𝑀𝑐 1.1. In Figure 4.34, we report 

the magnitude distribution of the events in the manual INFO catalog. 

 

Figure 4.34) Magnitude distribution of the events in the manual INFO catalog from September 2021 to 
August 2022. 

Within the manual INFO catalog, the focal mechanism has been evaluated for 6 events 

only (~2% of the catalog), whose 𝑀𝑙 ranges between 1.8 and 2.4. The number of used 

first motion polarities for these events ranges from 6, which also represents the minimum 

number of readings required for the inversion in the standard procedures of the network, 

and 11, this latter value was observed for the 𝑀𝑙  2.4 event. Among the 6 earthquakes for 

which the focal mechanism was estimated, 4 events report a normal focal mechanism, 

coherent with the main fault segments in the area, while the remaining earthquakes 

reported a less reliable strike-slip or inverse faulting. In Figure 4.35, we present the focal 

mechanisms for the manual INFO catalog, along with the main fault segments (DISS, 

http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi
http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi
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2021) and the stations of the ordinary seismic network with red triangles. The size of the 

reported beachball is proportional to the magnitude of the earthquakes.  

 

Figure 4.35) Focal mechanisms for the events in the manual INFO catalog (6 events). Among the 6 
earthquakes for which the focal mechanism was estimated, 4 events report a normal focal mechanism, 
coherent with the main fault segments in the area, while the remaining earthquakes reported a less reliable 

strike-slip and inverse faulting. 

To estimate the first motion polarities, we followed the deep-learning approach proposed 

by Ross et al. (2018), with a convolutional neural network (CNN) to identify the sign of 

the first motion P wave polarity. Each convolution layer consists of a set of learnable 

filters that are convolved with the outputs of a previous layer to identify patterns of 

interest anywhere within that data subset. In this case, learnable means that the 

coefficients of the filters are optimized along with all the other coefficients of the network 

during the training process. After convolution, pooling layers are commonly used to 

decimate the convolution output so that subsequent layers learn attributes of a rescaled 

representation of the original input data. This helps in recognizing variants of the same 

objects with different sizes, and it leads to an indirect connection between the only locally 

connected neurons of any individual pair of layers with the distant neurons of more 

shallow layers. As a training dataset, a massive dataset of 273,882 earthquakes recorded 

by the SCSN (Southern California Earthquake Data Center, 2013) from 2000 to 2017 at 

692 stations was used. The selected stations are all deployed at an epicentral distance up 
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to 120 km and are composed of both accelerometer and velocimeter sensors. These 

seismograms are associated with 2,530,857 first-motion polarities assigned by SCSN 

analysts. Each record is labelled as up (U), down (D), or unknown (K), based on whether 

a first-motion polarity was assigned by the analyst for the station of interest. Records for 

which an analyst has determined a P wave arrival time but not assigned a first-motion 

polarity are assigned to the label K. In Figure 4.36 we report an example of waveforms 

manually labelled as U, D and K by SCNS analysts, along with the signal-to-ratio (SNR) 

distribution of each class in the training dataset. We can observe that the histogram of the 

SNR for the assigned polarities is typically more populated at higher SNR values with 

respect to the analogous distribution of the unknown polarities, indicating an easier 

estimation of the first motion amplitude by SCSN analysts. 

 

 

Figure 4.36) Instance of seismograms related to polarity U (upper-left panel), D (upper-right panel) and K 
(lower-left panel), respectively. Lower-right panel: distribution of the signal-to-noise ratio associated with 
each of the three polarities classes (Ross et al., 2018). 

Before training the CNN, data have been down-sampled to 100 Hz, detrended, filtered 

with a causal Butterworth filter between 1 and 20 Hz and trimmed for generating a snippet 
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of a 4-s-long centered on the P wave arrival. Next, the amplitudes in each seismogram 

window are normalized by the peak absolute amplitude in the window, to suppress the 

influence of amplitude variations with magnitude or distance. Finally, the training dataset 

is split into 75% for training a 25 % for validation. We hereby report in Figure 4.37 the 

precision and recall curves as a function of the SNR, distance and magnitude values for 

the trained model. On the training dataset, the model typically features a precision above 

90 % for each class where the polarities were manually assigned, over al l the SNR, 

distance and magnitude domains. On the other hand, recall results higher than 80% in 

attributing the correct polarities for all the events featuring 𝑆𝑁𝑅 > 4 while, despite being 

almost independent of the magnitude ranges, the recall starts dropping for stations with a 

distance range higher than 80 km, this value being larger than the investigated spatial 

scale, especially for low magnitude events. 

 

Figure 4.37) Precision (left column) and recall (right column) curves from the model training as a function of 
the SNR (upper panels), distance (central panels) and magnitude (bottom panels), respectively. 

We finally estimated the focal mechanisms using FPFIT (Reasenberg & Oppenheimer, 

1986), which inverts a set of observed first motion polarities to obtain the double-couple 

fault-plane solution (source model), minimizing the weighted sum of first-motion polarity 

discrepancies. In addition to finding the minimum-misfit solution, FPFIT provides 

alternative solutions corresponding to significant relative minima in misfit, which 

typically correspond to different faulting mechanisms from the best solution. These 
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solutions might be preferred after the consideration of the a-priori knowledge of the 

tectonic environment. As input, FPFIT requires earthquake location and take-off angles, 

which we computed using phase arrival times obtained in Section 2.3.2 and through the 

NLLoc algorithm (Lomax et al., 2000), while we used the polarities determined by the 

deep learning model for assigning the sign of first motion amplitude to the stations 

featuring the P phase arrival times. 

As a first test case, we applied the deep learning technique by Ross et al. (2018) on the 

𝑀𝑙  2.4 earthquake, which represents one of the 6 events for which the focal mechanism 

was also estimated in the manual catalog, inverting 9 identifications of the first motion 

amplitudes. Since there are no ground truth polarity estimations for the stations of the 

DETECT survey, we manually assigned a polarity to the stations featuring a P phase 

arrival time from Section 2.3.2. For the ordinary seismic stations, we extracted the 

polarity provided by the manual catalog. When comparing the accuracy of the automatic 

polarities for this event, we observe that 88 out of the 121 assigned polarities match the 

manual label (72%), a value significantly lower than the precision claimed by Ross et al. 

(2018), who obtained precision values higher than 90 % in the magnitude and distance 

ranges representative of this test case. Moreover, the deep learning technique assigns 

unknown polarities to 16 instances which were manually labelled (expected 8 U and 8 

D), while it assigns a wrong polarity to 22 instances (3 manual D polarities labelled as U, 

19 manual U polarities labelled as D). We therefore investigated the families of wrong 

and missed polarities to assess the cause of the low classification performance. In Figure 

4.38, we report two instances for which the deep learning model attributed a wrong 

polarity estimate. From Figure 4.38 it clearly appears that, despite the high signal-to-noise 

ratio of the first motion, the deep learning model fails to recognize the correct P wave 

polarity. However, both seismograms feature a similar characteristic. While in the 

training dataset the correct onset for the P wave was exactly placed in the center of the 

analyzed window, in these two instances the real first motion amplitude precedes the 

center of the seismogram, despite this latter being trimmed around the automatic P arrival 

time. Therefore, these two instances are characterized by a delay in the phase picking, 

which may cause a lower performance of the deep learning classifier. Thus, these results 

suggest that the actual model does not generalize well, and it appears to be strongly 

sensitive (at the scale of the samples) to the accuracy of the phase arrival time 
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Figure 4.38) Examples of wrong polarity provided by the deep learning model. Despite the seismograms 
featuring a clear positive first motion amplitude for both stations, the model assigns polarity D for both 
instances. 

To test this hypothesis, we retrained the model allowing a random shift of the window for 

extracting the seismogram in [−0.5, 0.5] seconds ([−50, 50] samples), to account for 

eventual errors in the automatic estimation of the phase arrival times. This range is even 

larger than the corresponding one obtained when considering the typical mean and 
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standard deviation values for the residuals between automatic and manual identification 

of phase arrival times (Figure 2.34; Figure 3.4; Figure 3.20) and thus represents a more 

conservative choice. However, on the one hand we might expect to limit the effect of 

fluctuations of the phase arrival times through a random shift of the position of the P onset 

within the considered seismogram, gaining generalization of the model but, on the other 

hand, we might achieve lower precision and recall values for the trained model. We 

hereby report in Figure 4.39, the precision and recall curves as a function of the SNR, 

distance and magnitude values for the novel version of the trained model.  

 

Figure 4.39) Precision (left column) and recall (right column) curves from the model trained by randomly 

shifting the position of the P wave onset within the seismogram, as a function of the SNR (upper panels), 
distance (central panels) and magnitude (bottom panels), respectively. 

As compared to the respective curves reported in Figure 4.37 describing the model trained 

by fixing the position of the P wave onset in the centre of the analysed seismograms, the 

novel version of the model features slightly lower precision values among the SNR, 

magnitude and distances domains, but still close to 95% and 90 % for the U and D 

polarities, respectively. Conversely, recall starts degrading above 60 km, featuring values 

close to 60 %. However, this distance range is still wider than the typical distance affected 

by low-to-moderate magnitude events. Despite the described slightly lower classification 

performances, the novel version of the model is able to handle eventual shifts in the 

position of the P wave onset within the fed seismogram, featuring higher generalization 

as compared to the former model when applied to data with an automatic identification 

of the phase arrival times. To assess the performance of the novel version of the model, 

we applied it on the instances reported in Figure 4.38, characterized by a first motion 
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amplitude not exactly placed in the center of the seismogram due to a delay in the 

identification of the phase arrival time and classified with the wrong polarity class by the 

former version of the model. In Figure 4.40, we report the classification of the two 

versions of the model, indicating the probability score associated with each of the three 

classes. 

 

Figure 4.40) Application of the model trained by fixing the position of the P wave onset in the centre of the 

seismogram (left panel) and the model trained allowing a random shift of the onset in [−𝟎.𝟓, 𝟎.𝟓 ] s in the 
seismogram (right panel) to an instance featuring a delay in the identification of the P phase arrival time. 
While the former version of the model misclassified the polarity, the novel version of the model is able to 
handle the earlier onset of the P wave, correctly associating the class label with a high probability score. 

Despite the seismograms being extracted in the same way for both models, while the 

former version of the model misclassified the polarity, the novel version of the model is 

able to handle the earlier onset of the P wave, correctly attributing the class label with a 

high probability score. This result indicates that the model trained to allow a random shift 

of the P wave onset in the seismograms is more indicated for attributing the polarity class 

to data where the phase arrival times are identified through automatic techniques. When 

summarizing the classification results for the 𝑀𝑙  2.4 earthquake against the manual 

polarity identification, reported in Table 4.1, we noted strongly improved results 

compared to the former application. 

Table 4.1) Summary of the classification results for the two versions of the trained model. The model trained 
randomizing the position of the P wave onset in the seismogram provided improved polarity classification 
performances compared to the former version. 

 FORMER VERSION NOVEL VERSION 

SHARED POLARITIES 88/121 (72%) 111/121 (92%) 

WRONG POLARITIES 22 5 

MISSED POLARITIES 16 5 

NEW POLARITIES 11 13 
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The novel version of the model correctly classified 111 out of the 121 polarities assigned 

manually, increasing by 20% the percentage of retrieved polarities compared to the 

former version of the model. Moreover, the number of missed and wrong polarities 

strongly diminished, from 22 to 5 and from 16 to 5 for the instances incorrectly classified 

and erroneously classified as unknown polarity, respectively, reducing the erroneous 

classification by more than 70 %. Following these results, we thus adopted the model 

trained by randomizing the P wave onset within the seismogram in the analysis of focal 

mechanisms. 

Similarly to location algorithms, FPFIT allows the definition of a weighting scheme for 

defining the importance of the single polarity estimation in the focal mechanism 

determination. In particular, the algorithm accepts a discrete weighting encoding from 0 

to 3, with decreasing importance in the inversion procedure. To evaluate a possible 

correlation between the impulsivity of the P wave onset and the estimated probability 

scores, we inspected the seismograms and the outputs of the classifications. In Figure 

4.41, we show three instances of the same earthquake, recorded at different stations and 

featuring different impulsivity of the first motion amplitude. We also reported the 

probability score associated with each of the three classes. From Figure 4.41, we can 

clearly note that the probability score of the correct class associated with seismograms 

featuring strong impulsivity is much higher than the ones associated with more emergent 

onsets. Despite this feature appears straightforward, this was not the case with the 

probability scores associated with the deep learning pickers (Chapter 1), where no direct 

connection between the accuracy of the phase arrival time and the probability scores is 

observed (Park et al., 2023; Pita-Slim et al., 2023). To extend this observation, we 

investigated the possibility to extract in a linear relationship between the probability score 

and the signal-to-noise ratio of the P wave onset. Since this latter quantity could be 

directly connected to the reliability of the polarity estimation, verifying the existence of 

a relation between the two quantities can lead to the definition of a weighing scheme for 

assigning importance within the inversion procedure. For each earthquake, we performed 

a linear regression between the logarithm of the signal-to-noise ratio and the probability 

scores associated with the polarity estimations at the different stations. We then verified 

the consistency of the estimates in histograms for the slope and the intercept of individual 

linear regressions, which are reported in Figure 4.42. 
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Figure 4.41) Representation of the classification outputs for three stations reporting different impulsivity of 
the P wave onset (decreasing from the top to the bottom). The higher the impulsivity of the P wave onset, 
the higher the probability score associated with the class. 



 
175 CHAPTER 3.    Microseismicity characterization  
 

 

 

Figure 4.42) Histograms of the slopes (left panel) and intercepts (right panel) of the linear regression 

between the logarithm of the signal-to-noise ratio and the probability scores predicted by the classifier for 
the assigned polarities for each event. Coherence in the slope and the intercept suggests a correlation 
between the two parameters. 

The coherence observed in the slope and the intercept for individual earthquakes suggests 

a correlation between the two parameters, leading to the possibility of the definition of a 

weighting scheme based on the probability scores yielded by the deep learning classifier. 

Moreover, the positiveness of the slopes indicates that higher accuracy can be attributed 

to high probability scores, due to the higher signal-to-noise ratios. We thus define a 

weighting scheme for the inversion procedure, as in Table 4.2. The higher the associated 

discrete weight, the lower the importance of the inversion procedure. 

Table 4.2) Proposed weighted scheme based on the conversion of class probability scores into discrete 

weights. 

 WEIGHT 

PROB ≥ 0.85 0 

PROB ∈ [0.7 – 0.85[ 1 

PROB ∈ [0.55 – 0.7[ 2 

PROB ≤ 0.55 3 
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We used this conversion scheme to attributte the importance of the polarities in the 

inversion scheme and we estimated the focal mechanisms using FPFIT. We hereby report 

in Figure 4.43 the application for a 𝑀𝑙  1.7 earthquake. 

 

Figure 4.43) Focal mechanism estimation for a a 𝑴𝒍 𝟏.𝟕 earthquake, featuring 82 polarity estimates. The 
focal mechanism resulted in a pure normal faulting. 

For this event, 82 polarity estimates were provided by the deep learning classifier among 

the stations featuring a P wave phase arrival time. The focal mechanism indicates pure 

normal faulting, coherently with the orientation of the main fault segments in the area. 

However, we still observe a 15 % of discrepant polarities between the observed and 

expected first motion pulse predicted by the theoretical radiation pattern of the estimated 

focal mechanism. Although this percentage is compatible with those observed in the 

earthquakes of SCSN catalog and in Ross et al. (2018), we attempted to extract a tentative 

cutoff probability score for discarding polarities, aiming to limit the percentage of 

discrepant observations. For the same event, we therefore recomputed the focal 

mechanism selecting only polarities featuring probability scores higher than 0.70, 0.80 

and 0.90, respectively. In Figure 4.44, we summarize the results of the analysis. 
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Figure 4.44) Focal mechanism selecting only polarities featuring probability scores higher than 0.70, 0.80 

and 0.90, respectively. 
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When considering the focal mechanisms obtained by selecting only the polarities 

characterized by a probability score above a certain threshold, we note a progressive 

lowering of the number of observations from 82 polarities to 52, 41 and 31 when selecting 

as probability thresholds the value 0.7, 0.8 and 0.9, respectively. However, although at 

first sight the solutions might appear similar to the starting estimation, the loss of stations 

might lead to a different position of the nodal planes. Indeed, when inspecting the focal 

mechanisms obtained by selecting the polarities with a probability score higher than 0.8, 

we note a higher strike-slip component as compared to the pure normal faulting 

characterizing the solution obtained by inverting all the available polarities. The presence 

of a major strike-slip component in the focal mechanism seems to be driven by discarding 

the station S0207, whose U polarity constrained the position of the nodal plane in the 

former focal sphere. Indeed, as reported in Figure 4.45, the mentioned station features a 

faint P wave onset, which suggests the closeness of the receiver to a nodal plane on the 

focal sphere. 

 

Figure 4.45) Seismogram related to the station S0207, whose polarity is discarded when considering 
probabilities higher than 0.80. However, this station is expected to appear on the focal sphere nearb a nodal 

plane, better constraining the mentioned plane. 

Therefore, discarding stations due to lower probability scores might lead to a loss of 

crucial information for constraining the geometrical properties of the fault. Moreover, 

although the number of discrepant observations compared to the expected first motion 

amplitude is reduced by imposing a higher probability score, the percentage of discrepant 

polarities oscillates around similar values. While in the starting solution the percentage 

of discrepancy was around 15%, the respective ratios become 12% when adopting a 

probability threshold of 0.7, and 10% when selecting 0.8 and 0.9 as a lower limit. Thus, 

given the similar percentages of discrepant polarities and no significant improvement in 

the estimation of the focal mechanisms, we decided not to set a probability threshold for 

estimating the geometrical properties of the faults. 



 
179 CHAPTER 3.    Microseismicity characterization  
 

 

We extended the analysis of the focal mechanisms for the entire set of available 

earthquakes. We estimated the focal mechanisms for 223 earthquakes in the starting 

catalog (around 55%), which is higher than the number of fault planes estimated in the 

area by De Matteis et al. (2012), covering almost 5 years of microseismic events. 

Moreover, the percentage of events for which the focal mechanism was estimated is much 

higher than those observed in previous studies in the area, increasing by a factor of 9 and 

5.5 the percentages of focal mechanisms determined in De Matteis et al. (2012) and 

Pasquale et al. (2009), respectively. Therefore, the use of dense array deployments can 

provide higher resolution in determining the fault planes compared to the use of ordinary 

seismic networks, strongly reducing the minimum magnitude for which the geometrical 

properties of the fault can be evaluated. We observed different percentages of determined 

focal mechanisms among the magnitude classes: we estimated fault planes for 75% of the 

events with 𝑀𝑙 > 1, while the percentage of characterized events approaches 40% for the 

events featuring 0.5 < 𝑀𝑙 ≤ 1. As expected, the percentage of characterized events with  

𝑀𝑙 ≤ 0.5 strongly drops, achieving a value slightly larger than 25%. This results from the 

characteristic number of estimated polarities for earthquakes in each magnitude range. In 

Figure 4.46, we report the histograms of the number of estimated polarities for events in 

each of the three magnitude classes. 

 

Figure 4.46) Distribution of the number of polarities used within the inversion of focal mechanisms for 

earthquakes in three magnitude classes: 𝑴𝒍 ≤ 𝟎. 𝟓, 𝟎. 𝟓 < 𝑴𝒍 ≤ 𝟏 and 𝑴𝒍 > 𝟏. Within each subplot, the 
median number of polarities is reported. 

We estimated a median number of polarities of 9, 12 and 27 for earthquakes featuring 

𝑀𝑙 ≤ 0.5, 0.5 < 𝑀𝑙 ≤ 1 and 𝑀𝑙 > 1. For this latter family, the number of available 
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polarities range from 3 to 5 times the analogous value as for the focal mechanisms 

determined using the manual polarities extracted from the ordinary INFO network. 

In Figure 4.47, we report the catalog of estimated focal mechanisms, along with the 

known fault traces. As for 3.28, the size of the beachballs is proportional to the magnitude 

of the events and the red and white sectors refer to the compressive and extensional 

quadrants of the focal sphere, respectively. When multiple solutions were provided for an 

earthquake, we chose the most reliable solution according to the a-priori knowledge of 

the fault system in the area. 

 

Figure 4.47) Focal mechanisms obtained from the inversion of the polarities from the ordinary seismic 
network and the dense array deployments. The size of the beach balls is proportional to the magnitude of 
the earthquakes. The 223 obtained fault planes mainly show pure normal faulting mechanisms, with a slight 

percentage of strike-slip component and inverse faulting. 
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The 223 estimated focal mechanisms mainly show a close-to-pure normal faulting 

mechanism, with a slight percentage of strike-slip component or inverse faulting for a low 

percentage of the fault planes. Colocated events typically share similar geometric 

properties of the source. In particular, three main clusters can be identified from this 

representation: two in the Northern sector of the Irpinia region, while the other occurred 

in the Southern sector of the investigated area. The northernmost cluster, composed of 4 

earthquakes that occurred within the same day slightly outside the dense array 

deployment and whose magnitude ranged between 1.2 and 1.8, reported a normal fault ing 

mechanism with a minor strike-slip component. The average geometrical angles resulted 

to be Φ = 285 ± 15°, 𝛿 = 43 ± 6°, 𝜆 =  −113 ± 14°. Regarding the cluster of the 

Southern sector, composed of 13 earthquakes, belonging to a seismic swarm that lasted 

one day and featured a mainshock of 𝑀𝑙 1.8, the angles are similar, with a steeper dip and 

an even lower strike-slip component. The average angles for the cluster are  Φ = 300±
20°, 𝛿 = 56± 17°, 𝜆 = −105 ± 17°. To summarize the results obtained for the entire 

catalog, we report in Figure 4.48 the rose diagram for strike, dip and rake angles for the 

preferred solutions. 

 

Figure 4.48) Rose diagram reporting the strike (left panel), dip (central panel) and rake (right panel) angles 
resulting from the 223 extracted focal mechanisms. These histograms support the observations of a main 
normal faulting environment, with a slight component of strike-slip. 

The histograms reported in Figure 4.48 support the observations of a main normal faulting 

environment, with a slight component of strike-slip. When extracting the average and 

standard deviation values, we obtain Φ = 310 ± 35°, 𝛿 = 55 ± 20°, 𝜆 =  −84 ± 35°, 
which are also coherent with the main angles estimated for the main events of the M 6.9 

1980 Irpinia earthquakes (Bernard & Zollo, 1989). In Figure 4.49, we report the 

distribution of the strike, dip and rake angle uncertainties for the obtained focal 

mechanisms. The median uncertainties on the strike, dip and rake angles resulted to be 

10°, 8° and 15°, respectively. 
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Figure 4.49) Strike (left panel), dip (central panel) and rake (right panel) uncertainties for the 223 estimated 

focal mechanisms. 

Despite scarcely populating the catalog of focal mechanisms, some constrained 

earthquakes featured inverse faulting. In Figure 4.50, we report the distribution of the 

focal mechanisms for the events characterized by inverse faulting solutions, marking with 

a red star the corresponding epicentres. 

 

Figure 4.50) Representation of focal mechanisms featuring an inverse faulting. Red stars mark the 
corresponding epicentres. 
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Integrating Figure 4.50 with an analysis of the occurrence time of the earthquakes, it 

appears that most of the events featuring inverse faulting occurred clustered in space and 

time, with interevent times of minutes (cluster in the northern Sector), hours (couple of 

events in the central-western sector) or one day (cluster in the southern sector). Moreover, 

events within the cluster typically share a similar focal mechanism. In Figure 4.51, we 

show the focal mechanism for three 𝑀𝑙 > 1 earthquakes belonging to the cluster in the 

Southern Sector of the area, marked with a black box in Figure 4.50. 

 

Figure 4.51) Focal mechanism for three clustered earthquakes that occurred within a span of 20 days in the 
Southern Sector of the region (black box in Figure 4.50). The estimated inverse focal mechanisms appear 
similar for the considered earthquakes. 

The earthquakes in Figure 4.51 occurred between April 30th and May 23rd 2022, featuring 

close epicentral distances and depths ranging between 6.8 and 7.5 km. All the three focal 

mechanisms were estimated using a high number of P wave polarities, consisting of 69, 

61 and 32 automatic readings of the sign of first motion onset. The closeness and the high 

number of polarity readings for these events, as for the other obtained inverse focal 

mechanisms, increase the reliability of the considered focal mechanisms, that were 
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therefore included in the final catalog. For further verifying the correctness of the 

estimated inverse fault planes, we compared the results from the fully automatic 

procedure (deep learning estimation of the phase arrival times, earthquake location and 

deep learning evaluation of the P wave polarities) with the corresponding manual 

estimation, by visually identifying the phase arrival times and P wave polarities for some 

of the aforementioned inverse faulting earthquakes. In Figure 4.52, we compared the focal 

mechanism obtained for an event reported in Figure 4.51 with the respective one obtained 

with manual estimation of phase arrival times and P wave polarities. We did not observe 

any significant differences in the earthquake location, focal depth and estimated focal 

mechanisms between the fully automatic and fully manual procedure, with the two 

estimations being compatible within the angle uncertainties. This result further supports 

the reliability of the obtained fault plane solutions. In the following Section 4.4, we will 

use the estimated focal mechanisms for evaluating the stress field in the area. 

 

Figure 4.52) Comparison of the estimated focal mechanisms for an earthquake featuring inverse faulting 

resulting from the fully automatic procedure (left panel) and manual identification of phase arrival times and 
P wave polarities (right panel). 

4.3.4 Stress field inversion from focal mechanisms using dense array 
deployments 

In Section 4.3.3, we produced an enhanced catalog of 223 focal mechanisms from the 

ISNet manual catalog, exploiting the dense monitoring of the seismic arrays. In the area 

of the Southern Apennines, few studies have evaluated the stress field from the inversion 

of focal mechanisms for micro-earthquakes (Pasquale et al., 2009; De Matteis et al., 

2012). These mentioned analyses either refer to the aftershocks of the 1980 M 6.9 Irpinia 

earthquake (Pasquale et al., 2009) or considered earthquakes spanning a time window of 

several years (De Matteis et al., 2012). However, both studies used a lower number of 
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focal mechanisms as compared to the results of Section 4.3.3, which provided a twice 

larger list of fault plane solutions. Using a dataset of 1312 microeartquakes between 2005 

and 2011, which resulted into 118 focal mechanisms, De Matteis et al. (2012) obtained a 

regional stress field characterized by a nearly horizontal northeast–southwest minimum 

compressive stress axis (𝜎3) and a nearly vertical maximum compressive stress axis (𝜎1), 
indicating the presence of a unique normal-faulting regime (left panel of Figure 4.53). 

These results are compatible with the existence of extension perpendicular to the axis of 

the belt, which is well known in the study area (Montone et al., 2004). Pasquale et al. 

(2009), focused on the stress inversion for the analysis of the 2352 aftershocks within 4 

months after the M 6.9 Irpinia earthquake, which was performed by inverting 139 focal 

mechanisms. By inverting all the selected focal mechanisms, the stress field still showed 

a nearly horizontal NE–SW minimum compressive stress axis (𝜎3) and a maximum 

compressive stress axis (𝜎1) that is nearly vertical. Although the axis σ3 is horizontal, with 

a small error on its plunge angle, there is a large uncertainty for its trend, while axis σ1 

shows a large error both for trend and plunge. 

We therefore inverted the catalog of 223 focal mechanisms obtained in Section 4.3.3, 

using the approach proposed by Martinez-Garzon et al. (2014), selecting 2000 bootstrap 

resamples. The retrieved stress field is reported in the right panel Figure 4.53, where each 

dot represents the retrieved stress component in individual bootstrap instances. 

 

Figure 4.53) Left panel: Stress field inversion from De Matteis et al. (2012). Right panel: Stress field retrieved 

from the inversion of the 223 focal mechanisms estimated in Section 4.3.3. 

We observe coherent results with De Matteis et al. (2012), in terms of the azimuth and 

plunge angles for the stress components. In Table 4.3, we report the best values, along 
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with the 95% confidence intervals for the mentioned angles as retrieved by our stress field 

inversion, compared with the results from De Matteis et al. (2012), reported in red. 

Table 4.3) Plunge and azimuth angles for 𝝈𝟏 , 𝝈𝟐 , and 𝝈𝟑  obtained from the inversion of focal mechanisms 
evaluated in Section 4.3.3. Red values refer to the results of De Matteis et al. (2012). Bracketed values refer 
to the 95% confidence interval from bootstrap resampling. 

 PLUNGE AZIMUTH 

𝜎1 78.2°/80° 

[70.8, 84.2]° 

−172.2°/ -97.8° 

[-198.2, -129.7]° 

𝜎2 6.8°/5.6° 

[0.2, 15.9]° 

−47.2°/138.6° 

[-57.5, -36.3]° 

𝜎3 9.6°/8.3° 

[4,7, 14.9]° 

43.9°/47.7° 

[34.1, 54.7]° 

 

We note compatibility between the plunge and azimuth angles with De Matteis et al. 

(2012), with the former values falling within the confidence interval. While we observe 

coherence among the azimuth of 𝜎3, pointing in the direction of the anti-Apenninic 

extensional field, we note detaching values for the azimuth of 𝜎1 and 𝜎2. Nevertheless, 

the azimuth of 𝜎2 appear to be the supplementary as compared to the 𝜎2 value from De 

Matteis al. (2012) and, given the wrapping of the azimuth angles at the edge of the polar 

representation, these values are actually closer than they appear. On the other hand, we 

observe a major difference for the azimuth of 𝜎1 among the two estimates. However, 

given the high plunge angle of 𝜎1, slight variations in the position on the polar plot might 

result in strong differences in the azimuth angles. Indeed, despite the narrower 

distribution of the 𝜎1 azimuth angles (red dots in the left panel of Figure 4.53) as 

compared to the respective ones of 𝜎2 and 𝜎3, the confidence interval associated to the 

maximum compressive stress results to be the largest. Moreover, comparing the extension 

of the confidence interval for 𝜎1 in Figure 4.53, we can note a wider distribution of the 

𝜎1 azimuth even for the results of De Matteis et al. (2012), which did not explicitly report 

the confidence interval for the compressive stresses. Therefore, considering the 

confidence interval also for the results in De Matteis et al. (2012) might lead to a  

coherency among the estimated stress fields. When focusing on the stress ratio R, defined 

as 𝑅 = (𝜎1− 𝜎2)/(𝜎1 − 𝜎3) and representing the relative magnitude of the compressive 

stress, we observed a coherent value (R = 0.55, confidence interval [0.39, 0.71]) as 

compared to the results of De Matteis et al. (2012), who estimated 𝑅 = 0.55 ± 0.08. In 

Figure 4.54, we report the distribution of the R value from each bootstrap resample. 
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Figure 4.54) Distribution of the R value obtained from each bootstrap instance using the catalog of 223 focal 

mechanisms.  

Given the high number of available focal mechanisms and the spatial distribution of the 

earthquakes, we performed the stress field inversion for the events occurring in the 

Northern, Central and Southern sector, respectively, seeking for eventual differences 

within the stress tensor. When splitting the dataset for the three regions, we got 67, 94 

and 62 earthquakes for the stress field inversion in the Northern, Central and Southern 

sector, respectively. In Figure 4.55, we report the spatial distribution of the considered 

earthquakes. 

 

Figure 4.55) Dataset splitting for the inversion of the stress field in the Northern (blue), Central (green) and 
Southern sector.  
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In Figure 4.56 we report the stress field retrieved from the inversion of focal mechanisms 

split as in Figure 4.55, along with the preferred value and 95 % confidence interval of 

each stress component. 

 

Figure 4.56) Stress field inversion from focal mechanisms belonging to the Northern (left panel), Central 
(central panel) and Southern (right panel) sector. 

When considering the azimuth and plunge angles for the different sectors, we note 

coherent results among the quantities. Only the plunge angles of 𝜎3 slightly vary, 

decreasing moving from the Northern to the Southern sector. However, the obtained 

values for the considered quantity are still compatible within the 95% confidence interval 

and the corresponding preferred azimuth remarkably follows the anti-Apenninic 

direction, as for the inversion of the global dataset. Therefore, this result support s the 

hypothesis of a quite homogenous stress field in the Irpinia region. Further evidence of a 

homogenous stress field is provided by the distribution of the R ratio for the different 

sectors, shown in Figure 4.57. We still observe a homogeneous stress field when 

considering the earthquakes during the charge/discharge of the karst aquifer, which has 

been proven to modulate the occurrence of shallow seismicity (D’Agostino et al., 2018; 

Tarantino et al., 2024). In Figure 4.58, we report the stereonet representation for the 

events that occurred before (77, left panel) and after (143, right panel) February 1 st 2022.  
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Figure 4.57) Histogram of the R ratio from bootstrapping resample of the focal mechanisms for the Northern 

(left panel), Central (central panel) and Southern (right panel) sector. 

 

Figure 4.58) Stress field inversion for the events occurred before (left panel) and after (right panel) February 
1st 2022. 

The use of temporary dense array deployment can provide important insights into the 

analysis of the stress field from the focal mechanism inversion. Even when focusing on 

the earthquakes already contained in the manual catalogs, the high number of estimated 

focal mechanisms allows for the inversion of a constrained set of fault planes, which can 
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be much larger than the catalogs extracted from multiple years of microseismic 

monitoring using ordinary seismic networks. Moreover, the spatio-temporal distribution 

of the earthquakes recorded by the arrays allows the investigation of local features in the 

stress field, which could have not been analyzed before due to the scarcity of available 

fault planes. In particular, in this analysis, we showed that the stress field acting in the 

Irpinia region is, at a global scale, characterized by a near-vertical compression stress 𝜎1 
and horizontal 𝜎2 and 𝜎3, whose latter azimuth agrees with the direction of the extensional 

regional field pointing towards the anti-Apenninic direction. When looking for spatial 

variations of the stress field, we note a coherency of the azimuth and plunge angles, along 

with compatibility of the relative magnitude of the stress components, between the 

northern, central and southern sectors of the Irpinia region, suggesting the homogeneity 

of the acting stress field. A similar coherency is also observed when inspecting temporal 

variations within the characteristic time scale of the karst aquifer cycle (year).  
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Conclusions 

In this thesis, we characterized microseismic events for achieving insights in the 

earthquake generation processes. Using advanced detection techniques, such as deep 

learning models and similarity-based algorithms, we generated enhanced seismic catalogs 

as compared to the existing manual and standard earthquake lists, proposing the 

integration of the deep learning detector EQTransformer (Mousavi et al., 2020) and the 

template matching algorithm EQCorrscan, with the former techniques used to provide a 

wider set of templates to be used for the similarity-based detection, as best detection 

strategy. We showed that the number of events occurring within seismic sequences in the 

Southern Apennines is effectively one order of magnitude higher than the content of the 

former catalogs (Scotto di Uccio et al., 2023). The improved catalogs can now be 

investigated through robust statistical analyses, which can reveal the parameters of the 

Gutenberg-Richter relationship regulating the magnitude-occurrence distribution of 

earthquakes. In particular, for the considered seismic sequences in the Irpinia region, we 

observed a lower b-value as compared to the analogous parameter extracted for the 

seismic catalog of the past 15 years in the region, which is mainly populated by 

background seismicity. Since this parameter is directly connected to differential stress 

(Schorlemmer et al., 2005; Scholz, 2015) and it increases as the differential stress 

decreases, the systematic lower b-values for the sequences might indicate that they 

occurred in regions where the stress is higher than in the surrounding areas, likely 

rupturing compact, sub-kilometric size asperities. With the twofold aim of improving the 

spatial resolution and lowering the minimum magnitude for detecting earthquakes, 200 

seismic stations organized in 20 dense arrays were deployed in the Southern Apennines 

in the framework of the DETECT experiment, integrating the existing seismic network 

from September 2021 to August 2022. The proposed detection strategy successfully led 

to an increase of a factor ~8 in the number of detected events as compared to the manual 

catalog built on the visual inspection of the waveforms recorded by the ordinary seismic 

network, leading to hundreds of identifications of phase arrival times even for 𝑀𝑙 < 2 

earthquakes. Although no major earthquakes occurred during the deployment of the 

seismic arrays, with an observed maximum magnitude 𝑀𝑙 2.8, we detected almost 3600 

earthquakes, an amount comparable with the number of earthquakes contained in the 

manual catalog of the ordinary seismic network for 15 years of monitoring. When 
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analyzing the seismic catalog resulting from DETECT, which mainly accounts for 

background seismic events, we retrieved a compatible b-value with the existing manual 

catalog, suggesting that the integration of advanced detection strategies and dense short-

time monitoring can lead to the same level of statistical information as for multiple years 

of ordinary seismic monitoring. Within this thesis, automatic detection strategies have 

been shown to provide improved seismic catalogs on extended time scales even in 

monitoring the induced seismicity in gas storage facilities (Scala et al., 2022) and 

searching for potential near-repeating earthquakes (Palo et al., 2023b), opening the way 

for implementing automatic monitoring systems for earthquake identification. In this 

direction, we built up a fully automatic detection workflow for supporting the daily (and 

manual) monitoring activities in Southern Apennines, where visual earthquake detection 

is performed by network operators. In order to limit the subjective bias and to lower the 

detection threshold, we integrated the deep learning detector PhaseNet (Zhu & Beroza, 

2018) and the phase associator REAL (Zhang et al., 2019), supporting the manual 

activities providing in advance a detection list along with picked waveforms. We 

demonstrated the robustness of the implemented detection strategy, which provided an 

enhanced catalog of a factor ~3, as compared to the manual catalogs of the former years 

within the same 6 months of operativity. This improvement resulted in a lower magnitude 

of completeness of the seismic catalog of 0.5 magnitude units. The low number of false 

detections declared by the workflow, which resulted in less than one declaration per day 

on average, and the even lower number of missed earthquakes (18), supports the 

possibility of implementing the proposed detection strategy as a standard monitoring 

system for seismic networks. Indeed, the comparison between the automatic and manual 

identification of phase arrival times promisingly reports consistency among the 

quantities, featuring zero-mean residuals for both P and S picks, being therefore accurate 

enough for performance automatic earthquake location. 

Within this thesis, we further discussed the improvement of the knowledge of 

seismogenic sources that might be achieved by integrating advanced detection techniques 

and accurate location algorithms. Exploiting the enhanced catalogs obtained for the 

seismic sequences in Southern Apennines, we obtained accurate relative hypocenter 

locations using HYPODD (Waldhauser & Ellsworth, 2000) selecting catalog and cross 

correlation differential travel times. The analysis revealed small-scale alignment of the 

seismicity along subparallel segments featuring consistent orientations among the main 

structures generating the 1980 M 6.9 Irpinia earthquake (Scotto di Uccio et al., 2024a) , 

allowing to finely track the spatio-temporal evolution of the seismic sequences. Although 

only a limited percentage of the events in the enhanced catalogs can be relocated (around 

30 % of the starting detection lists, that is still twice larger than the number of events in 

the manual catalogs obtained from absolute location techniques), the amount of 

differential travel times that can be used for relocating the earthquakes might be orders 
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of magnitude higher compared to the same quantity extracted from standard catalogs, 

strongly constraining the hypocenter determination. When projecting the relocated 

hypocenters along the fault planes related to individual seismic sequences, an important 

revealed feature is that the distribution of the events is not isotropic around the main 

events of the sequences, but small events tend to align dominantly along the dip direction, 

which also corresponds to the slip direction, for normal faults and might be interpreted as 

the boundary between locked and creeping domains (Rubinstein & Beroza, 2007). When 

considering the seismicity that occurred within the dense array deployment, the 

hypocenter relocation of the enhanced catalogs reveals similar characteristics. However, 

the fraction of relocated events is almost twice as large as compared the respective 

observed for the earthquakes in the seismic sequence and recorded by the ordinary seismic 

network. This result suggests that a dense monitoring system can provide enough 

observation for better constraining the hypocenter determination of microearthquakes. 

Analyzing the spatiotemporal distribution of the relocated hypocenters, we observed 

differences among the shallow (depth < 6km) and deep seismicity. In particular, shallow 

earthquakes appear sparse, without clearly illuminating seismicity clusters. This feature 

has been associated with the effects of karst aquifers, which have been proven to modulate 

the occurrence of shallow seismicity in the area (D’Agostino et al., 2018, Tarantino et al., 

2024). On the other hand, deeper earthquakes are typically clustered in space and time, 

illuminating seismic alignments along small-scale structures, similarly to the clusters 

highlighted by the relocation of earthquakes in the enhanced catalogs of seismic 

sequences. As depicted by the double difference location of earthquakes in the DETECT 

catalog, seismicity varies in depth and location in a SE-NW direction. To the SE, 

seismicity extends well within the Apulian carbonate platform along and around a 

previously identified, SE-dipping, long-lived and multiply reactivated major fault 

(Amoroso et al., 2014; Amoruso et al., 2005). However, seismicity shallows NW-ward, 

and at the same time it steps to the right, before deepening again further north. This is 

interpreted as a result of fault segmentation, which involves the occurrence of a major 

dextral fault step to the NW. Advanced location techniques can provide significant insight 

into the seismogenic structures even in volcanic environments, as results from our 

analysis in the Campi Flegrei caldera. Despite leveraging on the hypocenter 

characterization for the manual provided by the INGV-OV from 2014 to 2023, the use of 

an innovative location algorithm, which develops source-specific station travel-time 

corrections and exploits waveform similarity (NLL-SC, Lomax & Savvaidis, 2022), 

achieves improved resolution in the seismic source location, with lower uncertainties as 

compared to standard techniques. The high‐precision NLL‐SC locations help in 

unraveling the spatiotemporal evolution of the seismicity, delineating several clusters and 

alignments of seismicity produced during the ongoing unrest at Campi Flegrei . Most of 

the seismicity concentrates in the shallow region around the Solfatara‐ Pisciarelli area. 

Here, epicenters define a ∼1 km × 1 km, horseshoe‐shaped structure, opened and 
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deepening toward the northeast beneath the Agnano Plain, and slightly larger than the 

∼0.5 km diameter of the Solfatara crater. Smaller‐scale shallow seismicity clusters, with 

a typical size of 100–300 m, occur south and southwest of the Solfatara, along the coast 

of Pozzuoli. The most recent magnitude Md 3.6+ events except for the largest magnitude 

Md 4.2, also occurred in the Solfatara‐Pisciarelli area, beneath the horseshoe‐shaped 

seismicity, at depths between 2 and 3 km, while an approximately E–W trending fault 

bounds the distribution of the relocated seismicity NE of the Solfatara crater on which a 

series of spatially and temporally correlated seismicity bursts occurred between 2 and 3 

km depths. A portion of the relocated seismicity, occurring in the offshore sector, is 

compatible with the caldera ring fault zone and appears related to the innermost portion 

of the composite caldera ring fault zone. Overall, only the deepest offshore seismicity, 

between 3 and 4 km depth, appears to fit and approximate the downward propagation of 

the south–western inner ring fault. A novelty revealed by our analysis is the ∼N–S 

trending sub‐vertical fault structure just offshore La Pietra, which generated the largest 

magnitude (Md 4.2). This structure was not identified to date, since it lies in a region 

where no deep‐penetrating reflection profiles are available and there was no particular 

seismicity during the 1982–84 crisis. 

Characterizing the properties of the seismic source can provide insights into the 

earthquake size, geometrical characteristics and mechanical interactions of the events. In 

the analysis of the source size, we focused on the determination of the seismic moment 

and the corner frequency, which are directly related to the magnitude and the source size, 

respectively. The proposed approach, leveraging on the use of low-magnitude events for 

determining the parameters to describe the attenuation processes from the source to the 

receivers, allowed to retrieve the seismic moment (and thus the moment magnitude) for 

60 % of the relocated events. We recognize two trends between the magnitude scales: for 

𝑀𝑙 < 2, the 𝑀𝑙-𝑀𝑤  distribution strongly deviates from the 1:1 scaling relation which is 

observed for higher magnitude. We attribute this feature to the saturation of the event 

duration in the local magnitude computation due to the anelastic attenuation. On the other 

hand, we retrieved the corner frequency (and thus the source radius) for the events with 

M > 2. We demonstrated with synthetic tests that at the characteristic hypocentral 

distances for the seismic sequences in the Southern Apennines, the spectral content at 

higher frequencies than the low-pass cutoff frequencies of the Earth Green’s function, 

falling within 10 and 20 Hz, can be severely affected and biased using an incorrect value 

of the quality factor. Since 𝑓𝑐  for microseismic events typically feature values higher than 

the [10 – 20] Hz range, the estimation of the corner frequency might be biased for events 

in this magnitude range. For the resolved events, the distribution of the corner frequencies 

with moment appears to follow a nearly linear trend, with stress drops ranging between 

1-3 MPa, while we observed median stress drops of Δ𝜎 = 1.8 MPa in the Northern sector 

and Δ𝜎 = 3.4 𝑀𝑃𝑎 in the Southern Sector. This difference might be associated with the 
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different fluid content and fraction. In the Southern sector rock physics modelling 

indicates the presence of a mixture brine-CO2 (Amoroso et al. 2017). Assuming self-

similarity for low-magnitude events for each sequence, we evaluated the static stress 

release model within the swarm, attributing a source radius to the events for which we 

did not estimate the corner frequency using the median stress drop. For almost all the 

sequences the stress model suggests static stress release as a trigger mechanism, with 

small events mainly concentrated in or around the area affected by stress changes due to 

the main events in the sequence, identifying a single km-sized patch mainly oriented 

along the dip direction. An interesting case is represented by the Rocca San Felice seismic 

sequence, for which we observe two seismicity patterns oriented along the dip direction 

activated at different times (the main event 𝑀𝑙 3.0 involved the first patch, and the 

seismicity migrated along the second segment almost two days after the mainshock with 

the occurrence of a 𝑀𝑙 2.8 earthquake). To infer the occurrence of an aseismic event we 

investigated the geodetic data from GNSS stations deployed close to the seismic 

sequence. Although no clear offsets were observed on the data, a resolution test revealed 

that an aseismic event with M 5.0, whose size could be comparable to the spatial shift of 

the seismicity, might have been buried within the noise of the surface GNSS stations. 

For assessing the geometrical properties of the seismic source, we estimated the focal 

mechanism for the events in the manual catalog integrating the ordinary and dense 

DETECT network, the latter characterizing low-to-moderate magnitude earthquakes with 

hundreds of P wave arrival times. For evaluating the P wave polarities, whose inversion 

can reveal the strike, dip and rake angles describing the orientation of the generating fault, 

we used a convolutional neural network (Ross et al., 2018) trained on millions of 

manually labeled polarities. The inversion of the retrieved polarities allowed the 

determination of 223 focal mechanisms, a number twice larger as compared to former 

studies in the area, which either grounded on manual seismic catalog for the aftershocks 

of the 1980 M 6.9 earthquake (Pasquale et al., 2009) or on 6 years of microseismic events 

(Matrullo et al., 2012). Moreover, the percentage of resolved events is more than 5 times 

higher than the analogous value in the mentioned studies, suggesting that dense short-

time array monitoring can provide resolution for constraining the focal mechanisms of 

low-magnitude events. The analysis of the retrieved fault planes revealed a prevalent 

normal faulting environment, coherently with the main faults in the area, with a slight 

component of strike-slip and inverse faulting. Using the obtained focal mechanisms, we 

inverted the fault planes for retrieving the orientation of the stress field adopting the 

methodology proposed by Martinez-Garzon et al. (2014), which implemented a 

bootstrapping approach for estimating the confidence interval for the stress tensor 

components. When inverting the entire catalog of fault planes, we retrieved near-to-

vertical most compressive stress 𝜎1 and horizontal intermediate and least compressive 

stress 𝜎2 and 𝜎3, these orientations compatible with the stress associated with normal 
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faulting. Interestingly, the azimuth of the least compressive stress 𝜎3 lied in the anti-

Apenninic direction, compatibly with the direction of the regional extensional stress field 

acting in the area. Moreover, we observe agreement with the results obtained by De 

Matteis et al. (2012), both in terms of azimuth and plunge angles of the deviatoric stress 

components and also in terms of the relative stress magnitude. Therefore, dense and 

temporary surveys can provide similar information on the stress field as compared to 

multiple years of ordinary seismic monitoring. The enhanced catalog of focal mechanisms 

and their spatiotemporal distribution allowed us to monitor eventual local variations in 

the stress field. We split the dataset of focal mechanisms selecting events in the northern, 

central and southern sectors of the Irpinia region, individually inverting for the stress 

field. We note a strong homogeneity within the retrieved stress field, with slight variations 

only in the plunge angles of 𝜎3, which increase moving from the Northern to the Southern 

sector. However, the obtained values for the considered quantity are still compatible 

within the 95% confidence interval and the corresponding preferred azimuth remarkably 

follows the anti-Apenninic direction. The same level of homogeneity is observed when 

splitting the dataset according to the charge/discharge trend period of the karst aquifer, 

which is proven to be responsible for the modulation of the shallow seismicity 

(D’Agostino et al., 2018), supporting the hypothesis of a quasi-homogenous stress field 

acting in the Irpinia region. 

Within this work, we individually tackled the characterization of the microseismicity in 

terms of earthquake detection, hypocenter location and seismic source properties. The in-

depth analyses we implemented led to the creation of ready-to-use blocks, that at this 

stage are not interoperable yet. An interesting outlet for this thesis could be the creation 

of automatized workflows for characterizing the ongoing seismicity, moving towards a 

near-real-time monitoring. This direction could lead to the definition of standardized 

approaches to be applied in different seismogenic environments, providing robust and 

homogenous catalogs.  We made a first step in this direction, building an automatic and 

reliable system for providing detection and phase arrival times in the Southern Apennines 

grounded on advanced state-of-the-art techniques, whose promising performance might 

suggest a stand-alone implementation soon. The integration of blocks for source 

parameters and automatic P wave polarity estimation blocks could generate a first 

prototypal workflow for a comprehensive analysis of the microseismicity. An opening 

question in the framework of earthquake detection using deep learning techniques 

concerns the sensitivity of models trained on worldwide datasets to local seismic features. 

The existence of manual labels in long-term catalogs might support the training of models 

for earthquake detection and phase picking entirely leveraging local seismic data, which 

we believe could be more robust in terms of minimization of false detections. Cross-

domain analysis and tests against the performance of consolidated worldwide models can 
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answer the former question, suggesting the most effective model for the detection analysis 

in a specific region. 

Interestingly, enhanced catalogs might indicate the existence of creeping domains, which 

might generate slow events over time. Recent observations in normal faulting regimes 

show that slow events up to magnitude 5.5 can occur also in these tectonic contexts 

(Northern Apennines, Gualandi et al., 2017; Corinth rift, Kaviris et al., 2021). However, 

our observational capability seems to be inadequate to detect those events in Southern 

Apennines, requiring further technological development, with the presence of borehole 

instrumentation and strainmeters.    
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