

University of Naples Federico II

Department of Structures for Engineering and Architecture via Claudio 21, 80125, Napoli, Italy

dr. Nicolò Vaiana, Assistant Professor

mobile: +39 329 187 6763, e-mail: nicolo.vaiana@unina.it web page: https://www.docenti.unina.it/nicolo.vaiana

Proposed Seminar for Ph.D. Students (4 hours)

Title

Hysteretic Materials and Metamaterials for Vibration Control of Structures, Art Objects and Sensitive Equipment

Abstract

Hysteresis is a complex phenomenon observed in many areas of science and engineering. The 4-hour seminar aims at: a) illustrating the typical complex experimental behavior exhibited by hysteretic materials and metamaterials generally adopted in aerospace, civil, mechanical, naval, and structural engineering; b) presenting a unified phenomenological modeling approach based on the use of the recently formulated Vaiana-Rosati Model of hysteresis; c) illustrating the adoption of hysteretic materials and metamaterials for the vibration control of structures and their contents, such as art objects and sensitive equipment.

Seminar Program

	Hours	Date
Part 1		
1.1 Experimental Hysteretic Behavior	1	April 2024
1.2 Unified Phenomenological Modeling Approach	1	April 2024
Part 2		
2.1 Vibration Control of Structures	1	April 2024
2.2 Vibration Control of Art Objects and Sensitive Equipment	1	April 2024

Notes:

- 1) The seminar will be also held online to allow for the participation of international Ph.D. students.
- 2) The seminar will present some first innovative results obtained in the context of PRIN 2022 Project "Engineered basements for vibration protection of artworks and strategic sensitive equipment".